]> git.proxmox.com Git - mirror_zfs.git/blob - module/zfs/dbuf.c
Stack overflow in recursive bpobj_iterate_impl
[mirror_zfs.git] / module / zfs / dbuf.c
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
24 * Copyright (c) 2012, 2018 by Delphix. All rights reserved.
25 * Copyright (c) 2013 by Saso Kiselkov. All rights reserved.
26 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
27 */
28
29 #include <sys/zfs_context.h>
30 #include <sys/arc.h>
31 #include <sys/dmu.h>
32 #include <sys/dmu_send.h>
33 #include <sys/dmu_impl.h>
34 #include <sys/dbuf.h>
35 #include <sys/dmu_objset.h>
36 #include <sys/dsl_dataset.h>
37 #include <sys/dsl_dir.h>
38 #include <sys/dmu_tx.h>
39 #include <sys/spa.h>
40 #include <sys/zio.h>
41 #include <sys/dmu_zfetch.h>
42 #include <sys/sa.h>
43 #include <sys/sa_impl.h>
44 #include <sys/zfeature.h>
45 #include <sys/blkptr.h>
46 #include <sys/range_tree.h>
47 #include <sys/trace_dbuf.h>
48 #include <sys/callb.h>
49 #include <sys/abd.h>
50 #include <sys/vdev.h>
51 #include <sys/cityhash.h>
52 #include <sys/spa_impl.h>
53
54 kstat_t *dbuf_ksp;
55
56 typedef struct dbuf_stats {
57 /*
58 * Various statistics about the size of the dbuf cache.
59 */
60 kstat_named_t cache_count;
61 kstat_named_t cache_size_bytes;
62 kstat_named_t cache_size_bytes_max;
63 /*
64 * Statistics regarding the bounds on the dbuf cache size.
65 */
66 kstat_named_t cache_target_bytes;
67 kstat_named_t cache_lowater_bytes;
68 kstat_named_t cache_hiwater_bytes;
69 /*
70 * Total number of dbuf cache evictions that have occurred.
71 */
72 kstat_named_t cache_total_evicts;
73 /*
74 * The distribution of dbuf levels in the dbuf cache and
75 * the total size of all dbufs at each level.
76 */
77 kstat_named_t cache_levels[DN_MAX_LEVELS];
78 kstat_named_t cache_levels_bytes[DN_MAX_LEVELS];
79 /*
80 * Statistics about the dbuf hash table.
81 */
82 kstat_named_t hash_hits;
83 kstat_named_t hash_misses;
84 kstat_named_t hash_collisions;
85 kstat_named_t hash_elements;
86 kstat_named_t hash_elements_max;
87 /*
88 * Number of sublists containing more than one dbuf in the dbuf
89 * hash table. Keep track of the longest hash chain.
90 */
91 kstat_named_t hash_chains;
92 kstat_named_t hash_chain_max;
93 /*
94 * Number of times a dbuf_create() discovers that a dbuf was
95 * already created and in the dbuf hash table.
96 */
97 kstat_named_t hash_insert_race;
98 /*
99 * Statistics about the size of the metadata dbuf cache.
100 */
101 kstat_named_t metadata_cache_count;
102 kstat_named_t metadata_cache_size_bytes;
103 kstat_named_t metadata_cache_size_bytes_max;
104 /*
105 * For diagnostic purposes, this is incremented whenever we can't add
106 * something to the metadata cache because it's full, and instead put
107 * the data in the regular dbuf cache.
108 */
109 kstat_named_t metadata_cache_overflow;
110 } dbuf_stats_t;
111
112 dbuf_stats_t dbuf_stats = {
113 { "cache_count", KSTAT_DATA_UINT64 },
114 { "cache_size_bytes", KSTAT_DATA_UINT64 },
115 { "cache_size_bytes_max", KSTAT_DATA_UINT64 },
116 { "cache_target_bytes", KSTAT_DATA_UINT64 },
117 { "cache_lowater_bytes", KSTAT_DATA_UINT64 },
118 { "cache_hiwater_bytes", KSTAT_DATA_UINT64 },
119 { "cache_total_evicts", KSTAT_DATA_UINT64 },
120 { { "cache_levels_N", KSTAT_DATA_UINT64 } },
121 { { "cache_levels_bytes_N", KSTAT_DATA_UINT64 } },
122 { "hash_hits", KSTAT_DATA_UINT64 },
123 { "hash_misses", KSTAT_DATA_UINT64 },
124 { "hash_collisions", KSTAT_DATA_UINT64 },
125 { "hash_elements", KSTAT_DATA_UINT64 },
126 { "hash_elements_max", KSTAT_DATA_UINT64 },
127 { "hash_chains", KSTAT_DATA_UINT64 },
128 { "hash_chain_max", KSTAT_DATA_UINT64 },
129 { "hash_insert_race", KSTAT_DATA_UINT64 },
130 { "metadata_cache_count", KSTAT_DATA_UINT64 },
131 { "metadata_cache_size_bytes", KSTAT_DATA_UINT64 },
132 { "metadata_cache_size_bytes_max", KSTAT_DATA_UINT64 },
133 { "metadata_cache_overflow", KSTAT_DATA_UINT64 }
134 };
135
136 #define DBUF_STAT_INCR(stat, val) \
137 atomic_add_64(&dbuf_stats.stat.value.ui64, (val));
138 #define DBUF_STAT_DECR(stat, val) \
139 DBUF_STAT_INCR(stat, -(val));
140 #define DBUF_STAT_BUMP(stat) \
141 DBUF_STAT_INCR(stat, 1);
142 #define DBUF_STAT_BUMPDOWN(stat) \
143 DBUF_STAT_INCR(stat, -1);
144 #define DBUF_STAT_MAX(stat, v) { \
145 uint64_t _m; \
146 while ((v) > (_m = dbuf_stats.stat.value.ui64) && \
147 (_m != atomic_cas_64(&dbuf_stats.stat.value.ui64, _m, (v))))\
148 continue; \
149 }
150
151 typedef struct dbuf_hold_arg {
152 /* Function arguments */
153 dnode_t *dh_dn;
154 uint8_t dh_level;
155 uint64_t dh_blkid;
156 boolean_t dh_fail_sparse;
157 boolean_t dh_fail_uncached;
158 void *dh_tag;
159 dmu_buf_impl_t **dh_dbp;
160 /* Local variables */
161 dmu_buf_impl_t *dh_db;
162 dmu_buf_impl_t *dh_parent;
163 blkptr_t *dh_bp;
164 int dh_err;
165 dbuf_dirty_record_t *dh_dr;
166 } dbuf_hold_arg_t;
167
168 static dbuf_hold_arg_t *dbuf_hold_arg_create(dnode_t *dn, uint8_t level,
169 uint64_t blkid, boolean_t fail_sparse, boolean_t fail_uncached,
170 void *tag, dmu_buf_impl_t **dbp);
171 static int dbuf_hold_impl_arg(dbuf_hold_arg_t *dh);
172 static void dbuf_hold_arg_destroy(dbuf_hold_arg_t *dh);
173
174 static boolean_t dbuf_undirty(dmu_buf_impl_t *db, dmu_tx_t *tx);
175 static void dbuf_write(dbuf_dirty_record_t *dr, arc_buf_t *data, dmu_tx_t *tx);
176
177 extern inline void dmu_buf_init_user(dmu_buf_user_t *dbu,
178 dmu_buf_evict_func_t *evict_func_sync,
179 dmu_buf_evict_func_t *evict_func_async,
180 dmu_buf_t **clear_on_evict_dbufp);
181
182 /*
183 * Global data structures and functions for the dbuf cache.
184 */
185 static kmem_cache_t *dbuf_kmem_cache;
186 static taskq_t *dbu_evict_taskq;
187
188 static kthread_t *dbuf_cache_evict_thread;
189 static kmutex_t dbuf_evict_lock;
190 static kcondvar_t dbuf_evict_cv;
191 static boolean_t dbuf_evict_thread_exit;
192
193 /*
194 * There are two dbuf caches; each dbuf can only be in one of them at a time.
195 *
196 * 1. Cache of metadata dbufs, to help make read-heavy administrative commands
197 * from /sbin/zfs run faster. The "metadata cache" specifically stores dbufs
198 * that represent the metadata that describes filesystems/snapshots/
199 * bookmarks/properties/etc. We only evict from this cache when we export a
200 * pool, to short-circuit as much I/O as possible for all administrative
201 * commands that need the metadata. There is no eviction policy for this
202 * cache, because we try to only include types in it which would occupy a
203 * very small amount of space per object but create a large impact on the
204 * performance of these commands. Instead, after it reaches a maximum size
205 * (which should only happen on very small memory systems with a very large
206 * number of filesystem objects), we stop taking new dbufs into the
207 * metadata cache, instead putting them in the normal dbuf cache.
208 *
209 * 2. LRU cache of dbufs. The dbuf cache maintains a list of dbufs that
210 * are not currently held but have been recently released. These dbufs
211 * are not eligible for arc eviction until they are aged out of the cache.
212 * Dbufs that are aged out of the cache will be immediately destroyed and
213 * become eligible for arc eviction.
214 *
215 * Dbufs are added to these caches once the last hold is released. If a dbuf is
216 * later accessed and still exists in the dbuf cache, then it will be removed
217 * from the cache and later re-added to the head of the cache.
218 *
219 * If a given dbuf meets the requirements for the metadata cache, it will go
220 * there, otherwise it will be considered for the generic LRU dbuf cache. The
221 * caches and the refcounts tracking their sizes are stored in an array indexed
222 * by those caches' matching enum values (from dbuf_cached_state_t).
223 */
224 typedef struct dbuf_cache {
225 multilist_t *cache;
226 zfs_refcount_t size;
227 } dbuf_cache_t;
228 dbuf_cache_t dbuf_caches[DB_CACHE_MAX];
229
230 /* Size limits for the caches */
231 unsigned long dbuf_cache_max_bytes = 0;
232 unsigned long dbuf_metadata_cache_max_bytes = 0;
233 /* Set the default sizes of the caches to log2 fraction of arc size */
234 int dbuf_cache_shift = 5;
235 int dbuf_metadata_cache_shift = 6;
236
237 /*
238 * The LRU dbuf cache uses a three-stage eviction policy:
239 * - A low water marker designates when the dbuf eviction thread
240 * should stop evicting from the dbuf cache.
241 * - When we reach the maximum size (aka mid water mark), we
242 * signal the eviction thread to run.
243 * - The high water mark indicates when the eviction thread
244 * is unable to keep up with the incoming load and eviction must
245 * happen in the context of the calling thread.
246 *
247 * The dbuf cache:
248 * (max size)
249 * low water mid water hi water
250 * +----------------------------------------+----------+----------+
251 * | | | |
252 * | | | |
253 * | | | |
254 * | | | |
255 * +----------------------------------------+----------+----------+
256 * stop signal evict
257 * evicting eviction directly
258 * thread
259 *
260 * The high and low water marks indicate the operating range for the eviction
261 * thread. The low water mark is, by default, 90% of the total size of the
262 * cache and the high water mark is at 110% (both of these percentages can be
263 * changed by setting dbuf_cache_lowater_pct and dbuf_cache_hiwater_pct,
264 * respectively). The eviction thread will try to ensure that the cache remains
265 * within this range by waking up every second and checking if the cache is
266 * above the low water mark. The thread can also be woken up by callers adding
267 * elements into the cache if the cache is larger than the mid water (i.e max
268 * cache size). Once the eviction thread is woken up and eviction is required,
269 * it will continue evicting buffers until it's able to reduce the cache size
270 * to the low water mark. If the cache size continues to grow and hits the high
271 * water mark, then callers adding elements to the cache will begin to evict
272 * directly from the cache until the cache is no longer above the high water
273 * mark.
274 */
275
276 /*
277 * The percentage above and below the maximum cache size.
278 */
279 uint_t dbuf_cache_hiwater_pct = 10;
280 uint_t dbuf_cache_lowater_pct = 10;
281
282 /* ARGSUSED */
283 static int
284 dbuf_cons(void *vdb, void *unused, int kmflag)
285 {
286 dmu_buf_impl_t *db = vdb;
287 bzero(db, sizeof (dmu_buf_impl_t));
288
289 mutex_init(&db->db_mtx, NULL, MUTEX_DEFAULT, NULL);
290 cv_init(&db->db_changed, NULL, CV_DEFAULT, NULL);
291 multilist_link_init(&db->db_cache_link);
292 zfs_refcount_create(&db->db_holds);
293
294 return (0);
295 }
296
297 /* ARGSUSED */
298 static void
299 dbuf_dest(void *vdb, void *unused)
300 {
301 dmu_buf_impl_t *db = vdb;
302 mutex_destroy(&db->db_mtx);
303 cv_destroy(&db->db_changed);
304 ASSERT(!multilist_link_active(&db->db_cache_link));
305 zfs_refcount_destroy(&db->db_holds);
306 }
307
308 /*
309 * dbuf hash table routines
310 */
311 static dbuf_hash_table_t dbuf_hash_table;
312
313 static uint64_t dbuf_hash_count;
314
315 /*
316 * We use Cityhash for this. It's fast, and has good hash properties without
317 * requiring any large static buffers.
318 */
319 static uint64_t
320 dbuf_hash(void *os, uint64_t obj, uint8_t lvl, uint64_t blkid)
321 {
322 return (cityhash4((uintptr_t)os, obj, (uint64_t)lvl, blkid));
323 }
324
325 #define DBUF_EQUAL(dbuf, os, obj, level, blkid) \
326 ((dbuf)->db.db_object == (obj) && \
327 (dbuf)->db_objset == (os) && \
328 (dbuf)->db_level == (level) && \
329 (dbuf)->db_blkid == (blkid))
330
331 dmu_buf_impl_t *
332 dbuf_find(objset_t *os, uint64_t obj, uint8_t level, uint64_t blkid)
333 {
334 dbuf_hash_table_t *h = &dbuf_hash_table;
335 uint64_t hv;
336 uint64_t idx;
337 dmu_buf_impl_t *db;
338
339 hv = dbuf_hash(os, obj, level, blkid);
340 idx = hv & h->hash_table_mask;
341
342 mutex_enter(DBUF_HASH_MUTEX(h, idx));
343 for (db = h->hash_table[idx]; db != NULL; db = db->db_hash_next) {
344 if (DBUF_EQUAL(db, os, obj, level, blkid)) {
345 mutex_enter(&db->db_mtx);
346 if (db->db_state != DB_EVICTING) {
347 mutex_exit(DBUF_HASH_MUTEX(h, idx));
348 return (db);
349 }
350 mutex_exit(&db->db_mtx);
351 }
352 }
353 mutex_exit(DBUF_HASH_MUTEX(h, idx));
354 return (NULL);
355 }
356
357 static dmu_buf_impl_t *
358 dbuf_find_bonus(objset_t *os, uint64_t object)
359 {
360 dnode_t *dn;
361 dmu_buf_impl_t *db = NULL;
362
363 if (dnode_hold(os, object, FTAG, &dn) == 0) {
364 rw_enter(&dn->dn_struct_rwlock, RW_READER);
365 if (dn->dn_bonus != NULL) {
366 db = dn->dn_bonus;
367 mutex_enter(&db->db_mtx);
368 }
369 rw_exit(&dn->dn_struct_rwlock);
370 dnode_rele(dn, FTAG);
371 }
372 return (db);
373 }
374
375 /*
376 * Insert an entry into the hash table. If there is already an element
377 * equal to elem in the hash table, then the already existing element
378 * will be returned and the new element will not be inserted.
379 * Otherwise returns NULL.
380 */
381 static dmu_buf_impl_t *
382 dbuf_hash_insert(dmu_buf_impl_t *db)
383 {
384 dbuf_hash_table_t *h = &dbuf_hash_table;
385 objset_t *os = db->db_objset;
386 uint64_t obj = db->db.db_object;
387 int level = db->db_level;
388 uint64_t blkid, hv, idx;
389 dmu_buf_impl_t *dbf;
390 uint32_t i;
391
392 blkid = db->db_blkid;
393 hv = dbuf_hash(os, obj, level, blkid);
394 idx = hv & h->hash_table_mask;
395
396 mutex_enter(DBUF_HASH_MUTEX(h, idx));
397 for (dbf = h->hash_table[idx], i = 0; dbf != NULL;
398 dbf = dbf->db_hash_next, i++) {
399 if (DBUF_EQUAL(dbf, os, obj, level, blkid)) {
400 mutex_enter(&dbf->db_mtx);
401 if (dbf->db_state != DB_EVICTING) {
402 mutex_exit(DBUF_HASH_MUTEX(h, idx));
403 return (dbf);
404 }
405 mutex_exit(&dbf->db_mtx);
406 }
407 }
408
409 if (i > 0) {
410 DBUF_STAT_BUMP(hash_collisions);
411 if (i == 1)
412 DBUF_STAT_BUMP(hash_chains);
413
414 DBUF_STAT_MAX(hash_chain_max, i);
415 }
416
417 mutex_enter(&db->db_mtx);
418 db->db_hash_next = h->hash_table[idx];
419 h->hash_table[idx] = db;
420 mutex_exit(DBUF_HASH_MUTEX(h, idx));
421 atomic_inc_64(&dbuf_hash_count);
422 DBUF_STAT_MAX(hash_elements_max, dbuf_hash_count);
423
424 return (NULL);
425 }
426
427 /*
428 * This returns whether this dbuf should be stored in the metadata cache, which
429 * is based on whether it's from one of the dnode types that store data related
430 * to traversing dataset hierarchies.
431 */
432 static boolean_t
433 dbuf_include_in_metadata_cache(dmu_buf_impl_t *db)
434 {
435 DB_DNODE_ENTER(db);
436 dmu_object_type_t type = DB_DNODE(db)->dn_type;
437 DB_DNODE_EXIT(db);
438
439 /* Check if this dbuf is one of the types we care about */
440 if (DMU_OT_IS_METADATA_CACHED(type)) {
441 /* If we hit this, then we set something up wrong in dmu_ot */
442 ASSERT(DMU_OT_IS_METADATA(type));
443
444 /*
445 * Sanity check for small-memory systems: don't allocate too
446 * much memory for this purpose.
447 */
448 if (zfs_refcount_count(
449 &dbuf_caches[DB_DBUF_METADATA_CACHE].size) >
450 dbuf_metadata_cache_max_bytes) {
451 DBUF_STAT_BUMP(metadata_cache_overflow);
452 return (B_FALSE);
453 }
454
455 return (B_TRUE);
456 }
457
458 return (B_FALSE);
459 }
460
461 /*
462 * Remove an entry from the hash table. It must be in the EVICTING state.
463 */
464 static void
465 dbuf_hash_remove(dmu_buf_impl_t *db)
466 {
467 dbuf_hash_table_t *h = &dbuf_hash_table;
468 uint64_t hv, idx;
469 dmu_buf_impl_t *dbf, **dbp;
470
471 hv = dbuf_hash(db->db_objset, db->db.db_object,
472 db->db_level, db->db_blkid);
473 idx = hv & h->hash_table_mask;
474
475 /*
476 * We mustn't hold db_mtx to maintain lock ordering:
477 * DBUF_HASH_MUTEX > db_mtx.
478 */
479 ASSERT(zfs_refcount_is_zero(&db->db_holds));
480 ASSERT(db->db_state == DB_EVICTING);
481 ASSERT(!MUTEX_HELD(&db->db_mtx));
482
483 mutex_enter(DBUF_HASH_MUTEX(h, idx));
484 dbp = &h->hash_table[idx];
485 while ((dbf = *dbp) != db) {
486 dbp = &dbf->db_hash_next;
487 ASSERT(dbf != NULL);
488 }
489 *dbp = db->db_hash_next;
490 db->db_hash_next = NULL;
491 if (h->hash_table[idx] &&
492 h->hash_table[idx]->db_hash_next == NULL)
493 DBUF_STAT_BUMPDOWN(hash_chains);
494 mutex_exit(DBUF_HASH_MUTEX(h, idx));
495 atomic_dec_64(&dbuf_hash_count);
496 }
497
498 typedef enum {
499 DBVU_EVICTING,
500 DBVU_NOT_EVICTING
501 } dbvu_verify_type_t;
502
503 static void
504 dbuf_verify_user(dmu_buf_impl_t *db, dbvu_verify_type_t verify_type)
505 {
506 #ifdef ZFS_DEBUG
507 int64_t holds;
508
509 if (db->db_user == NULL)
510 return;
511
512 /* Only data blocks support the attachment of user data. */
513 ASSERT(db->db_level == 0);
514
515 /* Clients must resolve a dbuf before attaching user data. */
516 ASSERT(db->db.db_data != NULL);
517 ASSERT3U(db->db_state, ==, DB_CACHED);
518
519 holds = zfs_refcount_count(&db->db_holds);
520 if (verify_type == DBVU_EVICTING) {
521 /*
522 * Immediate eviction occurs when holds == dirtycnt.
523 * For normal eviction buffers, holds is zero on
524 * eviction, except when dbuf_fix_old_data() calls
525 * dbuf_clear_data(). However, the hold count can grow
526 * during eviction even though db_mtx is held (see
527 * dmu_bonus_hold() for an example), so we can only
528 * test the generic invariant that holds >= dirtycnt.
529 */
530 ASSERT3U(holds, >=, db->db_dirtycnt);
531 } else {
532 if (db->db_user_immediate_evict == TRUE)
533 ASSERT3U(holds, >=, db->db_dirtycnt);
534 else
535 ASSERT3U(holds, >, 0);
536 }
537 #endif
538 }
539
540 static void
541 dbuf_evict_user(dmu_buf_impl_t *db)
542 {
543 dmu_buf_user_t *dbu = db->db_user;
544
545 ASSERT(MUTEX_HELD(&db->db_mtx));
546
547 if (dbu == NULL)
548 return;
549
550 dbuf_verify_user(db, DBVU_EVICTING);
551 db->db_user = NULL;
552
553 #ifdef ZFS_DEBUG
554 if (dbu->dbu_clear_on_evict_dbufp != NULL)
555 *dbu->dbu_clear_on_evict_dbufp = NULL;
556 #endif
557
558 /*
559 * There are two eviction callbacks - one that we call synchronously
560 * and one that we invoke via a taskq. The async one is useful for
561 * avoiding lock order reversals and limiting stack depth.
562 *
563 * Note that if we have a sync callback but no async callback,
564 * it's likely that the sync callback will free the structure
565 * containing the dbu. In that case we need to take care to not
566 * dereference dbu after calling the sync evict func.
567 */
568 boolean_t has_async = (dbu->dbu_evict_func_async != NULL);
569
570 if (dbu->dbu_evict_func_sync != NULL)
571 dbu->dbu_evict_func_sync(dbu);
572
573 if (has_async) {
574 taskq_dispatch_ent(dbu_evict_taskq, dbu->dbu_evict_func_async,
575 dbu, 0, &dbu->dbu_tqent);
576 }
577 }
578
579 boolean_t
580 dbuf_is_metadata(dmu_buf_impl_t *db)
581 {
582 /*
583 * Consider indirect blocks and spill blocks to be meta data.
584 */
585 if (db->db_level > 0 || db->db_blkid == DMU_SPILL_BLKID) {
586 return (B_TRUE);
587 } else {
588 boolean_t is_metadata;
589
590 DB_DNODE_ENTER(db);
591 is_metadata = DMU_OT_IS_METADATA(DB_DNODE(db)->dn_type);
592 DB_DNODE_EXIT(db);
593
594 return (is_metadata);
595 }
596 }
597
598
599 /*
600 * This function *must* return indices evenly distributed between all
601 * sublists of the multilist. This is needed due to how the dbuf eviction
602 * code is laid out; dbuf_evict_thread() assumes dbufs are evenly
603 * distributed between all sublists and uses this assumption when
604 * deciding which sublist to evict from and how much to evict from it.
605 */
606 unsigned int
607 dbuf_cache_multilist_index_func(multilist_t *ml, void *obj)
608 {
609 dmu_buf_impl_t *db = obj;
610
611 /*
612 * The assumption here, is the hash value for a given
613 * dmu_buf_impl_t will remain constant throughout it's lifetime
614 * (i.e. it's objset, object, level and blkid fields don't change).
615 * Thus, we don't need to store the dbuf's sublist index
616 * on insertion, as this index can be recalculated on removal.
617 *
618 * Also, the low order bits of the hash value are thought to be
619 * distributed evenly. Otherwise, in the case that the multilist
620 * has a power of two number of sublists, each sublists' usage
621 * would not be evenly distributed.
