]> git.proxmox.com Git - mirror_zfs.git/blob - module/zfs/dbuf.c
Scale the dbuf cache with arc_c
[mirror_zfs.git] / module / zfs / dbuf.c
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
24 * Copyright (c) 2012, 2017 by Delphix. All rights reserved.
25 * Copyright (c) 2013 by Saso Kiselkov. All rights reserved.
26 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
27 */
28
29 #include <sys/zfs_context.h>
30 #include <sys/arc.h>
31 #include <sys/dmu.h>
32 #include <sys/dmu_send.h>
33 #include <sys/dmu_impl.h>
34 #include <sys/dbuf.h>
35 #include <sys/dmu_objset.h>
36 #include <sys/dsl_dataset.h>
37 #include <sys/dsl_dir.h>
38 #include <sys/dmu_tx.h>
39 #include <sys/spa.h>
40 #include <sys/zio.h>
41 #include <sys/dmu_zfetch.h>
42 #include <sys/sa.h>
43 #include <sys/sa_impl.h>
44 #include <sys/zfeature.h>
45 #include <sys/blkptr.h>
46 #include <sys/range_tree.h>
47 #include <sys/trace_dbuf.h>
48 #include <sys/callb.h>
49 #include <sys/abd.h>
50
51 struct dbuf_hold_impl_data {
52 /* Function arguments */
53 dnode_t *dh_dn;
54 uint8_t dh_level;
55 uint64_t dh_blkid;
56 boolean_t dh_fail_sparse;
57 boolean_t dh_fail_uncached;
58 void *dh_tag;
59 dmu_buf_impl_t **dh_dbp;
60 /* Local variables */
61 dmu_buf_impl_t *dh_db;
62 dmu_buf_impl_t *dh_parent;
63 blkptr_t *dh_bp;
64 int dh_err;
65 dbuf_dirty_record_t *dh_dr;
66 arc_buf_contents_t dh_type;
67 int dh_depth;
68 };
69
70 static void __dbuf_hold_impl_init(struct dbuf_hold_impl_data *dh,
71 dnode_t *dn, uint8_t level, uint64_t blkid, boolean_t fail_sparse,
72 boolean_t fail_uncached,
73 void *tag, dmu_buf_impl_t **dbp, int depth);
74 static int __dbuf_hold_impl(struct dbuf_hold_impl_data *dh);
75
76 uint_t zfs_dbuf_evict_key;
77
78 static boolean_t dbuf_undirty(dmu_buf_impl_t *db, dmu_tx_t *tx);
79 static void dbuf_write(dbuf_dirty_record_t *dr, arc_buf_t *data, dmu_tx_t *tx);
80
81 extern inline void dmu_buf_init_user(dmu_buf_user_t *dbu,
82 dmu_buf_evict_func_t *evict_func_sync,
83 dmu_buf_evict_func_t *evict_func_async,
84 dmu_buf_t **clear_on_evict_dbufp);
85
86 /*
87 * Global data structures and functions for the dbuf cache.
88 */
89 static kmem_cache_t *dbuf_kmem_cache;
90 static taskq_t *dbu_evict_taskq;
91
92 static kthread_t *dbuf_cache_evict_thread;
93 static kmutex_t dbuf_evict_lock;
94 static kcondvar_t dbuf_evict_cv;
95 static boolean_t dbuf_evict_thread_exit;
96
97 /*
98 * LRU cache of dbufs. The dbuf cache maintains a list of dbufs that
99 * are not currently held but have been recently released. These dbufs
100 * are not eligible for arc eviction until they are aged out of the cache.
101 * Dbufs are added to the dbuf cache once the last hold is released. If a
102 * dbuf is later accessed and still exists in the dbuf cache, then it will
103 * be removed from the cache and later re-added to the head of the cache.
104 * Dbufs that are aged out of the cache will be immediately destroyed and
105 * become eligible for arc eviction.
106 */
107 static multilist_t *dbuf_cache;
108 static refcount_t dbuf_cache_size;
109 unsigned long dbuf_cache_max_bytes = 100 * 1024 * 1024;
110
111 /* Cap the size of the dbuf cache to log2 fraction of arc size. */
112 int dbuf_cache_max_shift = 5;
113
114 /*
115 * The dbuf cache uses a three-stage eviction policy:
116 * - A low water marker designates when the dbuf eviction thread
117 * should stop evicting from the dbuf cache.
118 * - When we reach the maximum size (aka mid water mark), we
119 * signal the eviction thread to run.
120 * - The high water mark indicates when the eviction thread
121 * is unable to keep up with the incoming load and eviction must
122 * happen in the context of the calling thread.
123 *
124 * The dbuf cache:
125 * (max size)
126 * low water mid water hi water
127 * +----------------------------------------+----------+----------+
128 * | | | |
129 * | | | |
130 * | | | |
131 * | | | |
132 * +----------------------------------------+----------+----------+
133 * stop signal evict
134 * evicting eviction directly
135 * thread
136 *
137 * The high and low water marks indicate the operating range for the eviction
138 * thread. The low water mark is, by default, 90% of the total size of the
139 * cache and the high water mark is at 110% (both of these percentages can be
140 * changed by setting dbuf_cache_lowater_pct and dbuf_cache_hiwater_pct,
141 * respectively). The eviction thread will try to ensure that the cache remains
142 * within this range by waking up every second and checking if the cache is
143 * above the low water mark. The thread can also be woken up by callers adding
144 * elements into the cache if the cache is larger than the mid water (i.e max
145 * cache size). Once the eviction thread is woken up and eviction is required,
146 * it will continue evicting buffers until it's able to reduce the cache size
147 * to the low water mark. If the cache size continues to grow and hits the high
148 * water mark, then callers adding elements to the cache will begin to evict
149 * directly from the cache until the cache is no longer above the high water
150 * mark.
151 */
152
153 /*
154 * The percentage above and below the maximum cache size.
155 */
156 uint_t dbuf_cache_hiwater_pct = 10;
157 uint_t dbuf_cache_lowater_pct = 10;
158
159 /* ARGSUSED */
160 static int
161 dbuf_cons(void *vdb, void *unused, int kmflag)
162 {
163 dmu_buf_impl_t *db = vdb;
164 bzero(db, sizeof (dmu_buf_impl_t));
165
166 mutex_init(&db->db_mtx, NULL, MUTEX_DEFAULT, NULL);
167 cv_init(&db->db_changed, NULL, CV_DEFAULT, NULL);
168 multilist_link_init(&db->db_cache_link);
169 refcount_create(&db->db_holds);
170
171 return (0);
172 }
173
174 /* ARGSUSED */
175 static void
176 dbuf_dest(void *vdb, void *unused)
177 {
178 dmu_buf_impl_t *db = vdb;
179 mutex_destroy(&db->db_mtx);
180 cv_destroy(&db->db_changed);
181 ASSERT(!multilist_link_active(&db->db_cache_link));
182 refcount_destroy(&db->db_holds);
183 }
184
185 /*
186 * dbuf hash table routines
187 */
188 static dbuf_hash_table_t dbuf_hash_table;
189
190 static uint64_t dbuf_hash_count;
191
192 static uint64_t
193 dbuf_hash(void *os, uint64_t obj, uint8_t lvl, uint64_t blkid)
194 {
195 uintptr_t osv = (uintptr_t)os;
196 uint64_t crc = -1ULL;
197
198 ASSERT(zfs_crc64_table[128] == ZFS_CRC64_POLY);
199 crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (lvl)) & 0xFF];
200 crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (osv >> 6)) & 0xFF];
201 crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (obj >> 0)) & 0xFF];
202 crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (obj >> 8)) & 0xFF];
203 crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (blkid >> 0)) & 0xFF];
204 crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (blkid >> 8)) & 0xFF];
205
206 crc ^= (osv>>14) ^ (obj>>16) ^ (blkid>>16);
207
208 return (crc);
209 }
210
211 #define DBUF_EQUAL(dbuf, os, obj, level, blkid) \
212 ((dbuf)->db.db_object == (obj) && \
213 (dbuf)->db_objset == (os) && \
214 (dbuf)->db_level == (level) && \
215 (dbuf)->db_blkid == (blkid))
216
217 dmu_buf_impl_t *
218 dbuf_find(objset_t *os, uint64_t obj, uint8_t level, uint64_t blkid)
219 {
220 dbuf_hash_table_t *h = &dbuf_hash_table;
221 uint64_t hv;
222 uint64_t idx;
223 dmu_buf_impl_t *db;
224
225 hv = dbuf_hash(os, obj, level, blkid);
226 idx = hv & h->hash_table_mask;
227
228 mutex_enter(DBUF_HASH_MUTEX(h, idx));
229 for (db = h->hash_table[idx]; db != NULL; db = db->db_hash_next) {
230 if (DBUF_EQUAL(db, os, obj, level, blkid)) {
231 mutex_enter(&db->db_mtx);
232 if (db->db_state != DB_EVICTING) {
233 mutex_exit(DBUF_HASH_MUTEX(h, idx));
234 return (db);
235 }
236 mutex_exit(&db->db_mtx);
237 }
238 }
239 mutex_exit(DBUF_HASH_MUTEX(h, idx));
240 return (NULL);
241 }
242
243 static dmu_buf_impl_t *
244 dbuf_find_bonus(objset_t *os, uint64_t object)
245 {
246 dnode_t *dn;
247 dmu_buf_impl_t *db = NULL;
248
249 if (dnode_hold(os, object, FTAG, &dn) == 0) {
250 rw_enter(&dn->dn_struct_rwlock, RW_READER);
251 if (dn->dn_bonus != NULL) {
252 db = dn->dn_bonus;
253 mutex_enter(&db->db_mtx);
254 }
255 rw_exit(&dn->dn_struct_rwlock);
256 dnode_rele(dn, FTAG);
257 }
258 return (db);
259 }
260
261 /*
262 * Insert an entry into the hash table. If there is already an element
263 * equal to elem in the hash table, then the already existing element
264 * will be returned and the new element will not be inserted.
265 * Otherwise returns NULL.
266 */
267 static dmu_buf_impl_t *
268 dbuf_hash_insert(dmu_buf_impl_t *db)
269 {
270 dbuf_hash_table_t *h = &dbuf_hash_table;
271 objset_t *os = db->db_objset;
272 uint64_t obj = db->db.db_object;
273 int level = db->db_level;
274 uint64_t blkid, hv, idx;
275 dmu_buf_impl_t *dbf;
276
277 blkid = db->db_blkid;
278 hv = dbuf_hash(os, obj, level, blkid);
279 idx = hv & h->hash_table_mask;
280
281 mutex_enter(DBUF_HASH_MUTEX(h, idx));
282 for (dbf = h->hash_table[idx]; dbf != NULL; dbf = dbf->db_hash_next) {
283 if (DBUF_EQUAL(dbf, os, obj, level, blkid)) {
284 mutex_enter(&dbf->db_mtx);
285 if (dbf->db_state != DB_EVICTING) {
286 mutex_exit(DBUF_HASH_MUTEX(h, idx));
287 return (dbf);
288 }
289 mutex_exit(&dbf->db_mtx);
290 }
291 }
292
293 mutex_enter(&db->db_mtx);
294 db->db_hash_next = h->hash_table[idx];
295 h->hash_table[idx] = db;
296 mutex_exit(DBUF_HASH_MUTEX(h, idx));
297 atomic_inc_64(&dbuf_hash_count);
298
299 return (NULL);
300 }
301
302 /*
303 * Remove an entry from the hash table. It must be in the EVICTING state.
304 */
305 static void
306 dbuf_hash_remove(dmu_buf_impl_t *db)
307 {
308 dbuf_hash_table_t *h = &dbuf_hash_table;
309 uint64_t hv, idx;
310 dmu_buf_impl_t *dbf, **dbp;
311
312 hv = dbuf_hash(db->db_objset, db->db.db_object,
313 db->db_level, db->db_blkid);
314 idx = hv & h->hash_table_mask;
315
316 /*
317 * We mustn't hold db_mtx to maintain lock ordering:
318 * DBUF_HASH_MUTEX > db_mtx.
319 */
320 ASSERT(refcount_is_zero(&db->db_holds));
321 ASSERT(db->db_state == DB_EVICTING);
322 ASSERT(!MUTEX_HELD(&db->db_mtx));
323
324 mutex_enter(DBUF_HASH_MUTEX(h, idx));
325 dbp = &h->hash_table[idx];
326 while ((dbf = *dbp) != db) {
327 dbp = &dbf->db_hash_next;
328 ASSERT(dbf != NULL);
329 }
330 *dbp = db->db_hash_next;
331 db->db_hash_next = NULL;
332 mutex_exit(DBUF_HASH_MUTEX(h, idx));
333 atomic_dec_64(&dbuf_hash_count);
334 }
335
336 typedef enum {
337 DBVU_EVICTING,
338 DBVU_NOT_EVICTING
339 } dbvu_verify_type_t;
340
341 static void
342 dbuf_verify_user(dmu_buf_impl_t *db, dbvu_verify_type_t verify_type)
343 {
344 #ifdef ZFS_DEBUG
345 int64_t holds;
346
347 if (db->db_user == NULL)
348 return;
349
350 /* Only data blocks support the attachment of user data. */
351 ASSERT(db->db_level == 0);
352
353 /* Clients must resolve a dbuf before attaching user data. */
354 ASSERT(db->db.db_data != NULL);
355 ASSERT3U(db->db_state, ==, DB_CACHED);
356
357 holds = refcount_count(&db->db_holds);
358 if (verify_type == DBVU_EVICTING) {
359 /*
360 * Immediate eviction occurs when holds == dirtycnt.
361 * For normal eviction buffers, holds is zero on
362 * eviction, except when dbuf_fix_old_data() calls
363 * dbuf_clear_data(). However, the hold count can grow
364 * during eviction even though db_mtx is held (see
365 * dmu_bonus_hold() for an example), so we can only
366 * test the generic invariant that holds >= dirtycnt.
367 */
368 ASSERT3U(holds, >=, db->db_dirtycnt);
369 } else {
370 if (db->db_user_immediate_evict == TRUE)
371 ASSERT3U(holds, >=, db->db_dirtycnt);
372 else
373 ASSERT3U(holds, >, 0);
374 }
375 #endif
376 }
377
378 static void
379 dbuf_evict_user(dmu_buf_impl_t *db)
380 {
381 dmu_buf_user_t *dbu = db->db_user;
382
383 ASSERT(MUTEX_HELD(&db->db_mtx));
384
385 if (dbu == NULL)
386 return;
387
388 dbuf_verify_user(db, DBVU_EVICTING);
389 db->db_user = NULL;
390
391 #ifdef ZFS_DEBUG
392 if (dbu->dbu_clear_on_evict_dbufp != NULL)
393 *dbu->dbu_clear_on_evict_dbufp = NULL;
394 #endif
395
396 /*
397 * There are two eviction callbacks - one that we call synchronously
398 * and one that we invoke via a taskq. The async one is useful for
399 * avoiding lock order reversals and limiting stack depth.
400 *
401 * Note that if we have a sync callback but no async callback,
402 * it's likely that the sync callback will free the structure
403 * containing the dbu. In that case we need to take care to not
404 * dereference dbu after calling the sync evict func.
405 */
406 boolean_t has_async = (dbu->dbu_evict_func_async != NULL);
407
408 if (dbu->dbu_evict_func_sync != NULL)
409 dbu->dbu_evict_func_sync(dbu);
410
411 if (has_async) {
412 taskq_dispatch_ent(dbu_evict_taskq, dbu->dbu_evict_func_async,
413 dbu, 0, &dbu->dbu_tqent);
414 }
415 }
416
417 boolean_t
418 dbuf_is_metadata(dmu_buf_impl_t *db)
419 {
420 /*
421 * Consider indirect blocks and spill blocks to be meta data.
422 */
423 if (db->db_level > 0 || db->db_blkid == DMU_SPILL_BLKID) {
424 return (B_TRUE);
425 } else {
426 boolean_t is_metadata;
427
428 DB_DNODE_ENTER(db);
429 is_metadata = DMU_OT_IS_METADATA(DB_DNODE(db)->dn_type);
430 DB_DNODE_EXIT(db);
431
432 return (is_metadata);
433 }
434 }
435
436
437 /*
438 * This function *must* return indices evenly distributed between all
439 * sublists of the multilist. This is needed due to how the dbuf eviction
440 * code is laid out; dbuf_evict_thread() assumes dbufs are evenly
441 * distributed between all sublists and uses this assumption when
442 * deciding which sublist to evict from and how much to evict from it.
443 */
444 unsigned int
445 dbuf_cache_multilist_index_func(multilist_t *ml, void *obj)
446 {
447 dmu_buf_impl_t *db = obj;
448
449 /*
450 * The assumption here, is the hash value for a given
451 * dmu_buf_impl_t will remain constant throughout it's lifetime
452 * (i.e. it's objset, object, level and blkid fields don't change).
453 * Thus, we don't need to store the dbuf's sublist index
454 * on insertion, as this index can be recalculated on removal.
455 *
456 * Also, the low order bits of the hash value are thought to be
457 * distributed evenly. Otherwise, in the case that the multilist
458 * has a power of two number of sublists, each sublists' usage
459 * would not be evenly distributed.
460 */
461 return (dbuf_hash(db->db_objset, db->db.db_object,
462 db->db_level, db->db_blkid) %
463 multilist_get_num_sublists(ml));
464 }
465
466 static inline unsigned long
467 dbuf_cache_target_bytes(void)
468 {
469 return MIN(dbuf_cache_max_bytes,
470 arc_target_bytes() >> dbuf_cache_max_shift);
471 }
472
473 static inline boolean_t
474 dbuf_cache_above_hiwater(void)
475 {
476 uint64_t dbuf_cache_target = dbuf_cache_target_bytes();
477
478 uint64_t dbuf_cache_hiwater_bytes =
479 (dbuf_cache_target * dbuf_cache_hiwater_pct) / 100;
480
481 return (refcount_count(&dbuf_cache_size) >
482 dbuf_cache_target + dbuf_cache_hiwater_bytes);
483 }
484
485 static inline boolean_t
486 dbuf_cache_above_lowater(void)
487 {
488 uint64_t dbuf_cache_target = dbuf_cache_target_bytes();
489
490 uint64_t dbuf_cache_lowater_bytes =
491 (dbuf_cache_target * dbuf_cache_lowater_pct) / 100;
492
493 return (refcount_count(&dbuf_cache_size) >
494 dbuf_cache_target - dbuf_cache_lowater_bytes);
495 }
496
497 /*
498 * Evict the oldest eligible dbuf from the dbuf cache.
499 */
500 static void
501 dbuf_evict_one(void)
502 {
503 int idx = multilist_get_random_index(dbuf_cache);
504 multilist_sublist_t *mls = multilist_sublist_lock(dbuf_cache, idx);
505 dmu_buf_impl_t *db;
506 ASSERT(!MUTEX_HELD(&dbuf_evict_lock));
507
508 /*
509 * Set the thread's tsd to indicate that it's processing evictions.
510 * Once a thread stops evicting from the dbuf cache it will
511 * reset its tsd to NULL.
512 */
513 ASSERT3P(tsd_get(zfs_dbuf_evict_key), ==, NULL);
514 (void) tsd_set(zfs_dbuf_evict_key, (void *)B_TRUE);
515
516 db = multilist_sublist_tail(mls);
517 while (db != NULL && mutex_tryenter(&db->db_mtx) == 0) {
518 db = multilist_sublist_prev(mls, db);
519 }
520
521 DTRACE_PROBE2(dbuf__evict__one, dmu_buf_impl_t *, db,
522 multilist_sublist_t *, mls);
523
524 if (db != NULL) {
525 multilist_sublist_remove(mls, db);
526 multilist_sublist_unlock(mls);
527 (void) refcount_remove_many(&dbuf_cache_size,
528 db->db.db_size, db);
529 dbuf_destroy(db);
530 } else {
531 multilist_sublist_unlock(mls);
532 }
533 (void) tsd_set(zfs_dbuf_evict_key, NULL);
534 }
535
536 /*
537 * The dbuf evict thread is responsible for aging out dbufs from the
538 * cache. Once the cache has reached it's maximum size, dbufs are removed
539 * and destroyed. The eviction thread will continue running until the size
540 * of the dbuf cache is at or below the maximum size. Once the dbuf is aged
541 * out of the cache it is destroyed and becomes eligible for arc eviction.
542 */
543 static void
544 dbuf_evict_thread(void *unused)
545 {
546 callb_cpr_t cpr;
547
548 CALLB_CPR_INIT(&cpr, &dbuf_evict_lock, callb_generic_cpr, FTAG);
549
550 mutex_enter(&dbuf_evict_lock);
551 while (!dbuf_evict_thread_exit) {
552 while (!dbuf_cache_above_lowater() && !dbuf_evict_thread_exit) {
553 CALLB_CPR_SAFE_BEGIN(&cpr);
554 (void) cv_timedwait_sig_hires(&dbuf_evict_cv,
555 &dbuf_evict_lock, SEC2NSEC(1), MSEC2NSEC(1), 0);
556 CALLB_CPR_SAFE_END(&cpr, &dbuf_evict_lock);
557 }
558 mutex_exit(&dbuf_evict_lock);
559
560 /*
561 * Keep evicting as long as we're above the low water mark
562 * for the cache. We do this without holding the locks to
563 * minimize lock contention.
