]> git.proxmox.com Git - mirror_zfs.git/blob - module/zfs/dmu_object.c
Fix send/recv lost spill block
[mirror_zfs.git] / module / zfs / dmu_object.c
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2013, 2017 by Delphix. All rights reserved.
24 * Copyright 2014 HybridCluster. All rights reserved.
25 */
26
27 #include <sys/dbuf.h>
28 #include <sys/dmu.h>
29 #include <sys/dmu_objset.h>
30 #include <sys/dmu_tx.h>
31 #include <sys/dnode.h>
32 #include <sys/zap.h>
33 #include <sys/zfeature.h>
34 #include <sys/dsl_dataset.h>
35
36 /*
37 * Each of the concurrent object allocators will grab
38 * 2^dmu_object_alloc_chunk_shift dnode slots at a time. The default is to
39 * grab 128 slots, which is 4 blocks worth. This was experimentally
40 * determined to be the lowest value that eliminates the measurable effect
41 * of lock contention from this code path.
42 */
43 int dmu_object_alloc_chunk_shift = 7;
44
45 static uint64_t
46 dmu_object_alloc_impl(objset_t *os, dmu_object_type_t ot, int blocksize,
47 int indirect_blockshift, dmu_object_type_t bonustype, int bonuslen,
48 int dnodesize, dnode_t **allocated_dnode, void *tag, dmu_tx_t *tx)
49 {
50 uint64_t object;
51 uint64_t L1_dnode_count = DNODES_PER_BLOCK <<
52 (DMU_META_DNODE(os)->dn_indblkshift - SPA_BLKPTRSHIFT);
53 dnode_t *dn = NULL;
54 int dn_slots = dnodesize >> DNODE_SHIFT;
55 boolean_t restarted = B_FALSE;
56 uint64_t *cpuobj = NULL;
57 int dnodes_per_chunk = 1 << dmu_object_alloc_chunk_shift;
58 int error;
59
60 kpreempt_disable();
61 cpuobj = &os->os_obj_next_percpu[CPU_SEQID %
62 os->os_obj_next_percpu_len];
63 kpreempt_enable();
64
65 if (dn_slots == 0) {
66 dn_slots = DNODE_MIN_SLOTS;
67 } else {
68 ASSERT3S(dn_slots, >=, DNODE_MIN_SLOTS);
69 ASSERT3S(dn_slots, <=, DNODE_MAX_SLOTS);
70 }
71
72 /*
73 * The "chunk" of dnodes that is assigned to a CPU-specific
74 * allocator needs to be at least one block's worth, to avoid
75 * lock contention on the dbuf. It can be at most one L1 block's
76 * worth, so that the "rescan after polishing off a L1's worth"
77 * logic below will be sure to kick in.
78 */
79 if (dnodes_per_chunk < DNODES_PER_BLOCK)
80 dnodes_per_chunk = DNODES_PER_BLOCK;
81 if (dnodes_per_chunk > L1_dnode_count)
82 dnodes_per_chunk = L1_dnode_count;
83
84 /*
85 * The caller requested the dnode be returned as a performance
86 * optimization in order to avoid releasing the hold only to
87 * immediately reacquire it. Since they caller is responsible
88 * for releasing the hold they must provide the tag.
89 */
90 if (allocated_dnode != NULL) {
91 ASSERT3P(tag, !=, NULL);
92 } else {
93 ASSERT3P(tag, ==, NULL);
94 tag = FTAG;
95 }
96
97 object = *cpuobj;
98 for (;;) {
99 /*
100 * If we finished a chunk of dnodes, get a new one from
101 * the global allocator.