622 */
623 return (dbuf_hash(db->db_objset, db->db.db_object,
624 db->db_level, db->db_blkid) %
625 multilist_get_num_sublists(ml));
626 }
627
628 static inline unsigned long
629 dbuf_cache_target_bytes(void)
630 {
631 return MIN(dbuf_cache_max_bytes,
632 arc_target_bytes() >> dbuf_cache_shift);
633 }
634
635 static inline uint64_t
636 dbuf_cache_hiwater_bytes(void)
637 {
638 uint64_t dbuf_cache_target = dbuf_cache_target_bytes();
639 return (dbuf_cache_target +
640 (dbuf_cache_target * dbuf_cache_hiwater_pct) / 100);
641 }
642
643 static inline uint64_t
644 dbuf_cache_lowater_bytes(void)
645 {
646 uint64_t dbuf_cache_target = dbuf_cache_target_bytes();
647 return (dbuf_cache_target -
648 (dbuf_cache_target * dbuf_cache_lowater_pct) / 100);
649 }
650
651 static inline boolean_t
652 dbuf_cache_above_hiwater(void)
653 {
654 return (zfs_refcount_count(&dbuf_caches[DB_DBUF_CACHE].size) >
655 dbuf_cache_hiwater_bytes());
656 }
657
658 static inline boolean_t
659 dbuf_cache_above_lowater(void)
660 {
661 return (zfs_refcount_count(&dbuf_caches[DB_DBUF_CACHE].size) >
662 dbuf_cache_lowater_bytes());
663 }
664
665 /*
666 * Evict the oldest eligible dbuf from the dbuf cache.
667 */
668 static void
669 dbuf_evict_one(void)
670 {
671 int idx = multilist_get_random_index(dbuf_caches[DB_DBUF_CACHE].cache);
672 multilist_sublist_t *mls = multilist_sublist_lock(
673 dbuf_caches[DB_DBUF_CACHE].cache, idx);
674
675 ASSERT(!MUTEX_HELD(&dbuf_evict_lock));
676
677 dmu_buf_impl_t *db = multilist_sublist_tail(mls);
678 while (db != NULL && mutex_tryenter(&db->db_mtx) == 0) {
679 db = multilist_sublist_prev(mls, db);
680 }
681
682 DTRACE_PROBE2(dbuf__evict__one, dmu_buf_impl_t *, db,
683 multilist_sublist_t *, mls);
684
685 if (db != NULL) {
686 multilist_sublist_remove(mls, db);
687 multilist_sublist_unlock(mls);
688 (void) zfs_refcount_remove_many(
689 &dbuf_caches[DB_DBUF_CACHE].size, db->db.db_size, db);
690 DBUF_STAT_BUMPDOWN(cache_levels[db->db_level]);
691 DBUF_STAT_BUMPDOWN(cache_count);
692 DBUF_STAT_DECR(cache_levels_bytes[db->db_level],
693 db->db.db_size);
694 ASSERT3U(db->db_caching_status, ==, DB_DBUF_CACHE);
695 db->db_caching_status = DB_NO_CACHE;
696 dbuf_destroy(db);
697 DBUF_STAT_MAX(cache_size_bytes_max,
698 zfs_refcount_count(&dbuf_caches[DB_DBUF_CACHE].size));
699 DBUF_STAT_BUMP(cache_total_evicts);
700 } else {
701 multilist_sublist_unlock(mls);
702 }
703 }
704
705 /*
706 * The dbuf evict thread is responsible for aging out dbufs from the
707 * cache. Once the cache has reached it's maximum size, dbufs are removed
708 * and destroyed. The eviction thread will continue running until the size
709 * of the dbuf cache is at or below the maximum size. Once the dbuf is aged
710 * out of the cache it is destroyed and becomes eligible for arc eviction.
711 */
712 /* ARGSUSED */
713 static void
714 dbuf_evict_thread(void *unused)
715 {
716 callb_cpr_t cpr;
717
718 CALLB_CPR_INIT(&cpr, &dbuf_evict_lock, callb_generic_cpr, FTAG);
719
720 mutex_enter(&dbuf_evict_lock);
721 while (!dbuf_evict_thread_exit) {
722 while (!dbuf_cache_above_lowater() && !dbuf_evict_thread_exit) {
723 CALLB_CPR_SAFE_BEGIN(&cpr);
724 (void) cv_timedwait_sig_hires(&dbuf_evict_cv,
725 &dbuf_evict_lock, SEC2NSEC(1), MSEC2NSEC(1), 0);
726 CALLB_CPR_SAFE_END(&cpr, &dbuf_evict_lock);
727 }
728 mutex_exit(&dbuf_evict_lock);
729
730 /*
731 * Keep evicting as long as we're above the low water mark
732 * for the cache. We do this without holding the locks to
733 * minimize lock contention.
734 */
735 while (dbuf_cache_above_lowater() && !dbuf_evict_thread_exit) {
736 dbuf_evict_one();
737 }
738
739 mutex_enter(&dbuf_evict_lock);
740 }
741
742 dbuf_evict_thread_exit = B_FALSE;
743 cv_broadcast(&dbuf_evict_cv);
744 CALLB_CPR_EXIT(&cpr); /* drops dbuf_evict_lock */
745 thread_exit();
746 }
747
748 /*
749 * Wake up the dbuf eviction thread if the dbuf cache is at its max size.
750 * If the dbuf cache is at its high water mark, then evict a dbuf from the
751 * dbuf cache using the callers context.
752 */
753 static void
754 dbuf_evict_notify(void)
755 {
756 /*
757 * We check if we should evict without holding the dbuf_evict_lock,
758 * because it's OK to occasionally make the wrong decision here,
759 * and grabbing the lock results in massive lock contention.
760 */
761 if (zfs_refcount_count(&dbuf_caches[DB_DBUF_CACHE].size) >
762 dbuf_cache_target_bytes()) {
763 if (dbuf_cache_above_hiwater())
764 dbuf_evict_one();
765 cv_signal(&dbuf_evict_cv);
766 }
767 }
768
769 static int
770 dbuf_kstat_update(kstat_t *ksp, int rw)
771 {
772 dbuf_stats_t *ds = ksp->ks_data;
773
774 if (rw == KSTAT_WRITE) {
775 return (SET_ERROR(EACCES));
776 } else {
777 ds->metadata_cache_size_bytes.value.ui64 = zfs_refcount_count(
778 &dbuf_caches[DB_DBUF_METADATA_CACHE].size);
779 ds->cache_size_bytes.value.ui64 =
780 zfs_refcount_count(&dbuf_caches[DB_DBUF_CACHE].size);
781 ds->cache_target_bytes.value.ui64 = dbuf_cache_target_bytes();
782 ds->cache_hiwater_bytes.value.ui64 = dbuf_cache_hiwater_bytes();
783 ds->cache_lowater_bytes.value.ui64 = dbuf_cache_lowater_bytes();
784 ds->hash_elements.value.ui64 = dbuf_hash_count;
785 }
786
787 return (0);
788 }
789
790 void
791 dbuf_init(void)
792 {
793 uint64_t hsize = 1ULL << 16;
794 dbuf_hash_table_t *h = &dbuf_hash_table;
795 int i;
796
797 /*
798 * The hash table is big enough to fill all of physical memory
799 * with an average block size of zfs_arc_average_blocksize (default 8K).
800 * By default, the table will take up
801 * totalmem * sizeof(void*) / 8K (1MB per GB with 8-byte pointers).
802 */
803 while (hsize * zfs_arc_average_blocksize < physmem * PAGESIZE)
804 hsize <<= 1;
805
806 retry:
807 h->hash_table_mask = hsize - 1;
808 #if defined(_KERNEL)
809 /*
810 * Large allocations which do not require contiguous pages
811 * should be using vmem_alloc() in the linux kernel
812 */
813 h->hash_table = vmem_zalloc(hsize * sizeof (void *), KM_SLEEP);
814 #else
815 h->hash_table = kmem_zalloc(hsize * sizeof (void *), KM_NOSLEEP);
816 #endif
817 if (h->hash_table == NULL) {
818 /* XXX - we should really return an error instead of assert */
819 ASSERT(hsize > (1ULL << 10));
820 hsize >>= 1;
821 goto retry;
822 }
823
824 dbuf_kmem_cache = kmem_cache_create("dmu_buf_impl_t",
825 sizeof (dmu_buf_impl_t),
826 0, dbuf_cons, dbuf_dest, NULL, NULL, NULL, 0);
827
828 for (i = 0; i < DBUF_MUTEXES; i++)
829 mutex_init(&h->hash_mutexes[i], NULL, MUTEX_DEFAULT, NULL);
830
831 dbuf_stats_init(h);
832
833 /*
834 * Setup the parameters for the dbuf caches. We set the sizes of the
835 * dbuf cache and the metadata cache to 1/32nd and 1/16th (default)
836 * of the target size of the ARC. If the values has been specified as
837 * a module option and they're not greater than the target size of the
838 * ARC, then we honor that value.
839 */
840 if (dbuf_cache_max_bytes == 0 ||
841 dbuf_cache_max_bytes >= arc_target_bytes()) {
842 dbuf_cache_max_bytes = arc_target_bytes() >> dbuf_cache_shift;
843 }
844 if (dbuf_metadata_cache_max_bytes == 0 ||
845 dbuf_metadata_cache_max_bytes >= arc_target_bytes()) {
846 dbuf_metadata_cache_max_bytes =
847 arc_target_bytes() >> dbuf_metadata_cache_shift;
848 }
849
850 /*
851 * All entries are queued via taskq_dispatch_ent(), so min/maxalloc
852 * configuration is not required.
853 */
854 dbu_evict_taskq = taskq_create("dbu_evict", 1, defclsyspri, 0, 0, 0);
855
856 for (dbuf_cached_state_t dcs = 0; dcs < DB_CACHE_MAX; dcs++) {
857 dbuf_caches[dcs].cache =
858 multilist_create(sizeof (dmu_buf_impl_t),
859 offsetof(dmu_buf_impl_t, db_cache_link),
860 dbuf_cache_multilist_index_func);
861 zfs_refcount_create(&dbuf_caches[dcs].size);
862 }
863
864 dbuf_evict_thread_exit = B_FALSE;
865 mutex_init(&dbuf_evict_lock, NULL, MUTEX_DEFAULT, NULL);
866 cv_init(&dbuf_evict_cv, NULL, CV_DEFAULT, NULL);
867 dbuf_cache_evict_thread = thread_create(NULL, 0, dbuf_evict_thread,
868 NULL, 0, &p0, TS_RUN, minclsyspri);
869
870 dbuf_ksp = kstat_create("zfs", 0, "dbufstats", "misc",
871 KSTAT_TYPE_NAMED, sizeof (dbuf_stats) / sizeof (kstat_named_t),
872 KSTAT_FLAG_VIRTUAL);
873 if (dbuf_ksp != NULL) {
874 dbuf_ksp->ks_data = &dbuf_stats;
875 dbuf_ksp->ks_update = dbuf_kstat_update;
876 kstat_install(dbuf_ksp);
877
878 for (i = 0; i < DN_MAX_LEVELS; i++) {
879 snprintf(dbuf_stats.cache_levels[i].name,
880 KSTAT_STRLEN, "cache_level_%d", i);
881 dbuf_stats.cache_levels[i].data_type =
882 KSTAT_DATA_UINT64;
883 snprintf(dbuf_stats.cache_levels_bytes[i].name,
884 KSTAT_STRLEN, "cache_level_%d_bytes", i);
885 dbuf_stats.cache_levels_bytes[i].data_type =
886 KSTAT_DATA_UINT64;
887 }
888 }
889 }
890
891 void
892 dbuf_fini(void)
893 {
894 dbuf_hash_table_t *h = &dbuf_hash_table;
895 int i;
896
897 dbuf_stats_destroy();
898
899 for (i = 0; i < DBUF_MUTEXES; i++)
900 mutex_destroy(&h->hash_mutexes[i]);
901 #if defined(_KERNEL)
902 /*
903 * Large allocations which do not require contiguous pages
904 * should be using vmem_free() in the linux kernel
905 */
906 vmem_free(h->hash_table, (h->hash_table_mask + 1) * sizeof (void *));
907 #else
908 kmem_free(h->hash_table, (h->hash_table_mask + 1) * sizeof (void *));
909 #endif
910 kmem_cache_destroy(dbuf_kmem_cache);
911 taskq_destroy(dbu_evict_taskq);
912
913 mutex_enter(&dbuf_evict_lock);
914 dbuf_evict_thread_exit = B_TRUE;
915 while (dbuf_evict_thread_exit) {
916 cv_signal(&dbuf_evict_cv);
917 cv_wait(&dbuf_evict_cv, &dbuf_evict_lock);
918 }
919 mutex_exit(&dbuf_evict_lock);
920
921 mutex_destroy(&dbuf_evict_lock);
922 cv_destroy(&dbuf_evict_cv);
923
924 for (dbuf_cached_state_t dcs = 0; dcs < DB_CACHE_MAX; dcs++) {
925 zfs_refcount_destroy(&dbuf_caches[dcs].size);
926 multilist_destroy(dbuf_caches[dcs].cache);
927 }
928
929 if (dbuf_ksp != NULL) {
930 kstat_delete(dbuf_ksp);
931 dbuf_ksp = NULL;
932 }
933 }
934
935 /*
936 * Other stuff.
937 */
938
939 #ifdef ZFS_DEBUG
940 static void
941 dbuf_verify(dmu_buf_impl_t *db)
942 {
943 dnode_t *dn;
944 dbuf_dirty_record_t *dr;
945
946 ASSERT(MUTEX_HELD(&db->db_mtx));
947
948 if (!(zfs_flags & ZFS_DEBUG_DBUF_VERIFY))
949 return;
950
951 ASSERT(db->db_objset != NULL);
952 DB_DNODE_ENTER(db);
953 dn = DB_DNODE(db);
954 if (dn == NULL) {
955 ASSERT(db->db_parent == NULL);
956 ASSERT(db->db_blkptr == NULL);
957 } else {
958 ASSERT3U(db->db.db_object, ==, dn->dn_object);
959 ASSERT3P(db->db_objset, ==, dn->dn_objset);
960 ASSERT3U(db->db_level, <, dn->dn_nlevels);
961 ASSERT(db->db_blkid == DMU_BONUS_BLKID ||
962 db->db_blkid == DMU_SPILL_BLKID ||
963 !avl_is_empty(&dn->dn_dbufs));
964 }
965 if (db->db_blkid == DMU_BONUS_BLKID) {
966 ASSERT(dn != NULL);
967 ASSERT3U(db->db.db_size, >=, dn->dn_bonuslen);
968 ASSERT3U(db->db.db_offset, ==, DMU_BONUS_BLKID);
969 } else if (db->db_blkid == DMU_SPILL_BLKID) {
970 ASSERT(dn != NULL);
971 ASSERT0(db->db.db_offset);
972 } else {
973 ASSERT3U(db->db.db_offset, ==, db->db_blkid * db->db.db_size);
974 }
975
976 for (dr = db->db_data_pending; dr != NULL; dr = dr->dr_next)
977 ASSERT(dr->dr_dbuf == db);
978
979 for (dr = db->db_last_dirty; dr != NULL; dr = dr->dr_next)
980 ASSERT(dr->dr_dbuf == db);
981
982 /*
983 * We can't assert that db_size matches dn_datablksz because it
984 * can be momentarily different when another thread is doing
985 * dnode_set_blksz().
986 */
987 if (db->db_level == 0 && db->db.db_object == DMU_META_DNODE_OBJECT) {
988 dr = db->db_data_pending;
989 /*
990 * It should only be modified in syncing context, so
991 * make sure we only have one copy of the data.
992 */
993 ASSERT(dr == NULL || dr->dt.dl.dr_data == db->db_buf);
994 }
995
996 /* verify db->db_blkptr */
997 if (db->db_blkptr) {
998 if (db->db_parent == dn->dn_dbuf) {
999 /* db is pointed to by the dnode */
1000 /* ASSERT3U(db->db_blkid, <, dn->dn_nblkptr); */
1001 if (DMU_OBJECT_IS_SPECIAL(db->db.db_object))
1002 ASSERT(db->db_parent == NULL);
1003 else
1004 ASSERT(db->db_parent != NULL);
1005 if (db->db_blkid != DMU_SPILL_BLKID)
1006 ASSERT3P(db->db_blkptr, ==,
1007 &dn->dn_phys->dn_blkptr[db->db_blkid]);
1008 } else {
1009 /* db is pointed to by an indirect block */
1010 ASSERTV(int epb = db->db_parent->db.db_size >>
1011 SPA_BLKPTRSHIFT);
1012 ASSERT3U(db->db_parent->db_level, ==, db->db_level+1);
1013 ASSERT3U(db->db_parent->db.db_object, ==,
1014 db->db.db_object);
1015 /*
1016 * dnode_grow_indblksz() can make this fail if we don't
1017 * have the struct_rwlock. XXX indblksz no longer
1018 * grows. safe to do this now?
1019 */
1020 if (RW_WRITE_HELD(&dn->dn_struct_rwlock)) {
1021 ASSERT3P(db->db_blkptr, ==,
1022 ((blkptr_t *)db->db_parent->db.db_data +
1023 db->db_blkid % epb));
1024 }
1025 }
1026 }
1027 if ((db->db_blkptr == NULL || BP_IS_HOLE(db->db_blkptr)) &&
1028 (db->db_buf == NULL || db->db_buf->b_data) &&
1029 db->db.db_data && db->db_blkid != DMU_BONUS_BLKID &&
1030 db->db_state != DB_FILL && !dn->dn_free_txg) {
1031 /*
1032 * If the blkptr isn't set but they have nonzero data,
1033 * it had better be dirty, otherwise we'll lose that
1034 * data when we evict this buffer.
1035 *
1036 * There is an exception to this rule for indirect blocks; in
1037 * this case, if the indirect block is a hole, we fill in a few
1038 * fields on each of the child blocks (importantly, birth time)
1039 * to prevent hole birth times from being lost when you
1040 * partially fill in a hole.
1041 */
1042 if (db->db_dirtycnt == 0) {
1043 if (db->db_level == 0) {
1044 uint64_t *buf = db->db.db_data;
1045 int i;
1046
1047 for (i = 0; i < db->db.db_size >> 3; i++) {
1048 ASSERT(buf[i] == 0);
1049 }
1050 } else {
1051 blkptr_t *bps = db->db.db_data;
1052 ASSERT3U(1 << DB_DNODE(db)->dn_indblkshift, ==,
1053 db->db.db_size);
1054 /*
1055 * We want to verify that all the blkptrs in the
1056 * indirect block are holes, but we may have
1057 * automatically set up a few fields for them.
1058 * We iterate through each blkptr and verify
1059 * they only have those fields set.
1060 */
1061 for (int i = 0;
1062 i < db->db.db_size / sizeof (blkptr_t);
1063 i++) {
1064 blkptr_t *bp = &bps[i];
1065 ASSERT(ZIO_CHECKSUM_IS_ZERO(
1066 &bp->blk_cksum));
1067 ASSERT(
1068 DVA_IS_EMPTY(&bp->blk_dva[0]) &&
1069 DVA_IS_EMPTY(&bp->blk_dva[1]) &&
1070 DVA_IS_EMPTY(&bp->blk_dva[2]));
1071 ASSERT0(bp->blk_fill);
1072 ASSERT0(bp->blk_pad[0]);
1073 ASSERT0(bp->blk_pad[1]);
1074 ASSERT(!BP_IS_EMBEDDED(bp));
1075 ASSERT(BP_IS_HOLE(bp));
1076 ASSERT0(bp->blk_phys_birth);
1077 }
1078 }
1079 }
1080 }
1081 DB_DNODE_EXIT(db);
1082 }
1083 #endif
1084
1085 static void
1086 dbuf_clear_data(dmu_buf_impl_t *db)
1087 {
1088 ASSERT(MUTEX_HELD(&db->db_mtx));
1089 dbuf_evict_user(db);
1090 ASSERT3P(db->db_buf, ==, NULL);
1091 db->db.db_data = NULL;
1092 if (db->db_state != DB_NOFILL)
1093 db->db_state = DB_UNCACHED;
1094 }
1095
1096 static void
1097 dbuf_set_data(dmu_buf_impl_t *db, arc_buf_t *buf)
1098 {
1099 ASSERT(MUTEX_HELD(&db->db_mtx));
1100 ASSERT(buf != NULL);
1101
1102 db->db_buf = buf;
1103 ASSERT(buf->b_data != NULL);
1104 db->db.db_data = buf->b_data;
1105 }
1106
1107 /*
1108 * Loan out an arc_buf for read. Return the loaned arc_buf.
1109 */
1110 arc_buf_t *
1111 dbuf_loan_arcbuf(dmu_buf_impl_t *db)
1112 {
1113 arc_buf_t *abuf;
1114
1115 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
1116 mutex_enter(&db->db_mtx);
1117 if (arc_released(db->db_buf) || zfs_refcount_count(&db->db_holds) > 1) {
1118 int blksz = db->db.db_size;
1119 spa_t *spa = db->db_objset->os_spa;
1120
1121 mutex_exit(&db->db_mtx);
1122 abuf = arc_loan_buf(spa, B_FALSE, blksz);
1123 bcopy(db->db.db_data, abuf->b_data, blksz);
1124 } else {
1125 abuf = db->db_buf;
1126 arc_loan_inuse_buf(abuf, db);
1127 db->db_buf = NULL;
1128 dbuf_clear_data(db);
1129 mutex_exit(&db->db_mtx);
1130 }
1131 return (abuf);
1132 }
1133
1134 /*
1135 * Calculate which level n block references the data at the level 0 offset
1136 * provided.
1137 */
1138 uint64_t
1139 dbuf_whichblock(const dnode_t *dn, const int64_t level, const uint64_t offset)
1140 {
1141 if (dn->dn_datablkshift != 0 && dn->dn_indblkshift != 0) {
1142 /*
1143 * The level n blkid is equal to the level 0 blkid divided by
1144 * the number of level 0s in a level n block.
1145 *
1146 * The level 0 blkid is offset >> datablkshift =
1147 * offset / 2^datablkshift.
1148 *
1149 * The number of level 0s in a level n is the number of block
1150 * pointers in an indirect block, raised to the power of level.
1151 * This is 2^(indblkshift - SPA_BLKPTRSHIFT)^level =
1152 * 2^(level*(indblkshift - SPA_BLKPTRSHIFT)).
1153 *
1154 * Thus, the level n blkid is: offset /
1155 * ((2^datablkshift)*(2^(level*(indblkshift-SPA_BLKPTRSHIFT))))
1156 * = offset / 2^(datablkshift + level *
1157 * (indblkshift - SPA_BLKPTRSHIFT))
1158 * = offset >> (datablkshift + level *
1159 * (indblkshift - SPA_BLKPTRSHIFT))
1160 */
1161
1162 const unsigned exp = dn->dn_datablkshift +
1163 level * (dn->dn_indblkshift - SPA_BLKPTRSHIFT);
1164
1165 if (exp >= 8 * sizeof (offset)) {
1166 /* This only happens on the highest indirection level */
1167 ASSERT3U(level, ==, dn->dn_nlevels - 1);
1168 return (0);
1169 }
1170
1171 ASSERT3U(exp, <, 8 * sizeof (offset));
1172
1173 return (offset >> exp);
1174 } else {
1175 ASSERT3U(offset, <, dn->dn_datablksz);
1176 return (0);
1177 }
1178 }
1179
1180 static void
1181 dbuf_read_done(zio_t *zio, const zbookmark_phys_t *zb, const blkptr_t *bp,
1182 arc_buf_t *buf, void *vdb)
1183 {
1184 dmu_buf_impl_t *db = vdb;
1185
1186 mutex_enter(&db->db_mtx);
1187 ASSERT3U(db->db_state, ==, DB_READ);
1188 /*
1189 * All reads are synchronous, so we must have a hold on the dbuf
1190 */
1191 ASSERT(zfs_refcount_count(&db->db_holds) > 0);
1192 ASSERT(db->db_buf == NULL);
1193 ASSERT(db->db.db_data == NULL);
1194 if (buf == NULL) {
1195 /* i/o error */
1196 ASSERT(zio == NULL || zio->io_error != 0);
1197 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
1198 ASSERT3P(db->db_buf, ==, NULL);
1199 db->db_state = DB_UNCACHED;
1200 } else if (db->db_level == 0 && db->db_freed_in_flight) {
1201 /* freed in flight */
1202 ASSERT(zio == NULL || zio->io_error == 0);
1203 arc_release(buf, db);
1204 bzero(buf->b_data, db->db.db_size);
1205 arc_buf_freeze(buf);
1206 db->db_freed_in_flight = FALSE;
1207 dbuf_set_data(db, buf);
1208 db->db_state = DB_CACHED;
1209 } else {
1210 /* success */
1211 ASSERT(zio == NULL || zio->io_error == 0);
1212 dbuf_set_data(db, buf);
1213 db->db_state = DB_CACHED;
1214 }
1215 cv_broadcast(&db->db_changed);
1216 dbuf_rele_and_unlock(db, NULL, B_FALSE);
1217 }
1218
1219
1220 /*
1221 * This function ensures that, when doing a decrypting read of a block,
1222 * we make sure we have decrypted the dnode associated with it. We must do
1223 * this so that we ensure we are fully authenticating the checksum-of-MACs
1224 * tree from the root of the objset down to this block. Indirect blocks are
1225 * always verified against their secure checksum-of-MACs assuming that the
1226 * dnode containing them is correct. Now that we are doing a decrypting read,
1227 * we can be sure that the key is loaded and verify that assumption. This is
1228 * especially important considering that we always read encrypted dnode
1229 * blocks as raw data (without verifying their MACs) to start, and
1230 * decrypt / authenticate them when we need to read an encrypted bonus buffer.
