]> git.proxmox.com Git - mirror_zfs.git/blob - module/zfs/dnode.c
Illumos 4757, 4913
[mirror_zfs.git] / module / zfs / dnode.c
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2012, 2014 by Delphix. All rights reserved.
24 */
25
26 #include <sys/zfs_context.h>
27 #include <sys/dbuf.h>
28 #include <sys/dnode.h>
29 #include <sys/dmu.h>
30 #include <sys/dmu_impl.h>
31 #include <sys/dmu_tx.h>
32 #include <sys/dmu_objset.h>
33 #include <sys/dsl_dir.h>
34 #include <sys/dsl_dataset.h>
35 #include <sys/spa.h>
36 #include <sys/zio.h>
37 #include <sys/dmu_zfetch.h>
38 #include <sys/range_tree.h>
39
40 static kmem_cache_t *dnode_cache;
41 /*
42 * Define DNODE_STATS to turn on statistic gathering. By default, it is only
43 * turned on when DEBUG is also defined.
44 */
45 #ifdef DEBUG
46 #define DNODE_STATS
47 #endif /* DEBUG */
48
49 #ifdef DNODE_STATS
50 #define DNODE_STAT_ADD(stat) ((stat)++)
51 #else
52 #define DNODE_STAT_ADD(stat) /* nothing */
53 #endif /* DNODE_STATS */
54
55 ASSERTV(static dnode_phys_t dnode_phys_zero);
56
57 int zfs_default_bs = SPA_MINBLOCKSHIFT;
58 int zfs_default_ibs = DN_MAX_INDBLKSHIFT;
59
60 #ifdef _KERNEL
61 static kmem_cbrc_t dnode_move(void *, void *, size_t, void *);
62 #endif /* _KERNEL */
63
64 /* ARGSUSED */
65 static int
66 dnode_cons(void *arg, void *unused, int kmflag)
67 {
68 dnode_t *dn = arg;
69 int i;
70
71 rw_init(&dn->dn_struct_rwlock, NULL, RW_DEFAULT, NULL);
72 mutex_init(&dn->dn_mtx, NULL, MUTEX_DEFAULT, NULL);
73 mutex_init(&dn->dn_dbufs_mtx, NULL, MUTEX_DEFAULT, NULL);
74 cv_init(&dn->dn_notxholds, NULL, CV_DEFAULT, NULL);
75
76 /*
77 * Every dbuf has a reference, and dropping a tracked reference is
78 * O(number of references), so don't track dn_holds.
79 */
80 refcount_create_untracked(&dn->dn_holds);
81 refcount_create(&dn->dn_tx_holds);
82 list_link_init(&dn->dn_link);
83
84 bzero(&dn->dn_next_nblkptr[0], sizeof (dn->dn_next_nblkptr));
85 bzero(&dn->dn_next_nlevels[0], sizeof (dn->dn_next_nlevels));
86 bzero(&dn->dn_next_indblkshift[0], sizeof (dn->dn_next_indblkshift));
87 bzero(&dn->dn_next_bonustype[0], sizeof (dn->dn_next_bonustype));
88 bzero(&dn->dn_rm_spillblk[0], sizeof (dn->dn_rm_spillblk));
89 bzero(&dn->dn_next_bonuslen[0], sizeof (dn->dn_next_bonuslen));
90 bzero(&dn->dn_next_blksz[0], sizeof (dn->dn_next_blksz));
91
92 for (i = 0; i < TXG_SIZE; i++) {
93 list_link_init(&dn->dn_dirty_link[i]);
94 dn->dn_free_ranges[i] = NULL;
95 list_create(&dn->dn_dirty_records[i],
96 sizeof (dbuf_dirty_record_t),
97 offsetof(dbuf_dirty_record_t, dr_dirty_node));
98 }
99
100 dn->dn_allocated_txg = 0;
101 dn->dn_free_txg = 0;
102 dn->dn_assigned_txg = 0;
103 dn->dn_dirtyctx = 0;
104 dn->dn_dirtyctx_firstset = NULL;
105 dn->dn_bonus = NULL;
106 dn->dn_have_spill = B_FALSE;
107 dn->dn_zio = NULL;
108 dn->dn_oldused = 0;
109 dn->dn_oldflags = 0;
110 dn->dn_olduid = 0;
111 dn->dn_oldgid = 0;
112 dn->dn_newuid = 0;
113 dn->dn_newgid = 0;
114 dn->dn_id_flags = 0;
115
116 dn->dn_dbufs_count = 0;
117 dn->dn_unlisted_l0_blkid = 0;
118 list_create(&dn->dn_dbufs, sizeof (dmu_buf_impl_t),
119 offsetof(dmu_buf_impl_t, db_link));
120
121 dn->dn_moved = 0;
122 return (0);
123 }
124
125 /* ARGSUSED */
126 static void
127 dnode_dest(void *arg, void *unused)
128 {
129 int i;
130 dnode_t *dn = arg;
131
132 rw_destroy(&dn->dn_struct_rwlock);
133 mutex_destroy(&dn->dn_mtx);
134 mutex_destroy(&dn->dn_dbufs_mtx);
135 cv_destroy(&dn->dn_notxholds);
136 refcount_destroy(&dn->dn_holds);
137 refcount_destroy(&dn->dn_tx_holds);
138 ASSERT(!list_link_active(&dn->dn_link));
139
140 for (i = 0; i < TXG_SIZE; i++) {
141 ASSERT(!list_link_active(&dn->dn_dirty_link[i]));
142 ASSERT3P(dn->dn_free_ranges[i], ==, NULL);
143 list_destroy(&dn->dn_dirty_records[i]);
144 ASSERT0(dn->dn_next_nblkptr[i]);
145 ASSERT0(dn->dn_next_nlevels[i]);
146 ASSERT0(dn->dn_next_indblkshift[i]);
147 ASSERT0(dn->dn_next_bonustype[i]);
148 ASSERT0(dn->dn_rm_spillblk[i]);
149 ASSERT0(dn->dn_next_bonuslen[i]);
150 ASSERT0(dn->dn_next_blksz[i]);
151 }
152
153 ASSERT0(dn->dn_allocated_txg);
154 ASSERT0(dn->dn_free_txg);
155 ASSERT0(dn->dn_assigned_txg);
156 ASSERT0(dn->dn_dirtyctx);
157 ASSERT3P(dn->dn_dirtyctx_firstset, ==, NULL);
158 ASSERT3P(dn->dn_bonus, ==, NULL);
159 ASSERT(!dn->dn_have_spill);
160 ASSERT3P(dn->dn_zio, ==, NULL);
161 ASSERT0(dn->dn_oldused);
162 ASSERT0(dn->dn_oldflags);
163 ASSERT0(dn->dn_olduid);
164 ASSERT0(dn->dn_oldgid);
165 ASSERT0(dn->dn_newuid);
166 ASSERT0(dn->dn_newgid);
167 ASSERT0(dn->dn_id_flags);
168
169 ASSERT0(dn->dn_dbufs_count);
170 ASSERT0(dn->dn_unlisted_l0_blkid);
171 list_destroy(&dn->dn_dbufs);
172 }
173
174 void
175 dnode_init(void)
176 {
177 ASSERT(dnode_cache == NULL);
178 dnode_cache = kmem_cache_create("dnode_t", sizeof (dnode_t),
179 0, dnode_cons, dnode_dest, NULL, NULL, NULL, 0);
180 kmem_cache_set_move(dnode_cache, dnode_move);
181 }
182
183 void
184 dnode_fini(void)
185 {
186 kmem_cache_destroy(dnode_cache);
187 dnode_cache = NULL;
188 }
189
190
191 #ifdef ZFS_DEBUG
192 void
193 dnode_verify(dnode_t *dn)
194 {
195 int drop_struct_lock = FALSE;
196
197 ASSERT(dn->dn_phys);
198 ASSERT(dn->dn_objset);
199 ASSERT(dn->dn_handle->dnh_dnode == dn);
200
201 ASSERT(DMU_OT_IS_VALID(dn->dn_phys->dn_type));
202
203 if (!(zfs_flags & ZFS_DEBUG_DNODE_VERIFY))
204 return;
205
206 if (!RW_WRITE_HELD(&dn->dn_struct_rwlock)) {
207 rw_enter(&dn->dn_struct_rwlock, RW_READER);
208 drop_struct_lock = TRUE;
209 }
210 if (dn->dn_phys->dn_type != DMU_OT_NONE || dn->dn_allocated_txg != 0) {
211 int i;
212 ASSERT3U(dn->dn_indblkshift, <=, SPA_MAXBLOCKSHIFT);
213 if (dn->dn_datablkshift) {
214 ASSERT3U(dn->dn_datablkshift, >=, SPA_MINBLOCKSHIFT);
215 ASSERT3U(dn->dn_datablkshift, <=, SPA_MAXBLOCKSHIFT);
216 ASSERT3U(1<<dn->dn_datablkshift, ==, dn->dn_datablksz);
217 }
218 ASSERT3U(dn->dn_nlevels, <=, 30);
219 ASSERT(DMU_OT_IS_VALID(dn->dn_type));
220 ASSERT3U(dn->dn_nblkptr, >=, 1);
221 ASSERT3U(dn->dn_nblkptr, <=, DN_MAX_NBLKPTR);
222 ASSERT3U(dn->dn_bonuslen, <=, DN_MAX_BONUSLEN);
223 ASSERT3U(dn->dn_datablksz, ==,
224 dn->dn_datablkszsec << SPA_MINBLOCKSHIFT);
225 ASSERT3U(ISP2(dn->dn_datablksz), ==, dn->dn_datablkshift != 0);
226 ASSERT3U((dn->dn_nblkptr - 1) * sizeof (blkptr_t) +
227 dn->dn_bonuslen, <=, DN_MAX_BONUSLEN);
228 for (i = 0; i < TXG_SIZE; i++) {
229 ASSERT3U(dn->dn_next_nlevels[i], <=, dn->dn_nlevels);
230 }
231 }
232 if (dn->dn_phys->dn_type != DMU_OT_NONE)
233 ASSERT3U(dn->dn_phys->dn_nlevels, <=, dn->dn_nlevels);
234 ASSERT(DMU_OBJECT_IS_SPECIAL(dn->dn_object) || dn->dn_dbuf != NULL);
235 if (dn->dn_dbuf != NULL) {
236 ASSERT3P(dn->dn_phys, ==,
237 (dnode_phys_t *)dn->dn_dbuf->db.db_data +
238 (dn->dn_object % (dn->dn_dbuf->db.db_size >> DNODE_SHIFT)));
239 }
240 if (drop_struct_lock)
241 rw_exit(&dn->dn_struct_rwlock);
242 }
243 #endif
244
245 void
246 dnode_byteswap(dnode_phys_t *dnp)
247 {
248 uint64_t *buf64 = (void*)&dnp->dn_blkptr;
249 int i;
250
251 if (dnp->dn_type == DMU_OT_NONE) {
252 bzero(dnp, sizeof (dnode_phys_t));
253 return;
254 }
255
256 dnp->dn_datablkszsec = BSWAP_16(dnp->dn_datablkszsec);
257 dnp->dn_bonuslen = BSWAP_16(dnp->dn_bonuslen);
258 dnp->dn_maxblkid = BSWAP_64(dnp->dn_maxblkid);
259 dnp->dn_used = BSWAP_64(dnp->dn_used);
260
261 /*
262 * dn_nblkptr is only one byte, so it's OK to read it in either
263 * byte order. We can't read dn_bouslen.
