]> git.proxmox.com Git - mirror_zfs.git/blob - module/zfs/dbuf.c
Illumos 5045 - use atomic_{inc,dec}_* instead of atomic_add_*
[mirror_zfs.git] / module / zfs / dbuf.c
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
24 * Copyright (c) 2012, 2015 by Delphix. All rights reserved.
25 * Copyright (c) 2013 by Saso Kiselkov. All rights reserved.
26 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
27 */
28
29 #include <sys/zfs_context.h>
30 #include <sys/arc.h>
31 #include <sys/dmu.h>
32 #include <sys/dmu_send.h>
33 #include <sys/dmu_impl.h>
34 #include <sys/dbuf.h>
35 #include <sys/dmu_objset.h>
36 #include <sys/dsl_dataset.h>
37 #include <sys/dsl_dir.h>
38 #include <sys/dmu_tx.h>
39 #include <sys/spa.h>
40 #include <sys/zio.h>
41 #include <sys/dmu_zfetch.h>
42 #include <sys/sa.h>
43 #include <sys/sa_impl.h>
44 #include <sys/zfeature.h>
45 #include <sys/blkptr.h>
46 #include <sys/range_tree.h>
47 #include <sys/trace_dbuf.h>
48
49 struct dbuf_hold_impl_data {
50 /* Function arguments */
51 dnode_t *dh_dn;
52 uint8_t dh_level;
53 uint64_t dh_blkid;
54 boolean_t dh_fail_sparse;
55 boolean_t dh_fail_uncached;
56 void *dh_tag;
57 dmu_buf_impl_t **dh_dbp;
58 /* Local variables */
59 dmu_buf_impl_t *dh_db;
60 dmu_buf_impl_t *dh_parent;
61 blkptr_t *dh_bp;
62 int dh_err;
63 dbuf_dirty_record_t *dh_dr;
64 arc_buf_contents_t dh_type;
65 int dh_depth;
66 };
67
68 static void __dbuf_hold_impl_init(struct dbuf_hold_impl_data *dh,
69 dnode_t *dn, uint8_t level, uint64_t blkid, boolean_t fail_sparse,
70 boolean_t fail_uncached,
71 void *tag, dmu_buf_impl_t **dbp, int depth);
72 static int __dbuf_hold_impl(struct dbuf_hold_impl_data *dh);
73
74 /*
75 * Number of times that zfs_free_range() took the slow path while doing
76 * a zfs receive. A nonzero value indicates a potential performance problem.
77 */
78 uint64_t zfs_free_range_recv_miss;
79
80 static void dbuf_destroy(dmu_buf_impl_t *db);
81 static boolean_t dbuf_undirty(dmu_buf_impl_t *db, dmu_tx_t *tx);
82 static void dbuf_write(dbuf_dirty_record_t *dr, arc_buf_t *data, dmu_tx_t *tx);
83
84 #ifndef __lint
85 extern inline void dmu_buf_init_user(dmu_buf_user_t *dbu,
86 dmu_buf_evict_func_t *evict_func, dmu_buf_t **clear_on_evict_dbufp);
87 #endif /* ! __lint */
88
89 /*
90 * Global data structures and functions for the dbuf cache.
91 */
92 static kmem_cache_t *dbuf_cache;
93 static taskq_t *dbu_evict_taskq;
94
95 /* ARGSUSED */
96 static int
97 dbuf_cons(void *vdb, void *unused, int kmflag)
98 {
99 dmu_buf_impl_t *db = vdb;
100 bzero(db, sizeof (dmu_buf_impl_t));
101
102 mutex_init(&db->db_mtx, NULL, MUTEX_DEFAULT, NULL);
103 cv_init(&db->db_changed, NULL, CV_DEFAULT, NULL);
104 refcount_create(&db->db_holds);
105
106 return (0);
107 }
108
109 /* ARGSUSED */
110 static void
111 dbuf_dest(void *vdb, void *unused)
112 {
113 dmu_buf_impl_t *db = vdb;
114 mutex_destroy(&db->db_mtx);
115 cv_destroy(&db->db_changed);
116 refcount_destroy(&db->db_holds);
117 }
118
119 /*
120 * dbuf hash table routines
121 */
122 static dbuf_hash_table_t dbuf_hash_table;
123
124 static uint64_t dbuf_hash_count;
125
126 static uint64_t
127 dbuf_hash(void *os, uint64_t obj, uint8_t lvl, uint64_t blkid)
128 {
129 uintptr_t osv = (uintptr_t)os;
130 uint64_t crc = -1ULL;
131
132 ASSERT(zfs_crc64_table[128] == ZFS_CRC64_POLY);
133 crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (lvl)) & 0xFF];
134 crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (osv >> 6)) & 0xFF];
135 crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (obj >> 0)) & 0xFF];
136 crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (obj >> 8)) & 0xFF];
137 crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (blkid >> 0)) & 0xFF];
138 crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (blkid >> 8)) & 0xFF];
139
140 crc ^= (osv>>14) ^ (obj>>16) ^ (blkid>>16);
141
142 return (crc);
143 }
144
145 #define DBUF_HASH(os, obj, level, blkid) dbuf_hash(os, obj, level, blkid);
146
147 #define DBUF_EQUAL(dbuf, os, obj, level, blkid) \
148 ((dbuf)->db.db_object == (obj) && \
149 (dbuf)->db_objset == (os) && \
150 (dbuf)->db_level == (level) && \
151 (dbuf)->db_blkid == (blkid))
152
153 dmu_buf_impl_t *
154 dbuf_find(objset_t *os, uint64_t obj, uint8_t level, uint64_t blkid)
155 {
156 dbuf_hash_table_t *h = &dbuf_hash_table;
157 uint64_t hv;
158 uint64_t idx;
159 dmu_buf_impl_t *db;
160
161 hv = DBUF_HASH(os, obj, level, blkid);
162 idx = hv & h->hash_table_mask;
163
164 mutex_enter(DBUF_HASH_MUTEX(h, idx));
165 for (db = h->hash_table[idx]; db != NULL; db = db->db_hash_next) {
166 if (DBUF_EQUAL(db, os, obj, level, blkid)) {
167 mutex_enter(&db->db_mtx);
168 if (db->db_state != DB_EVICTING) {
169 mutex_exit(DBUF_HASH_MUTEX(h, idx));
170 return (db);
171 }
172 mutex_exit(&db->db_mtx);
173 }
174 }
175 mutex_exit(DBUF_HASH_MUTEX(h, idx));
176 return (NULL);
177 }
178
179 static dmu_buf_impl_t *
180 dbuf_find_bonus(objset_t *os, uint64_t object)
181 {
182 dnode_t *dn;
183 dmu_buf_impl_t *db = NULL;
184
185 if (dnode_hold(os, object, FTAG, &dn) == 0) {
186 rw_enter(&dn->dn_struct_rwlock, RW_READER);
187 if (dn->dn_bonus != NULL) {
188 db = dn->dn_bonus;
189 mutex_enter(&db->db_mtx);
190 }
191 rw_exit(&dn->dn_struct_rwlock);
192 dnode_rele(dn, FTAG);
193 }
194 return (db);
195 }
196
197 /*
198 * Insert an entry into the hash table. If there is already an element
199 * equal to elem in the hash table, then the already existing element
200 * will be returned and the new element will not be inserted.
201 * Otherwise returns NULL.
202 */
203 static dmu_buf_impl_t *
204 dbuf_hash_insert(dmu_buf_impl_t *db)
205 {
206 dbuf_hash_table_t *h = &dbuf_hash_table;
207 objset_t *os = db->db_objset;
208 uint64_t obj = db->db.db_object;
209 int level = db->db_level;
210 uint64_t blkid, hv, idx;
211 dmu_buf_impl_t *dbf;
212
213 blkid = db->db_blkid;
214 hv = DBUF_HASH(os, obj, level, blkid);
215 idx = hv & h->hash_table_mask;
216
217 mutex_enter(DBUF_HASH_MUTEX(h, idx));
218 for (dbf = h->hash_table[idx]; dbf != NULL; dbf = dbf->db_hash_next) {
219 if (DBUF_EQUAL(dbf, os, obj, level, blkid)) {
220 mutex_enter(&dbf->db_mtx);
221 if (dbf->db_state != DB_EVICTING) {
222 mutex_exit(DBUF_HASH_MUTEX(h, idx));
223 return (dbf);
224 }
225 mutex_exit(&dbf->db_mtx);
226 }
227 }
228
229 mutex_enter(&db->db_mtx);
230 db->db_hash_next = h->hash_table[idx];
231 h->hash_table[idx] = db;
232 mutex_exit(DBUF_HASH_MUTEX(h, idx));
233 atomic_inc_64(&dbuf_hash_count);
234
235 return (NULL);
236 }
237
238 /*
239 * Remove an entry from the hash table. It must be in the EVICTING state.
240 */
241 static void
242 dbuf_hash_remove(dmu_buf_impl_t *db)
243 {
244 dbuf_hash_table_t *h = &dbuf_hash_table;
245 uint64_t hv, idx;
246 dmu_buf_impl_t *dbf, **dbp;
247
248 hv = DBUF_HASH(db->db_objset, db->db.db_object,
249 db->db_level, db->db_blkid);
250 idx = hv & h->hash_table_mask;
251
252 /*
253 * We musn't hold db_mtx to maintain lock ordering:
254 * DBUF_HASH_MUTEX > db_mtx.
255 */
256 ASSERT(refcount_is_zero(&db->db_holds));
257 ASSERT(db->db_state == DB_EVICTING);
258 ASSERT(!MUTEX_HELD(&db->db_mtx));
259
260 mutex_enter(DBUF_HASH_MUTEX(h, idx));
261 dbp = &h->hash_table[idx];
262 while ((dbf = *dbp) != db) {
263 dbp = &dbf->db_hash_next;
264 ASSERT(dbf != NULL);
265 }
266 *dbp = db->db_hash_next;
267 db->db_hash_next = NULL;
268 mutex_exit(DBUF_HASH_MUTEX(h, idx));
269 atomic_dec_64(&dbuf_hash_count);
270 }
271
272 static arc_evict_func_t dbuf_do_evict;
273
274 typedef enum {
275 DBVU_EVICTING,
276 DBVU_NOT_EVICTING
277 } dbvu_verify_type_t;
278
279 static void
280 dbuf_verify_user(dmu_buf_impl_t *db, dbvu_verify_type_t verify_type)
281 {
282 #ifdef ZFS_DEBUG
283 int64_t holds;
284
285 if (db->db_user == NULL)
286 return;
287
288 /* Only data blocks support the attachment of user data. */
289 ASSERT(db->db_level == 0);
290
291 /* Clients must resolve a dbuf before attaching user data. */
292 ASSERT(db->db.db_data != NULL);
293 ASSERT3U(db->db_state, ==, DB_CACHED);
294
295 holds = refcount_count(&db->db_holds);
296 if (verify_type == DBVU_EVICTING) {
297 /*
298 * Immediate eviction occurs when holds == dirtycnt.
299 * For normal eviction buffers, holds is zero on
300 * eviction, except when dbuf_fix_old_data() calls
301 * dbuf_clear_data(). However, the hold count can grow
302 * during eviction even though db_mtx is held (see
303 * dmu_bonus_hold() for an example), so we can only
304 * test the generic invariant that holds >= dirtycnt.
305 */
306 ASSERT3U(holds, >=, db->db_dirtycnt);
307 } else {
308 if (db->db_user_immediate_evict == TRUE)
309 ASSERT3U(holds, >=, db->db_dirtycnt);
310 else
311 ASSERT3U(holds, >, 0);
312 }
313 #endif
314 }
315
316 static void
317 dbuf_evict_user(dmu_buf_impl_t *db)
318 {
319 dmu_buf_user_t *dbu = db->db_user;
320
321 ASSERT(MUTEX_HELD(&db->db_mtx));
322
323 if (dbu == NULL)
324 return;
325
326 dbuf_verify_user(db, DBVU_EVICTING);
327 db->db_user = NULL;
328
329 #ifdef ZFS_DEBUG
330 if (dbu->dbu_clear_on_evict_dbufp != NULL)
331 *dbu->dbu_clear_on_evict_dbufp = NULL;
332 #endif
333
334 /*
335 * Invoke the callback from a taskq to avoid lock order reversals
336 * and limit stack depth.
337 */
338 taskq_dispatch_ent(dbu_evict_taskq, dbu->dbu_evict_func, dbu, 0,
339 &dbu->dbu_tqent);
340 }
341
342 boolean_t
343 dbuf_is_metadata(dmu_buf_impl_t *db)
344 {
345 /*
346 * Consider indirect blocks and spill blocks to be meta data.
347 */
348 if (db->db_level > 0 || db->db_blkid == DMU_SPILL_BLKID) {
349 return (B_TRUE);
350 } else {
351 boolean_t is_metadata;
352
353 DB_DNODE_ENTER(db);
354 is_metadata = DMU_OT_IS_METADATA(DB_DNODE(db)->dn_type);
355 DB_DNODE_EXIT(db);
356
357 return (is_metadata);
358 }
359 }
360
361 void
362 dbuf_evict(dmu_buf_impl_t *db)
363 {
364 ASSERT(MUTEX_HELD(&db->db_mtx));
365 ASSERT(db->db_buf == NULL);
366 ASSERT(db->db_data_pending == NULL);
367
368 dbuf_clear(db);
369 dbuf_destroy(db);
370 }
371
372 void
373 dbuf_init(void)
374 {
375 uint64_t hsize = 1ULL << 16;
376 dbuf_hash_table_t *h = &dbuf_hash_table;
377 int i;
378
379 /*
380 * The hash table is big enough to fill all of physical memory
381 * with an average block size of zfs_arc_average_blocksize (default 8K).
382 * By default, the table will take up
383 * totalmem * sizeof(void*) / 8K (1MB per GB with 8-byte pointers).
384 */
385 while (hsize * zfs_arc_average_blocksize < physmem * PAGESIZE)
386 hsize <<= 1;
387
388 retry:
389 h->hash_table_mask = hsize - 1;
390 #if defined(_KERNEL) && defined(HAVE_SPL)
391 /*
392 * Large allocations which do not require contiguous pages
393 * should be using vmem_alloc() in the linux kernel
394 */
395 h->hash_table = vmem_zalloc(hsize * sizeof (void *), KM_SLEEP);
396 #else
397 h->hash_table = kmem_zalloc(hsize * sizeof (void *), KM_NOSLEEP);
398 #endif
399 if (h->hash_table == NULL) {
400 /* XXX - we should really return an error instead of assert */
401 ASSERT(hsize > (1ULL << 10));
402 hsize >>= 1;
403 goto retry;
404 }
405
406 dbuf_cache = kmem_cache_create("dmu_buf_impl_t",
407 sizeof (dmu_buf_impl_t),
408 0, dbuf_cons, dbuf_dest, NULL, NULL, NULL, 0);
409
410 for (i = 0; i < DBUF_MUTEXES; i++)
411 mutex_init(&h->hash_mutexes[i], NULL, MUTEX_DEFAULT, NULL);
412
413 dbuf_stats_init(h);
414
415 /*
416 * All entries are queued via taskq_dispatch_ent(), so min/maxalloc
417 * configuration is not required.
418 */
419 dbu_evict_taskq = taskq_create("dbu_evict", 1, defclsyspri, 0, 0, 0);
420 }
421
422 void
423 dbuf_fini(void)
424 {
425 dbuf_hash_table_t *h = &dbuf_hash_table;
426 int i;
427
428 dbuf_stats_destroy();
429
430 for (i = 0; i < DBUF_MUTEXES; i++)
431 mutex_destroy(&h->hash_mutexes[i]);
432 #if defined(_KERNEL) && defined(HAVE_SPL)
433 /*
434 * Large allocations which do not require contiguous pages
435 * should be using vmem_free() in the linux kernel
436 */
437 vmem_free(h->hash_table, (h->hash_table_mask + 1) * sizeof (void *));
438 #else
439 kmem_free(h->hash_table, (h->hash_table_mask + 1) * sizeof (void *));
440 #endif
441 kmem_cache_destroy(dbuf_cache);
442 taskq_destroy(dbu_evict_taskq);
443 }
444
445 /*
446 * Other stuff.
447 */
448
449 #ifdef ZFS_DEBUG
450 static void
451 dbuf_verify(dmu_buf_impl_t *db)
452 {
453 dnode_t *dn;
454 dbuf_dirty_record_t *dr;
455
456 ASSERT(MUTEX_HELD(&db->db_mtx));
457
458 if (!(zfs_flags & ZFS_DEBUG_DBUF_VERIFY))
459 return;
460
461 ASSERT(db->db_objset != NULL);
462 DB_DNODE_ENTER(db);
463 dn = DB_DNODE(db);
464 if (dn == NULL) {
465 ASSERT(db->db_parent == NULL);
466 ASSERT(db->db_blkptr == NULL);
467 } else {
468 ASSERT3U(db->db.db_object, ==, dn->dn_object);
469 ASSERT3P(db->db_objset, ==, dn->dn_objset);
470 ASSERT3U(db->db_level, <, dn->dn_nlevels);
471 ASSERT(db->db_blkid == DMU_BONUS_BLKID ||
472 db->db_blkid == DMU_SPILL_BLKID ||
473 !avl_is_empty(&dn->dn_dbufs));
474 }
475 if (db->db_blkid == DMU_BONUS_BLKID) {
476 ASSERT(dn != NULL);
477 ASSERT3U(db->db.db_size, >=, dn->dn_bonuslen);
478 ASSERT3U(db->db.db_offset, ==, DMU_BONUS_BLKID);
479 } else if (db->db_blkid == DMU_SPILL_BLKID) {
480 ASSERT(dn != NULL);
481 ASSERT3U(db->db.db_size, >=, dn->dn_bonuslen);
482 ASSERT0(db->db.db_offset);
483 } else {
484 ASSERT3U(db->db.db_offset, ==, db->db_blkid * db->db.db_size);
485 }
486
487 for (dr = db->db_data_pending; dr != NULL; dr = dr->dr_next)
488 ASSERT(dr->dr_dbuf == db);
489
490 for (dr = db->db_last_dirty; dr != NULL; dr = dr->dr_next)
491 ASSERT(dr->dr_dbuf == db);
492
493 /*
494 * We can't assert that db_size matches dn_datablksz because it
495 * can be momentarily different when another thread is doing
496 * dnode_set_blksz().