1231 */
1232 static int
1233 dbuf_read_verify_dnode_crypt(dmu_buf_impl_t *db, uint32_t flags)
1234 {
1235 int err = 0;
1236 objset_t *os = db->db_objset;
1237 arc_buf_t *dnode_abuf;
1238 dnode_t *dn;
1239 zbookmark_phys_t zb;
1240
1241 ASSERT(MUTEX_HELD(&db->db_mtx));
1242
1243 if (!os->os_encrypted || os->os_raw_receive ||
1244 (flags & DB_RF_NO_DECRYPT) != 0)
1245 return (0);
1246
1247 DB_DNODE_ENTER(db);
1248 dn = DB_DNODE(db);
1249 dnode_abuf = (dn->dn_dbuf != NULL) ? dn->dn_dbuf->db_buf : NULL;
1250
1251 if (dnode_abuf == NULL || !arc_is_encrypted(dnode_abuf)) {
1252 DB_DNODE_EXIT(db);
1253 return (0);
1254 }
1255
1256 SET_BOOKMARK(&zb, dmu_objset_id(os),
1257 DMU_META_DNODE_OBJECT, 0, dn->dn_dbuf->db_blkid);
1258 err = arc_untransform(dnode_abuf, os->os_spa, &zb, B_TRUE);
1259
1260 /*
1261 * An error code of EACCES tells us that the key is still not
1262 * available. This is ok if we are only reading authenticated
1263 * (and therefore non-encrypted) blocks.
1264 */
1265 if (err == EACCES && ((db->db_blkid != DMU_BONUS_BLKID &&
1266 !DMU_OT_IS_ENCRYPTED(dn->dn_type)) ||
1267 (db->db_blkid == DMU_BONUS_BLKID &&
1268 !DMU_OT_IS_ENCRYPTED(dn->dn_bonustype))))
1269 err = 0;
1270
1271 DB_DNODE_EXIT(db);
1272
1273 return (err);
1274 }
1275
1276 static int
1277 dbuf_read_impl(dmu_buf_impl_t *db, zio_t *zio, uint32_t flags)
1278 {
1279 dnode_t *dn;
1280 zbookmark_phys_t zb;
1281 uint32_t aflags = ARC_FLAG_NOWAIT;
1282 int err, zio_flags = 0;
1283
1284 DB_DNODE_ENTER(db);
1285 dn = DB_DNODE(db);
1286 ASSERT(!zfs_refcount_is_zero(&db->db_holds));
1287 /* We need the struct_rwlock to prevent db_blkptr from changing. */
1288 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
1289 ASSERT(MUTEX_HELD(&db->db_mtx));
1290 ASSERT(db->db_state == DB_UNCACHED);
1291 ASSERT(db->db_buf == NULL);
1292
1293 if (db->db_blkid == DMU_BONUS_BLKID) {
1294 /*
1295 * The bonus length stored in the dnode may be less than
1296 * the maximum available space in the bonus buffer.
1297 */
1298 int bonuslen = MIN(dn->dn_bonuslen, dn->dn_phys->dn_bonuslen);
1299 int max_bonuslen = DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots);
1300
1301 /* if the underlying dnode block is encrypted, decrypt it */
1302 err = dbuf_read_verify_dnode_crypt(db, flags);
1303 if (err != 0) {
1304 DB_DNODE_EXIT(db);
1305 mutex_exit(&db->db_mtx);
1306 return (err);
1307 }
1308
1309 ASSERT3U(bonuslen, <=, db->db.db_size);
1310 db->db.db_data = kmem_alloc(max_bonuslen, KM_SLEEP);
1311 arc_space_consume(max_bonuslen, ARC_SPACE_BONUS);
1312 if (bonuslen < max_bonuslen)
1313 bzero(db->db.db_data, max_bonuslen);
1314 if (bonuslen)
1315 bcopy(DN_BONUS(dn->dn_phys), db->db.db_data, bonuslen);
1316 DB_DNODE_EXIT(db);
1317 db->db_state = DB_CACHED;
1318 mutex_exit(&db->db_mtx);
1319 return (0);
1320 }
1321
1322 /*
1323 * Recheck BP_IS_HOLE() after dnode_block_freed() in case dnode_sync()
1324 * processes the delete record and clears the bp while we are waiting
1325 * for the dn_mtx (resulting in a "no" from block_freed).
1326 */
1327 if (db->db_blkptr == NULL || BP_IS_HOLE(db->db_blkptr) ||
1328 (db->db_level == 0 && (dnode_block_freed(dn, db->db_blkid) ||
1329 BP_IS_HOLE(db->db_blkptr)))) {
1330 arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
1331
1332 dbuf_set_data(db, arc_alloc_buf(db->db_objset->os_spa, db, type,
1333 db->db.db_size));
1334 bzero(db->db.db_data, db->db.db_size);
1335
1336 if (db->db_blkptr != NULL && db->db_level > 0 &&
1337 BP_IS_HOLE(db->db_blkptr) &&
1338 db->db_blkptr->blk_birth != 0) {
1339 blkptr_t *bps = db->db.db_data;
1340 for (int i = 0; i < ((1 <<
1341 DB_DNODE(db)->dn_indblkshift) / sizeof (blkptr_t));
1342 i++) {
1343 blkptr_t *bp = &bps[i];
1344 ASSERT3U(BP_GET_LSIZE(db->db_blkptr), ==,
1345 1 << dn->dn_indblkshift);
1346 BP_SET_LSIZE(bp,
1347 BP_GET_LEVEL(db->db_blkptr) == 1 ?
1348 dn->dn_datablksz :
1349 BP_GET_LSIZE(db->db_blkptr));
1350 BP_SET_TYPE(bp, BP_GET_TYPE(db->db_blkptr));
1351 BP_SET_LEVEL(bp,
1352 BP_GET_LEVEL(db->db_blkptr) - 1);
1353 BP_SET_BIRTH(bp, db->db_blkptr->blk_birth, 0);
1354 }
1355 }
1356 DB_DNODE_EXIT(db);
1357 db->db_state = DB_CACHED;
1358 mutex_exit(&db->db_mtx);
1359 return (0);
1360 }
1361
1362
1363 SET_BOOKMARK(&zb, dmu_objset_id(db->db_objset),
1364 db->db.db_object, db->db_level, db->db_blkid);
1365
1366 /*
1367 * All bps of an encrypted os should have the encryption bit set.
1368 * If this is not true it indicates tampering and we report an error.
1369 */
1370 if (db->db_objset->os_encrypted && !BP_USES_CRYPT(db->db_blkptr)) {
1371 spa_log_error(db->db_objset->os_spa, &zb);
1372 zfs_panic_recover("unencrypted block in encrypted "
1373 "object set %llu", dmu_objset_id(db->db_objset));
1374 DB_DNODE_EXIT(db);
1375 mutex_exit(&db->db_mtx);
1376 return (SET_ERROR(EIO));
1377 }
1378
1379 err = dbuf_read_verify_dnode_crypt(db, flags);
1380 if (err != 0) {
1381 DB_DNODE_EXIT(db);
1382 mutex_exit(&db->db_mtx);
1383 return (err);
1384 }
1385
1386 DB_DNODE_EXIT(db);
1387
1388 db->db_state = DB_READ;
1389 mutex_exit(&db->db_mtx);
1390
1391 if (DBUF_IS_L2CACHEABLE(db))
1392 aflags |= ARC_FLAG_L2CACHE;
1393
1394 dbuf_add_ref(db, NULL);
1395
1396 zio_flags = (flags & DB_RF_CANFAIL) ?
1397 ZIO_FLAG_CANFAIL : ZIO_FLAG_MUSTSUCCEED;
1398
1399 if ((flags & DB_RF_NO_DECRYPT) && BP_IS_PROTECTED(db->db_blkptr))
1400 zio_flags |= ZIO_FLAG_RAW;
1401
1402 err = arc_read(zio, db->db_objset->os_spa, db->db_blkptr,
1403 dbuf_read_done, db, ZIO_PRIORITY_SYNC_READ, zio_flags,
1404 &aflags, &zb);
1405
1406 return (err);
1407 }
1408
1409 /*
1410 * This is our just-in-time copy function. It makes a copy of buffers that
1411 * have been modified in a previous transaction group before we access them in
1412 * the current active group.
1413 *
1414 * This function is used in three places: when we are dirtying a buffer for the
1415 * first time in a txg, when we are freeing a range in a dnode that includes
1416 * this buffer, and when we are accessing a buffer which was received compressed
1417 * and later referenced in a WRITE_BYREF record.
1418 *
1419 * Note that when we are called from dbuf_free_range() we do not put a hold on
1420 * the buffer, we just traverse the active dbuf list for the dnode.
1421 */
1422 static void
1423 dbuf_fix_old_data(dmu_buf_impl_t *db, uint64_t txg)
1424 {
1425 dbuf_dirty_record_t *dr = db->db_last_dirty;
1426
1427 ASSERT(MUTEX_HELD(&db->db_mtx));
1428 ASSERT(db->db.db_data != NULL);
1429 ASSERT(db->db_level == 0);
1430 ASSERT(db->db.db_object != DMU_META_DNODE_OBJECT);
1431
1432 if (dr == NULL ||
1433 (dr->dt.dl.dr_data !=
1434 ((db->db_blkid == DMU_BONUS_BLKID) ? db->db.db_data : db->db_buf)))
1435 return;
1436
1437 /*
1438 * If the last dirty record for this dbuf has not yet synced
1439 * and its referencing the dbuf data, either:
1440 * reset the reference to point to a new copy,
1441 * or (if there a no active holders)
1442 * just null out the current db_data pointer.
1443 */
1444 ASSERT3U(dr->dr_txg, >=, txg - 2);
1445 if (db->db_blkid == DMU_BONUS_BLKID) {
1446 dnode_t *dn = DB_DNODE(db);
1447 int bonuslen = DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots);
1448 dr->dt.dl.dr_data = kmem_alloc(bonuslen, KM_SLEEP);
1449 arc_space_consume(bonuslen, ARC_SPACE_BONUS);
1450 bcopy(db->db.db_data, dr->dt.dl.dr_data, bonuslen);
1451 } else if (zfs_refcount_count(&db->db_holds) > db->db_dirtycnt) {
1452 dnode_t *dn = DB_DNODE(db);
1453 int size = arc_buf_size(db->db_buf);
1454 arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
1455 spa_t *spa = db->db_objset->os_spa;
1456 enum zio_compress compress_type =
1457 arc_get_compression(db->db_buf);
1458
1459 if (arc_is_encrypted(db->db_buf)) {
1460 boolean_t byteorder;
1461 uint8_t salt[ZIO_DATA_SALT_LEN];
1462 uint8_t iv[ZIO_DATA_IV_LEN];
1463 uint8_t mac[ZIO_DATA_MAC_LEN];
1464
1465 arc_get_raw_params(db->db_buf, &byteorder, salt,
1466 iv, mac);
1467 dr->dt.dl.dr_data = arc_alloc_raw_buf(spa, db,
1468 dmu_objset_id(dn->dn_objset), byteorder, salt, iv,
1469 mac, dn->dn_type, size, arc_buf_lsize(db->db_buf),
1470 compress_type);
1471 } else if (compress_type != ZIO_COMPRESS_OFF) {
1472 ASSERT3U(type, ==, ARC_BUFC_DATA);
1473 dr->dt.dl.dr_data = arc_alloc_compressed_buf(spa, db,
1474 size, arc_buf_lsize(db->db_buf), compress_type);
1475 } else {
1476 dr->dt.dl.dr_data = arc_alloc_buf(spa, db, type, size);
1477 }
1478 bcopy(db->db.db_data, dr->dt.dl.dr_data->b_data, size);
1479 } else {
1480 db->db_buf = NULL;
1481 dbuf_clear_data(db);
1482 }
1483 }
1484
1485 int
1486 dbuf_read(dmu_buf_impl_t *db, zio_t *zio, uint32_t flags)
1487 {
1488 int err = 0;
1489 boolean_t prefetch;
1490 dnode_t *dn;
1491
1492 /*
1493 * We don't have to hold the mutex to check db_state because it
1494 * can't be freed while we have a hold on the buffer.
1495 */
1496 ASSERT(!zfs_refcount_is_zero(&db->db_holds));
1497
1498 if (db->db_state == DB_NOFILL)
1499 return (SET_ERROR(EIO));
1500
1501 DB_DNODE_ENTER(db);
1502 dn = DB_DNODE(db);
1503 if ((flags & DB_RF_HAVESTRUCT) == 0)
1504 rw_enter(&dn->dn_struct_rwlock, RW_READER);
1505
1506 prefetch = db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID &&
1507 (flags & DB_RF_NOPREFETCH) == 0 && dn != NULL &&
1508 DBUF_IS_CACHEABLE(db);
1509
1510 mutex_enter(&db->db_mtx);
1511 if (db->db_state == DB_CACHED) {
1512 spa_t *spa = dn->dn_objset->os_spa;
1513
1514 /*
1515 * Ensure that this block's dnode has been decrypted if
1516 * the caller has requested decrypted data.
1517 */
1518 err = dbuf_read_verify_dnode_crypt(db, flags);
1519
1520 /*
1521 * If the arc buf is compressed or encrypted and the caller
1522 * requested uncompressed data, we need to untransform it
1523 * before returning. We also call arc_untransform() on any
1524 * unauthenticated blocks, which will verify their MAC if
1525 * the key is now available.
1526 */
1527 if (err == 0 && db->db_buf != NULL &&
1528 (flags & DB_RF_NO_DECRYPT) == 0 &&
1529 (arc_is_encrypted(db->db_buf) ||
1530 arc_is_unauthenticated(db->db_buf) ||
1531 arc_get_compression(db->db_buf) != ZIO_COMPRESS_OFF)) {
1532 zbookmark_phys_t zb;
1533
1534 SET_BOOKMARK(&zb, dmu_objset_id(db->db_objset),
1535 db->db.db_object, db->db_level, db->db_blkid);
1536 dbuf_fix_old_data(db, spa_syncing_txg(spa));
1537 err = arc_untransform(db->db_buf, spa, &zb, B_FALSE);
1538 dbuf_set_data(db, db->db_buf);
1539 }
1540 mutex_exit(&db->db_mtx);
1541 if (err == 0 && prefetch)
1542 dmu_zfetch(&dn->dn_zfetch, db->db_blkid, 1, B_TRUE);
1543 if ((flags & DB_RF_HAVESTRUCT) == 0)
1544 rw_exit(&dn->dn_struct_rwlock);
1545 DB_DNODE_EXIT(db);
1546 DBUF_STAT_BUMP(hash_hits);
1547 } else if (db->db_state == DB_UNCACHED) {
1548 spa_t *spa = dn->dn_objset->os_spa;
1549 boolean_t need_wait = B_FALSE;
1550
1551 if (zio == NULL &&
1552 db->db_blkptr != NULL && !BP_IS_HOLE(db->db_blkptr)) {
1553 zio = zio_root(spa, NULL, NULL, ZIO_FLAG_CANFAIL);
1554 need_wait = B_TRUE;
1555 }
1556 err = dbuf_read_impl(db, zio, flags);
1557
1558 /* dbuf_read_impl has dropped db_mtx for us */
1559
1560 if (!err && prefetch)
1561 dmu_zfetch(&dn->dn_zfetch, db->db_blkid, 1, B_TRUE);
1562
1563 if ((flags & DB_RF_HAVESTRUCT) == 0)
1564 rw_exit(&dn->dn_struct_rwlock);
1565 DB_DNODE_EXIT(db);
1566 DBUF_STAT_BUMP(hash_misses);
1567
1568 /*
1569 * If we created a zio_root we must execute it to avoid
1570 * leaking it, even if it isn't attached to any work due
1571 * to an error in dbuf_read_impl().
1572 */
1573 if (need_wait) {
1574 if (err == 0)
1575 err = zio_wait(zio);
1576 else
1577 VERIFY0(zio_wait(zio));
1578 }
1579 } else {
1580 /*
1581 * Another reader came in while the dbuf was in flight
1582 * between UNCACHED and CACHED. Either a writer will finish
1583 * writing the buffer (sending the dbuf to CACHED) or the
1584 * first reader's request will reach the read_done callback
1585 * and send the dbuf to CACHED. Otherwise, a failure
1586 * occurred and the dbuf went to UNCACHED.
1587 */
1588 mutex_exit(&db->db_mtx);
1589 if (prefetch)
1590 dmu_zfetch(&dn->dn_zfetch, db->db_blkid, 1, B_TRUE);
1591 if ((flags & DB_RF_HAVESTRUCT) == 0)
1592 rw_exit(&dn->dn_struct_rwlock);
1593 DB_DNODE_EXIT(db);
1594 DBUF_STAT_BUMP(hash_misses);
1595
1596 /* Skip the wait per the caller's request. */
1597 mutex_enter(&db->db_mtx);
1598 if ((flags & DB_RF_NEVERWAIT) == 0) {
1599 while (db->db_state == DB_READ ||
1600 db->db_state == DB_FILL) {
1601 ASSERT(db->db_state == DB_READ ||
1602 (flags & DB_RF_HAVESTRUCT) == 0);
1603 DTRACE_PROBE2(blocked__read, dmu_buf_impl_t *,
1604 db, zio_t *, zio);
1605 cv_wait(&db->db_changed, &db->db_mtx);
1606 }
1607 if (db->db_state == DB_UNCACHED)
1608 err = SET_ERROR(EIO);
1609 }
1610 mutex_exit(&db->db_mtx);
1611 }
1612
1613 return (err);
1614 }
1615
1616 static void
1617 dbuf_noread(dmu_buf_impl_t *db)
1618 {
1619 ASSERT(!zfs_refcount_is_zero(&db->db_holds));
1620 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
1621 mutex_enter(&db->db_mtx);
1622 while (db->db_state == DB_READ || db->db_state == DB_FILL)
1623 cv_wait(&db->db_changed, &db->db_mtx);
1624 if (db->db_state == DB_UNCACHED) {
1625 arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
1626 spa_t *spa = db->db_objset->os_spa;
1627
1628 ASSERT(db->db_buf == NULL);
1629 ASSERT(db->db.db_data == NULL);
1630 dbuf_set_data(db, arc_alloc_buf(spa, db, type, db->db.db_size));
1631 db->db_state = DB_FILL;
1632 } else if (db->db_state == DB_NOFILL) {
1633 dbuf_clear_data(db);
1634 } else {
1635 ASSERT3U(db->db_state, ==, DB_CACHED);
1636 }
1637 mutex_exit(&db->db_mtx);
1638 }
1639
1640 void
1641 dbuf_unoverride(dbuf_dirty_record_t *dr)
1642 {
1643 dmu_buf_impl_t *db = dr->dr_dbuf;
1644 blkptr_t *bp = &dr->dt.dl.dr_overridden_by;
1645 uint64_t txg = dr->dr_txg;
1646
1647 ASSERT(MUTEX_HELD(&db->db_mtx));
1648 /*
1649 * This assert is valid because dmu_sync() expects to be called by
1650 * a zilog's get_data while holding a range lock. This call only
1651 * comes from dbuf_dirty() callers who must also hold a range lock.
1652 */
1653 ASSERT(dr->dt.dl.dr_override_state != DR_IN_DMU_SYNC);
1654 ASSERT(db->db_level == 0);
1655
1656 if (db->db_blkid == DMU_BONUS_BLKID ||
1657 dr->dt.dl.dr_override_state == DR_NOT_OVERRIDDEN)
1658 return;
1659
1660 ASSERT(db->db_data_pending != dr);
1661
1662 /* free this block */
1663 if (!BP_IS_HOLE(bp) && !dr->dt.dl.dr_nopwrite)
1664 zio_free(db->db_objset->os_spa, txg, bp);
1665
1666 dr->dt.dl.dr_override_state = DR_NOT_OVERRIDDEN;
1667 dr->dt.dl.dr_nopwrite = B_FALSE;
1668 dr->dt.dl.dr_has_raw_params = B_FALSE;
1669
1670 /*
1671 * Release the already-written buffer, so we leave it in
1672 * a consistent dirty state. Note that all callers are
1673 * modifying the buffer, so they will immediately do
1674 * another (redundant) arc_release(). Therefore, leave
1675 * the buf thawed to save the effort of freezing &
1676 * immediately re-thawing it.
1677 */
1678 arc_release(dr->dt.dl.dr_data, db);
1679 }
1680
1681 /*
1682 * Evict (if its unreferenced) or clear (if its referenced) any level-0
1683 * data blocks in the free range, so that any future readers will find
1684 * empty blocks.
1685 */
1686 void
1687 dbuf_free_range(dnode_t *dn, uint64_t start_blkid, uint64_t end_blkid,
1688 dmu_tx_t *tx)
1689 {
1690 dmu_buf_impl_t *db_search;
1691 dmu_buf_impl_t *db, *db_next;
1692 uint64_t txg = tx->tx_txg;
1693 avl_index_t where;
1694
1695 if (end_blkid > dn->dn_maxblkid &&
1696 !(start_blkid == DMU_SPILL_BLKID || end_blkid == DMU_SPILL_BLKID))
1697 end_blkid = dn->dn_maxblkid;
1698 dprintf_dnode(dn, "start=%llu end=%llu\n", start_blkid, end_blkid);
1699
1700 db_search = kmem_alloc(sizeof (dmu_buf_impl_t), KM_SLEEP);
1701 db_search->db_level = 0;
1702 db_search->db_blkid = start_blkid;
1703 db_search->db_state = DB_SEARCH;
1704
1705 mutex_enter(&dn->dn_dbufs_mtx);
1706 db = avl_find(&dn->dn_dbufs, db_search, &where);
1707 ASSERT3P(db, ==, NULL);
1708
1709 db = avl_nearest(&dn->dn_dbufs, where, AVL_AFTER);
1710
1711 for (; db != NULL; db = db_next) {
1712 db_next = AVL_NEXT(&dn->dn_dbufs, db);
1713 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
1714
1715 if (db->db_level != 0 || db->db_blkid > end_blkid) {
1716 break;
1717 }
1718 ASSERT3U(db->db_blkid, >=, start_blkid);
1719
1720 /* found a level 0 buffer in the range */
1721 mutex_enter(&db->db_mtx);
1722 if (dbuf_undirty(db, tx)) {
1723 /* mutex has been dropped and dbuf destroyed */
1724 continue;
1725 }
1726
1727 if (db->db_state == DB_UNCACHED ||
1728 db->db_state == DB_NOFILL ||
1729 db->db_state == DB_EVICTING) {
1730 ASSERT(db->db.db_data == NULL);
1731 mutex_exit(&db->db_mtx);
1732 continue;
1733 }
1734 if (db->db_state == DB_READ || db->db_state == DB_FILL) {
1735 /* will be handled in dbuf_read_done or dbuf_rele */
1736 db->db_freed_in_flight = TRUE;
1737 mutex_exit(&db->db_mtx);
1738 continue;
1739 }
1740 if (zfs_refcount_count(&db->db_holds) == 0) {
1741 ASSERT(db->db_buf);
1742 dbuf_destroy(db);
1743 continue;
1744 }
1745 /* The dbuf is referenced */
1746
1747 if (db->db_last_dirty != NULL) {
1748 dbuf_dirty_record_t *dr = db->db_last_dirty;
1749
1750 if (dr->dr_txg == txg) {
1751 /*
1752 * This buffer is "in-use", re-adjust the file
1753 * size to reflect that this buffer may
1754 * contain new data when we sync.
1755 */
1756 if (db->db_blkid != DMU_SPILL_BLKID &&
1757 db->db_blkid > dn->dn_maxblkid)
1758 dn->dn_maxblkid = db->db_blkid;
1759 dbuf_unoverride(dr);
1760 } else {
1761 /*
1762 * This dbuf is not dirty in the open context.
1763 * Either uncache it (if its not referenced in
1764 * the open context) or reset its contents to
1765 * empty.
1766 */
1767 dbuf_fix_old_data(db, txg);
1768 }
1769 }
1770 /* clear the contents if its cached */
1771 if (db->db_state == DB_CACHED) {
1772 ASSERT(db->db.db_data != NULL);
1773 arc_release(db->db_buf, db);
1774 bzero(db->db.db_data, db->db.db_size);
1775 arc_buf_freeze(db->db_buf);
1776 }
1777
1778 mutex_exit(&db->db_mtx);
1779 }
1780
1781 kmem_free(db_search, sizeof (dmu_buf_impl_t));
1782 mutex_exit(&dn->dn_dbufs_mtx);
1783 }
1784
1785 void
1786 dbuf_new_size(dmu_buf_impl_t *db, int size, dmu_tx_t *tx)
1787 {
1788 arc_buf_t *buf, *obuf;
1789 int osize = db->db.db_size;
1790 arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
1791 dnode_t *dn;
1792
1793 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
1794
1795 DB_DNODE_ENTER(db);
1796 dn = DB_DNODE(db);
1797
1798 /* XXX does *this* func really need the lock? */
1799 ASSERT(RW_WRITE_HELD(&dn->dn_struct_rwlock));
1800
1801 /*
1802 * This call to dmu_buf_will_dirty() with the dn_struct_rwlock held
1803 * is OK, because there can be no other references to the db
1804 * when we are changing its size, so no concurrent DB_FILL can
1805 * be happening.
