]> git.proxmox.com Git - mirror_zfs.git/blob - module/zfs/dnode.c
Fix incorrect assertion in dnode_dirty_l1range
[mirror_zfs.git] / module / zfs / dnode.c
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2012, 2017 by Delphix. All rights reserved.
24 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
25 */
26
27 #include <sys/zfs_context.h>
28 #include <sys/dbuf.h>
29 #include <sys/dnode.h>
30 #include <sys/dmu.h>
31 #include <sys/dmu_impl.h>
32 #include <sys/dmu_tx.h>
33 #include <sys/dmu_objset.h>
34 #include <sys/dsl_dir.h>
35 #include <sys/dsl_dataset.h>
36 #include <sys/spa.h>
37 #include <sys/zio.h>
38 #include <sys/dmu_zfetch.h>
39 #include <sys/range_tree.h>
40 #include <sys/trace_dnode.h>
41 #include <sys/zfs_project.h>
42
43 dnode_stats_t dnode_stats = {
44 { "dnode_hold_dbuf_hold", KSTAT_DATA_UINT64 },
45 { "dnode_hold_dbuf_read", KSTAT_DATA_UINT64 },
46 { "dnode_hold_alloc_hits", KSTAT_DATA_UINT64 },
47 { "dnode_hold_alloc_misses", KSTAT_DATA_UINT64 },
48 { "dnode_hold_alloc_interior", KSTAT_DATA_UINT64 },
49 { "dnode_hold_alloc_lock_retry", KSTAT_DATA_UINT64 },
50 { "dnode_hold_alloc_lock_misses", KSTAT_DATA_UINT64 },
51 { "dnode_hold_alloc_type_none", KSTAT_DATA_UINT64 },
52 { "dnode_hold_free_hits", KSTAT_DATA_UINT64 },
53 { "dnode_hold_free_misses", KSTAT_DATA_UINT64 },
54 { "dnode_hold_free_lock_misses", KSTAT_DATA_UINT64 },
55 { "dnode_hold_free_lock_retry", KSTAT_DATA_UINT64 },
56 { "dnode_hold_free_overflow", KSTAT_DATA_UINT64 },
57 { "dnode_hold_free_refcount", KSTAT_DATA_UINT64 },
58 { "dnode_hold_free_txg", KSTAT_DATA_UINT64 },
59 { "dnode_free_interior_lock_retry", KSTAT_DATA_UINT64 },
60 { "dnode_allocate", KSTAT_DATA_UINT64 },
61 { "dnode_reallocate", KSTAT_DATA_UINT64 },
62 { "dnode_buf_evict", KSTAT_DATA_UINT64 },
63 { "dnode_alloc_next_chunk", KSTAT_DATA_UINT64 },
64 { "dnode_alloc_race", KSTAT_DATA_UINT64 },
65 { "dnode_alloc_next_block", KSTAT_DATA_UINT64 },
66 { "dnode_move_invalid", KSTAT_DATA_UINT64 },
67 { "dnode_move_recheck1", KSTAT_DATA_UINT64 },
68 { "dnode_move_recheck2", KSTAT_DATA_UINT64 },
69 { "dnode_move_special", KSTAT_DATA_UINT64 },
70 { "dnode_move_handle", KSTAT_DATA_UINT64 },
71 { "dnode_move_rwlock", KSTAT_DATA_UINT64 },
72 { "dnode_move_active", KSTAT_DATA_UINT64 },
73 };
74
75 static kstat_t *dnode_ksp;
76 static kmem_cache_t *dnode_cache;
77
78 ASSERTV(static dnode_phys_t dnode_phys_zero);
79
80 int zfs_default_bs = SPA_MINBLOCKSHIFT;
81 int zfs_default_ibs = DN_MAX_INDBLKSHIFT;
82
83 #ifdef _KERNEL
84 static kmem_cbrc_t dnode_move(void *, void *, size_t, void *);
85 #endif /* _KERNEL */
86
87 static int
88 dbuf_compare(const void *x1, const void *x2)
89 {
90 const dmu_buf_impl_t *d1 = x1;
91 const dmu_buf_impl_t *d2 = x2;
92
93 int cmp = AVL_CMP(d1->db_level, d2->db_level);
94 if (likely(cmp))
95 return (cmp);
96
97 cmp = AVL_CMP(d1->db_blkid, d2->db_blkid);
98 if (likely(cmp))
99 return (cmp);
100
101 if (d1->db_state == DB_SEARCH) {
102 ASSERT3S(d2->db_state, !=, DB_SEARCH);
103 return (-1);
104 } else if (d2->db_state == DB_SEARCH) {
105 ASSERT3S(d1->db_state, !=, DB_SEARCH);
106 return (1);
107 }
108
109 return (AVL_PCMP(d1, d2));
110 }
111
112 /* ARGSUSED */
113 static int
114 dnode_cons(void *arg, void *unused, int kmflag)
115 {
116 dnode_t *dn = arg;
117 int i;
118
119 rw_init(&dn->dn_struct_rwlock, NULL, RW_NOLOCKDEP, NULL);
120 mutex_init(&dn->dn_mtx, NULL, MUTEX_DEFAULT, NULL);
121 mutex_init(&dn->dn_dbufs_mtx, NULL, MUTEX_DEFAULT, NULL);
122 cv_init(&dn->dn_notxholds, NULL, CV_DEFAULT, NULL);
123
124 /*
125 * Every dbuf has a reference, and dropping a tracked reference is
126 * O(number of references), so don't track dn_holds.
127 */
128 zfs_refcount_create_untracked(&dn->dn_holds);
129 zfs_refcount_create(&dn->dn_tx_holds);
130 list_link_init(&dn->dn_link);
131
132 bzero(&dn->dn_next_nblkptr[0], sizeof (dn->dn_next_nblkptr));
133 bzero(&dn->dn_next_nlevels[0], sizeof (dn->dn_next_nlevels));
134 bzero(&dn->dn_next_indblkshift[0], sizeof (dn->dn_next_indblkshift));
135 bzero(&dn->dn_next_bonustype[0], sizeof (dn->dn_next_bonustype));
136 bzero(&dn->dn_rm_spillblk[0], sizeof (dn->dn_rm_spillblk));
137 bzero(&dn->dn_next_bonuslen[0], sizeof (dn->dn_next_bonuslen));
138 bzero(&dn->dn_next_blksz[0], sizeof (dn->dn_next_blksz));
139 bzero(&dn->dn_next_maxblkid[0], sizeof (dn->dn_next_maxblkid));
140
141 for (i = 0; i < TXG_SIZE; i++) {
142 multilist_link_init(&dn->dn_dirty_link[i]);
143 dn->dn_free_ranges[i] = NULL;
144 list_create(&dn->dn_dirty_records[i],
145 sizeof (dbuf_dirty_record_t),
146 offsetof(dbuf_dirty_record_t, dr_dirty_node));
147 }
148
149 dn->dn_allocated_txg = 0;
150 dn->dn_free_txg = 0;
151 dn->dn_assigned_txg = 0;
152 dn->dn_dirty_txg = 0;
153 dn->dn_dirtyctx = 0;
154 dn->dn_dirtyctx_firstset = NULL;
155 dn->dn_bonus = NULL;
156 dn->dn_have_spill = B_FALSE;
157 dn->dn_zio = NULL;
158 dn->dn_oldused = 0;
159 dn->dn_oldflags = 0;
160 dn->dn_olduid = 0;
161 dn->dn_oldgid = 0;
162 dn->dn_oldprojid = ZFS_DEFAULT_PROJID;
163 dn->dn_newuid = 0;
164 dn->dn_newgid = 0;
165 dn->dn_newprojid = ZFS_DEFAULT_PROJID;
166 dn->dn_id_flags = 0;
167
168 dn->dn_dbufs_count = 0;
169 avl_create(&dn->dn_dbufs, dbuf_compare, sizeof (dmu_buf_impl_t),
170 offsetof(dmu_buf_impl_t, db_link));
171
172 dn->dn_moved = 0;
173 return (0);
174 }
175
176 /* ARGSUSED */
177 static void
178 dnode_dest(void *arg, void *unused)
179 {
180 int i;
181 dnode_t *dn = arg;
182
183 rw_destroy(&dn->dn_struct_rwlock);
184 mutex_destroy(&dn->dn_mtx);
185 mutex_destroy(&dn->dn_dbufs_mtx);
186 cv_destroy(&dn->dn_notxholds);
187 zfs_refcount_destroy(&dn->dn_holds);
188 zfs_refcount_destroy(&dn->dn_tx_holds);
189 ASSERT(!list_link_active(&dn->dn_link));
190
191 for (i = 0; i < TXG_SIZE; i++) {
192 ASSERT(!multilist_link_active(&dn->dn_dirty_link[i]));
193 ASSERT3P(dn->dn_free_ranges[i], ==, NULL);
194 list_destroy(&dn->dn_dirty_records[i]);
195 ASSERT0(dn->dn_next_nblkptr[i]);
196 ASSERT0(dn->dn_next_nlevels[i]);
197 ASSERT0(dn->dn_next_indblkshift[i]);
198 ASSERT0(dn->dn_next_bonustype[i]);
199 ASSERT0(dn->dn_rm_spillblk[i]);
200 ASSERT0(dn->dn_next_bonuslen[i]);
201 ASSERT0(dn->dn_next_blksz[i]);
202 ASSERT0(dn->dn_next_maxblkid[i]);
203 }
204
205 ASSERT0(dn->dn_allocated_txg);
206 ASSERT0(dn->dn_free_txg);
207 ASSERT0(dn->dn_assigned_txg);
208 ASSERT0(dn->dn_dirty_txg);
209 ASSERT0(dn->dn_dirtyctx);
210 ASSERT3P(dn->dn_dirtyctx_firstset, ==, NULL);
211 ASSERT3P(dn->dn_bonus, ==, NULL);
212 ASSERT(!dn->dn_have_spill);
213 ASSERT3P(dn->dn_zio, ==, NULL);
214 ASSERT0(dn->dn_oldused);
215 ASSERT0(dn->dn_oldflags);
216 ASSERT0(dn->dn_olduid);
217 ASSERT0(dn->dn_oldgid);
218 ASSERT0(dn->dn_oldprojid);
219 ASSERT0(dn->dn_newuid);
220 ASSERT0(dn->dn_newgid);
221 ASSERT0(dn->dn_newprojid);
222 ASSERT0(dn->dn_id_flags);
223
224 ASSERT0(dn->dn_dbufs_count);
225 avl_destroy(&dn->dn_dbufs);
226 }
227
228 void
229 dnode_init(void)
230 {
231 ASSERT(dnode_cache == NULL);
232 dnode_cache = kmem_cache_create("dnode_t", sizeof (dnode_t),
233 0, dnode_cons, dnode_dest, NULL, NULL, NULL, 0);
234 kmem_cache_set_move(dnode_cache, dnode_move);
235
236 dnode_ksp = kstat_create("zfs", 0, "dnodestats", "misc",
237 KSTAT_TYPE_NAMED, sizeof (dnode_stats) / sizeof (kstat_named_t),
238 KSTAT_FLAG_VIRTUAL);
239 if (dnode_ksp != NULL) {
240 dnode_ksp->ks_data = &dnode_stats;
241 kstat_install(dnode_ksp);
242 }
243 }
244
245 void
246 dnode_fini(void)
247 {
248 if (dnode_ksp != NULL) {
249 kstat_delete(dnode_ksp);
250 dnode_ksp = NULL;
251 }
252
253 kmem_cache_destroy(dnode_cache);
254 dnode_cache = NULL;
255 }
256
257
258 #ifdef ZFS_DEBUG
259 void
260 dnode_verify(dnode_t *dn)
261 {
262 int drop_struct_lock = FALSE;
263
264 ASSERT(dn->dn_phys);
265 ASSERT(dn->dn_objset);
266 ASSERT(dn->dn_handle->dnh_dnode == dn);
267
268 ASSERT(DMU_OT_IS_VALID(dn->dn_phys->dn_type));
269
270 if (!(zfs_flags & ZFS_DEBUG_DNODE_VERIFY))
271 return;
272
273 if (!RW_WRITE_HELD(&dn->dn_struct_rwlock)) {
274 rw_enter(&dn->dn_struct_rwlock, RW_READER);
275 drop_struct_lock = TRUE;
276 }
277 if (dn->dn_phys->dn_type != DMU_OT_NONE || dn->dn_allocated_txg != 0) {
278 int i;
279 int max_bonuslen = DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots);
280 ASSERT3U(dn->dn_indblkshift, <=, SPA_MAXBLOCKSHIFT);
281 if (dn->dn_datablkshift) {
282 ASSERT3U(dn->dn_datablkshift, >=, SPA_MINBLOCKSHIFT);
283 ASSERT3U(dn->dn_datablkshift, <=, SPA_MAXBLOCKSHIFT);
284 ASSERT3U(1<<dn->dn_datablkshift, ==, dn->dn_datablksz);
285 }
286 ASSERT3U(dn->dn_nlevels, <=, 30);
287 ASSERT(DMU_OT_IS_VALID(dn->dn_type));
288 ASSERT3U(dn->dn_nblkptr, >=, 1);
289 ASSERT3U(dn->dn_nblkptr, <=, DN_MAX_NBLKPTR);
290 ASSERT3U(dn->dn_bonuslen, <=, max_bonuslen);
291 ASSERT3U(dn->dn_datablksz, ==,
292 dn->dn_datablkszsec << SPA_MINBLOCKSHIFT);
293 ASSERT3U(ISP2(dn->dn_datablksz), ==, dn->dn_datablkshift != 0);
294 ASSERT3U((dn->dn_nblkptr - 1) * sizeof (blkptr_t) +
295 dn->dn_bonuslen, <=, max_bonuslen);
296 for (i = 0; i < TXG_SIZE; i++) {
297 ASSERT3U(dn->dn_next_nlevels[i], <=, dn->dn_nlevels);
298 }
299 }
300 if (dn->dn_phys->dn_type != DMU_OT_NONE)
301 ASSERT3U(dn->dn_phys->dn_nlevels, <=, dn->dn_nlevels);
302 ASSERT(DMU_OBJECT_IS_SPECIAL(dn->dn_object) || dn->dn_dbuf != NULL);
303 if (dn->dn_dbuf != NULL) {
304 ASSERT3P(dn->dn_phys, ==,
305 (dnode_phys_t *)dn->dn_dbuf->db.db_data +
306 (dn->dn_object % (dn->dn_dbuf->db.db_size >> DNODE_SHIFT)));
307 }
308 if (drop_struct_lock)
309 rw_exit(&dn->dn_struct_rwlock);
310 }
311 #endif
312
313 void
314 dnode_byteswap(dnode_phys_t *dnp)
315 {
316 uint64_t *buf64 = (void*)&dnp->dn_blkptr;
317 int i;
318
319 if (dnp->dn_type == DMU_OT_NONE) {
320 bzero(dnp, sizeof (dnode_phys_t));
321 return;
322 }
323
324 dnp->dn_datablkszsec = BSWAP_16(dnp->dn_datablkszsec);
325 dnp->dn_bonuslen = BSWAP_16(dnp->dn_bonuslen);
326 dnp->dn_extra_slots = BSWAP_8(dnp->dn_extra_slots);
327 dnp->dn_maxblkid = BSWAP_64(dnp->dn_maxblkid);
328 dnp->dn_used = BSWAP_64(dnp->dn_used);
329
330 /*
331 * dn_nblkptr is only one byte, so it's OK to read it in either
332 * byte order. We can't read dn_bouslen.