102 */
103 if ((P2PHASE(object, dnodes_per_chunk) == 0) ||
104 (P2PHASE(object + dn_slots - 1, dnodes_per_chunk) <
105 dn_slots)) {
106 DNODE_STAT_BUMP(dnode_alloc_next_chunk);
107 mutex_enter(&os->os_obj_lock);
108 ASSERT0(P2PHASE(os->os_obj_next_chunk,
109 dnodes_per_chunk));
110 object = os->os_obj_next_chunk;
111
112 /*
113 * Each time we polish off a L1 bp worth of dnodes
114 * (2^12 objects), move to another L1 bp that's
115 * still reasonably sparse (at most 1/4 full). Look
116 * from the beginning at most once per txg. If we
117 * still can't allocate from that L1 block, search
118 * for an empty L0 block, which will quickly skip
119 * to the end of the metadnode if no nearby L0
120 * blocks are empty. This fallback avoids a
121 * pathology where full dnode blocks containing
122 * large dnodes appear sparse because they have a
123 * low blk_fill, leading to many failed allocation
124 * attempts. In the long term a better mechanism to
125 * search for sparse metadnode regions, such as
126 * spacemaps, could be implemented.
127 *
128 * os_scan_dnodes is set during txg sync if enough
129 * objects have been freed since the previous
130 * rescan to justify backfilling again.
131 *
132 * Note that dmu_traverse depends on the behavior
133 * that we use multiple blocks of the dnode object
134 * before going back to reuse objects. Any change
135 * to this algorithm should preserve that property
136 * or find another solution to the issues described
137 * in traverse_visitbp.
138 */
139 if (P2PHASE(object, L1_dnode_count) == 0) {
140 uint64_t offset;
141 uint64_t blkfill;
142 int minlvl;
143 if (os->os_rescan_dnodes) {
144 offset = 0;
145 os->os_rescan_dnodes = B_FALSE;
146 } else {
147 offset = object << DNODE_SHIFT;
148 }
149 blkfill = restarted ? 1 : DNODES_PER_BLOCK >> 2;
150 minlvl = restarted ? 1 : 2;
151 restarted = B_TRUE;
152 error = dnode_next_offset(DMU_META_DNODE(os),
153 DNODE_FIND_HOLE, &offset, minlvl,
154 blkfill, 0);
155 if (error == 0) {
156 object = offset >> DNODE_SHIFT;
157 }
158 }
159 /*
160 * Note: if "restarted", we may find a L0 that
161 * is not suitably aligned.
162 */
163 os->os_obj_next_chunk =
164 P2ALIGN(object, dnodes_per_chunk) +
165 dnodes_per_chunk;
166 (void) atomic_swap_64(cpuobj, object);
167 mutex_exit(&os->os_obj_lock);
168 }
169
170 /*
171 * The value of (*cpuobj) before adding dn_slots is the object
172 * ID assigned to us. The value afterwards is the object ID
173 * assigned to whoever wants to do an allocation next.
174 */
175 object = atomic_add_64_nv(cpuobj, dn_slots) - dn_slots;
176
177 /*
178 * XXX We should check for an i/o error here and return
179 * up to our caller. Actually we should pre-read it in
180 * dmu_tx_assign(), but there is currently no mechanism
181 * to do so.
182 */
183 error = dnode_hold_impl(os, object, DNODE_MUST_BE_FREE,
184 dn_slots, tag, &dn);
185 if (error == 0) {
186 rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
187 /*
188 * Another thread could have allocated it; check
189 * again now that we have the struct lock.
190 */
191 if (dn->dn_type == DMU_OT_NONE) {
192 dnode_allocate(dn, ot, blocksize,
193 indirect_blockshift, bonustype,
194 bonuslen, dn_slots, tx);
195 rw_exit(&dn->dn_struct_rwlock);
196 dmu_tx_add_new_object(tx, dn);
197
198 /*
199 * Caller requested the allocated dnode be
200 * returned and is responsible for the hold.
201 */
202 if (allocated_dnode != NULL)
203 *allocated_dnode = dn;
204 else
205 dnode_rele(dn, tag);
206
207 return (object);
208 }
209 rw_exit(&dn->dn_struct_rwlock);
210 dnode_rele(dn, tag);
211 DNODE_STAT_BUMP(dnode_alloc_race);
212 }
213
214 /*
215 * Skip to next known valid starting point on error. This
216 * is the start of the next block of dnodes.
