]> git.proxmox.com Git - mirror_zfs.git/blob - module/zfs/dsl_crypt.c
Allow block cloning across encrypted datasets
[mirror_zfs.git] / module / zfs / dsl_crypt.c
1 /*
2 * CDDL HEADER START
3 *
4 * This file and its contents are supplied under the terms of the
5 * Common Development and Distribution License ("CDDL"), version 1.0.
6 * You may only use this file in accordance with the terms of version
7 * 1.0 of the CDDL.
8 *
9 * A full copy of the text of the CDDL should have accompanied this
10 * source. A copy of the CDDL is also available via the Internet at
11 * http://www.illumos.org/license/CDDL.
12 *
13 * CDDL HEADER END
14 */
15
16 /*
17 * Copyright (c) 2017, Datto, Inc. All rights reserved.
18 * Copyright (c) 2018 by Delphix. All rights reserved.
19 */
20
21 #include <sys/dsl_crypt.h>
22 #include <sys/dsl_pool.h>
23 #include <sys/zap.h>
24 #include <sys/zil.h>
25 #include <sys/dsl_dir.h>
26 #include <sys/dsl_prop.h>
27 #include <sys/spa_impl.h>
28 #include <sys/dmu_objset.h>
29 #include <sys/zvol.h>
30
31 /*
32 * This file's primary purpose is for managing master encryption keys in
33 * memory and on disk. For more info on how these keys are used, see the
34 * block comment in zio_crypt.c.
35 *
36 * All master keys are stored encrypted on disk in the form of the DSL
37 * Crypto Key ZAP object. The binary key data in this object is always
38 * randomly generated and is encrypted with the user's wrapping key. This
39 * layer of indirection allows the user to change their key without
40 * needing to re-encrypt the entire dataset. The ZAP also holds on to the
41 * (non-encrypted) encryption algorithm identifier, IV, and MAC needed to
42 * safely decrypt the master key. For more info on the user's key see the
43 * block comment in libzfs_crypto.c
44 *
45 * In-memory encryption keys are managed through the spa_keystore. The
46 * keystore consists of 3 AVL trees, which are as follows:
47 *
48 * The Wrapping Key Tree:
49 * The wrapping key (wkey) tree stores the user's keys that are fed into the
50 * kernel through 'zfs load-key' and related commands. Datasets inherit their
51 * parent's wkey by default, so these structures are refcounted. The wrapping
52 * keys remain in memory until they are explicitly unloaded (with
53 * "zfs unload-key"). Unloading is only possible when no datasets are using
54 * them (refcount=0).
55 *
56 * The DSL Crypto Key Tree:
57 * The DSL Crypto Keys (DCK) are the in-memory representation of decrypted
58 * master keys. They are used by the functions in zio_crypt.c to perform
59 * encryption, decryption, and authentication. Snapshots and clones of a given
60 * dataset will share a DSL Crypto Key, so they are also refcounted. Once the
61 * refcount on a key hits zero, it is immediately zeroed out and freed.
62 *
63 * The Crypto Key Mapping Tree:
64 * The zio layer needs to lookup master keys by their dataset object id. Since
65 * the DSL Crypto Keys can belong to multiple datasets, we maintain a tree of
66 * dsl_key_mapping_t's which essentially just map the dataset object id to its
67 * appropriate DSL Crypto Key. The management for creating and destroying these
68 * mappings hooks into the code for owning and disowning datasets. Usually,
69 * there will only be one active dataset owner, but there are times
70 * (particularly during dataset creation and destruction) when this may not be
71 * true or the dataset may not be initialized enough to own. As a result, this
72 * object is also refcounted.
73 */
74
75 /*
76 * This tunable allows datasets to be raw received even if the stream does
77 * not include IVset guids or if the guids don't match. This is used as part
78 * of the resolution for ZPOOL_ERRATA_ZOL_8308_ENCRYPTION.
79 */
80 int zfs_disable_ivset_guid_check = 0;
81
82 static void
83 dsl_wrapping_key_hold(dsl_wrapping_key_t *wkey, const void *tag)
84 {
85 (void) zfs_refcount_add(&wkey->wk_refcnt, tag);
86 }
87
88 static void
89 dsl_wrapping_key_rele(dsl_wrapping_key_t *wkey, const void *tag)
90 {
91 (void) zfs_refcount_remove(&wkey->wk_refcnt, tag);
92 }
93
94 static void
95 dsl_wrapping_key_free(dsl_wrapping_key_t *wkey)
96 {
97 ASSERT0(zfs_refcount_count(&wkey->wk_refcnt));
98
99 if (wkey->wk_key.ck_data) {
100 memset(wkey->wk_key.ck_data, 0,
101 CRYPTO_BITS2BYTES(wkey->wk_key.ck_length));
102 kmem_free(wkey->wk_key.ck_data,
103 CRYPTO_BITS2BYTES(wkey->wk_key.ck_length));
104 }
105
106 zfs_refcount_destroy(&wkey->wk_refcnt);
107 kmem_free(wkey, sizeof (dsl_wrapping_key_t));
108 }
109
110 static void
111 dsl_wrapping_key_create(uint8_t *wkeydata, zfs_keyformat_t keyformat,
112 uint64_t salt, uint64_t iters, dsl_wrapping_key_t **wkey_out)
113 {
114 dsl_wrapping_key_t *wkey;
115
116 /* allocate the wrapping key */
117 wkey = kmem_alloc(sizeof (dsl_wrapping_key_t), KM_SLEEP);
118
119 /* allocate and initialize the underlying crypto key */
120 wkey->wk_key.ck_data = kmem_alloc(WRAPPING_KEY_LEN, KM_SLEEP);
121
122 wkey->wk_key.ck_length = CRYPTO_BYTES2BITS(WRAPPING_KEY_LEN);
123 memcpy(wkey->wk_key.ck_data, wkeydata, WRAPPING_KEY_LEN);
124
125 /* initialize the rest of the struct */
126 zfs_refcount_create(&wkey->wk_refcnt);
127 wkey->wk_keyformat = keyformat;
128 wkey->wk_salt = salt;
129 wkey->wk_iters = iters;
130
131 *wkey_out = wkey;
132 }
133
134 int
135 dsl_crypto_params_create_nvlist(dcp_cmd_t cmd, nvlist_t *props,
136 nvlist_t *crypto_args, dsl_crypto_params_t **dcp_out)
137 {
138 int ret;
139 uint64_t crypt = ZIO_CRYPT_INHERIT;
140 uint64_t keyformat = ZFS_KEYFORMAT_NONE;
141 uint64_t salt = 0, iters = 0;
142 dsl_crypto_params_t *dcp = NULL;
143 dsl_wrapping_key_t *wkey = NULL;
144 uint8_t *wkeydata = NULL;
145 uint_t wkeydata_len = 0;
146 const char *keylocation = NULL;
147
148 dcp = kmem_zalloc(sizeof (dsl_crypto_params_t), KM_SLEEP);
149 dcp->cp_cmd = cmd;
150
151 /* get relevant arguments from the nvlists */
152 if (props != NULL) {
153 (void) nvlist_lookup_uint64(props,
154 zfs_prop_to_name(ZFS_PROP_ENCRYPTION), &crypt);
155 (void) nvlist_lookup_uint64(props,
156 zfs_prop_to_name(ZFS_PROP_KEYFORMAT), &keyformat);
157 (void) nvlist_lookup_string(props,
158 zfs_prop_to_name(ZFS_PROP_KEYLOCATION), &keylocation);
159 (void) nvlist_lookup_uint64(props,
160 zfs_prop_to_name(ZFS_PROP_PBKDF2_SALT), &salt);
161 (void) nvlist_lookup_uint64(props,
162 zfs_prop_to_name(ZFS_PROP_PBKDF2_ITERS), &iters);
163
164 dcp->cp_crypt = crypt;
165 }
166
167 if (crypto_args != NULL) {
168 (void) nvlist_lookup_uint8_array(crypto_args, "wkeydata",
169 &wkeydata, &wkeydata_len);
170 }
171
172 /* check for valid command */
173 if (dcp->cp_cmd >= DCP_CMD_MAX) {
174 ret = SET_ERROR(EINVAL);
175 goto error;
176 } else {
177 dcp->cp_cmd = cmd;
178 }
179
180 /* check for valid crypt */
181 if (dcp->cp_crypt >= ZIO_CRYPT_FUNCTIONS) {
182 ret = SET_ERROR(EINVAL);
183 goto error;
184 } else {
185 dcp->cp_crypt = crypt;
186 }
187
188 /* check for valid keyformat */
189 if (keyformat >= ZFS_KEYFORMAT_FORMATS) {
190 ret = SET_ERROR(EINVAL);
191 goto error;
192 }
193
194 /* check for a valid keylocation (of any kind) and copy it in */
195 if (keylocation != NULL) {
196 if (!zfs_prop_valid_keylocation(keylocation, B_FALSE)) {
197 ret = SET_ERROR(EINVAL);
198 goto error;
199 }
200
201 dcp->cp_keylocation = spa_strdup(keylocation);
202 }
203
204 /* check wrapping key length, if given */
205 if (wkeydata != NULL && wkeydata_len != WRAPPING_KEY_LEN) {
206 ret = SET_ERROR(EINVAL);
207 goto error;
208 }
209
210 /* if the user asked for the default crypt, determine that now */
211 if (dcp->cp_crypt == ZIO_CRYPT_ON)
212 dcp->cp_crypt = ZIO_CRYPT_ON_VALUE;
213
214 /* create the wrapping key from the raw data */
215 if (wkeydata != NULL) {
216 /* create the wrapping key with the verified parameters */
217 dsl_wrapping_key_create(wkeydata, keyformat, salt,
218 iters, &wkey);
219 dcp->cp_wkey = wkey;
220 }
221
222 /*
223 * Remove the encryption properties from the nvlist since they are not
224 * maintained through the DSL.