1806 */
1807 /*
1808 * XXX we should be doing a dbuf_read, checking the return
1809 * value and returning that up to our callers
1810 */
1811 dmu_buf_will_dirty(&db->db, tx);
1812
1813 /* create the data buffer for the new block */
1814 buf = arc_alloc_buf(dn->dn_objset->os_spa, db, type, size);
1815
1816 /* copy old block data to the new block */
1817 obuf = db->db_buf;
1818 bcopy(obuf->b_data, buf->b_data, MIN(osize, size));
1819 /* zero the remainder */
1820 if (size > osize)
1821 bzero((uint8_t *)buf->b_data + osize, size - osize);
1822
1823 mutex_enter(&db->db_mtx);
1824 dbuf_set_data(db, buf);
1825 arc_buf_destroy(obuf, db);
1826 db->db.db_size = size;
1827
1828 if (db->db_level == 0) {
1829 ASSERT3U(db->db_last_dirty->dr_txg, ==, tx->tx_txg);
1830 db->db_last_dirty->dt.dl.dr_data = buf;
1831 }
1832 mutex_exit(&db->db_mtx);
1833
1834 dmu_objset_willuse_space(dn->dn_objset, size - osize, tx);
1835 DB_DNODE_EXIT(db);
1836 }
1837
1838 void
1839 dbuf_release_bp(dmu_buf_impl_t *db)
1840 {
1841 ASSERTV(objset_t *os = db->db_objset);
1842
1843 ASSERT(dsl_pool_sync_context(dmu_objset_pool(os)));
1844 ASSERT(arc_released(os->os_phys_buf) ||
1845 list_link_active(&os->os_dsl_dataset->ds_synced_link));
1846 ASSERT(db->db_parent == NULL || arc_released(db->db_parent->db_buf));
1847
1848 (void) arc_release(db->db_buf, db);
1849 }
1850
1851 /*
1852 * We already have a dirty record for this TXG, and we are being
1853 * dirtied again.
1854 */
1855 static void
1856 dbuf_redirty(dbuf_dirty_record_t *dr)
1857 {
1858 dmu_buf_impl_t *db = dr->dr_dbuf;
1859
1860 ASSERT(MUTEX_HELD(&db->db_mtx));
1861
1862 if (db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID) {
1863 /*
1864 * If this buffer has already been written out,
1865 * we now need to reset its state.
1866 */
1867 dbuf_unoverride(dr);
1868 if (db->db.db_object != DMU_META_DNODE_OBJECT &&
1869 db->db_state != DB_NOFILL) {
1870 /* Already released on initial dirty, so just thaw. */
1871 ASSERT(arc_released(db->db_buf));
1872 arc_buf_thaw(db->db_buf);
1873 }
1874 }
1875 }
1876
1877 dbuf_dirty_record_t *
1878 dbuf_dirty(dmu_buf_impl_t *db, dmu_tx_t *tx)
1879 {
1880 dnode_t *dn;
1881 objset_t *os;
1882 dbuf_dirty_record_t **drp, *dr;
1883 int drop_struct_lock = FALSE;
1884 int txgoff = tx->tx_txg & TXG_MASK;
1885
1886 ASSERT(tx->tx_txg != 0);
1887 ASSERT(!zfs_refcount_is_zero(&db->db_holds));
1888 DMU_TX_DIRTY_BUF(tx, db);
1889
1890 DB_DNODE_ENTER(db);
1891 dn = DB_DNODE(db);
1892 /*
1893 * Shouldn't dirty a regular buffer in syncing context. Private
1894 * objects may be dirtied in syncing context, but only if they
1895 * were already pre-dirtied in open context.
1896 */
1897 #ifdef DEBUG
1898 if (dn->dn_objset->os_dsl_dataset != NULL) {
1899 rrw_enter(&dn->dn_objset->os_dsl_dataset->ds_bp_rwlock,
1900 RW_READER, FTAG);
1901 }
1902 ASSERT(!dmu_tx_is_syncing(tx) ||
1903 BP_IS_HOLE(dn->dn_objset->os_rootbp) ||
1904 DMU_OBJECT_IS_SPECIAL(dn->dn_object) ||
1905 dn->dn_objset->os_dsl_dataset == NULL);
1906 if (dn->dn_objset->os_dsl_dataset != NULL)
1907 rrw_exit(&dn->dn_objset->os_dsl_dataset->ds_bp_rwlock, FTAG);
1908 #endif
1909 /*
1910 * We make this assert for private objects as well, but after we
1911 * check if we're already dirty. They are allowed to re-dirty
1912 * in syncing context.
1913 */
1914 ASSERT(dn->dn_object == DMU_META_DNODE_OBJECT ||
1915 dn->dn_dirtyctx == DN_UNDIRTIED || dn->dn_dirtyctx ==
1916 (dmu_tx_is_syncing(tx) ? DN_DIRTY_SYNC : DN_DIRTY_OPEN));
1917
1918 mutex_enter(&db->db_mtx);
1919 /*
1920 * XXX make this true for indirects too? The problem is that
1921 * transactions created with dmu_tx_create_assigned() from
1922 * syncing context don't bother holding ahead.
1923 */
1924 ASSERT(db->db_level != 0 ||
1925 db->db_state == DB_CACHED || db->db_state == DB_FILL ||
1926 db->db_state == DB_NOFILL);
1927
1928 mutex_enter(&dn->dn_mtx);
1929 /*
1930 * Don't set dirtyctx to SYNC if we're just modifying this as we
1931 * initialize the objset.
1932 */
1933 if (dn->dn_dirtyctx == DN_UNDIRTIED) {
1934 if (dn->dn_objset->os_dsl_dataset != NULL) {
1935 rrw_enter(&dn->dn_objset->os_dsl_dataset->ds_bp_rwlock,
1936 RW_READER, FTAG);
1937 }
1938 if (!BP_IS_HOLE(dn->dn_objset->os_rootbp)) {
1939 dn->dn_dirtyctx = (dmu_tx_is_syncing(tx) ?
1940 DN_DIRTY_SYNC : DN_DIRTY_OPEN);
1941 ASSERT(dn->dn_dirtyctx_firstset == NULL);
1942 dn->dn_dirtyctx_firstset = kmem_alloc(1, KM_SLEEP);
1943 }
1944 if (dn->dn_objset->os_dsl_dataset != NULL) {
1945 rrw_exit(&dn->dn_objset->os_dsl_dataset->ds_bp_rwlock,
1946 FTAG);
1947 }
1948 }
1949
1950 if (tx->tx_txg > dn->dn_dirty_txg)
1951 dn->dn_dirty_txg = tx->tx_txg;
1952 mutex_exit(&dn->dn_mtx);
1953
1954 if (db->db_blkid == DMU_SPILL_BLKID)
1955 dn->dn_have_spill = B_TRUE;
1956
1957 /*
1958 * If this buffer is already dirty, we're done.
1959 */
1960 drp = &db->db_last_dirty;
1961 ASSERT(*drp == NULL || (*drp)->dr_txg <= tx->tx_txg ||
1962 db->db.db_object == DMU_META_DNODE_OBJECT);
1963 while ((dr = *drp) != NULL && dr->dr_txg > tx->tx_txg)
1964 drp = &dr->dr_next;
1965 if (dr && dr->dr_txg == tx->tx_txg) {
1966 DB_DNODE_EXIT(db);
1967
1968 dbuf_redirty(dr);
1969 mutex_exit(&db->db_mtx);
1970 return (dr);
1971 }
1972
1973 /*
1974 * Only valid if not already dirty.
1975 */
1976 ASSERT(dn->dn_object == 0 ||
1977 dn->dn_dirtyctx == DN_UNDIRTIED || dn->dn_dirtyctx ==
1978 (dmu_tx_is_syncing(tx) ? DN_DIRTY_SYNC : DN_DIRTY_OPEN));
1979
1980 ASSERT3U(dn->dn_nlevels, >, db->db_level);
1981
1982 /*
1983 * We should only be dirtying in syncing context if it's the
1984 * mos or we're initializing the os or it's a special object.
1985 * However, we are allowed to dirty in syncing context provided
1986 * we already dirtied it in open context. Hence we must make
1987 * this assertion only if we're not already dirty.
1988 */
1989 os = dn->dn_objset;
1990 VERIFY3U(tx->tx_txg, <=, spa_final_dirty_txg(os->os_spa));
1991 #ifdef DEBUG
1992 if (dn->dn_objset->os_dsl_dataset != NULL)
1993 rrw_enter(&os->os_dsl_dataset->ds_bp_rwlock, RW_READER, FTAG);
1994 ASSERT(!dmu_tx_is_syncing(tx) || DMU_OBJECT_IS_SPECIAL(dn->dn_object) ||
1995 os->os_dsl_dataset == NULL || BP_IS_HOLE(os->os_rootbp));
1996 if (dn->dn_objset->os_dsl_dataset != NULL)
1997 rrw_exit(&os->os_dsl_dataset->ds_bp_rwlock, FTAG);
1998 #endif
1999 ASSERT(db->db.db_size != 0);
2000
2001 dprintf_dbuf(db, "size=%llx\n", (u_longlong_t)db->db.db_size);
2002
2003 if (db->db_blkid != DMU_BONUS_BLKID) {
2004 dmu_objset_willuse_space(os, db->db.db_size, tx);
2005 }
2006
2007 /*
2008 * If this buffer is dirty in an old transaction group we need
2009 * to make a copy of it so that the changes we make in this
2010 * transaction group won't leak out when we sync the older txg.
2011 */
2012 dr = kmem_zalloc(sizeof (dbuf_dirty_record_t), KM_SLEEP);
2013 list_link_init(&dr->dr_dirty_node);
2014 if (db->db_level == 0) {
2015 void *data_old = db->db_buf;
2016
2017 if (db->db_state != DB_NOFILL) {
2018 if (db->db_blkid == DMU_BONUS_BLKID) {
2019 dbuf_fix_old_data(db, tx->tx_txg);
2020 data_old = db->db.db_data;
2021 } else if (db->db.db_object != DMU_META_DNODE_OBJECT) {
2022 /*
2023 * Release the data buffer from the cache so
2024 * that we can modify it without impacting
2025 * possible other users of this cached data
2026 * block. Note that indirect blocks and
2027 * private objects are not released until the
2028 * syncing state (since they are only modified
2029 * then).
2030 */
2031 arc_release(db->db_buf, db);
2032 dbuf_fix_old_data(db, tx->tx_txg);
2033 data_old = db->db_buf;
2034 }
2035 ASSERT(data_old != NULL);
2036 }
2037 dr->dt.dl.dr_data = data_old;
2038 } else {
2039 mutex_init(&dr->dt.di.dr_mtx, NULL, MUTEX_NOLOCKDEP, NULL);
2040 list_create(&dr->dt.di.dr_children,
2041 sizeof (dbuf_dirty_record_t),
2042 offsetof(dbuf_dirty_record_t, dr_dirty_node));
2043 }
2044 if (db->db_blkid != DMU_BONUS_BLKID && os->os_dsl_dataset != NULL)
2045 dr->dr_accounted = db->db.db_size;
2046 dr->dr_dbuf = db;
2047 dr->dr_txg = tx->tx_txg;
2048 dr->dr_next = *drp;
2049 *drp = dr;
2050
2051 /*
2052 * We could have been freed_in_flight between the dbuf_noread
2053 * and dbuf_dirty. We win, as though the dbuf_noread() had
2054 * happened after the free.
2055 */
2056 if (db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID &&
2057 db->db_blkid != DMU_SPILL_BLKID) {
2058 mutex_enter(&dn->dn_mtx);
2059 if (dn->dn_free_ranges[txgoff] != NULL) {
2060 range_tree_clear(dn->dn_free_ranges[txgoff],
2061 db->db_blkid, 1);
2062 }
2063 mutex_exit(&dn->dn_mtx);
2064 db->db_freed_in_flight = FALSE;
2065 }
2066
2067 /*
2068 * This buffer is now part of this txg
2069 */
2070 dbuf_add_ref(db, (void *)(uintptr_t)tx->tx_txg);
2071 db->db_dirtycnt += 1;
2072 ASSERT3U(db->db_dirtycnt, <=, 3);
2073
2074 mutex_exit(&db->db_mtx);
2075
2076 if (db->db_blkid == DMU_BONUS_BLKID ||
2077 db->db_blkid == DMU_SPILL_BLKID) {
2078 mutex_enter(&dn->dn_mtx);
2079 ASSERT(!list_link_active(&dr->dr_dirty_node));
2080 list_insert_tail(&dn->dn_dirty_records[txgoff], dr);
2081 mutex_exit(&dn->dn_mtx);
2082 dnode_setdirty(dn, tx);
2083 DB_DNODE_EXIT(db);
2084 return (dr);
2085 }
2086
2087 /*
2088 * The dn_struct_rwlock prevents db_blkptr from changing
2089 * due to a write from syncing context completing
2090 * while we are running, so we want to acquire it before
2091 * looking at db_blkptr.
2092 */
2093 if (!RW_WRITE_HELD(&dn->dn_struct_rwlock)) {
2094 rw_enter(&dn->dn_struct_rwlock, RW_READER);
2095 drop_struct_lock = TRUE;
2096 }
2097
2098 /*
2099 * We need to hold the dn_struct_rwlock to make this assertion,
2100 * because it protects dn_phys / dn_next_nlevels from changing.
2101 */
2102 ASSERT((dn->dn_phys->dn_nlevels == 0 && db->db_level == 0) ||
2103 dn->dn_phys->dn_nlevels > db->db_level ||
2104 dn->dn_next_nlevels[txgoff] > db->db_level ||
2105 dn->dn_next_nlevels[(tx->tx_txg-1) & TXG_MASK] > db->db_level ||
2106 dn->dn_next_nlevels[(tx->tx_txg-2) & TXG_MASK] > db->db_level);
2107
2108 /*
2109 * If we are overwriting a dedup BP, then unless it is snapshotted,
2110 * when we get to syncing context we will need to decrement its
2111 * refcount in the DDT. Prefetch the relevant DDT block so that
2112 * syncing context won't have to wait for the i/o.
2113 */
2114 ddt_prefetch(os->os_spa, db->db_blkptr);
2115
2116 if (db->db_level == 0) {
2117 ASSERT(!db->db_objset->os_raw_receive ||
2118 dn->dn_maxblkid >= db->db_blkid);
2119 dnode_new_blkid(dn, db->db_blkid, tx, drop_struct_lock);
2120 ASSERT(dn->dn_maxblkid >= db->db_blkid);
2121 }
2122
2123 if (db->db_level+1 < dn->dn_nlevels) {
2124 dmu_buf_impl_t *parent = db->db_parent;
2125 dbuf_dirty_record_t *di;
2126 int parent_held = FALSE;
2127
2128 if (db->db_parent == NULL || db->db_parent == dn->dn_dbuf) {
2129 int epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT;
2130
2131 parent = dbuf_hold_level(dn, db->db_level+1,
2132 db->db_blkid >> epbs, FTAG);
2133 ASSERT(parent != NULL);
2134 parent_held = TRUE;
2135 }
2136 if (drop_struct_lock)
2137 rw_exit(&dn->dn_struct_rwlock);
2138 ASSERT3U(db->db_level+1, ==, parent->db_level);
2139 di = dbuf_dirty(parent, tx);
2140 if (parent_held)
2141 dbuf_rele(parent, FTAG);
2142
2143 mutex_enter(&db->db_mtx);
2144 /*
2145 * Since we've dropped the mutex, it's possible that
2146 * dbuf_undirty() might have changed this out from under us.
2147 */
2148 if (db->db_last_dirty == dr ||
2149 dn->dn_object == DMU_META_DNODE_OBJECT) {
2150 mutex_enter(&di->dt.di.dr_mtx);
2151 ASSERT3U(di->dr_txg, ==, tx->tx_txg);
2152 ASSERT(!list_link_active(&dr->dr_dirty_node));
2153 list_insert_tail(&di->dt.di.dr_children, dr);
2154 mutex_exit(&di->dt.di.dr_mtx);
2155 dr->dr_parent = di;
2156 }
2157 mutex_exit(&db->db_mtx);
2158 } else {
2159 ASSERT(db->db_level+1 == dn->dn_nlevels);
2160 ASSERT(db->db_blkid < dn->dn_nblkptr);
2161 ASSERT(db->db_parent == NULL || db->db_parent == dn->dn_dbuf);
2162 mutex_enter(&dn->dn_mtx);
2163 ASSERT(!list_link_active(&dr->dr_dirty_node));
2164 list_insert_tail(&dn->dn_dirty_records[txgoff], dr);
2165 mutex_exit(&dn->dn_mtx);
2166 if (drop_struct_lock)
2167 rw_exit(&dn->dn_struct_rwlock);
2168 }
2169
2170 dnode_setdirty(dn, tx);
2171 DB_DNODE_EXIT(db);
2172 return (dr);
2173 }
2174
2175 /*
2176 * Undirty a buffer in the transaction group referenced by the given
2177 * transaction. Return whether this evicted the dbuf.
2178 */
2179 static boolean_t
2180 dbuf_undirty(dmu_buf_impl_t *db, dmu_tx_t *tx)
2181 {
2182 dnode_t *dn;
2183 uint64_t txg = tx->tx_txg;
2184 dbuf_dirty_record_t *dr, **drp;
2185
2186 ASSERT(txg != 0);
2187
2188 /*
2189 * Due to our use of dn_nlevels below, this can only be called
2190 * in open context, unless we are operating on the MOS.
2191 * From syncing context, dn_nlevels may be different from the
2192 * dn_nlevels used when dbuf was dirtied.
2193 */
2194 ASSERT(db->db_objset ==
2195 dmu_objset_pool(db->db_objset)->dp_meta_objset ||
2196 txg != spa_syncing_txg(dmu_objset_spa(db->db_objset)));
2197 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
2198 ASSERT0(db->db_level);
2199 ASSERT(MUTEX_HELD(&db->db_mtx));
2200
2201 /*
2202 * If this buffer is not dirty, we're done.
2203 */
2204 for (drp = &db->db_last_dirty; (dr = *drp) != NULL; drp = &dr->dr_next)
2205 if (dr->dr_txg <= txg)
2206 break;
2207 if (dr == NULL || dr->dr_txg < txg)
2208 return (B_FALSE);
2209 ASSERT(dr->dr_txg == txg);
2210 ASSERT(dr->dr_dbuf == db);
2211
2212 DB_DNODE_ENTER(db);
2213 dn = DB_DNODE(db);
2214
2215 dprintf_dbuf(db, "size=%llx\n", (u_longlong_t)db->db.db_size);
2216
2217 ASSERT(db->db.db_size != 0);
2218
2219 dsl_pool_undirty_space(dmu_objset_pool(dn->dn_objset),
2220 dr->dr_accounted, txg);
2221
2222 *drp = dr->dr_next;
2223
2224 /*
2225 * Note that there are three places in dbuf_dirty()
2226 * where this dirty record may be put on a list.
2227 * Make sure to do a list_remove corresponding to
2228 * every one of those list_insert calls.
2229 */
2230 if (dr->dr_parent) {
2231 mutex_enter(&dr->dr_parent->dt.di.dr_mtx);
2232 list_remove(&dr->dr_parent->dt.di.dr_children, dr);
2233 mutex_exit(&dr->dr_parent->dt.di.dr_mtx);
2234 } else if (db->db_blkid == DMU_SPILL_BLKID ||
2235 db->db_level + 1 == dn->dn_nlevels) {
2236 ASSERT(db->db_blkptr == NULL || db->db_parent == dn->dn_dbuf);
2237 mutex_enter(&dn->dn_mtx);
2238 list_remove(&dn->dn_dirty_records[txg & TXG_MASK], dr);
2239 mutex_exit(&dn->dn_mtx);
2240 }
2241 DB_DNODE_EXIT(db);
2242
2243 if (db->db_state != DB_NOFILL) {
2244 dbuf_unoverride(dr);
2245
2246 ASSERT(db->db_buf != NULL);
2247 ASSERT(dr->dt.dl.dr_data != NULL);
2248 if (dr->dt.dl.dr_data != db->db_buf)
2249 arc_buf_destroy(dr->dt.dl.dr_data, db);
2250 }
2251
2252 kmem_free(dr, sizeof (dbuf_dirty_record_t));
2253
2254 ASSERT(db->db_dirtycnt > 0);
2255 db->db_dirtycnt -= 1;
2256
2257 if (zfs_refcount_remove(&db->db_holds, (void *)(uintptr_t)txg) == 0) {
2258 ASSERT(db->db_state == DB_NOFILL || arc_released(db->db_buf));
2259 dbuf_destroy(db);
2260 return (B_TRUE);
2261 }
2262
2263 return (B_FALSE);
2264 }
2265
2266 static void
2267 dmu_buf_will_dirty_impl(dmu_buf_t *db_fake, int flags, dmu_tx_t *tx)
2268 {
2269 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2270
2271 ASSERT(tx->tx_txg != 0);
2272 ASSERT(!zfs_refcount_is_zero(&db->db_holds));
2273
2274 /*
2275 * Quick check for dirtyness. For already dirty blocks, this
2276 * reduces runtime of this function by >90%, and overall performance
2277 * by 50% for some workloads (e.g. file deletion with indirect blocks
2278 * cached).
2279 */
2280 mutex_enter(&db->db_mtx);
2281
2282 dbuf_dirty_record_t *dr;
2283 for (dr = db->db_last_dirty;
2284 dr != NULL && dr->dr_txg >= tx->tx_txg; dr = dr->dr_next) {
2285 /*
2286 * It's possible that it is already dirty but not cached,
2287 * because there are some calls to dbuf_dirty() that don't
2288 * go through dmu_buf_will_dirty().
2289 */
2290 if (dr->dr_txg == tx->tx_txg && db->db_state == DB_CACHED) {
2291 /* This dbuf is already dirty and cached. */
2292 dbuf_redirty(dr);
2293 mutex_exit(&db->db_mtx);
2294 return;
2295 }
2296 }
2297 mutex_exit(&db->db_mtx);
2298
2299 DB_DNODE_ENTER(db);
2300 if (RW_WRITE_HELD(&DB_DNODE(db)->dn_struct_rwlock))
2301 flags |= DB_RF_HAVESTRUCT;
2302 DB_DNODE_EXIT(db);
2303 (void) dbuf_read(db, NULL, flags);
2304 (void) dbuf_dirty(db, tx);
2305 }
2306
2307 void
2308 dmu_buf_will_dirty(dmu_buf_t *db_fake, dmu_tx_t *tx)
2309 {
2310 dmu_buf_will_dirty_impl(db_fake,
2311 DB_RF_MUST_SUCCEED | DB_RF_NOPREFETCH, tx);
2312 }
2313
2314 boolean_t
2315 dmu_buf_is_dirty(dmu_buf_t *db_fake, dmu_tx_t *tx)
2316 {
2317 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2318
2319 mutex_enter(&db->db_mtx);
2320 for (dbuf_dirty_record_t *dr = db->db_last_dirty;
2321 dr != NULL && dr->dr_txg >= tx->tx_txg; dr = dr->dr_next) {
2322 if (dr->dr_txg == tx->tx_txg) {
2323 mutex_exit(&db->db_mtx);
2324 return (B_TRUE);
2325 }
2326 }
2327 mutex_exit(&db->db_mtx);
2328 return (B_FALSE);
2329 }
2330
2331 void
2332 dmu_buf_will_not_fill(dmu_buf_t *db_fake, dmu_tx_t *tx)
2333 {
2334 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2335
2336 db->db_state = DB_NOFILL;
2337
2338 dmu_buf_will_fill(db_fake, tx);
2339 }
2340
2341 void
2342 dmu_buf_will_fill(dmu_buf_t *db_fake, dmu_tx_t *tx)
2343 {
2344 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2345
2346 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
2347 ASSERT(tx->tx_txg != 0);
2348 ASSERT(db->db_level == 0);
2349 ASSERT(!zfs_refcount_is_zero(&db->db_holds));
2350
2351 ASSERT(db->db.db_object != DMU_META_DNODE_OBJECT ||
2352 dmu_tx_private_ok(tx));
2353
2354 dbuf_noread(db);
2355 (void) dbuf_dirty(db, tx);
2356 }
2357
2358 /*
2359 * This function is effectively the same as dmu_buf_will_dirty(), but
2360 * indicates the caller expects raw encrypted data in the db, and provides
2361 * the crypt params (byteorder, salt, iv, mac) which should be stored in the
2362 * blkptr_t when this dbuf is written. This is only used for blocks of
2363 * dnodes, during raw receive.
2364 */
2365 void
2366 dmu_buf_set_crypt_params(dmu_buf_t *db_fake, boolean_t byteorder,
2367 const uint8_t *salt, const uint8_t *iv, const uint8_t *mac, dmu_tx_t *tx)
2368 {
2369 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2370 dbuf_dirty_record_t *dr;
2371
2372 /*
2373 * dr_has_raw_params is only processed for blocks of dnodes
2374 * (see dbuf_sync_dnode_leaf_crypt()).