217 */
218 if (dmu_object_next(os, &object, B_TRUE, 0) != 0) {
219 object = P2ROUNDUP(object + 1, DNODES_PER_BLOCK);
220 DNODE_STAT_BUMP(dnode_alloc_next_block);
221 }
222 (void) atomic_swap_64(cpuobj, object);
223 }
224 }
225
226 uint64_t
227 dmu_object_alloc(objset_t *os, dmu_object_type_t ot, int blocksize,
228 dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx)
229 {
230 return dmu_object_alloc_impl(os, ot, blocksize, 0, bonustype,
231 bonuslen, 0, NULL, NULL, tx);
232 }
233
234 uint64_t
235 dmu_object_alloc_ibs(objset_t *os, dmu_object_type_t ot, int blocksize,
236 int indirect_blockshift, dmu_object_type_t bonustype, int bonuslen,
237 dmu_tx_t *tx)
238 {
239 return dmu_object_alloc_impl(os, ot, blocksize, indirect_blockshift,
240 bonustype, bonuslen, 0, NULL, NULL, tx);
241 }
242
243 uint64_t
244 dmu_object_alloc_dnsize(objset_t *os, dmu_object_type_t ot, int blocksize,
245 dmu_object_type_t bonustype, int bonuslen, int dnodesize, dmu_tx_t *tx)
246 {
247 return (dmu_object_alloc_impl(os, ot, blocksize, 0, bonustype,
248 bonuslen, dnodesize, NULL, NULL, tx));
249 }
250
251 /*
252 * Allocate a new object and return a pointer to the newly allocated dnode
253 * via the allocated_dnode argument. The returned dnode will be held and
254 * the caller is responsible for releasing the hold by calling dnode_rele().
255 */
256 uint64_t
257 dmu_object_alloc_hold(objset_t *os, dmu_object_type_t ot, int blocksize,
258 int indirect_blockshift, dmu_object_type_t bonustype, int bonuslen,
259 int dnodesize, dnode_t **allocated_dnode, void *tag, dmu_tx_t *tx)
260 {
261 return (dmu_object_alloc_impl(os, ot, blocksize, indirect_blockshift,
262 bonustype, bonuslen, dnodesize, allocated_dnode, tag, tx));
263 }
264
265 int
266 dmu_object_claim(objset_t *os, uint64_t object, dmu_object_type_t ot,
267 int blocksize, dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx)
268 {
269 return (dmu_object_claim_dnsize(os, object, ot, blocksize, bonustype,
270 bonuslen, 0, tx));
271 }
272
273 int
274 dmu_object_claim_dnsize(objset_t *os, uint64_t object, dmu_object_type_t ot,
275 int blocksize, dmu_object_type_t bonustype, int bonuslen,
276 int dnodesize, dmu_tx_t *tx)
277 {
278 dnode_t *dn;
279 int dn_slots = dnodesize >> DNODE_SHIFT;
280 int err;
281
282 if (dn_slots == 0)
283 dn_slots = DNODE_MIN_SLOTS;
284 ASSERT3S(dn_slots, >=, DNODE_MIN_SLOTS);
285 ASSERT3S(dn_slots, <=, DNODE_MAX_SLOTS);
286
287 if (object == DMU_META_DNODE_OBJECT && !dmu_tx_private_ok(tx))
288 return (SET_ERROR(EBADF));
289
290 err = dnode_hold_impl(os, object, DNODE_MUST_BE_FREE, dn_slots,
291 FTAG, &dn);
292 if (err)
293 return (err);
294
295 dnode_allocate(dn, ot, blocksize, 0, bonustype, bonuslen, dn_slots, tx);
296 dmu_tx_add_new_object(tx, dn);
297
298 dnode_rele(dn, FTAG);
299
300 return (0);
301 }
302
303 int
304 dmu_object_reclaim(objset_t *os, uint64_t object, dmu_object_type_t ot,