225 */
226 (void) nvlist_remove_all(props, zfs_prop_to_name(ZFS_PROP_ENCRYPTION));
227 (void) nvlist_remove_all(props, zfs_prop_to_name(ZFS_PROP_KEYFORMAT));
228 (void) nvlist_remove_all(props, zfs_prop_to_name(ZFS_PROP_PBKDF2_SALT));
229 (void) nvlist_remove_all(props,
230 zfs_prop_to_name(ZFS_PROP_PBKDF2_ITERS));
231
232 *dcp_out = dcp;
233
234 return (0);
235
236 error:
237 kmem_free(dcp, sizeof (dsl_crypto_params_t));
238 *dcp_out = NULL;
239 return (ret);
240 }
241
242 void
243 dsl_crypto_params_free(dsl_crypto_params_t *dcp, boolean_t unload)
244 {
245 if (dcp == NULL)
246 return;
247
248 if (dcp->cp_keylocation != NULL)
249 spa_strfree(dcp->cp_keylocation);
250 if (unload && dcp->cp_wkey != NULL)
251 dsl_wrapping_key_free(dcp->cp_wkey);
252
253 kmem_free(dcp, sizeof (dsl_crypto_params_t));
254 }
255
256 static int
257 spa_crypto_key_compare(const void *a, const void *b)
258 {
259 const dsl_crypto_key_t *dcka = a;
260 const dsl_crypto_key_t *dckb = b;
261
262 if (dcka->dck_obj < dckb->dck_obj)
263 return (-1);
264 if (dcka->dck_obj > dckb->dck_obj)
265 return (1);
266 return (0);
267 }
268
269 /*
270 * this compares a crypto key based on zk_guid. See comment on
271 * spa_crypto_key_compare for more information.
272 */
273 boolean_t
274 dmu_objset_crypto_key_equal(objset_t *osa, objset_t *osb)
275 {
276 dsl_crypto_key_t *dcka = NULL;
277 dsl_crypto_key_t *dckb = NULL;
278 uint64_t obja, objb;
279 boolean_t equal;
280 spa_t *spa;
281
282 spa = dmu_objset_spa(osa);
283 if (spa != dmu_objset_spa(osb))
284 return (B_FALSE);
285 obja = dmu_objset_ds(osa)->ds_object;
286 objb = dmu_objset_ds(osb)->ds_object;
287
288 if (spa_keystore_lookup_key(spa, obja, FTAG, &dcka) != 0)
289 return (B_FALSE);
290 if (spa_keystore_lookup_key(spa, objb, FTAG, &dckb) != 0) {
291 spa_keystore_dsl_key_rele(spa, dcka, FTAG);
292 return (B_FALSE);
293 }
294
295 equal = (dcka->dck_key.zk_guid == dckb->dck_key.zk_guid);
296
297 spa_keystore_dsl_key_rele(spa, dcka, FTAG);
298 spa_keystore_dsl_key_rele(spa, dckb, FTAG);
299
300 return (equal);
301 }
302
303 static int
304 spa_key_mapping_compare(const void *a, const void *b)
305 {
306 const dsl_key_mapping_t *kma = a;
307 const dsl_key_mapping_t *kmb = b;
308
309 if (kma->km_dsobj < kmb->km_dsobj)
310 return (-1);
311 if (kma->km_dsobj > kmb->km_dsobj)
312 return (1);
313 return (0);
314 }
315
316 static int
317 spa_wkey_compare(const void *a, const void *b)
318 {
319 const dsl_wrapping_key_t *wka = a;
320 const dsl_wrapping_key_t *wkb = b;
321
322 if (wka->wk_ddobj < wkb->wk_ddobj)
323 return (-1);
324 if (wka->wk_ddobj > wkb->wk_ddobj)
325 return (1);
326 return (0);
327 }
328
329 void
330 spa_keystore_init(spa_keystore_t *sk)
331 {
332 rw_init(&sk->sk_dk_lock, NULL, RW_DEFAULT, NULL);
333 rw_init(&sk->sk_km_lock, NULL, RW_DEFAULT, NULL);
334 rw_init(&sk->sk_wkeys_lock, NULL, RW_DEFAULT, NULL);
335 avl_create(&sk->sk_dsl_keys, spa_crypto_key_compare,
336 sizeof (dsl_crypto_key_t),
337 offsetof(dsl_crypto_key_t, dck_avl_link));
338 avl_create(&sk->sk_key_mappings, spa_key_mapping_compare,
339 sizeof (dsl_key_mapping_t),
340 offsetof(dsl_key_mapping_t, km_avl_link));
341 avl_create(&sk->sk_wkeys, spa_wkey_compare, sizeof (dsl_wrapping_key_t),
342 offsetof(dsl_wrapping_key_t, wk_avl_link));
343 }
344
345 void
346 spa_keystore_fini(spa_keystore_t *sk)
347 {
348 dsl_wrapping_key_t *wkey;
349 void *cookie = NULL;
350
351 ASSERT(avl_is_empty(&sk->sk_dsl_keys));
352 ASSERT(avl_is_empty(&sk->sk_key_mappings));
353
354 while ((wkey = avl_destroy_nodes(&sk->sk_wkeys, &cookie)) != NULL)
355 dsl_wrapping_key_free(wkey);
356
357 avl_destroy(&sk->sk_wkeys);
358 avl_destroy(&sk->sk_key_mappings);
359 avl_destroy(&sk->sk_dsl_keys);
360 rw_destroy(&sk->sk_wkeys_lock);
361 rw_destroy(&sk->sk_km_lock);
362 rw_destroy(&sk->sk_dk_lock);
363 }
364
365 static int
366 dsl_dir_get_encryption_root_ddobj(dsl_dir_t *dd, uint64_t *rddobj)
367 {
368 if (dd->dd_crypto_obj == 0)
369 return (SET_ERROR(ENOENT));
370
371 return (zap_lookup(dd->dd_pool->dp_meta_objset, dd->dd_crypto_obj,
372 DSL_CRYPTO_KEY_ROOT_DDOBJ, 8, 1, rddobj));
373 }
374
375 static int
376 dsl_dir_get_encryption_version(dsl_dir_t *dd, uint64_t *version)
377 {
378 *version = 0;
379
380 if (dd->dd_crypto_obj == 0)
381 return (SET_ERROR(ENOENT));
382
383 /* version 0 is implied by ENOENT */
384 (void) zap_lookup(dd->dd_pool->dp_meta_objset, dd->dd_crypto_obj,
385 DSL_CRYPTO_KEY_VERSION, 8, 1, version);
386
387 return (0);
388 }
389
390 boolean_t
391 dsl_dir_incompatible_encryption_version(dsl_dir_t *dd)
392 {
393 int ret;
394 uint64_t version = 0;
395
396 ret = dsl_dir_get_encryption_version(dd, &version);
397 if (ret != 0)
398 return (B_FALSE);
399
400 return (version != ZIO_CRYPT_KEY_CURRENT_VERSION);
401 }
402
403 static int
404 spa_keystore_wkey_hold_ddobj_impl(spa_t *spa, uint64_t ddobj,
405 const void *tag, dsl_wrapping_key_t **wkey_out)
406 {
407 int ret;
408 dsl_wrapping_key_t search_wkey;
409 dsl_wrapping_key_t *found_wkey;
410
411 ASSERT(RW_LOCK_HELD(&spa->spa_keystore.sk_wkeys_lock));
412
413 /* init the search wrapping key */
414 search_wkey.wk_ddobj = ddobj;
415
416 /* lookup the wrapping key */
417 found_wkey = avl_find(&spa->spa_keystore.sk_wkeys, &search_wkey, NULL);
418 if (!found_wkey) {
419 ret = SET_ERROR(ENOENT);
420 goto error;
421 }
422
423 /* increment the refcount */
424 dsl_wrapping_key_hold(found_wkey, tag);
425
426 *wkey_out = found_wkey;
427 return (0);
428
429 error:
430 *wkey_out = NULL;
431 return (ret);
432 }
433
434 static int
435 spa_keystore_wkey_hold_dd(spa_t *spa, dsl_dir_t *dd, const void *tag,
436 dsl_wrapping_key_t **wkey_out)
437 {
438 int ret;
439 dsl_wrapping_key_t *wkey;
440 uint64_t rddobj;
441 boolean_t locked = B_FALSE;
442
443 if (!RW_WRITE_HELD(&spa->spa_keystore.sk_wkeys_lock)) {
444 rw_enter(&spa->spa_keystore.sk_wkeys_lock, RW_READER);
445 locked = B_TRUE;
446 }
447
448 /* get the ddobj that the keylocation property was inherited from */
449 ret = dsl_dir_get_encryption_root_ddobj(dd, &rddobj);
450 if (ret != 0)
451 goto error;
452
453 /* lookup the wkey in the avl tree */
454 ret = spa_keystore_wkey_hold_ddobj_impl(spa, rddobj, tag, &wkey);
455 if (ret != 0)
456 goto error;
457
458 /* unlock the wkey tree if we locked it */
459 if (locked)
460 rw_exit(&spa->spa_keystore.sk_wkeys_lock);
461
462 *wkey_out = wkey;
463 return (0);
464
465 error:
466 if (locked)