333 */
334 ASSERT(dnp->dn_indblkshift <= SPA_MAXBLOCKSHIFT);
335 ASSERT(dnp->dn_nblkptr <= DN_MAX_NBLKPTR);
336 for (i = 0; i < dnp->dn_nblkptr * sizeof (blkptr_t)/8; i++)
337 buf64[i] = BSWAP_64(buf64[i]);
338
339 /*
340 * OK to check dn_bonuslen for zero, because it won't matter if
341 * we have the wrong byte order. This is necessary because the
342 * dnode dnode is smaller than a regular dnode.
343 */
344 if (dnp->dn_bonuslen != 0) {
345 /*
346 * Note that the bonus length calculated here may be
347 * longer than the actual bonus buffer. This is because
348 * we always put the bonus buffer after the last block
349 * pointer (instead of packing it against the end of the
350 * dnode buffer).
351 */
352 int off = (dnp->dn_nblkptr-1) * sizeof (blkptr_t);
353 int slots = dnp->dn_extra_slots + 1;
354 size_t len = DN_SLOTS_TO_BONUSLEN(slots) - off;
355 dmu_object_byteswap_t byteswap;
356 ASSERT(DMU_OT_IS_VALID(dnp->dn_bonustype));
357 byteswap = DMU_OT_BYTESWAP(dnp->dn_bonustype);
358 dmu_ot_byteswap[byteswap].ob_func(dnp->dn_bonus + off, len);
359 }
360
361 /* Swap SPILL block if we have one */
362 if (dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR)
363 byteswap_uint64_array(DN_SPILL_BLKPTR(dnp), sizeof (blkptr_t));
364 }
365
366 void
367 dnode_buf_byteswap(void *vbuf, size_t size)
368 {
369 int i = 0;
370
371 ASSERT3U(sizeof (dnode_phys_t), ==, (1<<DNODE_SHIFT));
372 ASSERT((size & (sizeof (dnode_phys_t)-1)) == 0);
373
374 while (i < size) {
375 dnode_phys_t *dnp = (void *)(((char *)vbuf) + i);
376 dnode_byteswap(dnp);
377
378 i += DNODE_MIN_SIZE;
379 if (dnp->dn_type != DMU_OT_NONE)
380 i += dnp->dn_extra_slots * DNODE_MIN_SIZE;
381 }
382 }
383
384 void
385 dnode_setbonuslen(dnode_t *dn, int newsize, dmu_tx_t *tx)
386 {
387 ASSERT3U(zfs_refcount_count(&dn->dn_holds), >=, 1);
388
389 dnode_setdirty(dn, tx);
390 rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
391 ASSERT3U(newsize, <=, DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots) -
392 (dn->dn_nblkptr-1) * sizeof (blkptr_t));
393 dn->dn_bonuslen = newsize;
394 if (newsize == 0)
395 dn->dn_next_bonuslen[tx->tx_txg & TXG_MASK] = DN_ZERO_BONUSLEN;
396 else
397 dn->dn_next_bonuslen[tx->tx_txg & TXG_MASK] = dn->dn_bonuslen;
398 rw_exit(&dn->dn_struct_rwlock);
399 }
400
401 void
402 dnode_setbonus_type(dnode_t *dn, dmu_object_type_t newtype, dmu_tx_t *tx)
403 {
404 ASSERT3U(zfs_refcount_count(&dn->dn_holds), >=, 1);
405 dnode_setdirty(dn, tx);
406 rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
407 dn->dn_bonustype = newtype;
408 dn->dn_next_bonustype[tx->tx_txg & TXG_MASK] = dn->dn_bonustype;
409 rw_exit(&dn->dn_struct_rwlock);
410 }
411
412 void
413 dnode_rm_spill(dnode_t *dn, dmu_tx_t *tx)
414 {
415 ASSERT3U(zfs_refcount_count(&dn->dn_holds), >=, 1);
416 ASSERT(RW_WRITE_HELD(&dn->dn_struct_rwlock));
417 dnode_setdirty(dn, tx);
418 dn->dn_rm_spillblk[tx->tx_txg & TXG_MASK] = DN_KILL_SPILLBLK;
419 dn->dn_have_spill = B_FALSE;
420 }
421
422 static void
423 dnode_setdblksz(dnode_t *dn, int size)
424 {
425 ASSERT0(P2PHASE(size, SPA_MINBLOCKSIZE));
426 ASSERT3U(size, <=, SPA_MAXBLOCKSIZE);
427 ASSERT3U(size, >=, SPA_MINBLOCKSIZE);
428 ASSERT3U(size >> SPA_MINBLOCKSHIFT, <,
429 1<<(sizeof (dn->dn_phys->dn_datablkszsec) * 8));
430 dn->dn_datablksz = size;
431 dn->dn_datablkszsec = size >> SPA_MINBLOCKSHIFT;
432 dn->dn_datablkshift = ISP2(size) ? highbit64(size - 1) : 0;
433 }
434
435 static dnode_t *
436 dnode_create(objset_t *os, dnode_phys_t *dnp, dmu_buf_impl_t *db,
437 uint64_t object, dnode_handle_t *dnh)
438 {
439 dnode_t *dn;
440
441 dn = kmem_cache_alloc(dnode_cache, KM_SLEEP);
442 ASSERT(!POINTER_IS_VALID(dn->dn_objset));
443 dn->dn_moved = 0;
444
445 /*
446 * Defer setting dn_objset until the dnode is ready to be a candidate
447 * for the dnode_move() callback.
448 */
449 dn->dn_object = object;
450 dn->dn_dbuf = db;
451 dn->dn_handle = dnh;
452 dn->dn_phys = dnp;
453
454 if (dnp->dn_datablkszsec) {
455 dnode_setdblksz(dn, dnp->dn_datablkszsec << SPA_MINBLOCKSHIFT);
456 } else {
457 dn->dn_datablksz = 0;
458 dn->dn_datablkszsec = 0;
459 dn->dn_datablkshift = 0;
460 }
461 dn->dn_indblkshift = dnp->dn_indblkshift;
462 dn->dn_nlevels = dnp->dn_nlevels;
463 dn->dn_type = dnp->dn_type;
464 dn->dn_nblkptr = dnp->dn_nblkptr;
465 dn->dn_checksum = dnp->dn_checksum;
466 dn->dn_compress = dnp->dn_compress;
467 dn->dn_bonustype = dnp->dn_bonustype;
468 dn->dn_bonuslen = dnp->dn_bonuslen;
469 dn->dn_num_slots = dnp->dn_extra_slots + 1;
470 dn->dn_maxblkid = dnp->dn_maxblkid;
471 dn->dn_have_spill = ((dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR) != 0);
472 dn->dn_id_flags = 0;
473
474 dmu_zfetch_init(&dn->dn_zfetch, dn);
475
476 ASSERT(DMU_OT_IS_VALID(dn->dn_phys->dn_type));
477 ASSERT(zrl_is_locked(&dnh->dnh_zrlock));
478 ASSERT(!DN_SLOT_IS_PTR(dnh->dnh_dnode));
479
480 mutex_enter(&os->os_lock);
481
482 /*
483 * Exclude special dnodes from os_dnodes so an empty os_dnodes
484 * signifies that the special dnodes have no references from
485 * their children (the entries in os_dnodes). This allows
486 * dnode_destroy() to easily determine if the last child has
487 * been removed and then complete eviction of the objset.
488 */
489 if (!DMU_OBJECT_IS_SPECIAL(object))
490 list_insert_head(&os->os_dnodes, dn);
491 membar_producer();
492
493 /*
494 * Everything else must be valid before assigning dn_objset
495 * makes the dnode eligible for dnode_move().
496 */
497 dn->dn_objset = os;
498
499 dnh->dnh_dnode = dn;
500 mutex_exit(&os->os_lock);
501
502 arc_space_consume(sizeof (dnode_t), ARC_SPACE_DNODE);
503
504 return (dn);
505 }
506
507 /*
508 * Caller must be holding the dnode handle, which is released upon return.