564 */
565 while (dbuf_cache_above_lowater() && !dbuf_evict_thread_exit) {
566 dbuf_evict_one();
567 }
568
569 mutex_enter(&dbuf_evict_lock);
570 }
571
572 dbuf_evict_thread_exit = B_FALSE;
573 cv_broadcast(&dbuf_evict_cv);
574 CALLB_CPR_EXIT(&cpr); /* drops dbuf_evict_lock */
575 thread_exit();
576 }
577
578 /*
579 * Wake up the dbuf eviction thread if the dbuf cache is at its max size.
580 * If the dbuf cache is at its high water mark, then evict a dbuf from the
581 * dbuf cache using the callers context.
582 */
583 static void
584 dbuf_evict_notify(void)
585 {
586
587 /*
588 * We use thread specific data to track when a thread has
589 * started processing evictions. This allows us to avoid deeply
590 * nested stacks that would have a call flow similar to this:
591 *
592 * dbuf_rele()-->dbuf_rele_and_unlock()-->dbuf_evict_notify()
593 * ^ |
594 * | |
595 * +-----dbuf_destroy()<--dbuf_evict_one()<--------+
596 *
597 * The dbuf_eviction_thread will always have its tsd set until
598 * that thread exits. All other threads will only set their tsd
599 * if they are participating in the eviction process. This only
600 * happens if the eviction thread is unable to process evictions
601 * fast enough. To keep the dbuf cache size in check, other threads
602 * can evict from the dbuf cache directly. Those threads will set
603 * their tsd values so that we ensure that they only evict one dbuf
604 * from the dbuf cache.
605 */
606 if (tsd_get(zfs_dbuf_evict_key) != NULL)
607 return;
608
609 /*
610 * We check if we should evict without holding the dbuf_evict_lock,
611 * because it's OK to occasionally make the wrong decision here,
612 * and grabbing the lock results in massive lock contention.
613 */
614 if (refcount_count(&dbuf_cache_size) > dbuf_cache_target_bytes()) {
615 if (dbuf_cache_above_hiwater())
616 dbuf_evict_one();
617 cv_signal(&dbuf_evict_cv);
618 }
619 }
620
621
622
623 void
624 dbuf_init(void)
625 {
626 uint64_t hsize = 1ULL << 16;
627 dbuf_hash_table_t *h = &dbuf_hash_table;
628 int i;
629
630 /*
631 * The hash table is big enough to fill all of physical memory
632 * with an average block size of zfs_arc_average_blocksize (default 8K).
633 * By default, the table will take up
634 * totalmem * sizeof(void*) / 8K (1MB per GB with 8-byte pointers).
635 */
636 while (hsize * zfs_arc_average_blocksize < physmem * PAGESIZE)
637 hsize <<= 1;
638
639 retry:
640 h->hash_table_mask = hsize - 1;
641 #if defined(_KERNEL) && defined(HAVE_SPL)
642 /*
643 * Large allocations which do not require contiguous pages
644 * should be using vmem_alloc() in the linux kernel
645 */
646 h->hash_table = vmem_zalloc(hsize * sizeof (void *), KM_SLEEP);
647 #else
648 h->hash_table = kmem_zalloc(hsize * sizeof (void *), KM_NOSLEEP);
649 #endif
650 if (h->hash_table == NULL) {
651 /* XXX - we should really return an error instead of assert */
652 ASSERT(hsize > (1ULL << 10));
653 hsize >>= 1;
654 goto retry;
655 }
656
657 dbuf_kmem_cache = kmem_cache_create("dmu_buf_impl_t",
658 sizeof (dmu_buf_impl_t),
659 0, dbuf_cons, dbuf_dest, NULL, NULL, NULL, 0);
660
661 for (i = 0; i < DBUF_MUTEXES; i++)
662 mutex_init(&h->hash_mutexes[i], NULL, MUTEX_DEFAULT, NULL);
663
664 dbuf_stats_init(h);
665
666 /*
667 * Setup the parameters for the dbuf cache. We cap the size of the
668 * dbuf cache to 1/32nd (default) of the size of the ARC.
669 */
670 dbuf_cache_max_bytes = MIN(dbuf_cache_max_bytes,
671 arc_target_bytes() >> dbuf_cache_max_shift);
672
673 /*
674 * All entries are queued via taskq_dispatch_ent(), so min/maxalloc
675 * configuration is not required.
676 */
677 dbu_evict_taskq = taskq_create("dbu_evict", 1, defclsyspri, 0, 0, 0);
678
679 dbuf_cache = multilist_create(sizeof (dmu_buf_impl_t),
680 offsetof(dmu_buf_impl_t, db_cache_link),
681 dbuf_cache_multilist_index_func);
682 refcount_create(&dbuf_cache_size);
683
684 tsd_create(&zfs_dbuf_evict_key, NULL);
685 dbuf_evict_thread_exit = B_FALSE;
686 mutex_init(&dbuf_evict_lock, NULL, MUTEX_DEFAULT, NULL);
687 cv_init(&dbuf_evict_cv, NULL, CV_DEFAULT, NULL);
688 dbuf_cache_evict_thread = thread_create(NULL, 0, dbuf_evict_thread,
689 NULL, 0, &p0, TS_RUN, minclsyspri);
690 }
691
692 void
693 dbuf_fini(void)
694 {
695 dbuf_hash_table_t *h = &dbuf_hash_table;
696 int i;
697
698 dbuf_stats_destroy();
699
700 for (i = 0; i < DBUF_MUTEXES; i++)
701 mutex_destroy(&h->hash_mutexes[i]);
702 #if defined(_KERNEL) && defined(HAVE_SPL)
703 /*
704 * Large allocations which do not require contiguous pages
705 * should be using vmem_free() in the linux kernel
706 */
707 vmem_free(h->hash_table, (h->hash_table_mask + 1) * sizeof (void *));
708 #else
709 kmem_free(h->hash_table, (h->hash_table_mask + 1) * sizeof (void *));
710 #endif
711 kmem_cache_destroy(dbuf_kmem_cache);
712 taskq_destroy(dbu_evict_taskq);
713
714 mutex_enter(&dbuf_evict_lock);
715 dbuf_evict_thread_exit = B_TRUE;
716 while (dbuf_evict_thread_exit) {
717 cv_signal(&dbuf_evict_cv);
718 cv_wait(&dbuf_evict_cv, &dbuf_evict_lock);
719 }
720 mutex_exit(&dbuf_evict_lock);
721 tsd_destroy(&zfs_dbuf_evict_key);
722
723 mutex_destroy(&dbuf_evict_lock);
724 cv_destroy(&dbuf_evict_cv);
725
726 refcount_destroy(&dbuf_cache_size);
727 multilist_destroy(dbuf_cache);
728 }
729
730 /*
731 * Other stuff.
732 */
733
734 #ifdef ZFS_DEBUG
735 static void
736 dbuf_verify(dmu_buf_impl_t *db)
737 {
738 dnode_t *dn;
739 dbuf_dirty_record_t *dr;
740
741 ASSERT(MUTEX_HELD(&db->db_mtx));
742
743 if (!(zfs_flags & ZFS_DEBUG_DBUF_VERIFY))
744 return;
745
746 ASSERT(db->db_objset != NULL);
747 DB_DNODE_ENTER(db);
748 dn = DB_DNODE(db);
749 if (dn == NULL) {
750 ASSERT(db->db_parent == NULL);
751 ASSERT(db->db_blkptr == NULL);
752 } else {
753 ASSERT3U(db->db.db_object, ==, dn->dn_object);
754 ASSERT3P(db->db_objset, ==, dn->dn_objset);
755 ASSERT3U(db->db_level, <, dn->dn_nlevels);
756 ASSERT(db->db_blkid == DMU_BONUS_BLKID ||
757 db->db_blkid == DMU_SPILL_BLKID ||
758 !avl_is_empty(&dn->dn_dbufs));
759 }
760 if (db->db_blkid == DMU_BONUS_BLKID) {
761 ASSERT(dn != NULL);
762 ASSERT3U(db->db.db_size, >=, dn->dn_bonuslen);
763 ASSERT3U(db->db.db_offset, ==, DMU_BONUS_BLKID);
764 } else if (db->db_blkid == DMU_SPILL_BLKID) {
765 ASSERT(dn != NULL);
766 ASSERT0(db->db.db_offset);
767 } else {
768 ASSERT3U(db->db.db_offset, ==, db->db_blkid * db->db.db_size);
769 }
770
771 for (dr = db->db_data_pending; dr != NULL; dr = dr->dr_next)
772 ASSERT(dr->dr_dbuf == db);
773
774 for (dr = db->db_last_dirty; dr != NULL; dr = dr->dr_next)
775 ASSERT(dr->dr_dbuf == db);
776
777 /*
778 * We can't assert that db_size matches dn_datablksz because it
779 * can be momentarily different when another thread is doing
780 * dnode_set_blksz().
781 */
782 if (db->db_level == 0 && db->db.db_object == DMU_META_DNODE_OBJECT) {
783 dr = db->db_data_pending;
784 /*
785 * It should only be modified in syncing context, so
786 * make sure we only have one copy of the data.
787 */
788 ASSERT(dr == NULL || dr->dt.dl.dr_data == db->db_buf);
789 }
790
791 /* verify db->db_blkptr */
792 if (db->db_blkptr) {
793 if (db->db_parent == dn->dn_dbuf) {
794 /* db is pointed to by the dnode */
795 /* ASSERT3U(db->db_blkid, <, dn->dn_nblkptr); */
796 if (DMU_OBJECT_IS_SPECIAL(db->db.db_object))
797 ASSERT(db->db_parent == NULL);
798 else
799 ASSERT(db->db_parent != NULL);
800 if (db->db_blkid != DMU_SPILL_BLKID)
801 ASSERT3P(db->db_blkptr, ==,
802 &dn->dn_phys->dn_blkptr[db->db_blkid]);
803 } else {
804 /* db is pointed to by an indirect block */
805 ASSERTV(int epb = db->db_parent->db.db_size >>
806 SPA_BLKPTRSHIFT);
807 ASSERT3U(db->db_parent->db_level, ==, db->db_level+1);
808 ASSERT3U(db->db_parent->db.db_object, ==,
809 db->db.db_object);
810 /*
811 * dnode_grow_indblksz() can make this fail if we don't
812 * have the struct_rwlock. XXX indblksz no longer
813 * grows. safe to do this now?
814 */
815 if (RW_WRITE_HELD(&dn->dn_struct_rwlock)) {
816 ASSERT3P(db->db_blkptr, ==,
817 ((blkptr_t *)db->db_parent->db.db_data +
818 db->db_blkid % epb));
819 }
820 }
821 }
822 if ((db->db_blkptr == NULL || BP_IS_HOLE(db->db_blkptr)) &&
823 (db->db_buf == NULL || db->db_buf->b_data) &&
824 db->db.db_data && db->db_blkid != DMU_BONUS_BLKID &&
825 db->db_state != DB_FILL && !dn->dn_free_txg) {
826 /*
827 * If the blkptr isn't set but they have nonzero data,
828 * it had better be dirty, otherwise we'll lose that
829 * data when we evict this buffer.
830 *
831 * There is an exception to this rule for indirect blocks; in
832 * this case, if the indirect block is a hole, we fill in a few
833 * fields on each of the child blocks (importantly, birth time)
834 * to prevent hole birth times from being lost when you
835 * partially fill in a hole.
836 */
837 if (db->db_dirtycnt == 0) {
838 if (db->db_level == 0) {
839 uint64_t *buf = db->db.db_data;
840 int i;
841
842 for (i = 0; i < db->db.db_size >> 3; i++) {
843 ASSERT(buf[i] == 0);
844 }
845 } else {
846 int i;
847 blkptr_t *bps = db->db.db_data;
848 ASSERT3U(1 << DB_DNODE(db)->dn_indblkshift, ==,
849 db->db.db_size);
850 /*
851 * We want to verify that all the blkptrs in the
852 * indirect block are holes, but we may have
853 * automatically set up a few fields for them.
854 * We iterate through each blkptr and verify
855 * they only have those fields set.
856 */
857 for (i = 0;
858 i < db->db.db_size / sizeof (blkptr_t);
859 i++) {
860 blkptr_t *bp = &bps[i];
861 ASSERT(ZIO_CHECKSUM_IS_ZERO(
862 &bp->blk_cksum));
863 ASSERT(
864 DVA_IS_EMPTY(&bp->blk_dva[0]) &&
865 DVA_IS_EMPTY(&bp->blk_dva[1]) &&
866 DVA_IS_EMPTY(&bp->blk_dva[2]));
867 ASSERT0(bp->blk_fill);
868 ASSERT0(bp->blk_pad[0]);
869 ASSERT0(bp->blk_pad[1]);
870 ASSERT(!BP_IS_EMBEDDED(bp));
871 ASSERT(BP_IS_HOLE(bp));
872 ASSERT0(bp->blk_phys_birth);
873 }
874 }
875 }
876 }
877 DB_DNODE_EXIT(db);
878 }
879 #endif
880
881 static void
882 dbuf_clear_data(dmu_buf_impl_t *db)
883 {
884 ASSERT(MUTEX_HELD(&db->db_mtx));
885 dbuf_evict_user(db);
886 ASSERT3P(db->db_buf, ==, NULL);
887 db->db.db_data = NULL;
888 if (db->db_state != DB_NOFILL)
889 db->db_state = DB_UNCACHED;
890 }
891
892 static void
893 dbuf_set_data(dmu_buf_impl_t *db, arc_buf_t *buf)
894 {
895 ASSERT(MUTEX_HELD(&db->db_mtx));
896 ASSERT(buf != NULL);
897
898 db->db_buf = buf;
899 ASSERT(buf->b_data != NULL);
900 db->db.db_data = buf->b_data;
901 }
902
903 /*
904 * Loan out an arc_buf for read. Return the loaned arc_buf.
905 */
906 arc_buf_t *
907 dbuf_loan_arcbuf(dmu_buf_impl_t *db)
908 {
909 arc_buf_t *abuf;
910
911 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
912 mutex_enter(&db->db_mtx);
913 if (arc_released(db->db_buf) || refcount_count(&db->db_holds) > 1) {
914 int blksz = db->db.db_size;
915 spa_t *spa = db->db_objset->os_spa;
916
917 mutex_exit(&db->db_mtx);
918 abuf = arc_loan_buf(spa, B_FALSE, blksz);
919 bcopy(db->db.db_data, abuf->b_data, blksz);
920 } else {
921 abuf = db->db_buf;
922 arc_loan_inuse_buf(abuf, db);
923 db->db_buf = NULL;
924 dbuf_clear_data(db);
925 mutex_exit(&db->db_mtx);
926 }
927 return (abuf);
928 }
929
930 /*
931 * Calculate which level n block references the data at the level 0 offset
932 * provided.
933 */
934 uint64_t
935 dbuf_whichblock(const dnode_t *dn, const int64_t level, const uint64_t offset)
936 {
937 if (dn->dn_datablkshift != 0 && dn->dn_indblkshift != 0) {
938 /*
939 * The level n blkid is equal to the level 0 blkid divided by
940 * the number of level 0s in a level n block.
941 *
942 * The level 0 blkid is offset >> datablkshift =
943 * offset / 2^datablkshift.
944 *
945 * The number of level 0s in a level n is the number of block
946 * pointers in an indirect block, raised to the power of level.
947 * This is 2^(indblkshift - SPA_BLKPTRSHIFT)^level =
948 * 2^(level*(indblkshift - SPA_BLKPTRSHIFT)).
949 *
950 * Thus, the level n blkid is: offset /
951 * ((2^datablkshift)*(2^(level*(indblkshift - SPA_BLKPTRSHIFT)))
952 * = offset / 2^(datablkshift + level *
953 * (indblkshift - SPA_BLKPTRSHIFT))
954 * = offset >> (datablkshift + level *
955 * (indblkshift - SPA_BLKPTRSHIFT))
956 */
957
958 const unsigned exp = dn->dn_datablkshift +
959 level * (dn->dn_indblkshift - SPA_BLKPTRSHIFT);
960
961 if (exp >= 8 * sizeof (offset)) {
962 /* This only happens on the highest indirection level */
963 ASSERT3U(level, ==, dn->dn_nlevels - 1);
964 return (0);
965 }
966
967 ASSERT3U(exp, <, 8 * sizeof (offset));
968
969 return (offset >> exp);
970 } else {
971 ASSERT3U(offset, <, dn->dn_datablksz);
972 return (0);
973 }
974 }
975
976 static void
977 dbuf_read_done(zio_t *zio, int err, arc_buf_t *buf, void *vdb)
978 {
979 dmu_buf_impl_t *db = vdb;
980
981 mutex_enter(&db->db_mtx);
982 ASSERT3U(db->db_state, ==, DB_READ);
983 /*
984 * All reads are synchronous, so we must have a hold on the dbuf
985 */
986 ASSERT(refcount_count(&db->db_holds) > 0);
987 ASSERT(db->db_buf == NULL);
988 ASSERT(db->db.db_data == NULL);
989 if (db->db_level == 0 && db->db_freed_in_flight) {
990 /* we were freed in flight; disregard any error */
991 arc_release(buf, db);
992 bzero(buf->b_data, db->db.db_size);
993 arc_buf_freeze(buf);
994 db->db_freed_in_flight = FALSE;
995 dbuf_set_data(db, buf);
996 db->db_state = DB_CACHED;
997 } else if (err == 0) {
998 dbuf_set_data(db, buf);
999 db->db_state = DB_CACHED;
1000 } else {
1001 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
1002 ASSERT3P(db->db_buf, ==, NULL);
1003 arc_buf_destroy(buf, db);
1004 db->db_state = DB_UNCACHED;
1005 }
1006 cv_broadcast(&db->db_changed);
1007 dbuf_rele_and_unlock(db, NULL);
1008 }
1009
1010 static int
1011 dbuf_read_impl(dmu_buf_impl_t *db, zio_t *zio, uint32_t flags)
1012 {
1013 dnode_t *dn;
1014 zbookmark_phys_t zb;
1015 uint32_t aflags = ARC_FLAG_NOWAIT;
1016 int err, zio_flags = 0;
1017
1018 DB_DNODE_ENTER(db);
1019 dn = DB_DNODE(db);
1020 ASSERT(!refcount_is_zero(&db->db_holds));
1021 /* We need the struct_rwlock to prevent db_blkptr from changing. */
1022 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
1023 ASSERT(MUTEX_HELD(&db->db_mtx));
1024 ASSERT(db->db_state == DB_UNCACHED);
1025 ASSERT(db->db_buf == NULL);
1026
1027 if (db->db_blkid == DMU_BONUS_BLKID) {
1028 /*
1029 * The bonus length stored in the dnode may be less than
1030 * the maximum available space in the bonus buffer.
1031 */
1032 int bonuslen = MIN(dn->dn_bonuslen, dn->dn_phys->dn_bonuslen);
1033 int max_bonuslen = DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots);
1034 arc_buf_t *dn_buf = (dn->dn_dbuf != NULL) ?
1035 dn->dn_dbuf->db_buf : NULL;
1036
1037 /* if the underlying dnode block is encrypted, decrypt it */
1038 if (dn_buf != NULL && dn->dn_objset->os_encrypted &&
1039 DMU_OT_IS_ENCRYPTED(dn->dn_bonustype) &&
1040 (flags & DB_RF_NO_DECRYPT) == 0 &&
1041 arc_is_encrypted(dn_buf)) {
1042 err = arc_untransform(dn_buf, dn->dn_objset->os_spa,
1043 dmu_objset_id(dn->dn_objset), B_TRUE);
1044 if (err != 0) {
1045 DB_DNODE_EXIT(db);
1046 mutex_exit(&db->db_mtx);
1047 return (err);
1048 }
1049 }
1050
1051 ASSERT3U(bonuslen, <=, db->db.db_size);
1052 db->db.db_data = kmem_alloc(max_bonuslen, KM_SLEEP);
1053 arc_space_consume(max_bonuslen, ARC_SPACE_BONUS);
1054 if (bonuslen < max_bonuslen)
1055 bzero(db->db.db_data, max_bonuslen);
1056 if (bonuslen)
1057 bcopy(DN_BONUS(dn->dn_phys), db->db.db_data, bonuslen);
1058 DB_DNODE_EXIT(db);
1059 db->db_state = DB_CACHED;
1060 mutex_exit(&db->db_mtx);
1061 return (0);
1062 }
1063
1064 /*
1065 * Recheck BP_IS_HOLE() after dnode_block_freed() in case dnode_sync()
1066 * processes the delete record and clears the bp while we are waiting
1067 * for the dn_mtx (resulting in a "no" from block_freed).