467 rw_exit(&spa->spa_keystore.sk_wkeys_lock);
468
469 *wkey_out = NULL;
470 return (ret);
471 }
472
473 int
474 dsl_crypto_can_set_keylocation(const char *dsname, const char *keylocation)
475 {
476 int ret = 0;
477 dsl_dir_t *dd = NULL;
478 dsl_pool_t *dp = NULL;
479 uint64_t rddobj;
480
481 /* hold the dsl dir */
482 ret = dsl_pool_hold(dsname, FTAG, &dp);
483 if (ret != 0)
484 goto out;
485
486 ret = dsl_dir_hold(dp, dsname, FTAG, &dd, NULL);
487 if (ret != 0) {
488 dd = NULL;
489 goto out;
490 }
491
492 /* if dd is not encrypted, the value may only be "none" */
493 if (dd->dd_crypto_obj == 0) {
494 if (strcmp(keylocation, "none") != 0) {
495 ret = SET_ERROR(EACCES);
496 goto out;
497 }
498
499 ret = 0;
500 goto out;
501 }
502
503 /* check for a valid keylocation for encrypted datasets */
504 if (!zfs_prop_valid_keylocation(keylocation, B_TRUE)) {
505 ret = SET_ERROR(EINVAL);
506 goto out;
507 }
508
509 /* check that this is an encryption root */
510 ret = dsl_dir_get_encryption_root_ddobj(dd, &rddobj);
511 if (ret != 0)
512 goto out;
513
514 if (rddobj != dd->dd_object) {
515 ret = SET_ERROR(EACCES);
516 goto out;
517 }
518
519 dsl_dir_rele(dd, FTAG);
520 dsl_pool_rele(dp, FTAG);
521
522 return (0);
523
524 out:
525 if (dd != NULL)
526 dsl_dir_rele(dd, FTAG);
527 if (dp != NULL)
528 dsl_pool_rele(dp, FTAG);
529
530 return (ret);
531 }
532
533 static void
534 dsl_crypto_key_free(dsl_crypto_key_t *dck)
535 {
536 ASSERT(zfs_refcount_count(&dck->dck_holds) == 0);
537
538 /* destroy the zio_crypt_key_t */
539 zio_crypt_key_destroy(&dck->dck_key);
540
541 /* free the refcount, wrapping key, and lock */
542 zfs_refcount_destroy(&dck->dck_holds);
543 if (dck->dck_wkey)
544 dsl_wrapping_key_rele(dck->dck_wkey, dck);
545
546 /* free the key */
547 kmem_free(dck, sizeof (dsl_crypto_key_t));
548 }
549
550 static void
551 dsl_crypto_key_rele(dsl_crypto_key_t *dck, const void *tag)
552 {
553 if (zfs_refcount_remove(&dck->dck_holds, tag) == 0)
554 dsl_crypto_key_free(dck);
555 }
556
557 static int
558 dsl_crypto_key_open(objset_t *mos, dsl_wrapping_key_t *wkey,
559 uint64_t dckobj, const void *tag, dsl_crypto_key_t **dck_out)
560 {
561 int ret;
562 uint64_t crypt = 0, guid = 0, version = 0;
563 uint8_t raw_keydata[MASTER_KEY_MAX_LEN];
564 uint8_t raw_hmac_keydata[SHA512_HMAC_KEYLEN];
565 uint8_t iv[WRAPPING_IV_LEN];
566 uint8_t mac[WRAPPING_MAC_LEN];
567 dsl_crypto_key_t *dck;
568
569 /* allocate and initialize the key */
570 dck = kmem_zalloc(sizeof (dsl_crypto_key_t), KM_SLEEP);
571
572 /* fetch all of the values we need from the ZAP */
573 ret = zap_lookup(mos, dckobj, DSL_CRYPTO_KEY_CRYPTO_SUITE, 8, 1,
574 &crypt);
575 if (ret != 0)
576 goto error;
577
578 /* handle a future crypto suite that we don't support */
579 if (crypt >= ZIO_CRYPT_FUNCTIONS) {
580 ret = (SET_ERROR(ZFS_ERR_CRYPTO_NOTSUP));
581 goto error;
582 }
583
584 ret = zap_lookup(mos, dckobj, DSL_CRYPTO_KEY_GUID, 8, 1, &guid);
585 if (ret != 0)
586 goto error;
587
588 ret = zap_lookup(mos, dckobj, DSL_CRYPTO_KEY_MASTER_KEY, 1,
589 MASTER_KEY_MAX_LEN, raw_keydata);
590 if (ret != 0)
591 goto error;
592
593 ret = zap_lookup(mos, dckobj, DSL_CRYPTO_KEY_HMAC_KEY, 1,
594 SHA512_HMAC_KEYLEN, raw_hmac_keydata);
595 if (ret != 0)
596 goto error;
597
598 ret = zap_lookup(mos, dckobj, DSL_CRYPTO_KEY_IV, 1, WRAPPING_IV_LEN,
599 iv);
600 if (ret != 0)
601 goto error;
602
603 ret = zap_lookup(mos, dckobj, DSL_CRYPTO_KEY_MAC, 1, WRAPPING_MAC_LEN,
604 mac);
605 if (ret != 0)
606 goto error;
607
608 /* the initial on-disk format for encryption did not have a version */
609 (void) zap_lookup(mos, dckobj, DSL_CRYPTO_KEY_VERSION, 8, 1, &version);
610
611 /*
612 * Unwrap the keys. If there is an error return EACCES to indicate
613 * an authentication failure.
614 */
615 ret = zio_crypt_key_unwrap(&wkey->wk_key, crypt, version, guid,
616 raw_keydata, raw_hmac_keydata, iv, mac, &dck->dck_key);
617 if (ret != 0) {
618 ret = SET_ERROR(EACCES);
619 goto error;
620 }
621
622 /* finish initializing the dsl_crypto_key_t */
623 zfs_refcount_create(&dck->dck_holds);
624 dsl_wrapping_key_hold(wkey, dck);
625 dck->dck_wkey = wkey;
626 dck->dck_obj = dckobj;
627 zfs_refcount_add(&dck->dck_holds, tag);
628
629 *dck_out = dck;
630 return (0);
631
632 error:
633 if (dck != NULL) {
634 memset(dck, 0, sizeof (dsl_crypto_key_t));
635 kmem_free(dck, sizeof (dsl_crypto_key_t));
636 }
637
638 *dck_out = NULL;
639 return (ret);
640 }
641
642 static int
643 spa_keystore_dsl_key_hold_impl(spa_t *spa, uint64_t dckobj, const void *tag,
644 dsl_crypto_key_t **dck_out)
645 {
646 int ret;
647 dsl_crypto_key_t search_dck;
648 dsl_crypto_key_t *found_dck;
649
650 ASSERT(RW_LOCK_HELD(&spa->spa_keystore.sk_dk_lock));
651
652 /* init the search key */
653 search_dck.dck_obj = dckobj;
654
655 /* find the matching key in the keystore */
656 found_dck = avl_find(&spa->spa_keystore.sk_dsl_keys, &search_dck, NULL);
657 if (!found_dck) {
658 ret = SET_ERROR(ENOENT);
659 goto error;
660 }
661
662 /* increment the refcount */
663 zfs_refcount_add(&found_dck->dck_holds, tag);
664
665 *dck_out = found_dck;
666 return (0);
667
668 error:
669 *dck_out = NULL;
670 return (ret);
671 }
672
673 static int
674 spa_keystore_dsl_key_hold_dd(spa_t *spa, dsl_dir_t *dd, const void *tag,
675 dsl_crypto_key_t **dck_out)
676 {
677 int ret;
678 avl_index_t where;
679 dsl_crypto_key_t *dck_io = NULL, *dck_ks = NULL;
680 dsl_wrapping_key_t *wkey = NULL;
681 uint64_t dckobj = dd->dd_crypto_obj;
682
683 /* Lookup the key in the tree of currently loaded keys */
684 rw_enter(&spa->spa_keystore.sk_dk_lock, RW_READER);
685 ret = spa_keystore_dsl_key_hold_impl(spa, dckobj, tag, &dck_ks);
686 rw_exit(&spa->spa_keystore.sk_dk_lock);
687 if (ret == 0) {
688 *dck_out = dck_ks;
689 return (0);
690 }
691
692 /* Lookup the wrapping key from the keystore */
693 ret = spa_keystore_wkey_hold_dd(spa, dd, FTAG, &wkey);
694 if (ret != 0) {
695 *dck_out = NULL;
696 return (SET_ERROR(EACCES));
697 }
698
699 /* Read the key from disk */
700 ret = dsl_crypto_key_open(spa->spa_meta_objset, wkey, dckobj,
701 tag, &dck_io);
702 if (ret != 0) {
703 dsl_wrapping_key_rele(wkey, FTAG);
704 *dck_out = NULL;
705 return (ret);
706 }
707
708 /*
709 * Add the key to the keystore. It may already exist if it was
710 * added while performing the read from disk. In this case discard
711 * it and return the key from the keystore.