509 */
510 static void
511 dnode_destroy(dnode_t *dn)
512 {
513 objset_t *os = dn->dn_objset;
514 boolean_t complete_os_eviction = B_FALSE;
515
516 ASSERT((dn->dn_id_flags & DN_ID_NEW_EXIST) == 0);
517
518 mutex_enter(&os->os_lock);
519 POINTER_INVALIDATE(&dn->dn_objset);
520 if (!DMU_OBJECT_IS_SPECIAL(dn->dn_object)) {
521 list_remove(&os->os_dnodes, dn);
522 complete_os_eviction =
523 list_is_empty(&os->os_dnodes) &&
524 list_link_active(&os->os_evicting_node);
525 }
526 mutex_exit(&os->os_lock);
527
528 /* the dnode can no longer move, so we can release the handle */
529 if (!zrl_is_locked(&dn->dn_handle->dnh_zrlock))
530 zrl_remove(&dn->dn_handle->dnh_zrlock);
531
532 dn->dn_allocated_txg = 0;
533 dn->dn_free_txg = 0;
534 dn->dn_assigned_txg = 0;
535 dn->dn_dirty_txg = 0;
536
537 dn->dn_dirtyctx = 0;
538 if (dn->dn_dirtyctx_firstset != NULL) {
539 kmem_free(dn->dn_dirtyctx_firstset, 1);
540 dn->dn_dirtyctx_firstset = NULL;
541 }
542 if (dn->dn_bonus != NULL) {
543 mutex_enter(&dn->dn_bonus->db_mtx);
544 dbuf_destroy(dn->dn_bonus);
545 dn->dn_bonus = NULL;
546 }
547 dn->dn_zio = NULL;
548
549 dn->dn_have_spill = B_FALSE;
550 dn->dn_oldused = 0;
551 dn->dn_oldflags = 0;
552 dn->dn_olduid = 0;
553 dn->dn_oldgid = 0;
554 dn->dn_oldprojid = ZFS_DEFAULT_PROJID;
555 dn->dn_newuid = 0;
556 dn->dn_newgid = 0;
557 dn->dn_newprojid = ZFS_DEFAULT_PROJID;
558 dn->dn_id_flags = 0;
559
560 dmu_zfetch_fini(&dn->dn_zfetch);
561 kmem_cache_free(dnode_cache, dn);
562 arc_space_return(sizeof (dnode_t), ARC_SPACE_DNODE);
563
564 if (complete_os_eviction)
565 dmu_objset_evict_done(os);
566 }
567
568 void
569 dnode_allocate(dnode_t *dn, dmu_object_type_t ot, int blocksize, int ibs,
570 dmu_object_type_t bonustype, int bonuslen, int dn_slots, dmu_tx_t *tx)
571 {
572 int i;
573
574 ASSERT3U(dn_slots, >, 0);
575 ASSERT3U(dn_slots << DNODE_SHIFT, <=,
576 spa_maxdnodesize(dmu_objset_spa(dn->dn_objset)));
577 ASSERT3U(blocksize, <=,
578 spa_maxblocksize(dmu_objset_spa(dn->dn_objset)));
579 if (blocksize == 0)
580 blocksize = 1 << zfs_default_bs;
581 else
582 blocksize = P2ROUNDUP(blocksize, SPA_MINBLOCKSIZE);
583
584 if (ibs == 0)
585 ibs = zfs_default_ibs;
586
587 ibs = MIN(MAX(ibs, DN_MIN_INDBLKSHIFT), DN_MAX_INDBLKSHIFT);
588
589 dprintf("os=%p obj=%llu txg=%llu blocksize=%d ibs=%d dn_slots=%d\n",
590 dn->dn_objset, dn->dn_object, tx->tx_txg, blocksize, ibs, dn_slots);
591 DNODE_STAT_BUMP(dnode_allocate);
592
593 ASSERT(dn->dn_type == DMU_OT_NONE);
594 ASSERT(bcmp(dn->dn_phys, &dnode_phys_zero, sizeof (dnode_phys_t)) == 0);
595 ASSERT(dn->dn_phys->dn_type == DMU_OT_NONE);
596 ASSERT(ot != DMU_OT_NONE);
597 ASSERT(DMU_OT_IS_VALID(ot));
598 ASSERT((bonustype == DMU_OT_NONE && bonuslen == 0) ||
599 (bonustype == DMU_OT_SA && bonuslen == 0) ||
600 (bonustype != DMU_OT_NONE && bonuslen != 0));
601 ASSERT(DMU_OT_IS_VALID(bonustype));
602 ASSERT3U(bonuslen, <=, DN_SLOTS_TO_BONUSLEN(dn_slots));
603 ASSERT(dn->dn_type == DMU_OT_NONE);
604 ASSERT0(dn->dn_maxblkid);
605 ASSERT0(dn->dn_allocated_txg);
606 ASSERT0(dn->dn_assigned_txg);
607 ASSERT0(dn->dn_dirty_txg);
608 ASSERT(zfs_refcount_is_zero(&dn->dn_tx_holds));
609 ASSERT3U(zfs_refcount_count(&dn->dn_holds), <=, 1);
610 ASSERT(avl_is_empty(&dn->dn_dbufs));
611
612 for (i = 0; i < TXG_SIZE; i++) {
613 ASSERT0(dn->dn_next_nblkptr[i]);
614 ASSERT0(dn->dn_next_nlevels[i]);
615 ASSERT0(dn->dn_next_indblkshift[i]);
616 ASSERT0(dn->dn_next_bonuslen[i]);
617 ASSERT0(dn->dn_next_bonustype[i]);
618 ASSERT0(dn->dn_rm_spillblk[i]);
619 ASSERT0(dn->dn_next_blksz[i]);
620 ASSERT0(dn->dn_next_maxblkid[i]);
621 ASSERT(!multilist_link_active(&dn->dn_dirty_link[i]));
622 ASSERT3P(list_head(&dn->dn_dirty_records[i]), ==, NULL);
623 ASSERT3P(dn->dn_free_ranges[i], ==, NULL);
624 }
625
626 dn->dn_type = ot;
627 dnode_setdblksz(dn, blocksize);
628 dn->dn_indblkshift = ibs;
629 dn->dn_nlevels = 1;
630 dn->dn_num_slots = dn_slots;
631 if (bonustype == DMU_OT_SA) /* Maximize bonus space for SA */
632 dn->dn_nblkptr = 1;
633 else {
634 dn->dn_nblkptr = MIN(DN_MAX_NBLKPTR,
635 1 + ((DN_SLOTS_TO_BONUSLEN(dn_slots) - bonuslen) >>
636 SPA_BLKPTRSHIFT));
637 }
638
639 dn->dn_bonustype = bonustype;
640 dn->dn_bonuslen = bonuslen;
641 dn->dn_checksum = ZIO_CHECKSUM_INHERIT;
642 dn->dn_compress = ZIO_COMPRESS_INHERIT;
643 dn->dn_dirtyctx = 0;
644
645 dn->dn_free_txg = 0;
646 if (dn->dn_dirtyctx_firstset) {
647 kmem_free(dn->dn_dirtyctx_firstset, 1);
648 dn->dn_dirtyctx_firstset = NULL;
649 }
650
651 dn->dn_allocated_txg = tx->tx_txg;
652 dn->dn_id_flags = 0;
653
654 dnode_setdirty(dn, tx);
655 dn->dn_next_indblkshift[tx->tx_txg & TXG_MASK] = ibs;
656 dn->dn_next_bonuslen[tx->tx_txg & TXG_MASK] = dn->dn_bonuslen;
657 dn->dn_next_bonustype[tx->tx_txg & TXG_MASK] = dn->dn_bonustype;
658 dn->dn_next_blksz[tx->tx_txg & TXG_MASK] = dn->dn_datablksz;
659 }
660
661 void
662 dnode_reallocate(dnode_t *dn, dmu_object_type_t ot, int blocksize,
663 dmu_object_type_t bonustype, int bonuslen, int dn_slots,
664 boolean_t keep_spill, dmu_tx_t *tx)
665 {
666 int nblkptr;
667
668 ASSERT3U(blocksize, >=, SPA_MINBLOCKSIZE);
669 ASSERT3U(blocksize, <=,
670 spa_maxblocksize(dmu_objset_spa(dn->dn_objset)));
671 ASSERT0(blocksize % SPA_MINBLOCKSIZE);
672 ASSERT(dn->dn_object != DMU_META_DNODE_OBJECT || dmu_tx_private_ok(tx));
673 ASSERT(tx->tx_txg != 0);
674 ASSERT((bonustype == DMU_OT_NONE && bonuslen == 0) ||
675 (bonustype != DMU_OT_NONE && bonuslen != 0) ||
676 (bonustype == DMU_OT_SA && bonuslen == 0));
677 ASSERT(DMU_OT_IS_VALID(bonustype));
678 ASSERT3U(bonuslen, <=,
679 DN_BONUS_SIZE(spa_maxdnodesize(dmu_objset_spa(dn->dn_objset))));
680 ASSERT3U(bonuslen, <=, DN_BONUS_SIZE(dn_slots << DNODE_SHIFT));
681
682 dnode_free_interior_slots(dn);
683 DNODE_STAT_BUMP(dnode_reallocate);
684
685 /* clean up any unreferenced dbufs */
686 dnode_evict_dbufs(dn);
687
688 dn->dn_id_flags = 0;
689
690 rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
691 dnode_setdirty(dn, tx);
692 if (dn->dn_datablksz != blocksize) {
693 /* change blocksize */
694 ASSERT0(dn->dn_maxblkid);
695 ASSERT(BP_IS_HOLE(&dn->dn_phys->dn_blkptr[0]) ||
696 dnode_block_freed(dn, 0));
697
698 dnode_setdblksz(dn, blocksize);
699 dn->dn_next_blksz[tx->tx_txg & TXG_MASK] = blocksize;
700 }
701 if (dn->dn_bonuslen != bonuslen)
702 dn->dn_next_bonuslen[tx->tx_txg & TXG_MASK] = bonuslen;
703
704 if (bonustype == DMU_OT_SA) /* Maximize bonus space for SA */
705 nblkptr = 1;
706 else
707 nblkptr = MIN(DN_MAX_NBLKPTR,
708 1 + ((DN_SLOTS_TO_BONUSLEN(dn_slots) - bonuslen) >>
709 SPA_BLKPTRSHIFT));
710 if (dn->dn_bonustype != bonustype)
711 dn->dn_next_bonustype[tx->tx_txg & TXG_MASK] = bonustype;
712 if (dn->dn_nblkptr != nblkptr)
713 dn->dn_next_nblkptr[tx->tx_txg & TXG_MASK] = nblkptr;
714 if (dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR && !keep_spill) {
715 dbuf_rm_spill(dn, tx);
716 dnode_rm_spill(dn, tx);
717 }
718
719 rw_exit(&dn->dn_struct_rwlock);
720
721 /* change type */
722 dn->dn_type = ot;
723
724 /* change bonus size and type */
725 mutex_enter(&dn->dn_mtx);
726 dn->dn_bonustype = bonustype;
727 dn->dn_bonuslen = bonuslen;
728 dn->dn_num_slots = dn_slots;
729 dn->dn_nblkptr = nblkptr;
730 dn->dn_checksum = ZIO_CHECKSUM_INHERIT;
731 dn->dn_compress = ZIO_COMPRESS_INHERIT;
732 ASSERT3U(dn->dn_nblkptr, <=, DN_MAX_NBLKPTR);
733
734 /* fix up the bonus db_size */
735 if (dn->dn_bonus) {
736 dn->dn_bonus->db.db_size =
737 DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots) -
738 (dn->dn_nblkptr-1) * sizeof (blkptr_t);
739 ASSERT(dn->dn_bonuslen <= dn->dn_bonus->db.db_size);
740 }
741
742 dn->dn_allocated_txg = tx->tx_txg;
743 mutex_exit(&dn->dn_mtx);
744 }
745
746 #ifdef _KERNEL
747 static void
748 dnode_move_impl(dnode_t *odn, dnode_t *ndn)
749 {
750 int i;
751
752 ASSERT(!RW_LOCK_HELD(&odn->dn_struct_rwlock));
753 ASSERT(MUTEX_NOT_HELD(&odn->dn_mtx));
754 ASSERT(MUTEX_NOT_HELD(&odn->dn_dbufs_mtx));
755 ASSERT(!RW_LOCK_HELD(&odn->dn_zfetch.zf_rwlock));
756
757 /* Copy fields. */
758 ndn->dn_objset = odn->dn_objset;
759 ndn->dn_object = odn->dn_object;
760 ndn->dn_dbuf = odn->dn_dbuf;
761 ndn->dn_handle = odn->dn_handle;
762 ndn->dn_phys = odn->dn_phys;
763 ndn->dn_type = odn->dn_type;
764 ndn->dn_bonuslen = odn->dn_bonuslen;
765 ndn->dn_bonustype = odn->dn_bonustype;
766 ndn->dn_nblkptr = odn->dn_nblkptr;
767 ndn->dn_checksum = odn->dn_checksum;
768 ndn->dn_compress = odn->dn_compress;
769 ndn->dn_nlevels = odn->dn_nlevels;
770 ndn->dn_indblkshift = odn->dn_indblkshift;
771 ndn->dn_datablkshift = odn->dn_datablkshift;
772 ndn->dn_datablkszsec = odn->dn_datablkszsec;
773 ndn->dn_datablksz = odn->dn_datablksz;
774 ndn->dn_maxblkid = odn->dn_maxblkid;
775 ndn->dn_num_slots = odn->dn_num_slots;
776 bcopy(&odn->dn_next_type[0], &ndn->dn_next_type[0],
777 sizeof (odn->dn_next_type));
778 bcopy(&odn->dn_next_nblkptr[0], &ndn->dn_next_nblkptr[0],
779 sizeof (odn->dn_next_nblkptr));
780 bcopy(&odn->dn_next_nlevels[0], &ndn->dn_next_nlevels[0],
781 sizeof (odn->dn_next_nlevels));
782 bcopy(&odn->dn_next_indblkshift[0], &ndn->dn_next_indblkshift[0],
783 sizeof (odn->dn_next_indblkshift));
784 bcopy(&odn->dn_next_bonustype[0], &ndn->dn_next_bonustype[0],
785 sizeof (odn->dn_next_bonustype));
786 bcopy(&odn->dn_rm_spillblk[0], &ndn->dn_rm_spillblk[0],
787 sizeof (odn->dn_rm_spillblk));
788 bcopy(&odn->dn_next_bonuslen[0], &ndn->dn_next_bonuslen[0],
789 sizeof (odn->dn_next_bonuslen));
790 bcopy(&odn->dn_next_blksz[0], &ndn->dn_next_blksz[0],
791 sizeof (odn->dn_next_blksz));
792 bcopy(&odn->dn_next_maxblkid[0], &ndn->dn_next_maxblkid[0],
793 sizeof (odn->dn_next_maxblkid));
794 for (i = 0; i < TXG_SIZE; i++) {
795 list_move_tail(&ndn->dn_dirty_records[i],
796 &odn->dn_dirty_records[i]);
797 }
798 bcopy(&odn->dn_free_ranges[0], &ndn->dn_free_ranges[0],
799 sizeof (odn->dn_free_ranges));
800 ndn->dn_allocated_txg = odn->dn_allocated_txg;
801 ndn->dn_free_txg = odn->dn_free_txg;
802 ndn->dn_assigned_txg = odn->dn_assigned_txg;
803 ndn->dn_dirty_txg = odn->dn_dirty_txg;
804 ndn->dn_dirtyctx = odn->dn_dirtyctx;
805 ndn->dn_dirtyctx_firstset = odn->dn_dirtyctx_firstset;
806 ASSERT(zfs_refcount_count(&odn->dn_tx_holds) == 0);
807 zfs_refcount_transfer(&ndn->dn_holds, &odn->dn_holds);
808 ASSERT(avl_is_empty(&ndn->dn_dbufs));
809 avl_swap(&ndn->dn_dbufs, &odn->dn_dbufs);
810 ndn->dn_dbufs_count = odn->dn_dbufs_count;
811 ndn->dn_bonus = odn->dn_bonus;
812 ndn->dn_have_spill = odn->dn_have_spill;
813 ndn->dn_zio = odn->dn_zio;
814 ndn->dn_oldused = odn->dn_oldused;
815 ndn->dn_oldflags = odn->dn_oldflags;
816 ndn->dn_olduid = odn->dn_olduid;
817 ndn->dn_oldgid = odn->dn_oldgid;
818 ndn->dn_oldprojid = odn->dn_oldprojid;
819 ndn->dn_newuid = odn->dn_newuid;
820 ndn->dn_newgid = odn->dn_newgid;
821 ndn->dn_newprojid = odn->dn_newprojid;
822 ndn->dn_id_flags = odn->dn_id_flags;
823 dmu_zfetch_init(&ndn->dn_zfetch, NULL);
824 list_move_tail(&ndn->dn_zfetch.zf_stream, &odn->dn_zfetch.zf_stream);
825 ndn->dn_zfetch.zf_dnode = odn->dn_zfetch.zf_dnode;
826
827 /*
828 * Update back pointers. Updating the handle fixes the back pointer of
829 * every descendant dbuf as well as the bonus dbuf.
830 */
831 ASSERT(ndn->dn_handle->dnh_dnode == odn);
832 ndn->dn_handle->dnh_dnode = ndn;
833 if (ndn->dn_zfetch.zf_dnode == odn) {
834 ndn->dn_zfetch.zf_dnode = ndn;
835 }
836
837 /*
838 * Invalidate the original dnode by clearing all of its back pointers.