1068 */
1069 if (db->db_blkptr == NULL || BP_IS_HOLE(db->db_blkptr) ||
1070 (db->db_level == 0 && (dnode_block_freed(dn, db->db_blkid) ||
1071 BP_IS_HOLE(db->db_blkptr)))) {
1072 arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
1073
1074 dbuf_set_data(db, arc_alloc_buf(db->db_objset->os_spa, db, type,
1075 db->db.db_size));
1076 bzero(db->db.db_data, db->db.db_size);
1077
1078 if (db->db_blkptr != NULL && db->db_level > 0 &&
1079 BP_IS_HOLE(db->db_blkptr) &&
1080 db->db_blkptr->blk_birth != 0) {
1081 blkptr_t *bps = db->db.db_data;
1082 int i;
1083 for (i = 0; i < ((1 <<
1084 DB_DNODE(db)->dn_indblkshift) / sizeof (blkptr_t));
1085 i++) {
1086 blkptr_t *bp = &bps[i];
1087 ASSERT3U(BP_GET_LSIZE(db->db_blkptr), ==,
1088 1 << dn->dn_indblkshift);
1089 BP_SET_LSIZE(bp,
1090 BP_GET_LEVEL(db->db_blkptr) == 1 ?
1091 dn->dn_datablksz :
1092 BP_GET_LSIZE(db->db_blkptr));
1093 BP_SET_TYPE(bp, BP_GET_TYPE(db->db_blkptr));
1094 BP_SET_LEVEL(bp,
1095 BP_GET_LEVEL(db->db_blkptr) - 1);
1096 BP_SET_BIRTH(bp, db->db_blkptr->blk_birth, 0);
1097 }
1098 }
1099 DB_DNODE_EXIT(db);
1100 db->db_state = DB_CACHED;
1101 mutex_exit(&db->db_mtx);
1102 return (0);
1103 }
1104
1105 DB_DNODE_EXIT(db);
1106
1107 db->db_state = DB_READ;
1108 mutex_exit(&db->db_mtx);
1109
1110 if (DBUF_IS_L2CACHEABLE(db))
1111 aflags |= ARC_FLAG_L2CACHE;
1112
1113 SET_BOOKMARK(&zb, db->db_objset->os_dsl_dataset ?
1114 db->db_objset->os_dsl_dataset->ds_object : DMU_META_OBJSET,
1115 db->db.db_object, db->db_level, db->db_blkid);
1116
1117 /*
1118 * All bps of an encrypted os should have the encryption bit set.
1119 * If this is not true it indicates tampering and we report an error.
1120 */
1121 if (db->db_objset->os_encrypted && !BP_USES_CRYPT(db->db_blkptr)) {
1122 spa_log_error(db->db_objset->os_spa, &zb);
1123 zfs_panic_recover("unencrypted block in encrypted "
1124 "object set %llu", dmu_objset_id(db->db_objset));
1125 return (SET_ERROR(EIO));
1126 }
1127
1128 dbuf_add_ref(db, NULL);
1129
1130 zio_flags = (flags & DB_RF_CANFAIL) ?
1131 ZIO_FLAG_CANFAIL : ZIO_FLAG_MUSTSUCCEED;
1132
1133 if ((flags & DB_RF_NO_DECRYPT) && BP_IS_PROTECTED(db->db_blkptr))
1134 zio_flags |= ZIO_FLAG_RAW;
1135
1136 err = arc_read(zio, db->db_objset->os_spa, db->db_blkptr,
1137 dbuf_read_done, db, ZIO_PRIORITY_SYNC_READ, zio_flags,
1138 &aflags, &zb);
1139
1140 return (err);
1141 }
1142
1143 /*
1144 * This is our just-in-time copy function. It makes a copy of buffers that
1145 * have been modified in a previous transaction group before we access them in
1146 * the current active group.
1147 *
1148 * This function is used in three places: when we are dirtying a buffer for the
1149 * first time in a txg, when we are freeing a range in a dnode that includes
1150 * this buffer, and when we are accessing a buffer which was received compressed
1151 * and later referenced in a WRITE_BYREF record.
1152 *
1153 * Note that when we are called from dbuf_free_range() we do not put a hold on
1154 * the buffer, we just traverse the active dbuf list for the dnode.
1155 */
1156 static void
1157 dbuf_fix_old_data(dmu_buf_impl_t *db, uint64_t txg)
1158 {
1159 dbuf_dirty_record_t *dr = db->db_last_dirty;
1160
1161 ASSERT(MUTEX_HELD(&db->db_mtx));
1162 ASSERT(db->db.db_data != NULL);
1163 ASSERT(db->db_level == 0);
1164 ASSERT(db->db.db_object != DMU_META_DNODE_OBJECT);
1165
1166 if (dr == NULL ||
1167 (dr->dt.dl.dr_data !=
1168 ((db->db_blkid == DMU_BONUS_BLKID) ? db->db.db_data : db->db_buf)))
1169 return;
1170
1171 /*
1172 * If the last dirty record for this dbuf has not yet synced
1173 * and its referencing the dbuf data, either:
1174 * reset the reference to point to a new copy,
1175 * or (if there a no active holders)
1176 * just null out the current db_data pointer.
1177 */
1178 ASSERT(dr->dr_txg >= txg - 2);
1179 if (db->db_blkid == DMU_BONUS_BLKID) {
1180 dnode_t *dn = DB_DNODE(db);
1181 int bonuslen = DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots);
1182 dr->dt.dl.dr_data = kmem_alloc(bonuslen, KM_SLEEP);
1183 arc_space_consume(bonuslen, ARC_SPACE_BONUS);
1184 bcopy(db->db.db_data, dr->dt.dl.dr_data, bonuslen);
1185 } else if (refcount_count(&db->db_holds) > db->db_dirtycnt) {
1186 dnode_t *dn = DB_DNODE(db);
1187 int size = arc_buf_size(db->db_buf);
1188 arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
1189 spa_t *spa = db->db_objset->os_spa;
1190 enum zio_compress compress_type =
1191 arc_get_compression(db->db_buf);
1192
1193 if (arc_is_encrypted(db->db_buf)) {
1194 boolean_t byteorder;
1195 uint8_t salt[ZIO_DATA_SALT_LEN];
1196 uint8_t iv[ZIO_DATA_IV_LEN];
1197 uint8_t mac[ZIO_DATA_MAC_LEN];
1198
1199 arc_get_raw_params(db->db_buf, &byteorder, salt,
1200 iv, mac);
1201 dr->dt.dl.dr_data = arc_alloc_raw_buf(spa, db,
1202 dmu_objset_id(dn->dn_objset), byteorder, salt, iv,
1203 mac, dn->dn_type, size, arc_buf_lsize(db->db_buf),
1204 compress_type);
1205 } else if (compress_type != ZIO_COMPRESS_OFF) {
1206 ASSERT3U(type, ==, ARC_BUFC_DATA);
1207 dr->dt.dl.dr_data = arc_alloc_compressed_buf(spa, db,
1208 size, arc_buf_lsize(db->db_buf), compress_type);
1209 } else {
1210 dr->dt.dl.dr_data = arc_alloc_buf(spa, db, type, size);
1211 }
1212 bcopy(db->db.db_data, dr->dt.dl.dr_data->b_data, size);
1213 } else {
1214 db->db_buf = NULL;
1215 dbuf_clear_data(db);
1216 }
1217 }
1218
1219 int
1220 dbuf_read(dmu_buf_impl_t *db, zio_t *zio, uint32_t flags)
1221 {
1222 int err = 0;
1223 boolean_t prefetch;
1224 dnode_t *dn;
1225
1226 /*
1227 * We don't have to hold the mutex to check db_state because it
1228 * can't be freed while we have a hold on the buffer.
1229 */
1230 ASSERT(!refcount_is_zero(&db->db_holds));
1231
1232 if (db->db_state == DB_NOFILL)
1233 return (SET_ERROR(EIO));
1234
1235 DB_DNODE_ENTER(db);
1236 dn = DB_DNODE(db);
1237 if ((flags & DB_RF_HAVESTRUCT) == 0)
1238 rw_enter(&dn->dn_struct_rwlock, RW_READER);
1239
1240 prefetch = db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID &&
1241 (flags & DB_RF_NOPREFETCH) == 0 && dn != NULL &&
1242 DBUF_IS_CACHEABLE(db);
1243
1244 mutex_enter(&db->db_mtx);
1245 if (db->db_state == DB_CACHED) {
1246 spa_t *spa = dn->dn_objset->os_spa;
1247
1248 /*
1249 * If the arc buf is compressed or encrypted, we need to
1250 * untransform it to read the data. This could happen during
1251 * the "zfs receive" of a stream which is deduplicated and
1252 * either raw or compressed. We do not need to do this if the
1253 * caller wants raw encrypted data.
1254 */
1255 if (db->db_buf != NULL && (flags & DB_RF_NO_DECRYPT) == 0 &&
1256 (arc_is_encrypted(db->db_buf) ||
1257 arc_get_compression(db->db_buf) != ZIO_COMPRESS_OFF)) {
1258 dbuf_fix_old_data(db, spa_syncing_txg(spa));
1259 err = arc_untransform(db->db_buf, spa,
1260 dmu_objset_id(db->db_objset), B_FALSE);
1261 dbuf_set_data(db, db->db_buf);
1262 }
1263 mutex_exit(&db->db_mtx);
1264 if (prefetch)
1265 dmu_zfetch(&dn->dn_zfetch, db->db_blkid, 1, B_TRUE);
1266 if ((flags & DB_RF_HAVESTRUCT) == 0)
1267 rw_exit(&dn->dn_struct_rwlock);
1268 DB_DNODE_EXIT(db);
1269 } else if (db->db_state == DB_UNCACHED) {
1270 spa_t *spa = dn->dn_objset->os_spa;
1271 boolean_t need_wait = B_FALSE;
1272
1273 if (zio == NULL &&
1274 db->db_blkptr != NULL && !BP_IS_HOLE(db->db_blkptr)) {
1275 zio = zio_root(spa, NULL, NULL, ZIO_FLAG_CANFAIL);
1276 need_wait = B_TRUE;
1277 }
1278 err = dbuf_read_impl(db, zio, flags);
1279
1280 /* dbuf_read_impl has dropped db_mtx for us */
1281
1282 if (!err && prefetch)
1283 dmu_zfetch(&dn->dn_zfetch, db->db_blkid, 1, B_TRUE);
1284
1285 if ((flags & DB_RF_HAVESTRUCT) == 0)
1286 rw_exit(&dn->dn_struct_rwlock);
1287 DB_DNODE_EXIT(db);
1288
1289 if (!err && need_wait)
1290 err = zio_wait(zio);
1291 } else {
1292 /*
1293 * Another reader came in while the dbuf was in flight
1294 * between UNCACHED and CACHED. Either a writer will finish
1295 * writing the buffer (sending the dbuf to CACHED) or the
1296 * first reader's request will reach the read_done callback
1297 * and send the dbuf to CACHED. Otherwise, a failure
1298 * occurred and the dbuf went to UNCACHED.
1299 */
1300 mutex_exit(&db->db_mtx);
1301 if (prefetch)
1302 dmu_zfetch(&dn->dn_zfetch, db->db_blkid, 1, B_TRUE);
1303 if ((flags & DB_RF_HAVESTRUCT) == 0)
1304 rw_exit(&dn->dn_struct_rwlock);
1305 DB_DNODE_EXIT(db);
1306
1307 /* Skip the wait per the caller's request. */
1308 mutex_enter(&db->db_mtx);
1309 if ((flags & DB_RF_NEVERWAIT) == 0) {
1310 while (db->db_state == DB_READ ||
1311 db->db_state == DB_FILL) {
1312 ASSERT(db->db_state == DB_READ ||
1313 (flags & DB_RF_HAVESTRUCT) == 0);
1314 DTRACE_PROBE2(blocked__read, dmu_buf_impl_t *,
1315 db, zio_t *, zio);
1316 cv_wait(&db->db_changed, &db->db_mtx);
1317 }
1318 if (db->db_state == DB_UNCACHED)
1319 err = SET_ERROR(EIO);
1320 }
1321 mutex_exit(&db->db_mtx);
1322 }
1323
1324 return (err);
1325 }
1326
1327 static void
1328 dbuf_noread(dmu_buf_impl_t *db)
1329 {
1330 ASSERT(!refcount_is_zero(&db->db_holds));
1331 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
1332 mutex_enter(&db->db_mtx);
1333 while (db->db_state == DB_READ || db->db_state == DB_FILL)
1334 cv_wait(&db->db_changed, &db->db_mtx);
1335 if (db->db_state == DB_UNCACHED) {
1336 arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
1337 spa_t *spa = db->db_objset->os_spa;
1338
1339 ASSERT(db->db_buf == NULL);
1340 ASSERT(db->db.db_data == NULL);
1341 dbuf_set_data(db, arc_alloc_buf(spa, db, type, db->db.db_size));
1342 db->db_state = DB_FILL;
1343 } else if (db->db_state == DB_NOFILL) {
1344 dbuf_clear_data(db);
1345 } else {
1346 ASSERT3U(db->db_state, ==, DB_CACHED);
1347 }
1348 mutex_exit(&db->db_mtx);
1349 }
1350
1351 void
1352 dbuf_unoverride(dbuf_dirty_record_t *dr)
1353 {
1354 dmu_buf_impl_t *db = dr->dr_dbuf;
1355 blkptr_t *bp = &dr->dt.dl.dr_overridden_by;
1356 uint64_t txg = dr->dr_txg;
1357
1358 ASSERT(MUTEX_HELD(&db->db_mtx));
1359 /*
1360 * This assert is valid because dmu_sync() expects to be called by
1361 * a zilog's get_data while holding a range lock. This call only
1362 * comes from dbuf_dirty() callers who must also hold a range lock.
1363 */
1364 ASSERT(dr->dt.dl.dr_override_state != DR_IN_DMU_SYNC);
1365 ASSERT(db->db_level == 0);
1366
1367 if (db->db_blkid == DMU_BONUS_BLKID ||
1368 dr->dt.dl.dr_override_state == DR_NOT_OVERRIDDEN)
1369 return;
1370
1371 ASSERT(db->db_data_pending != dr);
1372
1373 /* free this block */
1374 if (!BP_IS_HOLE(bp) && !dr->dt.dl.dr_nopwrite)
1375 zio_free(db->db_objset->os_spa, txg, bp);
1376
1377 dr->dt.dl.dr_override_state = DR_NOT_OVERRIDDEN;
1378 dr->dt.dl.dr_nopwrite = B_FALSE;
1379 dr->dt.dl.dr_raw = B_FALSE;
1380
1381 /*
1382 * Release the already-written buffer, so we leave it in
1383 * a consistent dirty state. Note that all callers are
1384 * modifying the buffer, so they will immediately do
1385 * another (redundant) arc_release(). Therefore, leave
1386 * the buf thawed to save the effort of freezing &
1387 * immediately re-thawing it.
1388 */
1389 arc_release(dr->dt.dl.dr_data, db);
1390 }
1391
1392 /*
1393 * Evict (if its unreferenced) or clear (if its referenced) any level-0
1394 * data blocks in the free range, so that any future readers will find
1395 * empty blocks.
1396 */
1397 void
1398 dbuf_free_range(dnode_t *dn, uint64_t start_blkid, uint64_t end_blkid,
1399 dmu_tx_t *tx)
1400 {
1401 dmu_buf_impl_t *db_search;
1402 dmu_buf_impl_t *db, *db_next;
1403 uint64_t txg = tx->tx_txg;
1404 avl_index_t where;
1405
1406 if (end_blkid > dn->dn_maxblkid &&
1407 !(start_blkid == DMU_SPILL_BLKID || end_blkid == DMU_SPILL_BLKID))
1408 end_blkid = dn->dn_maxblkid;
1409 dprintf_dnode(dn, "start=%llu end=%llu\n", start_blkid, end_blkid);
1410
1411 db_search = kmem_alloc(sizeof (dmu_buf_impl_t), KM_SLEEP);
1412 db_search->db_level = 0;
1413 db_search->db_blkid = start_blkid;
1414 db_search->db_state = DB_SEARCH;
1415
1416 mutex_enter(&dn->dn_dbufs_mtx);
1417 db = avl_find(&dn->dn_dbufs, db_search, &where);
1418 ASSERT3P(db, ==, NULL);
1419
1420 db = avl_nearest(&dn->dn_dbufs, where, AVL_AFTER);
1421
1422 for (; db != NULL; db = db_next) {
1423 db_next = AVL_NEXT(&dn->dn_dbufs, db);
1424 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
1425
1426 if (db->db_level != 0 || db->db_blkid > end_blkid) {
1427 break;
1428 }
1429 ASSERT3U(db->db_blkid, >=, start_blkid);
1430
1431 /* found a level 0 buffer in the range */
1432 mutex_enter(&db->db_mtx);
1433 if (dbuf_undirty(db, tx)) {
1434 /* mutex has been dropped and dbuf destroyed */
1435 continue;
1436 }
1437
1438 if (db->db_state == DB_UNCACHED ||
1439 db->db_state == DB_NOFILL ||
1440 db->db_state == DB_EVICTING) {
1441 ASSERT(db->db.db_data == NULL);
1442 mutex_exit(&db->db_mtx);
1443 continue;
1444 }
1445 if (db->db_state == DB_READ || db->db_state == DB_FILL) {
1446 /* will be handled in dbuf_read_done or dbuf_rele */
1447 db->db_freed_in_flight = TRUE;
1448 mutex_exit(&db->db_mtx);
1449 continue;
1450 }
1451 if (refcount_count(&db->db_holds) == 0) {
1452 ASSERT(db->db_buf);
1453 dbuf_destroy(db);
1454 continue;
1455 }
1456 /* The dbuf is referenced */
1457
1458 if (db->db_last_dirty != NULL) {
1459 dbuf_dirty_record_t *dr = db->db_last_dirty;
1460
1461 if (dr->dr_txg == txg) {
1462 /*
1463 * This buffer is "in-use", re-adjust the file
1464 * size to reflect that this buffer may
1465 * contain new data when we sync.
1466 */
1467 if (db->db_blkid != DMU_SPILL_BLKID &&
1468 db->db_blkid > dn->dn_maxblkid)
1469 dn->dn_maxblkid = db->db_blkid;
1470 dbuf_unoverride(dr);
1471 } else {
1472 /*
1473 * This dbuf is not dirty in the open context.
1474 * Either uncache it (if its not referenced in
1475 * the open context) or reset its contents to
1476 * empty.
1477 */
1478 dbuf_fix_old_data(db, txg);
1479 }
1480 }
1481 /* clear the contents if its cached */
1482 if (db->db_state == DB_CACHED) {
1483 ASSERT(db->db.db_data != NULL);
1484 arc_release(db->db_buf, db);
1485 bzero(db->db.db_data, db->db.db_size);
1486 arc_buf_freeze(db->db_buf);
1487 }
1488
1489 mutex_exit(&db->db_mtx);
1490 }
1491
1492 kmem_free(db_search, sizeof (dmu_buf_impl_t));
1493 mutex_exit(&dn->dn_dbufs_mtx);
1494 }
1495
1496 void
1497 dbuf_new_size(dmu_buf_impl_t *db, int size, dmu_tx_t *tx)
1498 {
1499 arc_buf_t *buf, *obuf;
1500 int osize = db->db.db_size;
1501 arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
1502 dnode_t *dn;
1503
1504 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
1505
1506 DB_DNODE_ENTER(db);
1507 dn = DB_DNODE(db);
1508
1509 /* XXX does *this* func really need the lock? */
1510 ASSERT(RW_WRITE_HELD(&dn->dn_struct_rwlock));
1511
1512 /*
1513 * This call to dmu_buf_will_dirty() with the dn_struct_rwlock held
1514 * is OK, because there can be no other references to the db
1515 * when we are changing its size, so no concurrent DB_FILL can
1516 * be happening.
1517 */
1518 /*
1519 * XXX we should be doing a dbuf_read, checking the return
1520 * value and returning that up to our callers
1521 */
1522 dmu_buf_will_dirty(&db->db, tx);
1523
1524 /* create the data buffer for the new block */
1525 buf = arc_alloc_buf(dn->dn_objset->os_spa, db, type, size);
1526
1527 /* copy old block data to the new block */
1528 obuf = db->db_buf;
1529 bcopy(obuf->b_data, buf->b_data, MIN(osize, size));
1530 /* zero the remainder */
1531 if (size > osize)
1532 bzero((uint8_t *)buf->b_data + osize, size - osize);
1533
1534 mutex_enter(&db->db_mtx);
1535 dbuf_set_data(db, buf);
1536 arc_buf_destroy(obuf, db);
1537 db->db.db_size = size;
1538
1539 if (db->db_level == 0) {
1540 ASSERT3U(db->db_last_dirty->dr_txg, ==, tx->tx_txg);
1541 db->db_last_dirty->dt.dl.dr_data = buf;
1542 }
1543 mutex_exit(&db->db_mtx);
1544
1545 dmu_objset_willuse_space(dn->dn_objset, size - osize, tx);
1546 DB_DNODE_EXIT(db);
1547 }
1548
1549 void
1550 dbuf_release_bp(dmu_buf_impl_t *db)
1551 {
1552 ASSERTV(objset_t *os = db->db_objset);
1553
1554 ASSERT(dsl_pool_sync_context(dmu_objset_pool(os)));
1555 ASSERT(arc_released(os->os_phys_buf) ||
1556 list_link_active(&os->os_dsl_dataset->ds_synced_link));
1557 ASSERT(db->db_parent == NULL || arc_released(db->db_parent->db_buf));
1558
1559 (void) arc_release(db->db_buf, db);
1560 }
1561
1562 /*
1563 * We already have a dirty record for this TXG, and we are being
1564 * dirtied again.
1565 */
1566 static void
1567 dbuf_redirty(dbuf_dirty_record_t *dr)
1568 {
1569 dmu_buf_impl_t *db = dr->dr_dbuf;
1570
1571 ASSERT(MUTEX_HELD(&db->db_mtx));
1572
1573 if (db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID) {
1574 /*
1575 * If this buffer has already been written out,
1576 * we now need to reset its state.