712 */
713 rw_enter(&spa->spa_keystore.sk_dk_lock, RW_WRITER);
714 ret = spa_keystore_dsl_key_hold_impl(spa, dckobj, tag, &dck_ks);
715 if (ret != 0) {
716 avl_find(&spa->spa_keystore.sk_dsl_keys, dck_io, &where);
717 avl_insert(&spa->spa_keystore.sk_dsl_keys, dck_io, where);
718 *dck_out = dck_io;
719 } else {
720 dsl_crypto_key_free(dck_io);
721 *dck_out = dck_ks;
722 }
723
724 /* Release the wrapping key (the dsl key now has a reference to it) */
725 dsl_wrapping_key_rele(wkey, FTAG);
726 rw_exit(&spa->spa_keystore.sk_dk_lock);
727
728 return (0);
729 }
730
731 void
732 spa_keystore_dsl_key_rele(spa_t *spa, dsl_crypto_key_t *dck, const void *tag)
733 {
734 rw_enter(&spa->spa_keystore.sk_dk_lock, RW_WRITER);
735
736 if (zfs_refcount_remove(&dck->dck_holds, tag) == 0) {
737 avl_remove(&spa->spa_keystore.sk_dsl_keys, dck);
738 dsl_crypto_key_free(dck);
739 }
740
741 rw_exit(&spa->spa_keystore.sk_dk_lock);
742 }
743
744 int
745 spa_keystore_load_wkey_impl(spa_t *spa, dsl_wrapping_key_t *wkey)
746 {
747 int ret;
748 avl_index_t where;
749 dsl_wrapping_key_t *found_wkey;
750
751 rw_enter(&spa->spa_keystore.sk_wkeys_lock, RW_WRITER);
752
753 /* insert the wrapping key into the keystore */
754 found_wkey = avl_find(&spa->spa_keystore.sk_wkeys, wkey, &where);
755 if (found_wkey != NULL) {
756 ret = SET_ERROR(EEXIST);
757 goto error_unlock;
758 }
759 avl_insert(&spa->spa_keystore.sk_wkeys, wkey, where);
760
761 rw_exit(&spa->spa_keystore.sk_wkeys_lock);
762
763 return (0);
764
765 error_unlock:
766 rw_exit(&spa->spa_keystore.sk_wkeys_lock);
767 return (ret);
768 }
769
770 int
771 spa_keystore_load_wkey(const char *dsname, dsl_crypto_params_t *dcp,
772 boolean_t noop)
773 {
774 int ret;
775 dsl_dir_t *dd = NULL;
776 dsl_crypto_key_t *dck = NULL;
777 dsl_wrapping_key_t *wkey = dcp->cp_wkey;
778 dsl_pool_t *dp = NULL;
779 uint64_t rddobj, keyformat, salt, iters;
780
781 /*
782 * We don't validate the wrapping key's keyformat, salt, or iters
783 * since they will never be needed after the DCK has been wrapped.
784 */
785 if (dcp->cp_wkey == NULL ||
786 dcp->cp_cmd != DCP_CMD_NONE ||
787 dcp->cp_crypt != ZIO_CRYPT_INHERIT ||
788 dcp->cp_keylocation != NULL)
789 return (SET_ERROR(EINVAL));
790
791 ret = dsl_pool_hold(dsname, FTAG, &dp);
792 if (ret != 0)
793 goto error;
794
795 if (!spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_ENCRYPTION)) {
796 ret = SET_ERROR(ENOTSUP);
797 goto error;
798 }
799
800 /* hold the dsl dir */
801 ret = dsl_dir_hold(dp, dsname, FTAG, &dd, NULL);
802 if (ret != 0) {
803 dd = NULL;
804 goto error;
805 }
806
807 /* confirm that dd is the encryption root */
808 ret = dsl_dir_get_encryption_root_ddobj(dd, &rddobj);
809 if (ret != 0 || rddobj != dd->dd_object) {
810 ret = SET_ERROR(EINVAL);
811 goto error;
812 }
813
814 /* initialize the wkey's ddobj */
815 wkey->wk_ddobj = dd->dd_object;
816
817 /* verify that the wkey is correct by opening its dsl key */
818 ret = dsl_crypto_key_open(dp->dp_meta_objset, wkey,
819 dd->dd_crypto_obj, FTAG, &dck);
820 if (ret != 0)
821 goto error;
822
823 /* initialize the wkey encryption parameters from the DSL Crypto Key */
824 ret = zap_lookup(dp->dp_meta_objset, dd->dd_crypto_obj,
825 zfs_prop_to_name(ZFS_PROP_KEYFORMAT), 8, 1, &keyformat);
826 if (ret != 0)
827 goto error;
828
829 ret = zap_lookup(dp->dp_meta_objset, dd->dd_crypto_obj,
830 zfs_prop_to_name(ZFS_PROP_PBKDF2_SALT), 8, 1, &salt);
831 if (ret != 0)
832 goto error;
833
834 ret = zap_lookup(dp->dp_meta_objset, dd->dd_crypto_obj,
835 zfs_prop_to_name(ZFS_PROP_PBKDF2_ITERS), 8, 1, &iters);
836 if (ret != 0)
837 goto error;
838
839 ASSERT3U(keyformat, <, ZFS_KEYFORMAT_FORMATS);
840 ASSERT3U(keyformat, !=, ZFS_KEYFORMAT_NONE);
841 IMPLY(keyformat == ZFS_KEYFORMAT_PASSPHRASE, iters != 0);
842 IMPLY(keyformat == ZFS_KEYFORMAT_PASSPHRASE, salt != 0);
843 IMPLY(keyformat != ZFS_KEYFORMAT_PASSPHRASE, iters == 0);
844 IMPLY(keyformat != ZFS_KEYFORMAT_PASSPHRASE, salt == 0);
845
846 wkey->wk_keyformat = keyformat;
847 wkey->wk_salt = salt;
848 wkey->wk_iters = iters;
849
850 /*
851 * At this point we have verified the wkey and confirmed that it can
852 * be used to decrypt a DSL Crypto Key. We can simply cleanup and
853 * return if this is all the user wanted to do.
854 */
855 if (noop)
856 goto error;
857
858 /* insert the wrapping key into the keystore */
859 ret = spa_keystore_load_wkey_impl(dp->dp_spa, wkey);
860 if (ret != 0)
861 goto error;
862
863 dsl_crypto_key_rele(dck, FTAG);
864 dsl_dir_rele(dd, FTAG);
865 dsl_pool_rele(dp, FTAG);
866
867 /* create any zvols under this ds */
868 zvol_create_minors_recursive(dsname);
869
870 return (0);
871
872 error:
873 if (dck != NULL)
874 dsl_crypto_key_rele(dck, FTAG);
875 if (dd != NULL)
876 dsl_dir_rele(dd, FTAG);
877 if (dp != NULL)
878 dsl_pool_rele(dp, FTAG);
879
880 return (ret);
881 }
882
883 int
884 spa_keystore_unload_wkey_impl(spa_t *spa, uint64_t ddobj)
885 {
886 int ret;
887 dsl_wrapping_key_t search_wkey;
888 dsl_wrapping_key_t *found_wkey;
889
890 /* init the search wrapping key */
891 search_wkey.wk_ddobj = ddobj;
892
893 rw_enter(&spa->spa_keystore.sk_wkeys_lock, RW_WRITER);
894
895 /* remove the wrapping key from the keystore */
896 found_wkey = avl_find(&spa->spa_keystore.sk_wkeys,
897 &search_wkey, NULL);
898 if (!found_wkey) {
899 ret = SET_ERROR(EACCES);
900 goto error_unlock;
901 } else if (zfs_refcount_count(&found_wkey->wk_refcnt) != 0) {
902 ret = SET_ERROR(EBUSY);
903 goto error_unlock;
904 }
905 avl_remove(&spa->spa_keystore.sk_wkeys, found_wkey);
906
907 rw_exit(&spa->spa_keystore.sk_wkeys_lock);
908
909 /* free the wrapping key */
910 dsl_wrapping_key_free(found_wkey);
911
912 return (0);
913
914 error_unlock:
915 rw_exit(&spa->spa_keystore.sk_wkeys_lock);
916 return (ret);
917 }
918
919 int
920 spa_keystore_unload_wkey(const char *dsname)
921 {
922 int ret = 0;
923 dsl_dir_t *dd = NULL;
924 dsl_pool_t *dp = NULL;
925 spa_t *spa = NULL;
926
927 ret = spa_open(dsname, &spa, FTAG);
928 if (ret != 0)
929 return (ret);
930
931 /*
932 * Wait for any outstanding txg IO to complete, releasing any
933 * remaining references on the wkey.