264 */
265 ASSERT(dnp->dn_indblkshift <= SPA_MAXBLOCKSHIFT);
266 ASSERT(dnp->dn_nblkptr <= DN_MAX_NBLKPTR);
267 for (i = 0; i < dnp->dn_nblkptr * sizeof (blkptr_t)/8; i++)
268 buf64[i] = BSWAP_64(buf64[i]);
269
270 /*
271 * OK to check dn_bonuslen for zero, because it won't matter if
272 * we have the wrong byte order. This is necessary because the
273 * dnode dnode is smaller than a regular dnode.
274 */
275 if (dnp->dn_bonuslen != 0) {
276 /*
277 * Note that the bonus length calculated here may be
278 * longer than the actual bonus buffer. This is because
279 * we always put the bonus buffer after the last block
280 * pointer (instead of packing it against the end of the
281 * dnode buffer).
282 */
283 int off = (dnp->dn_nblkptr-1) * sizeof (blkptr_t);
284 size_t len = DN_MAX_BONUSLEN - off;
285 dmu_object_byteswap_t byteswap;
286 ASSERT(DMU_OT_IS_VALID(dnp->dn_bonustype));
287 byteswap = DMU_OT_BYTESWAP(dnp->dn_bonustype);
288 dmu_ot_byteswap[byteswap].ob_func(dnp->dn_bonus + off, len);
289 }
290
291 /* Swap SPILL block if we have one */
292 if (dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR)
293 byteswap_uint64_array(&dnp->dn_spill, sizeof (blkptr_t));
294
295 }
296
297 void
298 dnode_buf_byteswap(void *vbuf, size_t size)
299 {
300 dnode_phys_t *buf = vbuf;
301 int i;
302
303 ASSERT3U(sizeof (dnode_phys_t), ==, (1<<DNODE_SHIFT));
304 ASSERT((size & (sizeof (dnode_phys_t)-1)) == 0);
305
306 size >>= DNODE_SHIFT;
307 for (i = 0; i < size; i++) {
308 dnode_byteswap(buf);
309 buf++;
310 }
311 }
312
313 void
314 dnode_setbonuslen(dnode_t *dn, int newsize, dmu_tx_t *tx)
315 {
316 ASSERT3U(refcount_count(&dn->dn_holds), >=, 1);
317
318 dnode_setdirty(dn, tx);
319 rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
320 ASSERT3U(newsize, <=, DN_MAX_BONUSLEN -
321 (dn->dn_nblkptr-1) * sizeof (blkptr_t));
322 dn->dn_bonuslen = newsize;
323 if (newsize == 0)
324 dn->dn_next_bonuslen[tx->tx_txg & TXG_MASK] = DN_ZERO_BONUSLEN;
325 else
326 dn->dn_next_bonuslen[tx->tx_txg & TXG_MASK] = dn->dn_bonuslen;
327 rw_exit(&dn->dn_struct_rwlock);
328 }
329
330 void
331 dnode_setbonus_type(dnode_t *dn, dmu_object_type_t newtype, dmu_tx_t *tx)
332 {
333 ASSERT3U(refcount_count(&dn->dn_holds), >=, 1);
334 dnode_setdirty(dn, tx);
335 rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
336 dn->dn_bonustype = newtype;
337 dn->dn_next_bonustype[tx->tx_txg & TXG_MASK] = dn->dn_bonustype;
338 rw_exit(&dn->dn_struct_rwlock);
339 }
340
341 void
342 dnode_rm_spill(dnode_t *dn, dmu_tx_t *tx)
343 {
344 ASSERT3U(refcount_count(&dn->dn_holds), >=, 1);
345 ASSERT(RW_WRITE_HELD(&dn->dn_struct_rwlock));
346 dnode_setdirty(dn, tx);
347 dn->dn_rm_spillblk[tx->tx_txg&TXG_MASK] = DN_KILL_SPILLBLK;
348 dn->dn_have_spill = B_FALSE;
349 }
350
351 static void
352 dnode_setdblksz(dnode_t *dn, int size)
353 {
354 ASSERT0(P2PHASE(size, SPA_MINBLOCKSIZE));
355 ASSERT3U(size, <=, SPA_MAXBLOCKSIZE);
356 ASSERT3U(size, >=, SPA_MINBLOCKSIZE);
357 ASSERT3U(size >> SPA_MINBLOCKSHIFT, <,
358 1<<(sizeof (dn->dn_phys->dn_datablkszsec) * 8));
359 dn->dn_datablksz = size;
360 dn->dn_datablkszsec = size >> SPA_MINBLOCKSHIFT;
361 dn->dn_datablkshift = ISP2(size) ? highbit64(size - 1) : 0;
362 }
363
364 static dnode_t *
365 dnode_create(objset_t *os, dnode_phys_t *dnp, dmu_buf_impl_t *db,
366 uint64_t object, dnode_handle_t *dnh)
367 {
368 dnode_t *dn = kmem_cache_alloc(dnode_cache, KM_PUSHPAGE);
369
370 ASSERT(!POINTER_IS_VALID(dn->dn_objset));
371 dn->dn_moved = 0;
372
373 /*
374 * Defer setting dn_objset until the dnode is ready to be a candidate
375 * for the dnode_move() callback.
376 */
377 dn->dn_object = object;
378 dn->dn_dbuf = db;
379 dn->dn_handle = dnh;
380 dn->dn_phys = dnp;
381
382 if (dnp->dn_datablkszsec) {
383 dnode_setdblksz(dn, dnp->dn_datablkszsec << SPA_MINBLOCKSHIFT);
384 } else {
385 dn->dn_datablksz = 0;
386 dn->dn_datablkszsec = 0;
387 dn->dn_datablkshift = 0;
388 }
389 dn->dn_indblkshift = dnp->dn_indblkshift;
390 dn->dn_nlevels = dnp->dn_nlevels;
391 dn->dn_type = dnp->dn_type;
392 dn->dn_nblkptr = dnp->dn_nblkptr;
393 dn->dn_checksum = dnp->dn_checksum;
394 dn->dn_compress = dnp->dn_compress;
395 dn->dn_bonustype = dnp->dn_bonustype;
396 dn->dn_bonuslen = dnp->dn_bonuslen;
397 dn->dn_maxblkid = dnp->dn_maxblkid;
398 dn->dn_have_spill = ((dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR) != 0);
399 dn->dn_id_flags = 0;
400
401 dmu_zfetch_init(&dn->dn_zfetch, dn);
402
403 ASSERT(DMU_OT_IS_VALID(dn->dn_phys->dn_type));
404
405 mutex_enter(&os->os_lock);
406 list_insert_head(&os->os_dnodes, dn);
407 membar_producer();
408 /*
409 * Everything else must be valid before assigning dn_objset makes the
410 * dnode eligible for dnode_move().
411 */
412 dn->dn_objset = os;
413 mutex_exit(&os->os_lock);
414
415 arc_space_consume(sizeof (dnode_t), ARC_SPACE_OTHER);
416 return (dn);
417 }
418
419 /*
420 * Caller must be holding the dnode handle, which is released upon return.