1577 */
1578 dbuf_unoverride(dr);
1579 if (db->db.db_object != DMU_META_DNODE_OBJECT &&
1580 db->db_state != DB_NOFILL) {
1581 /* Already released on initial dirty, so just thaw. */
1582 ASSERT(arc_released(db->db_buf));
1583 arc_buf_thaw(db->db_buf);
1584 }
1585 }
1586 }
1587
1588 dbuf_dirty_record_t *
1589 dbuf_dirty(dmu_buf_impl_t *db, dmu_tx_t *tx)
1590 {
1591 dnode_t *dn;
1592 objset_t *os;
1593 dbuf_dirty_record_t **drp, *dr;
1594 int drop_struct_lock = FALSE;
1595 int txgoff = tx->tx_txg & TXG_MASK;
1596
1597 ASSERT(tx->tx_txg != 0);
1598 ASSERT(!refcount_is_zero(&db->db_holds));
1599 DMU_TX_DIRTY_BUF(tx, db);
1600
1601 DB_DNODE_ENTER(db);
1602 dn = DB_DNODE(db);
1603 /*
1604 * Shouldn't dirty a regular buffer in syncing context. Private
1605 * objects may be dirtied in syncing context, but only if they
1606 * were already pre-dirtied in open context.
1607 */
1608 #ifdef DEBUG
1609 if (dn->dn_objset->os_dsl_dataset != NULL) {
1610 rrw_enter(&dn->dn_objset->os_dsl_dataset->ds_bp_rwlock,
1611 RW_READER, FTAG);
1612 }
1613 ASSERT(!dmu_tx_is_syncing(tx) ||
1614 BP_IS_HOLE(dn->dn_objset->os_rootbp) ||
1615 DMU_OBJECT_IS_SPECIAL(dn->dn_object) ||
1616 dn->dn_objset->os_dsl_dataset == NULL);
1617 if (dn->dn_objset->os_dsl_dataset != NULL)
1618 rrw_exit(&dn->dn_objset->os_dsl_dataset->ds_bp_rwlock, FTAG);
1619 #endif
1620 /*
1621 * We make this assert for private objects as well, but after we
1622 * check if we're already dirty. They are allowed to re-dirty
1623 * in syncing context.
1624 */
1625 ASSERT(dn->dn_object == DMU_META_DNODE_OBJECT ||
1626 dn->dn_dirtyctx == DN_UNDIRTIED || dn->dn_dirtyctx ==
1627 (dmu_tx_is_syncing(tx) ? DN_DIRTY_SYNC : DN_DIRTY_OPEN));
1628
1629 mutex_enter(&db->db_mtx);
1630 /*
1631 * XXX make this true for indirects too? The problem is that
1632 * transactions created with dmu_tx_create_assigned() from
1633 * syncing context don't bother holding ahead.
1634 */
1635 ASSERT(db->db_level != 0 ||
1636 db->db_state == DB_CACHED || db->db_state == DB_FILL ||
1637 db->db_state == DB_NOFILL);
1638
1639 mutex_enter(&dn->dn_mtx);
1640 /*
1641 * Don't set dirtyctx to SYNC if we're just modifying this as we
1642 * initialize the objset.
1643 */
1644 if (dn->dn_dirtyctx == DN_UNDIRTIED) {
1645 if (dn->dn_objset->os_dsl_dataset != NULL) {
1646 rrw_enter(&dn->dn_objset->os_dsl_dataset->ds_bp_rwlock,
1647 RW_READER, FTAG);
1648 }
1649 if (!BP_IS_HOLE(dn->dn_objset->os_rootbp)) {
1650 dn->dn_dirtyctx = (dmu_tx_is_syncing(tx) ?
1651 DN_DIRTY_SYNC : DN_DIRTY_OPEN);
1652 ASSERT(dn->dn_dirtyctx_firstset == NULL);
1653 dn->dn_dirtyctx_firstset = kmem_alloc(1, KM_SLEEP);
1654 }
1655 if (dn->dn_objset->os_dsl_dataset != NULL) {
1656 rrw_exit(&dn->dn_objset->os_dsl_dataset->ds_bp_rwlock,
1657 FTAG);
1658 }
1659 }
1660 mutex_exit(&dn->dn_mtx);
1661
1662 if (db->db_blkid == DMU_SPILL_BLKID)
1663 dn->dn_have_spill = B_TRUE;
1664
1665 /*
1666 * If this buffer is already dirty, we're done.
1667 */
1668 drp = &db->db_last_dirty;
1669 ASSERT(*drp == NULL || (*drp)->dr_txg <= tx->tx_txg ||
1670 db->db.db_object == DMU_META_DNODE_OBJECT);
1671 while ((dr = *drp) != NULL && dr->dr_txg > tx->tx_txg)
1672 drp = &dr->dr_next;
1673 if (dr && dr->dr_txg == tx->tx_txg) {
1674 DB_DNODE_EXIT(db);
1675
1676 dbuf_redirty(dr);
1677 mutex_exit(&db->db_mtx);
1678 return (dr);
1679 }
1680
1681 /*
1682 * Only valid if not already dirty.
1683 */
1684 ASSERT(dn->dn_object == 0 ||
1685 dn->dn_dirtyctx == DN_UNDIRTIED || dn->dn_dirtyctx ==
1686 (dmu_tx_is_syncing(tx) ? DN_DIRTY_SYNC : DN_DIRTY_OPEN));
1687
1688 ASSERT3U(dn->dn_nlevels, >, db->db_level);
1689
1690 /*
1691 * We should only be dirtying in syncing context if it's the
1692 * mos or we're initializing the os or it's a special object.
1693 * However, we are allowed to dirty in syncing context provided
1694 * we already dirtied it in open context. Hence we must make
1695 * this assertion only if we're not already dirty.
1696 */
1697 os = dn->dn_objset;
1698 VERIFY3U(tx->tx_txg, <=, spa_final_dirty_txg(os->os_spa));
1699 #ifdef DEBUG
1700 if (dn->dn_objset->os_dsl_dataset != NULL)
1701 rrw_enter(&os->os_dsl_dataset->ds_bp_rwlock, RW_READER, FTAG);
1702 ASSERT(!dmu_tx_is_syncing(tx) || DMU_OBJECT_IS_SPECIAL(dn->dn_object) ||
1703 os->os_dsl_dataset == NULL || BP_IS_HOLE(os->os_rootbp));
1704 if (dn->dn_objset->os_dsl_dataset != NULL)
1705 rrw_exit(&os->os_dsl_dataset->ds_bp_rwlock, FTAG);
1706 #endif
1707 ASSERT(db->db.db_size != 0);
1708
1709 dprintf_dbuf(db, "size=%llx\n", (u_longlong_t)db->db.db_size);
1710
1711 if (db->db_blkid != DMU_BONUS_BLKID) {
1712 dmu_objset_willuse_space(os, db->db.db_size, tx);
1713 }
1714
1715 /*
1716 * If this buffer is dirty in an old transaction group we need
1717 * to make a copy of it so that the changes we make in this
1718 * transaction group won't leak out when we sync the older txg.
1719 */
1720 dr = kmem_zalloc(sizeof (dbuf_dirty_record_t), KM_SLEEP);
1721 list_link_init(&dr->dr_dirty_node);
1722 if (db->db_level == 0) {
1723 void *data_old = db->db_buf;
1724
1725 if (db->db_state != DB_NOFILL) {
1726 if (db->db_blkid == DMU_BONUS_BLKID) {
1727 dbuf_fix_old_data(db, tx->tx_txg);
1728 data_old = db->db.db_data;
1729 } else if (db->db.db_object != DMU_META_DNODE_OBJECT) {
1730 /*
1731 * Release the data buffer from the cache so
1732 * that we can modify it without impacting
1733 * possible other users of this cached data
1734 * block. Note that indirect blocks and
1735 * private objects are not released until the
1736 * syncing state (since they are only modified
1737 * then).
1738 */
1739 arc_release(db->db_buf, db);
1740 dbuf_fix_old_data(db, tx->tx_txg);
1741 data_old = db->db_buf;
1742 }
1743 ASSERT(data_old != NULL);
1744 }
1745 dr->dt.dl.dr_data = data_old;
1746 } else {
1747 mutex_init(&dr->dt.di.dr_mtx, NULL, MUTEX_NOLOCKDEP, NULL);
1748 list_create(&dr->dt.di.dr_children,
1749 sizeof (dbuf_dirty_record_t),
1750 offsetof(dbuf_dirty_record_t, dr_dirty_node));
1751 }
1752 if (db->db_blkid != DMU_BONUS_BLKID && os->os_dsl_dataset != NULL)
1753 dr->dr_accounted = db->db.db_size;
1754 dr->dr_dbuf = db;
1755 dr->dr_txg = tx->tx_txg;
1756 dr->dr_next = *drp;
1757 *drp = dr;
1758
1759 /*
1760 * We could have been freed_in_flight between the dbuf_noread
1761 * and dbuf_dirty. We win, as though the dbuf_noread() had
1762 * happened after the free.
1763 */
1764 if (db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID &&
1765 db->db_blkid != DMU_SPILL_BLKID) {
1766 mutex_enter(&dn->dn_mtx);
1767 if (dn->dn_free_ranges[txgoff] != NULL) {
1768 range_tree_clear(dn->dn_free_ranges[txgoff],
1769 db->db_blkid, 1);
1770 }
1771 mutex_exit(&dn->dn_mtx);
1772 db->db_freed_in_flight = FALSE;
1773 }
1774
1775 /*
1776 * This buffer is now part of this txg
1777 */
1778 dbuf_add_ref(db, (void *)(uintptr_t)tx->tx_txg);
1779 db->db_dirtycnt += 1;
1780 ASSERT3U(db->db_dirtycnt, <=, 3);
1781
1782 mutex_exit(&db->db_mtx);
1783
1784 if (db->db_blkid == DMU_BONUS_BLKID ||
1785 db->db_blkid == DMU_SPILL_BLKID) {
1786 mutex_enter(&dn->dn_mtx);
1787 ASSERT(!list_link_active(&dr->dr_dirty_node));
1788 list_insert_tail(&dn->dn_dirty_records[txgoff], dr);
1789 mutex_exit(&dn->dn_mtx);
1790 dnode_setdirty(dn, tx);
1791 DB_DNODE_EXIT(db);
1792 return (dr);
1793 }
1794
1795 /*
1796 * The dn_struct_rwlock prevents db_blkptr from changing
1797 * due to a write from syncing context completing
1798 * while we are running, so we want to acquire it before
1799 * looking at db_blkptr.
1800 */
1801 if (!RW_WRITE_HELD(&dn->dn_struct_rwlock)) {
1802 rw_enter(&dn->dn_struct_rwlock, RW_READER);
1803 drop_struct_lock = TRUE;
1804 }
1805
1806 /*
1807 * We need to hold the dn_struct_rwlock to make this assertion,
1808 * because it protects dn_phys / dn_next_nlevels from changing.
1809 */
1810 ASSERT((dn->dn_phys->dn_nlevels == 0 && db->db_level == 0) ||
1811 dn->dn_phys->dn_nlevels > db->db_level ||
1812 dn->dn_next_nlevels[txgoff] > db->db_level ||
1813 dn->dn_next_nlevels[(tx->tx_txg-1) & TXG_MASK] > db->db_level ||
1814 dn->dn_next_nlevels[(tx->tx_txg-2) & TXG_MASK] > db->db_level);
1815
1816 /*
1817 * If we are overwriting a dedup BP, then unless it is snapshotted,
1818 * when we get to syncing context we will need to decrement its
1819 * refcount in the DDT. Prefetch the relevant DDT block so that
1820 * syncing context won't have to wait for the i/o.
1821 */
1822 ddt_prefetch(os->os_spa, db->db_blkptr);
1823
1824 if (db->db_level == 0) {
1825 dnode_new_blkid(dn, db->db_blkid, tx, drop_struct_lock);
1826 ASSERT(dn->dn_maxblkid >= db->db_blkid);
1827 }
1828
1829 if (db->db_level+1 < dn->dn_nlevels) {
1830 dmu_buf_impl_t *parent = db->db_parent;
1831 dbuf_dirty_record_t *di;
1832 int parent_held = FALSE;
1833
1834 if (db->db_parent == NULL || db->db_parent == dn->dn_dbuf) {
1835 int epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT;
1836
1837 parent = dbuf_hold_level(dn, db->db_level+1,
1838 db->db_blkid >> epbs, FTAG);
1839 ASSERT(parent != NULL);
1840 parent_held = TRUE;
1841 }
1842 if (drop_struct_lock)
1843 rw_exit(&dn->dn_struct_rwlock);
1844 ASSERT3U(db->db_level+1, ==, parent->db_level);
1845 di = dbuf_dirty(parent, tx);
1846 if (parent_held)
1847 dbuf_rele(parent, FTAG);
1848
1849 mutex_enter(&db->db_mtx);
1850 /*
1851 * Since we've dropped the mutex, it's possible that
1852 * dbuf_undirty() might have changed this out from under us.
1853 */
1854 if (db->db_last_dirty == dr ||
1855 dn->dn_object == DMU_META_DNODE_OBJECT) {
1856 mutex_enter(&di->dt.di.dr_mtx);
1857 ASSERT3U(di->dr_txg, ==, tx->tx_txg);
1858 ASSERT(!list_link_active(&dr->dr_dirty_node));
1859 list_insert_tail(&di->dt.di.dr_children, dr);
1860 mutex_exit(&di->dt.di.dr_mtx);
1861 dr->dr_parent = di;
1862 }
1863 mutex_exit(&db->db_mtx);
1864 } else {
1865 ASSERT(db->db_level+1 == dn->dn_nlevels);
1866 ASSERT(db->db_blkid < dn->dn_nblkptr);
1867 ASSERT(db->db_parent == NULL || db->db_parent == dn->dn_dbuf);
1868 mutex_enter(&dn->dn_mtx);
1869 ASSERT(!list_link_active(&dr->dr_dirty_node));
1870 list_insert_tail(&dn->dn_dirty_records[txgoff], dr);
1871 mutex_exit(&dn->dn_mtx);
1872 if (drop_struct_lock)
1873 rw_exit(&dn->dn_struct_rwlock);
1874 }
1875
1876 dnode_setdirty(dn, tx);
1877 DB_DNODE_EXIT(db);
1878 return (dr);
1879 }
1880
1881 /*
1882 * Undirty a buffer in the transaction group referenced by the given
1883 * transaction. Return whether this evicted the dbuf.
1884 */
1885 static boolean_t
1886 dbuf_undirty(dmu_buf_impl_t *db, dmu_tx_t *tx)
1887 {
1888 dnode_t *dn;
1889 uint64_t txg = tx->tx_txg;
1890 dbuf_dirty_record_t *dr, **drp;
1891
1892 ASSERT(txg != 0);
1893
1894 /*
1895 * Due to our use of dn_nlevels below, this can only be called
1896 * in open context, unless we are operating on the MOS.
1897 * From syncing context, dn_nlevels may be different from the
1898 * dn_nlevels used when dbuf was dirtied.
1899 */
1900 ASSERT(db->db_objset ==
1901 dmu_objset_pool(db->db_objset)->dp_meta_objset ||
1902 txg != spa_syncing_txg(dmu_objset_spa(db->db_objset)));
1903 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
1904 ASSERT0(db->db_level);
1905 ASSERT(MUTEX_HELD(&db->db_mtx));
1906
1907 /*
1908 * If this buffer is not dirty, we're done.
1909 */
1910 for (drp = &db->db_last_dirty; (dr = *drp) != NULL; drp = &dr->dr_next)
1911 if (dr->dr_txg <= txg)
1912 break;
1913 if (dr == NULL || dr->dr_txg < txg)
1914 return (B_FALSE);
1915 ASSERT(dr->dr_txg == txg);
1916 ASSERT(dr->dr_dbuf == db);
1917
1918 DB_DNODE_ENTER(db);
1919 dn = DB_DNODE(db);
1920
1921 dprintf_dbuf(db, "size=%llx\n", (u_longlong_t)db->db.db_size);
1922
1923 ASSERT(db->db.db_size != 0);
1924
1925 dsl_pool_undirty_space(dmu_objset_pool(dn->dn_objset),
1926 dr->dr_accounted, txg);
1927
1928 *drp = dr->dr_next;
1929
1930 /*
1931 * Note that there are three places in dbuf_dirty()
1932 * where this dirty record may be put on a list.
1933 * Make sure to do a list_remove corresponding to
1934 * every one of those list_insert calls.
1935 */
1936 if (dr->dr_parent) {
1937 mutex_enter(&dr->dr_parent->dt.di.dr_mtx);
1938 list_remove(&dr->dr_parent->dt.di.dr_children, dr);
1939 mutex_exit(&dr->dr_parent->dt.di.dr_mtx);
1940 } else if (db->db_blkid == DMU_SPILL_BLKID ||
1941 db->db_level + 1 == dn->dn_nlevels) {
1942 ASSERT(db->db_blkptr == NULL || db->db_parent == dn->dn_dbuf);
1943 mutex_enter(&dn->dn_mtx);
1944 list_remove(&dn->dn_dirty_records[txg & TXG_MASK], dr);
1945 mutex_exit(&dn->dn_mtx);
1946 }
1947 DB_DNODE_EXIT(db);
1948
1949 if (db->db_state != DB_NOFILL) {
1950 dbuf_unoverride(dr);
1951
1952 ASSERT(db->db_buf != NULL);
1953 ASSERT(dr->dt.dl.dr_data != NULL);
1954 if (dr->dt.dl.dr_data != db->db_buf)
1955 arc_buf_destroy(dr->dt.dl.dr_data, db);
1956 }
1957
1958 kmem_free(dr, sizeof (dbuf_dirty_record_t));
1959
1960 ASSERT(db->db_dirtycnt > 0);
1961 db->db_dirtycnt -= 1;
1962
1963 if (refcount_remove(&db->db_holds, (void *)(uintptr_t)txg) == 0) {
1964 ASSERT(db->db_state == DB_NOFILL || arc_released(db->db_buf));
1965 dbuf_destroy(db);
1966 return (B_TRUE);
1967 }
1968
1969 return (B_FALSE);
1970 }
1971
1972 static void
1973 dmu_buf_will_dirty_impl(dmu_buf_t *db_fake, int flags, dmu_tx_t *tx)
1974 {
1975 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
1976 dbuf_dirty_record_t *dr;
1977
1978 ASSERT(tx->tx_txg != 0);
1979 ASSERT(!refcount_is_zero(&db->db_holds));
1980
1981 /*
1982 * Quick check for dirtyness. For already dirty blocks, this
1983 * reduces runtime of this function by >90%, and overall performance
1984 * by 50% for some workloads (e.g. file deletion with indirect blocks
1985 * cached).
1986 */
1987 mutex_enter(&db->db_mtx);
1988
1989 for (dr = db->db_last_dirty;
1990 dr != NULL && dr->dr_txg >= tx->tx_txg; dr = dr->dr_next) {
1991 /*
1992 * It's possible that it is already dirty but not cached,
1993 * because there are some calls to dbuf_dirty() that don't
1994 * go through dmu_buf_will_dirty().
1995 */
1996 if (dr->dr_txg == tx->tx_txg && db->db_state == DB_CACHED) {
1997 /* This dbuf is already dirty and cached. */
1998 dbuf_redirty(dr);
1999 mutex_exit(&db->db_mtx);
2000 return;
2001 }
2002 }
2003 mutex_exit(&db->db_mtx);
2004
2005 DB_DNODE_ENTER(db);
2006 if (RW_WRITE_HELD(&DB_DNODE(db)->dn_struct_rwlock))
2007 flags |= DB_RF_HAVESTRUCT;
2008 DB_DNODE_EXIT(db);
2009 (void) dbuf_read(db, NULL, flags);
2010 (void) dbuf_dirty(db, tx);
2011 }
2012
2013 void
2014 dmu_buf_will_dirty(dmu_buf_t *db_fake, dmu_tx_t *tx)
2015 {
2016 dmu_buf_will_dirty_impl(db_fake,
2017 DB_RF_MUST_SUCCEED | DB_RF_NOPREFETCH, tx);
2018 }
2019
2020 void
2021 dmu_buf_will_not_fill(dmu_buf_t *db_fake, dmu_tx_t *tx)
2022 {
2023 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2024
2025 db->db_state = DB_NOFILL;
2026
2027 dmu_buf_will_fill(db_fake, tx);
2028 }
2029
2030 void
2031 dmu_buf_will_fill(dmu_buf_t *db_fake, dmu_tx_t *tx)
2032 {
2033 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2034
2035 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
2036 ASSERT(tx->tx_txg != 0);
2037 ASSERT(db->db_level == 0);
2038 ASSERT(!refcount_is_zero(&db->db_holds));
2039
2040 ASSERT(db->db.db_object != DMU_META_DNODE_OBJECT ||
2041 dmu_tx_private_ok(tx));
2042
2043 dbuf_noread(db);
2044 (void) dbuf_dirty(db, tx);
2045 }
2046
2047 /*
2048 * This function is effectively the same as dmu_buf_will_dirty(), but
2049 * indicates the caller expects raw encrypted data in the db. It will
2050 * also set the raw flag on the created dirty record.