934 */
935 if (spa_mode(spa) != SPA_MODE_READ)
936 txg_wait_synced(spa->spa_dsl_pool, 0);
937
938 spa_close(spa, FTAG);
939
940 /* hold the dsl dir */
941 ret = dsl_pool_hold(dsname, FTAG, &dp);
942 if (ret != 0)
943 goto error;
944
945 if (!spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_ENCRYPTION)) {
946 ret = (SET_ERROR(ENOTSUP));
947 goto error;
948 }
949
950 ret = dsl_dir_hold(dp, dsname, FTAG, &dd, NULL);
951 if (ret != 0) {
952 dd = NULL;
953 goto error;
954 }
955
956 /* unload the wkey */
957 ret = spa_keystore_unload_wkey_impl(dp->dp_spa, dd->dd_object);
958 if (ret != 0)
959 goto error;
960
961 dsl_dir_rele(dd, FTAG);
962 dsl_pool_rele(dp, FTAG);
963
964 /* remove any zvols under this ds */
965 zvol_remove_minors(dp->dp_spa, dsname, B_TRUE);
966
967 return (0);
968
969 error:
970 if (dd != NULL)
971 dsl_dir_rele(dd, FTAG);
972 if (dp != NULL)
973 dsl_pool_rele(dp, FTAG);
974
975 return (ret);
976 }
977
978 void
979 key_mapping_add_ref(dsl_key_mapping_t *km, const void *tag)
980 {
981 ASSERT3U(zfs_refcount_count(&km->km_refcnt), >=, 1);
982 zfs_refcount_add(&km->km_refcnt, tag);
983 }
984
985 /*
986 * The locking here is a little tricky to ensure we don't cause unnecessary
987 * performance problems. We want to release a key mapping whenever someone
988 * decrements the refcount to 0, but freeing the mapping requires removing
989 * it from the spa_keystore, which requires holding sk_km_lock as a writer.
990 * Most of the time we don't want to hold this lock as a writer, since the
991 * same lock is held as a reader for each IO that needs to encrypt / decrypt
992 * data for any dataset and in practice we will only actually free the
993 * mapping after unmounting a dataset.
994 */
995 void
996 key_mapping_rele(spa_t *spa, dsl_key_mapping_t *km, const void *tag)
997 {
998 ASSERT3U(zfs_refcount_count(&km->km_refcnt), >=, 1);
999
1000 if (zfs_refcount_remove(&km->km_refcnt, tag) != 0)
1001 return;
1002
1003 /*
1004 * We think we are going to need to free the mapping. Add a
1005 * reference to prevent most other releasers from thinking
1006 * this might be their responsibility. This is inherently
1007 * racy, so we will confirm that we are legitimately the
1008 * last holder once we have the sk_km_lock as a writer.
1009 */
1010 zfs_refcount_add(&km->km_refcnt, FTAG);
1011
1012 rw_enter(&spa->spa_keystore.sk_km_lock, RW_WRITER);
1013 if (zfs_refcount_remove(&km->km_refcnt, FTAG) != 0) {
1014 rw_exit(&spa->spa_keystore.sk_km_lock);
1015 return;
1016 }
1017
1018 avl_remove(&spa->spa_keystore.sk_key_mappings, km);
1019 rw_exit(&spa->spa_keystore.sk_km_lock);
1020
1021 spa_keystore_dsl_key_rele(spa, km->km_key, km);
1022 zfs_refcount_destroy(&km->km_refcnt);
1023 kmem_free(km, sizeof (dsl_key_mapping_t));
1024 }
1025
1026 int
1027 spa_keystore_create_mapping(spa_t *spa, dsl_dataset_t *ds, const void *tag,
1028 dsl_key_mapping_t **km_out)
1029 {
1030 int ret;
1031 avl_index_t where;
1032 dsl_key_mapping_t *km, *found_km;
1033 boolean_t should_free = B_FALSE;
1034
1035 /* Allocate and initialize the mapping */
1036 km = kmem_zalloc(sizeof (dsl_key_mapping_t), KM_SLEEP);
1037 zfs_refcount_create(&km->km_refcnt);
1038
1039 ret = spa_keystore_dsl_key_hold_dd(spa, ds->ds_dir, km, &km->km_key);
1040 if (ret != 0) {
1041 zfs_refcount_destroy(&km->km_refcnt);
1042 kmem_free(km, sizeof (dsl_key_mapping_t));
1043
1044 if (km_out != NULL)
1045 *km_out = NULL;
1046 return (ret);
1047 }
1048
1049 km->km_dsobj = ds->ds_object;
1050
1051 rw_enter(&spa->spa_keystore.sk_km_lock, RW_WRITER);
1052
1053 /*
1054 * If a mapping already exists, simply increment its refcount and
1055 * cleanup the one we made. We want to allocate / free outside of
1056 * the lock because this lock is also used by the zio layer to lookup
1057 * key mappings. Otherwise, use the one we created. Normally, there will
1058 * only be one active reference at a time (the objset owner), but there
1059 * are times when there could be multiple async users.
1060 */
1061 found_km = avl_find(&spa->spa_keystore.sk_key_mappings, km, &where);
1062 if (found_km != NULL) {
1063 should_free = B_TRUE;
1064 zfs_refcount_add(&found_km->km_refcnt, tag);
1065 if (km_out != NULL)
1066 *km_out = found_km;
1067 } else {
1068 zfs_refcount_add(&km->km_refcnt, tag);
1069 avl_insert(&spa->spa_keystore.sk_key_mappings, km, where);
1070 if (km_out != NULL)
1071 *km_out = km;
1072 }
1073
1074 rw_exit(&spa->spa_keystore.sk_km_lock);
1075
1076 if (should_free) {
1077 spa_keystore_dsl_key_rele(spa, km->km_key, km);
1078 zfs_refcount_destroy(&km->km_refcnt);
1079 kmem_free(km, sizeof (dsl_key_mapping_t));
1080 }
1081
1082 return (0);
1083 }
1084
1085 int
1086 spa_keystore_remove_mapping(spa_t *spa, uint64_t dsobj, const void *tag)
1087 {
1088 int ret;
1089 dsl_key_mapping_t search_km;
1090 dsl_key_mapping_t *found_km;
1091
1092 /* init the search key mapping */
1093 search_km.km_dsobj = dsobj;
1094
1095 rw_enter(&spa->spa_keystore.sk_km_lock, RW_READER);
1096
1097 /* find the matching mapping */
1098 found_km = avl_find(&spa->spa_keystore.sk_key_mappings,
1099 &search_km, NULL);
1100 if (found_km == NULL) {
1101 ret = SET_ERROR(ENOENT);
1102 goto error_unlock;
1103 }
1104
1105 rw_exit(&spa->spa_keystore.sk_km_lock);
1106
1107 key_mapping_rele(spa, found_km, tag);
1108
1109 return (0);
1110
1111 error_unlock:
1112 rw_exit(&spa->spa_keystore.sk_km_lock);
1113 return (ret);
1114 }
1115
1116 /*
1117 * This function is primarily used by the zio and arc layer to lookup
1118 * DSL Crypto Keys for encryption. Callers must release the key with
1119 * spa_keystore_dsl_key_rele(). The function may also be called with
1120 * dck_out == NULL and tag == NULL to simply check that a key exists
1121 * without getting a reference to it.