421 */
422 static void
423 dnode_destroy(dnode_t *dn)
424 {
425 objset_t *os = dn->dn_objset;
426
427 ASSERT((dn->dn_id_flags & DN_ID_NEW_EXIST) == 0);
428
429 mutex_enter(&os->os_lock);
430 POINTER_INVALIDATE(&dn->dn_objset);
431 list_remove(&os->os_dnodes, dn);
432 mutex_exit(&os->os_lock);
433
434 /* the dnode can no longer move, so we can release the handle */
435 zrl_remove(&dn->dn_handle->dnh_zrlock);
436
437 dn->dn_allocated_txg = 0;
438 dn->dn_free_txg = 0;
439 dn->dn_assigned_txg = 0;
440
441 dn->dn_dirtyctx = 0;
442 if (dn->dn_dirtyctx_firstset != NULL) {
443 kmem_free(dn->dn_dirtyctx_firstset, 1);
444 dn->dn_dirtyctx_firstset = NULL;
445 }
446 if (dn->dn_bonus != NULL) {
447 mutex_enter(&dn->dn_bonus->db_mtx);
448 dbuf_evict(dn->dn_bonus);
449 dn->dn_bonus = NULL;
450 }
451 dn->dn_zio = NULL;
452
453 dn->dn_have_spill = B_FALSE;
454 dn->dn_oldused = 0;
455 dn->dn_oldflags = 0;
456 dn->dn_olduid = 0;
457 dn->dn_oldgid = 0;
458 dn->dn_newuid = 0;
459 dn->dn_newgid = 0;
460 dn->dn_id_flags = 0;
461 dn->dn_unlisted_l0_blkid = 0;
462
463 dmu_zfetch_rele(&dn->dn_zfetch);
464 kmem_cache_free(dnode_cache, dn);
465 arc_space_return(sizeof (dnode_t), ARC_SPACE_OTHER);
466 }
467
468 void
469 dnode_allocate(dnode_t *dn, dmu_object_type_t ot, int blocksize, int ibs,
470 dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx)
471 {
472 int i;
473
474 if (blocksize == 0)
475 blocksize = 1 << zfs_default_bs;
476 else if (blocksize > SPA_MAXBLOCKSIZE)
477 blocksize = SPA_MAXBLOCKSIZE;
478 else
479 blocksize = P2ROUNDUP(blocksize, SPA_MINBLOCKSIZE);
480
481 if (ibs == 0)
482 ibs = zfs_default_ibs;
483
484 ibs = MIN(MAX(ibs, DN_MIN_INDBLKSHIFT), DN_MAX_INDBLKSHIFT);
485
486 dprintf("os=%p obj=%llu txg=%llu blocksize=%d ibs=%d\n", dn->dn_objset,
487 dn->dn_object, tx->tx_txg, blocksize, ibs);
488
489 ASSERT(dn->dn_type == DMU_OT_NONE);
490 ASSERT(bcmp(dn->dn_phys, &dnode_phys_zero, sizeof (dnode_phys_t)) == 0);
491 ASSERT(dn->dn_phys->dn_type == DMU_OT_NONE);
492 ASSERT(ot != DMU_OT_NONE);
493 ASSERT(DMU_OT_IS_VALID(ot));
494 ASSERT((bonustype == DMU_OT_NONE && bonuslen == 0) ||
495 (bonustype == DMU_OT_SA && bonuslen == 0) ||
496 (bonustype != DMU_OT_NONE && bonuslen != 0));
497 ASSERT(DMU_OT_IS_VALID(bonustype));
498 ASSERT3U(bonuslen, <=, DN_MAX_BONUSLEN);
499 ASSERT(dn->dn_type == DMU_OT_NONE);
500 ASSERT0(dn->dn_maxblkid);
501 ASSERT0(dn->dn_allocated_txg);
502 ASSERT0(dn->dn_assigned_txg);
503 ASSERT(refcount_is_zero(&dn->dn_tx_holds));
504 ASSERT3U(refcount_count(&dn->dn_holds), <=, 1);
505 ASSERT3P(list_head(&dn->dn_dbufs), ==, NULL);
506
507 for (i = 0; i < TXG_SIZE; i++) {
508 ASSERT0(dn->dn_next_nblkptr[i]);
509 ASSERT0(dn->dn_next_nlevels[i]);
510 ASSERT0(dn->dn_next_indblkshift[i]);
511 ASSERT0(dn->dn_next_bonuslen[i]);
512 ASSERT0(dn->dn_next_bonustype[i]);
513 ASSERT0(dn->dn_rm_spillblk[i]);
514 ASSERT0(dn->dn_next_blksz[i]);
515 ASSERT(!list_link_active(&dn->dn_dirty_link[i]));
516 ASSERT3P(list_head(&dn->dn_dirty_records[i]), ==, NULL);
517 ASSERT3P(dn->dn_free_ranges[i], ==, NULL);
518 }
519
520 dn->dn_type = ot;
521 dnode_setdblksz(dn, blocksize);
522 dn->dn_indblkshift = ibs;
523 dn->dn_nlevels = 1;
524 if (bonustype == DMU_OT_SA) /* Maximize bonus space for SA */
525 dn->dn_nblkptr = 1;
526 else
527 dn->dn_nblkptr = 1 +
528 ((DN_MAX_BONUSLEN - bonuslen) >> SPA_BLKPTRSHIFT);
529 dn->dn_bonustype = bonustype;
530 dn->dn_bonuslen = bonuslen;
531 dn->dn_checksum = ZIO_CHECKSUM_INHERIT;
532 dn->dn_compress = ZIO_COMPRESS_INHERIT;
533 dn->dn_dirtyctx = 0;
534
535 dn->dn_free_txg = 0;
536 if (dn->dn_dirtyctx_firstset) {
537 kmem_free(dn->dn_dirtyctx_firstset, 1);
538 dn->dn_dirtyctx_firstset = NULL;
539 }
540
541 dn->dn_allocated_txg = tx->tx_txg;
542 dn->dn_id_flags = 0;
543
544 dnode_setdirty(dn, tx);
545 dn->dn_next_indblkshift[tx->tx_txg & TXG_MASK] = ibs;
546 dn->dn_next_bonuslen[tx->tx_txg & TXG_MASK] = dn->dn_bonuslen;
547 dn->dn_next_bonustype[tx->tx_txg & TXG_MASK] = dn->dn_bonustype;
548 dn->dn_next_blksz[tx->tx_txg & TXG_MASK] = dn->dn_datablksz;
549 }
550
551 void
552 dnode_reallocate(dnode_t *dn, dmu_object_type_t ot, int blocksize,
553 dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx)
554 {
555 int nblkptr;
556
557 ASSERT3U(blocksize, >=, SPA_MINBLOCKSIZE);
558 ASSERT3U(blocksize, <=, SPA_MAXBLOCKSIZE);
559 ASSERT0(blocksize % SPA_MINBLOCKSIZE);
560 ASSERT(dn->dn_object != DMU_META_DNODE_OBJECT || dmu_tx_private_ok(tx));
561 ASSERT(tx->tx_txg != 0);
562 ASSERT((bonustype == DMU_OT_NONE && bonuslen == 0) ||
563 (bonustype != DMU_OT_NONE && bonuslen != 0) ||
564 (bonustype == DMU_OT_SA && bonuslen == 0));
565 ASSERT(DMU_OT_IS_VALID(bonustype));
566 ASSERT3U(bonuslen, <=, DN_MAX_BONUSLEN);
567
568 /* clean up any unreferenced dbufs */
569 dnode_evict_dbufs(dn);
570
571 dn->dn_id_flags = 0;
572
573 rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
574 dnode_setdirty(dn, tx);
575 if (dn->dn_datablksz != blocksize) {
576 /* change blocksize */
577 ASSERT(dn->dn_maxblkid == 0 &&
578 (BP_IS_HOLE(&dn->dn_phys->dn_blkptr[0]) ||
579 dnode_block_freed(dn, 0)));
580 dnode_setdblksz(dn, blocksize);
581 dn->dn_next_blksz[tx->tx_txg&TXG_MASK] = blocksize;
582 }
583 if (dn->dn_bonuslen != bonuslen)
584 dn->dn_next_bonuslen[tx->tx_txg&TXG_MASK] = bonuslen;
585
586 if (bonustype == DMU_OT_SA) /* Maximize bonus space for SA */
587 nblkptr = 1;
588 else
589 nblkptr = 1 + ((DN_MAX_BONUSLEN - bonuslen) >> SPA_BLKPTRSHIFT);
590 if (dn->dn_bonustype != bonustype)
591 dn->dn_next_bonustype[tx->tx_txg&TXG_MASK] = bonustype;
592 if (dn->dn_nblkptr != nblkptr)
593 dn->dn_next_nblkptr[tx->tx_txg&TXG_MASK] = nblkptr;
594 if (dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR) {
595 dbuf_rm_spill(dn, tx);
596 dnode_rm_spill(dn, tx);
597 }
598 rw_exit(&dn->dn_struct_rwlock);
599
600 /* change type */
601 dn->dn_type = ot;
602
603 /* change bonus size and type */
604 mutex_enter(&dn->dn_mtx);
605 dn->dn_bonustype = bonustype;
606 dn->dn_bonuslen = bonuslen;
607 dn->dn_nblkptr = nblkptr;
608 dn->dn_checksum = ZIO_CHECKSUM_INHERIT;
609 dn->dn_compress = ZIO_COMPRESS_INHERIT;
610 ASSERT3U(dn->dn_nblkptr, <=, DN_MAX_NBLKPTR);
611
612 /* fix up the bonus db_size */
613 if (dn->dn_bonus) {
614 dn->dn_bonus->db.db_size =
615 DN_MAX_BONUSLEN - (dn->dn_nblkptr-1) * sizeof (blkptr_t);
616 ASSERT(dn->dn_bonuslen <= dn->dn_bonus->db.db_size);
617 }
618
619 dn->dn_allocated_txg = tx->tx_txg;
620 mutex_exit(&dn->dn_mtx);
621 }
622
623 #ifdef _KERNEL
624 #ifdef DNODE_STATS
625 static struct {
626 uint64_t dms_dnode_invalid;
627 uint64_t dms_dnode_recheck1;
628 uint64_t dms_dnode_recheck2;
629 uint64_t dms_dnode_special;
630 uint64_t dms_dnode_handle;
631 uint64_t dms_dnode_rwlock;
632 uint64_t dms_dnode_active;
633 } dnode_move_stats;
634 #endif /* DNODE_STATS */
635
636 static void
637 dnode_move_impl(dnode_t *odn, dnode_t *ndn)
638 {
639 int i;
640
641 ASSERT(!RW_LOCK_HELD(&odn->dn_struct_rwlock));
642 ASSERT(MUTEX_NOT_HELD(&odn->dn_mtx));
643 ASSERT(MUTEX_NOT_HELD(&odn->dn_dbufs_mtx));
644 ASSERT(!RW_LOCK_HELD(&odn->dn_zfetch.zf_rwlock));
645
646 /* Copy fields. */
647 ndn->dn_objset = odn->dn_objset;
648 ndn->dn_object = odn->dn_object;
649 ndn->dn_dbuf = odn->dn_dbuf;
650 ndn->dn_handle = odn->dn_handle;
651 ndn->dn_phys = odn->dn_phys;
652 ndn->dn_type = odn->dn_type;
653 ndn->dn_bonuslen = odn->dn_bonuslen;
654 ndn->dn_bonustype = odn->dn_bonustype;
655 ndn->dn_nblkptr = odn->dn_nblkptr;
656 ndn->dn_checksum = odn->dn_checksum;
657 ndn->dn_compress = odn->dn_compress;
658 ndn->dn_nlevels = odn->dn_nlevels;
659 ndn->dn_indblkshift = odn->dn_indblkshift;
660 ndn->dn_datablkshift = odn->dn_datablkshift;
661 ndn->dn_datablkszsec = odn->dn_datablkszsec;
662 ndn->dn_datablksz = odn->dn_datablksz;
663 ndn->dn_maxblkid = odn->dn_maxblkid;
664 bcopy(&odn->dn_next_nblkptr[0], &ndn->dn_next_nblkptr[0],
665 sizeof (odn->dn_next_nblkptr));
666 bcopy(&odn->dn_next_nlevels[0], &ndn->dn_next_nlevels[0],
667 sizeof (odn->dn_next_nlevels));
668 bcopy(&odn->dn_next_indblkshift[0], &ndn->dn_next_indblkshift[0],
669 sizeof (odn->dn_next_indblkshift));
670 bcopy(&odn->dn_next_bonustype[0], &ndn->dn_next_bonustype[0],
671 sizeof (odn->dn_next_bonustype));
672 bcopy(&odn->dn_rm_spillblk[0], &ndn->dn_rm_spillblk[0],
673 sizeof (odn->dn_rm_spillblk));
674 bcopy(&odn->dn_next_bonuslen[0], &ndn->dn_next_bonuslen[0],
675 sizeof (odn->dn_next_bonuslen));
676 bcopy(&odn->dn_next_blksz[0], &ndn->dn_next_blksz[0],
677 sizeof (odn->dn_next_blksz));
678 for (i = 0; i < TXG_SIZE; i++) {
679 list_move_tail(&ndn->dn_dirty_records[i],
680 &odn->dn_dirty_records[i]);
681 }
682 bcopy(&odn->dn_free_ranges[0], &ndn->dn_free_ranges[0],
683 sizeof (odn->dn_free_ranges));
684 ndn->dn_allocated_txg = odn->dn_allocated_txg;
685 ndn->dn_free_txg = odn->dn_free_txg;
686 ndn->dn_assigned_txg = odn->dn_assigned_txg;
687 ndn->dn_dirtyctx = odn->dn_dirtyctx;
688 ndn->dn_dirtyctx_firstset = odn->dn_dirtyctx_firstset;
689 ASSERT(refcount_count(&odn->dn_tx_holds) == 0);
690 refcount_transfer(&ndn->dn_holds, &odn->dn_holds);
691 ASSERT(list_is_empty(&ndn->dn_dbufs));
692 list_move_tail(&ndn->dn_dbufs, &odn->dn_dbufs);
693 ndn->dn_dbufs_count = odn->dn_dbufs_count;
694 ndn->dn_unlisted_l0_blkid = odn->dn_unlisted_l0_blkid;
695 ndn->dn_bonus = odn->dn_bonus;
696 ndn->dn_have_spill = odn->dn_have_spill;
697 ndn->dn_zio = odn->dn_zio;
698 ndn->dn_oldused = odn->dn_oldused;
699 ndn->dn_oldflags = odn->dn_oldflags;
700 ndn->dn_olduid = odn->dn_olduid;
701 ndn->dn_oldgid = odn->dn_oldgid;
702 ndn->dn_newuid = odn->dn_newuid;
703 ndn->dn_newgid = odn->dn_newgid;
704 ndn->dn_id_flags = odn->dn_id_flags;
705 dmu_zfetch_init(&ndn->dn_zfetch, NULL);
706 list_move_tail(&ndn->dn_zfetch.zf_stream, &odn->dn_zfetch.zf_stream);
707 ndn->dn_zfetch.zf_dnode = odn->dn_zfetch.zf_dnode;
708 ndn->dn_zfetch.zf_stream_cnt = odn->dn_zfetch.zf_stream_cnt;
709 ndn->dn_zfetch.zf_alloc_fail = odn->dn_zfetch.zf_alloc_fail;
710
711 /*
712 * Update back pointers. Updating the handle fixes the back pointer of
713 * every descendant dbuf as well as the bonus dbuf.