2051 */
2052 void
2053 dmu_buf_will_change_crypt_params(dmu_buf_t *db_fake, dmu_tx_t *tx)
2054 {
2055 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2056 dbuf_dirty_record_t *dr;
2057
2058 dmu_buf_will_dirty_impl(db_fake,
2059 DB_RF_MUST_SUCCEED | DB_RF_NOPREFETCH | DB_RF_NO_DECRYPT, tx);
2060
2061 dr = db->db_last_dirty;
2062 while (dr != NULL && dr->dr_txg > tx->tx_txg)
2063 dr = dr->dr_next;
2064
2065 ASSERT3P(dr, !=, NULL);
2066 ASSERT3U(dr->dr_txg, ==, tx->tx_txg);
2067 dr->dt.dl.dr_raw = B_TRUE;
2068 }
2069
2070 #pragma weak dmu_buf_fill_done = dbuf_fill_done
2071 /* ARGSUSED */
2072 void
2073 dbuf_fill_done(dmu_buf_impl_t *db, dmu_tx_t *tx)
2074 {
2075 mutex_enter(&db->db_mtx);
2076 DBUF_VERIFY(db);
2077
2078 if (db->db_state == DB_FILL) {
2079 if (db->db_level == 0 && db->db_freed_in_flight) {
2080 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
2081 /* we were freed while filling */
2082 /* XXX dbuf_undirty? */
2083 bzero(db->db.db_data, db->db.db_size);
2084 db->db_freed_in_flight = FALSE;
2085 }
2086 db->db_state = DB_CACHED;
2087 cv_broadcast(&db->db_changed);
2088 }
2089 mutex_exit(&db->db_mtx);
2090 }
2091
2092 void
2093 dmu_buf_write_embedded(dmu_buf_t *dbuf, void *data,
2094 bp_embedded_type_t etype, enum zio_compress comp,
2095 int uncompressed_size, int compressed_size, int byteorder,
2096 dmu_tx_t *tx)
2097 {
2098 dmu_buf_impl_t *db = (dmu_buf_impl_t *)dbuf;
2099 struct dirty_leaf *dl;
2100 dmu_object_type_t type;
2101
2102 if (etype == BP_EMBEDDED_TYPE_DATA) {
2103 ASSERT(spa_feature_is_active(dmu_objset_spa(db->db_objset),
2104 SPA_FEATURE_EMBEDDED_DATA));
2105 }
2106
2107 DB_DNODE_ENTER(db);
2108 type = DB_DNODE(db)->dn_type;
2109 DB_DNODE_EXIT(db);
2110
2111 ASSERT0(db->db_level);
2112 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
2113
2114 dmu_buf_will_not_fill(dbuf, tx);
2115
2116 ASSERT3U(db->db_last_dirty->dr_txg, ==, tx->tx_txg);
2117 dl = &db->db_last_dirty->dt.dl;
2118 encode_embedded_bp_compressed(&dl->dr_overridden_by,
2119 data, comp, uncompressed_size, compressed_size);
2120 BPE_SET_ETYPE(&dl->dr_overridden_by, etype);
2121 BP_SET_TYPE(&dl->dr_overridden_by, type);
2122 BP_SET_LEVEL(&dl->dr_overridden_by, 0);
2123 BP_SET_BYTEORDER(&dl->dr_overridden_by, byteorder);
2124
2125 dl->dr_override_state = DR_OVERRIDDEN;
2126 dl->dr_overridden_by.blk_birth = db->db_last_dirty->dr_txg;
2127 }
2128
2129 /*
2130 * Directly assign a provided arc buf to a given dbuf if it's not referenced
2131 * by anybody except our caller. Otherwise copy arcbuf's contents to dbuf.
2132 */
2133 void
2134 dbuf_assign_arcbuf(dmu_buf_impl_t *db, arc_buf_t *buf, dmu_tx_t *tx)
2135 {
2136 ASSERT(!refcount_is_zero(&db->db_holds));
2137 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
2138 ASSERT(db->db_level == 0);
2139 ASSERT3U(dbuf_is_metadata(db), ==, arc_is_metadata(buf));
2140 ASSERT(buf != NULL);
2141 ASSERT(arc_buf_lsize(buf) == db->db.db_size);
2142 ASSERT(tx->tx_txg != 0);
2143
2144 arc_return_buf(buf, db);
2145 ASSERT(arc_released(buf));
2146
2147 mutex_enter(&db->db_mtx);
2148
2149 while (db->db_state == DB_READ || db->db_state == DB_FILL)
2150 cv_wait(&db->db_changed, &db->db_mtx);
2151
2152 ASSERT(db->db_state == DB_CACHED || db->db_state == DB_UNCACHED);
2153
2154 if (db->db_state == DB_CACHED &&
2155 refcount_count(&db->db_holds) - 1 > db->db_dirtycnt) {
2156 mutex_exit(&db->db_mtx);
2157 (void) dbuf_dirty(db, tx);
2158 bcopy(buf->b_data, db->db.db_data, db->db.db_size);
2159 arc_buf_destroy(buf, db);
2160 xuio_stat_wbuf_copied();
2161 return;
2162 }
2163
2164 xuio_stat_wbuf_nocopy();
2165 if (db->db_state == DB_CACHED) {
2166 dbuf_dirty_record_t *dr = db->db_last_dirty;
2167
2168 ASSERT(db->db_buf != NULL);
2169 if (dr != NULL && dr->dr_txg == tx->tx_txg) {
2170 ASSERT(dr->dt.dl.dr_data == db->db_buf);
2171 if (!arc_released(db->db_buf)) {
2172 ASSERT(dr->dt.dl.dr_override_state ==
2173 DR_OVERRIDDEN);
2174 arc_release(db->db_buf, db);
2175 }
2176 dr->dt.dl.dr_data = buf;
2177 arc_buf_destroy(db->db_buf, db);
2178 } else if (dr == NULL || dr->dt.dl.dr_data != db->db_buf) {
2179 arc_release(db->db_buf, db);
2180 arc_buf_destroy(db->db_buf, db);
2181 }
2182 db->db_buf = NULL;
2183 }
2184 ASSERT(db->db_buf == NULL);
2185 dbuf_set_data(db, buf);
2186 db->db_state = DB_FILL;
2187 mutex_exit(&db->db_mtx);
2188 (void) dbuf_dirty(db, tx);
2189 dmu_buf_fill_done(&db->db, tx);
2190 }
2191
2192 void
2193 dbuf_destroy(dmu_buf_impl_t *db)
2194 {
2195 dnode_t *dn;
2196 dmu_buf_impl_t *parent = db->db_parent;
2197 dmu_buf_impl_t *dndb;
2198
2199 ASSERT(MUTEX_HELD(&db->db_mtx));
2200 ASSERT(refcount_is_zero(&db->db_holds));
2201
2202 if (db->db_buf != NULL) {
2203 arc_buf_destroy(db->db_buf, db);
2204 db->db_buf = NULL;
2205 }
2206
2207 if (db->db_blkid == DMU_BONUS_BLKID) {
2208 int slots = DB_DNODE(db)->dn_num_slots;
2209 int bonuslen = DN_SLOTS_TO_BONUSLEN(slots);
2210 if (db->db.db_data != NULL) {
2211 kmem_free(db->db.db_data, bonuslen);
2212 arc_space_return(bonuslen, ARC_SPACE_BONUS);
2213 db->db_state = DB_UNCACHED;
2214 }
2215 }
2216
2217 dbuf_clear_data(db);
2218
2219 if (multilist_link_active(&db->db_cache_link)) {
2220 multilist_remove(dbuf_cache, db);
2221 (void) refcount_remove_many(&dbuf_cache_size,
2222 db->db.db_size, db);
2223 }
2224
2225 ASSERT(db->db_state == DB_UNCACHED || db->db_state == DB_NOFILL);
2226 ASSERT(db->db_data_pending == NULL);
2227
2228 db->db_state = DB_EVICTING;
2229 db->db_blkptr = NULL;
2230
2231 /*
2232 * Now that db_state is DB_EVICTING, nobody else can find this via
2233 * the hash table. We can now drop db_mtx, which allows us to
2234 * acquire the dn_dbufs_mtx.
2235 */
2236 mutex_exit(&db->db_mtx);
2237
2238 DB_DNODE_ENTER(db);
2239 dn = DB_DNODE(db);
2240 dndb = dn->dn_dbuf;
2241 if (db->db_blkid != DMU_BONUS_BLKID) {
2242 boolean_t needlock = !MUTEX_HELD(&dn->dn_dbufs_mtx);
2243 if (needlock)
2244 mutex_enter(&dn->dn_dbufs_mtx);
2245 avl_remove(&dn->dn_dbufs, db);
2246 atomic_dec_32(&dn->dn_dbufs_count);
2247 membar_producer();
2248 DB_DNODE_EXIT(db);
2249 if (needlock)
2250 mutex_exit(&dn->dn_dbufs_mtx);
2251 /*
2252 * Decrementing the dbuf count means that the hold corresponding
2253 * to the removed dbuf is no longer discounted in dnode_move(),
2254 * so the dnode cannot be moved until after we release the hold.
2255 * The membar_producer() ensures visibility of the decremented
2256 * value in dnode_move(), since DB_DNODE_EXIT doesn't actually
2257 * release any lock.
2258 */
2259 dnode_rele(dn, db);
2260 db->db_dnode_handle = NULL;
2261
2262 dbuf_hash_remove(db);
2263 } else {
2264 DB_DNODE_EXIT(db);
2265 }
2266
2267 ASSERT(refcount_is_zero(&db->db_holds));
2268
2269 db->db_parent = NULL;
2270
2271 ASSERT(db->db_buf == NULL);
2272 ASSERT(db->db.db_data == NULL);
2273 ASSERT(db->db_hash_next == NULL);
2274 ASSERT(db->db_blkptr == NULL);
2275 ASSERT(db->db_data_pending == NULL);
2276 ASSERT(!multilist_link_active(&db->db_cache_link));
2277
2278 kmem_cache_free(dbuf_kmem_cache, db);
2279 arc_space_return(sizeof (dmu_buf_impl_t), ARC_SPACE_DBUF);
2280
2281 /*
2282 * If this dbuf is referenced from an indirect dbuf,
2283 * decrement the ref count on the indirect dbuf.
2284 */
2285 if (parent && parent != dndb)
2286 dbuf_rele(parent, db);
2287 }
2288
2289 /*
2290 * Note: While bpp will always be updated if the function returns success,
2291 * parentp will not be updated if the dnode does not have dn_dbuf filled in;
2292 * this happens when the dnode is the meta-dnode, or a userused or groupused
2293 * object.
2294 */
2295 __attribute__((always_inline))
2296 static inline int
2297 dbuf_findbp(dnode_t *dn, int level, uint64_t blkid, int fail_sparse,
2298 dmu_buf_impl_t **parentp, blkptr_t **bpp, struct dbuf_hold_impl_data *dh)
2299 {
2300 int nlevels, epbs;
2301
2302 *parentp = NULL;
2303 *bpp = NULL;
2304
2305 ASSERT(blkid != DMU_BONUS_BLKID);
2306
2307 if (blkid == DMU_SPILL_BLKID) {
2308 mutex_enter(&dn->dn_mtx);
2309 if (dn->dn_have_spill &&
2310 (dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR))
2311 *bpp = DN_SPILL_BLKPTR(dn->dn_phys);
2312 else
2313 *bpp = NULL;
2314 dbuf_add_ref(dn->dn_dbuf, NULL);
2315 *parentp = dn->dn_dbuf;
2316 mutex_exit(&dn->dn_mtx);
2317 return (0);
2318 }
2319
2320 nlevels =
2321 (dn->dn_phys->dn_nlevels == 0) ? 1 : dn->dn_phys->dn_nlevels;
2322 epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT;
2323
2324 ASSERT3U(level * epbs, <, 64);
2325 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
2326 /*
2327 * This assertion shouldn't trip as long as the max indirect block size
2328 * is less than 1M. The reason for this is that up to that point,
2329 * the number of levels required to address an entire object with blocks
2330 * of size SPA_MINBLOCKSIZE satisfies nlevels * epbs + 1 <= 64. In
2331 * other words, if N * epbs + 1 > 64, then if (N-1) * epbs + 1 > 55
2332 * (i.e. we can address the entire object), objects will all use at most
2333 * N-1 levels and the assertion won't overflow. However, once epbs is
2334 * 13, 4 * 13 + 1 = 53, but 5 * 13 + 1 = 66. Then, 4 levels will not be
2335 * enough to address an entire object, so objects will have 5 levels,
2336 * but then this assertion will overflow.
2337 *
2338 * All this is to say that if we ever increase DN_MAX_INDBLKSHIFT, we
2339 * need to redo this logic to handle overflows.
2340 */
2341 ASSERT(level >= nlevels ||
2342 ((nlevels - level - 1) * epbs) +
2343 highbit64(dn->dn_phys->dn_nblkptr) <= 64);
2344 if (level >= nlevels ||
2345 blkid >= ((uint64_t)dn->dn_phys->dn_nblkptr <<
2346 ((nlevels - level - 1) * epbs)) ||
2347 (fail_sparse &&
2348 blkid > (dn->dn_phys->dn_maxblkid >> (level * epbs)))) {
2349 /* the buffer has no parent yet */
2350 return (SET_ERROR(ENOENT));
2351 } else if (level < nlevels-1) {
2352 /* this block is referenced from an indirect block */
2353 int err;
2354 if (dh == NULL) {
2355 err = dbuf_hold_impl(dn, level+1,
2356 blkid >> epbs, fail_sparse, FALSE, NULL, parentp);
2357 } else {
2358 __dbuf_hold_impl_init(dh + 1, dn, dh->dh_level + 1,
2359 blkid >> epbs, fail_sparse, FALSE, NULL,
2360 parentp, dh->dh_depth + 1);
2361 err = __dbuf_hold_impl(dh + 1);
2362 }
2363 if (err)
2364 return (err);
2365 err = dbuf_read(*parentp, NULL,
2366 (DB_RF_HAVESTRUCT | DB_RF_NOPREFETCH | DB_RF_CANFAIL));
2367 if (err) {
2368 dbuf_rele(*parentp, NULL);
2369 *parentp = NULL;
2370 return (err);
2371 }
2372 *bpp = ((blkptr_t *)(*parentp)->db.db_data) +
2373 (blkid & ((1ULL << epbs) - 1));
2374 if (blkid > (dn->dn_phys->dn_maxblkid >> (level * epbs)))
2375 ASSERT(BP_IS_HOLE(*bpp));
2376 return (0);
2377 } else {
2378 /* the block is referenced from the dnode */
2379 ASSERT3U(level, ==, nlevels-1);
2380 ASSERT(dn->dn_phys->dn_nblkptr == 0 ||
2381 blkid < dn->dn_phys->dn_nblkptr);
2382 if (dn->dn_dbuf) {
2383 dbuf_add_ref(dn->dn_dbuf, NULL);
2384 *parentp = dn->dn_dbuf;
2385 }
2386 *bpp = &dn->dn_phys->dn_blkptr[blkid];
2387 return (0);
2388 }
2389 }
2390
2391 static dmu_buf_impl_t *
2392 dbuf_create(dnode_t *dn, uint8_t level, uint64_t blkid,
2393 dmu_buf_impl_t *parent, blkptr_t *blkptr)
2394 {
2395 objset_t *os = dn->dn_objset;
2396 dmu_buf_impl_t *db, *odb;
2397
2398 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
2399 ASSERT(dn->dn_type != DMU_OT_NONE);
2400
2401 db = kmem_cache_alloc(dbuf_kmem_cache, KM_SLEEP);
2402
2403 db->db_objset = os;
2404 db->db.db_object = dn->dn_object;
2405 db->db_level = level;
2406 db->db_blkid = blkid;
2407 db->db_last_dirty = NULL;
2408 db->db_dirtycnt = 0;
2409 db->db_dnode_handle = dn->dn_handle;
2410 db->db_parent = parent;
2411 db->db_blkptr = blkptr;
2412
2413 db->db_user = NULL;
2414 db->db_user_immediate_evict = FALSE;
2415 db->db_freed_in_flight = FALSE;
2416 db->db_pending_evict = FALSE;
2417
2418 if (blkid == DMU_BONUS_BLKID) {
2419 ASSERT3P(parent, ==, dn->dn_dbuf);
2420 db->db.db_size = DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots) -
2421 (dn->dn_nblkptr-1) * sizeof (blkptr_t);
2422 ASSERT3U(db->db.db_size, >=, dn->dn_bonuslen);
2423 db->db.db_offset = DMU_BONUS_BLKID;
2424 db->db_state = DB_UNCACHED;
2425 /* the bonus dbuf is not placed in the hash table */
2426 arc_space_consume(sizeof (dmu_buf_impl_t), ARC_SPACE_DBUF);
2427 return (db);
2428 } else if (blkid == DMU_SPILL_BLKID) {
2429 db->db.db_size = (blkptr != NULL) ?
2430 BP_GET_LSIZE(blkptr) : SPA_MINBLOCKSIZE;
2431 db->db.db_offset = 0;
2432 } else {
2433 int blocksize =
2434 db->db_level ? 1 << dn->dn_indblkshift : dn->dn_datablksz;
2435 db->db.db_size = blocksize;
2436 db->db.db_offset = db->db_blkid * blocksize;
2437 }
2438
2439 /*
2440 * Hold the dn_dbufs_mtx while we get the new dbuf
2441 * in the hash table *and* added to the dbufs list.
2442 * This prevents a possible deadlock with someone
2443 * trying to look up this dbuf before its added to the
2444 * dn_dbufs list.
2445 */
2446 mutex_enter(&dn->dn_dbufs_mtx);
2447 db->db_state = DB_EVICTING;
2448 if ((odb = dbuf_hash_insert(db)) != NULL) {
2449 /* someone else inserted it first */
2450 kmem_cache_free(dbuf_kmem_cache, db);
2451 mutex_exit(&dn->dn_dbufs_mtx);
2452 return (odb);
2453 }
2454 avl_add(&dn->dn_dbufs, db);
2455
2456 db->db_state = DB_UNCACHED;
2457 mutex_exit(&dn->dn_dbufs_mtx);
2458 arc_space_consume(sizeof (dmu_buf_impl_t), ARC_SPACE_DBUF);
2459
2460 if (parent && parent != dn->dn_dbuf)
2461 dbuf_add_ref(parent, db);
2462
2463 ASSERT(dn->dn_object == DMU_META_DNODE_OBJECT ||
2464 refcount_count(&dn->dn_holds) > 0);
2465 (void) refcount_add(&dn->dn_holds, db);
2466 atomic_inc_32(&dn->dn_dbufs_count);
2467
2468 dprintf_dbuf(db, "db=%p\n", db);
2469
2470 return (db);
2471 }
2472
2473 typedef struct dbuf_prefetch_arg {
2474 spa_t *dpa_spa; /* The spa to issue the prefetch in. */
2475 zbookmark_phys_t dpa_zb; /* The target block to prefetch. */
2476 int dpa_epbs; /* Entries (blkptr_t's) Per Block Shift. */
2477 int dpa_curlevel; /* The current level that we're reading */
2478 dnode_t *dpa_dnode; /* The dnode associated with the prefetch */
2479 zio_priority_t dpa_prio; /* The priority I/Os should be issued at. */
2480 zio_t *dpa_zio; /* The parent zio_t for all prefetches. */
2481 arc_flags_t dpa_aflags; /* Flags to pass to the final prefetch. */
2482 } dbuf_prefetch_arg_t;
2483
2484 /*
2485 * Actually issue the prefetch read for the block given.
2486 */
2487 static void
2488 dbuf_issue_final_prefetch(dbuf_prefetch_arg_t *dpa, blkptr_t *bp)
2489 {
2490 arc_flags_t aflags;
2491 if (BP_IS_HOLE(bp) || BP_IS_EMBEDDED(bp))
2492 return;
2493
2494 aflags = dpa->dpa_aflags | ARC_FLAG_NOWAIT | ARC_FLAG_PREFETCH;
2495
2496 ASSERT3U(dpa->dpa_curlevel, ==, BP_GET_LEVEL(bp));
2497 ASSERT3U(dpa->dpa_curlevel, ==, dpa->dpa_zb.zb_level);
2498 ASSERT(dpa->dpa_zio != NULL);
2499 (void) arc_read(dpa->dpa_zio, dpa->dpa_spa, bp, NULL, NULL,
2500 dpa->dpa_prio, ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE,
2501 &aflags, &dpa->dpa_zb);
2502 }
2503
2504 /*
2505 * Called when an indirect block above our prefetch target is read in. This
2506 * will either read in the next indirect block down the tree or issue the actual
2507 * prefetch if the next block down is our target.
2508 */
2509 static void
2510 dbuf_prefetch_indirect_done(zio_t *zio, int err, arc_buf_t *abuf, void *private)
2511 {
2512 dbuf_prefetch_arg_t *dpa = private;
2513 uint64_t nextblkid;
2514 blkptr_t *bp;
2515
2516 ASSERT3S(dpa->dpa_zb.zb_level, <, dpa->dpa_curlevel);
2517 ASSERT3S(dpa->dpa_curlevel, >, 0);
2518
2519 /*
2520 * The dpa_dnode is only valid if we are called with a NULL
2521 * zio. This indicates that the arc_read() returned without
2522 * first calling zio_read() to issue a physical read. Once
2523 * a physical read is made the dpa_dnode must be invalidated
2524 * as the locks guarding it may have been dropped. If the
2525 * dpa_dnode is still valid, then we want to add it to the dbuf
2526 * cache. To do so, we must hold the dbuf associated with the block
2527 * we just prefetched, read its contents so that we associate it
2528 * with an arc_buf_t, and then release it.