2375 */
2376 ASSERT3U(db->db.db_object, ==, DMU_META_DNODE_OBJECT);
2377 ASSERT3U(db->db_level, ==, 0);
2378 ASSERT(db->db_objset->os_raw_receive);
2379
2380 dmu_buf_will_dirty_impl(db_fake,
2381 DB_RF_MUST_SUCCEED | DB_RF_NOPREFETCH | DB_RF_NO_DECRYPT, tx);
2382
2383 dr = db->db_last_dirty;
2384 while (dr != NULL && dr->dr_txg > tx->tx_txg)
2385 dr = dr->dr_next;
2386
2387 ASSERT3P(dr, !=, NULL);
2388 ASSERT3U(dr->dr_txg, ==, tx->tx_txg);
2389
2390 dr->dt.dl.dr_has_raw_params = B_TRUE;
2391 dr->dt.dl.dr_byteorder = byteorder;
2392 bcopy(salt, dr->dt.dl.dr_salt, ZIO_DATA_SALT_LEN);
2393 bcopy(iv, dr->dt.dl.dr_iv, ZIO_DATA_IV_LEN);
2394 bcopy(mac, dr->dt.dl.dr_mac, ZIO_DATA_MAC_LEN);
2395 }
2396
2397 #pragma weak dmu_buf_fill_done = dbuf_fill_done
2398 /* ARGSUSED */
2399 void
2400 dbuf_fill_done(dmu_buf_impl_t *db, dmu_tx_t *tx)
2401 {
2402 mutex_enter(&db->db_mtx);
2403 DBUF_VERIFY(db);
2404
2405 if (db->db_state == DB_FILL) {
2406 if (db->db_level == 0 && db->db_freed_in_flight) {
2407 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
2408 /* we were freed while filling */
2409 /* XXX dbuf_undirty? */
2410 bzero(db->db.db_data, db->db.db_size);
2411 db->db_freed_in_flight = FALSE;
2412 }
2413 db->db_state = DB_CACHED;
2414 cv_broadcast(&db->db_changed);
2415 }
2416 mutex_exit(&db->db_mtx);
2417 }
2418
2419 void
2420 dmu_buf_write_embedded(dmu_buf_t *dbuf, void *data,
2421 bp_embedded_type_t etype, enum zio_compress comp,
2422 int uncompressed_size, int compressed_size, int byteorder,
2423 dmu_tx_t *tx)
2424 {
2425 dmu_buf_impl_t *db = (dmu_buf_impl_t *)dbuf;
2426 struct dirty_leaf *dl;
2427 dmu_object_type_t type;
2428
2429 if (etype == BP_EMBEDDED_TYPE_DATA) {
2430 ASSERT(spa_feature_is_active(dmu_objset_spa(db->db_objset),
2431 SPA_FEATURE_EMBEDDED_DATA));
2432 }
2433
2434 DB_DNODE_ENTER(db);
2435 type = DB_DNODE(db)->dn_type;
2436 DB_DNODE_EXIT(db);
2437
2438 ASSERT0(db->db_level);
2439 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
2440
2441 dmu_buf_will_not_fill(dbuf, tx);
2442
2443 ASSERT3U(db->db_last_dirty->dr_txg, ==, tx->tx_txg);
2444 dl = &db->db_last_dirty->dt.dl;
2445 encode_embedded_bp_compressed(&dl->dr_overridden_by,
2446 data, comp, uncompressed_size, compressed_size);
2447 BPE_SET_ETYPE(&dl->dr_overridden_by, etype);
2448 BP_SET_TYPE(&dl->dr_overridden_by, type);
2449 BP_SET_LEVEL(&dl->dr_overridden_by, 0);
2450 BP_SET_BYTEORDER(&dl->dr_overridden_by, byteorder);
2451
2452 dl->dr_override_state = DR_OVERRIDDEN;
2453 dl->dr_overridden_by.blk_birth = db->db_last_dirty->dr_txg;
2454 }
2455
2456 /*
2457 * Directly assign a provided arc buf to a given dbuf if it's not referenced
2458 * by anybody except our caller. Otherwise copy arcbuf's contents to dbuf.
2459 */
2460 void
2461 dbuf_assign_arcbuf(dmu_buf_impl_t *db, arc_buf_t *buf, dmu_tx_t *tx)
2462 {
2463 ASSERT(!zfs_refcount_is_zero(&db->db_holds));
2464 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
2465 ASSERT(db->db_level == 0);
2466 ASSERT3U(dbuf_is_metadata(db), ==, arc_is_metadata(buf));
2467 ASSERT(buf != NULL);
2468 ASSERT(arc_buf_lsize(buf) == db->db.db_size);
2469 ASSERT(tx->tx_txg != 0);
2470
2471 arc_return_buf(buf, db);
2472 ASSERT(arc_released(buf));
2473
2474 mutex_enter(&db->db_mtx);
2475
2476 while (db->db_state == DB_READ || db->db_state == DB_FILL)
2477 cv_wait(&db->db_changed, &db->db_mtx);
2478
2479 ASSERT(db->db_state == DB_CACHED || db->db_state == DB_UNCACHED);
2480
2481 if (db->db_state == DB_CACHED &&
2482 zfs_refcount_count(&db->db_holds) - 1 > db->db_dirtycnt) {
2483 /*
2484 * In practice, we will never have a case where we have an
2485 * encrypted arc buffer while additional holds exist on the
2486 * dbuf. We don't handle this here so we simply assert that
2487 * fact instead.
2488 */
2489 ASSERT(!arc_is_encrypted(buf));
2490 mutex_exit(&db->db_mtx);
2491 (void) dbuf_dirty(db, tx);
2492 bcopy(buf->b_data, db->db.db_data, db->db.db_size);
2493 arc_buf_destroy(buf, db);
2494 xuio_stat_wbuf_copied();
2495 return;
2496 }
2497
2498 xuio_stat_wbuf_nocopy();
2499 if (db->db_state == DB_CACHED) {
2500 dbuf_dirty_record_t *dr = db->db_last_dirty;
2501
2502 ASSERT(db->db_buf != NULL);
2503 if (dr != NULL && dr->dr_txg == tx->tx_txg) {
2504 ASSERT(dr->dt.dl.dr_data == db->db_buf);
2505
2506 if (!arc_released(db->db_buf)) {
2507 ASSERT(dr->dt.dl.dr_override_state ==
2508 DR_OVERRIDDEN);
2509 arc_release(db->db_buf, db);
2510 }
2511 dr->dt.dl.dr_data = buf;
2512 arc_buf_destroy(db->db_buf, db);
2513 } else if (dr == NULL || dr->dt.dl.dr_data != db->db_buf) {
2514 arc_release(db->db_buf, db);
2515 arc_buf_destroy(db->db_buf, db);
2516 }
2517 db->db_buf = NULL;
2518 }
2519 ASSERT(db->db_buf == NULL);
2520 dbuf_set_data(db, buf);
2521 db->db_state = DB_FILL;
2522 mutex_exit(&db->db_mtx);
2523 (void) dbuf_dirty(db, tx);
2524 dmu_buf_fill_done(&db->db, tx);
2525 }
2526
2527 void
2528 dbuf_destroy(dmu_buf_impl_t *db)
2529 {
2530 dnode_t *dn;
2531 dmu_buf_impl_t *parent = db->db_parent;
2532 dmu_buf_impl_t *dndb;
2533
2534 ASSERT(MUTEX_HELD(&db->db_mtx));
2535 ASSERT(zfs_refcount_is_zero(&db->db_holds));
2536
2537 if (db->db_buf != NULL) {
2538 arc_buf_destroy(db->db_buf, db);
2539 db->db_buf = NULL;
2540 }
2541
2542 if (db->db_blkid == DMU_BONUS_BLKID) {
2543 int slots = DB_DNODE(db)->dn_num_slots;
2544 int bonuslen = DN_SLOTS_TO_BONUSLEN(slots);
2545 if (db->db.db_data != NULL) {
2546 kmem_free(db->db.db_data, bonuslen);
2547 arc_space_return(bonuslen, ARC_SPACE_BONUS);
2548 db->db_state = DB_UNCACHED;
2549 }
2550 }
2551
2552 dbuf_clear_data(db);
2553
2554 if (multilist_link_active(&db->db_cache_link)) {
2555 ASSERT(db->db_caching_status == DB_DBUF_CACHE ||
2556 db->db_caching_status == DB_DBUF_METADATA_CACHE);
2557
2558 multilist_remove(dbuf_caches[db->db_caching_status].cache, db);
2559 (void) zfs_refcount_remove_many(
2560 &dbuf_caches[db->db_caching_status].size,
2561 db->db.db_size, db);
2562
2563 if (db->db_caching_status == DB_DBUF_METADATA_CACHE) {
2564 DBUF_STAT_BUMPDOWN(metadata_cache_count);
2565 } else {
2566 DBUF_STAT_BUMPDOWN(cache_levels[db->db_level]);
2567 DBUF_STAT_BUMPDOWN(cache_count);
2568 DBUF_STAT_DECR(cache_levels_bytes[db->db_level],
2569 db->db.db_size);
2570 }
2571 db->db_caching_status = DB_NO_CACHE;
2572 }
2573
2574 ASSERT(db->db_state == DB_UNCACHED || db->db_state == DB_NOFILL);
2575 ASSERT(db->db_data_pending == NULL);
2576
2577 db->db_state = DB_EVICTING;
2578 db->db_blkptr = NULL;
2579
2580 /*
2581 * Now that db_state is DB_EVICTING, nobody else can find this via
2582 * the hash table. We can now drop db_mtx, which allows us to
2583 * acquire the dn_dbufs_mtx.
2584 */
2585 mutex_exit(&db->db_mtx);
2586
2587 DB_DNODE_ENTER(db);
2588 dn = DB_DNODE(db);
2589 dndb = dn->dn_dbuf;
2590 if (db->db_blkid != DMU_BONUS_BLKID) {
2591 boolean_t needlock = !MUTEX_HELD(&dn->dn_dbufs_mtx);
2592 if (needlock)
2593 mutex_enter(&dn->dn_dbufs_mtx);
2594 avl_remove(&dn->dn_dbufs, db);
2595 atomic_dec_32(&dn->dn_dbufs_count);
2596 membar_producer();
2597 DB_DNODE_EXIT(db);
2598 if (needlock)
2599 mutex_exit(&dn->dn_dbufs_mtx);
2600 /*
2601 * Decrementing the dbuf count means that the hold corresponding
2602 * to the removed dbuf is no longer discounted in dnode_move(),
2603 * so the dnode cannot be moved until after we release the hold.
2604 * The membar_producer() ensures visibility of the decremented
2605 * value in dnode_move(), since DB_DNODE_EXIT doesn't actually
2606 * release any lock.
2607 */
2608 mutex_enter(&dn->dn_mtx);
2609 dnode_rele_and_unlock(dn, db, B_TRUE);
2610 db->db_dnode_handle = NULL;
2611
2612 dbuf_hash_remove(db);
2613 } else {
2614 DB_DNODE_EXIT(db);
2615 }
2616
2617 ASSERT(zfs_refcount_is_zero(&db->db_holds));
2618
2619 db->db_parent = NULL;
2620
2621 ASSERT(db->db_buf == NULL);
2622 ASSERT(db->db.db_data == NULL);
2623 ASSERT(db->db_hash_next == NULL);
2624 ASSERT(db->db_blkptr == NULL);
2625 ASSERT(db->db_data_pending == NULL);
2626 ASSERT3U(db->db_caching_status, ==, DB_NO_CACHE);
2627 ASSERT(!multilist_link_active(&db->db_cache_link));
2628
2629 kmem_cache_free(dbuf_kmem_cache, db);
2630 arc_space_return(sizeof (dmu_buf_impl_t), ARC_SPACE_DBUF);
2631
2632 /*
2633 * If this dbuf is referenced from an indirect dbuf,
2634 * decrement the ref count on the indirect dbuf.
2635 */
2636 if (parent && parent != dndb) {
2637 mutex_enter(&parent->db_mtx);
2638 dbuf_rele_and_unlock(parent, db, B_TRUE);
2639 }
2640 }
2641
2642 /*
2643 * Note: While bpp will always be updated if the function returns success,
2644 * parentp will not be updated if the dnode does not have dn_dbuf filled in;
2645 * this happens when the dnode is the meta-dnode, or {user|group|project}used
2646 * object.
2647 */
2648 __attribute__((always_inline))
2649 static inline int
2650 dbuf_findbp(dnode_t *dn, int level, uint64_t blkid, int fail_sparse,
2651 dmu_buf_impl_t **parentp, blkptr_t **bpp)
2652 {
2653 *parentp = NULL;
2654 *bpp = NULL;
2655
2656 ASSERT(blkid != DMU_BONUS_BLKID);
2657
2658 if (blkid == DMU_SPILL_BLKID) {
2659 mutex_enter(&dn->dn_mtx);
2660 if (dn->dn_have_spill &&
2661 (dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR))
2662 *bpp = DN_SPILL_BLKPTR(dn->dn_phys);
2663 else
2664 *bpp = NULL;
2665 dbuf_add_ref(dn->dn_dbuf, NULL);
2666 *parentp = dn->dn_dbuf;
2667 mutex_exit(&dn->dn_mtx);
2668 return (0);
2669 }
2670
2671 int nlevels =
2672 (dn->dn_phys->dn_nlevels == 0) ? 1 : dn->dn_phys->dn_nlevels;
2673 int epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT;
2674
2675 ASSERT3U(level * epbs, <, 64);
2676 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
2677 /*
2678 * This assertion shouldn't trip as long as the max indirect block size
2679 * is less than 1M. The reason for this is that up to that point,
2680 * the number of levels required to address an entire object with blocks
2681 * of size SPA_MINBLOCKSIZE satisfies nlevels * epbs + 1 <= 64. In
2682 * other words, if N * epbs + 1 > 64, then if (N-1) * epbs + 1 > 55
2683 * (i.e. we can address the entire object), objects will all use at most
2684 * N-1 levels and the assertion won't overflow. However, once epbs is
2685 * 13, 4 * 13 + 1 = 53, but 5 * 13 + 1 = 66. Then, 4 levels will not be
2686 * enough to address an entire object, so objects will have 5 levels,
2687 * but then this assertion will overflow.
2688 *
2689 * All this is to say that if we ever increase DN_MAX_INDBLKSHIFT, we
2690 * need to redo this logic to handle overflows.
2691 */
2692 ASSERT(level >= nlevels ||
2693 ((nlevels - level - 1) * epbs) +
2694 highbit64(dn->dn_phys->dn_nblkptr) <= 64);
2695 if (level >= nlevels ||
2696 blkid >= ((uint64_t)dn->dn_phys->dn_nblkptr <<
2697 ((nlevels - level - 1) * epbs)) ||
2698 (fail_sparse &&
2699 blkid > (dn->dn_phys->dn_maxblkid >> (level * epbs)))) {
2700 /* the buffer has no parent yet */
2701 return (SET_ERROR(ENOENT));
2702 } else if (level < nlevels-1) {
2703 /* this block is referenced from an indirect block */
2704 int err;
2705 dbuf_hold_arg_t *dh = dbuf_hold_arg_create(dn, level + 1,
2706 blkid >> epbs, fail_sparse, FALSE, NULL, parentp);
2707 err = dbuf_hold_impl_arg(dh);
2708 dbuf_hold_arg_destroy(dh);
2709 if (err)
2710 return (err);
2711 err = dbuf_read(*parentp, NULL,
2712 (DB_RF_HAVESTRUCT | DB_RF_NOPREFETCH | DB_RF_CANFAIL));
2713 if (err) {
2714 dbuf_rele(*parentp, NULL);
2715 *parentp = NULL;
2716 return (err);
2717 }
2718 *bpp = ((blkptr_t *)(*parentp)->db.db_data) +
2719 (blkid & ((1ULL << epbs) - 1));
2720 if (blkid > (dn->dn_phys->dn_maxblkid >> (level * epbs)))
2721 ASSERT(BP_IS_HOLE(*bpp));
2722 return (0);
2723 } else {
2724 /* the block is referenced from the dnode */
2725 ASSERT3U(level, ==, nlevels-1);
2726 ASSERT(dn->dn_phys->dn_nblkptr == 0 ||
2727 blkid < dn->dn_phys->dn_nblkptr);
2728 if (dn->dn_dbuf) {
2729 dbuf_add_ref(dn->dn_dbuf, NULL);
2730 *parentp = dn->dn_dbuf;
2731 }
2732 *bpp = &dn->dn_phys->dn_blkptr[blkid];
2733 return (0);
2734 }
2735 }
2736
2737 static dmu_buf_impl_t *
2738 dbuf_create(dnode_t *dn, uint8_t level, uint64_t blkid,
2739 dmu_buf_impl_t *parent, blkptr_t *blkptr)
2740 {
2741 objset_t *os = dn->dn_objset;
2742 dmu_buf_impl_t *db, *odb;
2743
2744 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
2745 ASSERT(dn->dn_type != DMU_OT_NONE);
2746
2747 db = kmem_cache_alloc(dbuf_kmem_cache, KM_SLEEP);
2748
2749 db->db_objset = os;
2750 db->db.db_object = dn->dn_object;
2751 db->db_level = level;
2752 db->db_blkid = blkid;
2753 db->db_last_dirty = NULL;
2754 db->db_dirtycnt = 0;
2755 db->db_dnode_handle = dn->dn_handle;
2756 db->db_parent = parent;
2757 db->db_blkptr = blkptr;
2758
2759 db->db_user = NULL;
2760 db->db_user_immediate_evict = FALSE;
2761 db->db_freed_in_flight = FALSE;
2762 db->db_pending_evict = FALSE;
2763
2764 if (blkid == DMU_BONUS_BLKID) {
2765 ASSERT3P(parent, ==, dn->dn_dbuf);
2766 db->db.db_size = DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots) -
2767 (dn->dn_nblkptr-1) * sizeof (blkptr_t);
2768 ASSERT3U(db->db.db_size, >=, dn->dn_bonuslen);
2769 db->db.db_offset = DMU_BONUS_BLKID;
2770 db->db_state = DB_UNCACHED;
2771 db->db_caching_status = DB_NO_CACHE;
2772 /* the bonus dbuf is not placed in the hash table */
2773 arc_space_consume(sizeof (dmu_buf_impl_t), ARC_SPACE_DBUF);
2774 return (db);
2775 } else if (blkid == DMU_SPILL_BLKID) {
2776 db->db.db_size = (blkptr != NULL) ?
2777 BP_GET_LSIZE(blkptr) : SPA_MINBLOCKSIZE;
2778 db->db.db_offset = 0;
2779 } else {
2780 int blocksize =
2781 db->db_level ? 1 << dn->dn_indblkshift : dn->dn_datablksz;
2782 db->db.db_size = blocksize;
2783 db->db.db_offset = db->db_blkid * blocksize;
2784 }
2785
2786 /*
2787 * Hold the dn_dbufs_mtx while we get the new dbuf
2788 * in the hash table *and* added to the dbufs list.
2789 * This prevents a possible deadlock with someone
2790 * trying to look up this dbuf before its added to the
2791 * dn_dbufs list.
2792 */
2793 mutex_enter(&dn->dn_dbufs_mtx);
2794 db->db_state = DB_EVICTING;
2795 if ((odb = dbuf_hash_insert(db)) != NULL) {
2796 /* someone else inserted it first */
2797 kmem_cache_free(dbuf_kmem_cache, db);
2798 mutex_exit(&dn->dn_dbufs_mtx);
2799 DBUF_STAT_BUMP(hash_insert_race);
2800 return (odb);
2801 }
2802 avl_add(&dn->dn_dbufs, db);
2803
2804 db->db_state = DB_UNCACHED;
2805 db->db_caching_status = DB_NO_CACHE;
2806 mutex_exit(&dn->dn_dbufs_mtx);
2807 arc_space_consume(sizeof (dmu_buf_impl_t), ARC_SPACE_DBUF);
2808
2809 if (parent && parent != dn->dn_dbuf)
2810 dbuf_add_ref(parent, db);
2811
2812 ASSERT(dn->dn_object == DMU_META_DNODE_OBJECT ||
2813 zfs_refcount_count(&dn->dn_holds) > 0);
2814 (void) zfs_refcount_add(&dn->dn_holds, db);
2815 atomic_inc_32(&dn->dn_dbufs_count);
2816
2817 dprintf_dbuf(db, "db=%p\n", db);
2818
2819 return (db);
2820 }
2821
2822 typedef struct dbuf_prefetch_arg {
2823 spa_t *dpa_spa; /* The spa to issue the prefetch in. */
2824 zbookmark_phys_t dpa_zb; /* The target block to prefetch. */
2825 int dpa_epbs; /* Entries (blkptr_t's) Per Block Shift. */
2826 int dpa_curlevel; /* The current level that we're reading */
2827 dnode_t *dpa_dnode; /* The dnode associated with the prefetch */
2828 zio_priority_t dpa_prio; /* The priority I/Os should be issued at. */
2829 zio_t *dpa_zio; /* The parent zio_t for all prefetches. */
2830 arc_flags_t dpa_aflags; /* Flags to pass to the final prefetch. */
2831 } dbuf_prefetch_arg_t;
2832
2833 /*
2834 * Actually issue the prefetch read for the block given.
2835 */
2836 static void
2837 dbuf_issue_final_prefetch(dbuf_prefetch_arg_t *dpa, blkptr_t *bp)
2838 {
2839 if (BP_IS_HOLE(bp) || BP_IS_EMBEDDED(bp))
2840 return;
2841
2842 int zio_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE;
2843 arc_flags_t aflags =
2844 dpa->dpa_aflags | ARC_FLAG_NOWAIT | ARC_FLAG_PREFETCH;
2845
2846 /* dnodes are always read as raw and then converted later */
2847 if (BP_GET_TYPE(bp) == DMU_OT_DNODE && BP_IS_PROTECTED(bp) &&
2848 dpa->dpa_curlevel == 0)
2849 zio_flags |= ZIO_FLAG_RAW;
2850
2851 ASSERT3U(dpa->dpa_curlevel, ==, BP_GET_LEVEL(bp));
2852 ASSERT3U(dpa->dpa_curlevel, ==, dpa->dpa_zb.zb_level);
2853 ASSERT(dpa->dpa_zio != NULL);
2854 (void) arc_read(dpa->dpa_zio, dpa->dpa_spa, bp, NULL, NULL,
2855 dpa->dpa_prio, zio_flags, &aflags, &dpa->dpa_zb);
2856 }
2857
2858 /*
2859 * Called when an indirect block above our prefetch target is read in. This
2860 * will either read in the next indirect block down the tree or issue the actual
2861 * prefetch if the next block down is our target.
2862 */
2863 static void
2864 dbuf_prefetch_indirect_done(zio_t *zio, const zbookmark_phys_t *zb,
2865 const blkptr_t *iobp, arc_buf_t *abuf, void *private)
2866 {
2867 dbuf_prefetch_arg_t *dpa = private;
2868
2869 ASSERT3S(dpa->dpa_zb.zb_level, <, dpa->dpa_curlevel);
2870 ASSERT3S(dpa->dpa_curlevel, >, 0);
2871
2872 if (abuf == NULL) {
2873 ASSERT(zio == NULL || zio->io_error != 0);
2874 kmem_free(dpa, sizeof (*dpa));
2875 return;
2876 }
2877 ASSERT(zio == NULL || zio->io_error == 0);
2878
2879 /*
2880 * The dpa_dnode is only valid if we are called with a NULL
2881 * zio. This indicates that the arc_read() returned without
2882 * first calling zio_read() to issue a physical read. Once
2883 * a physical read is made the dpa_dnode must be invalidated
2884 * as the locks guarding it may have been dropped. If the
2885 * dpa_dnode is still valid, then we want to add it to the dbuf
2886 * cache. To do so, we must hold the dbuf associated with the block
2887 * we just prefetched, read its contents so that we associate it
2888 * with an arc_buf_t, and then release it.