714 */
715 ASSERT(ndn->dn_handle->dnh_dnode == odn);
716 ndn->dn_handle->dnh_dnode = ndn;
717 if (ndn->dn_zfetch.zf_dnode == odn) {
718 ndn->dn_zfetch.zf_dnode = ndn;
719 }
720
721 /*
722 * Invalidate the original dnode by clearing all of its back pointers.
723 */
724 odn->dn_dbuf = NULL;
725 odn->dn_handle = NULL;
726 list_create(&odn->dn_dbufs, sizeof (dmu_buf_impl_t),
727 offsetof(dmu_buf_impl_t, db_link));
728 odn->dn_dbufs_count = 0;
729 odn->dn_unlisted_l0_blkid = 0;
730 odn->dn_bonus = NULL;
731 odn->dn_zfetch.zf_dnode = NULL;
732
733 /*
734 * Set the low bit of the objset pointer to ensure that dnode_move()
735 * recognizes the dnode as invalid in any subsequent callback.
736 */
737 POINTER_INVALIDATE(&odn->dn_objset);
738
739 /*
740 * Satisfy the destructor.
741 */
742 for (i = 0; i < TXG_SIZE; i++) {
743 list_create(&odn->dn_dirty_records[i],
744 sizeof (dbuf_dirty_record_t),
745 offsetof(dbuf_dirty_record_t, dr_dirty_node));
746 odn->dn_free_ranges[i] = NULL;
747 odn->dn_next_nlevels[i] = 0;
748 odn->dn_next_indblkshift[i] = 0;
749 odn->dn_next_bonustype[i] = 0;
750 odn->dn_rm_spillblk[i] = 0;
751 odn->dn_next_bonuslen[i] = 0;
752 odn->dn_next_blksz[i] = 0;
753 }
754 odn->dn_allocated_txg = 0;
755 odn->dn_free_txg = 0;
756 odn->dn_assigned_txg = 0;
757 odn->dn_dirtyctx = 0;
758 odn->dn_dirtyctx_firstset = NULL;
759 odn->dn_have_spill = B_FALSE;
760 odn->dn_zio = NULL;
761 odn->dn_oldused = 0;
762 odn->dn_oldflags = 0;
763 odn->dn_olduid = 0;
764 odn->dn_oldgid = 0;
765 odn->dn_newuid = 0;
766 odn->dn_newgid = 0;
767 odn->dn_id_flags = 0;
768
769 /*
770 * Mark the dnode.
771 */
772 ndn->dn_moved = 1;
773 odn->dn_moved = (uint8_t)-1;
774 }
775
776 /*ARGSUSED*/
777 static kmem_cbrc_t
778 dnode_move(void *buf, void *newbuf, size_t size, void *arg)
779 {
780 dnode_t *odn = buf, *ndn = newbuf;
781 objset_t *os;
782 int64_t refcount;
783 uint32_t dbufs;
784
785 /*
786 * The dnode is on the objset's list of known dnodes if the objset
787 * pointer is valid. We set the low bit of the objset pointer when
788 * freeing the dnode to invalidate it, and the memory patterns written
789 * by kmem (baddcafe and deadbeef) set at least one of the two low bits.
790 * A newly created dnode sets the objset pointer last of all to indicate
791 * that the dnode is known and in a valid state to be moved by this
792 * function.
793 */
794 os = odn->dn_objset;
795 if (!POINTER_IS_VALID(os)) {
796 DNODE_STAT_ADD(dnode_move_stats.dms_dnode_invalid);
797 return (KMEM_CBRC_DONT_KNOW);
798 }
799
800 /*
801 * Ensure that the objset does not go away during the move.
802 */
803 rw_enter(&os_lock, RW_WRITER);
804 if (os != odn->dn_objset) {
805 rw_exit(&os_lock);
806 DNODE_STAT_ADD(dnode_move_stats.dms_dnode_recheck1);
807 return (KMEM_CBRC_DONT_KNOW);
808 }
809
810 /*
811 * If the dnode is still valid, then so is the objset. We know that no
812 * valid objset can be freed while we hold os_lock, so we can safely
813 * ensure that the objset remains in use.
814 */
815 mutex_enter(&os->os_lock);
816
817 /*
818 * Recheck the objset pointer in case the dnode was removed just before
819 * acquiring the lock.
820 */
821 if (os != odn->dn_objset) {
822 mutex_exit(&os->os_lock);
823 rw_exit(&os_lock);
824 DNODE_STAT_ADD(dnode_move_stats.dms_dnode_recheck2);
825 return (KMEM_CBRC_DONT_KNOW);
826 }
827
828 /*
829 * At this point we know that as long as we hold os->os_lock, the dnode
830 * cannot be freed and fields within the dnode can be safely accessed.
831 * The objset listing this dnode cannot go away as long as this dnode is
832 * on its list.
833 */
834 rw_exit(&os_lock);
835 if (DMU_OBJECT_IS_SPECIAL(odn->dn_object)) {
836 mutex_exit(&os->os_lock);
837 DNODE_STAT_ADD(dnode_move_stats.dms_dnode_special);
838 return (KMEM_CBRC_NO);
839 }
840 ASSERT(odn->dn_dbuf != NULL); /* only "special" dnodes have no parent */
841
842 /*
843 * Lock the dnode handle to prevent the dnode from obtaining any new
844 * holds. This also prevents the descendant dbufs and the bonus dbuf
845 * from accessing the dnode, so that we can discount their holds. The
846 * handle is safe to access because we know that while the dnode cannot
847 * go away, neither can its handle. Once we hold dnh_zrlock, we can
848 * safely move any dnode referenced only by dbufs.
849 */
850 if (!zrl_tryenter(&odn->dn_handle->dnh_zrlock)) {
851 mutex_exit(&os->os_lock);
852 DNODE_STAT_ADD(dnode_move_stats.dms_dnode_handle);
853 return (KMEM_CBRC_LATER);
854 }
855
856 /*
857 * Ensure a consistent view of the dnode's holds and the dnode's dbufs.
858 * We need to guarantee that there is a hold for every dbuf in order to
859 * determine whether the dnode is actively referenced. Falsely matching
860 * a dbuf to an active hold would lead to an unsafe move. It's possible
861 * that a thread already having an active dnode hold is about to add a
862 * dbuf, and we can't compare hold and dbuf counts while the add is in
863 * progress.
864 */
865 if (!rw_tryenter(&odn->dn_struct_rwlock, RW_WRITER)) {
866 zrl_exit(&odn->dn_handle->dnh_zrlock);
867 mutex_exit(&os->os_lock);
868 DNODE_STAT_ADD(dnode_move_stats.dms_dnode_rwlock);
869 return (KMEM_CBRC_LATER);
870 }
871
872 /*
873 * A dbuf may be removed (evicted) without an active dnode hold. In that
874 * case, the dbuf count is decremented under the handle lock before the
875 * dbuf's hold is released. This order ensures that if we count the hold
876 * after the dbuf is removed but before its hold is released, we will
877 * treat the unmatched hold as active and exit safely. If we count the
878 * hold before the dbuf is removed, the hold is discounted, and the
879 * removal is blocked until the move completes.
880 */
881 refcount = refcount_count(&odn->dn_holds);
882 ASSERT(refcount >= 0);
883 dbufs = odn->dn_dbufs_count;
884
885 /* We can't have more dbufs than dnode holds. */
886 ASSERT3U(dbufs, <=, refcount);
887 DTRACE_PROBE3(dnode__move, dnode_t *, odn, int64_t, refcount,
888 uint32_t, dbufs);
889
890 if (refcount > dbufs) {
891 rw_exit(&odn->dn_struct_rwlock);
892 zrl_exit(&odn->dn_handle->dnh_zrlock);
893 mutex_exit(&os->os_lock);
894 DNODE_STAT_ADD(dnode_move_stats.dms_dnode_active);
895 return (KMEM_CBRC_LATER);
896 }
897
898 rw_exit(&odn->dn_struct_rwlock);
899
900 /*
901 * At this point we know that anyone with a hold on the dnode is not
902 * actively referencing it. The dnode is known and in a valid state to
903 * move. We're holding the locks needed to execute the critical section.