497 */
498 if (db->db_level == 0 && db->db.db_object == DMU_META_DNODE_OBJECT) {
499 dr = db->db_data_pending;
500 /*
501 * It should only be modified in syncing context, so
502 * make sure we only have one copy of the data.
503 */
504 ASSERT(dr == NULL || dr->dt.dl.dr_data == db->db_buf);
505 }
506
507 /* verify db->db_blkptr */
508 if (db->db_blkptr) {
509 if (db->db_parent == dn->dn_dbuf) {
510 /* db is pointed to by the dnode */
511 /* ASSERT3U(db->db_blkid, <, dn->dn_nblkptr); */
512 if (DMU_OBJECT_IS_SPECIAL(db->db.db_object))
513 ASSERT(db->db_parent == NULL);
514 else
515 ASSERT(db->db_parent != NULL);
516 if (db->db_blkid != DMU_SPILL_BLKID)
517 ASSERT3P(db->db_blkptr, ==,
518 &dn->dn_phys->dn_blkptr[db->db_blkid]);
519 } else {
520 /* db is pointed to by an indirect block */
521 ASSERTV(int epb = db->db_parent->db.db_size >>
522 SPA_BLKPTRSHIFT);
523 ASSERT3U(db->db_parent->db_level, ==, db->db_level+1);
524 ASSERT3U(db->db_parent->db.db_object, ==,
525 db->db.db_object);
526 /*
527 * dnode_grow_indblksz() can make this fail if we don't
528 * have the struct_rwlock. XXX indblksz no longer
529 * grows. safe to do this now?
530 */
531 if (RW_WRITE_HELD(&dn->dn_struct_rwlock)) {
532 ASSERT3P(db->db_blkptr, ==,
533 ((blkptr_t *)db->db_parent->db.db_data +
534 db->db_blkid % epb));
535 }
536 }
537 }
538 if ((db->db_blkptr == NULL || BP_IS_HOLE(db->db_blkptr)) &&
539 (db->db_buf == NULL || db->db_buf->b_data) &&
540 db->db.db_data && db->db_blkid != DMU_BONUS_BLKID &&
541 db->db_state != DB_FILL && !dn->dn_free_txg) {
542 /*
543 * If the blkptr isn't set but they have nonzero data,
544 * it had better be dirty, otherwise we'll lose that
545 * data when we evict this buffer.
546 */
547 if (db->db_dirtycnt == 0) {
548 ASSERTV(uint64_t *buf = db->db.db_data);
549 int i;
550
551 for (i = 0; i < db->db.db_size >> 3; i++) {
552 ASSERT(buf[i] == 0);
553 }
554 }
555 }
556 DB_DNODE_EXIT(db);
557 }
558 #endif
559
560 static void
561 dbuf_clear_data(dmu_buf_impl_t *db)
562 {
563 ASSERT(MUTEX_HELD(&db->db_mtx));
564 dbuf_evict_user(db);
565 db->db_buf = NULL;
566 db->db.db_data = NULL;
567 if (db->db_state != DB_NOFILL)
568 db->db_state = DB_UNCACHED;
569 }
570
571 static void
572 dbuf_set_data(dmu_buf_impl_t *db, arc_buf_t *buf)
573 {
574 ASSERT(MUTEX_HELD(&db->db_mtx));
575 ASSERT(buf != NULL);
576
577 db->db_buf = buf;
578 ASSERT(buf->b_data != NULL);
579 db->db.db_data = buf->b_data;
580 if (!arc_released(buf))
581 arc_set_callback(buf, dbuf_do_evict, db);
582 }
583
584 /*
585 * Loan out an arc_buf for read. Return the loaned arc_buf.
586 */
587 arc_buf_t *
588 dbuf_loan_arcbuf(dmu_buf_impl_t *db)
589 {
590 arc_buf_t *abuf;
591
592 mutex_enter(&db->db_mtx);
593 if (arc_released(db->db_buf) || refcount_count(&db->db_holds) > 1) {
594 int blksz = db->db.db_size;
595 spa_t *spa = db->db_objset->os_spa;
596
597 mutex_exit(&db->db_mtx);
598 abuf = arc_loan_buf(spa, blksz);
599 bcopy(db->db.db_data, abuf->b_data, blksz);
600 } else {
601 abuf = db->db_buf;
602 arc_loan_inuse_buf(abuf, db);
603 dbuf_clear_data(db);
604 mutex_exit(&db->db_mtx);
605 }
606 return (abuf);
607 }
608
609 /*
610 * Calculate which level n block references the data at the level 0 offset
611 * provided.
612 */
613 uint64_t
614 dbuf_whichblock(dnode_t *dn, int64_t level, uint64_t offset)
615 {
616 if (dn->dn_datablkshift != 0 && dn->dn_indblkshift != 0) {
617 /*
618 * The level n blkid is equal to the level 0 blkid divided by
619 * the number of level 0s in a level n block.
620 *
621 * The level 0 blkid is offset >> datablkshift =
622 * offset / 2^datablkshift.
623 *
624 * The number of level 0s in a level n is the number of block
625 * pointers in an indirect block, raised to the power of level.
626 * This is 2^(indblkshift - SPA_BLKPTRSHIFT)^level =
627 * 2^(level*(indblkshift - SPA_BLKPTRSHIFT)).
628 *
629 * Thus, the level n blkid is: offset /
630 * ((2^datablkshift)*(2^(level*(indblkshift - SPA_BLKPTRSHIFT)))
631 * = offset / 2^(datablkshift + level *
632 * (indblkshift - SPA_BLKPTRSHIFT))
633 * = offset >> (datablkshift + level *
634 * (indblkshift - SPA_BLKPTRSHIFT))
635 */
636 return (offset >> (dn->dn_datablkshift + level *
637 (dn->dn_indblkshift - SPA_BLKPTRSHIFT)));
638 } else {
639 ASSERT3U(offset, <, dn->dn_datablksz);
640 return (0);
641 }
642 }
643
644 static void
645 dbuf_read_done(zio_t *zio, arc_buf_t *buf, void *vdb)
646 {
647 dmu_buf_impl_t *db = vdb;
648
649 mutex_enter(&db->db_mtx);
650 ASSERT3U(db->db_state, ==, DB_READ);
651 /*
652 * All reads are synchronous, so we must have a hold on the dbuf
653 */
654 ASSERT(refcount_count(&db->db_holds) > 0);
655 ASSERT(db->db_buf == NULL);
656 ASSERT(db->db.db_data == NULL);
657 if (db->db_level == 0 && db->db_freed_in_flight) {
658 /* we were freed in flight; disregard any error */
659 arc_release(buf, db);
660 bzero(buf->b_data, db->db.db_size);
661 arc_buf_freeze(buf);
662 db->db_freed_in_flight = FALSE;
663 dbuf_set_data(db, buf);
664 db->db_state = DB_CACHED;
665 } else if (zio == NULL || zio->io_error == 0) {
666 dbuf_set_data(db, buf);
667 db->db_state = DB_CACHED;
668 } else {
669 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
670 ASSERT3P(db->db_buf, ==, NULL);
671 VERIFY(arc_buf_remove_ref(buf, db));
672 db->db_state = DB_UNCACHED;
673 }
674 cv_broadcast(&db->db_changed);
675 dbuf_rele_and_unlock(db, NULL);
676 }
677
678 static int
679 dbuf_read_impl(dmu_buf_impl_t *db, zio_t *zio, uint32_t flags)
680 {
681 dnode_t *dn;
682 zbookmark_phys_t zb;
683 uint32_t aflags = ARC_FLAG_NOWAIT;
684 int err;
685
686 DB_DNODE_ENTER(db);
687 dn = DB_DNODE(db);
688 ASSERT(!refcount_is_zero(&db->db_holds));
689 /* We need the struct_rwlock to prevent db_blkptr from changing. */
690 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
691 ASSERT(MUTEX_HELD(&db->db_mtx));
692 ASSERT(db->db_state == DB_UNCACHED);
693 ASSERT(db->db_buf == NULL);
694
695 if (db->db_blkid == DMU_BONUS_BLKID) {
696 int bonuslen = MIN(dn->dn_bonuslen, dn->dn_phys->dn_bonuslen);
697
698 ASSERT3U(bonuslen, <=, db->db.db_size);
699 db->db.db_data = zio_buf_alloc(DN_MAX_BONUSLEN);
700 arc_space_consume(DN_MAX_BONUSLEN, ARC_SPACE_OTHER);
701 if (bonuslen < DN_MAX_BONUSLEN)
702 bzero(db->db.db_data, DN_MAX_BONUSLEN);
703 if (bonuslen)
704 bcopy(DN_BONUS(dn->dn_phys), db->db.db_data, bonuslen);
705 DB_DNODE_EXIT(db);
706 db->db_state = DB_CACHED;
707 mutex_exit(&db->db_mtx);
708 return (0);
709 }
710
711 /*
712 * Recheck BP_IS_HOLE() after dnode_block_freed() in case dnode_sync()
713 * processes the delete record and clears the bp while we are waiting
714 * for the dn_mtx (resulting in a "no" from block_freed).
715 */
716 if (db->db_blkptr == NULL || BP_IS_HOLE(db->db_blkptr) ||
717 (db->db_level == 0 && (dnode_block_freed(dn, db->db_blkid) ||
718 BP_IS_HOLE(db->db_blkptr)))) {
719 arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
720
721 DB_DNODE_EXIT(db);
722 dbuf_set_data(db, arc_buf_alloc(db->db_objset->os_spa,
723 db->db.db_size, db, type));
724 bzero(db->db.db_data, db->db.db_size);
725 db->db_state = DB_CACHED;
726 mutex_exit(&db->db_mtx);
727 return (0);
728 }
729
730 DB_DNODE_EXIT(db);
731
732 db->db_state = DB_READ;
733 mutex_exit(&db->db_mtx);
734
735 if (DBUF_IS_L2CACHEABLE(db))
736 aflags |= ARC_FLAG_L2CACHE;
737 if (DBUF_IS_L2COMPRESSIBLE(db))
738 aflags |= ARC_FLAG_L2COMPRESS;
739
740 SET_BOOKMARK(&zb, db->db_objset->os_dsl_dataset ?
741 db->db_objset->os_dsl_dataset->ds_object : DMU_META_OBJSET,
742 db->db.db_object, db->db_level, db->db_blkid);
743
744 dbuf_add_ref(db, NULL);
745
746 err = arc_read(zio, db->db_objset->os_spa, db->db_blkptr,
747 dbuf_read_done, db, ZIO_PRIORITY_SYNC_READ,
748 (flags & DB_RF_CANFAIL) ? ZIO_FLAG_CANFAIL : ZIO_FLAG_MUSTSUCCEED,
749 &aflags, &zb);
750
751 return (SET_ERROR(err));
752 }
753
754 int
755 dbuf_read(dmu_buf_impl_t *db, zio_t *zio, uint32_t flags)
756 {
757 int err = 0;
758 boolean_t havepzio = (zio != NULL);
759 boolean_t prefetch;
760 dnode_t *dn;
761
762 /*
763 * We don't have to hold the mutex to check db_state because it
764 * can't be freed while we have a hold on the buffer.
765 */
766 ASSERT(!refcount_is_zero(&db->db_holds));
767
768 if (db->db_state == DB_NOFILL)
769 return (SET_ERROR(EIO));
770
771 DB_DNODE_ENTER(db);
772 dn = DB_DNODE(db);
773 if ((flags & DB_RF_HAVESTRUCT) == 0)
774 rw_enter(&dn->dn_struct_rwlock, RW_READER);
775
776 prefetch = db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID &&
777 (flags & DB_RF_NOPREFETCH) == 0 && dn != NULL &&
778 DBUF_IS_CACHEABLE(db);
779
780 mutex_enter(&db->db_mtx);
781 if (db->db_state == DB_CACHED) {
782 mutex_exit(&db->db_mtx);
783 if (prefetch)
784 dmu_zfetch(&dn->dn_zfetch, db->db_blkid, 1);
785 if ((flags & DB_RF_HAVESTRUCT) == 0)
786 rw_exit(&dn->dn_struct_rwlock);
787 DB_DNODE_EXIT(db);
788 } else if (db->db_state == DB_UNCACHED) {
789 spa_t *spa = dn->dn_objset->os_spa;
790
791 if (zio == NULL)
792 zio = zio_root(spa, NULL, NULL, ZIO_FLAG_CANFAIL);
793
794 err = dbuf_read_impl(db, zio, flags);
795
796 /* dbuf_read_impl has dropped db_mtx for us */
797
798 if (!err && prefetch)
799 dmu_zfetch(&dn->dn_zfetch, db->db_blkid, 1);
800
801 if ((flags & DB_RF_HAVESTRUCT) == 0)
802 rw_exit(&dn->dn_struct_rwlock);
803 DB_DNODE_EXIT(db);
804
805 if (!err && !havepzio)
806 err = zio_wait(zio);
807 } else {
808 /*
809 * Another reader came in while the dbuf was in flight
810 * between UNCACHED and CACHED. Either a writer will finish
811 * writing the buffer (sending the dbuf to CACHED) or the
812 * first reader's request will reach the read_done callback
813 * and send the dbuf to CACHED. Otherwise, a failure
814 * occurred and the dbuf went to UNCACHED.
815 */
816 mutex_exit(&db->db_mtx);
817 if (prefetch)
818 dmu_zfetch(&dn->dn_zfetch, db->db_blkid, 1);
819 if ((flags & DB_RF_HAVESTRUCT) == 0)
820 rw_exit(&dn->dn_struct_rwlock);
821 DB_DNODE_EXIT(db);
822
823 /* Skip the wait per the caller's request. */
824 mutex_enter(&db->db_mtx);
825 if ((flags & DB_RF_NEVERWAIT) == 0) {
826 while (db->db_state == DB_READ ||
827 db->db_state == DB_FILL) {
828 ASSERT(db->db_state == DB_READ ||
829 (flags & DB_RF_HAVESTRUCT) == 0);
830 DTRACE_PROBE2(blocked__read, dmu_buf_impl_t *,
831 db, zio_t *, zio);
832 cv_wait(&db->db_changed, &db->db_mtx);
833 }
834 if (db->db_state == DB_UNCACHED)
835 err = SET_ERROR(EIO);
836 }
837 mutex_exit(&db->db_mtx);
838 }
839
840 ASSERT(err || havepzio || db->db_state == DB_CACHED);
841 return (err);
842 }
843
844 static void
845 dbuf_noread(dmu_buf_impl_t *db)
846 {
847 ASSERT(!refcount_is_zero(&db->db_holds));
848 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
849 mutex_enter(&db->db_mtx);
850 while (db->db_state == DB_READ || db->db_state == DB_FILL)
851 cv_wait(&db->db_changed, &db->db_mtx);
852 if (db->db_state == DB_UNCACHED) {
853 arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
854 spa_t *spa = db->db_objset->os_spa;
855
856 ASSERT(db->db_buf == NULL);
857 ASSERT(db->db.db_data == NULL);
858 dbuf_set_data(db, arc_buf_alloc(spa, db->db.db_size, db, type));
859 db->db_state = DB_FILL;
860 } else if (db->db_state == DB_NOFILL) {
861 dbuf_clear_data(db);
862 } else {
863 ASSERT3U(db->db_state, ==, DB_CACHED);
864 }
865 mutex_exit(&db->db_mtx);
866 }
867
868 /*
869 * This is our just-in-time copy function. It makes a copy of
870 * buffers, that have been modified in a previous transaction
871 * group, before we modify them in the current active group.
872 *
873 * This function is used in two places: when we are dirtying a
874 * buffer for the first time in a txg, and when we are freeing
875 * a range in a dnode that includes this buffer.
876 *
877 * Note that when we are called from dbuf_free_range() we do
878 * not put a hold on the buffer, we just traverse the active
879 * dbuf list for the dnode.
880 */
881 static void
882 dbuf_fix_old_data(dmu_buf_impl_t *db, uint64_t txg)
883 {
884 dbuf_dirty_record_t *dr = db->db_last_dirty;
885
886 ASSERT(MUTEX_HELD(&db->db_mtx));
887 ASSERT(db->db.db_data != NULL);
888 ASSERT(db->db_level == 0);
889 ASSERT(db->db.db_object != DMU_META_DNODE_OBJECT);
890
891 if (dr == NULL ||
892 (dr->dt.dl.dr_data !=
893 ((db->db_blkid == DMU_BONUS_BLKID) ? db->db.db_data : db->db_buf)))
894 return;
895
896 /*
897 * If the last dirty record for this dbuf has not yet synced
898 * and its referencing the dbuf data, either:
899 * reset the reference to point to a new copy,
900 * or (if there a no active holders)
901 * just null out the current db_data pointer.