2889 */
2890 if (zio != NULL) {
2891 ASSERT3S(BP_GET_LEVEL(zio->io_bp), ==, dpa->dpa_curlevel);
2892 if (zio->io_flags & ZIO_FLAG_RAW_COMPRESS) {
2893 ASSERT3U(BP_GET_PSIZE(zio->io_bp), ==, zio->io_size);
2894 } else {
2895 ASSERT3U(BP_GET_LSIZE(zio->io_bp), ==, zio->io_size);
2896 }
2897 ASSERT3P(zio->io_spa, ==, dpa->dpa_spa);
2898
2899 dpa->dpa_dnode = NULL;
2900 } else if (dpa->dpa_dnode != NULL) {
2901 uint64_t curblkid = dpa->dpa_zb.zb_blkid >>
2902 (dpa->dpa_epbs * (dpa->dpa_curlevel -
2903 dpa->dpa_zb.zb_level));
2904 dmu_buf_impl_t *db = dbuf_hold_level(dpa->dpa_dnode,
2905 dpa->dpa_curlevel, curblkid, FTAG);
2906 if (db == NULL) {
2907 kmem_free(dpa, sizeof (*dpa));
2908 arc_buf_destroy(abuf, private);
2909 return;
2910 }
2911
2912 (void) dbuf_read(db, NULL,
2913 DB_RF_MUST_SUCCEED | DB_RF_NOPREFETCH | DB_RF_HAVESTRUCT);
2914 dbuf_rele(db, FTAG);
2915 }
2916
2917 dpa->dpa_curlevel--;
2918 uint64_t nextblkid = dpa->dpa_zb.zb_blkid >>
2919 (dpa->dpa_epbs * (dpa->dpa_curlevel - dpa->dpa_zb.zb_level));
2920 blkptr_t *bp = ((blkptr_t *)abuf->b_data) +
2921 P2PHASE(nextblkid, 1ULL << dpa->dpa_epbs);
2922
2923 if (BP_IS_HOLE(bp)) {
2924 kmem_free(dpa, sizeof (*dpa));
2925 } else if (dpa->dpa_curlevel == dpa->dpa_zb.zb_level) {
2926 ASSERT3U(nextblkid, ==, dpa->dpa_zb.zb_blkid);
2927 dbuf_issue_final_prefetch(dpa, bp);
2928 kmem_free(dpa, sizeof (*dpa));
2929 } else {
2930 arc_flags_t iter_aflags = ARC_FLAG_NOWAIT;
2931 zbookmark_phys_t zb;
2932
2933 /* flag if L2ARC eligible, l2arc_noprefetch then decides */
2934 if (dpa->dpa_aflags & ARC_FLAG_L2CACHE)
2935 iter_aflags |= ARC_FLAG_L2CACHE;
2936
2937 ASSERT3U(dpa->dpa_curlevel, ==, BP_GET_LEVEL(bp));
2938
2939 SET_BOOKMARK(&zb, dpa->dpa_zb.zb_objset,
2940 dpa->dpa_zb.zb_object, dpa->dpa_curlevel, nextblkid);
2941
2942 (void) arc_read(dpa->dpa_zio, dpa->dpa_spa,
2943 bp, dbuf_prefetch_indirect_done, dpa, dpa->dpa_prio,
2944 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE,
2945 &iter_aflags, &zb);
2946 }
2947
2948 arc_buf_destroy(abuf, private);
2949 }
2950
2951 /*
2952 * Issue prefetch reads for the given block on the given level. If the indirect
2953 * blocks above that block are not in memory, we will read them in
2954 * asynchronously. As a result, this call never blocks waiting for a read to
2955 * complete. Note that the prefetch might fail if the dataset is encrypted and
2956 * the encryption key is unmapped before the IO completes.
2957 */
2958 void
2959 dbuf_prefetch(dnode_t *dn, int64_t level, uint64_t blkid, zio_priority_t prio,
2960 arc_flags_t aflags)
2961 {
2962 blkptr_t bp;
2963 int epbs, nlevels, curlevel;
2964 uint64_t curblkid;
2965
2966 ASSERT(blkid != DMU_BONUS_BLKID);
2967 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
2968
2969 if (blkid > dn->dn_maxblkid)
2970 return;
2971
2972 if (dnode_block_freed(dn, blkid))
2973 return;
2974
2975 /*
2976 * This dnode hasn't been written to disk yet, so there's nothing to
2977 * prefetch.
2978 */
2979 nlevels = dn->dn_phys->dn_nlevels;
2980 if (level >= nlevels || dn->dn_phys->dn_nblkptr == 0)
2981 return;
2982
2983 epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT;
2984 if (dn->dn_phys->dn_maxblkid < blkid << (epbs * level))
2985 return;
2986
2987 dmu_buf_impl_t *db = dbuf_find(dn->dn_objset, dn->dn_object,
2988 level, blkid);
2989 if (db != NULL) {
2990 mutex_exit(&db->db_mtx);
2991 /*
2992 * This dbuf already exists. It is either CACHED, or
2993 * (we assume) about to be read or filled.
2994 */
2995 return;
2996 }
2997
2998 /*
2999 * Find the closest ancestor (indirect block) of the target block
3000 * that is present in the cache. In this indirect block, we will
3001 * find the bp that is at curlevel, curblkid.
3002 */
3003 curlevel = level;
3004 curblkid = blkid;
3005 while (curlevel < nlevels - 1) {
3006 int parent_level = curlevel + 1;
3007 uint64_t parent_blkid = curblkid >> epbs;
3008 dmu_buf_impl_t *db;
3009
3010 if (dbuf_hold_impl(dn, parent_level, parent_blkid,
3011 FALSE, TRUE, FTAG, &db) == 0) {
3012 blkptr_t *bpp = db->db_buf->b_data;
3013 bp = bpp[P2PHASE(curblkid, 1 << epbs)];
3014 dbuf_rele(db, FTAG);
3015 break;
3016 }
3017
3018 curlevel = parent_level;
3019 curblkid = parent_blkid;
3020 }
3021
3022 if (curlevel == nlevels - 1) {
3023 /* No cached indirect blocks found. */
3024 ASSERT3U(curblkid, <, dn->dn_phys->dn_nblkptr);
3025 bp = dn->dn_phys->dn_blkptr[curblkid];
3026 }
3027 if (BP_IS_HOLE(&bp))
3028 return;
3029
3030 ASSERT3U(curlevel, ==, BP_GET_LEVEL(&bp));
3031
3032 zio_t *pio = zio_root(dmu_objset_spa(dn->dn_objset), NULL, NULL,
3033 ZIO_FLAG_CANFAIL);
3034
3035 dbuf_prefetch_arg_t *dpa = kmem_zalloc(sizeof (*dpa), KM_SLEEP);
3036 dsl_dataset_t *ds = dn->dn_objset->os_dsl_dataset;
3037 SET_BOOKMARK(&dpa->dpa_zb, ds != NULL ? ds->ds_object : DMU_META_OBJSET,
3038 dn->dn_object, level, blkid);
3039 dpa->dpa_curlevel = curlevel;
3040 dpa->dpa_prio = prio;
3041 dpa->dpa_aflags = aflags;
3042 dpa->dpa_spa = dn->dn_objset->os_spa;
3043 dpa->dpa_dnode = dn;
3044 dpa->dpa_epbs = epbs;
3045 dpa->dpa_zio = pio;
3046
3047 /* flag if L2ARC eligible, l2arc_noprefetch then decides */
3048 if (DNODE_LEVEL_IS_L2CACHEABLE(dn, level))
3049 dpa->dpa_aflags |= ARC_FLAG_L2CACHE;
3050
3051 /*
3052 * If we have the indirect just above us, no need to do the asynchronous
3053 * prefetch chain; we'll just run the last step ourselves. If we're at
3054 * a higher level, though, we want to issue the prefetches for all the
3055 * indirect blocks asynchronously, so we can go on with whatever we were
3056 * doing.
3057 */
3058 if (curlevel == level) {
3059 ASSERT3U(curblkid, ==, blkid);
3060 dbuf_issue_final_prefetch(dpa, &bp);
3061 kmem_free(dpa, sizeof (*dpa));
3062 } else {
3063 arc_flags_t iter_aflags = ARC_FLAG_NOWAIT;
3064 zbookmark_phys_t zb;
3065
3066 /* flag if L2ARC eligible, l2arc_noprefetch then decides */
3067 if (DNODE_LEVEL_IS_L2CACHEABLE(dn, level))
3068 iter_aflags |= ARC_FLAG_L2CACHE;
3069
3070 SET_BOOKMARK(&zb, ds != NULL ? ds->ds_object : DMU_META_OBJSET,
3071 dn->dn_object, curlevel, curblkid);
3072 (void) arc_read(dpa->dpa_zio, dpa->dpa_spa,
3073 &bp, dbuf_prefetch_indirect_done, dpa, prio,
3074 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE,
3075 &iter_aflags, &zb);
3076 }
3077 /*
3078 * We use pio here instead of dpa_zio since it's possible that
3079 * dpa may have already been freed.
3080 */
3081 zio_nowait(pio);
3082 }
3083
3084 #define DBUF_HOLD_IMPL_MAX_DEPTH 20
3085
3086 /*
3087 * Helper function for dbuf_hold_impl_arg() to copy a buffer. Handles
3088 * the case of encrypted, compressed and uncompressed buffers by
3089 * allocating the new buffer, respectively, with arc_alloc_raw_buf(),
3090 * arc_alloc_compressed_buf() or arc_alloc_buf().*
3091 *
3092 * NOTE: Declared noinline to avoid stack bloat in dbuf_hold_impl_arg().
3093 */
3094 noinline static void
3095 dbuf_hold_copy(struct dbuf_hold_arg *dh)
3096 {
3097 dnode_t *dn = dh->dh_dn;
3098 dmu_buf_impl_t *db = dh->dh_db;
3099 dbuf_dirty_record_t *dr = dh->dh_dr;
3100 arc_buf_t *data = dr->dt.dl.dr_data;
3101
3102 enum zio_compress compress_type = arc_get_compression(data);
3103
3104 if (arc_is_encrypted(data)) {
3105 boolean_t byteorder;
3106 uint8_t salt[ZIO_DATA_SALT_LEN];
3107 uint8_t iv[ZIO_DATA_IV_LEN];
3108 uint8_t mac[ZIO_DATA_MAC_LEN];
3109
3110 arc_get_raw_params(data, &byteorder, salt, iv, mac);
3111 dbuf_set_data(db, arc_alloc_raw_buf(dn->dn_objset->os_spa, db,
3112 dmu_objset_id(dn->dn_objset), byteorder, salt, iv, mac,
3113 dn->dn_type, arc_buf_size(data), arc_buf_lsize(data),
3114 compress_type));
3115 } else if (compress_type != ZIO_COMPRESS_OFF) {
3116 dbuf_set_data(db, arc_alloc_compressed_buf(
3117 dn->dn_objset->os_spa, db, arc_buf_size(data),
3118 arc_buf_lsize(data), compress_type));
3119 } else {
3120 dbuf_set_data(db, arc_alloc_buf(dn->dn_objset->os_spa, db,
3121 DBUF_GET_BUFC_TYPE(db), db->db.db_size));
3122 }
3123
3124 bcopy(data->b_data, db->db.db_data, arc_buf_size(data));
3125 }
3126
3127 /*
3128 * Returns with db_holds incremented, and db_mtx not held.
3129 * Note: dn_struct_rwlock must be held.
3130 */
3131 static int
3132 dbuf_hold_impl_arg(struct dbuf_hold_arg *dh)
3133 {
3134 dh->dh_parent = NULL;
3135
3136 ASSERT(dh->dh_blkid != DMU_BONUS_BLKID);
3137 ASSERT(RW_LOCK_HELD(&dh->dh_dn->dn_struct_rwlock));
3138 ASSERT3U(dh->dh_dn->dn_nlevels, >, dh->dh_level);
3139
3140 *(dh->dh_dbp) = NULL;
3141
3142 /* dbuf_find() returns with db_mtx held */
3143 dh->dh_db = dbuf_find(dh->dh_dn->dn_objset, dh->dh_dn->dn_object,
3144 dh->dh_level, dh->dh_blkid);
3145
3146 if (dh->dh_db == NULL) {
3147 dh->dh_bp = NULL;
3148
3149 if (dh->dh_fail_uncached)
3150 return (SET_ERROR(ENOENT));
3151
3152 ASSERT3P(dh->dh_parent, ==, NULL);
3153 dh->dh_err = dbuf_findbp(dh->dh_dn, dh->dh_level, dh->dh_blkid,
3154 dh->dh_fail_sparse, &dh->dh_parent, &dh->dh_bp);
3155 if (dh->dh_fail_sparse) {
3156 if (dh->dh_err == 0 &&
3157 dh->dh_bp && BP_IS_HOLE(dh->dh_bp))
3158 dh->dh_err = SET_ERROR(ENOENT);
3159 if (dh->dh_err) {
3160 if (dh->dh_parent)
3161 dbuf_rele(dh->dh_parent, NULL);
3162 return (dh->dh_err);
3163 }
3164 }
3165 if (dh->dh_err && dh->dh_err != ENOENT)
3166 return (dh->dh_err);
3167 dh->dh_db = dbuf_create(dh->dh_dn, dh->dh_level, dh->dh_blkid,
3168 dh->dh_parent, dh->dh_bp);
3169 }
3170
3171 if (dh->dh_fail_uncached && dh->dh_db->db_state != DB_CACHED) {
3172 mutex_exit(&dh->dh_db->db_mtx);
3173 return (SET_ERROR(ENOENT));
3174 }
3175
3176 if (dh->dh_db->db_buf != NULL) {
3177 arc_buf_access(dh->dh_db->db_buf);
3178 ASSERT3P(dh->dh_db->db.db_data, ==, dh->dh_db->db_buf->b_data);
3179 }
3180
3181 ASSERT(dh->dh_db->db_buf == NULL || arc_referenced(dh->dh_db->db_buf));
3182
3183 /*
3184 * If this buffer is currently syncing out, and we are are
3185 * still referencing it from db_data, we need to make a copy
3186 * of it in case we decide we want to dirty it again in this txg.
3187 */
3188 if (dh->dh_db->db_level == 0 &&
3189 dh->dh_db->db_blkid != DMU_BONUS_BLKID &&
3190 dh->dh_dn->dn_object != DMU_META_DNODE_OBJECT &&
3191 dh->dh_db->db_state == DB_CACHED && dh->dh_db->db_data_pending) {
3192 dh->dh_dr = dh->dh_db->db_data_pending;
3193 if (dh->dh_dr->dt.dl.dr_data == dh->dh_db->db_buf)
3194 dbuf_hold_copy(dh);
3195 }
3196
3197 if (multilist_link_active(&dh->dh_db->db_cache_link)) {
3198 ASSERT(zfs_refcount_is_zero(&dh->dh_db->db_holds));
3199 ASSERT(dh->dh_db->db_caching_status == DB_DBUF_CACHE ||
3200 dh->dh_db->db_caching_status == DB_DBUF_METADATA_CACHE);
3201
3202 multilist_remove(
3203 dbuf_caches[dh->dh_db->db_caching_status].cache,
3204 dh->dh_db);
3205 (void) zfs_refcount_remove_many(
3206 &dbuf_caches[dh->dh_db->db_caching_status].size,
3207 dh->dh_db->db.db_size, dh->dh_db);
3208
3209 if (dh->dh_db->db_caching_status == DB_DBUF_METADATA_CACHE) {
3210 DBUF_STAT_BUMPDOWN(metadata_cache_count);
3211 } else {
3212 DBUF_STAT_BUMPDOWN(cache_levels[dh->dh_db->db_level]);
3213 DBUF_STAT_BUMPDOWN(cache_count);
3214 DBUF_STAT_DECR(cache_levels_bytes[dh->dh_db->db_level],
3215 dh->dh_db->db.db_size);
3216 }
3217 dh->dh_db->db_caching_status = DB_NO_CACHE;
3218 }
3219 (void) zfs_refcount_add(&dh->dh_db->db_holds, dh->dh_tag);
3220 DBUF_VERIFY(dh->dh_db);
3221 mutex_exit(&dh->dh_db->db_mtx);
3222
3223 /* NOTE: we can't rele the parent until after we drop the db_mtx */
3224 if (dh->dh_parent)
3225 dbuf_rele(dh->dh_parent, NULL);
3226
3227 ASSERT3P(DB_DNODE(dh->dh_db), ==, dh->dh_dn);
3228 ASSERT3U(dh->dh_db->db_blkid, ==, dh->dh_blkid);
3229 ASSERT3U(dh->dh_db->db_level, ==, dh->dh_level);
3230 *(dh->dh_dbp) = dh->dh_db;
3231
3232 return (0);
3233 }
3234
3235 /*
3236 * dbuf_hold_impl_arg() is called recursively, via dbuf_findbp(). There can
3237 * be as many recursive calls as there are levels of on-disk indirect blocks,
3238 * but typically only 0-2 recursive calls. To minimize the stack frame size,
3239 * the recursive function's arguments and "local variables" are allocated on
3240 * the heap as the dbuf_hold_arg_t.
3241 */
3242 int
3243 dbuf_hold_impl(dnode_t *dn, uint8_t level, uint64_t blkid,
3244 boolean_t fail_sparse, boolean_t fail_uncached,
3245 void *tag, dmu_buf_impl_t **dbp)
3246 {
3247 dbuf_hold_arg_t *dh = dbuf_hold_arg_create(dn, level, blkid,
3248 fail_sparse, fail_uncached, tag, dbp);
3249
3250 int error = dbuf_hold_impl_arg(dh);
3251
3252 dbuf_hold_arg_destroy(dh);
3253
3254 return (error);
3255 }
3256
3257 static dbuf_hold_arg_t *
3258 dbuf_hold_arg_create(dnode_t *dn, uint8_t level, uint64_t blkid,
3259 boolean_t fail_sparse, boolean_t fail_uncached,
3260 void *tag, dmu_buf_impl_t **dbp)
3261 {
3262 dbuf_hold_arg_t *dh = kmem_alloc(sizeof (*dh), KM_SLEEP);
3263 dh->dh_dn = dn;
3264 dh->dh_level = level;
3265 dh->dh_blkid = blkid;
3266
3267 dh->dh_fail_sparse = fail_sparse;
3268 dh->dh_fail_uncached = fail_uncached;
3269
3270 dh->dh_tag = tag;
3271 dh->dh_dbp = dbp;
3272
3273 dh->dh_db = NULL;
3274 dh->dh_parent = NULL;
3275 dh->dh_bp = NULL;
3276 dh->dh_err = 0;
3277 dh->dh_dr = NULL;
3278
3279 return (dh);
3280 }
3281
3282 static void
3283 dbuf_hold_arg_destroy(dbuf_hold_arg_t *dh)
3284 {
3285 kmem_free(dh, sizeof (*dh));
3286 }
3287
3288 dmu_buf_impl_t *
3289 dbuf_hold(dnode_t *dn, uint64_t blkid, void *tag)
3290 {
3291 return (dbuf_hold_level(dn, 0, blkid, tag));
3292 }
3293
3294 dmu_buf_impl_t *
3295 dbuf_hold_level(dnode_t *dn, int level, uint64_t blkid, void *tag)
3296 {
3297 dmu_buf_impl_t *db;
3298 int err = dbuf_hold_impl(dn, level, blkid, FALSE, FALSE, tag, &db);
3299 return (err ? NULL : db);
3300 }
3301
3302 void
3303 dbuf_create_bonus(dnode_t *dn)
3304 {
3305 ASSERT(RW_WRITE_HELD(&dn->dn_struct_rwlock));
3306
3307 ASSERT(dn->dn_bonus == NULL);
3308 dn->dn_bonus = dbuf_create(dn, 0, DMU_BONUS_BLKID, dn->dn_dbuf, NULL);
3309 }
3310
3311 int
3312 dbuf_spill_set_blksz(dmu_buf_t *db_fake, uint64_t blksz, dmu_tx_t *tx)
3313 {
3314 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
3315 dnode_t *dn;
3316
3317 if (db->db_blkid != DMU_SPILL_BLKID)
3318 return (SET_ERROR(ENOTSUP));
3319 if (blksz == 0)
3320 blksz = SPA_MINBLOCKSIZE;
3321 ASSERT3U(blksz, <=, spa_maxblocksize(dmu_objset_spa(db->db_objset)));
3322 blksz = P2ROUNDUP(blksz, SPA_MINBLOCKSIZE);
3323
3324 DB_DNODE_ENTER(db);
3325 dn = DB_DNODE(db);
3326 rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
3327 dbuf_new_size(db, blksz, tx);
3328 rw_exit(&dn->dn_struct_rwlock);
3329 DB_DNODE_EXIT(db);
3330
3331 return (0);
3332 }
3333
3334 void
3335 dbuf_rm_spill(dnode_t *dn, dmu_tx_t *tx)
3336 {
3337 dbuf_free_range(dn, DMU_SPILL_BLKID, DMU_SPILL_BLKID, tx);
3338 }
3339
3340 #pragma weak dmu_buf_add_ref = dbuf_add_ref
3341 void
3342 dbuf_add_ref(dmu_buf_impl_t *db, void *tag)
3343 {
3344 int64_t holds = zfs_refcount_add(&db->db_holds, tag);
3345 VERIFY3S(holds, >, 1);
3346 }
3347
3348 #pragma weak dmu_buf_try_add_ref = dbuf_try_add_ref
3349 boolean_t
3350 dbuf_try_add_ref(dmu_buf_t *db_fake, objset_t *os, uint64_t obj, uint64_t blkid,
3351 void *tag)
3352 {
3353 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
3354 dmu_buf_impl_t *found_db;
3355 boolean_t result = B_FALSE;
3356
3357 if (blkid == DMU_BONUS_BLKID)
3358 found_db = dbuf_find_bonus(os, obj);
3359 else
3360 found_db = dbuf_find(os, obj, 0, blkid);
3361
3362 if (found_db != NULL) {
3363 if (db == found_db && dbuf_refcount(db) > db->db_dirtycnt) {
3364 (void) zfs_refcount_add(&db->db_holds, tag);
3365 result = B_TRUE;
3366 }
3367 mutex_exit(&found_db->db_mtx);
3368 }
3369 return (result);
3370 }
3371
3372 /*
3373 * If you call dbuf_rele() you had better not be referencing the dnode handle
3374 * unless you have some other direct or indirect hold on the dnode. (An indirect
3375 * hold is a hold on one of the dnode's dbufs, including the bonus buffer.)
3376 * Without that, the dbuf_rele() could lead to a dnode_rele() followed by the
3377 * dnode's parent dbuf evicting its dnode handles.
3378 */
3379 void
3380 dbuf_rele(dmu_buf_impl_t *db, void *tag)
3381 {
3382 mutex_enter(&db->db_mtx);
3383 dbuf_rele_and_unlock(db, tag, B_FALSE);
3384 }
3385
3386 void
3387 dmu_buf_rele(dmu_buf_t *db, void *tag)
3388 {
3389 dbuf_rele((dmu_buf_impl_t *)db, tag);
3390 }
3391
3392 /*
3393 * dbuf_rele() for an already-locked dbuf. This is necessary to allow
3394 * db_dirtycnt and db_holds to be updated atomically. The 'evicting'
3395 * argument should be set if we are already in the dbuf-evicting code
3396 * path, in which case we don't want to recursively evict. This allows us to
3397 * avoid deeply nested stacks that would have a call flow similar to this:
3398 *
3399 * dbuf_rele()-->dbuf_rele_and_unlock()-->dbuf_evict_notify()
3400 * ^ |
3401 * | |
3402 * +-----dbuf_destroy()<--dbuf_evict_one()<--------+
3403 *
3404 */
3405 void
3406 dbuf_rele_and_unlock(dmu_buf_impl_t *db, void *tag, boolean_t evicting)
3407 {
3408 int64_t holds;
3409
3410 ASSERT(MUTEX_HELD(&db->db_mtx));
3411 DBUF_VERIFY(db);
3412
3413 /*
3414 * Remove the reference to the dbuf before removing its hold on the
3415 * dnode so we can guarantee in dnode_move() that a referenced bonus
3416 * buffer has a corresponding dnode hold.
3417 */
3418 holds = zfs_refcount_remove(&db->db_holds, tag);
3419 ASSERT(holds >= 0);
3420
3421 /*
3422 * We can't freeze indirects if there is a possibility that they
3423 * may be modified in the current syncing context.
3424 */
3425 if (db->db_buf != NULL &&
3426 holds == (db->db_level == 0 ? db->db_dirtycnt : 0)) {
3427 arc_buf_freeze(db->db_buf);
3428 }
3429
3430 if (holds == db->db_dirtycnt &&
3431 db->db_level == 0 && db->db_user_immediate_evict)
3432 dbuf_evict_user(db);
3433
3434 if (holds == 0) {
3435 if (db->db_blkid == DMU_BONUS_BLKID) {
3436 dnode_t *dn;
3437 boolean_t evict_dbuf = db->db_pending_evict;
3438
3439 /*
3440 * If the dnode moves here, we cannot cross this
3441 * barrier until the move completes.
3442 */
3443 DB_DNODE_ENTER(db);
3444
3445 dn = DB_DNODE(db);
3446 atomic_dec_32(&dn->dn_dbufs_count);
3447
3448 /*
3449 * Decrementing the dbuf count means that the bonus
3450 * buffer's dnode hold is no longer discounted in
3451 * dnode_move(). The dnode cannot move until after
3452 * the dnode_rele() below.
3453 */
3454 DB_DNODE_EXIT(db);
3455
3456 /*
3457 * Do not reference db after its lock is dropped.
3458 * Another thread may evict it.
3459 */
3460 mutex_exit(&db->db_mtx);
3461
3462 if (evict_dbuf)
3463 dnode_evict_bonus(dn);
3464
3465 dnode_rele(dn, db);
3466 } else if (db->db_buf == NULL) {
3467 /*
3468 * This is a special case: we never associated this
3469 * dbuf with any data allocated from the ARC.
3470 */
3471 ASSERT(db->db_state == DB_UNCACHED ||
3472 db->db_state == DB_NOFILL);
3473 dbuf_destroy(db);
3474 } else if (arc_released(db->db_buf)) {
3475 /*
3476 * This dbuf has anonymous data associated with it.