904 */
905 dnode_move_impl(odn, ndn);
906
907 list_link_replace(&odn->dn_link, &ndn->dn_link);
908 /* If the dnode was safe to move, the refcount cannot have changed. */
909 ASSERT(refcount == refcount_count(&ndn->dn_holds));
910 ASSERT(dbufs == ndn->dn_dbufs_count);
911 zrl_exit(&ndn->dn_handle->dnh_zrlock); /* handle has moved */
912 mutex_exit(&os->os_lock);
913
914 return (KMEM_CBRC_YES);
915 }
916 #endif /* _KERNEL */
917
918 void
919 dnode_special_close(dnode_handle_t *dnh)
920 {
921 dnode_t *dn = dnh->dnh_dnode;
922
923 /*
924 * Wait for final references to the dnode to clear. This can
925 * only happen if the arc is asyncronously evicting state that
926 * has a hold on this dnode while we are trying to evict this
927 * dnode.
928 */
929 while (refcount_count(&dn->dn_holds) > 0)
930 delay(1);
931 zrl_add(&dnh->dnh_zrlock);
932 dnode_destroy(dn); /* implicit zrl_remove() */
933 zrl_destroy(&dnh->dnh_zrlock);
934 dnh->dnh_dnode = NULL;
935 }
936
937 dnode_t *
938 dnode_special_open(objset_t *os, dnode_phys_t *dnp, uint64_t object,
939 dnode_handle_t *dnh)
940 {
941 dnode_t *dn = dnode_create(os, dnp, NULL, object, dnh);
942 dnh->dnh_dnode = dn;
943 zrl_init(&dnh->dnh_zrlock);
944 DNODE_VERIFY(dn);
945 return (dn);
946 }
947
948 static void
949 dnode_buf_pageout(dmu_buf_t *db, void *arg)
950 {
951 dnode_children_t *children_dnodes = arg;
952 int i;
953 int epb = db->db_size >> DNODE_SHIFT;
954
955 ASSERT(epb == children_dnodes->dnc_count);
956
957 for (i = 0; i < epb; i++) {
958 dnode_handle_t *dnh = &children_dnodes->dnc_children[i];
959 dnode_t *dn;
960
961 /*
962 * The dnode handle lock guards against the dnode moving to
963 * another valid address, so there is no need here to guard
964 * against changes to or from NULL.
965 */
966 if (dnh->dnh_dnode == NULL) {
967 zrl_destroy(&dnh->dnh_zrlock);
968 continue;
969 }
970
971 zrl_add(&dnh->dnh_zrlock);
972 dn = dnh->dnh_dnode;
973 /*
974 * If there are holds on this dnode, then there should
975 * be holds on the dnode's containing dbuf as well; thus
976 * it wouldn't be eligible for eviction and this function
977 * would not have been called.
978 */
979 ASSERT(refcount_is_zero(&dn->dn_holds));
980 ASSERT(refcount_is_zero(&dn->dn_tx_holds));
981
982 dnode_destroy(dn); /* implicit zrl_remove() */
983 zrl_destroy(&dnh->dnh_zrlock);
984 dnh->dnh_dnode = NULL;
985 }
986 kmem_free(children_dnodes, sizeof (dnode_children_t) +
987 (epb - 1) * sizeof (dnode_handle_t));
988 }
989
990 /*
991 * errors:
992 * EINVAL - invalid object number.
993 * EIO - i/o error.
994 * succeeds even for free dnodes.
995 */
996 int
997 dnode_hold_impl(objset_t *os, uint64_t object, int flag,
998 void *tag, dnode_t **dnp)
999 {
1000 int epb, idx, err;
1001 int drop_struct_lock = FALSE;
1002 int type;
1003 uint64_t blk;
1004 dnode_t *mdn, *dn;
1005 dmu_buf_impl_t *db;
1006 dnode_children_t *children_dnodes;
1007 dnode_handle_t *dnh;
1008
1009 /*
1010 * If you are holding the spa config lock as writer, you shouldn't
1011 * be asking the DMU to do *anything* unless it's the root pool
1012 * which may require us to read from the root filesystem while
1013 * holding some (not all) of the locks as writer.
1014 */
1015 ASSERT(spa_config_held(os->os_spa, SCL_ALL, RW_WRITER) == 0 ||
1016 (spa_is_root(os->os_spa) &&
1017 spa_config_held(os->os_spa, SCL_STATE, RW_WRITER)));
1018
1019 if (object == DMU_USERUSED_OBJECT || object == DMU_GROUPUSED_OBJECT) {
1020 dn = (object == DMU_USERUSED_OBJECT) ?
1021 DMU_USERUSED_DNODE(os) : DMU_GROUPUSED_DNODE(os);
1022 if (dn == NULL)
1023 return (SET_ERROR(ENOENT));
1024 type = dn->dn_type;
1025 if ((flag & DNODE_MUST_BE_ALLOCATED) && type == DMU_OT_NONE)
1026 return (SET_ERROR(ENOENT));
1027 if ((flag & DNODE_MUST_BE_FREE) && type != DMU_OT_NONE)
1028 return (SET_ERROR(EEXIST));
1029 DNODE_VERIFY(dn);
1030 (void) refcount_add(&dn->dn_holds, tag);
1031 *dnp = dn;
1032 return (0);
1033 }
1034
1035 if (object == 0 || object >= DN_MAX_OBJECT)
1036 return (SET_ERROR(EINVAL));
1037
1038 mdn = DMU_META_DNODE(os);
1039 ASSERT(mdn->dn_object == DMU_META_DNODE_OBJECT);
1040
1041 DNODE_VERIFY(mdn);
1042
1043 if (!RW_WRITE_HELD(&mdn->dn_struct_rwlock)) {
1044 rw_enter(&mdn->dn_struct_rwlock, RW_READER);
1045 drop_struct_lock = TRUE;
1046 }
1047
1048 blk = dbuf_whichblock(mdn, object * sizeof (dnode_phys_t));
1049
1050 db = dbuf_hold(mdn, blk, FTAG);
1051 if (drop_struct_lock)
1052 rw_exit(&mdn->dn_struct_rwlock);
1053 if (db == NULL)
1054 return (SET_ERROR(EIO));
1055 err = dbuf_read(db, NULL, DB_RF_CANFAIL);
1056 if (err) {
1057 dbuf_rele(db, FTAG);
1058 return (err);
1059 }
1060
1061 ASSERT3U(db->db.db_size, >=, 1<<DNODE_SHIFT);
1062 epb = db->db.db_size >> DNODE_SHIFT;
1063
1064 idx = object & (epb-1);
1065
1066 ASSERT(DB_DNODE(db)->dn_type == DMU_OT_DNODE);
1067 children_dnodes = dmu_buf_get_user(&db->db);
1068 if (children_dnodes == NULL) {
1069 int i;
1070 dnode_children_t *winner;
1071 children_dnodes = kmem_alloc(sizeof (dnode_children_t) +
1072 (epb - 1) * sizeof (dnode_handle_t),
1073 KM_PUSHPAGE | KM_NODEBUG);
1074 children_dnodes->dnc_count = epb;
1075 dnh = &children_dnodes->dnc_children[0];
1076 for (i = 0; i < epb; i++) {
1077 zrl_init(&dnh[i].dnh_zrlock);
1078 dnh[i].dnh_dnode = NULL;
1079 }
1080 if ((winner = dmu_buf_set_user(&db->db, children_dnodes, NULL,
1081 dnode_buf_pageout))) {
1082 kmem_free(children_dnodes, sizeof (dnode_children_t) +
1083 (epb - 1) * sizeof (dnode_handle_t));
1084 children_dnodes = winner;
1085 }
1086 }
1087 ASSERT(children_dnodes->dnc_count == epb);
1088
1089 dnh = &children_dnodes->dnc_children[idx];
1090 zrl_add(&dnh->dnh_zrlock);
1091 if ((dn = dnh->dnh_dnode) == NULL) {
1092 dnode_phys_t *phys = (dnode_phys_t *)db->db.db_data+idx;
1093 dnode_t *winner;
1094
1095 dn = dnode_create(os, phys, db, object, dnh);
1096 winner = atomic_cas_ptr(&dnh->dnh_dnode, NULL, dn);
1097 if (winner != NULL) {
1098 zrl_add(&dnh->dnh_zrlock);
1099 dnode_destroy(dn); /* implicit zrl_remove() */
1100 dn = winner;
1101 }
1102 }
1103
1104 mutex_enter(&dn->dn_mtx);
1105 type = dn->dn_type;
1106 if (dn->dn_free_txg ||
1107 ((flag & DNODE_MUST_BE_ALLOCATED) && type == DMU_OT_NONE) ||
1108 ((flag & DNODE_MUST_BE_FREE) &&
1109 (type != DMU_OT_NONE || !refcount_is_zero(&dn->dn_holds)))) {
1110 mutex_exit(&dn->dn_mtx);
1111 zrl_remove(&dnh->dnh_zrlock);
1112 dbuf_rele(db, FTAG);
1113 return (type == DMU_OT_NONE ? ENOENT : EEXIST);
1114 }
1115 mutex_exit(&dn->dn_mtx);
1116
1117 if (refcount_add(&dn->dn_holds, tag) == 1)
1118 dbuf_add_ref(db, dnh);
1119 /* Now we can rely on the hold to prevent the dnode from moving. */
1120 zrl_remove(&dnh->dnh_zrlock);
1121
1122 DNODE_VERIFY(dn);
1123 ASSERT3P(dn->dn_dbuf, ==, db);
1124 ASSERT3U(dn->dn_object, ==, object);
1125 dbuf_rele(db, FTAG);
1126
1127 *dnp = dn;
1128 return (0);
1129 }
1130
1131 /*
1132 * Return held dnode if the object is allocated, NULL if not.
1133 */
1134 int
1135 dnode_hold(objset_t *os, uint64_t object, void *tag, dnode_t **dnp)
1136 {
1137 return (dnode_hold_impl(os, object, DNODE_MUST_BE_ALLOCATED, tag, dnp));
1138 }
1139
1140 /*
1141 * Can only add a reference if there is already at least one
1142 * reference on the dnode. Returns FALSE if unable to add a
1143 * new reference.