902 */
903 ASSERT(dr->dr_txg >= txg - 2);
904 if (db->db_blkid == DMU_BONUS_BLKID) {
905 /* Note that the data bufs here are zio_bufs */
906 dr->dt.dl.dr_data = zio_buf_alloc(DN_MAX_BONUSLEN);
907 arc_space_consume(DN_MAX_BONUSLEN, ARC_SPACE_OTHER);
908 bcopy(db->db.db_data, dr->dt.dl.dr_data, DN_MAX_BONUSLEN);
909 } else if (refcount_count(&db->db_holds) > db->db_dirtycnt) {
910 int size = db->db.db_size;
911 arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
912 spa_t *spa = db->db_objset->os_spa;
913
914 dr->dt.dl.dr_data = arc_buf_alloc(spa, size, db, type);
915 bcopy(db->db.db_data, dr->dt.dl.dr_data->b_data, size);
916 } else {
917 dbuf_clear_data(db);
918 }
919 }
920
921 void
922 dbuf_unoverride(dbuf_dirty_record_t *dr)
923 {
924 dmu_buf_impl_t *db = dr->dr_dbuf;
925 blkptr_t *bp = &dr->dt.dl.dr_overridden_by;
926 uint64_t txg = dr->dr_txg;
927
928 ASSERT(MUTEX_HELD(&db->db_mtx));
929 ASSERT(dr->dt.dl.dr_override_state != DR_IN_DMU_SYNC);
930 ASSERT(db->db_level == 0);
931
932 if (db->db_blkid == DMU_BONUS_BLKID ||
933 dr->dt.dl.dr_override_state == DR_NOT_OVERRIDDEN)
934 return;
935
936 ASSERT(db->db_data_pending != dr);
937
938 /* free this block */
939 if (!BP_IS_HOLE(bp) && !dr->dt.dl.dr_nopwrite)
940 zio_free(db->db_objset->os_spa, txg, bp);
941
942 dr->dt.dl.dr_override_state = DR_NOT_OVERRIDDEN;
943 dr->dt.dl.dr_nopwrite = B_FALSE;
944
945 /*
946 * Release the already-written buffer, so we leave it in
947 * a consistent dirty state. Note that all callers are
948 * modifying the buffer, so they will immediately do
949 * another (redundant) arc_release(). Therefore, leave
950 * the buf thawed to save the effort of freezing &
951 * immediately re-thawing it.
952 */
953 arc_release(dr->dt.dl.dr_data, db);
954 }
955
956 /*
957 * Evict (if its unreferenced) or clear (if its referenced) any level-0
958 * data blocks in the free range, so that any future readers will find
959 * empty blocks.
960 *
961 * This is a no-op if the dataset is in the middle of an incremental
962 * receive; see comment below for details.
963 */
964 void
965 dbuf_free_range(dnode_t *dn, uint64_t start_blkid, uint64_t end_blkid,
966 dmu_tx_t *tx)
967 {
968 dmu_buf_impl_t *db_search;
969 dmu_buf_impl_t *db, *db_next;
970 uint64_t txg = tx->tx_txg;
971 avl_index_t where;
972 boolean_t freespill =
973 (start_blkid == DMU_SPILL_BLKID || end_blkid == DMU_SPILL_BLKID);
974
975 if (end_blkid > dn->dn_maxblkid && !freespill)
976 end_blkid = dn->dn_maxblkid;
977 dprintf_dnode(dn, "start=%llu end=%llu\n", start_blkid, end_blkid);
978
979 db_search = kmem_alloc(sizeof (dmu_buf_impl_t), KM_SLEEP);
980 db_search->db_level = 0;
981 db_search->db_blkid = start_blkid;
982 db_search->db_state = DB_SEARCH;
983
984 mutex_enter(&dn->dn_dbufs_mtx);
985 if (start_blkid >= dn->dn_unlisted_l0_blkid && !freespill) {
986 /* There can't be any dbufs in this range; no need to search. */
987 #ifdef DEBUG
988 db = avl_find(&dn->dn_dbufs, db_search, &where);
989 ASSERT3P(db, ==, NULL);
990 db = avl_nearest(&dn->dn_dbufs, where, AVL_AFTER);
991 ASSERT(db == NULL || db->db_level > 0);
992 #endif
993 goto out;
994 } else if (dmu_objset_is_receiving(dn->dn_objset)) {
995 /*
996 * If we are receiving, we expect there to be no dbufs in
997 * the range to be freed, because receive modifies each
998 * block at most once, and in offset order. If this is
999 * not the case, it can lead to performance problems,
1000 * so note that we unexpectedly took the slow path.
1001 */
1002 atomic_inc_64(&zfs_free_range_recv_miss);
1003 }
1004
1005 db = avl_find(&dn->dn_dbufs, db_search, &where);
1006 ASSERT3P(db, ==, NULL);
1007 db = avl_nearest(&dn->dn_dbufs, where, AVL_AFTER);
1008
1009 for (; db != NULL; db = db_next) {
1010 db_next = AVL_NEXT(&dn->dn_dbufs, db);
1011 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
1012
1013 if (db->db_level != 0 || db->db_blkid > end_blkid) {
1014 break;
1015 }
1016 ASSERT3U(db->db_blkid, >=, start_blkid);
1017
1018 /* found a level 0 buffer in the range */
1019 mutex_enter(&db->db_mtx);
1020 if (dbuf_undirty(db, tx)) {
1021 /* mutex has been dropped and dbuf destroyed */
1022 continue;
1023 }
1024
1025 if (db->db_state == DB_UNCACHED ||
1026 db->db_state == DB_NOFILL ||
1027 db->db_state == DB_EVICTING) {
1028 ASSERT(db->db.db_data == NULL);
1029 mutex_exit(&db->db_mtx);
1030 continue;
1031 }
1032 if (db->db_state == DB_READ || db->db_state == DB_FILL) {
1033 /* will be handled in dbuf_read_done or dbuf_rele */
1034 db->db_freed_in_flight = TRUE;
1035 mutex_exit(&db->db_mtx);
1036 continue;
1037 }
1038 if (refcount_count(&db->db_holds) == 0) {
1039 ASSERT(db->db_buf);
1040 dbuf_clear(db);
1041 continue;
1042 }
1043 /* The dbuf is referenced */
1044
1045 if (db->db_last_dirty != NULL) {
1046 dbuf_dirty_record_t *dr = db->db_last_dirty;
1047
1048 if (dr->dr_txg == txg) {
1049 /*
1050 * This buffer is "in-use", re-adjust the file
1051 * size to reflect that this buffer may
1052 * contain new data when we sync.
1053 */
1054 if (db->db_blkid != DMU_SPILL_BLKID &&
1055 db->db_blkid > dn->dn_maxblkid)
1056 dn->dn_maxblkid = db->db_blkid;
1057 dbuf_unoverride(dr);
1058 } else {
1059 /*
1060 * This dbuf is not dirty in the open context.
1061 * Either uncache it (if its not referenced in
1062 * the open context) or reset its contents to
1063 * empty.
1064 */
1065 dbuf_fix_old_data(db, txg);
1066 }
1067 }
1068 /* clear the contents if its cached */
1069 if (db->db_state == DB_CACHED) {
1070 ASSERT(db->db.db_data != NULL);
1071 arc_release(db->db_buf, db);
1072 bzero(db->db.db_data, db->db.db_size);
1073 arc_buf_freeze(db->db_buf);
1074 }
1075
1076 mutex_exit(&db->db_mtx);
1077 }
1078
1079 out:
1080 kmem_free(db_search, sizeof (dmu_buf_impl_t));
1081 mutex_exit(&dn->dn_dbufs_mtx);
1082 }
1083
1084 static int
1085 dbuf_block_freeable(dmu_buf_impl_t *db)
1086 {
1087 dsl_dataset_t *ds = db->db_objset->os_dsl_dataset;
1088 uint64_t birth_txg = 0;
1089
1090 /*
1091 * We don't need any locking to protect db_blkptr:
1092 * If it's syncing, then db_last_dirty will be set
1093 * so we'll ignore db_blkptr.
1094 *
1095 * This logic ensures that only block births for
1096 * filled blocks are considered.
1097 */
1098 ASSERT(MUTEX_HELD(&db->db_mtx));
1099 if (db->db_last_dirty && (db->db_blkptr == NULL ||
1100 !BP_IS_HOLE(db->db_blkptr))) {
1101 birth_txg = db->db_last_dirty->dr_txg;
1102 } else if (db->db_blkptr != NULL && !BP_IS_HOLE(db->db_blkptr)) {
1103 birth_txg = db->db_blkptr->blk_birth;
1104 }
1105
1106 /*
1107 * If this block don't exist or is in a snapshot, it can't be freed.
1108 * Don't pass the bp to dsl_dataset_block_freeable() since we
1109 * are holding the db_mtx lock and might deadlock if we are
1110 * prefetching a dedup-ed block.
1111 */
1112 if (birth_txg != 0)
1113 return (ds == NULL ||
1114 dsl_dataset_block_freeable(ds, NULL, birth_txg));
1115 else
1116 return (B_FALSE);
1117 }
1118
1119 void
1120 dbuf_new_size(dmu_buf_impl_t *db, int size, dmu_tx_t *tx)
1121 {
1122 arc_buf_t *buf, *obuf;
1123 int osize = db->db.db_size;
1124 arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
1125 dnode_t *dn;
1126
1127 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
1128
1129 DB_DNODE_ENTER(db);
1130 dn = DB_DNODE(db);
1131
1132 /* XXX does *this* func really need the lock? */
1133 ASSERT(RW_WRITE_HELD(&dn->dn_struct_rwlock));
1134
1135 /*
1136 * This call to dmu_buf_will_dirty() with the dn_struct_rwlock held
1137 * is OK, because there can be no other references to the db
1138 * when we are changing its size, so no concurrent DB_FILL can
1139 * be happening.
1140 */
1141 /*
1142 * XXX we should be doing a dbuf_read, checking the return
1143 * value and returning that up to our callers
1144 */
1145 dmu_buf_will_dirty(&db->db, tx);
1146
1147 /* create the data buffer for the new block */
1148 buf = arc_buf_alloc(dn->dn_objset->os_spa, size, db, type);
1149
1150 /* copy old block data to the new block */
1151 obuf = db->db_buf;
1152 bcopy(obuf->b_data, buf->b_data, MIN(osize, size));
1153 /* zero the remainder */
1154 if (size > osize)
1155 bzero((uint8_t *)buf->b_data + osize, size - osize);
1156
1157 mutex_enter(&db->db_mtx);
1158 dbuf_set_data(db, buf);
1159 VERIFY(arc_buf_remove_ref(obuf, db));
1160 db->db.db_size = size;
1161
1162 if (db->db_level == 0) {
1163 ASSERT3U(db->db_last_dirty->dr_txg, ==, tx->tx_txg);
1164 db->db_last_dirty->dt.dl.dr_data = buf;
1165 }
1166 mutex_exit(&db->db_mtx);
1167
1168 dnode_willuse_space(dn, size-osize, tx);
1169 DB_DNODE_EXIT(db);
1170 }
1171
1172 void
1173 dbuf_release_bp(dmu_buf_impl_t *db)
1174 {
1175 ASSERTV(objset_t *os = db->db_objset);
1176
1177 ASSERT(dsl_pool_sync_context(dmu_objset_pool(os)));
1178 ASSERT(arc_released(os->os_phys_buf) ||
1179 list_link_active(&os->os_dsl_dataset->ds_synced_link));
1180 ASSERT(db->db_parent == NULL || arc_released(db->db_parent->db_buf));
1181
1182 (void) arc_release(db->db_buf, db);
1183 }
1184
1185 /*
1186 * We already have a dirty record for this TXG, and we are being
1187 * dirtied again.
1188 */
1189 static void
1190 dbuf_redirty(dbuf_dirty_record_t *dr)
1191 {
1192 dmu_buf_impl_t *db = dr->dr_dbuf;
1193
1194 ASSERT(MUTEX_HELD(&db->db_mtx));
1195
1196 if (db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID) {
1197 /*
1198 * If this buffer has already been written out,
1199 * we now need to reset its state.
1200 */
1201 dbuf_unoverride(dr);
1202 if (db->db.db_object != DMU_META_DNODE_OBJECT &&
1203 db->db_state != DB_NOFILL) {
1204 /* Already released on initial dirty, so just thaw. */
1205 ASSERT(arc_released(db->db_buf));
1206 arc_buf_thaw(db->db_buf);
1207 }
1208 }
1209 }
1210
1211 dbuf_dirty_record_t *
1212 dbuf_dirty(dmu_buf_impl_t *db, dmu_tx_t *tx)
1213 {
1214 dnode_t *dn;
1215 objset_t *os;
1216 dbuf_dirty_record_t **drp, *dr;
1217 int drop_struct_lock = FALSE;
1218 boolean_t do_free_accounting = B_FALSE;
1219 int txgoff = tx->tx_txg & TXG_MASK;
1220
1221 ASSERT(tx->tx_txg != 0);
1222 ASSERT(!refcount_is_zero(&db->db_holds));
1223 DMU_TX_DIRTY_BUF(tx, db);
1224
1225 DB_DNODE_ENTER(db);
1226 dn = DB_DNODE(db);
1227 /*
1228 * Shouldn't dirty a regular buffer in syncing context. Private
1229 * objects may be dirtied in syncing context, but only if they
1230 * were already pre-dirtied in open context.
1231 */
1232 ASSERT(!dmu_tx_is_syncing(tx) ||
1233 BP_IS_HOLE(dn->dn_objset->os_rootbp) ||
1234 DMU_OBJECT_IS_SPECIAL(dn->dn_object) ||
1235 dn->dn_objset->os_dsl_dataset == NULL);
1236 /*
1237 * We make this assert for private objects as well, but after we
1238 * check if we're already dirty. They are allowed to re-dirty
1239 * in syncing context.
1240 */
1241 ASSERT(dn->dn_object == DMU_META_DNODE_OBJECT ||
1242 dn->dn_dirtyctx == DN_UNDIRTIED || dn->dn_dirtyctx ==
1243 (dmu_tx_is_syncing(tx) ? DN_DIRTY_SYNC : DN_DIRTY_OPEN));
1244
1245 mutex_enter(&db->db_mtx);
1246 /*
1247 * XXX make this true for indirects too? The problem is that
1248 * transactions created with dmu_tx_create_assigned() from
1249 * syncing context don't bother holding ahead.
1250 */
1251 ASSERT(db->db_level != 0 ||
1252 db->db_state == DB_CACHED || db->db_state == DB_FILL ||
1253 db->db_state == DB_NOFILL);
1254
1255 mutex_enter(&dn->dn_mtx);
1256 /*
1257 * Don't set dirtyctx to SYNC if we're just modifying this as we
1258 * initialize the objset.
1259 */
1260 if (dn->dn_dirtyctx == DN_UNDIRTIED &&
1261 !BP_IS_HOLE(dn->dn_objset->os_rootbp)) {
1262 dn->dn_dirtyctx =
1263 (dmu_tx_is_syncing(tx) ? DN_DIRTY_SYNC : DN_DIRTY_OPEN);
1264 ASSERT(dn->dn_dirtyctx_firstset == NULL);
1265 dn->dn_dirtyctx_firstset = kmem_alloc(1, KM_SLEEP);
1266 }
1267 mutex_exit(&dn->dn_mtx);
1268
1269 if (db->db_blkid == DMU_SPILL_BLKID)
1270 dn->dn_have_spill = B_TRUE;
1271
1272 /*
1273 * If this buffer is already dirty, we're done.
1274 */
1275 drp = &db->db_last_dirty;
1276 ASSERT(*drp == NULL || (*drp)->dr_txg <= tx->tx_txg ||
1277 db->db.db_object == DMU_META_DNODE_OBJECT);
1278 while ((dr = *drp) != NULL && dr->dr_txg > tx->tx_txg)
1279 drp = &dr->dr_next;
1280 if (dr && dr->dr_txg == tx->tx_txg) {
1281 DB_DNODE_EXIT(db);
1282
1283 dbuf_redirty(dr);
1284 mutex_exit(&db->db_mtx);
1285 return (dr);
1286 }
1287
1288 /*
1289 * Only valid if not already dirty.
1290 */
1291 ASSERT(dn->dn_object == 0 ||
1292 dn->dn_dirtyctx == DN_UNDIRTIED || dn->dn_dirtyctx ==
1293 (dmu_tx_is_syncing(tx) ? DN_DIRTY_SYNC : DN_DIRTY_OPEN));
1294
1295 ASSERT3U(dn->dn_nlevels, >, db->db_level);
1296 ASSERT((dn->dn_phys->dn_nlevels == 0 && db->db_level == 0) ||
1297 dn->dn_phys->dn_nlevels > db->db_level ||
1298 dn->dn_next_nlevels[txgoff] > db->db_level ||
1299 dn->dn_next_nlevels[(tx->tx_txg-1) & TXG_MASK] > db->db_level ||
1300 dn->dn_next_nlevels[(tx->tx_txg-2) & TXG_MASK] > db->db_level);
1301
1302 /*
1303 * We should only be dirtying in syncing context if it's the
1304 * mos or we're initializing the os or it's a special object.
1305 * However, we are allowed to dirty in syncing context provided
1306 * we already dirtied it in open context. Hence we must make
1307 * this assertion only if we're not already dirty.
1308 */
1309 os = dn->dn_objset;
1310 ASSERT(!dmu_tx_is_syncing(tx) || DMU_OBJECT_IS_SPECIAL(dn->dn_object) ||
1311 os->os_dsl_dataset == NULL || BP_IS_HOLE(os->os_rootbp));
1312 ASSERT(db->db.db_size != 0);
1313
1314 dprintf_dbuf(db, "size=%llx\n", (u_longlong_t)db->db.db_size);
1315
1316 if (db->db_blkid != DMU_BONUS_BLKID) {
1317 /*
1318 * Update the accounting.
1319 * Note: we delay "free accounting" until after we drop
1320 * the db_mtx. This keeps us from grabbing other locks
1321 * (and possibly deadlocking) in bp_get_dsize() while
1322 * also holding the db_mtx.
1323 */
1324 dnode_willuse_space(dn, db->db.db_size, tx);
1325 do_free_accounting = dbuf_block_freeable(db);
1326 }
1327
1328 /*
1329 * If this buffer is dirty in an old transaction group we need
1330 * to make a copy of it so that the changes we make in this
1331 * transaction group won't leak out when we sync the older txg.
1332 */
1333 dr = kmem_zalloc(sizeof (dbuf_dirty_record_t), KM_SLEEP);
1334 list_link_init(&dr->dr_dirty_node);
1335 if (db->db_level == 0) {
1336 void *data_old = db->db_buf;
1337
1338 if (db->db_state != DB_NOFILL) {
1339 if (db->db_blkid == DMU_BONUS_BLKID) {
1340 dbuf_fix_old_data(db, tx->tx_txg);
1341 data_old = db->db.db_data;
1342 } else if (db->db.db_object != DMU_META_DNODE_OBJECT) {
1343 /*
1344 * Release the data buffer from the cache so
1345 * that we can modify it without impacting
1346 * possible other users of this cached data
1347 * block. Note that indirect blocks and
1348 * private objects are not released until the
1349 * syncing state (since they are only modified
1350 * then).