3477 */
3478 dbuf_destroy(db);
3479 } else {
3480 boolean_t do_arc_evict = B_FALSE;
3481 blkptr_t bp;
3482 spa_t *spa = dmu_objset_spa(db->db_objset);
3483
3484 if (!DBUF_IS_CACHEABLE(db) &&
3485 db->db_blkptr != NULL &&
3486 !BP_IS_HOLE(db->db_blkptr) &&
3487 !BP_IS_EMBEDDED(db->db_blkptr)) {
3488 do_arc_evict = B_TRUE;
3489 bp = *db->db_blkptr;
3490 }
3491
3492 if (!DBUF_IS_CACHEABLE(db) ||
3493 db->db_pending_evict) {
3494 dbuf_destroy(db);
3495 } else if (!multilist_link_active(&db->db_cache_link)) {
3496 ASSERT3U(db->db_caching_status, ==,
3497 DB_NO_CACHE);
3498
3499 dbuf_cached_state_t dcs =
3500 dbuf_include_in_metadata_cache(db) ?
3501 DB_DBUF_METADATA_CACHE : DB_DBUF_CACHE;
3502 db->db_caching_status = dcs;
3503
3504 multilist_insert(dbuf_caches[dcs].cache, db);
3505 (void) zfs_refcount_add_many(
3506 &dbuf_caches[dcs].size,
3507 db->db.db_size, db);
3508
3509 if (dcs == DB_DBUF_METADATA_CACHE) {
3510 DBUF_STAT_BUMP(metadata_cache_count);
3511 DBUF_STAT_MAX(
3512 metadata_cache_size_bytes_max,
3513 zfs_refcount_count(
3514 &dbuf_caches[dcs].size));
3515 } else {
3516 DBUF_STAT_BUMP(
3517 cache_levels[db->db_level]);
3518 DBUF_STAT_BUMP(cache_count);
3519 DBUF_STAT_INCR(
3520 cache_levels_bytes[db->db_level],
3521 db->db.db_size);
3522 DBUF_STAT_MAX(cache_size_bytes_max,
3523 zfs_refcount_count(
3524 &dbuf_caches[dcs].size));
3525 }
3526 mutex_exit(&db->db_mtx);
3527
3528 if (db->db_caching_status == DB_DBUF_CACHE &&
3529 !evicting) {
3530 dbuf_evict_notify();
3531 }
3532 }
3533
3534 if (do_arc_evict)
3535 arc_freed(spa, &bp);
3536 }
3537 } else {
3538 mutex_exit(&db->db_mtx);
3539 }
3540
3541 }
3542
3543 #pragma weak dmu_buf_refcount = dbuf_refcount
3544 uint64_t
3545 dbuf_refcount(dmu_buf_impl_t *db)
3546 {
3547 return (zfs_refcount_count(&db->db_holds));
3548 }
3549
3550 uint64_t
3551 dmu_buf_user_refcount(dmu_buf_t *db_fake)
3552 {
3553 uint64_t holds;
3554 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
3555
3556 mutex_enter(&db->db_mtx);
3557 ASSERT3U(zfs_refcount_count(&db->db_holds), >=, db->db_dirtycnt);
3558 holds = zfs_refcount_count(&db->db_holds) - db->db_dirtycnt;
3559 mutex_exit(&db->db_mtx);
3560
3561 return (holds);
3562 }
3563
3564 void *
3565 dmu_buf_replace_user(dmu_buf_t *db_fake, dmu_buf_user_t *old_user,
3566 dmu_buf_user_t *new_user)
3567 {
3568 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
3569
3570 mutex_enter(&db->db_mtx);
3571 dbuf_verify_user(db, DBVU_NOT_EVICTING);
3572 if (db->db_user == old_user)
3573 db->db_user = new_user;
3574 else
3575 old_user = db->db_user;
3576 dbuf_verify_user(db, DBVU_NOT_EVICTING);
3577 mutex_exit(&db->db_mtx);
3578
3579 return (old_user);
3580 }
3581
3582 void *
3583 dmu_buf_set_user(dmu_buf_t *db_fake, dmu_buf_user_t *user)
3584 {
3585 return (dmu_buf_replace_user(db_fake, NULL, user));
3586 }
3587
3588 void *
3589 dmu_buf_set_user_ie(dmu_buf_t *db_fake, dmu_buf_user_t *user)
3590 {
3591 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
3592
3593 db->db_user_immediate_evict = TRUE;
3594 return (dmu_buf_set_user(db_fake, user));
3595 }
3596
3597 void *
3598 dmu_buf_remove_user(dmu_buf_t *db_fake, dmu_buf_user_t *user)
3599 {
3600 return (dmu_buf_replace_user(db_fake, user, NULL));
3601 }
3602
3603 void *
3604 dmu_buf_get_user(dmu_buf_t *db_fake)
3605 {
3606 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
3607
3608 dbuf_verify_user(db, DBVU_NOT_EVICTING);
3609 return (db->db_user);
3610 }
3611
3612 void
3613 dmu_buf_user_evict_wait()
3614 {
3615 taskq_wait(dbu_evict_taskq);
3616 }
3617
3618 blkptr_t *
3619 dmu_buf_get_blkptr(dmu_buf_t *db)
3620 {
3621 dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db;
3622 return (dbi->db_blkptr);
3623 }
3624
3625 objset_t *
3626 dmu_buf_get_objset(dmu_buf_t *db)
3627 {
3628 dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db;
3629 return (dbi->db_objset);
3630 }
3631
3632 dnode_t *
3633 dmu_buf_dnode_enter(dmu_buf_t *db)
3634 {
3635 dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db;
3636 DB_DNODE_ENTER(dbi);
3637 return (DB_DNODE(dbi));
3638 }
3639
3640 void
3641 dmu_buf_dnode_exit(dmu_buf_t *db)
3642 {
3643 dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db;
3644 DB_DNODE_EXIT(dbi);
3645 }
3646
3647 static void
3648 dbuf_check_blkptr(dnode_t *dn, dmu_buf_impl_t *db)
3649 {
3650 /* ASSERT(dmu_tx_is_syncing(tx) */
3651 ASSERT(MUTEX_HELD(&db->db_mtx));
3652
3653 if (db->db_blkptr != NULL)
3654 return;
3655
3656 if (db->db_blkid == DMU_SPILL_BLKID) {
3657 db->db_blkptr = DN_SPILL_BLKPTR(dn->dn_phys);
3658 BP_ZERO(db->db_blkptr);
3659 return;
3660 }
3661 if (db->db_level == dn->dn_phys->dn_nlevels-1) {
3662 /*
3663 * This buffer was allocated at a time when there was
3664 * no available blkptrs from the dnode, or it was
3665 * inappropriate to hook it in (i.e., nlevels mis-match).
3666 */
3667 ASSERT(db->db_blkid < dn->dn_phys->dn_nblkptr);
3668 ASSERT(db->db_parent == NULL);
3669 db->db_parent = dn->dn_dbuf;
3670 db->db_blkptr = &dn->dn_phys->dn_blkptr[db->db_blkid];
3671 DBUF_VERIFY(db);
3672 } else {
3673 dmu_buf_impl_t *parent = db->db_parent;
3674 int epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT;
3675
3676 ASSERT(dn->dn_phys->dn_nlevels > 1);
3677 if (parent == NULL) {
3678 mutex_exit(&db->db_mtx);
3679 rw_enter(&dn->dn_struct_rwlock, RW_READER);
3680 parent = dbuf_hold_level(dn, db->db_level + 1,
3681 db->db_blkid >> epbs, db);
3682 rw_exit(&dn->dn_struct_rwlock);
3683 mutex_enter(&db->db_mtx);
3684 db->db_parent = parent;
3685 }
3686 db->db_blkptr = (blkptr_t *)parent->db.db_data +
3687 (db->db_blkid & ((1ULL << epbs) - 1));
3688 DBUF_VERIFY(db);
3689 }
3690 }
3691
3692 /*
3693 * When syncing out a blocks of dnodes, adjust the block to deal with
3694 * encryption. Normally, we make sure the block is decrypted before writing
3695 * it. If we have crypt params, then we are writing a raw (encrypted) block,
3696 * from a raw receive. In this case, set the ARC buf's crypt params so
3697 * that the BP will be filled with the correct byteorder, salt, iv, and mac.
3698 */
3699 static void
3700 dbuf_prepare_encrypted_dnode_leaf(dbuf_dirty_record_t *dr)
3701 {
3702 int err;
3703 dmu_buf_impl_t *db = dr->dr_dbuf;
3704
3705 ASSERT(MUTEX_HELD(&db->db_mtx));
3706 ASSERT3U(db->db.db_object, ==, DMU_META_DNODE_OBJECT);
3707 ASSERT3U(db->db_level, ==, 0);
3708
3709 if (!db->db_objset->os_raw_receive && arc_is_encrypted(db->db_buf)) {
3710 zbookmark_phys_t zb;
3711
3712 /*
3713 * Unfortunately, there is currently no mechanism for
3714 * syncing context to handle decryption errors. An error
3715 * here is only possible if an attacker maliciously
3716 * changed a dnode block and updated the associated
3717 * checksums going up the block tree.
3718 */
3719 SET_BOOKMARK(&zb, dmu_objset_id(db->db_objset),
3720 db->db.db_object, db->db_level, db->db_blkid);
3721 err = arc_untransform(db->db_buf, db->db_objset->os_spa,
3722 &zb, B_TRUE);
3723 if (err)
3724 panic("Invalid dnode block MAC");
3725 } else if (dr->dt.dl.dr_has_raw_params) {
3726 (void) arc_release(dr->dt.dl.dr_data, db);
3727 arc_convert_to_raw(dr->dt.dl.dr_data,
3728 dmu_objset_id(db->db_objset),
3729 dr->dt.dl.dr_byteorder, DMU_OT_DNODE,
3730 dr->dt.dl.dr_salt, dr->dt.dl.dr_iv, dr->dt.dl.dr_mac);
3731 }
3732 }
3733
3734 /*
3735 * dbuf_sync_indirect() is called recursively from dbuf_sync_list() so it
3736 * is critical the we not allow the compiler to inline this function in to
3737 * dbuf_sync_list() thereby drastically bloating the stack usage.
3738 */
3739 noinline static void
3740 dbuf_sync_indirect(dbuf_dirty_record_t *dr, dmu_tx_t *tx)
3741 {
3742 dmu_buf_impl_t *db = dr->dr_dbuf;
3743 dnode_t *dn;
3744 zio_t *zio;
3745
3746 ASSERT(dmu_tx_is_syncing(tx));
3747
3748 dprintf_dbuf_bp(db, db->db_blkptr, "blkptr=%p", db->db_blkptr);
3749
3750 mutex_enter(&db->db_mtx);
3751
3752 ASSERT(db->db_level > 0);
3753 DBUF_VERIFY(db);
3754
3755 /* Read the block if it hasn't been read yet. */
3756 if (db->db_buf == NULL) {
3757 mutex_exit(&db->db_mtx);
3758 (void) dbuf_read(db, NULL, DB_RF_MUST_SUCCEED);
3759 mutex_enter(&db->db_mtx);
3760 }
3761 ASSERT3U(db->db_state, ==, DB_CACHED);
3762 ASSERT(db->db_buf != NULL);
3763
3764 DB_DNODE_ENTER(db);
3765 dn = DB_DNODE(db);
3766 /* Indirect block size must match what the dnode thinks it is. */
3767 ASSERT3U(db->db.db_size, ==, 1<<dn->dn_phys->dn_indblkshift);
3768 dbuf_check_blkptr(dn, db);
3769 DB_DNODE_EXIT(db);
3770
3771 /* Provide the pending dirty record to child dbufs */
3772 db->db_data_pending = dr;
3773
3774 mutex_exit(&db->db_mtx);
3775
3776 dbuf_write(dr, db->db_buf, tx);
3777
3778 zio = dr->dr_zio;
3779 mutex_enter(&dr->dt.di.dr_mtx);
3780 dbuf_sync_list(&dr->dt.di.dr_children, db->db_level - 1, tx);
3781 ASSERT(list_head(&dr->dt.di.dr_children) == NULL);
3782 mutex_exit(&dr->dt.di.dr_mtx);
3783 zio_nowait(zio);
3784 }
3785
3786 /*
3787 * dbuf_sync_leaf() is called recursively from dbuf_sync_list() so it is
3788 * critical the we not allow the compiler to inline this function in to
3789 * dbuf_sync_list() thereby drastically bloating the stack usage.
3790 */
3791 noinline static void
3792 dbuf_sync_leaf(dbuf_dirty_record_t *dr, dmu_tx_t *tx)
3793 {
3794 arc_buf_t **datap = &dr->dt.dl.dr_data;
3795 dmu_buf_impl_t *db = dr->dr_dbuf;
3796 dnode_t *dn;
3797 objset_t *os;
3798 uint64_t txg = tx->tx_txg;
3799
3800 ASSERT(dmu_tx_is_syncing(tx));
3801
3802 dprintf_dbuf_bp(db, db->db_blkptr, "blkptr=%p", db->db_blkptr);
3803
3804 mutex_enter(&db->db_mtx);
3805 /*
3806 * To be synced, we must be dirtied. But we
3807 * might have been freed after the dirty.
3808 */
3809 if (db->db_state == DB_UNCACHED) {
3810 /* This buffer has been freed since it was dirtied */
3811 ASSERT(db->db.db_data == NULL);
3812 } else if (db->db_state == DB_FILL) {
3813 /* This buffer was freed and is now being re-filled */
3814 ASSERT(db->db.db_data != dr->dt.dl.dr_data);
3815 } else {
3816 ASSERT(db->db_state == DB_CACHED || db->db_state == DB_NOFILL);
3817 }
3818 DBUF_VERIFY(db);
3819
3820 DB_DNODE_ENTER(db);
3821 dn = DB_DNODE(db);
3822
3823 if (db->db_blkid == DMU_SPILL_BLKID) {
3824 mutex_enter(&dn->dn_mtx);
3825 if (!(dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR)) {
3826 /*
3827 * In the previous transaction group, the bonus buffer
3828 * was entirely used to store the attributes for the
3829 * dnode which overrode the dn_spill field. However,
3830 * when adding more attributes to the file a spill
3831 * block was required to hold the extra attributes.
3832 *
3833 * Make sure to clear the garbage left in the dn_spill
3834 * field from the previous attributes in the bonus
3835 * buffer. Otherwise, after writing out the spill
3836 * block to the new allocated dva, it will free
3837 * the old block pointed to by the invalid dn_spill.
3838 */
3839 db->db_blkptr = NULL;
3840 }
3841 dn->dn_phys->dn_flags |= DNODE_FLAG_SPILL_BLKPTR;
3842 mutex_exit(&dn->dn_mtx);
3843 }
3844
3845 /*
3846 * If this is a bonus buffer, simply copy the bonus data into the
3847 * dnode. It will be written out when the dnode is synced (and it
3848 * will be synced, since it must have been dirty for dbuf_sync to
3849 * be called).
3850 */
3851 if (db->db_blkid == DMU_BONUS_BLKID) {
3852 dbuf_dirty_record_t **drp;
3853
3854 ASSERT(*datap != NULL);
3855 ASSERT0(db->db_level);
3856 ASSERT3U(DN_MAX_BONUS_LEN(dn->dn_phys), <=,
3857 DN_SLOTS_TO_BONUSLEN(dn->dn_phys->dn_extra_slots + 1));
3858 bcopy(*datap, DN_BONUS(dn->dn_phys),
3859 DN_MAX_BONUS_LEN(dn->dn_phys));
3860 DB_DNODE_EXIT(db);
3861
3862 if (*datap != db->db.db_data) {
3863 int slots = DB_DNODE(db)->dn_num_slots;
3864 int bonuslen = DN_SLOTS_TO_BONUSLEN(slots);
3865 kmem_free(*datap, bonuslen);
3866 arc_space_return(bonuslen, ARC_SPACE_BONUS);
3867 }
3868 db->db_data_pending = NULL;
3869 drp = &db->db_last_dirty;
3870 while (*drp != dr)
3871 drp = &(*drp)->dr_next;
3872 ASSERT(dr->dr_next == NULL);
3873 ASSERT(dr->dr_dbuf == db);
3874 *drp = dr->dr_next;
3875 if (dr->dr_dbuf->db_level != 0) {
3876 mutex_destroy(&dr->dt.di.dr_mtx);
3877 list_destroy(&dr->dt.di.dr_children);
3878 }
3879 kmem_free(dr, sizeof (dbuf_dirty_record_t));
3880 ASSERT(db->db_dirtycnt > 0);
3881 db->db_dirtycnt -= 1;
3882 dbuf_rele_and_unlock(db, (void *)(uintptr_t)txg, B_FALSE);
3883 return;
3884 }
3885
3886 os = dn->dn_objset;
3887
3888 /*
3889 * This function may have dropped the db_mtx lock allowing a dmu_sync
3890 * operation to sneak in. As a result, we need to ensure that we
3891 * don't check the dr_override_state until we have returned from
3892 * dbuf_check_blkptr.
3893 */
3894 dbuf_check_blkptr(dn, db);
3895
3896 /*
3897 * If this buffer is in the middle of an immediate write,
3898 * wait for the synchronous IO to complete.
3899 */
3900 while (dr->dt.dl.dr_override_state == DR_IN_DMU_SYNC) {
3901 ASSERT(dn->dn_object != DMU_META_DNODE_OBJECT);
3902 cv_wait(&db->db_changed, &db->db_mtx);
3903 ASSERT(dr->dt.dl.dr_override_state != DR_NOT_OVERRIDDEN);
3904 }
3905
3906 /*
3907 * If this is a dnode block, ensure it is appropriately encrypted
3908 * or decrypted, depending on what we are writing to it this txg.
3909 */
3910 if (os->os_encrypted && dn->dn_object == DMU_META_DNODE_OBJECT)
3911 dbuf_prepare_encrypted_dnode_leaf(dr);
3912
3913 if (db->db_state != DB_NOFILL &&
3914 dn->dn_object != DMU_META_DNODE_OBJECT &&
3915 zfs_refcount_count(&db->db_holds) > 1 &&
3916 dr->dt.dl.dr_override_state != DR_OVERRIDDEN &&
3917 *datap == db->db_buf) {
3918 /*
3919 * If this buffer is currently "in use" (i.e., there
3920 * are active holds and db_data still references it),
3921 * then make a copy before we start the write so that
3922 * any modifications from the open txg will not leak
3923 * into this write.
3924 *
3925 * NOTE: this copy does not need to be made for
3926 * objects only modified in the syncing context (e.g.
3927 * DNONE_DNODE blocks).
3928 */
3929 int psize = arc_buf_size(*datap);
3930 int lsize = arc_buf_lsize(*datap);
3931 arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
3932 enum zio_compress compress_type = arc_get_compression(*datap);
3933
3934 if (arc_is_encrypted(*datap)) {
3935 boolean_t byteorder;
3936 uint8_t salt[ZIO_DATA_SALT_LEN];
3937 uint8_t iv[ZIO_DATA_IV_LEN];
3938 uint8_t mac[ZIO_DATA_MAC_LEN];
3939
3940 arc_get_raw_params(*datap, &byteorder, salt, iv, mac);
3941 *datap = arc_alloc_raw_buf(os->os_spa, db,
3942 dmu_objset_id(os), byteorder, salt, iv, mac,
3943 dn->dn_type, psize, lsize, compress_type);
3944 } else if (compress_type != ZIO_COMPRESS_OFF) {
3945 ASSERT3U(type, ==, ARC_BUFC_DATA);
3946 *datap = arc_alloc_compressed_buf(os->os_spa, db,
3947 psize, lsize, compress_type);
3948 } else {
3949 *datap = arc_alloc_buf(os->os_spa, db, type, psize);
3950 }
3951 bcopy(db->db.db_data, (*datap)->b_data, psize);
3952 }
3953 db->db_data_pending = dr;
3954
3955 mutex_exit(&db->db_mtx);
3956
3957 dbuf_write(dr, *datap, tx);
3958
3959 ASSERT(!list_link_active(&dr->dr_dirty_node));
3960 if (dn->dn_object == DMU_META_DNODE_OBJECT) {
3961 list_insert_tail(&dn->dn_dirty_records[txg&TXG_MASK], dr);
3962 DB_DNODE_EXIT(db);
3963 } else {
3964 /*
3965 * Although zio_nowait() does not "wait for an IO", it does
3966 * initiate the IO. If this is an empty write it seems plausible
3967 * that the IO could actually be completed before the nowait
3968 * returns. We need to DB_DNODE_EXIT() first in case
3969 * zio_nowait() invalidates the dbuf.
3970 */
3971 DB_DNODE_EXIT(db);
3972 zio_nowait(dr->dr_zio);
3973 }
3974 }
3975
3976 void
3977 dbuf_sync_list(list_t *list, int level, dmu_tx_t *tx)
3978 {
3979 dbuf_dirty_record_t *dr;
3980
3981 while ((dr = list_head(list))) {
3982 if (dr->dr_zio != NULL) {
3983 /*
3984 * If we find an already initialized zio then we
3985 * are processing the meta-dnode, and we have finished.
3986 * The dbufs for all dnodes are put back on the list
3987 * during processing, so that we can zio_wait()
3988 * these IOs after initiating all child IOs.
3989 */
3990 ASSERT3U(dr->dr_dbuf->db.db_object, ==,
3991 DMU_META_DNODE_OBJECT);
3992 break;
3993 }
3994 if (dr->dr_dbuf->db_blkid != DMU_BONUS_BLKID &&
3995 dr->dr_dbuf->db_blkid != DMU_SPILL_BLKID) {
3996 VERIFY3U(dr->dr_dbuf->db_level, ==, level);
3997 }
3998 list_remove(list, dr);
3999 if (dr->dr_dbuf->db_level > 0)
4000 dbuf_sync_indirect(dr, tx);
4001 else
4002 dbuf_sync_leaf(dr, tx);
4003 }
4004 }
4005
4006 /* ARGSUSED */
4007 static void
4008 dbuf_write_ready(zio_t *zio, arc_buf_t *buf, void *vdb)
4009 {
4010 dmu_buf_impl_t *db = vdb;
4011 dnode_t *dn;
4012 blkptr_t *bp = zio->io_bp;
4013 blkptr_t *bp_orig = &zio->io_bp_orig;
4014 spa_t *spa = zio->io_spa;
4015 int64_t delta;
4016 uint64_t fill = 0;
4017 int i;
4018
4019 ASSERT3P(db->db_blkptr, !=, NULL);
4020 ASSERT3P(&db->db_data_pending->dr_bp_copy, ==, bp);
4021
4022 DB_DNODE_ENTER(db);
4023 dn = DB_DNODE(db);
4024 delta = bp_get_dsize_sync(spa, bp) - bp_get_dsize_sync(spa, bp_orig);
4025 dnode_diduse_space(dn, delta - zio->io_prev_space_delta);
4026 zio->io_prev_space_delta = delta;
4027
4028 if (bp->blk_birth != 0) {
4029 ASSERT((db->db_blkid != DMU_SPILL_BLKID &&
4030 BP_GET_TYPE(bp) == dn->dn_type) ||
4031 (db->db_blkid == DMU_SPILL_BLKID &&
4032 BP_GET_TYPE(bp) == dn->dn_bonustype) ||
4033 BP_IS_EMBEDDED(bp));
4034 ASSERT(BP_GET_LEVEL(bp) == db->db_level);
4035 }
4036
4037 mutex_enter(&db->db_mtx);
4038
4039 #ifdef ZFS_DEBUG
4040 if (db->db_blkid == DMU_SPILL_BLKID) {
4041 ASSERT(dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR);
4042 ASSERT(!(BP_IS_HOLE(bp)) &&
4043 db->db_blkptr == DN_SPILL_BLKPTR(dn->dn_phys));
4044 }
4045 #endif
4046
4047 if (db->db_level == 0) {
4048 mutex_enter(&dn->dn_mtx);
4049 if (db->db_blkid > dn->dn_phys->dn_maxblkid &&
4050 db->db_blkid != DMU_SPILL_BLKID) {
4051 ASSERT0(db->db_objset->os_raw_receive);
4052 dn->dn_phys->dn_maxblkid = db->db_blkid;
4053 }
4054 mutex_exit(&dn->dn_mtx);
4055
4056 if (dn->dn_type == DMU_OT_DNODE) {
4057 i = 0;
4058 while (i < db->db.db_size) {
4059 dnode_phys_t *dnp =
4060 (void *)(((char *)db->db.db_data) + i);
4061
4062 i += DNODE_MIN_SIZE;
4063 if (dnp->dn_type != DMU_OT_NONE) {
4064 fill++;
4065 i += dnp->dn_extra_slots *
4066 DNODE_MIN_SIZE;
4067 }
4068 }
4069 } else {
4070 if (BP_IS_HOLE(bp)) {
4071 fill = 0;
4072 } else {
4073 fill = 1;
4074 }
4075 }
4076 } else {
4077 blkptr_t *ibp = db->db.db_data;
4078 ASSERT3U(db->db.db_size, ==, 1<<dn->dn_phys->dn_indblkshift);
4079 for (i = db->db.db_size >> SPA_BLKPTRSHIFT; i > 0; i--, ibp++) {
4080 if (BP_IS_HOLE(ibp))
4081 continue;
4082 fill += BP_GET_FILL(ibp);
4083 }
4084 }
4085 DB_DNODE_EXIT(db);
4086
4087 if (!BP_IS_EMBEDDED(bp))
4088 BP_SET_FILL(bp, fill);
4089
4090 mutex_exit(&db->db_mtx);
4091
4092 rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
4093 *db->db_blkptr = *bp;
4094 rw_exit(&dn->dn_struct_rwlock);
4095 }
4096
4097 /* ARGSUSED */
4098 /*
4099 * This function gets called just prior to running through the compression
4100 * stage of the zio pipeline. If we're an indirect block comprised of only
4101 * holes, then we want this indirect to be compressed away to a hole. In
4102 * order to do that we must zero out any information about the holes that
4103 * this indirect points to prior to before we try to compress it.