1144 */
1145 boolean_t
1146 dnode_add_ref(dnode_t *dn, void *tag)
1147 {
1148 mutex_enter(&dn->dn_mtx);
1149 if (refcount_is_zero(&dn->dn_holds)) {
1150 mutex_exit(&dn->dn_mtx);
1151 return (FALSE);
1152 }
1153 VERIFY(1 < refcount_add(&dn->dn_holds, tag));
1154 mutex_exit(&dn->dn_mtx);
1155 return (TRUE);
1156 }
1157
1158 void
1159 dnode_rele(dnode_t *dn, void *tag)
1160 {
1161 uint64_t refs;
1162 /* Get while the hold prevents the dnode from moving. */
1163 dmu_buf_impl_t *db = dn->dn_dbuf;
1164 dnode_handle_t *dnh = dn->dn_handle;
1165
1166 mutex_enter(&dn->dn_mtx);
1167 refs = refcount_remove(&dn->dn_holds, tag);
1168 mutex_exit(&dn->dn_mtx);
1169
1170 /*
1171 * It's unsafe to release the last hold on a dnode by dnode_rele() or
1172 * indirectly by dbuf_rele() while relying on the dnode handle to
1173 * prevent the dnode from moving, since releasing the last hold could
1174 * result in the dnode's parent dbuf evicting its dnode handles. For
1175 * that reason anyone calling dnode_rele() or dbuf_rele() without some
1176 * other direct or indirect hold on the dnode must first drop the dnode
1177 * handle.
1178 */
1179 ASSERT(refs > 0 || dnh->dnh_zrlock.zr_owner != curthread);
1180
1181 /* NOTE: the DNODE_DNODE does not have a dn_dbuf */
1182 if (refs == 0 && db != NULL) {
1183 /*
1184 * Another thread could add a hold to the dnode handle in
1185 * dnode_hold_impl() while holding the parent dbuf. Since the
1186 * hold on the parent dbuf prevents the handle from being
1187 * destroyed, the hold on the handle is OK. We can't yet assert
1188 * that the handle has zero references, but that will be
1189 * asserted anyway when the handle gets destroyed.
1190 */
1191 dbuf_rele(db, dnh);
1192 }
1193 }
1194
1195 void
1196 dnode_setdirty(dnode_t *dn, dmu_tx_t *tx)
1197 {
1198 objset_t *os = dn->dn_objset;
1199 uint64_t txg = tx->tx_txg;
1200
1201 if (DMU_OBJECT_IS_SPECIAL(dn->dn_object)) {
1202 dsl_dataset_dirty(os->os_dsl_dataset, tx);
1203 return;
1204 }
1205
1206 DNODE_VERIFY(dn);
1207
1208 #ifdef ZFS_DEBUG
1209 mutex_enter(&dn->dn_mtx);
1210 ASSERT(dn->dn_phys->dn_type || dn->dn_allocated_txg);
1211 ASSERT(dn->dn_free_txg == 0 || dn->dn_free_txg >= txg);
1212 mutex_exit(&dn->dn_mtx);
1213 #endif
1214
1215 /*
1216 * Determine old uid/gid when necessary
1217 */
1218 dmu_objset_userquota_get_ids(dn, B_TRUE, tx);
1219
1220 mutex_enter(&os->os_lock);
1221
1222 /*
1223 * If we are already marked dirty, we're done.
1224 */
1225 if (list_link_active(&dn->dn_dirty_link[txg & TXG_MASK])) {
1226 mutex_exit(&os->os_lock);
1227 return;
1228 }
1229
1230 ASSERT(!refcount_is_zero(&dn->dn_holds) || list_head(&dn->dn_dbufs));
1231 ASSERT(dn->dn_datablksz != 0);
1232 ASSERT0(dn->dn_next_bonuslen[txg&TXG_MASK]);
1233 ASSERT0(dn->dn_next_blksz[txg&TXG_MASK]);
1234 ASSERT0(dn->dn_next_bonustype[txg&TXG_MASK]);
1235
1236 dprintf_ds(os->os_dsl_dataset, "obj=%llu txg=%llu\n",
1237 dn->dn_object, txg);
1238
1239 if (dn->dn_free_txg > 0 && dn->dn_free_txg <= txg) {
1240 list_insert_tail(&os->os_free_dnodes[txg&TXG_MASK], dn);
1241 } else {
1242 list_insert_tail(&os->os_dirty_dnodes[txg&TXG_MASK], dn);
1243 }
1244
1245 mutex_exit(&os->os_lock);
1246
1247 /*
1248 * The dnode maintains a hold on its containing dbuf as
1249 * long as there are holds on it. Each instantiated child
1250 * dbuf maintains a hold on the dnode. When the last child
1251 * drops its hold, the dnode will drop its hold on the
1252 * containing dbuf. We add a "dirty hold" here so that the
1253 * dnode will hang around after we finish processing its
1254 * children.
1255 */
1256 VERIFY(dnode_add_ref(dn, (void *)(uintptr_t)tx->tx_txg));
1257
1258 (void) dbuf_dirty(dn->dn_dbuf, tx);
1259
1260 dsl_dataset_dirty(os->os_dsl_dataset, tx);
1261 }
1262
1263 void
1264 dnode_free(dnode_t *dn, dmu_tx_t *tx)
1265 {
1266 int txgoff = tx->tx_txg & TXG_MASK;
1267
1268 dprintf("dn=%p txg=%llu\n", dn, tx->tx_txg);
1269
1270 /* we should be the only holder... hopefully */
1271 /* ASSERT3U(refcount_count(&dn->dn_holds), ==, 1); */
1272
1273 mutex_enter(&dn->dn_mtx);
1274 if (dn->dn_type == DMU_OT_NONE || dn->dn_free_txg) {
1275 mutex_exit(&dn->dn_mtx);
1276 return;
1277 }
1278 dn->dn_free_txg = tx->tx_txg;
1279 mutex_exit(&dn->dn_mtx);
1280
1281 /*
1282 * If the dnode is already dirty, it needs to be moved from
1283 * the dirty list to the free list.
1284 */
1285 mutex_enter(&dn->dn_objset->os_lock);
1286 if (list_link_active(&dn->dn_dirty_link[txgoff])) {
1287 list_remove(&dn->dn_objset->os_dirty_dnodes[txgoff], dn);
1288 list_insert_tail(&dn->dn_objset->os_free_dnodes[txgoff], dn);
1289 mutex_exit(&dn->dn_objset->os_lock);
1290 } else {
1291 mutex_exit(&dn->dn_objset->os_lock);
1292 dnode_setdirty(dn, tx);
1293 }
1294 }
1295
1296 /*
1297 * Try to change the block size for the indicated dnode. This can only
1298 * succeed if there are no blocks allocated or dirty beyond first block
1299 */
1300 int
1301 dnode_set_blksz(dnode_t *dn, uint64_t size, int ibs, dmu_tx_t *tx)
1302 {
1303 dmu_buf_impl_t *db, *db_next;
1304 int err;
1305
1306 if (size == 0)
1307 size = SPA_MINBLOCKSIZE;
1308 if (size > SPA_MAXBLOCKSIZE)
1309 size = SPA_MAXBLOCKSIZE;
1310 else
1311 size = P2ROUNDUP(size, SPA_MINBLOCKSIZE);
1312
1313 if (ibs == dn->dn_indblkshift)
1314 ibs = 0;
1315
1316 if (size >> SPA_MINBLOCKSHIFT == dn->dn_datablkszsec && ibs == 0)
1317 return (0);
1318
1319 rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
1320
1321 /* Check for any allocated blocks beyond the first */
1322 if (dn->dn_maxblkid != 0)
1323 goto fail;
1324
1325 mutex_enter(&dn->dn_dbufs_mtx);
1326 for (db = list_head(&dn->dn_dbufs); db; db = db_next) {
1327 db_next = list_next(&dn->dn_dbufs, db);
1328
1329 if (db->db_blkid != 0 && db->db_blkid != DMU_BONUS_BLKID &&
1330 db->db_blkid != DMU_SPILL_BLKID) {
1331 mutex_exit(&dn->dn_dbufs_mtx);
1332 goto fail;
1333 }
1334 }
1335 mutex_exit(&dn->dn_dbufs_mtx);
1336
1337 if (ibs && dn->dn_nlevels != 1)
1338 goto fail;
1339
1340 /* resize the old block */
1341 err = dbuf_hold_impl(dn, 0, 0, TRUE, FTAG, &db);
1342 if (err == 0)
1343 dbuf_new_size(db, size, tx);
1344 else if (err != ENOENT)
1345 goto fail;
1346
1347 dnode_setdblksz(dn, size);
1348 dnode_setdirty(dn, tx);
1349 dn->dn_next_blksz[tx->tx_txg&TXG_MASK] = size;
1350 if (ibs) {
1351 dn->dn_indblkshift = ibs;
1352 dn->dn_next_indblkshift[tx->tx_txg&TXG_MASK] = ibs;
1353 }
1354 /* rele after we have fixed the blocksize in the dnode */
1355 if (db)
1356 dbuf_rele(db, FTAG);
1357
1358 rw_exit(&dn->dn_struct_rwlock);
1359 return (0);
1360
1361 fail:
1362 rw_exit(&dn->dn_struct_rwlock);
1363 return (SET_ERROR(ENOTSUP));
1364 }
1365
1366 /* read-holding callers must not rely on the lock being continuously held */
1367 void
1368 dnode_new_blkid(dnode_t *dn, uint64_t blkid, dmu_tx_t *tx, boolean_t have_read)
1369 {
1370 uint64_t txgoff = tx->tx_txg & TXG_MASK;
1371 int epbs, new_nlevels;
1372 uint64_t sz;
1373
1374 ASSERT(blkid != DMU_BONUS_BLKID);
1375
1376 ASSERT(have_read ?
1377 RW_READ_HELD(&dn->dn_struct_rwlock) :
1378 RW_WRITE_HELD(&dn->dn_struct_rwlock));
1379
1380 /*
1381 * if we have a read-lock, check to see if we need to do any work
1382 * before upgrading to a write-lock.
1383 */
1384 if (have_read) {
1385 if (blkid <= dn->dn_maxblkid)
1386 return;
1387
1388 if (!rw_tryupgrade(&dn->dn_struct_rwlock)) {
1389 rw_exit(&dn->dn_struct_rwlock);
1390 rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
1391 }
1392 }
1393
1394 if (blkid <= dn->dn_maxblkid)
1395 goto out;
1396
1397 dn->dn_maxblkid = blkid;
1398
1399 /*
1400 * Compute the number of levels necessary to support the new maxblkid.