1351 */
1352 arc_release(db->db_buf, db);
1353 dbuf_fix_old_data(db, tx->tx_txg);
1354 data_old = db->db_buf;
1355 }
1356 ASSERT(data_old != NULL);
1357 }
1358 dr->dt.dl.dr_data = data_old;
1359 } else {
1360 mutex_init(&dr->dt.di.dr_mtx, NULL, MUTEX_NOLOCKDEP, NULL);
1361 list_create(&dr->dt.di.dr_children,
1362 sizeof (dbuf_dirty_record_t),
1363 offsetof(dbuf_dirty_record_t, dr_dirty_node));
1364 }
1365 if (db->db_blkid != DMU_BONUS_BLKID && os->os_dsl_dataset != NULL)
1366 dr->dr_accounted = db->db.db_size;
1367 dr->dr_dbuf = db;
1368 dr->dr_txg = tx->tx_txg;
1369 dr->dr_next = *drp;
1370 *drp = dr;
1371
1372 /*
1373 * We could have been freed_in_flight between the dbuf_noread
1374 * and dbuf_dirty. We win, as though the dbuf_noread() had
1375 * happened after the free.
1376 */
1377 if (db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID &&
1378 db->db_blkid != DMU_SPILL_BLKID) {
1379 mutex_enter(&dn->dn_mtx);
1380 if (dn->dn_free_ranges[txgoff] != NULL) {
1381 range_tree_clear(dn->dn_free_ranges[txgoff],
1382 db->db_blkid, 1);
1383 }
1384 mutex_exit(&dn->dn_mtx);
1385 db->db_freed_in_flight = FALSE;
1386 }
1387
1388 /*
1389 * This buffer is now part of this txg
1390 */
1391 dbuf_add_ref(db, (void *)(uintptr_t)tx->tx_txg);
1392 db->db_dirtycnt += 1;
1393 ASSERT3U(db->db_dirtycnt, <=, 3);
1394
1395 mutex_exit(&db->db_mtx);
1396
1397 if (db->db_blkid == DMU_BONUS_BLKID ||
1398 db->db_blkid == DMU_SPILL_BLKID) {
1399 mutex_enter(&dn->dn_mtx);
1400 ASSERT(!list_link_active(&dr->dr_dirty_node));
1401 list_insert_tail(&dn->dn_dirty_records[txgoff], dr);
1402 mutex_exit(&dn->dn_mtx);
1403 dnode_setdirty(dn, tx);
1404 DB_DNODE_EXIT(db);
1405 return (dr);
1406 } else if (do_free_accounting) {
1407 blkptr_t *bp = db->db_blkptr;
1408 int64_t willfree = (bp && !BP_IS_HOLE(bp)) ?
1409 bp_get_dsize(os->os_spa, bp) : db->db.db_size;
1410 /*
1411 * This is only a guess -- if the dbuf is dirty
1412 * in a previous txg, we don't know how much
1413 * space it will use on disk yet. We should
1414 * really have the struct_rwlock to access
1415 * db_blkptr, but since this is just a guess,
1416 * it's OK if we get an odd answer.
1417 */
1418 ddt_prefetch(os->os_spa, bp);
1419 dnode_willuse_space(dn, -willfree, tx);
1420 }
1421
1422 if (!RW_WRITE_HELD(&dn->dn_struct_rwlock)) {
1423 rw_enter(&dn->dn_struct_rwlock, RW_READER);
1424 drop_struct_lock = TRUE;
1425 }
1426
1427 if (db->db_level == 0) {
1428 dnode_new_blkid(dn, db->db_blkid, tx, drop_struct_lock);
1429 ASSERT(dn->dn_maxblkid >= db->db_blkid);
1430 }
1431
1432 if (db->db_level+1 < dn->dn_nlevels) {
1433 dmu_buf_impl_t *parent = db->db_parent;
1434 dbuf_dirty_record_t *di;
1435 int parent_held = FALSE;
1436
1437 if (db->db_parent == NULL || db->db_parent == dn->dn_dbuf) {
1438 int epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT;
1439
1440 parent = dbuf_hold_level(dn, db->db_level+1,
1441 db->db_blkid >> epbs, FTAG);
1442 ASSERT(parent != NULL);
1443 parent_held = TRUE;
1444 }
1445 if (drop_struct_lock)
1446 rw_exit(&dn->dn_struct_rwlock);
1447 ASSERT3U(db->db_level+1, ==, parent->db_level);
1448 di = dbuf_dirty(parent, tx);
1449 if (parent_held)
1450 dbuf_rele(parent, FTAG);
1451
1452 mutex_enter(&db->db_mtx);
1453 /*
1454 * Since we've dropped the mutex, it's possible that
1455 * dbuf_undirty() might have changed this out from under us.
1456 */
1457 if (db->db_last_dirty == dr ||
1458 dn->dn_object == DMU_META_DNODE_OBJECT) {
1459 mutex_enter(&di->dt.di.dr_mtx);
1460 ASSERT3U(di->dr_txg, ==, tx->tx_txg);
1461 ASSERT(!list_link_active(&dr->dr_dirty_node));
1462 list_insert_tail(&di->dt.di.dr_children, dr);
1463 mutex_exit(&di->dt.di.dr_mtx);
1464 dr->dr_parent = di;
1465 }
1466 mutex_exit(&db->db_mtx);
1467 } else {
1468 ASSERT(db->db_level+1 == dn->dn_nlevels);
1469 ASSERT(db->db_blkid < dn->dn_nblkptr);
1470 ASSERT(db->db_parent == NULL || db->db_parent == dn->dn_dbuf);
1471 mutex_enter(&dn->dn_mtx);
1472 ASSERT(!list_link_active(&dr->dr_dirty_node));
1473 list_insert_tail(&dn->dn_dirty_records[txgoff], dr);
1474 mutex_exit(&dn->dn_mtx);
1475 if (drop_struct_lock)
1476 rw_exit(&dn->dn_struct_rwlock);
1477 }
1478
1479 dnode_setdirty(dn, tx);
1480 DB_DNODE_EXIT(db);
1481 return (dr);
1482 }
1483
1484 /*
1485 * Undirty a buffer in the transaction group referenced by the given
1486 * transaction. Return whether this evicted the dbuf.
1487 */
1488 static boolean_t
1489 dbuf_undirty(dmu_buf_impl_t *db, dmu_tx_t *tx)
1490 {
1491 dnode_t *dn;
1492 uint64_t txg = tx->tx_txg;
1493 dbuf_dirty_record_t *dr, **drp;
1494
1495 ASSERT(txg != 0);
1496
1497 /*
1498 * Due to our use of dn_nlevels below, this can only be called
1499 * in open context, unless we are operating on the MOS.
1500 * From syncing context, dn_nlevels may be different from the
1501 * dn_nlevels used when dbuf was dirtied.
1502 */
1503 ASSERT(db->db_objset ==
1504 dmu_objset_pool(db->db_objset)->dp_meta_objset ||
1505 txg != spa_syncing_txg(dmu_objset_spa(db->db_objset)));
1506 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
1507 ASSERT0(db->db_level);
1508 ASSERT(MUTEX_HELD(&db->db_mtx));
1509
1510 /*
1511 * If this buffer is not dirty, we're done.
1512 */
1513 for (drp = &db->db_last_dirty; (dr = *drp) != NULL; drp = &dr->dr_next)
1514 if (dr->dr_txg <= txg)
1515 break;
1516 if (dr == NULL || dr->dr_txg < txg)
1517 return (B_FALSE);
1518 ASSERT(dr->dr_txg == txg);
1519 ASSERT(dr->dr_dbuf == db);
1520
1521 DB_DNODE_ENTER(db);
1522 dn = DB_DNODE(db);
1523
1524 dprintf_dbuf(db, "size=%llx\n", (u_longlong_t)db->db.db_size);
1525
1526 ASSERT(db->db.db_size != 0);
1527
1528 dsl_pool_undirty_space(dmu_objset_pool(dn->dn_objset),
1529 dr->dr_accounted, txg);
1530
1531 *drp = dr->dr_next;
1532
1533 /*
1534 * Note that there are three places in dbuf_dirty()
1535 * where this dirty record may be put on a list.
1536 * Make sure to do a list_remove corresponding to
1537 * every one of those list_insert calls.
1538 */
1539 if (dr->dr_parent) {
1540 mutex_enter(&dr->dr_parent->dt.di.dr_mtx);
1541 list_remove(&dr->dr_parent->dt.di.dr_children, dr);
1542 mutex_exit(&dr->dr_parent->dt.di.dr_mtx);
1543 } else if (db->db_blkid == DMU_SPILL_BLKID ||
1544 db->db_level + 1 == dn->dn_nlevels) {
1545 ASSERT(db->db_blkptr == NULL || db->db_parent == dn->dn_dbuf);
1546 mutex_enter(&dn->dn_mtx);
1547 list_remove(&dn->dn_dirty_records[txg & TXG_MASK], dr);
1548 mutex_exit(&dn->dn_mtx);
1549 }
1550 DB_DNODE_EXIT(db);
1551
1552 if (db->db_state != DB_NOFILL) {
1553 dbuf_unoverride(dr);
1554
1555 ASSERT(db->db_buf != NULL);
1556 ASSERT(dr->dt.dl.dr_data != NULL);
1557 if (dr->dt.dl.dr_data != db->db_buf)
1558 VERIFY(arc_buf_remove_ref(dr->dt.dl.dr_data, db));
1559 }
1560
1561 kmem_free(dr, sizeof (dbuf_dirty_record_t));
1562
1563 ASSERT(db->db_dirtycnt > 0);
1564 db->db_dirtycnt -= 1;
1565
1566 if (refcount_remove(&db->db_holds, (void *)(uintptr_t)txg) == 0) {
1567 arc_buf_t *buf = db->db_buf;
1568
1569 ASSERT(db->db_state == DB_NOFILL || arc_released(buf));
1570 dbuf_clear_data(db);
1571 VERIFY(arc_buf_remove_ref(buf, db));
1572 dbuf_evict(db);
1573 return (B_TRUE);
1574 }
1575
1576 return (B_FALSE);
1577 }
1578
1579 void
1580 dmu_buf_will_dirty(dmu_buf_t *db_fake, dmu_tx_t *tx)
1581 {
1582 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
1583 int rf = DB_RF_MUST_SUCCEED | DB_RF_NOPREFETCH;
1584 dbuf_dirty_record_t *dr;
1585
1586 ASSERT(tx->tx_txg != 0);
1587 ASSERT(!refcount_is_zero(&db->db_holds));
1588
1589 /*
1590 * Quick check for dirtyness. For already dirty blocks, this
1591 * reduces runtime of this function by >90%, and overall performance
1592 * by 50% for some workloads (e.g. file deletion with indirect blocks
1593 * cached).
1594 */
1595 mutex_enter(&db->db_mtx);
1596
1597 for (dr = db->db_last_dirty;
1598 dr != NULL && dr->dr_txg >= tx->tx_txg; dr = dr->dr_next) {
1599 /*
1600 * It's possible that it is already dirty but not cached,
1601 * because there are some calls to dbuf_dirty() that don't
1602 * go through dmu_buf_will_dirty().
1603 */
1604 if (dr->dr_txg == tx->tx_txg && db->db_state == DB_CACHED) {
1605 /* This dbuf is already dirty and cached. */
1606 dbuf_redirty(dr);
1607 mutex_exit(&db->db_mtx);
1608 return;
1609 }
1610 }
1611 mutex_exit(&db->db_mtx);
1612
1613 DB_DNODE_ENTER(db);
1614 if (RW_WRITE_HELD(&DB_DNODE(db)->dn_struct_rwlock))
1615 rf |= DB_RF_HAVESTRUCT;
1616 DB_DNODE_EXIT(db);
1617 (void) dbuf_read(db, NULL, rf);
1618 (void) dbuf_dirty(db, tx);
1619 }
1620
1621 void
1622 dmu_buf_will_not_fill(dmu_buf_t *db_fake, dmu_tx_t *tx)
1623 {
1624 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
1625
1626 db->db_state = DB_NOFILL;
1627
1628 dmu_buf_will_fill(db_fake, tx);
1629 }
1630
1631 void
1632 dmu_buf_will_fill(dmu_buf_t *db_fake, dmu_tx_t *tx)
1633 {
1634 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
1635
1636 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
1637 ASSERT(tx->tx_txg != 0);
1638 ASSERT(db->db_level == 0);
1639 ASSERT(!refcount_is_zero(&db->db_holds));
1640
1641 ASSERT(db->db.db_object != DMU_META_DNODE_OBJECT ||
1642 dmu_tx_private_ok(tx));
1643
1644 dbuf_noread(db);
1645 (void) dbuf_dirty(db, tx);
1646 }
1647
1648 #pragma weak dmu_buf_fill_done = dbuf_fill_done
1649 /* ARGSUSED */
1650 void
1651 dbuf_fill_done(dmu_buf_impl_t *db, dmu_tx_t *tx)
1652 {
1653 mutex_enter(&db->db_mtx);
1654 DBUF_VERIFY(db);
1655
1656 if (db->db_state == DB_FILL) {
1657 if (db->db_level == 0 && db->db_freed_in_flight) {
1658 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
1659 /* we were freed while filling */
1660 /* XXX dbuf_undirty? */
1661 bzero(db->db.db_data, db->db.db_size);
1662 db->db_freed_in_flight = FALSE;
1663 }
1664 db->db_state = DB_CACHED;
1665 cv_broadcast(&db->db_changed);
1666 }
1667 mutex_exit(&db->db_mtx);
1668 }
1669
1670 void
1671 dmu_buf_write_embedded(dmu_buf_t *dbuf, void *data,
1672 bp_embedded_type_t etype, enum zio_compress comp,
1673 int uncompressed_size, int compressed_size, int byteorder,
1674 dmu_tx_t *tx)
1675 {
1676 dmu_buf_impl_t *db = (dmu_buf_impl_t *)dbuf;
1677 struct dirty_leaf *dl;
1678 dmu_object_type_t type;
1679
1680 if (etype == BP_EMBEDDED_TYPE_DATA) {
1681 ASSERT(spa_feature_is_active(dmu_objset_spa(db->db_objset),
1682 SPA_FEATURE_EMBEDDED_DATA));
1683 }
1684
1685 DB_DNODE_ENTER(db);
1686 type = DB_DNODE(db)->dn_type;
1687 DB_DNODE_EXIT(db);
1688
1689 ASSERT0(db->db_level);
1690 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
1691
1692 dmu_buf_will_not_fill(dbuf, tx);
1693
1694 ASSERT3U(db->db_last_dirty->dr_txg, ==, tx->tx_txg);
1695 dl = &db->db_last_dirty->dt.dl;
1696 encode_embedded_bp_compressed(&dl->dr_overridden_by,
1697 data, comp, uncompressed_size, compressed_size);
1698 BPE_SET_ETYPE(&dl->dr_overridden_by, etype);
1699 BP_SET_TYPE(&dl->dr_overridden_by, type);
1700 BP_SET_LEVEL(&dl->dr_overridden_by, 0);
1701 BP_SET_BYTEORDER(&dl->dr_overridden_by, byteorder);
1702
1703 dl->dr_override_state = DR_OVERRIDDEN;
1704 dl->dr_overridden_by.blk_birth = db->db_last_dirty->dr_txg;
1705 }
1706
1707 /*
1708 * Directly assign a provided arc buf to a given dbuf if it's not referenced
1709 * by anybody except our caller. Otherwise copy arcbuf's contents to dbuf.
1710 */
1711 void
1712 dbuf_assign_arcbuf(dmu_buf_impl_t *db, arc_buf_t *buf, dmu_tx_t *tx)
1713 {
1714 ASSERT(!refcount_is_zero(&db->db_holds));
1715 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
1716 ASSERT(db->db_level == 0);
1717 ASSERT(DBUF_GET_BUFC_TYPE(db) == ARC_BUFC_DATA);
1718 ASSERT(buf != NULL);
1719 ASSERT(arc_buf_size(buf) == db->db.db_size);
1720 ASSERT(tx->tx_txg != 0);
1721
1722 arc_return_buf(buf, db);
1723 ASSERT(arc_released(buf));
1724
1725 mutex_enter(&db->db_mtx);
1726
1727 while (db->db_state == DB_READ || db->db_state == DB_FILL)
1728 cv_wait(&db->db_changed, &db->db_mtx);
1729
1730 ASSERT(db->db_state == DB_CACHED || db->db_state == DB_UNCACHED);
1731
1732 if (db->db_state == DB_CACHED &&
1733 refcount_count(&db->db_holds) - 1 > db->db_dirtycnt) {
1734 mutex_exit(&db->db_mtx);
1735 (void) dbuf_dirty(db, tx);
1736 bcopy(buf->b_data, db->db.db_data, db->db.db_size);
1737 VERIFY(arc_buf_remove_ref(buf, db));
1738 xuio_stat_wbuf_copied();
1739 return;
1740 }
1741
1742 xuio_stat_wbuf_nocopy();
1743 if (db->db_state == DB_CACHED) {
1744 dbuf_dirty_record_t *dr = db->db_last_dirty;
1745
1746 ASSERT(db->db_buf != NULL);
1747 if (dr != NULL && dr->dr_txg == tx->tx_txg) {
1748 ASSERT(dr->dt.dl.dr_data == db->db_buf);
1749 if (!arc_released(db->db_buf)) {
1750 ASSERT(dr->dt.dl.dr_override_state ==
1751 DR_OVERRIDDEN);
1752 arc_release(db->db_buf, db);
1753 }
1754 dr->dt.dl.dr_data = buf;
1755 VERIFY(arc_buf_remove_ref(db->db_buf, db));
1756 } else if (dr == NULL || dr->dt.dl.dr_data != db->db_buf) {
1757 arc_release(db->db_buf, db);
1758 VERIFY(arc_buf_remove_ref(db->db_buf, db));
1759 }
1760 db->db_buf = NULL;
1761 }
1762 ASSERT(db->db_buf == NULL);
1763 dbuf_set_data(db, buf);
1764 db->db_state = DB_FILL;
1765 mutex_exit(&db->db_mtx);
1766 (void) dbuf_dirty(db, tx);
1767 dmu_buf_fill_done(&db->db, tx);
1768 }
1769
1770 /*
1771 * "Clear" the contents of this dbuf. This will mark the dbuf
1772 * EVICTING and clear *most* of its references. Unfortunately,
1773 * when we are not holding the dn_dbufs_mtx, we can't clear the
1774 * entry in the dn_dbufs list. We have to wait until dbuf_destroy()
1775 * in this case. For callers from the DMU we will usually see:
1776 * dbuf_clear()->arc_clear_callback()->dbuf_do_evict()->dbuf_destroy()
1777 * For the arc callback, we will usually see:
1778 * dbuf_do_evict()->dbuf_clear();dbuf_destroy()
1779 * Sometimes, though, we will get a mix of these two:
1780 * DMU: dbuf_clear()->arc_clear_callback()
1781 * ARC: dbuf_do_evict()->dbuf_destroy()
1782 *
1783 * This routine will dissociate the dbuf from the arc, by calling
1784 * arc_clear_callback(), but will not evict the data from the ARC.