2529 */
2530 if (zio != NULL) {
2531 ASSERT3S(BP_GET_LEVEL(zio->io_bp), ==, dpa->dpa_curlevel);
2532 if (zio->io_flags & ZIO_FLAG_RAW_COMPRESS) {
2533 ASSERT3U(BP_GET_PSIZE(zio->io_bp), ==, zio->io_size);
2534 } else {
2535 ASSERT3U(BP_GET_LSIZE(zio->io_bp), ==, zio->io_size);
2536 }
2537 ASSERT3P(zio->io_spa, ==, dpa->dpa_spa);
2538
2539 dpa->dpa_dnode = NULL;
2540 } else if (dpa->dpa_dnode != NULL) {
2541 uint64_t curblkid = dpa->dpa_zb.zb_blkid >>
2542 (dpa->dpa_epbs * (dpa->dpa_curlevel -
2543 dpa->dpa_zb.zb_level));
2544 dmu_buf_impl_t *db = dbuf_hold_level(dpa->dpa_dnode,
2545 dpa->dpa_curlevel, curblkid, FTAG);
2546 (void) dbuf_read(db, NULL,
2547 DB_RF_MUST_SUCCEED | DB_RF_NOPREFETCH | DB_RF_HAVESTRUCT);
2548 dbuf_rele(db, FTAG);
2549 }
2550
2551 dpa->dpa_curlevel--;
2552
2553 nextblkid = dpa->dpa_zb.zb_blkid >>
2554 (dpa->dpa_epbs * (dpa->dpa_curlevel - dpa->dpa_zb.zb_level));
2555 bp = ((blkptr_t *)abuf->b_data) +
2556 P2PHASE(nextblkid, 1ULL << dpa->dpa_epbs);
2557 if (BP_IS_HOLE(bp) || err != 0) {
2558 kmem_free(dpa, sizeof (*dpa));
2559 } else if (dpa->dpa_curlevel == dpa->dpa_zb.zb_level) {
2560 ASSERT3U(nextblkid, ==, dpa->dpa_zb.zb_blkid);
2561 dbuf_issue_final_prefetch(dpa, bp);
2562 kmem_free(dpa, sizeof (*dpa));
2563 } else {
2564 arc_flags_t iter_aflags = ARC_FLAG_NOWAIT;
2565 zbookmark_phys_t zb;
2566
2567 ASSERT3U(dpa->dpa_curlevel, ==, BP_GET_LEVEL(bp));
2568
2569 SET_BOOKMARK(&zb, dpa->dpa_zb.zb_objset,
2570 dpa->dpa_zb.zb_object, dpa->dpa_curlevel, nextblkid);
2571
2572 (void) arc_read(dpa->dpa_zio, dpa->dpa_spa,
2573 bp, dbuf_prefetch_indirect_done, dpa, dpa->dpa_prio,
2574 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE,
2575 &iter_aflags, &zb);
2576 }
2577
2578 arc_buf_destroy(abuf, private);
2579 }
2580
2581 /*
2582 * Issue prefetch reads for the given block on the given level. If the indirect
2583 * blocks above that block are not in memory, we will read them in
2584 * asynchronously. As a result, this call never blocks waiting for a read to
2585 * complete. Note that the prefetch might fail if the dataset is encrypted and
2586 * the encryption key is unmapped before the IO completes.
2587 */
2588 void
2589 dbuf_prefetch(dnode_t *dn, int64_t level, uint64_t blkid, zio_priority_t prio,
2590 arc_flags_t aflags)
2591 {
2592 blkptr_t bp;
2593 int epbs, nlevels, curlevel;
2594 uint64_t curblkid;
2595 dmu_buf_impl_t *db;
2596 zio_t *pio;
2597 dbuf_prefetch_arg_t *dpa;
2598 dsl_dataset_t *ds;
2599
2600 ASSERT(blkid != DMU_BONUS_BLKID);
2601 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
2602
2603 if (blkid > dn->dn_maxblkid)
2604 return;
2605
2606 if (dnode_block_freed(dn, blkid))
2607 return;
2608
2609 /*
2610 * This dnode hasn't been written to disk yet, so there's nothing to
2611 * prefetch.
2612 */
2613 nlevels = dn->dn_phys->dn_nlevels;
2614 if (level >= nlevels || dn->dn_phys->dn_nblkptr == 0)
2615 return;
2616
2617 epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT;
2618 if (dn->dn_phys->dn_maxblkid < blkid << (epbs * level))
2619 return;
2620
2621 db = dbuf_find(dn->dn_objset, dn->dn_object,
2622 level, blkid);
2623 if (db != NULL) {
2624 mutex_exit(&db->db_mtx);
2625 /*
2626 * This dbuf already exists. It is either CACHED, or
2627 * (we assume) about to be read or filled.
2628 */
2629 return;
2630 }
2631
2632 /*
2633 * Find the closest ancestor (indirect block) of the target block
2634 * that is present in the cache. In this indirect block, we will
2635 * find the bp that is at curlevel, curblkid.
2636 */
2637 curlevel = level;
2638 curblkid = blkid;
2639 while (curlevel < nlevels - 1) {
2640 int parent_level = curlevel + 1;
2641 uint64_t parent_blkid = curblkid >> epbs;
2642 dmu_buf_impl_t *db;
2643
2644 if (dbuf_hold_impl(dn, parent_level, parent_blkid,
2645 FALSE, TRUE, FTAG, &db) == 0) {
2646 blkptr_t *bpp = db->db_buf->b_data;
2647 bp = bpp[P2PHASE(curblkid, 1 << epbs)];
2648 dbuf_rele(db, FTAG);
2649 break;
2650 }
2651
2652 curlevel = parent_level;
2653 curblkid = parent_blkid;
2654 }
2655
2656 if (curlevel == nlevels - 1) {
2657 /* No cached indirect blocks found. */
2658 ASSERT3U(curblkid, <, dn->dn_phys->dn_nblkptr);
2659 bp = dn->dn_phys->dn_blkptr[curblkid];
2660 }
2661 if (BP_IS_HOLE(&bp))
2662 return;
2663
2664 ASSERT3U(curlevel, ==, BP_GET_LEVEL(&bp));
2665
2666 pio = zio_root(dmu_objset_spa(dn->dn_objset), NULL, NULL,
2667 ZIO_FLAG_CANFAIL);
2668
2669 dpa = kmem_zalloc(sizeof (*dpa), KM_SLEEP);
2670 ds = dn->dn_objset->os_dsl_dataset;
2671 SET_BOOKMARK(&dpa->dpa_zb, ds != NULL ? ds->ds_object : DMU_META_OBJSET,
2672 dn->dn_object, level, blkid);
2673 dpa->dpa_curlevel = curlevel;
2674 dpa->dpa_prio = prio;
2675 dpa->dpa_aflags = aflags;
2676 dpa->dpa_spa = dn->dn_objset->os_spa;
2677 dpa->dpa_dnode = dn;
2678 dpa->dpa_epbs = epbs;
2679 dpa->dpa_zio = pio;
2680
2681 /*
2682 * If we have the indirect just above us, no need to do the asynchronous
2683 * prefetch chain; we'll just run the last step ourselves. If we're at
2684 * a higher level, though, we want to issue the prefetches for all the
2685 * indirect blocks asynchronously, so we can go on with whatever we were
2686 * doing.
2687 */
2688 if (curlevel == level) {
2689 ASSERT3U(curblkid, ==, blkid);
2690 dbuf_issue_final_prefetch(dpa, &bp);
2691 kmem_free(dpa, sizeof (*dpa));
2692 } else {
2693 arc_flags_t iter_aflags = ARC_FLAG_NOWAIT;
2694 zbookmark_phys_t zb;
2695
2696 SET_BOOKMARK(&zb, ds != NULL ? ds->ds_object : DMU_META_OBJSET,
2697 dn->dn_object, curlevel, curblkid);
2698 (void) arc_read(dpa->dpa_zio, dpa->dpa_spa,
2699 &bp, dbuf_prefetch_indirect_done, dpa, prio,
2700 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE,
2701 &iter_aflags, &zb);
2702 }
2703 /*
2704 * We use pio here instead of dpa_zio since it's possible that
2705 * dpa may have already been freed.
2706 */
2707 zio_nowait(pio);
2708 }
2709
2710 #define DBUF_HOLD_IMPL_MAX_DEPTH 20
2711
2712 /*
2713 * Returns with db_holds incremented, and db_mtx not held.
2714 * Note: dn_struct_rwlock must be held.
2715 */
2716 static int
2717 __dbuf_hold_impl(struct dbuf_hold_impl_data *dh)
2718 {
2719 ASSERT3S(dh->dh_depth, <, DBUF_HOLD_IMPL_MAX_DEPTH);
2720 dh->dh_parent = NULL;
2721
2722 ASSERT(dh->dh_blkid != DMU_BONUS_BLKID);
2723 ASSERT(RW_LOCK_HELD(&dh->dh_dn->dn_struct_rwlock));
2724 ASSERT3U(dh->dh_dn->dn_nlevels, >, dh->dh_level);
2725
2726 *(dh->dh_dbp) = NULL;
2727
2728 /* dbuf_find() returns with db_mtx held */
2729 dh->dh_db = dbuf_find(dh->dh_dn->dn_objset, dh->dh_dn->dn_object,
2730 dh->dh_level, dh->dh_blkid);
2731
2732 if (dh->dh_db == NULL) {
2733 dh->dh_bp = NULL;
2734
2735 if (dh->dh_fail_uncached)
2736 return (SET_ERROR(ENOENT));
2737
2738 ASSERT3P(dh->dh_parent, ==, NULL);
2739 dh->dh_err = dbuf_findbp(dh->dh_dn, dh->dh_level, dh->dh_blkid,
2740 dh->dh_fail_sparse, &dh->dh_parent, &dh->dh_bp, dh);
2741 if (dh->dh_fail_sparse) {
2742 if (dh->dh_err == 0 &&
2743 dh->dh_bp && BP_IS_HOLE(dh->dh_bp))
2744 dh->dh_err = SET_ERROR(ENOENT);
2745 if (dh->dh_err) {
2746 if (dh->dh_parent)
2747 dbuf_rele(dh->dh_parent, NULL);
2748 return (dh->dh_err);
2749 }
2750 }
2751 if (dh->dh_err && dh->dh_err != ENOENT)
2752 return (dh->dh_err);
2753 dh->dh_db = dbuf_create(dh->dh_dn, dh->dh_level, dh->dh_blkid,
2754 dh->dh_parent, dh->dh_bp);
2755 }
2756
2757 if (dh->dh_fail_uncached && dh->dh_db->db_state != DB_CACHED) {
2758 mutex_exit(&dh->dh_db->db_mtx);
2759 return (SET_ERROR(ENOENT));
2760 }
2761
2762 if (dh->dh_db->db_buf != NULL)
2763 ASSERT3P(dh->dh_db->db.db_data, ==, dh->dh_db->db_buf->b_data);
2764
2765 ASSERT(dh->dh_db->db_buf == NULL || arc_referenced(dh->dh_db->db_buf));
2766
2767 /*
2768 * If this buffer is currently syncing out, and we are are
2769 * still referencing it from db_data, we need to make a copy
2770 * of it in case we decide we want to dirty it again in this txg.
2771 */
2772 if (dh->dh_db->db_level == 0 &&
2773 dh->dh_db->db_blkid != DMU_BONUS_BLKID &&
2774 dh->dh_dn->dn_object != DMU_META_DNODE_OBJECT &&
2775 dh->dh_db->db_state == DB_CACHED && dh->dh_db->db_data_pending) {
2776 dh->dh_dr = dh->dh_db->db_data_pending;
2777
2778 if (dh->dh_dr->dt.dl.dr_data == dh->dh_db->db_buf) {
2779 dh->dh_type = DBUF_GET_BUFC_TYPE(dh->dh_db);
2780
2781 dbuf_set_data(dh->dh_db,
2782 arc_alloc_buf(dh->dh_dn->dn_objset->os_spa,
2783 dh->dh_db, dh->dh_type, dh->dh_db->db.db_size));
2784 bcopy(dh->dh_dr->dt.dl.dr_data->b_data,
2785 dh->dh_db->db.db_data, dh->dh_db->db.db_size);
2786 }
2787 }
2788
2789 if (multilist_link_active(&dh->dh_db->db_cache_link)) {
2790 ASSERT(refcount_is_zero(&dh->dh_db->db_holds));
2791 multilist_remove(dbuf_cache, dh->dh_db);
2792 (void) refcount_remove_many(&dbuf_cache_size,
2793 dh->dh_db->db.db_size, dh->dh_db);
2794 }
2795 (void) refcount_add(&dh->dh_db->db_holds, dh->dh_tag);
2796 DBUF_VERIFY(dh->dh_db);
2797 mutex_exit(&dh->dh_db->db_mtx);
2798
2799 /* NOTE: we can't rele the parent until after we drop the db_mtx */
2800 if (dh->dh_parent)
2801 dbuf_rele(dh->dh_parent, NULL);
2802
2803 ASSERT3P(DB_DNODE(dh->dh_db), ==, dh->dh_dn);
2804 ASSERT3U(dh->dh_db->db_blkid, ==, dh->dh_blkid);
2805 ASSERT3U(dh->dh_db->db_level, ==, dh->dh_level);
2806 *(dh->dh_dbp) = dh->dh_db;
2807
2808 return (0);
2809 }
2810
2811 /*
2812 * The following code preserves the recursive function dbuf_hold_impl()
2813 * but moves the local variables AND function arguments to the heap to
2814 * minimize the stack frame size. Enough space is initially allocated
2815 * on the stack for 20 levels of recursion.
2816 */
2817 int
2818 dbuf_hold_impl(dnode_t *dn, uint8_t level, uint64_t blkid,
2819 boolean_t fail_sparse, boolean_t fail_uncached,
2820 void *tag, dmu_buf_impl_t **dbp)
2821 {
2822 struct dbuf_hold_impl_data *dh;
2823 int error;
2824
2825 dh = kmem_alloc(sizeof (struct dbuf_hold_impl_data) *
2826 DBUF_HOLD_IMPL_MAX_DEPTH, KM_SLEEP);
2827 __dbuf_hold_impl_init(dh, dn, level, blkid, fail_sparse,
2828 fail_uncached, tag, dbp, 0);
2829
2830 error = __dbuf_hold_impl(dh);
2831
2832 kmem_free(dh, sizeof (struct dbuf_hold_impl_data) *
2833 DBUF_HOLD_IMPL_MAX_DEPTH);
2834
2835 return (error);
2836 }
2837
2838 static void
2839 __dbuf_hold_impl_init(struct dbuf_hold_impl_data *dh,
2840 dnode_t *dn, uint8_t level, uint64_t blkid,
2841 boolean_t fail_sparse, boolean_t fail_uncached,
2842 void *tag, dmu_buf_impl_t **dbp, int depth)
2843 {
2844 dh->dh_dn = dn;
2845 dh->dh_level = level;
2846 dh->dh_blkid = blkid;
2847
2848 dh->dh_fail_sparse = fail_sparse;
2849 dh->dh_fail_uncached = fail_uncached;
2850
2851 dh->dh_tag = tag;
2852 dh->dh_dbp = dbp;
2853
2854 dh->dh_db = NULL;
2855 dh->dh_parent = NULL;
2856 dh->dh_bp = NULL;
2857 dh->dh_err = 0;
2858 dh->dh_dr = NULL;
2859 dh->dh_type = 0;
2860
2861 dh->dh_depth = depth;
2862 }
2863
2864 dmu_buf_impl_t *
2865 dbuf_hold(dnode_t *dn, uint64_t blkid, void *tag)
2866 {
2867 return (dbuf_hold_level(dn, 0, blkid, tag));
2868 }
2869
2870 dmu_buf_impl_t *
2871 dbuf_hold_level(dnode_t *dn, int level, uint64_t blkid, void *tag)
2872 {
2873 dmu_buf_impl_t *db;
2874 int err = dbuf_hold_impl(dn, level, blkid, FALSE, FALSE, tag, &db);
2875 return (err ? NULL : db);
2876 }
2877
2878 void
2879 dbuf_create_bonus(dnode_t *dn)
2880 {
2881 ASSERT(RW_WRITE_HELD(&dn->dn_struct_rwlock));
2882
2883 ASSERT(dn->dn_bonus == NULL);
2884 dn->dn_bonus = dbuf_create(dn, 0, DMU_BONUS_BLKID, dn->dn_dbuf, NULL);
2885 }
2886
2887 int
2888 dbuf_spill_set_blksz(dmu_buf_t *db_fake, uint64_t blksz, dmu_tx_t *tx)
2889 {
2890 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2891 dnode_t *dn;
2892
2893 if (db->db_blkid != DMU_SPILL_BLKID)
2894 return (SET_ERROR(ENOTSUP));
2895 if (blksz == 0)
2896 blksz = SPA_MINBLOCKSIZE;
2897 ASSERT3U(blksz, <=, spa_maxblocksize(dmu_objset_spa(db->db_objset)));
2898 blksz = P2ROUNDUP(blksz, SPA_MINBLOCKSIZE);
2899
2900 DB_DNODE_ENTER(db);
2901 dn = DB_DNODE(db);
2902 rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
2903 dbuf_new_size(db, blksz, tx);
2904 rw_exit(&dn->dn_struct_rwlock);
2905 DB_DNODE_EXIT(db);
2906
2907 return (0);
2908 }
2909
2910 void
2911 dbuf_rm_spill(dnode_t *dn, dmu_tx_t *tx)
2912 {
2913 dbuf_free_range(dn, DMU_SPILL_BLKID, DMU_SPILL_BLKID, tx);
2914 }
2915
2916 #pragma weak dmu_buf_add_ref = dbuf_add_ref
2917 void
2918 dbuf_add_ref(dmu_buf_impl_t *db, void *tag)
2919 {
2920 int64_t holds = refcount_add(&db->db_holds, tag);
2921 VERIFY3S(holds, >, 1);
2922 }
2923
2924 #pragma weak dmu_buf_try_add_ref = dbuf_try_add_ref
2925 boolean_t
2926 dbuf_try_add_ref(dmu_buf_t *db_fake, objset_t *os, uint64_t obj, uint64_t blkid,
2927 void *tag)
2928 {
2929 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2930 dmu_buf_impl_t *found_db;
2931 boolean_t result = B_FALSE;
2932
2933 if (blkid == DMU_BONUS_BLKID)
2934 found_db = dbuf_find_bonus(os, obj);
2935 else
2936 found_db = dbuf_find(os, obj, 0, blkid);
2937
2938 if (found_db != NULL) {
2939 if (db == found_db && dbuf_refcount(db) > db->db_dirtycnt) {
2940 (void) refcount_add(&db->db_holds, tag);
2941 result = B_TRUE;
2942 }
2943 mutex_exit(&found_db->db_mtx);
2944 }
2945 return (result);
2946 }
2947
2948 /*
2949 * If you call dbuf_rele() you had better not be referencing the dnode handle
2950 * unless you have some other direct or indirect hold on the dnode. (An indirect
2951 * hold is a hold on one of the dnode's dbufs, including the bonus buffer.)
2952 * Without that, the dbuf_rele() could lead to a dnode_rele() followed by the
2953 * dnode's parent dbuf evicting its dnode handles.
2954 */
2955 void
2956 dbuf_rele(dmu_buf_impl_t *db, void *tag)
2957 {
2958 mutex_enter(&db->db_mtx);
2959 dbuf_rele_and_unlock(db, tag);
2960 }
2961
2962 void
2963 dmu_buf_rele(dmu_buf_t *db, void *tag)
2964 {
2965 dbuf_rele((dmu_buf_impl_t *)db, tag);
2966 }
2967
2968 /*
2969 * dbuf_rele() for an already-locked dbuf. This is necessary to allow
2970 * db_dirtycnt and db_holds to be updated atomically.
2971 */
2972 void
2973 dbuf_rele_and_unlock(dmu_buf_impl_t *db, void *tag)
2974 {
2975 int64_t holds;
2976
2977 ASSERT(MUTEX_HELD(&db->db_mtx));
2978 DBUF_VERIFY(db);
2979
2980 /*
2981 * Remove the reference to the dbuf before removing its hold on the
2982 * dnode so we can guarantee in dnode_move() that a referenced bonus
2983 * buffer has a corresponding dnode hold.
2984 */
2985 holds = refcount_remove(&db->db_holds, tag);
2986 ASSERT(holds >= 0);
2987
2988 /*
2989 * We can't freeze indirects if there is a possibility that they
2990 * may be modified in the current syncing context.
2991 */
2992 if (db->db_buf != NULL &&
2993 holds == (db->db_level == 0 ? db->db_dirtycnt : 0)) {
2994 arc_buf_freeze(db->db_buf);
2995 }
2996
2997 if (holds == db->db_dirtycnt &&
2998 db->db_level == 0 && db->db_user_immediate_evict)
2999 dbuf_evict_user(db);
3000
3001 if (holds == 0) {
3002 if (db->db_blkid == DMU_BONUS_BLKID) {
3003 dnode_t *dn;
3004 boolean_t evict_dbuf = db->db_pending_evict;
3005
3006 /*
3007 * If the dnode moves here, we cannot cross this
3008 * barrier until the move completes.