839 */
840 odn->dn_dbuf = NULL;
841 odn->dn_handle = NULL;
842 avl_create(&odn->dn_dbufs, dbuf_compare, sizeof (dmu_buf_impl_t),
843 offsetof(dmu_buf_impl_t, db_link));
844 odn->dn_dbufs_count = 0;
845 odn->dn_bonus = NULL;
846 dmu_zfetch_fini(&odn->dn_zfetch);
847
848 /*
849 * Set the low bit of the objset pointer to ensure that dnode_move()
850 * recognizes the dnode as invalid in any subsequent callback.
851 */
852 POINTER_INVALIDATE(&odn->dn_objset);
853
854 /*
855 * Satisfy the destructor.
856 */
857 for (i = 0; i < TXG_SIZE; i++) {
858 list_create(&odn->dn_dirty_records[i],
859 sizeof (dbuf_dirty_record_t),
860 offsetof(dbuf_dirty_record_t, dr_dirty_node));
861 odn->dn_free_ranges[i] = NULL;
862 odn->dn_next_nlevels[i] = 0;
863 odn->dn_next_indblkshift[i] = 0;
864 odn->dn_next_bonustype[i] = 0;
865 odn->dn_rm_spillblk[i] = 0;
866 odn->dn_next_bonuslen[i] = 0;
867 odn->dn_next_blksz[i] = 0;
868 }
869 odn->dn_allocated_txg = 0;
870 odn->dn_free_txg = 0;
871 odn->dn_assigned_txg = 0;
872 odn->dn_dirty_txg = 0;
873 odn->dn_dirtyctx = 0;
874 odn->dn_dirtyctx_firstset = NULL;
875 odn->dn_have_spill = B_FALSE;
876 odn->dn_zio = NULL;
877 odn->dn_oldused = 0;
878 odn->dn_oldflags = 0;
879 odn->dn_olduid = 0;
880 odn->dn_oldgid = 0;
881 odn->dn_oldprojid = ZFS_DEFAULT_PROJID;
882 odn->dn_newuid = 0;
883 odn->dn_newgid = 0;
884 odn->dn_newprojid = ZFS_DEFAULT_PROJID;
885 odn->dn_id_flags = 0;
886
887 /*
888 * Mark the dnode.
889 */
890 ndn->dn_moved = 1;
891 odn->dn_moved = (uint8_t)-1;
892 }
893
894 /*ARGSUSED*/
895 static kmem_cbrc_t
896 dnode_move(void *buf, void *newbuf, size_t size, void *arg)
897 {
898 dnode_t *odn = buf, *ndn = newbuf;
899 objset_t *os;
900 int64_t refcount;
901 uint32_t dbufs;
902
903 /*
904 * The dnode is on the objset's list of known dnodes if the objset
905 * pointer is valid. We set the low bit of the objset pointer when
906 * freeing the dnode to invalidate it, and the memory patterns written
907 * by kmem (baddcafe and deadbeef) set at least one of the two low bits.
908 * A newly created dnode sets the objset pointer last of all to indicate
909 * that the dnode is known and in a valid state to be moved by this
910 * function.
911 */
912 os = odn->dn_objset;
913 if (!POINTER_IS_VALID(os)) {
914 DNODE_STAT_BUMP(dnode_move_invalid);
915 return (KMEM_CBRC_DONT_KNOW);
916 }
917
918 /*
919 * Ensure that the objset does not go away during the move.
920 */
921 rw_enter(&os_lock, RW_WRITER);
922 if (os != odn->dn_objset) {
923 rw_exit(&os_lock);
924 DNODE_STAT_BUMP(dnode_move_recheck1);
925 return (KMEM_CBRC_DONT_KNOW);
926 }
927
928 /*
929 * If the dnode is still valid, then so is the objset. We know that no
930 * valid objset can be freed while we hold os_lock, so we can safely
931 * ensure that the objset remains in use.
932 */
933 mutex_enter(&os->os_lock);
934
935 /*
936 * Recheck the objset pointer in case the dnode was removed just before
937 * acquiring the lock.
938 */
939 if (os != odn->dn_objset) {
940 mutex_exit(&os->os_lock);
941 rw_exit(&os_lock);
942 DNODE_STAT_BUMP(dnode_move_recheck2);
943 return (KMEM_CBRC_DONT_KNOW);
944 }
945
946 /*
947 * At this point we know that as long as we hold os->os_lock, the dnode
948 * cannot be freed and fields within the dnode can be safely accessed.
949 * The objset listing this dnode cannot go away as long as this dnode is
950 * on its list.
951 */
952 rw_exit(&os_lock);
953 if (DMU_OBJECT_IS_SPECIAL(odn->dn_object)) {
954 mutex_exit(&os->os_lock);
955 DNODE_STAT_BUMP(dnode_move_special);
956 return (KMEM_CBRC_NO);
957 }
958 ASSERT(odn->dn_dbuf != NULL); /* only "special" dnodes have no parent */
959
960 /*
961 * Lock the dnode handle to prevent the dnode from obtaining any new
962 * holds. This also prevents the descendant dbufs and the bonus dbuf
963 * from accessing the dnode, so that we can discount their holds. The
964 * handle is safe to access because we know that while the dnode cannot
965 * go away, neither can its handle. Once we hold dnh_zrlock, we can
966 * safely move any dnode referenced only by dbufs.
967 */
968 if (!zrl_tryenter(&odn->dn_handle->dnh_zrlock)) {
969 mutex_exit(&os->os_lock);
970 DNODE_STAT_BUMP(dnode_move_handle);
971 return (KMEM_CBRC_LATER);
972 }
973
974 /*
975 * Ensure a consistent view of the dnode's holds and the dnode's dbufs.
976 * We need to guarantee that there is a hold for every dbuf in order to
977 * determine whether the dnode is actively referenced. Falsely matching
978 * a dbuf to an active hold would lead to an unsafe move. It's possible
979 * that a thread already having an active dnode hold is about to add a
980 * dbuf, and we can't compare hold and dbuf counts while the add is in
981 * progress.
982 */
983 if (!rw_tryenter(&odn->dn_struct_rwlock, RW_WRITER)) {
984 zrl_exit(&odn->dn_handle->dnh_zrlock);
985 mutex_exit(&os->os_lock);
986 DNODE_STAT_BUMP(dnode_move_rwlock);
987 return (KMEM_CBRC_LATER);
988 }
989
990 /*
991 * A dbuf may be removed (evicted) without an active dnode hold. In that
992 * case, the dbuf count is decremented under the handle lock before the
993 * dbuf's hold is released. This order ensures that if we count the hold
994 * after the dbuf is removed but before its hold is released, we will
995 * treat the unmatched hold as active and exit safely. If we count the
996 * hold before the dbuf is removed, the hold is discounted, and the
997 * removal is blocked until the move completes.
998 */
999 refcount = zfs_refcount_count(&odn->dn_holds);
1000 ASSERT(refcount >= 0);
1001 dbufs = odn->dn_dbufs_count;
1002
1003 /* We can't have more dbufs than dnode holds. */
1004 ASSERT3U(dbufs, <=, refcount);
1005 DTRACE_PROBE3(dnode__move, dnode_t *, odn, int64_t, refcount,
1006 uint32_t, dbufs);
1007
1008 if (refcount > dbufs) {
1009 rw_exit(&odn->dn_struct_rwlock);
1010 zrl_exit(&odn->dn_handle->dnh_zrlock);
1011 mutex_exit(&os->os_lock);
1012 DNODE_STAT_BUMP(dnode_move_active);
1013 return (KMEM_CBRC_LATER);
1014 }
1015
1016 rw_exit(&odn->dn_struct_rwlock);
1017
1018 /*
1019 * At this point we know that anyone with a hold on the dnode is not
1020 * actively referencing it. The dnode is known and in a valid state to
1021 * move. We're holding the locks needed to execute the critical section.
1022 */
1023 dnode_move_impl(odn, ndn);
1024
1025 list_link_replace(&odn->dn_link, &ndn->dn_link);
1026 /* If the dnode was safe to move, the refcount cannot have changed. */
1027 ASSERT(refcount == zfs_refcount_count(&ndn->dn_holds));
1028 ASSERT(dbufs == ndn->dn_dbufs_count);
1029 zrl_exit(&ndn->dn_handle->dnh_zrlock); /* handle has moved */
1030 mutex_exit(&os->os_lock);
1031
1032 return (KMEM_CBRC_YES);
1033 }
1034 #endif /* _KERNEL */
1035
1036 static void
1037 dnode_slots_hold(dnode_children_t *children, int idx, int slots)
1038 {
1039 ASSERT3S(idx + slots, <=, DNODES_PER_BLOCK);
1040
1041 for (int i = idx; i < idx + slots; i++) {
1042 dnode_handle_t *dnh = &children->dnc_children[i];
1043 zrl_add(&dnh->dnh_zrlock);
1044 }
1045 }
1046
1047 static void
1048 dnode_slots_rele(dnode_children_t *children, int idx, int slots)
1049 {
1050 ASSERT3S(idx + slots, <=, DNODES_PER_BLOCK);
1051
1052 for (int i = idx; i < idx + slots; i++) {
1053 dnode_handle_t *dnh = &children->dnc_children[i];
1054
1055 if (zrl_is_locked(&dnh->dnh_zrlock))
1056 zrl_exit(&dnh->dnh_zrlock);
1057 else
1058 zrl_remove(&dnh->dnh_zrlock);
1059 }
1060 }
1061
1062 static int
1063 dnode_slots_tryenter(dnode_children_t *children, int idx, int slots)
1064 {
1065 ASSERT3S(idx + slots, <=, DNODES_PER_BLOCK);
1066
1067 for (int i = idx; i < idx + slots; i++) {
1068 dnode_handle_t *dnh = &children->dnc_children[i];
1069
1070 if (!zrl_tryenter(&dnh->dnh_zrlock)) {
1071 for (int j = idx; j < i; j++) {
1072 dnh = &children->dnc_children[j];
1073 zrl_exit(&dnh->dnh_zrlock);
1074 }
1075
1076 return (0);
1077 }
1078 }
1079
1080 return (1);
1081 }
1082
1083 static void
1084 dnode_set_slots(dnode_children_t *children, int idx, int slots, void *ptr)
1085 {
1086 ASSERT3S(idx + slots, <=, DNODES_PER_BLOCK);
1087
1088 for (int i = idx; i < idx + slots; i++) {
1089 dnode_handle_t *dnh = &children->dnc_children[i];
1090 dnh->dnh_dnode = ptr;
1091 }
1092 }
1093
1094 static boolean_t
1095 dnode_check_slots_free(dnode_children_t *children, int idx, int slots)
1096 {
1097 ASSERT3S(idx + slots, <=, DNODES_PER_BLOCK);
1098
1099 /*
1100 * If all dnode slots are either already free or
1101 * evictable return B_TRUE.
1102 */
1103 for (int i = idx; i < idx + slots; i++) {
1104 dnode_handle_t *dnh = &children->dnc_children[i];
1105 dnode_t *dn = dnh->dnh_dnode;
1106
1107 if (dn == DN_SLOT_FREE) {
1108 continue;
1109 } else if (DN_SLOT_IS_PTR(dn)) {
1110 mutex_enter(&dn->dn_mtx);
1111 boolean_t can_free = (dn->dn_type == DMU_OT_NONE &&
1112 zfs_refcount_is_zero(&dn->dn_holds) &&
1113 !DNODE_IS_DIRTY(dn));
1114 mutex_exit(&dn->dn_mtx);
1115
1116 if (!can_free)
1117 return (B_FALSE);
1118 else
1119 continue;
1120 } else {
1121 return (B_FALSE);
1122 }
1123 }
1124
1125 return (B_TRUE);
1126 }
1127
1128 static void
1129 dnode_reclaim_slots(dnode_children_t *children, int idx, int slots)
1130 {
1131 ASSERT3S(idx + slots, <=, DNODES_PER_BLOCK);
1132
1133 for (int i = idx; i < idx + slots; i++) {
1134 dnode_handle_t *dnh = &children->dnc_children[i];
1135
1136 ASSERT(zrl_is_locked(&dnh->dnh_zrlock));
1137
1138 if (DN_SLOT_IS_PTR(dnh->dnh_dnode)) {
1139 ASSERT3S(dnh->dnh_dnode->dn_type, ==, DMU_OT_NONE);
1140 dnode_destroy(dnh->dnh_dnode);
1141 dnh->dnh_dnode = DN_SLOT_FREE;
1142 }
1143 }
1144 }
1145
1146 void
1147 dnode_free_interior_slots(dnode_t *dn)
1148 {
1149 dnode_children_t *children = dmu_buf_get_user(&dn->dn_dbuf->db);
1150 int epb = dn->dn_dbuf->db.db_size >> DNODE_SHIFT;
1151 int idx = (dn->dn_object & (epb - 1)) + 1;
1152 int slots = dn->dn_num_slots - 1;
1153
1154 if (slots == 0)
1155 return;
1156
1157 ASSERT3S(idx + slots, <=, DNODES_PER_BLOCK);
1158
1159 while (!dnode_slots_tryenter(children, idx, slots)) {
1160 DNODE_STAT_BUMP(dnode_free_interior_lock_retry);
1161 cond_resched();
1162 }
1163
1164 dnode_set_slots(children, idx, slots, DN_SLOT_FREE);
1165 dnode_slots_rele(children, idx, slots);
1166 }
1167
1168 void
1169 dnode_special_close(dnode_handle_t *dnh)
1170 {
1171 dnode_t *dn = dnh->dnh_dnode;
1172
1173 /*
1174 * Wait for final references to the dnode to clear. This can
1175 * only happen if the arc is asynchronously evicting state that
1176 * has a hold on this dnode while we are trying to evict this
1177 * dnode.