305 int blocksize, dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx)
306 {
307 return (dmu_object_reclaim_dnsize(os, object, ot, blocksize, bonustype,
308 bonuslen, DNODE_MIN_SIZE, B_FALSE, tx));
309 }
310
311 int
312 dmu_object_reclaim_dnsize(objset_t *os, uint64_t object, dmu_object_type_t ot,
313 int blocksize, dmu_object_type_t bonustype, int bonuslen, int dnodesize,
314 boolean_t keep_spill, dmu_tx_t *tx)
315 {
316 dnode_t *dn;
317 int dn_slots = dnodesize >> DNODE_SHIFT;
318 int err;
319
320 if (dn_slots == 0)
321 dn_slots = DNODE_MIN_SLOTS;
322
323 if (object == DMU_META_DNODE_OBJECT)
324 return (SET_ERROR(EBADF));
325
326 err = dnode_hold_impl(os, object, DNODE_MUST_BE_ALLOCATED, 0,
327 FTAG, &dn);
328 if (err)
329 return (err);
330
331 dnode_reallocate(dn, ot, blocksize, bonustype, bonuslen, dn_slots,
332 keep_spill, tx);
333
334 dnode_rele(dn, FTAG);
335 return (err);
336 }
337
338 int
339 dmu_object_rm_spill(objset_t *os, uint64_t object, dmu_tx_t *tx)
340 {
341 dnode_t *dn;
342 int err;
343
344 err = dnode_hold_impl(os, object, DNODE_MUST_BE_ALLOCATED, 0,
345 FTAG, &dn);
346 if (err)
347 return (err);
348
349 rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
350 if (dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR) {
351 dbuf_rm_spill(dn, tx);
352 dnode_rm_spill(dn, tx);
353 }
354 rw_exit(&dn->dn_struct_rwlock);
355
356 dnode_rele(dn, FTAG);
357 return (err);
358 }
359
360 int
361 dmu_object_free(objset_t *os, uint64_t object, dmu_tx_t *tx)
362 {
363 dnode_t *dn;
364 int err;
365
366 ASSERT(object != DMU_META_DNODE_OBJECT || dmu_tx_private_ok(tx));
367
368 err = dnode_hold_impl(os, object, DNODE_MUST_BE_ALLOCATED, 0,
369 FTAG, &dn);
370 if (err)
371 return (err);
372
373 ASSERT(dn->dn_type != DMU_OT_NONE);
374 /*
375 * If we don't create this free range, we'll leak indirect blocks when
376 * we get to freeing the dnode in syncing context.
377 */
378 dnode_free_range(dn, 0, DMU_OBJECT_END, tx);
379 dnode_free(dn, tx);
380 dnode_rele(dn, FTAG);
381
382 return (0);
383 }
384
385 /*
386 * Return (in *objectp) the next object which is allocated (or a hole)
387 * after *object, taking into account only objects that may have been modified
388 * after the specified txg.
389 */
390 int
391 dmu_object_next(objset_t *os, uint64_t *objectp, boolean_t hole, uint64_t txg)
392 {
393 uint64_t offset;
394 uint64_t start_obj;
395 struct dsl_dataset *ds = os->os_dsl_dataset;
396 int error;
397
398 if (*objectp == 0) {
399 start_obj = 1;
400 } else if (ds && dsl_dataset_feature_is_active(ds,
401 SPA_FEATURE_LARGE_DNODE)) {
402 uint64_t i = *objectp + 1;
403 uint64_t last_obj = *objectp | (DNODES_PER_BLOCK - 1);
404 dmu_object_info_t doi;
405
406 /*
407 * Scan through the remaining meta dnode block. The contents
408 * of each slot in the block are known so it can be quickly
409 * checked. If the block is exhausted without a match then
410 * hand off to dnode_next_offset() for further scanning.