1401 */
1402 new_nlevels = 1;
1403 epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT;
1404 for (sz = dn->dn_nblkptr;
1405 sz <= blkid && sz >= dn->dn_nblkptr; sz <<= epbs)
1406 new_nlevels++;
1407
1408 if (new_nlevels > dn->dn_nlevels) {
1409 int old_nlevels = dn->dn_nlevels;
1410 dmu_buf_impl_t *db;
1411 list_t *list;
1412 dbuf_dirty_record_t *new, *dr, *dr_next;
1413
1414 dn->dn_nlevels = new_nlevels;
1415
1416 ASSERT3U(new_nlevels, >, dn->dn_next_nlevels[txgoff]);
1417 dn->dn_next_nlevels[txgoff] = new_nlevels;
1418
1419 /* dirty the left indirects */
1420 db = dbuf_hold_level(dn, old_nlevels, 0, FTAG);
1421 ASSERT(db != NULL);
1422 new = dbuf_dirty(db, tx);
1423 dbuf_rele(db, FTAG);
1424
1425 /* transfer the dirty records to the new indirect */
1426 mutex_enter(&dn->dn_mtx);
1427 mutex_enter(&new->dt.di.dr_mtx);
1428 list = &dn->dn_dirty_records[txgoff];
1429 for (dr = list_head(list); dr; dr = dr_next) {
1430 dr_next = list_next(&dn->dn_dirty_records[txgoff], dr);
1431 if (dr->dr_dbuf->db_level != new_nlevels-1 &&
1432 dr->dr_dbuf->db_blkid != DMU_BONUS_BLKID &&
1433 dr->dr_dbuf->db_blkid != DMU_SPILL_BLKID) {
1434 ASSERT(dr->dr_dbuf->db_level == old_nlevels-1);
1435 list_remove(&dn->dn_dirty_records[txgoff], dr);
1436 list_insert_tail(&new->dt.di.dr_children, dr);
1437 dr->dr_parent = new;
1438 }
1439 }
1440 mutex_exit(&new->dt.di.dr_mtx);
1441 mutex_exit(&dn->dn_mtx);
1442 }
1443
1444 out:
1445 if (have_read)
1446 rw_downgrade(&dn->dn_struct_rwlock);
1447 }
1448
1449 void
1450 dnode_free_range(dnode_t *dn, uint64_t off, uint64_t len, dmu_tx_t *tx)
1451 {
1452 dmu_buf_impl_t *db;
1453 uint64_t blkoff, blkid, nblks;
1454 int blksz, blkshift, head, tail;
1455 int trunc = FALSE;
1456 int epbs;
1457
1458 rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
1459 blksz = dn->dn_datablksz;
1460 blkshift = dn->dn_datablkshift;
1461 epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT;
1462
1463 if (len == DMU_OBJECT_END) {
1464 len = UINT64_MAX - off;
1465 trunc = TRUE;
1466 }
1467
1468 /*
1469 * First, block align the region to free:
1470 */
1471 if (ISP2(blksz)) {
1472 head = P2NPHASE(off, blksz);
1473 blkoff = P2PHASE(off, blksz);
1474 if ((off >> blkshift) > dn->dn_maxblkid)
1475 goto out;
1476 } else {
1477 ASSERT(dn->dn_maxblkid == 0);
1478 if (off == 0 && len >= blksz) {
1479 /*
1480 * Freeing the whole block; fast-track this request.
1481 * Note that we won't dirty any indirect blocks,
1482 * which is fine because we will be freeing the entire
1483 * file and thus all indirect blocks will be freed
1484 * by free_children().
1485 */
1486 blkid = 0;
1487 nblks = 1;
1488 goto done;
1489 } else if (off >= blksz) {
1490 /* Freeing past end-of-data */
1491 goto out;
1492 } else {
1493 /* Freeing part of the block. */
1494 head = blksz - off;
1495 ASSERT3U(head, >, 0);
1496 }
1497 blkoff = off;
1498 }
1499 /* zero out any partial block data at the start of the range */
1500 if (head) {
1501 ASSERT3U(blkoff + head, ==, blksz);
1502 if (len < head)
1503 head = len;
1504 if (dbuf_hold_impl(dn, 0, dbuf_whichblock(dn, off), TRUE,
1505 FTAG, &db) == 0) {
1506 caddr_t data;
1507
1508 /* don't dirty if it isn't on disk and isn't dirty */
1509 if (db->db_last_dirty ||
1510 (db->db_blkptr && !BP_IS_HOLE(db->db_blkptr))) {
1511 rw_exit(&dn->dn_struct_rwlock);
1512 dmu_buf_will_dirty(&db->db, tx);
1513 rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
1514 data = db->db.db_data;
1515 bzero(data + blkoff, head);
1516 }
1517 dbuf_rele(db, FTAG);
1518 }
1519 off += head;
1520 len -= head;
1521 }
1522
1523 /* If the range was less than one block, we're done */
1524 if (len == 0)
1525 goto out;
1526
1527 /* If the remaining range is past end of file, we're done */
1528 if ((off >> blkshift) > dn->dn_maxblkid)
1529 goto out;
1530
1531 ASSERT(ISP2(blksz));
1532 if (trunc)
1533 tail = 0;
1534 else
1535 tail = P2PHASE(len, blksz);
1536
1537 ASSERT0(P2PHASE(off, blksz));
1538 /* zero out any partial block data at the end of the range */
1539 if (tail) {
1540 if (len < tail)
1541 tail = len;
1542 if (dbuf_hold_impl(dn, 0, dbuf_whichblock(dn, off+len),
1543 TRUE, FTAG, &db) == 0) {
1544 /* don't dirty if not on disk and not dirty */
1545 if (db->db_last_dirty ||
1546 (db->db_blkptr && !BP_IS_HOLE(db->db_blkptr))) {
1547 rw_exit(&dn->dn_struct_rwlock);
1548 dmu_buf_will_dirty(&db->db, tx);
1549 rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
1550 bzero(db->db.db_data, tail);
1551 }
1552 dbuf_rele(db, FTAG);
1553 }
1554 len -= tail;
1555 }
1556
1557 /* If the range did not include a full block, we are done */
1558 if (len == 0)
1559 goto out;
1560
1561 ASSERT(IS_P2ALIGNED(off, blksz));
1562 ASSERT(trunc || IS_P2ALIGNED(len, blksz));
1563 blkid = off >> blkshift;
1564 nblks = len >> blkshift;
1565 if (trunc)
1566 nblks += 1;
1567
1568 /*
1569 * Dirty the first and last indirect blocks, as they (and/or their
1570 * parents) will need to be written out if they were only
1571 * partially freed. Interior indirect blocks will be themselves freed,
1572 * by free_children(), so they need not be dirtied. Note that these
1573 * interior blocks have already been prefetched by dmu_tx_hold_free().
1574 */
1575 if (dn->dn_nlevels > 1) {
1576 uint64_t first, last;
1577
1578 first = blkid >> epbs;
1579 if ((db = dbuf_hold_level(dn, 1, first, FTAG))) {
1580 dmu_buf_will_dirty(&db->db, tx);
1581 dbuf_rele(db, FTAG);
1582 }
1583 if (trunc)
1584 last = dn->dn_maxblkid >> epbs;
1585 else
1586 last = (blkid + nblks - 1) >> epbs;
1587 if (last > first && (db = dbuf_hold_level(dn, 1, last, FTAG))) {
1588 dmu_buf_will_dirty(&db->db, tx);
1589 dbuf_rele(db, FTAG);
1590 }
1591 }
1592
1593 done:
1594 /*
1595 * Add this range to the dnode range list.
1596 * We will finish up this free operation in the syncing phase.
1597 */
1598 mutex_enter(&dn->dn_mtx);
1599 {
1600 int txgoff = tx->tx_txg & TXG_MASK;
1601 if (dn->dn_free_ranges[txgoff] == NULL) {
1602 dn->dn_free_ranges[txgoff] =
1603 range_tree_create(NULL, NULL, &dn->dn_mtx);
1604 }
1605 range_tree_clear(dn->dn_free_ranges[txgoff], blkid, nblks);
1606 range_tree_add(dn->dn_free_ranges[txgoff], blkid, nblks);
1607 }
1608 dprintf_dnode(dn, "blkid=%llu nblks=%llu txg=%llu\n",
1609 blkid, nblks, tx->tx_txg);
1610 mutex_exit(&dn->dn_mtx);
1611
1612 dbuf_free_range(dn, blkid, blkid + nblks - 1, tx);
1613 dnode_setdirty(dn, tx);
1614 out:
1615
1616 rw_exit(&dn->dn_struct_rwlock);
1617 }
1618
1619 static boolean_t
1620 dnode_spill_freed(dnode_t *dn)
1621 {
1622 int i;
1623
1624 mutex_enter(&dn->dn_mtx);
1625 for (i = 0; i < TXG_SIZE; i++) {
1626 if (dn->dn_rm_spillblk[i] == DN_KILL_SPILLBLK)
1627 break;
1628 }
1629 mutex_exit(&dn->dn_mtx);
1630 return (i < TXG_SIZE);
1631 }
1632
1633 /* return TRUE if this blkid was freed in a recent txg, or FALSE if it wasn't */
1634 uint64_t
1635 dnode_block_freed(dnode_t *dn, uint64_t blkid)
1636 {
1637 void *dp = spa_get_dsl(dn->dn_objset->os_spa);
1638 int i;
1639
1640 if (blkid == DMU_BONUS_BLKID)
1641 return (FALSE);
1642
1643 /*
1644 * If we're in the process of opening the pool, dp will not be
1645 * set yet, but there shouldn't be anything dirty.