1178 */
1179 while (zfs_refcount_count(&dn->dn_holds) > 0)
1180 delay(1);
1181 ASSERT(dn->dn_dbuf == NULL ||
1182 dmu_buf_get_user(&dn->dn_dbuf->db) == NULL);
1183 zrl_add(&dnh->dnh_zrlock);
1184 dnode_destroy(dn); /* implicit zrl_remove() */
1185 zrl_destroy(&dnh->dnh_zrlock);
1186 dnh->dnh_dnode = NULL;
1187 }
1188
1189 void
1190 dnode_special_open(objset_t *os, dnode_phys_t *dnp, uint64_t object,
1191 dnode_handle_t *dnh)
1192 {
1193 dnode_t *dn;
1194
1195 zrl_init(&dnh->dnh_zrlock);
1196 zrl_tryenter(&dnh->dnh_zrlock);
1197
1198 dn = dnode_create(os, dnp, NULL, object, dnh);
1199 DNODE_VERIFY(dn);
1200
1201 zrl_exit(&dnh->dnh_zrlock);
1202 }
1203
1204 static void
1205 dnode_buf_evict_async(void *dbu)
1206 {
1207 dnode_children_t *dnc = dbu;
1208
1209 DNODE_STAT_BUMP(dnode_buf_evict);
1210
1211 for (int i = 0; i < dnc->dnc_count; i++) {
1212 dnode_handle_t *dnh = &dnc->dnc_children[i];
1213 dnode_t *dn;
1214
1215 /*
1216 * The dnode handle lock guards against the dnode moving to
1217 * another valid address, so there is no need here to guard
1218 * against changes to or from NULL.
1219 */
1220 if (!DN_SLOT_IS_PTR(dnh->dnh_dnode)) {
1221 zrl_destroy(&dnh->dnh_zrlock);
1222 dnh->dnh_dnode = DN_SLOT_UNINIT;
1223 continue;
1224 }
1225
1226 zrl_add(&dnh->dnh_zrlock);
1227 dn = dnh->dnh_dnode;
1228 /*
1229 * If there are holds on this dnode, then there should
1230 * be holds on the dnode's containing dbuf as well; thus
1231 * it wouldn't be eligible for eviction and this function
1232 * would not have been called.
1233 */
1234 ASSERT(zfs_refcount_is_zero(&dn->dn_holds));
1235 ASSERT(zfs_refcount_is_zero(&dn->dn_tx_holds));
1236
1237 dnode_destroy(dn); /* implicit zrl_remove() for first slot */
1238 zrl_destroy(&dnh->dnh_zrlock);
1239 dnh->dnh_dnode = DN_SLOT_UNINIT;
1240 }
1241 kmem_free(dnc, sizeof (dnode_children_t) +
1242 dnc->dnc_count * sizeof (dnode_handle_t));
1243 }
1244
1245 /*
1246 * When the DNODE_MUST_BE_FREE flag is set, the "slots" parameter is used
1247 * to ensure the hole at the specified object offset is large enough to
1248 * hold the dnode being created. The slots parameter is also used to ensure
1249 * a dnode does not span multiple dnode blocks. In both of these cases, if
1250 * a failure occurs, ENOSPC is returned. Keep in mind, these failure cases
1251 * are only possible when using DNODE_MUST_BE_FREE.
1252 *
1253 * If the DNODE_MUST_BE_ALLOCATED flag is set, "slots" must be 0.
1254 * dnode_hold_impl() will check if the requested dnode is already consumed
1255 * as an extra dnode slot by an large dnode, in which case it returns
1256 * ENOENT.
1257 *
1258 * errors:
1259 * EINVAL - Invalid object number or flags.
1260 * ENOSPC - Hole too small to fulfill "slots" request (DNODE_MUST_BE_FREE)
1261 * EEXIST - Refers to an allocated dnode (DNODE_MUST_BE_FREE)
1262 * - Refers to a freeing dnode (DNODE_MUST_BE_FREE)
1263 * - Refers to an interior dnode slot (DNODE_MUST_BE_ALLOCATED)
1264 * ENOENT - The requested dnode is not allocated (DNODE_MUST_BE_ALLOCATED)
1265 * - The requested dnode is being freed (DNODE_MUST_BE_ALLOCATED)
1266 * EIO - I/O error when reading the meta dnode dbuf.
1267 *
1268 * succeeds even for free dnodes.
1269 */
1270 int
1271 dnode_hold_impl(objset_t *os, uint64_t object, int flag, int slots,
1272 void *tag, dnode_t **dnp)
1273 {
1274 int epb, idx, err;
1275 int drop_struct_lock = FALSE;
1276 int type;
1277 uint64_t blk;
1278 dnode_t *mdn, *dn;
1279 dmu_buf_impl_t *db;
1280 dnode_children_t *dnc;
1281 dnode_phys_t *dn_block;
1282 dnode_handle_t *dnh;
1283
1284 ASSERT(!(flag & DNODE_MUST_BE_ALLOCATED) || (slots == 0));
1285 ASSERT(!(flag & DNODE_MUST_BE_FREE) || (slots > 0));
1286
1287 /*
1288 * If you are holding the spa config lock as writer, you shouldn't
1289 * be asking the DMU to do *anything* unless it's the root pool
1290 * which may require us to read from the root filesystem while
1291 * holding some (not all) of the locks as writer.
1292 */
1293 ASSERT(spa_config_held(os->os_spa, SCL_ALL, RW_WRITER) == 0 ||
1294 (spa_is_root(os->os_spa) &&
1295 spa_config_held(os->os_spa, SCL_STATE, RW_WRITER)));
1296
1297 ASSERT((flag & DNODE_MUST_BE_ALLOCATED) || (flag & DNODE_MUST_BE_FREE));
1298
1299 if (object == DMU_USERUSED_OBJECT || object == DMU_GROUPUSED_OBJECT ||
1300 object == DMU_PROJECTUSED_OBJECT) {
1301 if (object == DMU_USERUSED_OBJECT)
1302 dn = DMU_USERUSED_DNODE(os);
1303 else if (object == DMU_GROUPUSED_OBJECT)
1304 dn = DMU_GROUPUSED_DNODE(os);
1305 else
1306 dn = DMU_PROJECTUSED_DNODE(os);
1307 if (dn == NULL)
1308 return (SET_ERROR(ENOENT));
1309 type = dn->dn_type;
1310 if ((flag & DNODE_MUST_BE_ALLOCATED) && type == DMU_OT_NONE)
1311 return (SET_ERROR(ENOENT));
1312 if ((flag & DNODE_MUST_BE_FREE) && type != DMU_OT_NONE)
1313 return (SET_ERROR(EEXIST));
1314 DNODE_VERIFY(dn);
1315 (void) zfs_refcount_add(&dn->dn_holds, tag);
1316 *dnp = dn;
1317 return (0);
1318 }
1319
1320 if (object == 0 || object >= DN_MAX_OBJECT)
1321 return (SET_ERROR(EINVAL));
1322
1323 mdn = DMU_META_DNODE(os);
1324 ASSERT(mdn->dn_object == DMU_META_DNODE_OBJECT);
1325
1326 DNODE_VERIFY(mdn);
1327
1328 if (!RW_WRITE_HELD(&mdn->dn_struct_rwlock)) {
1329 rw_enter(&mdn->dn_struct_rwlock, RW_READER);
1330 drop_struct_lock = TRUE;
1331 }
1332
1333 blk = dbuf_whichblock(mdn, 0, object * sizeof (dnode_phys_t));
1334
1335 db = dbuf_hold(mdn, blk, FTAG);
1336 if (drop_struct_lock)
1337 rw_exit(&mdn->dn_struct_rwlock);
1338 if (db == NULL) {
1339 DNODE_STAT_BUMP(dnode_hold_dbuf_hold);
1340 return (SET_ERROR(EIO));
1341 }
1342
1343 /*
1344 * We do not need to decrypt to read the dnode so it doesn't matter
1345 * if we get the encrypted or decrypted version.
1346 */
1347 err = dbuf_read(db, NULL, DB_RF_CANFAIL | DB_RF_NO_DECRYPT);
1348 if (err) {
1349 DNODE_STAT_BUMP(dnode_hold_dbuf_read);
1350 dbuf_rele(db, FTAG);
1351 return (err);
1352 }
1353
1354 ASSERT3U(db->db.db_size, >=, 1<<DNODE_SHIFT);
1355 epb = db->db.db_size >> DNODE_SHIFT;
1356
1357 idx = object & (epb - 1);
1358 dn_block = (dnode_phys_t *)db->db.db_data;
1359
1360 ASSERT(DB_DNODE(db)->dn_type == DMU_OT_DNODE);
1361 dnc = dmu_buf_get_user(&db->db);
1362 dnh = NULL;
1363 if (dnc == NULL) {
1364 dnode_children_t *winner;
1365 int skip = 0;
1366
1367 dnc = kmem_zalloc(sizeof (dnode_children_t) +
1368 epb * sizeof (dnode_handle_t), KM_SLEEP);
1369 dnc->dnc_count = epb;
1370 dnh = &dnc->dnc_children[0];
1371
1372 /* Initialize dnode slot status from dnode_phys_t */
1373 for (int i = 0; i < epb; i++) {
1374 zrl_init(&dnh[i].dnh_zrlock);
1375
1376 if (skip) {
1377 skip--;
1378 continue;
1379 }
1380
1381 if (dn_block[i].dn_type != DMU_OT_NONE) {
1382 int interior = dn_block[i].dn_extra_slots;
1383
1384 dnode_set_slots(dnc, i, 1, DN_SLOT_ALLOCATED);
1385 dnode_set_slots(dnc, i + 1, interior,
1386 DN_SLOT_INTERIOR);
1387 skip = interior;
1388 } else {
1389 dnh[i].dnh_dnode = DN_SLOT_FREE;
1390 skip = 0;
1391 }
1392 }
1393
1394 dmu_buf_init_user(&dnc->dnc_dbu, NULL,
1395 dnode_buf_evict_async, NULL);
1396 winner = dmu_buf_set_user(&db->db, &dnc->dnc_dbu);
1397 if (winner != NULL) {
1398
1399 for (int i = 0; i < epb; i++)
1400 zrl_destroy(&dnh[i].dnh_zrlock);
1401
1402 kmem_free(dnc, sizeof (dnode_children_t) +
1403 epb * sizeof (dnode_handle_t));
1404 dnc = winner;
1405 }
1406 }
1407
1408 ASSERT(dnc->dnc_count == epb);
1409
1410 if (flag & DNODE_MUST_BE_ALLOCATED) {
1411 slots = 1;
1412
1413 dnode_slots_hold(dnc, idx, slots);
1414 dnh = &dnc->dnc_children[idx];
1415
1416 if (DN_SLOT_IS_PTR(dnh->dnh_dnode)) {
1417 dn = dnh->dnh_dnode;
1418 } else if (dnh->dnh_dnode == DN_SLOT_INTERIOR) {
1419 DNODE_STAT_BUMP(dnode_hold_alloc_interior);
1420 dnode_slots_rele(dnc, idx, slots);
1421 dbuf_rele(db, FTAG);
1422 return (SET_ERROR(EEXIST));
1423 } else if (dnh->dnh_dnode != DN_SLOT_ALLOCATED) {
1424 DNODE_STAT_BUMP(dnode_hold_alloc_misses);
1425 dnode_slots_rele(dnc, idx, slots);
1426 dbuf_rele(db, FTAG);
1427 return (SET_ERROR(ENOENT));
1428 } else {
1429 dnode_slots_rele(dnc, idx, slots);
1430 while (!dnode_slots_tryenter(dnc, idx, slots)) {
1431 DNODE_STAT_BUMP(dnode_hold_alloc_lock_retry);
1432 cond_resched();
1433 }
1434
1435 /*
1436 * Someone else won the race and called dnode_create()
1437 * after we checked DN_SLOT_IS_PTR() above but before
1438 * we acquired the lock.
1439 */
1440 if (DN_SLOT_IS_PTR(dnh->dnh_dnode)) {
1441 DNODE_STAT_BUMP(dnode_hold_alloc_lock_misses);
1442 dn = dnh->dnh_dnode;
1443 } else {
1444 dn = dnode_create(os, dn_block + idx, db,
1445 object, dnh);
1446 }
1447 }
1448
1449 mutex_enter(&dn->dn_mtx);
1450 if (dn->dn_type == DMU_OT_NONE || dn->dn_free_txg != 0) {
1451 DNODE_STAT_BUMP(dnode_hold_alloc_type_none);
1452 mutex_exit(&dn->dn_mtx);
1453 dnode_slots_rele(dnc, idx, slots);
1454 dbuf_rele(db, FTAG);
1455 return (SET_ERROR(ENOENT));
1456 }
1457
1458 DNODE_STAT_BUMP(dnode_hold_alloc_hits);
1459 } else if (flag & DNODE_MUST_BE_FREE) {
1460
1461 if (idx + slots - 1 >= DNODES_PER_BLOCK) {
1462 DNODE_STAT_BUMP(dnode_hold_free_overflow);
1463 dbuf_rele(db, FTAG);
1464 return (SET_ERROR(ENOSPC));
1465 }
1466
1467 dnode_slots_hold(dnc, idx, slots);
1468
1469 if (!dnode_check_slots_free(dnc, idx, slots)) {
1470 DNODE_STAT_BUMP(dnode_hold_free_misses);
1471 dnode_slots_rele(dnc, idx, slots);
1472 dbuf_rele(db, FTAG);
1473 return (SET_ERROR(ENOSPC));
1474 }
1475
1476 dnode_slots_rele(dnc, idx, slots);
1477 while (!dnode_slots_tryenter(dnc, idx, slots)) {
1478 DNODE_STAT_BUMP(dnode_hold_free_lock_retry);
1479 cond_resched();
1480 }
1481
1482 if (!dnode_check_slots_free(dnc, idx, slots)) {
1483 DNODE_STAT_BUMP(dnode_hold_free_lock_misses);
1484 dnode_slots_rele(dnc, idx, slots);
1485 dbuf_rele(db, FTAG);
1486 return (SET_ERROR(ENOSPC));
1487 }
1488
1489 /*
1490 * Allocated but otherwise free dnodes which would
1491 * be in the interior of a multi-slot dnodes need
1492 * to be freed. Single slot dnodes can be safely
1493 * re-purposed as a performance optimization.