1785 */
1786 void
1787 dbuf_clear(dmu_buf_impl_t *db)
1788 {
1789 dnode_t *dn;
1790 dmu_buf_impl_t *parent = db->db_parent;
1791 dmu_buf_impl_t *dndb;
1792 boolean_t dbuf_gone = B_FALSE;
1793
1794 ASSERT(MUTEX_HELD(&db->db_mtx));
1795 ASSERT(refcount_is_zero(&db->db_holds));
1796
1797 dbuf_evict_user(db);
1798
1799 if (db->db_state == DB_CACHED) {
1800 ASSERT(db->db.db_data != NULL);
1801 if (db->db_blkid == DMU_BONUS_BLKID) {
1802 zio_buf_free(db->db.db_data, DN_MAX_BONUSLEN);
1803 arc_space_return(DN_MAX_BONUSLEN, ARC_SPACE_OTHER);
1804 }
1805 db->db.db_data = NULL;
1806 db->db_state = DB_UNCACHED;
1807 }
1808
1809 ASSERT(db->db_state == DB_UNCACHED || db->db_state == DB_NOFILL);
1810 ASSERT(db->db_data_pending == NULL);
1811
1812 db->db_state = DB_EVICTING;
1813 db->db_blkptr = NULL;
1814
1815 DB_DNODE_ENTER(db);
1816 dn = DB_DNODE(db);
1817 dndb = dn->dn_dbuf;
1818 if (db->db_blkid != DMU_BONUS_BLKID && MUTEX_HELD(&dn->dn_dbufs_mtx)) {
1819 avl_remove(&dn->dn_dbufs, db);
1820 atomic_dec_32(&dn->dn_dbufs_count);
1821 membar_producer();
1822 DB_DNODE_EXIT(db);
1823 /*
1824 * Decrementing the dbuf count means that the hold corresponding
1825 * to the removed dbuf is no longer discounted in dnode_move(),
1826 * so the dnode cannot be moved until after we release the hold.
1827 * The membar_producer() ensures visibility of the decremented
1828 * value in dnode_move(), since DB_DNODE_EXIT doesn't actually
1829 * release any lock.
1830 */
1831 dnode_rele(dn, db);
1832 db->db_dnode_handle = NULL;
1833 } else {
1834 DB_DNODE_EXIT(db);
1835 }
1836
1837 if (db->db_buf)
1838 dbuf_gone = arc_clear_callback(db->db_buf);
1839
1840 if (!dbuf_gone)
1841 mutex_exit(&db->db_mtx);
1842
1843 /*
1844 * If this dbuf is referenced from an indirect dbuf,
1845 * decrement the ref count on the indirect dbuf.
1846 */
1847 if (parent && parent != dndb)
1848 dbuf_rele(parent, db);
1849 }
1850
1851 /*
1852 * Note: While bpp will always be updated if the function returns success,
1853 * parentp will not be updated if the dnode does not have dn_dbuf filled in;
1854 * this happens when the dnode is the meta-dnode, or a userused or groupused
1855 * object.
1856 */
1857 __attribute__((always_inline))
1858 static inline int
1859 dbuf_findbp(dnode_t *dn, int level, uint64_t blkid, int fail_sparse,
1860 dmu_buf_impl_t **parentp, blkptr_t **bpp, struct dbuf_hold_impl_data *dh)
1861 {
1862 int nlevels, epbs;
1863
1864 *parentp = NULL;
1865 *bpp = NULL;
1866
1867 ASSERT(blkid != DMU_BONUS_BLKID);
1868
1869 if (blkid == DMU_SPILL_BLKID) {
1870 mutex_enter(&dn->dn_mtx);
1871 if (dn->dn_have_spill &&
1872 (dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR))
1873 *bpp = &dn->dn_phys->dn_spill;
1874 else
1875 *bpp = NULL;
1876 dbuf_add_ref(dn->dn_dbuf, NULL);
1877 *parentp = dn->dn_dbuf;
1878 mutex_exit(&dn->dn_mtx);
1879 return (0);
1880 }
1881
1882 if (dn->dn_phys->dn_nlevels == 0)
1883 nlevels = 1;
1884 else
1885 nlevels = dn->dn_phys->dn_nlevels;
1886
1887 epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT;
1888
1889 ASSERT3U(level * epbs, <, 64);
1890 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
1891 if (level >= nlevels ||
1892 (blkid > (dn->dn_phys->dn_maxblkid >> (level * epbs)))) {
1893 /* the buffer has no parent yet */
1894 return (SET_ERROR(ENOENT));
1895 } else if (level < nlevels-1) {
1896 /* this block is referenced from an indirect block */
1897 int err;
1898 if (dh == NULL) {
1899 err = dbuf_hold_impl(dn, level+1,
1900 blkid >> epbs, fail_sparse, FALSE, NULL, parentp);
1901 } else {
1902 __dbuf_hold_impl_init(dh + 1, dn, dh->dh_level + 1,
1903 blkid >> epbs, fail_sparse, FALSE, NULL,
1904 parentp, dh->dh_depth + 1);
1905 err = __dbuf_hold_impl(dh + 1);
1906 }
1907 if (err)
1908 return (err);
1909 err = dbuf_read(*parentp, NULL,
1910 (DB_RF_HAVESTRUCT | DB_RF_NOPREFETCH | DB_RF_CANFAIL));
1911 if (err) {
1912 dbuf_rele(*parentp, NULL);
1913 *parentp = NULL;
1914 return (err);
1915 }
1916 *bpp = ((blkptr_t *)(*parentp)->db.db_data) +
1917 (blkid & ((1ULL << epbs) - 1));
1918 return (0);
1919 } else {
1920 /* the block is referenced from the dnode */
1921 ASSERT3U(level, ==, nlevels-1);
1922 ASSERT(dn->dn_phys->dn_nblkptr == 0 ||
1923 blkid < dn->dn_phys->dn_nblkptr);
1924 if (dn->dn_dbuf) {
1925 dbuf_add_ref(dn->dn_dbuf, NULL);
1926 *parentp = dn->dn_dbuf;
1927 }
1928 *bpp = &dn->dn_phys->dn_blkptr[blkid];
1929 return (0);
1930 }
1931 }
1932
1933 static dmu_buf_impl_t *
1934 dbuf_create(dnode_t *dn, uint8_t level, uint64_t blkid,
1935 dmu_buf_impl_t *parent, blkptr_t *blkptr)
1936 {
1937 objset_t *os = dn->dn_objset;
1938 dmu_buf_impl_t *db, *odb;
1939
1940 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
1941 ASSERT(dn->dn_type != DMU_OT_NONE);
1942
1943 db = kmem_cache_alloc(dbuf_cache, KM_SLEEP);
1944
1945 db->db_objset = os;
1946 db->db.db_object = dn->dn_object;
1947 db->db_level = level;
1948 db->db_blkid = blkid;
1949 db->db_last_dirty = NULL;
1950 db->db_dirtycnt = 0;
1951 db->db_dnode_handle = dn->dn_handle;
1952 db->db_parent = parent;
1953 db->db_blkptr = blkptr;
1954
1955 db->db_user = NULL;
1956 db->db_user_immediate_evict = FALSE;
1957 db->db_freed_in_flight = FALSE;
1958 db->db_pending_evict = FALSE;
1959
1960 if (blkid == DMU_BONUS_BLKID) {
1961 ASSERT3P(parent, ==, dn->dn_dbuf);
1962 db->db.db_size = DN_MAX_BONUSLEN -
1963 (dn->dn_nblkptr-1) * sizeof (blkptr_t);
1964 ASSERT3U(db->db.db_size, >=, dn->dn_bonuslen);
1965 db->db.db_offset = DMU_BONUS_BLKID;
1966 db->db_state = DB_UNCACHED;
1967 /* the bonus dbuf is not placed in the hash table */
1968 arc_space_consume(sizeof (dmu_buf_impl_t), ARC_SPACE_OTHER);
1969 return (db);
1970 } else if (blkid == DMU_SPILL_BLKID) {
1971 db->db.db_size = (blkptr != NULL) ?
1972 BP_GET_LSIZE(blkptr) : SPA_MINBLOCKSIZE;
1973 db->db.db_offset = 0;
1974 } else {
1975 int blocksize =
1976 db->db_level ? 1 << dn->dn_indblkshift : dn->dn_datablksz;
1977 db->db.db_size = blocksize;
1978 db->db.db_offset = db->db_blkid * blocksize;
1979 }
1980
1981 /*
1982 * Hold the dn_dbufs_mtx while we get the new dbuf
1983 * in the hash table *and* added to the dbufs list.
1984 * This prevents a possible deadlock with someone
1985 * trying to look up this dbuf before its added to the
1986 * dn_dbufs list.
1987 */
1988 mutex_enter(&dn->dn_dbufs_mtx);
1989 db->db_state = DB_EVICTING;
1990 if ((odb = dbuf_hash_insert(db)) != NULL) {
1991 /* someone else inserted it first */
1992 kmem_cache_free(dbuf_cache, db);
1993 mutex_exit(&dn->dn_dbufs_mtx);
1994 return (odb);
1995 }
1996 avl_add(&dn->dn_dbufs, db);
1997 if (db->db_level == 0 && db->db_blkid >=
1998 dn->dn_unlisted_l0_blkid)
1999 dn->dn_unlisted_l0_blkid = db->db_blkid + 1;
2000 db->db_state = DB_UNCACHED;
2001 mutex_exit(&dn->dn_dbufs_mtx);
2002 arc_space_consume(sizeof (dmu_buf_impl_t), ARC_SPACE_OTHER);
2003
2004 if (parent && parent != dn->dn_dbuf)
2005 dbuf_add_ref(parent, db);
2006
2007 ASSERT(dn->dn_object == DMU_META_DNODE_OBJECT ||
2008 refcount_count(&dn->dn_holds) > 0);
2009 (void) refcount_add(&dn->dn_holds, db);
2010 atomic_inc_32(&dn->dn_dbufs_count);
2011
2012 dprintf_dbuf(db, "db=%p\n", db);
2013
2014 return (db);
2015 }
2016
2017 static int
2018 dbuf_do_evict(void *private)
2019 {
2020 dmu_buf_impl_t *db = private;
2021
2022 if (!MUTEX_HELD(&db->db_mtx))
2023 mutex_enter(&db->db_mtx);
2024
2025 ASSERT(refcount_is_zero(&db->db_holds));
2026
2027 if (db->db_state != DB_EVICTING) {
2028 ASSERT(db->db_state == DB_CACHED);
2029 DBUF_VERIFY(db);
2030 db->db_buf = NULL;
2031 dbuf_evict(db);
2032 } else {
2033 mutex_exit(&db->db_mtx);
2034 dbuf_destroy(db);
2035 }
2036 return (0);
2037 }
2038
2039 static void
2040 dbuf_destroy(dmu_buf_impl_t *db)
2041 {
2042 ASSERT(refcount_is_zero(&db->db_holds));
2043
2044 if (db->db_blkid != DMU_BONUS_BLKID) {
2045 /*
2046 * If this dbuf is still on the dn_dbufs list,
2047 * remove it from that list.
2048 */
2049 if (db->db_dnode_handle != NULL) {
2050 dnode_t *dn;
2051
2052 DB_DNODE_ENTER(db);
2053 dn = DB_DNODE(db);
2054 mutex_enter(&dn->dn_dbufs_mtx);
2055 avl_remove(&dn->dn_dbufs, db);
2056 atomic_dec_32(&dn->dn_dbufs_count);
2057 mutex_exit(&dn->dn_dbufs_mtx);
2058 DB_DNODE_EXIT(db);
2059 /*
2060 * Decrementing the dbuf count means that the hold
2061 * corresponding to the removed dbuf is no longer
2062 * discounted in dnode_move(), so the dnode cannot be
2063 * moved until after we release the hold.
2064 */
2065 dnode_rele(dn, db);
2066 db->db_dnode_handle = NULL;
2067 }
2068 dbuf_hash_remove(db);
2069 }
2070 db->db_parent = NULL;
2071 db->db_buf = NULL;
2072
2073 ASSERT(db->db.db_data == NULL);
2074 ASSERT(db->db_hash_next == NULL);
2075 ASSERT(db->db_blkptr == NULL);
2076 ASSERT(db->db_data_pending == NULL);
2077
2078 kmem_cache_free(dbuf_cache, db);
2079 arc_space_return(sizeof (dmu_buf_impl_t), ARC_SPACE_OTHER);
2080 }
2081
2082 typedef struct dbuf_prefetch_arg {
2083 spa_t *dpa_spa; /* The spa to issue the prefetch in. */
2084 zbookmark_phys_t dpa_zb; /* The target block to prefetch. */
2085 int dpa_epbs; /* Entries (blkptr_t's) Per Block Shift. */
2086 int dpa_curlevel; /* The current level that we're reading */
2087 zio_priority_t dpa_prio; /* The priority I/Os should be issued at. */
2088 zio_t *dpa_zio; /* The parent zio_t for all prefetches. */
2089 arc_flags_t dpa_aflags; /* Flags to pass to the final prefetch. */
2090 } dbuf_prefetch_arg_t;
2091
2092 /*
2093 * Actually issue the prefetch read for the block given.
2094 */
2095 static void
2096 dbuf_issue_final_prefetch(dbuf_prefetch_arg_t *dpa, blkptr_t *bp)
2097 {
2098 arc_flags_t aflags;
2099 if (BP_IS_HOLE(bp) || BP_IS_EMBEDDED(bp))
2100 return;
2101
2102 aflags = dpa->dpa_aflags | ARC_FLAG_NOWAIT | ARC_FLAG_PREFETCH;
2103
2104 ASSERT3U(dpa->dpa_curlevel, ==, BP_GET_LEVEL(bp));
2105 ASSERT3U(dpa->dpa_curlevel, ==, dpa->dpa_zb.zb_level);
2106 ASSERT(dpa->dpa_zio != NULL);
2107 (void) arc_read(dpa->dpa_zio, dpa->dpa_spa, bp, NULL, NULL,
2108 dpa->dpa_prio, ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE,
2109 &aflags, &dpa->dpa_zb);
2110 }
2111
2112 /*
2113 * Called when an indirect block above our prefetch target is read in. This
2114 * will either read in the next indirect block down the tree or issue the actual
2115 * prefetch if the next block down is our target.
2116 */
2117 static void
2118 dbuf_prefetch_indirect_done(zio_t *zio, arc_buf_t *abuf, void *private)
2119 {
2120 dbuf_prefetch_arg_t *dpa = private;
2121 uint64_t nextblkid;
2122 blkptr_t *bp;
2123
2124 ASSERT3S(dpa->dpa_zb.zb_level, <, dpa->dpa_curlevel);
2125 ASSERT3S(dpa->dpa_curlevel, >, 0);
2126 if (zio != NULL) {
2127 ASSERT3S(BP_GET_LEVEL(zio->io_bp), ==, dpa->dpa_curlevel);
2128 ASSERT3U(BP_GET_LSIZE(zio->io_bp), ==, zio->io_size);
2129 ASSERT3P(zio->io_spa, ==, dpa->dpa_spa);
2130 }
2131
2132 dpa->dpa_curlevel--;
2133
2134 nextblkid = dpa->dpa_zb.zb_blkid >>
2135 (dpa->dpa_epbs * (dpa->dpa_curlevel - dpa->dpa_zb.zb_level));
2136 bp = ((blkptr_t *)abuf->b_data) +
2137 P2PHASE(nextblkid, 1ULL << dpa->dpa_epbs);
2138 if (BP_IS_HOLE(bp) || (zio != NULL && zio->io_error != 0)) {
2139 kmem_free(dpa, sizeof (*dpa));
2140 } else if (dpa->dpa_curlevel == dpa->dpa_zb.zb_level) {
2141 ASSERT3U(nextblkid, ==, dpa->dpa_zb.zb_blkid);
2142 dbuf_issue_final_prefetch(dpa, bp);
2143 kmem_free(dpa, sizeof (*dpa));
2144 } else {
2145 arc_flags_t iter_aflags = ARC_FLAG_NOWAIT;
2146 zbookmark_phys_t zb;
2147
2148 ASSERT3U(dpa->dpa_curlevel, ==, BP_GET_LEVEL(bp));
2149
2150 SET_BOOKMARK(&zb, dpa->dpa_zb.zb_objset,
2151 dpa->dpa_zb.zb_object, dpa->dpa_curlevel, nextblkid);
2152
2153 (void) arc_read(dpa->dpa_zio, dpa->dpa_spa,
2154 bp, dbuf_prefetch_indirect_done, dpa, dpa->dpa_prio,
2155 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE,
2156 &iter_aflags, &zb);
2157 }
2158 (void) arc_buf_remove_ref(abuf, private);
2159 }
2160
2161 /*
2162 * Issue prefetch reads for the given block on the given level. If the indirect
2163 * blocks above that block are not in memory, we will read them in
2164 * asynchronously. As a result, this call never blocks waiting for a read to
2165 * complete.