1646 */
1647 if (dp == NULL)
1648 return (FALSE);
1649
1650 if (dn->dn_free_txg)
1651 return (TRUE);
1652
1653 if (blkid == DMU_SPILL_BLKID)
1654 return (dnode_spill_freed(dn));
1655
1656 mutex_enter(&dn->dn_mtx);
1657 for (i = 0; i < TXG_SIZE; i++) {
1658 if (dn->dn_free_ranges[i] != NULL &&
1659 range_tree_contains(dn->dn_free_ranges[i], blkid, 1))
1660 break;
1661 }
1662 mutex_exit(&dn->dn_mtx);
1663 return (i < TXG_SIZE);
1664 }
1665
1666 /* call from syncing context when we actually write/free space for this dnode */
1667 void
1668 dnode_diduse_space(dnode_t *dn, int64_t delta)
1669 {
1670 uint64_t space;
1671 dprintf_dnode(dn, "dn=%p dnp=%p used=%llu delta=%lld\n",
1672 dn, dn->dn_phys,
1673 (u_longlong_t)dn->dn_phys->dn_used,
1674 (longlong_t)delta);
1675
1676 mutex_enter(&dn->dn_mtx);
1677 space = DN_USED_BYTES(dn->dn_phys);
1678 if (delta > 0) {
1679 ASSERT3U(space + delta, >=, space); /* no overflow */
1680 } else {
1681 ASSERT3U(space, >=, -delta); /* no underflow */
1682 }
1683 space += delta;
1684 if (spa_version(dn->dn_objset->os_spa) < SPA_VERSION_DNODE_BYTES) {
1685 ASSERT((dn->dn_phys->dn_flags & DNODE_FLAG_USED_BYTES) == 0);
1686 ASSERT0(P2PHASE(space, 1<<DEV_BSHIFT));
1687 dn->dn_phys->dn_used = space >> DEV_BSHIFT;
1688 } else {
1689 dn->dn_phys->dn_used = space;
1690 dn->dn_phys->dn_flags |= DNODE_FLAG_USED_BYTES;
1691 }
1692 mutex_exit(&dn->dn_mtx);
1693 }
1694
1695 /*
1696 * Call when we think we're going to write/free space in open context to track
1697 * the amount of memory in use by the currently open txg.
1698 */
1699 void
1700 dnode_willuse_space(dnode_t *dn, int64_t space, dmu_tx_t *tx)
1701 {
1702 objset_t *os = dn->dn_objset;
1703 dsl_dataset_t *ds = os->os_dsl_dataset;
1704 int64_t aspace = spa_get_asize(os->os_spa, space);
1705
1706 if (ds != NULL) {
1707 dsl_dir_willuse_space(ds->ds_dir, aspace, tx);
1708 dsl_pool_dirty_space(dmu_tx_pool(tx), space, tx);
1709 }
1710
1711 dmu_tx_willuse_space(tx, aspace);
1712 }
1713
1714 /*
1715 * Scans a block at the indicated "level" looking for a hole or data,
1716 * depending on 'flags'.
1717 *
1718 * If level > 0, then we are scanning an indirect block looking at its
1719 * pointers. If level == 0, then we are looking at a block of dnodes.
1720 *
1721 * If we don't find what we are looking for in the block, we return ESRCH.
1722 * Otherwise, return with *offset pointing to the beginning (if searching
1723 * forwards) or end (if searching backwards) of the range covered by the
1724 * block pointer we matched on (or dnode).
1725 *
1726 * The basic search algorithm used below by dnode_next_offset() is to
1727 * use this function to search up the block tree (widen the search) until
1728 * we find something (i.e., we don't return ESRCH) and then search back
1729 * down the tree (narrow the search) until we reach our original search
1730 * level.
1731 */
1732 static int
1733 dnode_next_offset_level(dnode_t *dn, int flags, uint64_t *offset,
1734 int lvl, uint64_t blkfill, uint64_t txg)
1735 {
1736 dmu_buf_impl_t *db = NULL;
1737 void *data = NULL;
1738 uint64_t epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT;
1739 uint64_t epb = 1ULL << epbs;
1740 uint64_t minfill, maxfill;
1741 boolean_t hole;
1742 int i, inc, error, span;
1743
1744 dprintf("probing object %llu offset %llx level %d of %u\n",
1745 dn->dn_object, *offset, lvl, dn->dn_phys->dn_nlevels);
1746
1747 hole = ((flags & DNODE_FIND_HOLE) != 0);
1748 inc = (flags & DNODE_FIND_BACKWARDS) ? -1 : 1;
1749 ASSERT(txg == 0 || !hole);
1750
1751 if (lvl == dn->dn_phys->dn_nlevels) {
1752 error = 0;
1753 epb = dn->dn_phys->dn_nblkptr;
1754 data = dn->dn_phys->dn_blkptr;
1755 } else {
1756 uint64_t blkid = dbuf_whichblock(dn, *offset) >> (epbs * lvl);
1757 error = dbuf_hold_impl(dn, lvl, blkid, TRUE, FTAG, &db);
1758 if (error) {
1759 if (error != ENOENT)
1760 return (error);
1761 if (hole)
1762 return (0);
1763 /*
1764 * This can only happen when we are searching up
1765 * the block tree for data. We don't really need to
1766 * adjust the offset, as we will just end up looking
1767 * at the pointer to this block in its parent, and its
1768 * going to be unallocated, so we will skip over it.
1769 */
1770 return (SET_ERROR(ESRCH));
1771 }
1772 error = dbuf_read(db, NULL, DB_RF_CANFAIL | DB_RF_HAVESTRUCT);
1773 if (error) {
1774 dbuf_rele(db, FTAG);
1775 return (error);
1776 }
1777 data = db->db.db_data;
1778 }
1779
1780
1781 if (db != NULL && txg != 0 && (db->db_blkptr == NULL ||
1782 db->db_blkptr->blk_birth <= txg ||
1783 BP_IS_HOLE(db->db_blkptr))) {
1784 /*
1785 * This can only happen when we are searching up the tree
1786 * and these conditions mean that we need to keep climbing.
1787 */
1788 error = SET_ERROR(ESRCH);
1789 } else if (lvl == 0) {
1790 dnode_phys_t *dnp = data;
1791 span = DNODE_SHIFT;
1792 ASSERT(dn->dn_type == DMU_OT_DNODE);
1793
1794 for (i = (*offset >> span) & (blkfill - 1);
1795 i >= 0 && i < blkfill; i += inc) {
1796 if ((dnp[i].dn_type == DMU_OT_NONE) == hole)
1797 break;
1798 *offset += (1ULL << span) * inc;
1799 }
1800 if (i < 0 || i == blkfill)
1801 error = SET_ERROR(ESRCH);
1802 } else {
1803 blkptr_t *bp = data;
1804 uint64_t start = *offset;
1805 span = (lvl - 1) * epbs + dn->dn_datablkshift;
1806 minfill = 0;
1807 maxfill = blkfill << ((lvl - 1) * epbs);
1808
1809 if (hole)
1810 maxfill--;
1811 else
1812 minfill++;
1813
1814 *offset = *offset >> span;
1815 for (i = BF64_GET(*offset, 0, epbs);
1816 i >= 0 && i < epb; i += inc) {
1817 if (BP_GET_FILL(&bp[i]) >= minfill &&
1818 BP_GET_FILL(&bp[i]) <= maxfill &&
1819 (hole || bp[i].blk_birth > txg))
1820 break;
1821 if (inc > 0 || *offset > 0)
1822 *offset += inc;
1823 }
1824 *offset = *offset << span;
1825 if (inc < 0) {
1826 /* traversing backwards; position offset at the end */
1827 ASSERT3U(*offset, <=, start);
1828 *offset = MIN(*offset + (1ULL << span) - 1, start);
1829 } else if (*offset < start) {
1830 *offset = start;
1831 }
1832 if (i < 0 || i >= epb)
1833 error = SET_ERROR(ESRCH);
1834 }
1835
1836 if (db)
1837 dbuf_rele(db, FTAG);
1838
1839 return (error);
1840 }
1841
1842 /*
1843 * Find the next hole, data, or sparse region at or after *offset.
1844 * The value 'blkfill' tells us how many items we expect to find
1845 * in an L0 data block; this value is 1 for normal objects,
1846 * DNODES_PER_BLOCK for the meta dnode, and some fraction of
1847 * DNODES_PER_BLOCK when searching for sparse regions thereof.
1848 *
1849 * Examples:
1850 *
1851 * dnode_next_offset(dn, flags, offset, 1, 1, 0);
1852 * Finds the next/previous hole/data in a file.
1853 * Used in dmu_offset_next().
1854 *
1855 * dnode_next_offset(mdn, flags, offset, 0, DNODES_PER_BLOCK, txg);
1856 * Finds the next free/allocated dnode an objset's meta-dnode.
1857 * Only finds objects that have new contents since txg (ie.
1858 * bonus buffer changes and content removal are ignored).
1859 * Used in dmu_object_next().
1860 *
1861 * dnode_next_offset(mdn, DNODE_FIND_HOLE, offset, 2, DNODES_PER_BLOCK >> 2, 0);
1862 * Finds the next L2 meta-dnode bp that's at most 1/4 full.
1863 * Used in dmu_object_alloc().
1864 */
1865 int
1866 dnode_next_offset(dnode_t *dn, int flags, uint64_t *offset,
1867 int minlvl, uint64_t blkfill, uint64_t txg)
1868 {
1869 uint64_t initial_offset = *offset;
1870 int lvl, maxlvl;
1871 int error = 0;
1872
1873 if (!(flags & DNODE_FIND_HAVELOCK))
1874 rw_enter(&dn->dn_struct_rwlock, RW_READER);
1875
1876 if (dn->dn_phys->dn_nlevels == 0) {
1877 error = SET_ERROR(ESRCH);
1878 goto out;
1879 }
1880
1881 if (dn->dn_datablkshift == 0) {
1882 if (*offset < dn->dn_datablksz) {
1883 if (flags & DNODE_FIND_HOLE)
1884 *offset = dn->dn_datablksz;
1885 } else {
1886 error = SET_ERROR(ESRCH);
1887 }
1888 goto out;
1889 }
1890
1891 maxlvl = dn->dn_phys->dn_nlevels;
1892
1893 for (lvl = minlvl; lvl <= maxlvl; lvl++) {
1894 error = dnode_next_offset_level(dn,
1895 flags, offset, lvl, blkfill, txg);
1896 if (error != ESRCH)
1897 break;
1898 }
1899
1900 while (error == 0 && --lvl >= minlvl) {
1901 error = dnode_next_offset_level(dn,
1902 flags, offset, lvl, blkfill, txg);
1903 }
1904
1905 if (error == 0 && (flags & DNODE_FIND_BACKWARDS ?
1906 initial_offset < *offset : initial_offset > *offset))
1907 error = SET_ERROR(ESRCH);
1908 out:
1909 if (!(flags & DNODE_FIND_HAVELOCK))
1910 rw_exit(&dn->dn_struct_rwlock);
1911
1912 return (error);
1913 }