1122 */
1123 int
1124 spa_keystore_lookup_key(spa_t *spa, uint64_t dsobj, const void *tag,
1125 dsl_crypto_key_t **dck_out)
1126 {
1127 int ret;
1128 dsl_key_mapping_t search_km;
1129 dsl_key_mapping_t *found_km;
1130
1131 ASSERT((tag != NULL && dck_out != NULL) ||
1132 (tag == NULL && dck_out == NULL));
1133
1134 /* init the search key mapping */
1135 search_km.km_dsobj = dsobj;
1136
1137 rw_enter(&spa->spa_keystore.sk_km_lock, RW_READER);
1138
1139 /* remove the mapping from the tree */
1140 found_km = avl_find(&spa->spa_keystore.sk_key_mappings, &search_km,
1141 NULL);
1142 if (found_km == NULL) {
1143 ret = SET_ERROR(ENOENT);
1144 goto error_unlock;
1145 }
1146
1147 if (found_km && tag)
1148 zfs_refcount_add(&found_km->km_key->dck_holds, tag);
1149
1150 rw_exit(&spa->spa_keystore.sk_km_lock);
1151
1152 if (dck_out != NULL)
1153 *dck_out = found_km->km_key;
1154 return (0);
1155
1156 error_unlock:
1157 rw_exit(&spa->spa_keystore.sk_km_lock);
1158
1159 if (dck_out != NULL)
1160 *dck_out = NULL;
1161 return (ret);
1162 }
1163
1164 static int
1165 dmu_objset_check_wkey_loaded(dsl_dir_t *dd)
1166 {
1167 int ret;
1168 dsl_wrapping_key_t *wkey = NULL;
1169
1170 ret = spa_keystore_wkey_hold_dd(dd->dd_pool->dp_spa, dd, FTAG,
1171 &wkey);
1172 if (ret != 0)
1173 return (SET_ERROR(EACCES));
1174
1175 dsl_wrapping_key_rele(wkey, FTAG);
1176
1177 return (0);
1178 }
1179
1180 zfs_keystatus_t
1181 dsl_dataset_get_keystatus(dsl_dir_t *dd)
1182 {
1183 /* check if this dd has a has a dsl key */
1184 if (dd->dd_crypto_obj == 0)
1185 return (ZFS_KEYSTATUS_NONE);
1186
1187 return (dmu_objset_check_wkey_loaded(dd) == 0 ?
1188 ZFS_KEYSTATUS_AVAILABLE : ZFS_KEYSTATUS_UNAVAILABLE);
1189 }
1190
1191 static int
1192 dsl_dir_get_crypt(dsl_dir_t *dd, uint64_t *crypt)
1193 {
1194 if (dd->dd_crypto_obj == 0) {
1195 *crypt = ZIO_CRYPT_OFF;
1196 return (0);
1197 }
1198
1199 return (zap_lookup(dd->dd_pool->dp_meta_objset, dd->dd_crypto_obj,
1200 DSL_CRYPTO_KEY_CRYPTO_SUITE, 8, 1, crypt));
1201 }
1202
1203 static void
1204 dsl_crypto_key_sync_impl(objset_t *mos, uint64_t dckobj, uint64_t crypt,
1205 uint64_t root_ddobj, uint64_t guid, uint8_t *iv, uint8_t *mac,
1206 uint8_t *keydata, uint8_t *hmac_keydata, uint64_t keyformat,
1207 uint64_t salt, uint64_t iters, dmu_tx_t *tx)
1208 {
1209 VERIFY0(zap_update(mos, dckobj, DSL_CRYPTO_KEY_CRYPTO_SUITE, 8, 1,
1210 &crypt, tx));
1211 VERIFY0(zap_update(mos, dckobj, DSL_CRYPTO_KEY_ROOT_DDOBJ, 8, 1,
1212 &root_ddobj, tx));
1213 VERIFY0(zap_update(mos, dckobj, DSL_CRYPTO_KEY_GUID, 8, 1,
1214 &guid, tx));
1215 VERIFY0(zap_update(mos, dckobj, DSL_CRYPTO_KEY_IV, 1, WRAPPING_IV_LEN,
1216 iv, tx));
1217 VERIFY0(zap_update(mos, dckobj, DSL_CRYPTO_KEY_MAC, 1, WRAPPING_MAC_LEN,
1218 mac, tx));
1219 VERIFY0(zap_update(mos, dckobj, DSL_CRYPTO_KEY_MASTER_KEY, 1,
1220 MASTER_KEY_MAX_LEN, keydata, tx));
1221 VERIFY0(zap_update(mos, dckobj, DSL_CRYPTO_KEY_HMAC_KEY, 1,
1222 SHA512_HMAC_KEYLEN, hmac_keydata, tx));
1223 VERIFY0(zap_update(mos, dckobj, zfs_prop_to_name(ZFS_PROP_KEYFORMAT),
1224 8, 1, &keyformat, tx));
1225 VERIFY0(zap_update(mos, dckobj, zfs_prop_to_name(ZFS_PROP_PBKDF2_SALT),
1226 8, 1, &salt, tx));
1227 VERIFY0(zap_update(mos, dckobj, zfs_prop_to_name(ZFS_PROP_PBKDF2_ITERS),
1228 8, 1, &iters, tx));
1229 }
1230
1231 static void
1232 dsl_crypto_key_sync(dsl_crypto_key_t *dck, dmu_tx_t *tx)
1233 {
1234 zio_crypt_key_t *key = &dck->dck_key;
1235 dsl_wrapping_key_t *wkey = dck->dck_wkey;
1236 uint8_t keydata[MASTER_KEY_MAX_LEN];
1237 uint8_t hmac_keydata[SHA512_HMAC_KEYLEN];
1238 uint8_t iv[WRAPPING_IV_LEN];
1239 uint8_t mac[WRAPPING_MAC_LEN];
1240
1241 ASSERT(dmu_tx_is_syncing(tx));
1242 ASSERT3U(key->zk_crypt, <, ZIO_CRYPT_FUNCTIONS);
1243
1244 /* encrypt and store the keys along with the IV and MAC */
1245 VERIFY0(zio_crypt_key_wrap(&dck->dck_wkey->wk_key, key, iv, mac,
1246 keydata, hmac_keydata));
1247
1248 /* update the ZAP with the obtained values */
1249 dsl_crypto_key_sync_impl(tx->tx_pool->dp_meta_objset, dck->dck_obj,
1250 key->zk_crypt, wkey->wk_ddobj, key->zk_guid, iv, mac, keydata,
1251 hmac_keydata, wkey->wk_keyformat, wkey->wk_salt, wkey->wk_iters,
1252 tx);
1253 }
1254
1255 typedef struct spa_keystore_change_key_args {
1256 const char *skcka_dsname;
1257 dsl_crypto_params_t *skcka_cp;
1258 } spa_keystore_change_key_args_t;
1259
1260 static int
1261 spa_keystore_change_key_check(void *arg, dmu_tx_t *tx)
1262 {
1263 int ret;
1264 dsl_dir_t *dd = NULL;
1265 dsl_pool_t *dp = dmu_tx_pool(tx);
1266 spa_keystore_change_key_args_t *skcka = arg;
1267 dsl_crypto_params_t *dcp = skcka->skcka_cp;
1268 uint64_t rddobj;
1269
1270 /* check for the encryption feature */
1271 if (!spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_ENCRYPTION)) {
1272 ret = SET_ERROR(ENOTSUP);
1273 goto error;
1274 }
1275
1276 /* check for valid key change command */
1277 if (dcp->cp_cmd != DCP_CMD_NEW_KEY &&
1278 dcp->cp_cmd != DCP_CMD_INHERIT &&
1279 dcp->cp_cmd != DCP_CMD_FORCE_NEW_KEY &&
1280 dcp->cp_cmd != DCP_CMD_FORCE_INHERIT) {
1281 ret = SET_ERROR(EINVAL);
1282 goto error;
1283 }
1284
1285 /* hold the dd */
1286 ret = dsl_dir_hold(dp, skcka->skcka_dsname, FTAG, &dd, NULL);
1287 if (ret != 0) {
1288 dd = NULL;
1289 goto error;
1290 }
1291
1292 /* verify that the dataset is encrypted */
1293 if (dd->dd_crypto_obj == 0) {
1294 ret = SET_ERROR(EINVAL);
1295 goto error;
1296 }
1297
1298 /* clones must always use their origin's key */
1299 if (dsl_dir_is_clone(dd)) {
1300 ret = SET_ERROR(EINVAL);
1301 goto error;
1302 }
1303
1304 /* lookup the ddobj we are inheriting the keylocation from */
1305 ret = dsl_dir_get_encryption_root_ddobj(dd, &rddobj);
1306 if (ret != 0)
1307 goto error;
1308
1309 /* Handle inheritance */
1310 if (dcp->cp_cmd == DCP_CMD_INHERIT ||
1311 dcp->cp_cmd == DCP_CMD_FORCE_INHERIT) {
1312 /* no other encryption params should be given */
1313 if (dcp->cp_crypt != ZIO_CRYPT_INHERIT ||
1314 dcp->cp_keylocation != NULL ||
1315 dcp->cp_wkey != NULL) {
1316 ret = SET_ERROR(EINVAL);
1317 goto error;
1318 }
1319
1320 /* check that this is an encryption root */
1321 if (dd->dd_object != rddobj) {
1322 ret = SET_ERROR(EINVAL);
1323 goto error;
1324 }
1325
1326 /* check that the parent is encrypted */
1327 if (dd->dd_parent->dd_crypto_obj == 0) {
1328 ret = SET_ERROR(EINVAL);
1329 goto error;
1330 }
1331
1332 /* if we are rewrapping check that both keys are loaded */
1333 if (dcp->cp_cmd == DCP_CMD_INHERIT) {
1334 ret = dmu_objset_check_wkey_loaded(dd);
1335 if (ret != 0)
1336 goto error;
1337
1338 ret = dmu_objset_check_wkey_loaded(dd->dd_parent);
1339 if (ret != 0)
1340 goto error;
1341 }
1342
1343 dsl_dir_rele(dd, FTAG);
1344 return (0);
1345 }
1346
1347 /* handle forcing an encryption root without rewrapping */
1348 if (dcp->cp_cmd == DCP_CMD_FORCE_NEW_KEY) {
1349 /* no other encryption params should be given */
1350 if (dcp->cp_crypt != ZIO_CRYPT_INHERIT ||
1351 dcp->cp_keylocation != NULL ||
1352 dcp->cp_wkey != NULL) {
1353 ret = SET_ERROR(EINVAL);
1354 goto error;
1355 }
1356
1357 /* check that this is not an encryption root */
1358 if (dd->dd_object == rddobj) {
1359 ret = SET_ERROR(EINVAL);
1360 goto error;
1361 }
1362
1363 dsl_dir_rele(dd, FTAG);
1364 return (0);
1365 }
1366
1367 /* crypt cannot be changed after creation */
1368 if (dcp->cp_crypt != ZIO_CRYPT_INHERIT) {
1369 ret = SET_ERROR(EINVAL);
1370 goto error;
1371 }
1372
1373 /* we are not inheritting our parent's wkey so we need one ourselves */
1374 if (dcp->cp_wkey == NULL) {
1375 ret = SET_ERROR(EINVAL);
1376 goto error;
1377 }
1378
1379 /* check for a valid keyformat for the new wrapping key */
1380 if (dcp->cp_wkey->wk_keyformat >= ZFS_KEYFORMAT_FORMATS ||
1381 dcp->cp_wkey->wk_keyformat == ZFS_KEYFORMAT_NONE) {
1382 ret = SET_ERROR(EINVAL);
1383 goto error;
1384 }
1385
1386 /*
1387 * If this dataset is not currently an encryption root we need a new
1388 * keylocation for this dataset's new wrapping key. Otherwise we can
1389 * just keep the one we already had.