3009 */
3010 DB_DNODE_ENTER(db);
3011
3012 dn = DB_DNODE(db);
3013 atomic_dec_32(&dn->dn_dbufs_count);
3014
3015 /*
3016 * Decrementing the dbuf count means that the bonus
3017 * buffer's dnode hold is no longer discounted in
3018 * dnode_move(). The dnode cannot move until after
3019 * the dnode_rele() below.
3020 */
3021 DB_DNODE_EXIT(db);
3022
3023 /*
3024 * Do not reference db after its lock is dropped.
3025 * Another thread may evict it.
3026 */
3027 mutex_exit(&db->db_mtx);
3028
3029 if (evict_dbuf)
3030 dnode_evict_bonus(dn);
3031
3032 dnode_rele(dn, db);
3033 } else if (db->db_buf == NULL) {
3034 /*
3035 * This is a special case: we never associated this
3036 * dbuf with any data allocated from the ARC.
3037 */
3038 ASSERT(db->db_state == DB_UNCACHED ||
3039 db->db_state == DB_NOFILL);
3040 dbuf_destroy(db);
3041 } else if (arc_released(db->db_buf)) {
3042 /*
3043 * This dbuf has anonymous data associated with it.
3044 */
3045 dbuf_destroy(db);
3046 } else {
3047 boolean_t do_arc_evict = B_FALSE;
3048 blkptr_t bp;
3049 spa_t *spa = dmu_objset_spa(db->db_objset);
3050
3051 if (!DBUF_IS_CACHEABLE(db) &&
3052 db->db_blkptr != NULL &&
3053 !BP_IS_HOLE(db->db_blkptr) &&
3054 !BP_IS_EMBEDDED(db->db_blkptr)) {
3055 do_arc_evict = B_TRUE;
3056 bp = *db->db_blkptr;
3057 }
3058
3059 if (!DBUF_IS_CACHEABLE(db) ||
3060 db->db_pending_evict) {
3061 dbuf_destroy(db);
3062 } else if (!multilist_link_active(&db->db_cache_link)) {
3063 multilist_insert(dbuf_cache, db);
3064 (void) refcount_add_many(&dbuf_cache_size,
3065 db->db.db_size, db);
3066 mutex_exit(&db->db_mtx);
3067
3068 dbuf_evict_notify();
3069 }
3070
3071 if (do_arc_evict)
3072 arc_freed(spa, &bp);
3073 }
3074 } else {
3075 mutex_exit(&db->db_mtx);
3076 }
3077
3078 }
3079
3080 #pragma weak dmu_buf_refcount = dbuf_refcount
3081 uint64_t
3082 dbuf_refcount(dmu_buf_impl_t *db)
3083 {
3084 return (refcount_count(&db->db_holds));
3085 }
3086
3087 void *
3088 dmu_buf_replace_user(dmu_buf_t *db_fake, dmu_buf_user_t *old_user,
3089 dmu_buf_user_t *new_user)
3090 {
3091 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
3092
3093 mutex_enter(&db->db_mtx);
3094 dbuf_verify_user(db, DBVU_NOT_EVICTING);
3095 if (db->db_user == old_user)
3096 db->db_user = new_user;
3097 else
3098 old_user = db->db_user;
3099 dbuf_verify_user(db, DBVU_NOT_EVICTING);
3100 mutex_exit(&db->db_mtx);
3101
3102 return (old_user);
3103 }
3104
3105 void *
3106 dmu_buf_set_user(dmu_buf_t *db_fake, dmu_buf_user_t *user)
3107 {
3108 return (dmu_buf_replace_user(db_fake, NULL, user));
3109 }
3110
3111 void *
3112 dmu_buf_set_user_ie(dmu_buf_t *db_fake, dmu_buf_user_t *user)
3113 {
3114 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
3115
3116 db->db_user_immediate_evict = TRUE;
3117 return (dmu_buf_set_user(db_fake, user));
3118 }
3119
3120 void *
3121 dmu_buf_remove_user(dmu_buf_t *db_fake, dmu_buf_user_t *user)
3122 {
3123 return (dmu_buf_replace_user(db_fake, user, NULL));
3124 }
3125
3126 void *
3127 dmu_buf_get_user(dmu_buf_t *db_fake)
3128 {
3129 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
3130
3131 dbuf_verify_user(db, DBVU_NOT_EVICTING);
3132 return (db->db_user);
3133 }
3134
3135 void
3136 dmu_buf_user_evict_wait()
3137 {
3138 taskq_wait(dbu_evict_taskq);
3139 }
3140
3141 blkptr_t *
3142 dmu_buf_get_blkptr(dmu_buf_t *db)
3143 {
3144 dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db;
3145 return (dbi->db_blkptr);
3146 }
3147
3148 objset_t *
3149 dmu_buf_get_objset(dmu_buf_t *db)
3150 {
3151 dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db;
3152 return (dbi->db_objset);
3153 }
3154
3155 dnode_t *
3156 dmu_buf_dnode_enter(dmu_buf_t *db)
3157 {
3158 dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db;
3159 DB_DNODE_ENTER(dbi);
3160 return (DB_DNODE(dbi));
3161 }
3162
3163 void
3164 dmu_buf_dnode_exit(dmu_buf_t *db)
3165 {
3166 dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db;
3167 DB_DNODE_EXIT(dbi);
3168 }
3169
3170 static void
3171 dbuf_check_blkptr(dnode_t *dn, dmu_buf_impl_t *db)
3172 {
3173 /* ASSERT(dmu_tx_is_syncing(tx) */
3174 ASSERT(MUTEX_HELD(&db->db_mtx));
3175
3176 if (db->db_blkptr != NULL)
3177 return;
3178
3179 if (db->db_blkid == DMU_SPILL_BLKID) {
3180 db->db_blkptr = DN_SPILL_BLKPTR(dn->dn_phys);
3181 BP_ZERO(db->db_blkptr);
3182 return;
3183 }
3184 if (db->db_level == dn->dn_phys->dn_nlevels-1) {
3185 /*
3186 * This buffer was allocated at a time when there was
3187 * no available blkptrs from the dnode, or it was
3188 * inappropriate to hook it in (i.e., nlevels mis-match).
3189 */
3190 ASSERT(db->db_blkid < dn->dn_phys->dn_nblkptr);
3191 ASSERT(db->db_parent == NULL);
3192 db->db_parent = dn->dn_dbuf;
3193 db->db_blkptr = &dn->dn_phys->dn_blkptr[db->db_blkid];
3194 DBUF_VERIFY(db);
3195 } else {
3196 dmu_buf_impl_t *parent = db->db_parent;
3197 int epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT;
3198
3199 ASSERT(dn->dn_phys->dn_nlevels > 1);
3200 if (parent == NULL) {
3201 mutex_exit(&db->db_mtx);
3202 rw_enter(&dn->dn_struct_rwlock, RW_READER);
3203 parent = dbuf_hold_level(dn, db->db_level + 1,
3204 db->db_blkid >> epbs, db);
3205 rw_exit(&dn->dn_struct_rwlock);
3206 mutex_enter(&db->db_mtx);
3207 db->db_parent = parent;
3208 }
3209 db->db_blkptr = (blkptr_t *)parent->db.db_data +
3210 (db->db_blkid & ((1ULL << epbs) - 1));
3211 DBUF_VERIFY(db);
3212 }
3213 }
3214
3215 /*
3216 * Ensure the dbuf's data is untransformed if the associated dirty
3217 * record requires it. This is used by dbuf_sync_leaf() to ensure
3218 * that a dnode block is decrypted before we write new data to it.
3219 * For raw writes we assert that the buffer is already encrypted.
3220 */
3221 static void
3222 dbuf_check_crypt(dbuf_dirty_record_t *dr)
3223 {
3224 int err;
3225 dmu_buf_impl_t *db = dr->dr_dbuf;
3226
3227 ASSERT(MUTEX_HELD(&db->db_mtx));
3228
3229 if (!dr->dt.dl.dr_raw && arc_is_encrypted(db->db_buf)) {
3230 /*
3231 * Unfortunately, there is currently no mechanism for
3232 * syncing context to handle decryption errors. An error
3233 * here is only possible if an attacker maliciously
3234 * changed a dnode block and updated the associated
3235 * checksums going up the block tree.
3236 */
3237 err = arc_untransform(db->db_buf, db->db_objset->os_spa,
3238 dmu_objset_id(db->db_objset), B_TRUE);
3239 if (err)
3240 panic("Invalid dnode block MAC");
3241 } else if (dr->dt.dl.dr_raw) {
3242 /*
3243 * Writing raw encrypted data requires the db's arc buffer
3244 * to be converted to raw by the caller.
3245 */
3246 ASSERT(arc_is_encrypted(db->db_buf));
3247 }
3248 }
3249
3250 /*
3251 * dbuf_sync_indirect() is called recursively from dbuf_sync_list() so it
3252 * is critical the we not allow the compiler to inline this function in to
3253 * dbuf_sync_list() thereby drastically bloating the stack usage.
3254 */
3255 noinline static void
3256 dbuf_sync_indirect(dbuf_dirty_record_t *dr, dmu_tx_t *tx)
3257 {
3258 dmu_buf_impl_t *db = dr->dr_dbuf;
3259 dnode_t *dn;
3260 zio_t *zio;
3261
3262 ASSERT(dmu_tx_is_syncing(tx));
3263
3264 dprintf_dbuf_bp(db, db->db_blkptr, "blkptr=%p", db->db_blkptr);
3265
3266 mutex_enter(&db->db_mtx);
3267
3268 ASSERT(db->db_level > 0);
3269 DBUF_VERIFY(db);
3270
3271 /* Read the block if it hasn't been read yet. */
3272 if (db->db_buf == NULL) {
3273 mutex_exit(&db->db_mtx);
3274 (void) dbuf_read(db, NULL, DB_RF_MUST_SUCCEED);
3275 mutex_enter(&db->db_mtx);
3276 }
3277 ASSERT3U(db->db_state, ==, DB_CACHED);
3278 ASSERT(db->db_buf != NULL);
3279
3280 DB_DNODE_ENTER(db);
3281 dn = DB_DNODE(db);
3282 /* Indirect block size must match what the dnode thinks it is. */
3283 ASSERT3U(db->db.db_size, ==, 1<<dn->dn_phys->dn_indblkshift);
3284 dbuf_check_blkptr(dn, db);
3285 DB_DNODE_EXIT(db);
3286
3287 /* Provide the pending dirty record to child dbufs */
3288 db->db_data_pending = dr;
3289
3290 mutex_exit(&db->db_mtx);
3291 dbuf_write(dr, db->db_buf, tx);
3292
3293 zio = dr->dr_zio;
3294 mutex_enter(&dr->dt.di.dr_mtx);
3295 dbuf_sync_list(&dr->dt.di.dr_children, db->db_level - 1, tx);
3296 ASSERT(list_head(&dr->dt.di.dr_children) == NULL);
3297 mutex_exit(&dr->dt.di.dr_mtx);
3298 zio_nowait(zio);
3299 }
3300
3301 /*
3302 * dbuf_sync_leaf() is called recursively from dbuf_sync_list() so it is
3303 * critical the we not allow the compiler to inline this function in to
3304 * dbuf_sync_list() thereby drastically bloating the stack usage.
3305 */
3306 noinline static void
3307 dbuf_sync_leaf(dbuf_dirty_record_t *dr, dmu_tx_t *tx)
3308 {
3309 arc_buf_t **datap = &dr->dt.dl.dr_data;
3310 dmu_buf_impl_t *db = dr->dr_dbuf;
3311 dnode_t *dn;
3312 objset_t *os;
3313 uint64_t txg = tx->tx_txg;
3314
3315 ASSERT(dmu_tx_is_syncing(tx));
3316
3317 dprintf_dbuf_bp(db, db->db_blkptr, "blkptr=%p", db->db_blkptr);
3318
3319 mutex_enter(&db->db_mtx);
3320 /*
3321 * To be synced, we must be dirtied. But we
3322 * might have been freed after the dirty.
3323 */
3324 if (db->db_state == DB_UNCACHED) {
3325 /* This buffer has been freed since it was dirtied */
3326 ASSERT(db->db.db_data == NULL);
3327 } else if (db->db_state == DB_FILL) {
3328 /* This buffer was freed and is now being re-filled */
3329 ASSERT(db->db.db_data != dr->dt.dl.dr_data);
3330 } else {
3331 ASSERT(db->db_state == DB_CACHED || db->db_state == DB_NOFILL);
3332 }
3333 DBUF_VERIFY(db);
3334
3335 DB_DNODE_ENTER(db);
3336 dn = DB_DNODE(db);
3337
3338 if (db->db_blkid == DMU_SPILL_BLKID) {
3339 mutex_enter(&dn->dn_mtx);
3340 if (!(dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR)) {
3341 /*
3342 * In the previous transaction group, the bonus buffer
3343 * was entirely used to store the attributes for the
3344 * dnode which overrode the dn_spill field. However,
3345 * when adding more attributes to the file a spill
3346 * block was required to hold the extra attributes.
3347 *
3348 * Make sure to clear the garbage left in the dn_spill
3349 * field from the previous attributes in the bonus
3350 * buffer. Otherwise, after writing out the spill
3351 * block to the new allocated dva, it will free
3352 * the old block pointed to by the invalid dn_spill.
3353 */
3354 db->db_blkptr = NULL;
3355 }
3356 dn->dn_phys->dn_flags |= DNODE_FLAG_SPILL_BLKPTR;
3357 mutex_exit(&dn->dn_mtx);
3358 }
3359
3360 /*
3361 * If this is a bonus buffer, simply copy the bonus data into the
3362 * dnode. It will be written out when the dnode is synced (and it
3363 * will be synced, since it must have been dirty for dbuf_sync to
3364 * be called).
3365 */
3366 if (db->db_blkid == DMU_BONUS_BLKID) {
3367 dbuf_dirty_record_t **drp;
3368
3369 ASSERT(*datap != NULL);
3370 ASSERT0(db->db_level);
3371 ASSERT3U(DN_MAX_BONUS_LEN(dn->dn_phys), <=,
3372 DN_SLOTS_TO_BONUSLEN(dn->dn_phys->dn_extra_slots + 1));
3373 bcopy(*datap, DN_BONUS(dn->dn_phys),
3374 DN_MAX_BONUS_LEN(dn->dn_phys));
3375 DB_DNODE_EXIT(db);
3376
3377 if (*datap != db->db.db_data) {
3378 int slots = DB_DNODE(db)->dn_num_slots;
3379 int bonuslen = DN_SLOTS_TO_BONUSLEN(slots);
3380 kmem_free(*datap, bonuslen);
3381 arc_space_return(bonuslen, ARC_SPACE_BONUS);
3382 }
3383 db->db_data_pending = NULL;
3384 drp = &db->db_last_dirty;
3385 while (*drp != dr)
3386 drp = &(*drp)->dr_next;
3387 ASSERT(dr->dr_next == NULL);
3388 ASSERT(dr->dr_dbuf == db);
3389 *drp = dr->dr_next;
3390 if (dr->dr_dbuf->db_level != 0) {
3391 mutex_destroy(&dr->dt.di.dr_mtx);
3392 list_destroy(&dr->dt.di.dr_children);
3393 }
3394 kmem_free(dr, sizeof (dbuf_dirty_record_t));
3395 ASSERT(db->db_dirtycnt > 0);
3396 db->db_dirtycnt -= 1;
3397 dbuf_rele_and_unlock(db, (void *)(uintptr_t)txg);
3398 return;
3399 }
3400
3401 os = dn->dn_objset;
3402
3403 /*
3404 * This function may have dropped the db_mtx lock allowing a dmu_sync
3405 * operation to sneak in. As a result, we need to ensure that we
3406 * don't check the dr_override_state until we have returned from
3407 * dbuf_check_blkptr.
3408 */
3409 dbuf_check_blkptr(dn, db);
3410
3411 /*
3412 * If this buffer is in the middle of an immediate write,
3413 * wait for the synchronous IO to complete.
3414 */
3415 while (dr->dt.dl.dr_override_state == DR_IN_DMU_SYNC) {
3416 ASSERT(dn->dn_object != DMU_META_DNODE_OBJECT);
3417 cv_wait(&db->db_changed, &db->db_mtx);
3418 ASSERT(dr->dt.dl.dr_override_state != DR_NOT_OVERRIDDEN);
3419 }
3420
3421 /*
3422 * If this is a dnode block, ensure it is appropriately encrypted
3423 * or decrypted, depending on what we are writing to it this txg.
3424 */
3425 if (os->os_encrypted && dn->dn_object == DMU_META_DNODE_OBJECT)
3426 dbuf_check_crypt(dr);
3427
3428 if (db->db_state != DB_NOFILL &&
3429 dn->dn_object != DMU_META_DNODE_OBJECT &&
3430 refcount_count(&db->db_holds) > 1 &&
3431 dr->dt.dl.dr_override_state != DR_OVERRIDDEN &&
3432 *datap == db->db_buf) {
3433 /*
3434 * If this buffer is currently "in use" (i.e., there
3435 * are active holds and db_data still references it),
3436 * then make a copy before we start the write so that
3437 * any modifications from the open txg will not leak
3438 * into this write.
3439 *
3440 * NOTE: this copy does not need to be made for
3441 * objects only modified in the syncing context (e.g.
3442 * DNONE_DNODE blocks).
3443 */
3444 int psize = arc_buf_size(*datap);
3445 int lsize = arc_buf_lsize(*datap);
3446 arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
3447 enum zio_compress compress_type = arc_get_compression(*datap);
3448
3449 if (arc_is_encrypted(*datap)) {
3450 boolean_t byteorder;
3451 uint8_t salt[ZIO_DATA_SALT_LEN];
3452 uint8_t iv[ZIO_DATA_IV_LEN];
3453 uint8_t mac[ZIO_DATA_MAC_LEN];
3454
3455 arc_get_raw_params(*datap, &byteorder, salt, iv, mac);
3456 *datap = arc_alloc_raw_buf(os->os_spa, db,
3457 dmu_objset_id(os), byteorder, salt, iv, mac,
3458 dn->dn_type, psize, lsize, compress_type);
3459 } else if (compress_type != ZIO_COMPRESS_OFF) {
3460 ASSERT3U(type, ==, ARC_BUFC_DATA);
3461 int lsize = arc_buf_lsize(*datap);
3462 *datap = arc_alloc_compressed_buf(os->os_spa, db,
3463 psize, lsize, compress_type);
3464 } else {
3465 *datap = arc_alloc_buf(os->os_spa, db, type, psize);
3466 }
3467 bcopy(db->db.db_data, (*datap)->b_data, psize);
3468 }
3469 db->db_data_pending = dr;
3470
3471 mutex_exit(&db->db_mtx);
3472
3473 dbuf_write(dr, *datap, tx);
3474
3475 ASSERT(!list_link_active(&dr->dr_dirty_node));
3476 if (dn->dn_object == DMU_META_DNODE_OBJECT) {
3477 list_insert_tail(&dn->dn_dirty_records[txg&TXG_MASK], dr);
3478 DB_DNODE_EXIT(db);
3479 } else {
3480 /*
3481 * Although zio_nowait() does not "wait for an IO", it does
3482 * initiate the IO. If this is an empty write it seems plausible
3483 * that the IO could actually be completed before the nowait
3484 * returns. We need to DB_DNODE_EXIT() first in case
3485 * zio_nowait() invalidates the dbuf.
3486 */
3487 DB_DNODE_EXIT(db);
3488 zio_nowait(dr->dr_zio);
3489 }
3490 }
3491
3492 void
3493 dbuf_sync_list(list_t *list, int level, dmu_tx_t *tx)
3494 {
3495 dbuf_dirty_record_t *dr;
3496
3497 while ((dr = list_head(list))) {
3498 if (dr->dr_zio != NULL) {
3499 /*
3500 * If we find an already initialized zio then we
3501 * are processing the meta-dnode, and we have finished.
3502 * The dbufs for all dnodes are put back on the list
3503 * during processing, so that we can zio_wait()
3504 * these IOs after initiating all child IOs.