1494 */
1495 if (slots > 1)
1496 dnode_reclaim_slots(dnc, idx + 1, slots - 1);
1497
1498 dnh = &dnc->dnc_children[idx];
1499 if (DN_SLOT_IS_PTR(dnh->dnh_dnode)) {
1500 dn = dnh->dnh_dnode;
1501 } else {
1502 dn = dnode_create(os, dn_block + idx, db,
1503 object, dnh);
1504 }
1505
1506 mutex_enter(&dn->dn_mtx);
1507 if (!zfs_refcount_is_zero(&dn->dn_holds) || dn->dn_free_txg) {
1508 DNODE_STAT_BUMP(dnode_hold_free_refcount);
1509 mutex_exit(&dn->dn_mtx);
1510 dnode_slots_rele(dnc, idx, slots);
1511 dbuf_rele(db, FTAG);
1512 return (SET_ERROR(EEXIST));
1513 }
1514
1515 dnode_set_slots(dnc, idx + 1, slots - 1, DN_SLOT_INTERIOR);
1516 DNODE_STAT_BUMP(dnode_hold_free_hits);
1517 } else {
1518 dbuf_rele(db, FTAG);
1519 return (SET_ERROR(EINVAL));
1520 }
1521
1522 if (dn->dn_free_txg) {
1523 DNODE_STAT_BUMP(dnode_hold_free_txg);
1524 type = dn->dn_type;
1525 mutex_exit(&dn->dn_mtx);
1526 dnode_slots_rele(dnc, idx, slots);
1527 dbuf_rele(db, FTAG);
1528 return (SET_ERROR((flag & DNODE_MUST_BE_ALLOCATED) ?
1529 ENOENT : EEXIST));
1530 }
1531
1532 if (zfs_refcount_add(&dn->dn_holds, tag) == 1)
1533 dbuf_add_ref(db, dnh);
1534
1535 mutex_exit(&dn->dn_mtx);
1536
1537 /* Now we can rely on the hold to prevent the dnode from moving. */
1538 dnode_slots_rele(dnc, idx, slots);
1539
1540 DNODE_VERIFY(dn);
1541 ASSERT3P(dn->dn_dbuf, ==, db);
1542 ASSERT3U(dn->dn_object, ==, object);
1543 dbuf_rele(db, FTAG);
1544
1545 *dnp = dn;
1546 return (0);
1547 }
1548
1549 /*
1550 * Return held dnode if the object is allocated, NULL if not.
1551 */
1552 int
1553 dnode_hold(objset_t *os, uint64_t object, void *tag, dnode_t **dnp)
1554 {
1555 return (dnode_hold_impl(os, object, DNODE_MUST_BE_ALLOCATED, 0, tag,
1556 dnp));
1557 }
1558
1559 /*
1560 * Can only add a reference if there is already at least one
1561 * reference on the dnode. Returns FALSE if unable to add a
1562 * new reference.
1563 */
1564 boolean_t
1565 dnode_add_ref(dnode_t *dn, void *tag)
1566 {
1567 mutex_enter(&dn->dn_mtx);
1568 if (zfs_refcount_is_zero(&dn->dn_holds)) {
1569 mutex_exit(&dn->dn_mtx);
1570 return (FALSE);
1571 }
1572 VERIFY(1 < zfs_refcount_add(&dn->dn_holds, tag));
1573 mutex_exit(&dn->dn_mtx);
1574 return (TRUE);
1575 }
1576
1577 void
1578 dnode_rele(dnode_t *dn, void *tag)
1579 {
1580 mutex_enter(&dn->dn_mtx);
1581 dnode_rele_and_unlock(dn, tag, B_FALSE);
1582 }
1583
1584 void
1585 dnode_rele_and_unlock(dnode_t *dn, void *tag, boolean_t evicting)
1586 {
1587 uint64_t refs;
1588 /* Get while the hold prevents the dnode from moving. */
1589 dmu_buf_impl_t *db = dn->dn_dbuf;
1590 dnode_handle_t *dnh = dn->dn_handle;
1591
1592 refs = zfs_refcount_remove(&dn->dn_holds, tag);
1593 mutex_exit(&dn->dn_mtx);
1594
1595 /*
1596 * It's unsafe to release the last hold on a dnode by dnode_rele() or
1597 * indirectly by dbuf_rele() while relying on the dnode handle to
1598 * prevent the dnode from moving, since releasing the last hold could
1599 * result in the dnode's parent dbuf evicting its dnode handles. For
1600 * that reason anyone calling dnode_rele() or dbuf_rele() without some
1601 * other direct or indirect hold on the dnode must first drop the dnode
1602 * handle.
1603 */
1604 ASSERT(refs > 0 || dnh->dnh_zrlock.zr_owner != curthread);
1605
1606 /* NOTE: the DNODE_DNODE does not have a dn_dbuf */
1607 if (refs == 0 && db != NULL) {
1608 /*
1609 * Another thread could add a hold to the dnode handle in
1610 * dnode_hold_impl() while holding the parent dbuf. Since the
1611 * hold on the parent dbuf prevents the handle from being
1612 * destroyed, the hold on the handle is OK. We can't yet assert
1613 * that the handle has zero references, but that will be
1614 * asserted anyway when the handle gets destroyed.
1615 */
1616 mutex_enter(&db->db_mtx);
1617 dbuf_rele_and_unlock(db, dnh, evicting);
1618 }
1619 }
1620
1621 void
1622 dnode_setdirty(dnode_t *dn, dmu_tx_t *tx)
1623 {
1624 objset_t *os = dn->dn_objset;
1625 uint64_t txg = tx->tx_txg;
1626
1627 if (DMU_OBJECT_IS_SPECIAL(dn->dn_object)) {
1628 dsl_dataset_dirty(os->os_dsl_dataset, tx);
1629 return;
1630 }
1631
1632 DNODE_VERIFY(dn);
1633
1634 #ifdef ZFS_DEBUG
1635 mutex_enter(&dn->dn_mtx);
1636 ASSERT(dn->dn_phys->dn_type || dn->dn_allocated_txg);
1637 ASSERT(dn->dn_free_txg == 0 || dn->dn_free_txg >= txg);
1638 mutex_exit(&dn->dn_mtx);
1639 #endif
1640
1641 /*
1642 * Determine old uid/gid when necessary
1643 */
1644 dmu_objset_userquota_get_ids(dn, B_TRUE, tx);
1645
1646 multilist_t *dirtylist = os->os_dirty_dnodes[txg & TXG_MASK];
1647 multilist_sublist_t *mls = multilist_sublist_lock_obj(dirtylist, dn);
1648
1649 /*
1650 * If we are already marked dirty, we're done.
1651 */
1652 if (multilist_link_active(&dn->dn_dirty_link[txg & TXG_MASK])) {
1653 multilist_sublist_unlock(mls);
1654 return;
1655 }
1656
1657 ASSERT(!zfs_refcount_is_zero(&dn->dn_holds) ||
1658 !avl_is_empty(&dn->dn_dbufs));
1659 ASSERT(dn->dn_datablksz != 0);
1660 ASSERT0(dn->dn_next_bonuslen[txg & TXG_MASK]);
1661 ASSERT0(dn->dn_next_blksz[txg & TXG_MASK]);
1662 ASSERT0(dn->dn_next_bonustype[txg & TXG_MASK]);
1663
1664 dprintf_ds(os->os_dsl_dataset, "obj=%llu txg=%llu\n",
1665 dn->dn_object, txg);
1666
1667 multilist_sublist_insert_head(mls, dn);
1668
1669 multilist_sublist_unlock(mls);
1670
1671 /*
1672 * The dnode maintains a hold on its containing dbuf as
1673 * long as there are holds on it. Each instantiated child
1674 * dbuf maintains a hold on the dnode. When the last child
1675 * drops its hold, the dnode will drop its hold on the
1676 * containing dbuf. We add a "dirty hold" here so that the
1677 * dnode will hang around after we finish processing its
1678 * children.
1679 */
1680 VERIFY(dnode_add_ref(dn, (void *)(uintptr_t)tx->tx_txg));
1681
1682 (void) dbuf_dirty(dn->dn_dbuf, tx);
1683
1684 dsl_dataset_dirty(os->os_dsl_dataset, tx);
1685 }
1686
1687 void
1688 dnode_free(dnode_t *dn, dmu_tx_t *tx)
1689 {
1690 mutex_enter(&dn->dn_mtx);
1691 if (dn->dn_type == DMU_OT_NONE || dn->dn_free_txg) {
1692 mutex_exit(&dn->dn_mtx);
1693 return;
1694 }
1695 dn->dn_free_txg = tx->tx_txg;
1696 mutex_exit(&dn->dn_mtx);
1697
1698 dnode_setdirty(dn, tx);
1699 }
1700
1701 /*
1702 * Try to change the block size for the indicated dnode. This can only
1703 * succeed if there are no blocks allocated or dirty beyond first block
1704 */
1705 int
1706 dnode_set_blksz(dnode_t *dn, uint64_t size, int ibs, dmu_tx_t *tx)
1707 {
1708 dmu_buf_impl_t *db;
1709 int err;
1710
1711 ASSERT3U(size, <=, spa_maxblocksize(dmu_objset_spa(dn->dn_objset)));
1712 if (size == 0)
1713 size = SPA_MINBLOCKSIZE;
1714 else
1715 size = P2ROUNDUP(size, SPA_MINBLOCKSIZE);
1716
1717 if (ibs == dn->dn_indblkshift)
1718 ibs = 0;
1719
1720 if (size >> SPA_MINBLOCKSHIFT == dn->dn_datablkszsec && ibs == 0)
1721 return (0);
1722
1723 rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
1724
1725 /* Check for any allocated blocks beyond the first */
1726 if (dn->dn_maxblkid != 0)
1727 goto fail;
1728
1729 mutex_enter(&dn->dn_dbufs_mtx);
1730 for (db = avl_first(&dn->dn_dbufs); db != NULL;
1731 db = AVL_NEXT(&dn->dn_dbufs, db)) {
1732 if (db->db_blkid != 0 && db->db_blkid != DMU_BONUS_BLKID &&
1733 db->db_blkid != DMU_SPILL_BLKID) {
1734 mutex_exit(&dn->dn_dbufs_mtx);
1735 goto fail;
1736 }
1737 }
1738 mutex_exit(&dn->dn_dbufs_mtx);
1739
1740 if (ibs && dn->dn_nlevels != 1)
1741 goto fail;
1742
1743 /* resize the old block */
1744 err = dbuf_hold_impl(dn, 0, 0, TRUE, FALSE, FTAG, &db);
1745 if (err == 0)
1746 dbuf_new_size(db, size, tx);
1747 else if (err != ENOENT)
1748 goto fail;
1749
1750 dnode_setdblksz(dn, size);
1751 dnode_setdirty(dn, tx);
1752 dn->dn_next_blksz[tx->tx_txg&TXG_MASK] = size;
1753 if (ibs) {
1754 dn->dn_indblkshift = ibs;
1755 dn->dn_next_indblkshift[tx->tx_txg&TXG_MASK] = ibs;
1756 }
1757 /* rele after we have fixed the blocksize in the dnode */
1758 if (db)
1759 dbuf_rele(db, FTAG);
1760
1761 rw_exit(&dn->dn_struct_rwlock);
1762 return (0);
1763
1764 fail:
1765 rw_exit(&dn->dn_struct_rwlock);
1766 return (SET_ERROR(ENOTSUP));
1767 }
1768
1769 static void
1770 dnode_set_nlevels_impl(dnode_t *dn, int new_nlevels, dmu_tx_t *tx)
1771 {
1772 uint64_t txgoff = tx->tx_txg & TXG_MASK;
1773 int old_nlevels = dn->dn_nlevels;
1774 dmu_buf_impl_t *db;
1775 list_t *list;
1776 dbuf_dirty_record_t *new, *dr, *dr_next;
1777
1778 ASSERT(RW_WRITE_HELD(&dn->dn_struct_rwlock));
1779
1780 dn->dn_nlevels = new_nlevels;
1781
1782 ASSERT3U(new_nlevels, >, dn->dn_next_nlevels[txgoff]);
1783 dn->dn_next_nlevels[txgoff] = new_nlevels;
1784
1785 /* dirty the left indirects */
1786 db = dbuf_hold_level(dn, old_nlevels, 0, FTAG);
1787 ASSERT(db != NULL);
1788 new = dbuf_dirty(db, tx);
1789 dbuf_rele(db, FTAG);
1790
1791 /* transfer the dirty records to the new indirect */
1792 mutex_enter(&dn->dn_mtx);
1793 mutex_enter(&new->dt.di.dr_mtx);
1794 list = &dn->dn_dirty_records[txgoff];
1795 for (dr = list_head(list); dr; dr = dr_next) {
1796 dr_next = list_next(&dn->dn_dirty_records[txgoff], dr);
1797 if (dr->dr_dbuf->db_level != new_nlevels-1 &&
1798 dr->dr_dbuf->db_blkid != DMU_BONUS_BLKID &&
1799 dr->dr_dbuf->db_blkid != DMU_SPILL_BLKID) {
1800 ASSERT(dr->dr_dbuf->db_level == old_nlevels-1);
1801 list_remove(&dn->dn_dirty_records[txgoff], dr);
1802 list_insert_tail(&new->dt.di.dr_children, dr);
1803 dr->dr_parent = new;
1804 }
1805 }
1806 mutex_exit(&new->dt.di.dr_mtx);
1807 mutex_exit(&dn->dn_mtx);
1808 }
1809
1810 int
1811 dnode_set_nlevels(dnode_t *dn, int nlevels, dmu_tx_t *tx)
1812 {
1813 int ret = 0;
1814
1815 rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
1816
1817 if (dn->dn_nlevels == nlevels) {
1818 ret = 0;
1819 goto out;
1820 } else if (nlevels < dn->dn_nlevels) {
1821 ret = SET_ERROR(EINVAL);
1822 goto out;
1823 }
1824
1825 dnode_set_nlevels_impl(dn, nlevels, tx);
1826
1827 out:
1828 rw_exit(&dn->dn_struct_rwlock);
1829 return (ret);
1830 }
1831
1832 /* read-holding callers must not rely on the lock being continuously held */
1833 void
1834 dnode_new_blkid(dnode_t *dn, uint64_t blkid, dmu_tx_t *tx, boolean_t have_read,
1835 boolean_t force)
1836 {
1837 int epbs, new_nlevels;
1838 uint64_t sz;