411 */
412 while (i <= last_obj) {
413 error = dmu_object_info(os, i, &doi);
414 if (error == ENOENT) {
415 if (hole) {
416 *objectp = i;
417 return (0);
418 } else {
419 i++;
420 }
421 } else if (error == EEXIST) {
422 i++;
423 } else if (error == 0) {
424 if (hole) {
425 i += doi.doi_dnodesize >> DNODE_SHIFT;
426 } else {
427 *objectp = i;
428 return (0);
429 }
430 } else {
431 return (error);
432 }
433 }
434
435 start_obj = i;
436 } else {
437 start_obj = *objectp + 1;
438 }
439
440 offset = start_obj << DNODE_SHIFT;
441
442 error = dnode_next_offset(DMU_META_DNODE(os),
443 (hole ? DNODE_FIND_HOLE : 0), &offset, 0, DNODES_PER_BLOCK, txg);
444
445 *objectp = offset >> DNODE_SHIFT;
446
447 return (error);
448 }
449
450 /*
451 * Turn this object from old_type into DMU_OTN_ZAP_METADATA, and bump the
452 * refcount on SPA_FEATURE_EXTENSIBLE_DATASET.
453 *
454 * Only for use from syncing context, on MOS objects.
455 */
456 void
457 dmu_object_zapify(objset_t *mos, uint64_t object, dmu_object_type_t old_type,
458 dmu_tx_t *tx)
459 {
460 dnode_t *dn;
461
462 ASSERT(dmu_tx_is_syncing(tx));
463
464 VERIFY0(dnode_hold(mos, object, FTAG, &dn));
465 if (dn->dn_type == DMU_OTN_ZAP_METADATA) {
466 dnode_rele(dn, FTAG);
467 return;
468 }
469 ASSERT3U(dn->dn_type, ==, old_type);
470 ASSERT0(dn->dn_maxblkid);
471
472 /*
473 * We must initialize the ZAP data before changing the type,
474 * so that concurrent calls to *_is_zapified() can determine if
475 * the object has been completely zapified by checking the type.
476 */
477 mzap_create_impl(dn, 0, 0, tx);
478
479 dn->dn_next_type[tx->tx_txg & TXG_MASK] = dn->dn_type =
480 DMU_OTN_ZAP_METADATA;
481 dnode_setdirty(dn, tx);
482 dnode_rele(dn, FTAG);
483
484 spa_feature_incr(dmu_objset_spa(mos),
485 SPA_FEATURE_EXTENSIBLE_DATASET, tx);
486 }
487
488 void
489 dmu_object_free_zapified(objset_t *mos, uint64_t object, dmu_tx_t *tx)
490 {
491 dnode_t *dn;
492 dmu_object_type_t t;
493
494 ASSERT(dmu_tx_is_syncing(tx));
495
496 VERIFY0(dnode_hold(mos, object, FTAG, &dn));
497 t = dn->dn_type;
498 dnode_rele(dn, FTAG);
499
500 if (t == DMU_OTN_ZAP_METADATA) {
501 spa_feature_decr(dmu_objset_spa(mos),
502 SPA_FEATURE_EXTENSIBLE_DATASET, tx);
503 }
504 VERIFY0(dmu_object_free(mos, object, tx));
505 }
506
507 #if defined(_KERNEL)
508 EXPORT_SYMBOL(dmu_object_alloc);
509 EXPORT_SYMBOL(dmu_object_alloc_ibs);
510 EXPORT_SYMBOL(dmu_object_alloc_dnsize);
511 EXPORT_SYMBOL(dmu_object_alloc_hold);
512 EXPORT_SYMBOL(dmu_object_claim);
513 EXPORT_SYMBOL(dmu_object_claim_dnsize);
514 EXPORT_SYMBOL(dmu_object_reclaim);
515 EXPORT_SYMBOL(dmu_object_reclaim_dnsize);
516 EXPORT_SYMBOL(dmu_object_rm_spill);
517 EXPORT_SYMBOL(dmu_object_free);
518 EXPORT_SYMBOL(dmu_object_next);
519 EXPORT_SYMBOL(dmu_object_zapify);
520 EXPORT_SYMBOL(dmu_object_free_zapified);
521
522 /* BEGIN CSTYLED */
523 module_param(dmu_object_alloc_chunk_shift, int, 0644);
524 MODULE_PARM_DESC(dmu_object_alloc_chunk_shift,
525 "CPU-specific allocator grabs 2^N objects at once");
526 /* END CSTYLED */
527 #endif