3505 */
3506 ASSERT3U(dr->dr_dbuf->db.db_object, ==,
3507 DMU_META_DNODE_OBJECT);
3508 break;
3509 }
3510 if (dr->dr_dbuf->db_blkid != DMU_BONUS_BLKID &&
3511 dr->dr_dbuf->db_blkid != DMU_SPILL_BLKID) {
3512 VERIFY3U(dr->dr_dbuf->db_level, ==, level);
3513 }
3514 list_remove(list, dr);
3515 if (dr->dr_dbuf->db_level > 0)
3516 dbuf_sync_indirect(dr, tx);
3517 else
3518 dbuf_sync_leaf(dr, tx);
3519 }
3520 }
3521
3522 /* ARGSUSED */
3523 static void
3524 dbuf_write_ready(zio_t *zio, arc_buf_t *buf, void *vdb)
3525 {
3526 dmu_buf_impl_t *db = vdb;
3527 dnode_t *dn;
3528 blkptr_t *bp = zio->io_bp;
3529 blkptr_t *bp_orig = &zio->io_bp_orig;
3530 spa_t *spa = zio->io_spa;
3531 int64_t delta;
3532 uint64_t fill = 0;
3533 int i;
3534
3535 ASSERT3P(db->db_blkptr, !=, NULL);
3536 ASSERT3P(&db->db_data_pending->dr_bp_copy, ==, bp);
3537
3538 DB_DNODE_ENTER(db);
3539 dn = DB_DNODE(db);
3540 delta = bp_get_dsize_sync(spa, bp) - bp_get_dsize_sync(spa, bp_orig);
3541 dnode_diduse_space(dn, delta - zio->io_prev_space_delta);
3542 zio->io_prev_space_delta = delta;
3543
3544 if (bp->blk_birth != 0) {
3545 ASSERT((db->db_blkid != DMU_SPILL_BLKID &&
3546 BP_GET_TYPE(bp) == dn->dn_type) ||
3547 (db->db_blkid == DMU_SPILL_BLKID &&
3548 BP_GET_TYPE(bp) == dn->dn_bonustype) ||
3549 BP_IS_EMBEDDED(bp));
3550 ASSERT(BP_GET_LEVEL(bp) == db->db_level);
3551 }
3552
3553 mutex_enter(&db->db_mtx);
3554
3555 #ifdef ZFS_DEBUG
3556 if (db->db_blkid == DMU_SPILL_BLKID) {
3557 ASSERT(dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR);
3558 ASSERT(!(BP_IS_HOLE(bp)) &&
3559 db->db_blkptr == DN_SPILL_BLKPTR(dn->dn_phys));
3560 }
3561 #endif
3562
3563 if (db->db_level == 0) {
3564 mutex_enter(&dn->dn_mtx);
3565 if (db->db_blkid > dn->dn_phys->dn_maxblkid &&
3566 db->db_blkid != DMU_SPILL_BLKID)
3567 dn->dn_phys->dn_maxblkid = db->db_blkid;
3568 mutex_exit(&dn->dn_mtx);
3569
3570 if (dn->dn_type == DMU_OT_DNODE) {
3571 i = 0;
3572 while (i < db->db.db_size) {
3573 dnode_phys_t *dnp =
3574 (void *)(((char *)db->db.db_data) + i);
3575
3576 i += DNODE_MIN_SIZE;
3577 if (dnp->dn_type != DMU_OT_NONE) {
3578 fill++;
3579 i += dnp->dn_extra_slots *
3580 DNODE_MIN_SIZE;
3581 }
3582 }
3583 } else {
3584 if (BP_IS_HOLE(bp)) {
3585 fill = 0;
3586 } else {
3587 fill = 1;
3588 }
3589 }
3590 } else {
3591 blkptr_t *ibp = db->db.db_data;
3592 ASSERT3U(db->db.db_size, ==, 1<<dn->dn_phys->dn_indblkshift);
3593 for (i = db->db.db_size >> SPA_BLKPTRSHIFT; i > 0; i--, ibp++) {
3594 if (BP_IS_HOLE(ibp))
3595 continue;
3596 fill += BP_GET_FILL(ibp);
3597 }
3598 }
3599 DB_DNODE_EXIT(db);
3600
3601 if (!BP_IS_EMBEDDED(bp))
3602 BP_SET_FILL(bp, fill);
3603
3604 mutex_exit(&db->db_mtx);
3605
3606 rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
3607 *db->db_blkptr = *bp;
3608 rw_exit(&dn->dn_struct_rwlock);
3609 }
3610
3611 /* ARGSUSED */
3612 /*
3613 * This function gets called just prior to running through the compression
3614 * stage of the zio pipeline. If we're an indirect block comprised of only
3615 * holes, then we want this indirect to be compressed away to a hole. In
3616 * order to do that we must zero out any information about the holes that
3617 * this indirect points to prior to before we try to compress it.
3618 */
3619 static void
3620 dbuf_write_children_ready(zio_t *zio, arc_buf_t *buf, void *vdb)
3621 {
3622 dmu_buf_impl_t *db = vdb;
3623 dnode_t *dn;
3624 blkptr_t *bp;
3625 unsigned int epbs, i;
3626
3627 ASSERT3U(db->db_level, >, 0);
3628 DB_DNODE_ENTER(db);
3629 dn = DB_DNODE(db);
3630 epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT;
3631 ASSERT3U(epbs, <, 31);
3632
3633 /* Determine if all our children are holes */
3634 for (i = 0, bp = db->db.db_data; i < 1ULL << epbs; i++, bp++) {
3635 if (!BP_IS_HOLE(bp))
3636 break;
3637 }
3638
3639 /*
3640 * If all the children are holes, then zero them all out so that
3641 * we may get compressed away.
3642 */
3643 if (i == 1ULL << epbs) {
3644 /*
3645 * We only found holes. Grab the rwlock to prevent
3646 * anybody from reading the blocks we're about to
3647 * zero out.
3648 */
3649 rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
3650 bzero(db->db.db_data, db->db.db_size);
3651 rw_exit(&dn->dn_struct_rwlock);
3652 }
3653 DB_DNODE_EXIT(db);
3654 }
3655
3656 /*
3657 * The SPA will call this callback several times for each zio - once
3658 * for every physical child i/o (zio->io_phys_children times). This
3659 * allows the DMU to monitor the progress of each logical i/o. For example,
3660 * there may be 2 copies of an indirect block, or many fragments of a RAID-Z
3661 * block. There may be a long delay before all copies/fragments are completed,
3662 * so this callback allows us to retire dirty space gradually, as the physical
3663 * i/os complete.
3664 */
3665 /* ARGSUSED */
3666 static void
3667 dbuf_write_physdone(zio_t *zio, arc_buf_t *buf, void *arg)
3668 {
3669 dmu_buf_impl_t *db = arg;
3670 objset_t *os = db->db_objset;
3671 dsl_pool_t *dp = dmu_objset_pool(os);
3672 dbuf_dirty_record_t *dr;
3673 int delta = 0;
3674
3675 dr = db->db_data_pending;
3676 ASSERT3U(dr->dr_txg, ==, zio->io_txg);
3677
3678 /*
3679 * The callback will be called io_phys_children times. Retire one
3680 * portion of our dirty space each time we are called. Any rounding
3681 * error will be cleaned up by dsl_pool_sync()'s call to
3682 * dsl_pool_undirty_space().
3683 */
3684 delta = dr->dr_accounted / zio->io_phys_children;
3685 dsl_pool_undirty_space(dp, delta, zio->io_txg);
3686 }
3687
3688 /* ARGSUSED */
3689 static void
3690 dbuf_write_done(zio_t *zio, arc_buf_t *buf, void *vdb)
3691 {
3692 dmu_buf_impl_t *db = vdb;
3693 blkptr_t *bp_orig = &zio->io_bp_orig;
3694 blkptr_t *bp = db->db_blkptr;
3695 objset_t *os = db->db_objset;
3696 dmu_tx_t *tx = os->os_synctx;
3697 dbuf_dirty_record_t **drp, *dr;
3698
3699 ASSERT0(zio->io_error);
3700 ASSERT(db->db_blkptr == bp);
3701
3702 /*
3703 * For nopwrites and rewrites we ensure that the bp matches our
3704 * original and bypass all the accounting.
3705 */
3706 if (zio->io_flags & (ZIO_FLAG_IO_REWRITE | ZIO_FLAG_NOPWRITE)) {
3707 ASSERT(BP_EQUAL(bp, bp_orig));
3708 } else {
3709 dsl_dataset_t *ds = os->os_dsl_dataset;
3710 (void) dsl_dataset_block_kill(ds, bp_orig, tx, B_TRUE);
3711 dsl_dataset_block_born(ds, bp, tx);
3712 }
3713
3714 mutex_enter(&db->db_mtx);
3715
3716 DBUF_VERIFY(db);
3717
3718 drp = &db->db_last_dirty;
3719 while ((dr = *drp) != db->db_data_pending)
3720 drp = &dr->dr_next;
3721 ASSERT(!list_link_active(&dr->dr_dirty_node));
3722 ASSERT(dr->dr_dbuf == db);
3723 ASSERT(dr->dr_next == NULL);
3724 *drp = dr->dr_next;
3725
3726 #ifdef ZFS_DEBUG
3727 if (db->db_blkid == DMU_SPILL_BLKID) {
3728 dnode_t *dn;
3729
3730 DB_DNODE_ENTER(db);
3731 dn = DB_DNODE(db);
3732 ASSERT(dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR);
3733 ASSERT(!(BP_IS_HOLE(db->db_blkptr)) &&
3734 db->db_blkptr == DN_SPILL_BLKPTR(dn->dn_phys));
3735 DB_DNODE_EXIT(db);
3736 }
3737 #endif
3738
3739 if (db->db_level == 0) {
3740 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
3741 ASSERT(dr->dt.dl.dr_override_state == DR_NOT_OVERRIDDEN);
3742 if (db->db_state != DB_NOFILL) {
3743 if (dr->dt.dl.dr_data != db->db_buf)
3744 arc_buf_destroy(dr->dt.dl.dr_data, db);
3745 }
3746 } else {
3747 dnode_t *dn;
3748
3749 DB_DNODE_ENTER(db);
3750 dn = DB_DNODE(db);
3751 ASSERT(list_head(&dr->dt.di.dr_children) == NULL);
3752 ASSERT3U(db->db.db_size, ==, 1 << dn->dn_phys->dn_indblkshift);
3753 if (!BP_IS_HOLE(db->db_blkptr)) {
3754 ASSERTV(int epbs = dn->dn_phys->dn_indblkshift -
3755 SPA_BLKPTRSHIFT);
3756 ASSERT3U(db->db_blkid, <=,
3757 dn->dn_phys->dn_maxblkid >> (db->db_level * epbs));
3758 ASSERT3U(BP_GET_LSIZE(db->db_blkptr), ==,
3759 db->db.db_size);
3760 }
3761 DB_DNODE_EXIT(db);
3762 mutex_destroy(&dr->dt.di.dr_mtx);
3763 list_destroy(&dr->dt.di.dr_children);
3764 }
3765 kmem_free(dr, sizeof (dbuf_dirty_record_t));
3766
3767 cv_broadcast(&db->db_changed);
3768 ASSERT(db->db_dirtycnt > 0);
3769 db->db_dirtycnt -= 1;
3770 db->db_data_pending = NULL;
3771 dbuf_rele_and_unlock(db, (void *)(uintptr_t)tx->tx_txg);
3772 }
3773
3774 static void
3775 dbuf_write_nofill_ready(zio_t *zio)
3776 {
3777 dbuf_write_ready(zio, NULL, zio->io_private);
3778 }
3779
3780 static void
3781 dbuf_write_nofill_done(zio_t *zio)
3782 {
3783 dbuf_write_done(zio, NULL, zio->io_private);
3784 }
3785
3786 static void
3787 dbuf_write_override_ready(zio_t *zio)
3788 {
3789 dbuf_dirty_record_t *dr = zio->io_private;
3790 dmu_buf_impl_t *db = dr->dr_dbuf;
3791
3792 dbuf_write_ready(zio, NULL, db);
3793 }
3794
3795 static void
3796 dbuf_write_override_done(zio_t *zio)
3797 {
3798 dbuf_dirty_record_t *dr = zio->io_private;
3799 dmu_buf_impl_t *db = dr->dr_dbuf;
3800 blkptr_t *obp = &dr->dt.dl.dr_overridden_by;
3801
3802 mutex_enter(&db->db_mtx);
3803 if (!BP_EQUAL(zio->io_bp, obp)) {
3804 if (!BP_IS_HOLE(obp))
3805 dsl_free(spa_get_dsl(zio->io_spa), zio->io_txg, obp);
3806 arc_release(dr->dt.dl.dr_data, db);
3807 }
3808 mutex_exit(&db->db_mtx);
3809
3810 dbuf_write_done(zio, NULL, db);
3811
3812 if (zio->io_abd != NULL)
3813 abd_put(zio->io_abd);
3814 }
3815
3816 /* Issue I/O to commit a dirty buffer to disk. */
3817 static void
3818 dbuf_write(dbuf_dirty_record_t *dr, arc_buf_t *data, dmu_tx_t *tx)
3819 {
3820 dmu_buf_impl_t *db = dr->dr_dbuf;
3821 dnode_t *dn;
3822 objset_t *os;
3823 dmu_buf_impl_t *parent = db->db_parent;
3824 uint64_t txg = tx->tx_txg;
3825 zbookmark_phys_t zb;
3826 zio_prop_t zp;
3827 zio_t *zio;
3828 int wp_flag = 0;
3829
3830 ASSERT(dmu_tx_is_syncing(tx));
3831
3832 DB_DNODE_ENTER(db);
3833 dn = DB_DNODE(db);
3834 os = dn->dn_objset;
3835
3836 if (db->db_state != DB_NOFILL) {
3837 if (db->db_level > 0 || dn->dn_type == DMU_OT_DNODE) {
3838 /*
3839 * Private object buffers are released here rather
3840 * than in dbuf_dirty() since they are only modified
3841 * in the syncing context and we don't want the
3842 * overhead of making multiple copies of the data.
3843 */
3844 if (BP_IS_HOLE(db->db_blkptr)) {
3845 arc_buf_thaw(data);
3846 } else {
3847 dbuf_release_bp(db);
3848 }
3849 }
3850 }
3851
3852 if (parent != dn->dn_dbuf) {
3853 /* Our parent is an indirect block. */
3854 /* We have a dirty parent that has been scheduled for write. */
3855 ASSERT(parent && parent->db_data_pending);
3856 /* Our parent's buffer is one level closer to the dnode. */
3857 ASSERT(db->db_level == parent->db_level-1);
3858 /*
3859 * We're about to modify our parent's db_data by modifying
3860 * our block pointer, so the parent must be released.
3861 */
3862 ASSERT(arc_released(parent->db_buf));
3863 zio = parent->db_data_pending->dr_zio;
3864 } else {
3865 /* Our parent is the dnode itself. */
3866 ASSERT((db->db_level == dn->dn_phys->dn_nlevels-1 &&
3867 db->db_blkid != DMU_SPILL_BLKID) ||
3868 (db->db_blkid == DMU_SPILL_BLKID && db->db_level == 0));
3869 if (db->db_blkid != DMU_SPILL_BLKID)
3870 ASSERT3P(db->db_blkptr, ==,
3871 &dn->dn_phys->dn_blkptr[db->db_blkid]);
3872 zio = dn->dn_zio;
3873 }
3874
3875 ASSERT(db->db_level == 0 || data == db->db_buf);
3876 ASSERT3U(db->db_blkptr->blk_birth, <=, txg);
3877 ASSERT(zio);
3878
3879 SET_BOOKMARK(&zb, os->os_dsl_dataset ?
3880 os->os_dsl_dataset->ds_object : DMU_META_OBJSET,
3881 db->db.db_object, db->db_level, db->db_blkid);
3882
3883 if (db->db_blkid == DMU_SPILL_BLKID)
3884 wp_flag = WP_SPILL;
3885 wp_flag |= (db->db_state == DB_NOFILL) ? WP_NOFILL : 0;
3886
3887 dmu_write_policy(os, dn, db->db_level, wp_flag, &zp);
3888 DB_DNODE_EXIT(db);
3889
3890 /*
3891 * We copy the blkptr now (rather than when we instantiate the dirty
3892 * record), because its value can change between open context and
3893 * syncing context. We do not need to hold dn_struct_rwlock to read
3894 * db_blkptr because we are in syncing context.
3895 */
3896 dr->dr_bp_copy = *db->db_blkptr;
3897
3898 if (db->db_level == 0 &&
3899 dr->dt.dl.dr_override_state == DR_OVERRIDDEN) {
3900 /*
3901 * The BP for this block has been provided by open context
3902 * (by dmu_sync() or dmu_buf_write_embedded()).
3903 */
3904 abd_t *contents = (data != NULL) ?
3905 abd_get_from_buf(data->b_data, arc_buf_size(data)) : NULL;
3906
3907 dr->dr_zio = zio_write(zio, os->os_spa, txg,
3908 &dr->dr_bp_copy, contents, db->db.db_size, db->db.db_size,
3909 &zp, dbuf_write_override_ready, NULL, NULL,
3910 dbuf_write_override_done,
3911 dr, ZIO_PRIORITY_ASYNC_WRITE, ZIO_FLAG_MUSTSUCCEED, &zb);
3912 mutex_enter(&db->db_mtx);
3913 dr->dt.dl.dr_override_state = DR_NOT_OVERRIDDEN;
3914 zio_write_override(dr->dr_zio, &dr->dt.dl.dr_overridden_by,
3915 dr->dt.dl.dr_copies, dr->dt.dl.dr_nopwrite);
3916 mutex_exit(&db->db_mtx);
3917 } else if (db->db_state == DB_NOFILL) {
3918 ASSERT(zp.zp_checksum == ZIO_CHECKSUM_OFF ||
3919 zp.zp_checksum == ZIO_CHECKSUM_NOPARITY);
3920 dr->dr_zio = zio_write(zio, os->os_spa, txg,
3921 &dr->dr_bp_copy, NULL, db->db.db_size, db->db.db_size, &zp,
3922 dbuf_write_nofill_ready, NULL, NULL,
3923 dbuf_write_nofill_done, db,
3924 ZIO_PRIORITY_ASYNC_WRITE,
3925 ZIO_FLAG_MUSTSUCCEED | ZIO_FLAG_NODATA, &zb);
3926 } else {
3927 arc_write_done_func_t *children_ready_cb = NULL;
3928 ASSERT(arc_released(data));
3929
3930 /*
3931 * For indirect blocks, we want to setup the children
3932 * ready callback so that we can properly handle an indirect
3933 * block that only contains holes.
3934 */
3935 if (db->db_level != 0)
3936 children_ready_cb = dbuf_write_children_ready;
3937
3938 dr->dr_zio = arc_write(zio, os->os_spa, txg,
3939 &dr->dr_bp_copy, data, DBUF_IS_L2CACHEABLE(db),
3940 &zp, dbuf_write_ready,
3941 children_ready_cb, dbuf_write_physdone,
3942 dbuf_write_done, db, ZIO_PRIORITY_ASYNC_WRITE,
3943 ZIO_FLAG_MUSTSUCCEED, &zb);
3944 }
3945 }
3946
3947 #if defined(_KERNEL) && defined(HAVE_SPL)
3948 EXPORT_SYMBOL(dbuf_find);
3949 EXPORT_SYMBOL(dbuf_is_metadata);
3950 EXPORT_SYMBOL(dbuf_destroy);
3951 EXPORT_SYMBOL(dbuf_loan_arcbuf);
3952 EXPORT_SYMBOL(dbuf_whichblock);
3953 EXPORT_SYMBOL(dbuf_read);
3954 EXPORT_SYMBOL(dbuf_unoverride);
3955 EXPORT_SYMBOL(dbuf_free_range);
3956 EXPORT_SYMBOL(dbuf_new_size);
3957 EXPORT_SYMBOL(dbuf_release_bp);
3958 EXPORT_SYMBOL(dbuf_dirty);
3959 EXPORT_SYMBOL(dmu_buf_will_change_crypt_params);
3960 EXPORT_SYMBOL(dmu_buf_will_dirty);
3961 EXPORT_SYMBOL(dmu_buf_will_not_fill);
3962 EXPORT_SYMBOL(dmu_buf_will_fill);
3963 EXPORT_SYMBOL(dmu_buf_fill_done);
3964 EXPORT_SYMBOL(dmu_buf_rele);
3965 EXPORT_SYMBOL(dbuf_assign_arcbuf);
3966 EXPORT_SYMBOL(dbuf_prefetch);
3967 EXPORT_SYMBOL(dbuf_hold_impl);
3968 EXPORT_SYMBOL(dbuf_hold);
3969 EXPORT_SYMBOL(dbuf_hold_level);
3970 EXPORT_SYMBOL(dbuf_create_bonus);
3971 EXPORT_SYMBOL(dbuf_spill_set_blksz);
3972 EXPORT_SYMBOL(dbuf_rm_spill);
3973 EXPORT_SYMBOL(dbuf_add_ref);
3974 EXPORT_SYMBOL(dbuf_rele);
3975 EXPORT_SYMBOL(dbuf_rele_and_unlock);
3976 EXPORT_SYMBOL(dbuf_refcount);
3977 EXPORT_SYMBOL(dbuf_sync_list);
3978 EXPORT_SYMBOL(dmu_buf_set_user);
3979 EXPORT_SYMBOL(dmu_buf_set_user_ie);
3980 EXPORT_SYMBOL(dmu_buf_get_user);
3981 EXPORT_SYMBOL(dmu_buf_get_blkptr);
3982
3983 /* BEGIN CSTYLED */
3984 module_param(dbuf_cache_max_bytes, ulong, 0644);
3985 MODULE_PARM_DESC(dbuf_cache_max_bytes,
3986 "Maximum size in bytes of the dbuf cache.");
3987
3988 module_param(dbuf_cache_hiwater_pct, uint, 0644);
3989 MODULE_PARM_DESC(dbuf_cache_hiwater_pct,
3990 "Percentage over dbuf_cache_max_bytes when dbufs must be evicted "
3991 "directly.");
3992
3993 module_param(dbuf_cache_lowater_pct, uint, 0644);
3994 MODULE_PARM_DESC(dbuf_cache_lowater_pct,
3995 "Percentage below dbuf_cache_max_bytes when the evict thread stops "
3996 "evicting dbufs.");
3997
3998 module_param(dbuf_cache_max_shift, int, 0644);
3999 MODULE_PARM_DESC(dbuf_cache_max_shift,
4000 "Cap the size of the dbuf cache to a log2 fraction of arc size.");
4001 /* END CSTYLED */
4002 #endif