1839
1840 ASSERT(blkid != DMU_BONUS_BLKID);
1841
1842 ASSERT(have_read ?
1843 RW_READ_HELD(&dn->dn_struct_rwlock) :
1844 RW_WRITE_HELD(&dn->dn_struct_rwlock));
1845
1846 /*
1847 * if we have a read-lock, check to see if we need to do any work
1848 * before upgrading to a write-lock.
1849 */
1850 if (have_read) {
1851 if (blkid <= dn->dn_maxblkid)
1852 return;
1853
1854 if (!rw_tryupgrade(&dn->dn_struct_rwlock)) {
1855 rw_exit(&dn->dn_struct_rwlock);
1856 rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
1857 }
1858 }
1859
1860 /*
1861 * Raw sends (indicated by the force flag) require that we take the
1862 * given blkid even if the value is lower than the current value.
1863 */
1864 if (!force && blkid <= dn->dn_maxblkid)
1865 goto out;
1866
1867 /*
1868 * We use the (otherwise unused) top bit of dn_next_maxblkid[txgoff]
1869 * to indicate that this field is set. This allows us to set the
1870 * maxblkid to 0 on an existing object in dnode_sync().
1871 */
1872 dn->dn_maxblkid = blkid;
1873 dn->dn_next_maxblkid[tx->tx_txg & TXG_MASK] =
1874 blkid | DMU_NEXT_MAXBLKID_SET;
1875
1876 /*
1877 * Compute the number of levels necessary to support the new maxblkid.
1878 * Raw sends will ensure nlevels is set correctly for us.
1879 */
1880 new_nlevels = 1;
1881 epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT;
1882 for (sz = dn->dn_nblkptr;
1883 sz <= blkid && sz >= dn->dn_nblkptr; sz <<= epbs)
1884 new_nlevels++;
1885
1886 ASSERT3U(new_nlevels, <=, DN_MAX_LEVELS);
1887
1888 if (!force) {
1889 if (new_nlevels > dn->dn_nlevels)
1890 dnode_set_nlevels_impl(dn, new_nlevels, tx);
1891 } else {
1892 ASSERT3U(dn->dn_nlevels, >=, new_nlevels);
1893 }
1894
1895 out:
1896 if (have_read)
1897 rw_downgrade(&dn->dn_struct_rwlock);
1898 }
1899
1900 static void
1901 dnode_dirty_l1(dnode_t *dn, uint64_t l1blkid, dmu_tx_t *tx)
1902 {
1903 dmu_buf_impl_t *db = dbuf_hold_level(dn, 1, l1blkid, FTAG);
1904 if (db != NULL) {
1905 dmu_buf_will_dirty(&db->db, tx);
1906 dbuf_rele(db, FTAG);
1907 }
1908 }
1909
1910 /*
1911 * Dirty all the in-core level-1 dbufs in the range specified by start_blkid
1912 * and end_blkid.
1913 */
1914 static void
1915 dnode_dirty_l1range(dnode_t *dn, uint64_t start_blkid, uint64_t end_blkid,
1916 dmu_tx_t *tx)
1917 {
1918 dmu_buf_impl_t db_search;
1919 dmu_buf_impl_t *db;
1920 avl_index_t where;
1921
1922 mutex_enter(&dn->dn_dbufs_mtx);
1923
1924 db_search.db_level = 1;
1925 db_search.db_blkid = start_blkid + 1;
1926 db_search.db_state = DB_SEARCH;
1927 for (;;) {
1928
1929 db = avl_find(&dn->dn_dbufs, &db_search, &where);
1930 if (db == NULL)
1931 db = avl_nearest(&dn->dn_dbufs, where, AVL_AFTER);
1932
1933 if (db == NULL || db->db_level != 1 ||
1934 db->db_blkid >= end_blkid) {
1935 break;
1936 }
1937
1938 /*
1939 * Setup the next blkid we want to search for.
1940 */
1941 db_search.db_blkid = db->db_blkid + 1;
1942 ASSERT3U(db->db_blkid, >=, start_blkid);
1943
1944 /*
1945 * If the dbuf transitions to DB_EVICTING while we're trying
1946 * to dirty it, then we will be unable to discover it in
1947 * the dbuf hash table. This will result in a call to
1948 * dbuf_create() which needs to acquire the dn_dbufs_mtx
1949 * lock. To avoid a deadlock, we drop the lock before
1950 * dirtying the level-1 dbuf.
1951 */
1952 mutex_exit(&dn->dn_dbufs_mtx);
1953 dnode_dirty_l1(dn, db->db_blkid, tx);
1954 mutex_enter(&dn->dn_dbufs_mtx);
1955 }
1956
1957 #ifdef ZFS_DEBUG
1958 /*
1959 * Walk all the in-core level-1 dbufs and verify they have been dirtied.
1960 */
1961 db_search.db_level = 1;
1962 db_search.db_blkid = start_blkid + 1;
1963 db_search.db_state = DB_SEARCH;
1964 db = avl_find(&dn->dn_dbufs, &db_search, &where);
1965 if (db == NULL)
1966 db = avl_nearest(&dn->dn_dbufs, where, AVL_AFTER);
1967 for (; db != NULL; db = AVL_NEXT(&dn->dn_dbufs, db)) {
1968 if (db->db_level != 1 || db->db_blkid >= end_blkid)
1969 break;
1970 if (db->db_state != DB_EVICTING)
1971 ASSERT(db->db_dirtycnt > 0);
1972 }
1973 #endif
1974 mutex_exit(&dn->dn_dbufs_mtx);
1975 }
1976
1977 void
1978 dnode_free_range(dnode_t *dn, uint64_t off, uint64_t len, dmu_tx_t *tx)
1979 {
1980 dmu_buf_impl_t *db;
1981 uint64_t blkoff, blkid, nblks;
1982 int blksz, blkshift, head, tail;
1983 int trunc = FALSE;
1984 int epbs;
1985
1986 rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
1987 blksz = dn->dn_datablksz;
1988 blkshift = dn->dn_datablkshift;
1989 epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT;
1990
1991 if (len == DMU_OBJECT_END) {
1992 len = UINT64_MAX - off;
1993 trunc = TRUE;
1994 }
1995
1996 /*
1997 * First, block align the region to free:
1998 */
1999 if (ISP2(blksz)) {
2000 head = P2NPHASE(off, blksz);
2001 blkoff = P2PHASE(off, blksz);
2002 if ((off >> blkshift) > dn->dn_maxblkid)
2003 goto out;
2004 } else {
2005 ASSERT(dn->dn_maxblkid == 0);
2006 if (off == 0 && len >= blksz) {
2007 /*
2008 * Freeing the whole block; fast-track this request.
2009 */
2010 blkid = 0;
2011 nblks = 1;
2012 if (dn->dn_nlevels > 1)
2013 dnode_dirty_l1(dn, 0, tx);
2014 goto done;
2015 } else if (off >= blksz) {
2016 /* Freeing past end-of-data */
2017 goto out;
2018 } else {
2019 /* Freeing part of the block. */
2020 head = blksz - off;
2021 ASSERT3U(head, >, 0);
2022 }
2023 blkoff = off;
2024 }
2025 /* zero out any partial block data at the start of the range */
2026 if (head) {
2027 ASSERT3U(blkoff + head, ==, blksz);
2028 if (len < head)
2029 head = len;
2030 if (dbuf_hold_impl(dn, 0, dbuf_whichblock(dn, 0, off),
2031 TRUE, FALSE, FTAG, &db) == 0) {
2032 caddr_t data;
2033
2034 /* don't dirty if it isn't on disk and isn't dirty */
2035 if (db->db_last_dirty ||
2036 (db->db_blkptr && !BP_IS_HOLE(db->db_blkptr))) {
2037 rw_exit(&dn->dn_struct_rwlock);
2038 dmu_buf_will_dirty(&db->db, tx);
2039 rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
2040 data = db->db.db_data;
2041 bzero(data + blkoff, head);
2042 }
2043 dbuf_rele(db, FTAG);
2044 }
2045 off += head;
2046 len -= head;
2047 }
2048
2049 /* If the range was less than one block, we're done */
2050 if (len == 0)
2051 goto out;
2052
2053 /* If the remaining range is past end of file, we're done */
2054 if ((off >> blkshift) > dn->dn_maxblkid)
2055 goto out;
2056
2057 ASSERT(ISP2(blksz));
2058 if (trunc)
2059 tail = 0;
2060 else
2061 tail = P2PHASE(len, blksz);
2062
2063 ASSERT0(P2PHASE(off, blksz));
2064 /* zero out any partial block data at the end of the range */
2065 if (tail) {
2066 if (len < tail)
2067 tail = len;
2068 if (dbuf_hold_impl(dn, 0, dbuf_whichblock(dn, 0, off+len),
2069 TRUE, FALSE, FTAG, &db) == 0) {
2070 /* don't dirty if not on disk and not dirty */
2071 if (db->db_last_dirty ||
2072 (db->db_blkptr && !BP_IS_HOLE(db->db_blkptr))) {
2073 rw_exit(&dn->dn_struct_rwlock);
2074 dmu_buf_will_dirty(&db->db, tx);
2075 rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
2076 bzero(db->db.db_data, tail);
2077 }
2078 dbuf_rele(db, FTAG);
2079 }
2080 len -= tail;
2081 }
2082
2083 /* If the range did not include a full block, we are done */
2084 if (len == 0)
2085 goto out;
2086
2087 ASSERT(IS_P2ALIGNED(off, blksz));
2088 ASSERT(trunc || IS_P2ALIGNED(len, blksz));
2089 blkid = off >> blkshift;
2090 nblks = len >> blkshift;
2091 if (trunc)
2092 nblks += 1;
2093
2094 /*
2095 * Dirty all the indirect blocks in this range. Note that only
2096 * the first and last indirect blocks can actually be written
2097 * (if they were partially freed) -- they must be dirtied, even if
2098 * they do not exist on disk yet. The interior blocks will
2099 * be freed by free_children(), so they will not actually be written.
2100 * Even though these interior blocks will not be written, we
2101 * dirty them for two reasons:
2102 *
2103 * - It ensures that the indirect blocks remain in memory until
2104 * syncing context. (They have already been prefetched by
2105 * dmu_tx_hold_free(), so we don't have to worry about reading
2106 * them serially here.)
2107 *
2108 * - The dirty space accounting will put pressure on the txg sync
2109 * mechanism to begin syncing, and to delay transactions if there
2110 * is a large amount of freeing. Even though these indirect
2111 * blocks will not be written, we could need to write the same
2112 * amount of space if we copy the freed BPs into deadlists.
2113 */
2114 if (dn->dn_nlevels > 1) {
2115 uint64_t first, last;
2116
2117 first = blkid >> epbs;
2118 dnode_dirty_l1(dn, first, tx);
2119 if (trunc)
2120 last = dn->dn_maxblkid >> epbs;
2121 else
2122 last = (blkid + nblks - 1) >> epbs;
2123 if (last != first)
2124 dnode_dirty_l1(dn, last, tx);
2125
2126 dnode_dirty_l1range(dn, first, last, tx);
2127
2128 int shift = dn->dn_datablkshift + dn->dn_indblkshift -
2129 SPA_BLKPTRSHIFT;
2130 for (uint64_t i = first + 1; i < last; i++) {
2131 /*
2132 * Set i to the blockid of the next non-hole
2133 * level-1 indirect block at or after i. Note
2134 * that dnode_next_offset() operates in terms of
2135 * level-0-equivalent bytes.
2136 */
2137 uint64_t ibyte = i << shift;
2138 int err = dnode_next_offset(dn, DNODE_FIND_HAVELOCK,
2139 &ibyte, 2, 1, 0);
2140 i = ibyte >> shift;
2141 if (i >= last)
2142 break;
2143
2144 /*
2145 * Normally we should not see an error, either
2146 * from dnode_next_offset() or dbuf_hold_level()
2147 * (except for ESRCH from dnode_next_offset).