1390 */
1391 if (dd->dd_object != rddobj && dcp->cp_keylocation == NULL) {
1392 ret = SET_ERROR(EINVAL);
1393 goto error;
1394 }
1395
1396 /* check that the keylocation is valid if it is not NULL */
1397 if (dcp->cp_keylocation != NULL &&
1398 !zfs_prop_valid_keylocation(dcp->cp_keylocation, B_TRUE)) {
1399 ret = SET_ERROR(EINVAL);
1400 goto error;
1401 }
1402
1403 /* passphrases require pbkdf2 salt and iters */
1404 if (dcp->cp_wkey->wk_keyformat == ZFS_KEYFORMAT_PASSPHRASE) {
1405 if (dcp->cp_wkey->wk_salt == 0 ||
1406 dcp->cp_wkey->wk_iters < MIN_PBKDF2_ITERATIONS) {
1407 ret = SET_ERROR(EINVAL);
1408 goto error;
1409 }
1410 } else {
1411 if (dcp->cp_wkey->wk_salt != 0 || dcp->cp_wkey->wk_iters != 0) {
1412 ret = SET_ERROR(EINVAL);
1413 goto error;
1414 }
1415 }
1416
1417 /* make sure the dd's wkey is loaded */
1418 ret = dmu_objset_check_wkey_loaded(dd);
1419 if (ret != 0)
1420 goto error;
1421
1422 dsl_dir_rele(dd, FTAG);
1423
1424 return (0);
1425
1426 error:
1427 if (dd != NULL)
1428 dsl_dir_rele(dd, FTAG);
1429
1430 return (ret);
1431 }
1432
1433 /*
1434 * This function deals with the intricacies of updating wrapping
1435 * key references and encryption roots recursively in the event
1436 * of a call to 'zfs change-key' or 'zfs promote'. The 'skip'
1437 * parameter should always be set to B_FALSE when called
1438 * externally.
1439 */
1440 static void
1441 spa_keystore_change_key_sync_impl(uint64_t rddobj, uint64_t ddobj,
1442 uint64_t new_rddobj, dsl_wrapping_key_t *wkey, boolean_t skip,
1443 dmu_tx_t *tx)
1444 {
1445 int ret;
1446 zap_cursor_t *zc;
1447 zap_attribute_t *za;
1448 dsl_pool_t *dp = dmu_tx_pool(tx);
1449 dsl_dir_t *dd = NULL;
1450 dsl_crypto_key_t *dck = NULL;
1451 uint64_t curr_rddobj;
1452
1453 ASSERT(RW_WRITE_HELD(&dp->dp_spa->spa_keystore.sk_wkeys_lock));
1454
1455 /* hold the dd */
1456 VERIFY0(dsl_dir_hold_obj(dp, ddobj, NULL, FTAG, &dd));
1457
1458 /* ignore special dsl dirs */
1459 if (dd->dd_myname[0] == '$' || dd->dd_myname[0] == '%') {
1460 dsl_dir_rele(dd, FTAG);
1461 return;
1462 }
1463
1464 ret = dsl_dir_get_encryption_root_ddobj(dd, &curr_rddobj);
1465 VERIFY(ret == 0 || ret == ENOENT);
1466
1467 /*
1468 * Stop recursing if this dsl dir didn't inherit from the root
1469 * or if this dd is a clone.
1470 */
1471 if (ret == ENOENT ||
1472 (!skip && (curr_rddobj != rddobj || dsl_dir_is_clone(dd)))) {
1473 dsl_dir_rele(dd, FTAG);
1474 return;
1475 }
1476
1477 /*
1478 * If we don't have a wrapping key just update the dck to reflect the
1479 * new encryption root. Otherwise rewrap the entire dck and re-sync it
1480 * to disk. If skip is set, we don't do any of this work.
1481 */
1482 if (!skip) {
1483 if (wkey == NULL) {
1484 VERIFY0(zap_update(dp->dp_meta_objset,
1485 dd->dd_crypto_obj,
1486 DSL_CRYPTO_KEY_ROOT_DDOBJ, 8, 1,
1487 &new_rddobj, tx));
1488 } else {
1489 VERIFY0(spa_keystore_dsl_key_hold_dd(dp->dp_spa, dd,
1490 FTAG, &dck));
1491 dsl_wrapping_key_hold(wkey, dck);
1492 dsl_wrapping_key_rele(dck->dck_wkey, dck);
1493 dck->dck_wkey = wkey;
1494 dsl_crypto_key_sync(dck, tx);
1495 spa_keystore_dsl_key_rele(dp->dp_spa, dck, FTAG);
1496 }
1497 }
1498
1499 zc = kmem_alloc(sizeof (zap_cursor_t), KM_SLEEP);
1500 za = kmem_alloc(sizeof (zap_attribute_t), KM_SLEEP);
1501
1502 /* Recurse into all child dsl dirs. */
1503 for (zap_cursor_init(zc, dp->dp_meta_objset,
1504 dsl_dir_phys(dd)->dd_child_dir_zapobj);
1505 zap_cursor_retrieve(zc, za) == 0;
1506 zap_cursor_advance(zc)) {
1507 spa_keystore_change_key_sync_impl(rddobj,
1508 za->za_first_integer, new_rddobj, wkey, B_FALSE, tx);
1509 }
1510 zap_cursor_fini(zc);
1511
1512 /*
1513 * Recurse into all dsl dirs of clones. We utilize the skip parameter
1514 * here so that we don't attempt to process the clones directly. This
1515 * is because the clone and its origin share the same dck, which has
1516 * already been updated.
1517 */
1518 for (zap_cursor_init(zc, dp->dp_meta_objset,
1519 dsl_dir_phys(dd)->dd_clones);
1520 zap_cursor_retrieve(zc, za) == 0;
1521 zap_cursor_advance(zc)) {
1522 dsl_dataset_t *clone;
1523
1524 VERIFY0(dsl_dataset_hold_obj(dp, za->za_first_integer,
1525 FTAG, &clone));
1526 spa_keystore_change_key_sync_impl(rddobj,
1527 clone->ds_dir->dd_object, new_rddobj, wkey, B_TRUE, tx);
1528 dsl_dataset_rele(clone, FTAG);
1529 }
1530 zap_cursor_fini(zc);
1531
1532 kmem_free(za, sizeof (zap_attribute_t));
1533 kmem_free(zc, sizeof (zap_cursor_t));
1534
1535 dsl_dir_rele(dd, FTAG);
1536 }
1537
1538 static void
1539 spa_keystore_change_key_sync(void *arg, dmu_tx_t *tx)
1540 {
1541 dsl_dataset_t *ds;
1542 avl_index_t where;
1543 dsl_pool_t *dp = dmu_tx_pool(tx);
1544 spa_t *spa = dp->dp_spa;
1545 spa_keystore_change_key_args_t *skcka = arg;
1546 dsl_crypto_params_t *dcp = skcka->skcka_cp;
1547 dsl_wrapping_key_t *wkey = NULL, *found_wkey;
1548 dsl_wrapping_key_t wkey_search;
1549 const char *keylocation = dcp->cp_keylocation;
1550 uint64_t rddobj, new_rddobj;
1551
1552 /* create and initialize the wrapping key */
1553 VERIFY0(dsl_dataset_hold(dp, skcka->skcka_dsname, FTAG, &ds));
1554 ASSERT(!ds->ds_is_snapshot);
1555
1556 if (dcp->cp_cmd == DCP_CMD_NEW_KEY ||
1557 dcp->cp_cmd == DCP_CMD_FORCE_NEW_KEY) {
1558 /*
1559 * We are changing to a new wkey. Set additional properties
1560 * which can be sent along with this ioctl. Note that this
1561 * command can set keylocation even if it can't normally be
1562 * set via 'zfs set' due to a non-local keylocation.