2166 */
2167 void
2168 dbuf_prefetch(dnode_t *dn, int64_t level, uint64_t blkid, zio_priority_t prio,
2169 arc_flags_t aflags)
2170 {
2171 blkptr_t bp;
2172 int epbs, nlevels, curlevel;
2173 uint64_t curblkid;
2174 dmu_buf_impl_t *db;
2175 zio_t *pio;
2176 dbuf_prefetch_arg_t *dpa;
2177 dsl_dataset_t *ds;
2178
2179 ASSERT(blkid != DMU_BONUS_BLKID);
2180 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
2181
2182 if (blkid > dn->dn_maxblkid)
2183 return;
2184
2185 if (dnode_block_freed(dn, blkid))
2186 return;
2187
2188 /*
2189 * This dnode hasn't been written to disk yet, so there's nothing to
2190 * prefetch.
2191 */
2192 nlevels = dn->dn_phys->dn_nlevels;
2193 if (level >= nlevels || dn->dn_phys->dn_nblkptr == 0)
2194 return;
2195
2196 epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT;
2197 if (dn->dn_phys->dn_maxblkid < blkid << (epbs * level))
2198 return;
2199
2200 db = dbuf_find(dn->dn_objset, dn->dn_object,
2201 level, blkid);
2202 if (db != NULL) {
2203 mutex_exit(&db->db_mtx);
2204 /*
2205 * This dbuf already exists. It is either CACHED, or
2206 * (we assume) about to be read or filled.
2207 */
2208 return;
2209 }
2210
2211 /*
2212 * Find the closest ancestor (indirect block) of the target block
2213 * that is present in the cache. In this indirect block, we will
2214 * find the bp that is at curlevel, curblkid.
2215 */
2216 curlevel = level;
2217 curblkid = blkid;
2218 while (curlevel < nlevels - 1) {
2219 int parent_level = curlevel + 1;
2220 uint64_t parent_blkid = curblkid >> epbs;
2221 dmu_buf_impl_t *db;
2222
2223 if (dbuf_hold_impl(dn, parent_level, parent_blkid,
2224 FALSE, TRUE, FTAG, &db) == 0) {
2225 blkptr_t *bpp = db->db_buf->b_data;
2226 bp = bpp[P2PHASE(curblkid, 1 << epbs)];
2227 dbuf_rele(db, FTAG);
2228 break;
2229 }
2230
2231 curlevel = parent_level;
2232 curblkid = parent_blkid;
2233 }
2234
2235 if (curlevel == nlevels - 1) {
2236 /* No cached indirect blocks found. */
2237 ASSERT3U(curblkid, <, dn->dn_phys->dn_nblkptr);
2238 bp = dn->dn_phys->dn_blkptr[curblkid];
2239 }
2240 if (BP_IS_HOLE(&bp))
2241 return;
2242
2243 ASSERT3U(curlevel, ==, BP_GET_LEVEL(&bp));
2244
2245 pio = zio_root(dmu_objset_spa(dn->dn_objset), NULL, NULL,
2246 ZIO_FLAG_CANFAIL);
2247
2248 dpa = kmem_zalloc(sizeof (*dpa), KM_SLEEP);
2249 ds = dn->dn_objset->os_dsl_dataset;
2250 SET_BOOKMARK(&dpa->dpa_zb, ds != NULL ? ds->ds_object : DMU_META_OBJSET,
2251 dn->dn_object, level, blkid);
2252 dpa->dpa_curlevel = curlevel;
2253 dpa->dpa_prio = prio;
2254 dpa->dpa_aflags = aflags;
2255 dpa->dpa_spa = dn->dn_objset->os_spa;
2256 dpa->dpa_epbs = epbs;
2257 dpa->dpa_zio = pio;
2258
2259 /*
2260 * If we have the indirect just above us, no need to do the asynchronous
2261 * prefetch chain; we'll just run the last step ourselves. If we're at
2262 * a higher level, though, we want to issue the prefetches for all the
2263 * indirect blocks asynchronously, so we can go on with whatever we were
2264 * doing.
2265 */
2266 if (curlevel == level) {
2267 ASSERT3U(curblkid, ==, blkid);
2268 dbuf_issue_final_prefetch(dpa, &bp);
2269 kmem_free(dpa, sizeof (*dpa));
2270 } else {
2271 arc_flags_t iter_aflags = ARC_FLAG_NOWAIT;
2272 zbookmark_phys_t zb;
2273
2274 SET_BOOKMARK(&zb, ds != NULL ? ds->ds_object : DMU_META_OBJSET,
2275 dn->dn_object, curlevel, curblkid);
2276 (void) arc_read(dpa->dpa_zio, dpa->dpa_spa,
2277 &bp, dbuf_prefetch_indirect_done, dpa, prio,
2278 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE,
2279 &iter_aflags, &zb);
2280 }
2281 /*
2282 * We use pio here instead of dpa_zio since it's possible that
2283 * dpa may have already been freed.
2284 */
2285 zio_nowait(pio);
2286 }
2287
2288 #define DBUF_HOLD_IMPL_MAX_DEPTH 20
2289
2290 /*
2291 * Returns with db_holds incremented, and db_mtx not held.
2292 * Note: dn_struct_rwlock must be held.
2293 */
2294 static int
2295 __dbuf_hold_impl(struct dbuf_hold_impl_data *dh)
2296 {
2297 ASSERT3S(dh->dh_depth, <, DBUF_HOLD_IMPL_MAX_DEPTH);
2298 dh->dh_parent = NULL;
2299
2300 ASSERT(dh->dh_blkid != DMU_BONUS_BLKID);
2301 ASSERT(RW_LOCK_HELD(&dh->dh_dn->dn_struct_rwlock));
2302 ASSERT3U(dh->dh_dn->dn_nlevels, >, dh->dh_level);
2303
2304 *(dh->dh_dbp) = NULL;
2305 top:
2306 /* dbuf_find() returns with db_mtx held */
2307 dh->dh_db = dbuf_find(dh->dh_dn->dn_objset, dh->dh_dn->dn_object,
2308 dh->dh_level, dh->dh_blkid);
2309
2310 if (dh->dh_db == NULL) {
2311 dh->dh_bp = NULL;
2312
2313 if (dh->dh_fail_uncached)
2314 return (SET_ERROR(ENOENT));
2315
2316 ASSERT3P(dh->dh_parent, ==, NULL);
2317 dh->dh_err = dbuf_findbp(dh->dh_dn, dh->dh_level, dh->dh_blkid,
2318 dh->dh_fail_sparse, &dh->dh_parent,
2319 &dh->dh_bp, dh);
2320 if (dh->dh_fail_sparse) {
2321 if (dh->dh_err == 0 &&
2322 dh->dh_bp && BP_IS_HOLE(dh->dh_bp))
2323 dh->dh_err = SET_ERROR(ENOENT);
2324 if (dh->dh_err) {
2325 if (dh->dh_parent)
2326 dbuf_rele(dh->dh_parent, NULL);
2327 return (dh->dh_err);
2328 }
2329 }
2330 if (dh->dh_err && dh->dh_err != ENOENT)
2331 return (dh->dh_err);
2332 dh->dh_db = dbuf_create(dh->dh_dn, dh->dh_level, dh->dh_blkid,
2333 dh->dh_parent, dh->dh_bp);
2334 }
2335
2336 if (dh->dh_fail_uncached && dh->dh_db->db_state != DB_CACHED) {
2337 mutex_exit(&dh->dh_db->db_mtx);
2338 return (SET_ERROR(ENOENT));
2339 }
2340
2341 if (dh->dh_db->db_buf && refcount_is_zero(&dh->dh_db->db_holds)) {
2342 arc_buf_add_ref(dh->dh_db->db_buf, dh->dh_db);
2343 if (dh->dh_db->db_buf->b_data == NULL) {
2344 dbuf_clear(dh->dh_db);
2345 if (dh->dh_parent) {
2346 dbuf_rele(dh->dh_parent, NULL);
2347 dh->dh_parent = NULL;
2348 }
2349 goto top;
2350 }
2351 ASSERT3P(dh->dh_db->db.db_data, ==, dh->dh_db->db_buf->b_data);
2352 }
2353
2354 ASSERT(dh->dh_db->db_buf == NULL || arc_referenced(dh->dh_db->db_buf));
2355
2356 /*
2357 * If this buffer is currently syncing out, and we are are
2358 * still referencing it from db_data, we need to make a copy
2359 * of it in case we decide we want to dirty it again in this txg.
2360 */
2361 if (dh->dh_db->db_level == 0 &&
2362 dh->dh_db->db_blkid != DMU_BONUS_BLKID &&
2363 dh->dh_dn->dn_object != DMU_META_DNODE_OBJECT &&
2364 dh->dh_db->db_state == DB_CACHED && dh->dh_db->db_data_pending) {
2365 dh->dh_dr = dh->dh_db->db_data_pending;
2366
2367 if (dh->dh_dr->dt.dl.dr_data == dh->dh_db->db_buf) {
2368 dh->dh_type = DBUF_GET_BUFC_TYPE(dh->dh_db);
2369
2370 dbuf_set_data(dh->dh_db,
2371 arc_buf_alloc(dh->dh_dn->dn_objset->os_spa,
2372 dh->dh_db->db.db_size, dh->dh_db, dh->dh_type));
2373 bcopy(dh->dh_dr->dt.dl.dr_data->b_data,
2374 dh->dh_db->db.db_data, dh->dh_db->db.db_size);
2375 }
2376 }
2377
2378 (void) refcount_add(&dh->dh_db->db_holds, dh->dh_tag);
2379 DBUF_VERIFY(dh->dh_db);
2380 mutex_exit(&dh->dh_db->db_mtx);
2381
2382 /* NOTE: we can't rele the parent until after we drop the db_mtx */
2383 if (dh->dh_parent)
2384 dbuf_rele(dh->dh_parent, NULL);
2385
2386 ASSERT3P(DB_DNODE(dh->dh_db), ==, dh->dh_dn);
2387 ASSERT3U(dh->dh_db->db_blkid, ==, dh->dh_blkid);
2388 ASSERT3U(dh->dh_db->db_level, ==, dh->dh_level);
2389 *(dh->dh_dbp) = dh->dh_db;
2390
2391 return (0);
2392 }
2393
2394 /*
2395 * The following code preserves the recursive function dbuf_hold_impl()
2396 * but moves the local variables AND function arguments to the heap to
2397 * minimize the stack frame size. Enough space is initially allocated
2398 * on the stack for 20 levels of recursion.
2399 */
2400 int
2401 dbuf_hold_impl(dnode_t *dn, uint8_t level, uint64_t blkid,
2402 boolean_t fail_sparse, boolean_t fail_uncached,
2403 void *tag, dmu_buf_impl_t **dbp)
2404 {
2405 struct dbuf_hold_impl_data *dh;
2406 int error;
2407
2408 dh = kmem_zalloc(sizeof (struct dbuf_hold_impl_data) *
2409 DBUF_HOLD_IMPL_MAX_DEPTH, KM_SLEEP);
2410 __dbuf_hold_impl_init(dh, dn, level, blkid, fail_sparse,
2411 fail_uncached, tag, dbp, 0);
2412
2413 error = __dbuf_hold_impl(dh);
2414
2415 kmem_free(dh, sizeof (struct dbuf_hold_impl_data) *
2416 DBUF_HOLD_IMPL_MAX_DEPTH);
2417
2418 return (error);
2419 }
2420
2421 static void
2422 __dbuf_hold_impl_init(struct dbuf_hold_impl_data *dh,
2423 dnode_t *dn, uint8_t level, uint64_t blkid,
2424 boolean_t fail_sparse, boolean_t fail_uncached,
2425 void *tag, dmu_buf_impl_t **dbp, int depth)
2426 {
2427 dh->dh_dn = dn;
2428 dh->dh_level = level;
2429 dh->dh_blkid = blkid;
2430
2431 dh->dh_fail_sparse = fail_sparse;
2432 dh->dh_fail_uncached = fail_uncached;
2433
2434 dh->dh_tag = tag;
2435 dh->dh_dbp = dbp;
2436 dh->dh_depth = depth;
2437 }
2438
2439 dmu_buf_impl_t *
2440 dbuf_hold(dnode_t *dn, uint64_t blkid, void *tag)
2441 {
2442 return (dbuf_hold_level(dn, 0, blkid, tag));
2443 }
2444
2445 dmu_buf_impl_t *
2446 dbuf_hold_level(dnode_t *dn, int level, uint64_t blkid, void *tag)
2447 {
2448 dmu_buf_impl_t *db;
2449 int err = dbuf_hold_impl(dn, level, blkid, FALSE, FALSE, tag, &db);
2450 return (err ? NULL : db);
2451 }
2452
2453 void
2454 dbuf_create_bonus(dnode_t *dn)
2455 {
2456 ASSERT(RW_WRITE_HELD(&dn->dn_struct_rwlock));
2457
2458 ASSERT(dn->dn_bonus == NULL);
2459 dn->dn_bonus = dbuf_create(dn, 0, DMU_BONUS_BLKID, dn->dn_dbuf, NULL);
2460 }
2461
2462 int
2463 dbuf_spill_set_blksz(dmu_buf_t *db_fake, uint64_t blksz, dmu_tx_t *tx)
2464 {
2465 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2466 dnode_t *dn;
2467
2468 if (db->db_blkid != DMU_SPILL_BLKID)
2469 return (SET_ERROR(ENOTSUP));
2470 if (blksz == 0)
2471 blksz = SPA_MINBLOCKSIZE;
2472 ASSERT3U(blksz, <=, spa_maxblocksize(dmu_objset_spa(db->db_objset)));
2473 blksz = P2ROUNDUP(blksz, SPA_MINBLOCKSIZE);
2474
2475 DB_DNODE_ENTER(db);
2476 dn = DB_DNODE(db);
2477 rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
2478 dbuf_new_size(db, blksz, tx);
2479 rw_exit(&dn->dn_struct_rwlock);
2480 DB_DNODE_EXIT(db);
2481
2482 return (0);
2483 }
2484
2485 void
2486 dbuf_rm_spill(dnode_t *dn, dmu_tx_t *tx)
2487 {
2488 dbuf_free_range(dn, DMU_SPILL_BLKID, DMU_SPILL_BLKID, tx);
2489 }
2490
2491 #pragma weak dmu_buf_add_ref = dbuf_add_ref
2492 void
2493 dbuf_add_ref(dmu_buf_impl_t *db, void *tag)
2494 {
2495 VERIFY(refcount_add(&db->db_holds, tag) > 1);
2496 }
2497
2498 #pragma weak dmu_buf_try_add_ref = dbuf_try_add_ref
2499 boolean_t
2500 dbuf_try_add_ref(dmu_buf_t *db_fake, objset_t *os, uint64_t obj, uint64_t blkid,
2501 void *tag)
2502 {
2503 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2504 dmu_buf_impl_t *found_db;
2505 boolean_t result = B_FALSE;
2506
2507 if (blkid == DMU_BONUS_BLKID)
2508 found_db = dbuf_find_bonus(os, obj);
2509 else
2510 found_db = dbuf_find(os, obj, 0, blkid);
2511
2512 if (found_db != NULL) {
2513 if (db == found_db && dbuf_refcount(db) > db->db_dirtycnt) {
2514 (void) refcount_add(&db->db_holds, tag);
2515 result = B_TRUE;
2516 }
2517 mutex_exit(&found_db->db_mtx);
2518 }
2519 return (result);
2520 }
2521
2522 /*
2523 * If you call dbuf_rele() you had better not be referencing the dnode handle
2524 * unless you have some other direct or indirect hold on the dnode. (An indirect
2525 * hold is a hold on one of the dnode's dbufs, including the bonus buffer.)
2526 * Without that, the dbuf_rele() could lead to a dnode_rele() followed by the
2527 * dnode's parent dbuf evicting its dnode handles.
2528 */
2529 void
2530 dbuf_rele(dmu_buf_impl_t *db, void *tag)
2531 {
2532 mutex_enter(&db->db_mtx);
2533 dbuf_rele_and_unlock(db, tag);
2534 }
2535
2536 void
2537 dmu_buf_rele(dmu_buf_t *db, void *tag)
2538 {
2539 dbuf_rele((dmu_buf_impl_t *)db, tag);
2540 }
2541
2542 /*
2543 * dbuf_rele() for an already-locked dbuf. This is necessary to allow
2544 * db_dirtycnt and db_holds to be updated atomically.
2545 */
2546 void
2547 dbuf_rele_and_unlock(dmu_buf_impl_t *db, void *tag)
2548 {
2549 int64_t holds;
2550
2551 ASSERT(MUTEX_HELD(&db->db_mtx));
2552 DBUF_VERIFY(db);
2553
2554 /*
2555 * Remove the reference to the dbuf before removing its hold on the
2556 * dnode so we can guarantee in dnode_move() that a referenced bonus
2557 * buffer has a corresponding dnode hold.
2558 */
2559 holds = refcount_remove(&db->db_holds, tag);
2560 ASSERT(holds >= 0);
2561
2562 /*
2563 * We can't freeze indirects if there is a possibility that they
2564 * may be modified in the current syncing context.
2565 */
2566 if (db->db_buf && holds == (db->db_level == 0 ? db->db_dirtycnt : 0))
2567 arc_buf_freeze(db->db_buf);
2568
2569 if (holds == db->db_dirtycnt &&
2570 db->db_level == 0 && db->db_user_immediate_evict)
2571 dbuf_evict_user(db);
2572
2573 if (holds == 0) {
2574 if (db->db_blkid == DMU_BONUS_BLKID) {
2575 dnode_t *dn;
2576 boolean_t evict_dbuf = db->db_pending_evict;
2577
2578 /*
2579 * If the dnode moves here, we cannot cross this
2580 * barrier until the move completes.