2148 * If there is an i/o error, then when we read
2149 * this block in syncing context, it will use
2150 * ZIO_FLAG_MUSTSUCCEED, and thus hang/panic according
2151 * to the "failmode" property. dnode_next_offset()
2152 * doesn't have a flag to indicate MUSTSUCCEED.
2153 */
2154 if (err != 0)
2155 break;
2156
2157 dnode_dirty_l1(dn, i, tx);
2158 }
2159 }
2160
2161 done:
2162 /*
2163 * Add this range to the dnode range list.
2164 * We will finish up this free operation in the syncing phase.
2165 */
2166 mutex_enter(&dn->dn_mtx);
2167 {
2168 int txgoff = tx->tx_txg & TXG_MASK;
2169 if (dn->dn_free_ranges[txgoff] == NULL) {
2170 dn->dn_free_ranges[txgoff] = range_tree_create(NULL, NULL);
2171 }
2172 range_tree_clear(dn->dn_free_ranges[txgoff], blkid, nblks);
2173 range_tree_add(dn->dn_free_ranges[txgoff], blkid, nblks);
2174 }
2175 dprintf_dnode(dn, "blkid=%llu nblks=%llu txg=%llu\n",
2176 blkid, nblks, tx->tx_txg);
2177 mutex_exit(&dn->dn_mtx);
2178
2179 dbuf_free_range(dn, blkid, blkid + nblks - 1, tx);
2180 dnode_setdirty(dn, tx);
2181 out:
2182
2183 rw_exit(&dn->dn_struct_rwlock);
2184 }
2185
2186 static boolean_t
2187 dnode_spill_freed(dnode_t *dn)
2188 {
2189 int i;
2190
2191 mutex_enter(&dn->dn_mtx);
2192 for (i = 0; i < TXG_SIZE; i++) {
2193 if (dn->dn_rm_spillblk[i] == DN_KILL_SPILLBLK)
2194 break;
2195 }
2196 mutex_exit(&dn->dn_mtx);
2197 return (i < TXG_SIZE);
2198 }
2199
2200 /* return TRUE if this blkid was freed in a recent txg, or FALSE if it wasn't */
2201 uint64_t
2202 dnode_block_freed(dnode_t *dn, uint64_t blkid)
2203 {
2204 void *dp = spa_get_dsl(dn->dn_objset->os_spa);
2205 int i;
2206
2207 if (blkid == DMU_BONUS_BLKID)
2208 return (FALSE);
2209
2210 /*
2211 * If we're in the process of opening the pool, dp will not be
2212 * set yet, but there shouldn't be anything dirty.
2213 */
2214 if (dp == NULL)
2215 return (FALSE);
2216
2217 if (dn->dn_free_txg)
2218 return (TRUE);
2219
2220 if (blkid == DMU_SPILL_BLKID)
2221 return (dnode_spill_freed(dn));
2222
2223 mutex_enter(&dn->dn_mtx);
2224 for (i = 0; i < TXG_SIZE; i++) {
2225 if (dn->dn_free_ranges[i] != NULL &&
2226 range_tree_contains(dn->dn_free_ranges[i], blkid, 1))
2227 break;
2228 }
2229 mutex_exit(&dn->dn_mtx);
2230 return (i < TXG_SIZE);
2231 }
2232
2233 /* call from syncing context when we actually write/free space for this dnode */
2234 void
2235 dnode_diduse_space(dnode_t *dn, int64_t delta)
2236 {
2237 uint64_t space;
2238 dprintf_dnode(dn, "dn=%p dnp=%p used=%llu delta=%lld\n",
2239 dn, dn->dn_phys,
2240 (u_longlong_t)dn->dn_phys->dn_used,
2241 (longlong_t)delta);
2242
2243 mutex_enter(&dn->dn_mtx);
2244 space = DN_USED_BYTES(dn->dn_phys);
2245 if (delta > 0) {
2246 ASSERT3U(space + delta, >=, space); /* no overflow */
2247 } else {
2248 ASSERT3U(space, >=, -delta); /* no underflow */
2249 }
2250 space += delta;
2251 if (spa_version(dn->dn_objset->os_spa) < SPA_VERSION_DNODE_BYTES) {
2252 ASSERT((dn->dn_phys->dn_flags & DNODE_FLAG_USED_BYTES) == 0);
2253 ASSERT0(P2PHASE(space, 1<<DEV_BSHIFT));
2254 dn->dn_phys->dn_used = space >> DEV_BSHIFT;
2255 } else {
2256 dn->dn_phys->dn_used = space;
2257 dn->dn_phys->dn_flags |= DNODE_FLAG_USED_BYTES;
2258 }
2259 mutex_exit(&dn->dn_mtx);
2260 }
2261
2262 /*
2263 * Scans a block at the indicated "level" looking for a hole or data,
2264 * depending on 'flags'.
2265 *
2266 * If level > 0, then we are scanning an indirect block looking at its
2267 * pointers. If level == 0, then we are looking at a block of dnodes.
2268 *
2269 * If we don't find what we are looking for in the block, we return ESRCH.
2270 * Otherwise, return with *offset pointing to the beginning (if searching
2271 * forwards) or end (if searching backwards) of the range covered by the
2272 * block pointer we matched on (or dnode).
2273 *
2274 * The basic search algorithm used below by dnode_next_offset() is to
2275 * use this function to search up the block tree (widen the search) until
2276 * we find something (i.e., we don't return ESRCH) and then search back
2277 * down the tree (narrow the search) until we reach our original search
2278 * level.
2279 */
2280 static int
2281 dnode_next_offset_level(dnode_t *dn, int flags, uint64_t *offset,
2282 int lvl, uint64_t blkfill, uint64_t txg)
2283 {
2284 dmu_buf_impl_t *db = NULL;
2285 void *data = NULL;
2286 uint64_t epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT;
2287 uint64_t epb = 1ULL << epbs;
2288 uint64_t minfill, maxfill;
2289 boolean_t hole;
2290 int i, inc, error, span;
2291
2292 hole = ((flags & DNODE_FIND_HOLE) != 0);
2293 inc = (flags & DNODE_FIND_BACKWARDS) ? -1 : 1;
2294 ASSERT(txg == 0 || !hole);
2295
2296 if (lvl == dn->dn_phys->dn_nlevels) {
2297 error = 0;
2298 epb = dn->dn_phys->dn_nblkptr;
2299 data = dn->dn_phys->dn_blkptr;
2300 } else {
2301 uint64_t blkid = dbuf_whichblock(dn, lvl, *offset);
2302 error = dbuf_hold_impl(dn, lvl, blkid, TRUE, FALSE, FTAG, &db);
2303 if (error) {
2304 if (error != ENOENT)
2305 return (error);
2306 if (hole)
2307 return (0);
2308 /*
2309 * This can only happen when we are searching up
2310 * the block tree for data. We don't really need to
2311 * adjust the offset, as we will just end up looking
2312 * at the pointer to this block in its parent, and its
2313 * going to be unallocated, so we will skip over it.
2314 */
2315 return (SET_ERROR(ESRCH));
2316 }
2317 error = dbuf_read(db, NULL,
2318 DB_RF_CANFAIL | DB_RF_HAVESTRUCT | DB_RF_NO_DECRYPT);
2319 if (error) {
2320 dbuf_rele(db, FTAG);
2321 return (error);
2322 }
2323 data = db->db.db_data;
2324 }
2325
2326
2327 if (db != NULL && txg != 0 && (db->db_blkptr == NULL ||
2328 db->db_blkptr->blk_birth <= txg ||
2329 BP_IS_HOLE(db->db_blkptr))) {
2330 /*
2331 * This can only happen when we are searching up the tree
2332 * and these conditions mean that we need to keep climbing.
2333 */
2334 error = SET_ERROR(ESRCH);
2335 } else if (lvl == 0) {
2336 dnode_phys_t *dnp = data;
2337
2338 ASSERT(dn->dn_type == DMU_OT_DNODE);
2339 ASSERT(!(flags & DNODE_FIND_BACKWARDS));
2340
2341 for (i = (*offset >> DNODE_SHIFT) & (blkfill - 1);
2342 i < blkfill; i += dnp[i].dn_extra_slots + 1) {
2343 if ((dnp[i].dn_type == DMU_OT_NONE) == hole)
2344 break;
2345 }
2346
2347 if (i == blkfill)
2348 error = SET_ERROR(ESRCH);
2349
2350 *offset = (*offset & ~(DNODE_BLOCK_SIZE - 1)) +
2351 (i << DNODE_SHIFT);
2352 } else {
2353 blkptr_t *bp = data;
2354 uint64_t start = *offset;
2355 span = (lvl - 1) * epbs + dn->dn_datablkshift;
2356 minfill = 0;
2357 maxfill = blkfill << ((lvl - 1) * epbs);
2358
2359 if (hole)
2360 maxfill--;
2361 else
2362 minfill++;
2363
2364 if (span >= 8 * sizeof (*offset)) {
2365 /* This only happens on the highest indirection level */
2366 ASSERT3U((lvl - 1), ==, dn->dn_phys->dn_nlevels - 1);
2367 *offset = 0;
2368 } else {
2369 *offset = *offset >> span;
2370 }
2371
2372 for (i = BF64_GET(*offset, 0, epbs);
2373 i >= 0 && i < epb; i += inc) {
2374 if (BP_GET_FILL(&bp[i]) >= minfill &&
2375 BP_GET_FILL(&bp[i]) <= maxfill &&
2376 (hole || bp[i].blk_birth > txg))
2377 break;
2378 if (inc > 0 || *offset > 0)
2379 *offset += inc;
2380 }
2381
2382 if (span >= 8 * sizeof (*offset)) {
2383 *offset = start;
2384 } else {
2385 *offset = *offset << span;
2386 }
2387
2388 if (inc < 0) {
2389 /* traversing backwards; position offset at the end */
2390 ASSERT3U(*offset, <=, start);
2391 *offset = MIN(*offset + (1ULL << span) - 1, start);
2392 } else if (*offset < start) {
2393 *offset = start;
2394 }
2395 if (i < 0 || i >= epb)
2396 error = SET_ERROR(ESRCH);
2397 }
2398
2399 if (db)
2400 dbuf_rele(db, FTAG);
2401
2402 return (error);
2403 }
2404
2405 /*
2406 * Find the next hole, data, or sparse region at or after *offset.
2407 * The value 'blkfill' tells us how many items we expect to find
2408 * in an L0 data block; this value is 1 for normal objects,
2409 * DNODES_PER_BLOCK for the meta dnode, and some fraction of
2410 * DNODES_PER_BLOCK when searching for sparse regions thereof.
2411 *
2412 * Examples:
2413 *
2414 * dnode_next_offset(dn, flags, offset, 1, 1, 0);
2415 * Finds the next/previous hole/data in a file.
2416 * Used in dmu_offset_next().
2417 *
2418 * dnode_next_offset(mdn, flags, offset, 0, DNODES_PER_BLOCK, txg);
2419 * Finds the next free/allocated dnode an objset's meta-dnode.
2420 * Only finds objects that have new contents since txg (ie.
2421 * bonus buffer changes and content removal are ignored).
2422 * Used in dmu_object_next().
2423 *
2424 * dnode_next_offset(mdn, DNODE_FIND_HOLE, offset, 2, DNODES_PER_BLOCK >> 2, 0);
2425 * Finds the next L2 meta-dnode bp that's at most 1/4 full.
2426 * Used in dmu_object_alloc().
2427 */
2428 int
2429 dnode_next_offset(dnode_t *dn, int flags, uint64_t *offset,
2430 int minlvl, uint64_t blkfill, uint64_t txg)
2431 {
2432 uint64_t initial_offset = *offset;
2433 int lvl, maxlvl;
2434 int error = 0;
2435
2436 if (!(flags & DNODE_FIND_HAVELOCK))
2437 rw_enter(&dn->dn_struct_rwlock, RW_READER);
2438
2439 if (dn->dn_phys->dn_nlevels == 0) {
2440 error = SET_ERROR(ESRCH);
2441 goto out;
2442 }
2443
2444 if (dn->dn_datablkshift == 0) {
2445 if (*offset < dn->dn_datablksz) {
2446 if (flags & DNODE_FIND_HOLE)
2447 *offset = dn->dn_datablksz;
2448 } else {
2449 error = SET_ERROR(ESRCH);
2450 }
2451 goto out;
2452 }
2453
2454 maxlvl = dn->dn_phys->dn_nlevels;
2455
2456 for (lvl = minlvl; lvl <= maxlvl; lvl++) {
2457 error = dnode_next_offset_level(dn,
2458 flags, offset, lvl, blkfill, txg);
2459 if (error != ESRCH)
2460 break;
2461 }
2462
2463 while (error == 0 && --lvl >= minlvl) {
2464 error = dnode_next_offset_level(dn,
2465 flags, offset, lvl, blkfill, txg);
2466 }
2467
2468 /*
2469 * There's always a "virtual hole" at the end of the object, even
2470 * if all BP's which physically exist are non-holes.
2471 */
2472 if ((flags & DNODE_FIND_HOLE) && error == ESRCH && txg == 0 &&
2473 minlvl == 1 && blkfill == 1 && !(flags & DNODE_FIND_BACKWARDS)) {
2474 error = 0;
2475 }
2476
2477 if (error == 0 && (flags & DNODE_FIND_BACKWARDS ?
2478 initial_offset < *offset : initial_offset > *offset))
2479 error = SET_ERROR(ESRCH);
2480 out:
2481 if (!(flags & DNODE_FIND_HAVELOCK))
2482 rw_exit(&dn->dn_struct_rwlock);
2483
2484 return (error);
2485 }