4104 */
4105 static void
4106 dbuf_write_children_ready(zio_t *zio, arc_buf_t *buf, void *vdb)
4107 {
4108 dmu_buf_impl_t *db = vdb;
4109 dnode_t *dn;
4110 blkptr_t *bp;
4111 unsigned int epbs, i;
4112
4113 ASSERT3U(db->db_level, >, 0);
4114 DB_DNODE_ENTER(db);
4115 dn = DB_DNODE(db);
4116 epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT;
4117 ASSERT3U(epbs, <, 31);
4118
4119 /* Determine if all our children are holes */
4120 for (i = 0, bp = db->db.db_data; i < 1ULL << epbs; i++, bp++) {
4121 if (!BP_IS_HOLE(bp))
4122 break;
4123 }
4124
4125 /*
4126 * If all the children are holes, then zero them all out so that
4127 * we may get compressed away.
4128 */
4129 if (i == 1ULL << epbs) {
4130 /*
4131 * We only found holes. Grab the rwlock to prevent
4132 * anybody from reading the blocks we're about to
4133 * zero out.
4134 */
4135 rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
4136 bzero(db->db.db_data, db->db.db_size);
4137 rw_exit(&dn->dn_struct_rwlock);
4138 }
4139 DB_DNODE_EXIT(db);
4140 }
4141
4142 /*
4143 * The SPA will call this callback several times for each zio - once
4144 * for every physical child i/o (zio->io_phys_children times). This
4145 * allows the DMU to monitor the progress of each logical i/o. For example,
4146 * there may be 2 copies of an indirect block, or many fragments of a RAID-Z
4147 * block. There may be a long delay before all copies/fragments are completed,
4148 * so this callback allows us to retire dirty space gradually, as the physical
4149 * i/os complete.
4150 */
4151 /* ARGSUSED */
4152 static void
4153 dbuf_write_physdone(zio_t *zio, arc_buf_t *buf, void *arg)
4154 {
4155 dmu_buf_impl_t *db = arg;
4156 objset_t *os = db->db_objset;
4157 dsl_pool_t *dp = dmu_objset_pool(os);
4158 dbuf_dirty_record_t *dr;
4159 int delta = 0;
4160
4161 dr = db->db_data_pending;
4162 ASSERT3U(dr->dr_txg, ==, zio->io_txg);
4163
4164 /*
4165 * The callback will be called io_phys_children times. Retire one
4166 * portion of our dirty space each time we are called. Any rounding
4167 * error will be cleaned up by dsl_pool_sync()'s call to
4168 * dsl_pool_undirty_space().
4169 */
4170 delta = dr->dr_accounted / zio->io_phys_children;
4171 dsl_pool_undirty_space(dp, delta, zio->io_txg);
4172 }
4173
4174 /* ARGSUSED */
4175 static void
4176 dbuf_write_done(zio_t *zio, arc_buf_t *buf, void *vdb)
4177 {
4178 dmu_buf_impl_t *db = vdb;
4179 blkptr_t *bp_orig = &zio->io_bp_orig;
4180 blkptr_t *bp = db->db_blkptr;
4181 objset_t *os = db->db_objset;
4182 dmu_tx_t *tx = os->os_synctx;
4183 dbuf_dirty_record_t **drp, *dr;
4184
4185 ASSERT0(zio->io_error);
4186 ASSERT(db->db_blkptr == bp);
4187
4188 /*
4189 * For nopwrites and rewrites we ensure that the bp matches our
4190 * original and bypass all the accounting.
4191 */
4192 if (zio->io_flags & (ZIO_FLAG_IO_REWRITE | ZIO_FLAG_NOPWRITE)) {
4193 ASSERT(BP_EQUAL(bp, bp_orig));
4194 } else {
4195 dsl_dataset_t *ds = os->os_dsl_dataset;
4196 (void) dsl_dataset_block_kill(ds, bp_orig, tx, B_TRUE);
4197 dsl_dataset_block_born(ds, bp, tx);
4198 }
4199
4200 mutex_enter(&db->db_mtx);
4201
4202 DBUF_VERIFY(db);
4203
4204 drp = &db->db_last_dirty;
4205 while ((dr = *drp) != db->db_data_pending)
4206 drp = &dr->dr_next;
4207 ASSERT(!list_link_active(&dr->dr_dirty_node));
4208 ASSERT(dr->dr_dbuf == db);
4209 ASSERT(dr->dr_next == NULL);
4210 *drp = dr->dr_next;
4211
4212 #ifdef ZFS_DEBUG
4213 if (db->db_blkid == DMU_SPILL_BLKID) {
4214 dnode_t *dn;
4215
4216 DB_DNODE_ENTER(db);
4217 dn = DB_DNODE(db);
4218 ASSERT(dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR);
4219 ASSERT(!(BP_IS_HOLE(db->db_blkptr)) &&
4220 db->db_blkptr == DN_SPILL_BLKPTR(dn->dn_phys));
4221 DB_DNODE_EXIT(db);
4222 }
4223 #endif
4224
4225 if (db->db_level == 0) {
4226 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
4227 ASSERT(dr->dt.dl.dr_override_state == DR_NOT_OVERRIDDEN);
4228 if (db->db_state != DB_NOFILL) {
4229 if (dr->dt.dl.dr_data != db->db_buf)
4230 arc_buf_destroy(dr->dt.dl.dr_data, db);
4231 }
4232 } else {
4233 dnode_t *dn;
4234
4235 DB_DNODE_ENTER(db);
4236 dn = DB_DNODE(db);
4237 ASSERT(list_head(&dr->dt.di.dr_children) == NULL);
4238 ASSERT3U(db->db.db_size, ==, 1 << dn->dn_phys->dn_indblkshift);
4239 if (!BP_IS_HOLE(db->db_blkptr)) {
4240 ASSERTV(int epbs = dn->dn_phys->dn_indblkshift -
4241 SPA_BLKPTRSHIFT);
4242 ASSERT3U(db->db_blkid, <=,
4243 dn->dn_phys->dn_maxblkid >> (db->db_level * epbs));
4244 ASSERT3U(BP_GET_LSIZE(db->db_blkptr), ==,
4245 db->db.db_size);
4246 }
4247 DB_DNODE_EXIT(db);
4248 mutex_destroy(&dr->dt.di.dr_mtx);
4249 list_destroy(&dr->dt.di.dr_children);
4250 }
4251 kmem_free(dr, sizeof (dbuf_dirty_record_t));
4252
4253 cv_broadcast(&db->db_changed);
4254 ASSERT(db->db_dirtycnt > 0);
4255 db->db_dirtycnt -= 1;
4256 db->db_data_pending = NULL;
4257 dbuf_rele_and_unlock(db, (void *)(uintptr_t)tx->tx_txg, B_FALSE);
4258 }
4259
4260 static void
4261 dbuf_write_nofill_ready(zio_t *zio)
4262 {
4263 dbuf_write_ready(zio, NULL, zio->io_private);
4264 }
4265
4266 static void
4267 dbuf_write_nofill_done(zio_t *zio)
4268 {
4269 dbuf_write_done(zio, NULL, zio->io_private);
4270 }
4271
4272 static void
4273 dbuf_write_override_ready(zio_t *zio)
4274 {
4275 dbuf_dirty_record_t *dr = zio->io_private;
4276 dmu_buf_impl_t *db = dr->dr_dbuf;
4277
4278 dbuf_write_ready(zio, NULL, db);
4279 }
4280
4281 static void
4282 dbuf_write_override_done(zio_t *zio)
4283 {
4284 dbuf_dirty_record_t *dr = zio->io_private;
4285 dmu_buf_impl_t *db = dr->dr_dbuf;
4286 blkptr_t *obp = &dr->dt.dl.dr_overridden_by;
4287
4288 mutex_enter(&db->db_mtx);
4289 if (!BP_EQUAL(zio->io_bp, obp)) {
4290 if (!BP_IS_HOLE(obp))
4291 dsl_free(spa_get_dsl(zio->io_spa), zio->io_txg, obp);
4292 arc_release(dr->dt.dl.dr_data, db);
4293 }
4294 mutex_exit(&db->db_mtx);
4295
4296 dbuf_write_done(zio, NULL, db);
4297
4298 if (zio->io_abd != NULL)
4299 abd_put(zio->io_abd);
4300 }
4301
4302 typedef struct dbuf_remap_impl_callback_arg {
4303 objset_t *drica_os;
4304 uint64_t drica_blk_birth;
4305 dmu_tx_t *drica_tx;
4306 } dbuf_remap_impl_callback_arg_t;
4307
4308 static void
4309 dbuf_remap_impl_callback(uint64_t vdev, uint64_t offset, uint64_t size,
4310 void *arg)
4311 {
4312 dbuf_remap_impl_callback_arg_t *drica = arg;
4313 objset_t *os = drica->drica_os;
4314 spa_t *spa = dmu_objset_spa(os);
4315 dmu_tx_t *tx = drica->drica_tx;
4316
4317 ASSERT(dsl_pool_sync_context(spa_get_dsl(spa)));
4318
4319 if (os == spa_meta_objset(spa)) {
4320 spa_vdev_indirect_mark_obsolete(spa, vdev, offset, size, tx);
4321 } else {
4322 dsl_dataset_block_remapped(dmu_objset_ds(os), vdev, offset,
4323 size, drica->drica_blk_birth, tx);
4324 }
4325 }
4326
4327 static void
4328 dbuf_remap_impl(dnode_t *dn, blkptr_t *bp, dmu_tx_t *tx)
4329 {
4330 blkptr_t bp_copy = *bp;
4331 spa_t *spa = dmu_objset_spa(dn->dn_objset);
4332 dbuf_remap_impl_callback_arg_t drica;
4333
4334 ASSERT(dsl_pool_sync_context(spa_get_dsl(spa)));
4335
4336 drica.drica_os = dn->dn_objset;
4337 drica.drica_blk_birth = bp->blk_birth;
4338 drica.drica_tx = tx;
4339 if (spa_remap_blkptr(spa, &bp_copy, dbuf_remap_impl_callback,
4340 &drica)) {
4341 /*
4342 * The struct_rwlock prevents dbuf_read_impl() from
4343 * dereferencing the BP while we are changing it. To
4344 * avoid lock contention, only grab it when we are actually
4345 * changing the BP.
4346 */
4347 rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
4348 *bp = bp_copy;
4349 rw_exit(&dn->dn_struct_rwlock);
4350 }
4351 }
4352
4353 /*
4354 * Returns true if a dbuf_remap would modify the dbuf. We do this by attempting
4355 * to remap a copy of every bp in the dbuf.
4356 */
4357 boolean_t
4358 dbuf_can_remap(const dmu_buf_impl_t *db)
4359 {
4360 spa_t *spa = dmu_objset_spa(db->db_objset);
4361 blkptr_t *bp = db->db.db_data;
4362 boolean_t ret = B_FALSE;
4363
4364 ASSERT3U(db->db_level, >, 0);
4365 ASSERT3S(db->db_state, ==, DB_CACHED);
4366
4367 ASSERT(spa_feature_is_active(spa, SPA_FEATURE_DEVICE_REMOVAL));
4368
4369 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
4370 for (int i = 0; i < db->db.db_size >> SPA_BLKPTRSHIFT; i++) {
4371 blkptr_t bp_copy = bp[i];
4372 if (spa_remap_blkptr(spa, &bp_copy, NULL, NULL)) {
4373 ret = B_TRUE;
4374 break;
4375 }
4376 }
4377 spa_config_exit(spa, SCL_VDEV, FTAG);
4378
4379 return (ret);
4380 }
4381
4382 boolean_t
4383 dnode_needs_remap(const dnode_t *dn)
4384 {
4385 spa_t *spa = dmu_objset_spa(dn->dn_objset);
4386 boolean_t ret = B_FALSE;
4387
4388 if (dn->dn_phys->dn_nlevels == 0) {
4389 return (B_FALSE);
4390 }
4391
4392 ASSERT(spa_feature_is_active(spa, SPA_FEATURE_DEVICE_REMOVAL));
4393
4394 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
4395 for (int j = 0; j < dn->dn_phys->dn_nblkptr; j++) {
4396 blkptr_t bp_copy = dn->dn_phys->dn_blkptr[j];
4397 if (spa_remap_blkptr(spa, &bp_copy, NULL, NULL)) {
4398 ret = B_TRUE;
4399 break;
4400 }
4401 }
4402 spa_config_exit(spa, SCL_VDEV, FTAG);
4403
4404 return (ret);
4405 }
4406
4407 /*
4408 * Remap any existing BP's to concrete vdevs, if possible.
4409 */
4410 static void
4411 dbuf_remap(dnode_t *dn, dmu_buf_impl_t *db, dmu_tx_t *tx)
4412 {
4413 spa_t *spa = dmu_objset_spa(db->db_objset);
4414 ASSERT(dsl_pool_sync_context(spa_get_dsl(spa)));
4415
4416 if (!spa_feature_is_active(spa, SPA_FEATURE_DEVICE_REMOVAL))
4417 return;
4418
4419 if (db->db_level > 0) {
4420 blkptr_t *bp = db->db.db_data;
4421 for (int i = 0; i < db->db.db_size >> SPA_BLKPTRSHIFT; i++) {
4422 dbuf_remap_impl(dn, &bp[i], tx);
4423 }
4424 } else if (db->db.db_object == DMU_META_DNODE_OBJECT) {
4425 dnode_phys_t *dnp = db->db.db_data;
4426 ASSERT3U(db->db_dnode_handle->dnh_dnode->dn_type, ==,
4427 DMU_OT_DNODE);
4428 for (int i = 0; i < db->db.db_size >> DNODE_SHIFT;
4429 i += dnp[i].dn_extra_slots + 1) {
4430 for (int j = 0; j < dnp[i].dn_nblkptr; j++) {
4431 dbuf_remap_impl(dn, &dnp[i].dn_blkptr[j], tx);
4432 }
4433 }
4434 }
4435 }
4436
4437
4438 /* Issue I/O to commit a dirty buffer to disk. */
4439 static void
4440 dbuf_write(dbuf_dirty_record_t *dr, arc_buf_t *data, dmu_tx_t *tx)
4441 {
4442 dmu_buf_impl_t *db = dr->dr_dbuf;
4443 dnode_t *dn;
4444 objset_t *os;
4445 dmu_buf_impl_t *parent = db->db_parent;
4446 uint64_t txg = tx->tx_txg;
4447 zbookmark_phys_t zb;
4448 zio_prop_t zp;
4449 zio_t *zio;
4450 int wp_flag = 0;
4451
4452 ASSERT(dmu_tx_is_syncing(tx));
4453
4454 DB_DNODE_ENTER(db);
4455 dn = DB_DNODE(db);
4456 os = dn->dn_objset;
4457
4458 if (db->db_state != DB_NOFILL) {
4459 if (db->db_level > 0 || dn->dn_type == DMU_OT_DNODE) {
4460 /*
4461 * Private object buffers are released here rather
4462 * than in dbuf_dirty() since they are only modified
4463 * in the syncing context and we don't want the
4464 * overhead of making multiple copies of the data.
4465 */
4466 if (BP_IS_HOLE(db->db_blkptr)) {
4467 arc_buf_thaw(data);
4468 } else {
4469 dbuf_release_bp(db);
4470 }
4471 dbuf_remap(dn, db, tx);
4472 }
4473 }
4474
4475 if (parent != dn->dn_dbuf) {
4476 /* Our parent is an indirect block. */
4477 /* We have a dirty parent that has been scheduled for write. */
4478 ASSERT(parent && parent->db_data_pending);
4479 /* Our parent's buffer is one level closer to the dnode. */
4480 ASSERT(db->db_level == parent->db_level-1);
4481 /*
4482 * We're about to modify our parent's db_data by modifying
4483 * our block pointer, so the parent must be released.
4484 */
4485 ASSERT(arc_released(parent->db_buf));
4486 zio = parent->db_data_pending->dr_zio;
4487 } else {
4488 /* Our parent is the dnode itself. */
4489 ASSERT((db->db_level == dn->dn_phys->dn_nlevels-1 &&
4490 db->db_blkid != DMU_SPILL_BLKID) ||
4491 (db->db_blkid == DMU_SPILL_BLKID && db->db_level == 0));
4492 if (db->db_blkid != DMU_SPILL_BLKID)
4493 ASSERT3P(db->db_blkptr, ==,
4494 &dn->dn_phys->dn_blkptr[db->db_blkid]);
4495 zio = dn->dn_zio;
4496 }
4497
4498 ASSERT(db->db_level == 0 || data == db->db_buf);
4499 ASSERT3U(db->db_blkptr->blk_birth, <=, txg);
4500 ASSERT(zio);
4501
4502 SET_BOOKMARK(&zb, os->os_dsl_dataset ?
4503 os->os_dsl_dataset->ds_object : DMU_META_OBJSET,
4504 db->db.db_object, db->db_level, db->db_blkid);
4505
4506 if (db->db_blkid == DMU_SPILL_BLKID)
4507 wp_flag = WP_SPILL;
4508 wp_flag |= (db->db_state == DB_NOFILL) ? WP_NOFILL : 0;
4509
4510 dmu_write_policy(os, dn, db->db_level, wp_flag, &zp);
4511 DB_DNODE_EXIT(db);
4512
4513 /*
4514 * We copy the blkptr now (rather than when we instantiate the dirty
4515 * record), because its value can change between open context and
4516 * syncing context. We do not need to hold dn_struct_rwlock to read
4517 * db_blkptr because we are in syncing context.
4518 */
4519 dr->dr_bp_copy = *db->db_blkptr;
4520
4521 if (db->db_level == 0 &&
4522 dr->dt.dl.dr_override_state == DR_OVERRIDDEN) {
4523 /*
4524 * The BP for this block has been provided by open context
4525 * (by dmu_sync() or dmu_buf_write_embedded()).
4526 */
4527 abd_t *contents = (data != NULL) ?
4528 abd_get_from_buf(data->b_data, arc_buf_size(data)) : NULL;
4529
4530 dr->dr_zio = zio_write(zio, os->os_spa, txg,
4531 &dr->dr_bp_copy, contents, db->db.db_size, db->db.db_size,
4532 &zp, dbuf_write_override_ready, NULL, NULL,
4533 dbuf_write_override_done,
4534 dr, ZIO_PRIORITY_ASYNC_WRITE, ZIO_FLAG_MUSTSUCCEED, &zb);
4535 mutex_enter(&db->db_mtx);
4536 dr->dt.dl.dr_override_state = DR_NOT_OVERRIDDEN;
4537 zio_write_override(dr->dr_zio, &dr->dt.dl.dr_overridden_by,
4538 dr->dt.dl.dr_copies, dr->dt.dl.dr_nopwrite);
4539 mutex_exit(&db->db_mtx);
4540 } else if (db->db_state == DB_NOFILL) {
4541 ASSERT(zp.zp_checksum == ZIO_CHECKSUM_OFF ||
4542 zp.zp_checksum == ZIO_CHECKSUM_NOPARITY);
4543 dr->dr_zio = zio_write(zio, os->os_spa, txg,
4544 &dr->dr_bp_copy, NULL, db->db.db_size, db->db.db_size, &zp,
4545 dbuf_write_nofill_ready, NULL, NULL,
4546 dbuf_write_nofill_done, db,
4547 ZIO_PRIORITY_ASYNC_WRITE,
4548 ZIO_FLAG_MUSTSUCCEED | ZIO_FLAG_NODATA, &zb);
4549 } else {
4550 ASSERT(arc_released(data));
4551
4552 /*
4553 * For indirect blocks, we want to setup the children
4554 * ready callback so that we can properly handle an indirect
4555 * block that only contains holes.
4556 */
4557 arc_write_done_func_t *children_ready_cb = NULL;
4558 if (db->db_level != 0)
4559 children_ready_cb = dbuf_write_children_ready;
4560
4561 dr->dr_zio = arc_write(zio, os->os_spa, txg,
4562 &dr->dr_bp_copy, data, DBUF_IS_L2CACHEABLE(db),
4563 &zp, dbuf_write_ready,
4564 children_ready_cb, dbuf_write_physdone,
4565 dbuf_write_done, db, ZIO_PRIORITY_ASYNC_WRITE,
4566 ZIO_FLAG_MUSTSUCCEED, &zb);
4567 }
4568 }
4569
4570 #if defined(_KERNEL)
4571 EXPORT_SYMBOL(dbuf_find);
4572 EXPORT_SYMBOL(dbuf_is_metadata);
4573 EXPORT_SYMBOL(dbuf_destroy);
4574 EXPORT_SYMBOL(dbuf_loan_arcbuf);
4575 EXPORT_SYMBOL(dbuf_whichblock);
4576 EXPORT_SYMBOL(dbuf_read);
4577 EXPORT_SYMBOL(dbuf_unoverride);
4578 EXPORT_SYMBOL(dbuf_free_range);
4579 EXPORT_SYMBOL(dbuf_new_size);
4580 EXPORT_SYMBOL(dbuf_release_bp);
4581 EXPORT_SYMBOL(dbuf_dirty);
4582 EXPORT_SYMBOL(dmu_buf_set_crypt_params);
4583 EXPORT_SYMBOL(dmu_buf_will_dirty);
4584 EXPORT_SYMBOL(dmu_buf_is_dirty);
4585 EXPORT_SYMBOL(dmu_buf_will_not_fill);
4586 EXPORT_SYMBOL(dmu_buf_will_fill);
4587 EXPORT_SYMBOL(dmu_buf_fill_done);
4588 EXPORT_SYMBOL(dmu_buf_rele);
4589 EXPORT_SYMBOL(dbuf_assign_arcbuf);
4590 EXPORT_SYMBOL(dbuf_prefetch);
4591 EXPORT_SYMBOL(dbuf_hold_impl);
4592 EXPORT_SYMBOL(dbuf_hold);
4593 EXPORT_SYMBOL(dbuf_hold_level);
4594 EXPORT_SYMBOL(dbuf_create_bonus);
4595 EXPORT_SYMBOL(dbuf_spill_set_blksz);
4596 EXPORT_SYMBOL(dbuf_rm_spill);
4597 EXPORT_SYMBOL(dbuf_add_ref);
4598 EXPORT_SYMBOL(dbuf_rele);
4599 EXPORT_SYMBOL(dbuf_rele_and_unlock);
4600 EXPORT_SYMBOL(dbuf_refcount);
4601 EXPORT_SYMBOL(dbuf_sync_list);
4602 EXPORT_SYMBOL(dmu_buf_set_user);
4603 EXPORT_SYMBOL(dmu_buf_set_user_ie);
4604 EXPORT_SYMBOL(dmu_buf_get_user);
4605 EXPORT_SYMBOL(dmu_buf_get_blkptr);
4606
4607 /* BEGIN CSTYLED */
4608 module_param(dbuf_cache_max_bytes, ulong, 0644);
4609 MODULE_PARM_DESC(dbuf_cache_max_bytes,
4610 "Maximum size in bytes of the dbuf cache.");
4611
4612 module_param(dbuf_cache_hiwater_pct, uint, 0644);
4613 MODULE_PARM_DESC(dbuf_cache_hiwater_pct,
4614 "Percentage over dbuf_cache_max_bytes when dbufs must be evicted "
4615 "directly.");
4616
4617 module_param(dbuf_cache_lowater_pct, uint, 0644);
4618 MODULE_PARM_DESC(dbuf_cache_lowater_pct,
4619 "Percentage below dbuf_cache_max_bytes when the evict thread stops "
4620 "evicting dbufs.");
4621
4622 module_param(dbuf_metadata_cache_max_bytes, ulong, 0644);
4623 MODULE_PARM_DESC(dbuf_metadata_cache_max_bytes,
4624 "Maximum size in bytes of the dbuf metadata cache.");
4625
4626 module_param(dbuf_cache_shift, int, 0644);
4627 MODULE_PARM_DESC(dbuf_cache_shift,
4628 "Set the size of the dbuf cache to a log2 fraction of arc size.");
4629
4630 module_param(dbuf_metadata_cache_shift, int, 0644);
4631 MODULE_PARM_DESC(dbuf_cache_shift,
4632 "Set the size of the dbuf metadata cache to a log2 fraction of "
4633 "arc size.");
4634 /* END CSTYLED */
4635 #endif