2581 */
2582 DB_DNODE_ENTER(db);
2583
2584 dn = DB_DNODE(db);
2585 atomic_dec_32(&dn->dn_dbufs_count);
2586
2587 /*
2588 * Decrementing the dbuf count means that the bonus
2589 * buffer's dnode hold is no longer discounted in
2590 * dnode_move(). The dnode cannot move until after
2591 * the dnode_rele() below.
2592 */
2593 DB_DNODE_EXIT(db);
2594
2595 /*
2596 * Do not reference db after its lock is dropped.
2597 * Another thread may evict it.
2598 */
2599 mutex_exit(&db->db_mtx);
2600
2601 if (evict_dbuf)
2602 dnode_evict_bonus(dn);
2603
2604 dnode_rele(dn, db);
2605 } else if (db->db_buf == NULL) {
2606 /*
2607 * This is a special case: we never associated this
2608 * dbuf with any data allocated from the ARC.
2609 */
2610 ASSERT(db->db_state == DB_UNCACHED ||
2611 db->db_state == DB_NOFILL);
2612 dbuf_evict(db);
2613 } else if (arc_released(db->db_buf)) {
2614 arc_buf_t *buf = db->db_buf;
2615 /*
2616 * This dbuf has anonymous data associated with it.
2617 */
2618 dbuf_clear_data(db);
2619 VERIFY(arc_buf_remove_ref(buf, db));
2620 dbuf_evict(db);
2621 } else {
2622 VERIFY(!arc_buf_remove_ref(db->db_buf, db));
2623
2624 /*
2625 * A dbuf will be eligible for eviction if either the
2626 * 'primarycache' property is set or a duplicate
2627 * copy of this buffer is already cached in the arc.
2628 *
2629 * In the case of the 'primarycache' a buffer
2630 * is considered for eviction if it matches the
2631 * criteria set in the property.
2632 *
2633 * To decide if our buffer is considered a
2634 * duplicate, we must call into the arc to determine
2635 * if multiple buffers are referencing the same
2636 * block on-disk. If so, then we simply evict
2637 * ourselves.
2638 */
2639 if (!DBUF_IS_CACHEABLE(db)) {
2640 if (db->db_blkptr != NULL &&
2641 !BP_IS_HOLE(db->db_blkptr) &&
2642 !BP_IS_EMBEDDED(db->db_blkptr)) {
2643 spa_t *spa =
2644 dmu_objset_spa(db->db_objset);
2645 blkptr_t bp = *db->db_blkptr;
2646 dbuf_clear(db);
2647 arc_freed(spa, &bp);
2648 } else {
2649 dbuf_clear(db);
2650 }
2651 } else if (db->db_pending_evict ||
2652 arc_buf_eviction_needed(db->db_buf)) {
2653 dbuf_clear(db);
2654 } else {
2655 mutex_exit(&db->db_mtx);
2656 }
2657 }
2658 } else {
2659 mutex_exit(&db->db_mtx);
2660 }
2661 }
2662
2663 #pragma weak dmu_buf_refcount = dbuf_refcount
2664 uint64_t
2665 dbuf_refcount(dmu_buf_impl_t *db)
2666 {
2667 return (refcount_count(&db->db_holds));
2668 }
2669
2670 void *
2671 dmu_buf_replace_user(dmu_buf_t *db_fake, dmu_buf_user_t *old_user,
2672 dmu_buf_user_t *new_user)
2673 {
2674 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2675
2676 mutex_enter(&db->db_mtx);
2677 dbuf_verify_user(db, DBVU_NOT_EVICTING);
2678 if (db->db_user == old_user)
2679 db->db_user = new_user;
2680 else
2681 old_user = db->db_user;
2682 dbuf_verify_user(db, DBVU_NOT_EVICTING);
2683 mutex_exit(&db->db_mtx);
2684
2685 return (old_user);
2686 }
2687
2688 void *
2689 dmu_buf_set_user(dmu_buf_t *db_fake, dmu_buf_user_t *user)
2690 {
2691 return (dmu_buf_replace_user(db_fake, NULL, user));
2692 }
2693
2694 void *
2695 dmu_buf_set_user_ie(dmu_buf_t *db_fake, dmu_buf_user_t *user)
2696 {
2697 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2698
2699 db->db_user_immediate_evict = TRUE;
2700 return (dmu_buf_set_user(db_fake, user));
2701 }
2702
2703 void *
2704 dmu_buf_remove_user(dmu_buf_t *db_fake, dmu_buf_user_t *user)
2705 {
2706 return (dmu_buf_replace_user(db_fake, user, NULL));
2707 }
2708
2709 void *
2710 dmu_buf_get_user(dmu_buf_t *db_fake)
2711 {
2712 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2713
2714 dbuf_verify_user(db, DBVU_NOT_EVICTING);
2715 return (db->db_user);
2716 }
2717
2718 void
2719 dmu_buf_user_evict_wait()
2720 {
2721 taskq_wait(dbu_evict_taskq);
2722 }
2723
2724 boolean_t
2725 dmu_buf_freeable(dmu_buf_t *dbuf)
2726 {
2727 boolean_t res = B_FALSE;
2728 dmu_buf_impl_t *db = (dmu_buf_impl_t *)dbuf;
2729
2730 if (db->db_blkptr)
2731 res = dsl_dataset_block_freeable(db->db_objset->os_dsl_dataset,
2732 db->db_blkptr, db->db_blkptr->blk_birth);
2733
2734 return (res);
2735 }
2736
2737 blkptr_t *
2738 dmu_buf_get_blkptr(dmu_buf_t *db)
2739 {
2740 dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db;
2741 return (dbi->db_blkptr);
2742 }
2743
2744 static void
2745 dbuf_check_blkptr(dnode_t *dn, dmu_buf_impl_t *db)
2746 {
2747 /* ASSERT(dmu_tx_is_syncing(tx) */
2748 ASSERT(MUTEX_HELD(&db->db_mtx));
2749
2750 if (db->db_blkptr != NULL)
2751 return;
2752
2753 if (db->db_blkid == DMU_SPILL_BLKID) {
2754 db->db_blkptr = &dn->dn_phys->dn_spill;
2755 BP_ZERO(db->db_blkptr);
2756 return;
2757 }
2758 if (db->db_level == dn->dn_phys->dn_nlevels-1) {
2759 /*
2760 * This buffer was allocated at a time when there was
2761 * no available blkptrs from the dnode, or it was
2762 * inappropriate to hook it in (i.e., nlevels mis-match).
2763 */
2764 ASSERT(db->db_blkid < dn->dn_phys->dn_nblkptr);
2765 ASSERT(db->db_parent == NULL);
2766 db->db_parent = dn->dn_dbuf;
2767 db->db_blkptr = &dn->dn_phys->dn_blkptr[db->db_blkid];
2768 DBUF_VERIFY(db);
2769 } else {
2770 dmu_buf_impl_t *parent = db->db_parent;
2771 int epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT;
2772
2773 ASSERT(dn->dn_phys->dn_nlevels > 1);
2774 if (parent == NULL) {
2775 mutex_exit(&db->db_mtx);
2776 rw_enter(&dn->dn_struct_rwlock, RW_READER);
2777 parent = dbuf_hold_level(dn, db->db_level + 1,
2778 db->db_blkid >> epbs, db);
2779 rw_exit(&dn->dn_struct_rwlock);
2780 mutex_enter(&db->db_mtx);
2781 db->db_parent = parent;
2782 }
2783 db->db_blkptr = (blkptr_t *)parent->db.db_data +
2784 (db->db_blkid & ((1ULL << epbs) - 1));
2785 DBUF_VERIFY(db);
2786 }
2787 }
2788
2789 /*
2790 * dbuf_sync_indirect() is called recursively from dbuf_sync_list() so it
2791 * is critical the we not allow the compiler to inline this function in to
2792 * dbuf_sync_list() thereby drastically bloating the stack usage.
2793 */
2794 noinline static void
2795 dbuf_sync_indirect(dbuf_dirty_record_t *dr, dmu_tx_t *tx)
2796 {
2797 dmu_buf_impl_t *db = dr->dr_dbuf;
2798 dnode_t *dn;
2799 zio_t *zio;
2800
2801 ASSERT(dmu_tx_is_syncing(tx));
2802
2803 dprintf_dbuf_bp(db, db->db_blkptr, "blkptr=%p", db->db_blkptr);
2804
2805 mutex_enter(&db->db_mtx);
2806
2807 ASSERT(db->db_level > 0);
2808 DBUF_VERIFY(db);
2809
2810 /* Read the block if it hasn't been read yet. */
2811 if (db->db_buf == NULL) {
2812 mutex_exit(&db->db_mtx);
2813 (void) dbuf_read(db, NULL, DB_RF_MUST_SUCCEED);
2814 mutex_enter(&db->db_mtx);
2815 }
2816 ASSERT3U(db->db_state, ==, DB_CACHED);
2817 ASSERT(db->db_buf != NULL);
2818
2819 DB_DNODE_ENTER(db);
2820 dn = DB_DNODE(db);
2821 /* Indirect block size must match what the dnode thinks it is. */
2822 ASSERT3U(db->db.db_size, ==, 1<<dn->dn_phys->dn_indblkshift);
2823 dbuf_check_blkptr(dn, db);
2824 DB_DNODE_EXIT(db);
2825
2826 /* Provide the pending dirty record to child dbufs */
2827 db->db_data_pending = dr;
2828
2829 mutex_exit(&db->db_mtx);
2830 dbuf_write(dr, db->db_buf, tx);
2831
2832 zio = dr->dr_zio;
2833 mutex_enter(&dr->dt.di.dr_mtx);
2834 dbuf_sync_list(&dr->dt.di.dr_children, db->db_level - 1, tx);
2835 ASSERT(list_head(&dr->dt.di.dr_children) == NULL);
2836 mutex_exit(&dr->dt.di.dr_mtx);
2837 zio_nowait(zio);
2838 }
2839
2840 /*
2841 * dbuf_sync_leaf() is called recursively from dbuf_sync_list() so it is
2842 * critical the we not allow the compiler to inline this function in to
2843 * dbuf_sync_list() thereby drastically bloating the stack usage.
2844 */
2845 noinline static void
2846 dbuf_sync_leaf(dbuf_dirty_record_t *dr, dmu_tx_t *tx)
2847 {
2848 arc_buf_t **datap = &dr->dt.dl.dr_data;
2849 dmu_buf_impl_t *db = dr->dr_dbuf;
2850 dnode_t *dn;
2851 objset_t *os;
2852 uint64_t txg = tx->tx_txg;
2853
2854 ASSERT(dmu_tx_is_syncing(tx));
2855
2856 dprintf_dbuf_bp(db, db->db_blkptr, "blkptr=%p", db->db_blkptr);
2857
2858 mutex_enter(&db->db_mtx);
2859 /*
2860 * To be synced, we must be dirtied. But we
2861 * might have been freed after the dirty.
2862 */
2863 if (db->db_state == DB_UNCACHED) {
2864 /* This buffer has been freed since it was dirtied */
2865 ASSERT(db->db.db_data == NULL);
2866 } else if (db->db_state == DB_FILL) {
2867 /* This buffer was freed and is now being re-filled */
2868 ASSERT(db->db.db_data != dr->dt.dl.dr_data);
2869 } else {
2870 ASSERT(db->db_state == DB_CACHED || db->db_state == DB_NOFILL);
2871 }
2872 DBUF_VERIFY(db);
2873
2874 DB_DNODE_ENTER(db);
2875 dn = DB_DNODE(db);
2876
2877 if (db->db_blkid == DMU_SPILL_BLKID) {
2878 mutex_enter(&dn->dn_mtx);
2879 dn->dn_phys->dn_flags |= DNODE_FLAG_SPILL_BLKPTR;
2880 mutex_exit(&dn->dn_mtx);
2881 }
2882
2883 /*
2884 * If this is a bonus buffer, simply copy the bonus data into the
2885 * dnode. It will be written out when the dnode is synced (and it
2886 * will be synced, since it must have been dirty for dbuf_sync to
2887 * be called).
2888 */
2889 if (db->db_blkid == DMU_BONUS_BLKID) {
2890 dbuf_dirty_record_t **drp;
2891
2892 ASSERT(*datap != NULL);
2893 ASSERT0(db->db_level);
2894 ASSERT3U(dn->dn_phys->dn_bonuslen, <=, DN_MAX_BONUSLEN);
2895 bcopy(*datap, DN_BONUS(dn->dn_phys), dn->dn_phys->dn_bonuslen);
2896 DB_DNODE_EXIT(db);
2897
2898 if (*datap != db->db.db_data) {
2899 zio_buf_free(*datap, DN_MAX_BONUSLEN);
2900 arc_space_return(DN_MAX_BONUSLEN, ARC_SPACE_OTHER);
2901 }
2902 db->db_data_pending = NULL;
2903 drp = &db->db_last_dirty;
2904 while (*drp != dr)
2905 drp = &(*drp)->dr_next;
2906 ASSERT(dr->dr_next == NULL);
2907 ASSERT(dr->dr_dbuf == db);
2908 *drp = dr->dr_next;
2909 if (dr->dr_dbuf->db_level != 0) {
2910 mutex_destroy(&dr->dt.di.dr_mtx);
2911 list_destroy(&dr->dt.di.dr_children);
2912 }
2913 kmem_free(dr, sizeof (dbuf_dirty_record_t));
2914 ASSERT(db->db_dirtycnt > 0);
2915 db->db_dirtycnt -= 1;
2916 dbuf_rele_and_unlock(db, (void *)(uintptr_t)txg);
2917 return;
2918 }
2919
2920 os = dn->dn_objset;
2921
2922 /*
2923 * This function may have dropped the db_mtx lock allowing a dmu_sync
2924 * operation to sneak in. As a result, we need to ensure that we
2925 * don't check the dr_override_state until we have returned from
2926 * dbuf_check_blkptr.
2927 */
2928 dbuf_check_blkptr(dn, db);
2929
2930 /*
2931 * If this buffer is in the middle of an immediate write,
2932 * wait for the synchronous IO to complete.
2933 */
2934 while (dr->dt.dl.dr_override_state == DR_IN_DMU_SYNC) {
2935 ASSERT(dn->dn_object != DMU_META_DNODE_OBJECT);
2936 cv_wait(&db->db_changed, &db->db_mtx);
2937 ASSERT(dr->dt.dl.dr_override_state != DR_NOT_OVERRIDDEN);
2938 }
2939
2940 if (db->db_state != DB_NOFILL &&
2941 dn->dn_object != DMU_META_DNODE_OBJECT &&
2942 refcount_count(&db->db_holds) > 1 &&
2943 dr->dt.dl.dr_override_state != DR_OVERRIDDEN &&
2944 *datap == db->db_buf) {
2945 /*
2946 * If this buffer is currently "in use" (i.e., there
2947 * are active holds and db_data still references it),
2948 * then make a copy before we start the write so that
2949 * any modifications from the open txg will not leak
2950 * into this write.
2951 *
2952 * NOTE: this copy does not need to be made for
2953 * objects only modified in the syncing context (e.g.
2954 * DNONE_DNODE blocks).
2955 */
2956 int blksz = arc_buf_size(*datap);
2957 arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
2958 *datap = arc_buf_alloc(os->os_spa, blksz, db, type);
2959 bcopy(db->db.db_data, (*datap)->b_data, blksz);
2960 }
2961 db->db_data_pending = dr;
2962
2963 mutex_exit(&db->db_mtx);
2964
2965 dbuf_write(dr, *datap, tx);
2966
2967 ASSERT(!list_link_active(&dr->dr_dirty_node));
2968 if (dn->dn_object == DMU_META_DNODE_OBJECT) {
2969 list_insert_tail(&dn->dn_dirty_records[txg&TXG_MASK], dr);
2970 DB_DNODE_EXIT(db);
2971 } else {
2972 /*
2973 * Although zio_nowait() does not "wait for an IO", it does
2974 * initiate the IO. If this is an empty write it seems plausible
2975 * that the IO could actually be completed before the nowait
2976 * returns. We need to DB_DNODE_EXIT() first in case
2977 * zio_nowait() invalidates the dbuf.
2978 */
2979 DB_DNODE_EXIT(db);
2980 zio_nowait(dr->dr_zio);
2981 }
2982 }
2983
2984 void
2985 dbuf_sync_list(list_t *list, int level, dmu_tx_t *tx)
2986 {
2987 dbuf_dirty_record_t *dr;
2988
2989 while ((dr = list_head(list))) {
2990 if (dr->dr_zio != NULL) {
2991 /*
2992 * If we find an already initialized zio then we
2993 * are processing the meta-dnode, and we have finished.
2994 * The dbufs for all dnodes are put back on the list
2995 * during processing, so that we can zio_wait()
2996 * these IOs after initiating all child IOs.
2997 */
2998 ASSERT3U(dr->dr_dbuf->db.db_object, ==,
2999 DMU_META_DNODE_OBJECT);
3000 break;
3001 }
3002 if (dr->dr_dbuf->db_blkid != DMU_BONUS_BLKID &&
3003 dr->dr_dbuf->db_blkid != DMU_SPILL_BLKID) {
3004 VERIFY3U(dr->dr_dbuf->db_level, ==, level);
3005 }
3006 list_remove(list, dr);
3007 if (dr->dr_dbuf->db_level > 0)
3008 dbuf_sync_indirect(dr, tx);
3009 else
3010 dbuf_sync_leaf(dr, tx);
3011 }
3012 }
3013
3014 /* ARGSUSED */
3015 static void
3016 dbuf_write_ready(zio_t *zio, arc_buf_t *buf, void *vdb)
3017 {
3018 dmu_buf_impl_t *db = vdb;
3019 dnode_t *dn;
3020 blkptr_t *bp = zio->io_bp;
3021 blkptr_t *bp_orig = &zio->io_bp_orig;
3022 spa_t *spa = zio->io_spa;
3023 int64_t delta;
3024 uint64_t fill = 0;
3025 int i;
3026
3027 ASSERT3P(db->db_blkptr, ==, bp);
3028
3029 DB_DNODE_ENTER(db);
3030 dn = DB_DNODE(db);
3031 delta = bp_get_dsize_sync(spa, bp) - bp_get_dsize_sync(spa, bp_orig);
3032 dnode_diduse_space(dn, delta - zio->io_prev_space_delta);
3033 zio->io_prev_space_delta = delta;
3034
3035 if (bp->blk_birth != 0) {
3036 ASSERT((db->db_blkid != DMU_SPILL_BLKID &&
3037 BP_GET_TYPE(bp) == dn->dn_type) ||
3038 (db->db_blkid == DMU_SPILL_BLKID &&
3039 BP_GET_TYPE(bp) == dn->dn_bonustype) ||
3040 BP_IS_EMBEDDED(bp));
3041 ASSERT(BP_GET_LEVEL(bp) == db->db_level);
3042 }
3043
3044 mutex_enter(&db->db_mtx);
3045
3046 #ifdef ZFS_DEBUG
3047 if (db->db_blkid == DMU_SPILL_BLKID) {
3048 ASSERT(dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR);
3049 ASSERT(!(BP_IS_HOLE(db->db_blkptr)) &&
3050 db->db_blkptr == &dn->dn_phys->dn_spill);
3051 }
3052 #endif
3053
3054 if (db->db_level == 0) {
3055 mutex_enter(&dn->dn_mtx);
3056 if (db->db_blkid > dn->dn_phys->dn_maxblkid &&
3057 db->db_blkid != DMU_SPILL_BLKID)
3058 dn->dn_phys->dn_maxblkid = db->db_blkid;
3059 mutex_exit(&dn->dn_mtx);
3060
3061 if (dn->dn_type == DMU_OT_DNODE) {
3062 dnode_phys_t *dnp = db->db.db_data;
3063 for (i = db->db.db_size >> DNODE_SHIFT; i > 0;
3064 i--, dnp++) {
3065 if (dnp->dn_type != DMU_OT_NONE)
3066 fill++;
3067 }
3068 } else {
3069 if (BP_IS_HOLE(bp)) {
3070 fill = 0;
3071 } else {
3072 fill = 1;
3073 }
3074 }
3075 } else {
3076 blkptr_t *ibp = db->db.db_data;
3077 ASSERT3U(db->db.db_size, ==, 1<<dn->dn_phys->dn_indblkshift);
3078 for (i = db->db.db_size >> SPA_BLKPTRSHIFT; i > 0; i--, ibp++) {
3079 if (BP_IS_HOLE(ibp))
3080 continue;
3081 fill += BP_GET_FILL(ibp);
3082 }
3083 }
3084 DB_DNODE_EXIT(db);
3085
3086 if (!BP_IS_EMBEDDED(bp))
3087 bp->blk_fill = fill;
3088
3089 mutex_exit(&db->db_mtx);
3090 }
3091
3092 /*
3093 * The SPA will call this callback several times for each zio - once
3094 * for every physical child i/o (zio->io_phys_children times). This
3095 * allows the DMU to monitor the progress of each logical i/o. For example,
3096 * there may be 2 copies of an indirect block, or many fragments of a RAID-Z
3097 * block. There may be a long delay before all copies/fragments are completed,
3098 * so this callback allows us to retire dirty space gradually, as the physical
3099 * i/os complete.
3100 */
3101 /* ARGSUSED */
3102 static void
3103 dbuf_write_physdone(zio_t *zio, arc_buf_t *buf, void *arg)
3104 {
3105 dmu_buf_impl_t *db = arg;
3106 objset_t *os = db->db_objset;
3107 dsl_pool_t *dp = dmu_objset_pool(os);
3108 dbuf_dirty_record_t *dr;
3109 int delta = 0;
3110
3111 dr = db->db_data_pending;
3112 ASSERT3U(dr->dr_txg, ==, zio->io_txg);
3113
3114 /*
3115 * The callback will be called io_phys_children times. Retire one
3116 * portion of our dirty space each time we are called. Any rounding
3117 * error will be cleaned up by dsl_pool_sync()'s call to
3118 * dsl_pool_undirty_space().
3119 */
3120 delta = dr->dr_accounted / zio->io_phys_children;
3121 dsl_pool_undirty_space(dp, delta, zio->io_txg);
3122 }
3123
3124 /* ARGSUSED */
3125 static void
3126 dbuf_write_done(zio_t *zio, arc_buf_t *buf, void *vdb)
3127 {
3128 dmu_buf_impl_t *db = vdb;
3129 blkptr_t *bp_orig = &zio->io_bp_orig;
3130 blkptr_t *bp = db->db_blkptr;
3131 objset_t *os = db->db_objset;
3132 dmu_tx_t *tx = os->os_synctx;
3133 dbuf_dirty_record_t **drp, *dr;
3134
3135 ASSERT0(zio->io_error);
3136 ASSERT(db->db_blkptr == bp);
3137
3138 /*
3139 * For nopwrites and rewrites we ensure that the bp matches our
3140 * original and bypass all the accounting.
3141 */
3142 if (zio->io_flags & (ZIO_FLAG_IO_REWRITE | ZIO_FLAG_NOPWRITE)) {
3143 ASSERT(BP_EQUAL(bp, bp_orig));
3144 } else {
3145 dsl_dataset_t *ds = os->os_dsl_dataset;
3146 (void) dsl_dataset_block_kill(ds, bp_orig, tx, B_TRUE);
3147 dsl_dataset_block_born(ds, bp, tx);
3148 }
3149
3150 mutex_enter(&db->db_mtx);
3151
3152 DBUF_VERIFY(db);
3153
3154 drp = &db->db_last_dirty;
3155 while ((dr = *drp) != db->db_data_pending)
3156 drp = &dr->dr_next;
3157 ASSERT(!list_link_active(&dr->dr_dirty_node));
3158 ASSERT(dr->dr_dbuf == db);
3159 ASSERT(dr->dr_next == NULL);
3160 *drp = dr->dr_next;
3161
3162 #ifdef ZFS_DEBUG
3163 if (db->db_blkid == DMU_SPILL_BLKID) {
3164 dnode_t *dn;
3165
3166 DB_DNODE_ENTER(db);
3167 dn = DB_DNODE(db);
3168 ASSERT(dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR);
3169 ASSERT(!(BP_IS_HOLE(db->db_blkptr)) &&
3170 db->db_blkptr == &dn->dn_phys->dn_spill);
3171 DB_DNODE_EXIT(db);
3172 }
3173 #endif
3174
3175 if (db->db_level == 0) {
3176 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
3177 ASSERT(dr->dt.dl.dr_override_state == DR_NOT_OVERRIDDEN);
3178 if (db->db_state != DB_NOFILL) {
3179 if (dr->dt.dl.dr_data != db->db_buf)
3180 VERIFY(arc_buf_remove_ref(dr->dt.dl.dr_data,
3181 db));
3182 else if (!arc_released(db->db_buf))
3183 arc_set_callback(db->db_buf, dbuf_do_evict, db);
3184 }
3185 } else {
3186 dnode_t *dn;
3187
3188 DB_DNODE_ENTER(db);
3189 dn = DB_DNODE(db);
3190 ASSERT(list_head(&dr->dt.di.dr_children) == NULL);
3191 ASSERT3U(db->db.db_size, ==, 1 << dn->dn_phys->dn_indblkshift);
3192 if (!BP_IS_HOLE(db->db_blkptr)) {
3193 ASSERTV(int epbs = dn->dn_phys->dn_indblkshift -
3194 SPA_BLKPTRSHIFT);
3195 ASSERT3U(db->db_blkid, <=,
3196 dn->dn_phys->dn_maxblkid >> (db->db_level * epbs));
3197 ASSERT3U(BP_GET_LSIZE(db->db_blkptr), ==,
3198 db->db.db_size);
3199 if (!arc_released(db->db_buf))
3200 arc_set_callback(db->db_buf, dbuf_do_evict, db);
3201 }
3202 DB_DNODE_EXIT(db);
3203 mutex_destroy(&dr->dt.di.dr_mtx);
3204 list_destroy(&dr->dt.di.dr_children);
3205 }
3206 kmem_free(dr, sizeof (dbuf_dirty_record_t));
3207
3208 cv_broadcast(&db->db_changed);
3209 ASSERT(db->db_dirtycnt > 0);
3210 db->db_dirtycnt -= 1;
3211 db->db_data_pending = NULL;
3212 dbuf_rele_and_unlock(db, (void *)(uintptr_t)tx->tx_txg);
3213 }
3214
3215 static void
3216 dbuf_write_nofill_ready(zio_t *zio)
3217 {
3218 dbuf_write_ready(zio, NULL, zio->io_private);
3219 }
3220
3221 static void
3222 dbuf_write_nofill_done(zio_t *zio)
3223 {
3224 dbuf_write_done(zio, NULL, zio->io_private);
3225 }
3226
3227 static void
3228 dbuf_write_override_ready(zio_t *zio)
3229 {
3230 dbuf_dirty_record_t *dr = zio->io_private;
3231 dmu_buf_impl_t *db = dr->dr_dbuf;
3232
3233 dbuf_write_ready(zio, NULL, db);
3234 }
3235
3236 static void
3237 dbuf_write_override_done(zio_t *zio)
3238 {
3239 dbuf_dirty_record_t *dr = zio->io_private;
3240 dmu_buf_impl_t *db = dr->dr_dbuf;
3241 blkptr_t *obp = &dr->dt.dl.dr_overridden_by;
3242
3243 mutex_enter(&db->db_mtx);
3244 if (!BP_EQUAL(zio->io_bp, obp)) {
3245 if (!BP_IS_HOLE(obp))
3246 dsl_free(spa_get_dsl(zio->io_spa), zio->io_txg, obp);
3247 arc_release(dr->dt.dl.dr_data, db);
3248 }
3249 mutex_exit(&db->db_mtx);
3250
3251 dbuf_write_done(zio, NULL, db);
3252 }
3253
3254 /* Issue I/O to commit a dirty buffer to disk. */
3255 static void
3256 dbuf_write(dbuf_dirty_record_t *dr, arc_buf_t *data, dmu_tx_t *tx)
3257 {
3258 dmu_buf_impl_t *db = dr->dr_dbuf;
3259 dnode_t *dn;
3260 objset_t *os;
3261 dmu_buf_impl_t *parent = db->db_parent;
3262 uint64_t txg = tx->tx_txg;
3263 zbookmark_phys_t zb;
3264 zio_prop_t zp;
3265 zio_t *zio;
3266 int wp_flag = 0;
3267
3268 DB_DNODE_ENTER(db);
3269 dn = DB_DNODE(db);
3270 os = dn->dn_objset;
3271
3272 if (db->db_state != DB_NOFILL) {
3273 if (db->db_level > 0 || dn->dn_type == DMU_OT_DNODE) {
3274 /*
3275 * Private object buffers are released here rather
3276 * than in dbuf_dirty() since they are only modified
3277 * in the syncing context and we don't want the
3278 * overhead of making multiple copies of the data.
3279 */
3280 if (BP_IS_HOLE(db->db_blkptr)) {
3281 arc_buf_thaw(data);
3282 } else {
3283 dbuf_release_bp(db);
3284 }
3285 }
3286 }
3287
3288 if (parent != dn->dn_dbuf) {
3289 /* Our parent is an indirect block. */
3290 /* We have a dirty parent that has been scheduled for write. */
3291 ASSERT(parent && parent->db_data_pending);
3292 /* Our parent's buffer is one level closer to the dnode. */
3293 ASSERT(db->db_level == parent->db_level-1);
3294 /*
3295 * We're about to modify our parent's db_data by modifying
3296 * our block pointer, so the parent must be released.
3297 */
3298 ASSERT(arc_released(parent->db_buf));
3299 zio = parent->db_data_pending->dr_zio;
3300 } else {
3301 /* Our parent is the dnode itself. */
3302 ASSERT((db->db_level == dn->dn_phys->dn_nlevels-1 &&
3303 db->db_blkid != DMU_SPILL_BLKID) ||
3304 (db->db_blkid == DMU_SPILL_BLKID && db->db_level == 0));
3305 if (db->db_blkid != DMU_SPILL_BLKID)
3306 ASSERT3P(db->db_blkptr, ==,
3307 &dn->dn_phys->dn_blkptr[db->db_blkid]);
3308 zio = dn->dn_zio;
3309 }
3310
3311 ASSERT(db->db_level == 0 || data == db->db_buf);
3312 ASSERT3U(db->db_blkptr->blk_birth, <=, txg);
3313 ASSERT(zio);
3314
3315 SET_BOOKMARK(&zb, os->os_dsl_dataset ?
3316 os->os_dsl_dataset->ds_object : DMU_META_OBJSET,
3317 db->db.db_object, db->db_level, db->db_blkid);
3318
3319 if (db->db_blkid == DMU_SPILL_BLKID)
3320 wp_flag = WP_SPILL;
3321 wp_flag |= (db->db_state == DB_NOFILL) ? WP_NOFILL : 0;
3322
3323 dmu_write_policy(os, dn, db->db_level, wp_flag, &zp);
3324 DB_DNODE_EXIT(db);
3325
3326 if (db->db_level == 0 &&
3327 dr->dt.dl.dr_override_state == DR_OVERRIDDEN) {
3328 /*
3329 * The BP for this block has been provided by open context
3330 * (by dmu_sync() or dmu_buf_write_embedded()).
3331 */
3332 void *contents = (data != NULL) ? data->b_data : NULL;
3333
3334 dr->dr_zio = zio_write(zio, os->os_spa, txg,
3335 db->db_blkptr, contents, db->db.db_size, &zp,
3336 dbuf_write_override_ready, NULL, dbuf_write_override_done,
3337 dr, ZIO_PRIORITY_ASYNC_WRITE, ZIO_FLAG_MUSTSUCCEED, &zb);
3338 mutex_enter(&db->db_mtx);
3339 dr->dt.dl.dr_override_state = DR_NOT_OVERRIDDEN;
3340 zio_write_override(dr->dr_zio, &dr->dt.dl.dr_overridden_by,
3341 dr->dt.dl.dr_copies, dr->dt.dl.dr_nopwrite);
3342 mutex_exit(&db->db_mtx);
3343 } else if (db->db_state == DB_NOFILL) {
3344 ASSERT(zp.zp_checksum == ZIO_CHECKSUM_OFF);
3345 dr->dr_zio = zio_write(zio, os->os_spa, txg,
3346 db->db_blkptr, NULL, db->db.db_size, &zp,
3347 dbuf_write_nofill_ready, NULL, dbuf_write_nofill_done, db,
3348 ZIO_PRIORITY_ASYNC_WRITE,
3349 ZIO_FLAG_MUSTSUCCEED | ZIO_FLAG_NODATA, &zb);
3350 } else {
3351 ASSERT(arc_released(data));
3352 dr->dr_zio = arc_write(zio, os->os_spa, txg,
3353 db->db_blkptr, data, DBUF_IS_L2CACHEABLE(db),
3354 DBUF_IS_L2COMPRESSIBLE(db), &zp, dbuf_write_ready,
3355 dbuf_write_physdone, dbuf_write_done, db,
3356 ZIO_PRIORITY_ASYNC_WRITE, ZIO_FLAG_MUSTSUCCEED, &zb);
3357 }
3358 }
3359
3360 #if defined(_KERNEL) && defined(HAVE_SPL)
3361 EXPORT_SYMBOL(dbuf_find);
3362 EXPORT_SYMBOL(dbuf_is_metadata);
3363 EXPORT_SYMBOL(dbuf_evict);
3364 EXPORT_SYMBOL(dbuf_loan_arcbuf);
3365 EXPORT_SYMBOL(dbuf_whichblock);
3366 EXPORT_SYMBOL(dbuf_read);
3367 EXPORT_SYMBOL(dbuf_unoverride);
3368 EXPORT_SYMBOL(dbuf_free_range);
3369 EXPORT_SYMBOL(dbuf_new_size);
3370 EXPORT_SYMBOL(dbuf_release_bp);
3371 EXPORT_SYMBOL(dbuf_dirty);
3372 EXPORT_SYMBOL(dmu_buf_will_dirty);
3373 EXPORT_SYMBOL(dmu_buf_will_not_fill);
3374 EXPORT_SYMBOL(dmu_buf_will_fill);
3375 EXPORT_SYMBOL(dmu_buf_fill_done);
3376 EXPORT_SYMBOL(dmu_buf_rele);
3377 EXPORT_SYMBOL(dbuf_assign_arcbuf);
3378 EXPORT_SYMBOL(dbuf_clear);
3379 EXPORT_SYMBOL(dbuf_prefetch);
3380 EXPORT_SYMBOL(dbuf_hold_impl);
3381 EXPORT_SYMBOL(dbuf_hold);
3382 EXPORT_SYMBOL(dbuf_hold_level);
3383 EXPORT_SYMBOL(dbuf_create_bonus);
3384 EXPORT_SYMBOL(dbuf_spill_set_blksz);
3385 EXPORT_SYMBOL(dbuf_rm_spill);
3386 EXPORT_SYMBOL(dbuf_add_ref);
3387 EXPORT_SYMBOL(dbuf_rele);
3388 EXPORT_SYMBOL(dbuf_rele_and_unlock);
3389 EXPORT_SYMBOL(dbuf_refcount);
3390 EXPORT_SYMBOL(dbuf_sync_list);
3391 EXPORT_SYMBOL(dmu_buf_set_user);
3392 EXPORT_SYMBOL(dmu_buf_set_user_ie);
3393 EXPORT_SYMBOL(dmu_buf_get_user);
3394 EXPORT_SYMBOL(dmu_buf_freeable);
3395 EXPORT_SYMBOL(dmu_buf_get_blkptr);
3396 #endif