1563 */
1564 if (dcp->cp_cmd == DCP_CMD_NEW_KEY) {
1565 wkey = dcp->cp_wkey;
1566 wkey->wk_ddobj = ds->ds_dir->dd_object;
1567 } else {
1568 keylocation = "prompt";
1569 }
1570
1571 if (keylocation != NULL) {
1572 dsl_prop_set_sync_impl(ds,
1573 zfs_prop_to_name(ZFS_PROP_KEYLOCATION),
1574 ZPROP_SRC_LOCAL, 1, strlen(keylocation) + 1,
1575 keylocation, tx);
1576 }
1577
1578 VERIFY0(dsl_dir_get_encryption_root_ddobj(ds->ds_dir, &rddobj));
1579 new_rddobj = ds->ds_dir->dd_object;
1580 } else {
1581 /*
1582 * We are inheritting the parent's wkey. Unset any local
1583 * keylocation and grab a reference to the wkey.
1584 */
1585 if (dcp->cp_cmd == DCP_CMD_INHERIT) {
1586 VERIFY0(spa_keystore_wkey_hold_dd(spa,
1587 ds->ds_dir->dd_parent, FTAG, &wkey));
1588 }
1589
1590 dsl_prop_set_sync_impl(ds,
1591 zfs_prop_to_name(ZFS_PROP_KEYLOCATION), ZPROP_SRC_NONE,
1592 0, 0, NULL, tx);
1593
1594 rddobj = ds->ds_dir->dd_object;
1595 VERIFY0(dsl_dir_get_encryption_root_ddobj(ds->ds_dir->dd_parent,
1596 &new_rddobj));
1597 }
1598
1599 if (wkey == NULL) {
1600 ASSERT(dcp->cp_cmd == DCP_CMD_FORCE_INHERIT ||
1601 dcp->cp_cmd == DCP_CMD_FORCE_NEW_KEY);
1602 }
1603
1604 rw_enter(&spa->spa_keystore.sk_wkeys_lock, RW_WRITER);
1605
1606 /* recurse through all children and rewrap their keys */
1607 spa_keystore_change_key_sync_impl(rddobj, ds->ds_dir->dd_object,
1608 new_rddobj, wkey, B_FALSE, tx);
1609
1610 /*
1611 * All references to the old wkey should be released now (if it
1612 * existed). Replace the wrapping key.
1613 */
1614 wkey_search.wk_ddobj = ds->ds_dir->dd_object;
1615 found_wkey = avl_find(&spa->spa_keystore.sk_wkeys, &wkey_search, NULL);
1616 if (found_wkey != NULL) {
1617 ASSERT0(zfs_refcount_count(&found_wkey->wk_refcnt));
1618 avl_remove(&spa->spa_keystore.sk_wkeys, found_wkey);
1619 dsl_wrapping_key_free(found_wkey);
1620 }
1621
1622 if (dcp->cp_cmd == DCP_CMD_NEW_KEY) {
1623 avl_find(&spa->spa_keystore.sk_wkeys, wkey, &where);
1624 avl_insert(&spa->spa_keystore.sk_wkeys, wkey, where);
1625 } else if (wkey != NULL) {
1626 dsl_wrapping_key_rele(wkey, FTAG);
1627 }
1628
1629 rw_exit(&spa->spa_keystore.sk_wkeys_lock);
1630
1631 dsl_dataset_rele(ds, FTAG);
1632 }
1633
1634 int
1635 spa_keystore_change_key(const char *dsname, dsl_crypto_params_t *dcp)
1636 {
1637 spa_keystore_change_key_args_t skcka;
1638
1639 /* initialize the args struct */
1640 skcka.skcka_dsname = dsname;
1641 skcka.skcka_cp = dcp;
1642
1643 /*
1644 * Perform the actual work in syncing context. The blocks modified
1645 * here could be calculated but it would require holding the pool
1646 * lock and traversing all of the datasets that will have their keys
1647 * changed.
1648 */
1649 return (dsl_sync_task(dsname, spa_keystore_change_key_check,
1650 spa_keystore_change_key_sync, &skcka, 15,
1651 ZFS_SPACE_CHECK_RESERVED));
1652 }
1653
1654 int
1655 dsl_dir_rename_crypt_check(dsl_dir_t *dd, dsl_dir_t *newparent)
1656 {
1657 int ret;
1658 uint64_t curr_rddobj, parent_rddobj;
1659
1660 if (dd->dd_crypto_obj == 0)
1661 return (0);
1662
1663 ret = dsl_dir_get_encryption_root_ddobj(dd, &curr_rddobj);
1664 if (ret != 0)
1665 goto error;
1666
1667 /*
1668 * if this is not an encryption root, we must make sure we are not
1669 * moving dd to a new encryption root
1670 */
1671 if (dd->dd_object != curr_rddobj) {
1672 ret = dsl_dir_get_encryption_root_ddobj(newparent,
1673 &parent_rddobj);
1674 if (ret != 0)
1675 goto error;
1676
1677 if (parent_rddobj != curr_rddobj) {
1678 ret = SET_ERROR(EACCES);
1679 goto error;
1680 }
1681 }
1682
1683 return (0);
1684
1685 error:
1686 return (ret);
1687 }
1688
1689 /*
1690 * Check to make sure that a promote from targetdd to origindd will not require
1691 * any key rewraps.
1692 */
1693 int
1694 dsl_dataset_promote_crypt_check(dsl_dir_t *target, dsl_dir_t *origin)
1695 {
1696 int ret;
1697 uint64_t rddobj, op_rddobj, tp_rddobj;
1698
1699 /* If the dataset is not encrypted we don't need to check anything */
1700 if (origin->dd_crypto_obj == 0)
1701 return (0);
1702
1703 /*
1704 * If we are not changing the first origin snapshot in a chain
1705 * the encryption root won't change either.
1706 */
1707 if (dsl_dir_is_clone(origin))
1708 return (0);
1709
1710 /*
1711 * If the origin is the encryption root we will update
1712 * the DSL Crypto Key to point to the target instead.
1713 */
1714 ret = dsl_dir_get_encryption_root_ddobj(origin, &rddobj);
1715 if (ret != 0)
1716 return (ret);
1717
1718 if (rddobj == origin->dd_object)
1719 return (0);
1720
1721 /*
1722 * The origin is inheriting its encryption root from its parent.
1723 * Check that the parent of the target has the same encryption root.
1724 */
1725 ret = dsl_dir_get_encryption_root_ddobj(origin->dd_parent, &op_rddobj);
1726 if (ret == ENOENT)
1727 return (SET_ERROR(EACCES));
1728 else if (ret != 0)
1729 return (ret);
1730
1731 ret = dsl_dir_get_encryption_root_ddobj(target->dd_parent, &tp_rddobj);
1732 if (ret == ENOENT)
1733 return (SET_ERROR(EACCES));
1734 else if (ret != 0)
1735 return (ret);
1736
1737 if (op_rddobj != tp_rddobj)
1738 return (SET_ERROR(EACCES));
1739
1740 return (0);
1741 }
1742
1743 void
1744 dsl_dataset_promote_crypt_sync(dsl_dir_t *target, dsl_dir_t *origin,
1745 dmu_tx_t *tx)
1746 {
1747 uint64_t rddobj;
1748 dsl_pool_t *dp = target->dd_pool;
1749 dsl_dataset_t *targetds;
1750 dsl_dataset_t *originds;
1751 char *keylocation;
1752
1753 if (origin->dd_crypto_obj == 0)
1754 return;
1755 if (dsl_dir_is_clone(origin))
1756 return;
1757
1758 VERIFY0(dsl_dir_get_encryption_root_ddobj(origin, &rddobj));
1759
1760 if (rddobj != origin->dd_object)
1761 return;
1762
1763 /*
1764 * If the target is being promoted to the encryption root update the
1765 * DSL Crypto Key and keylocation to reflect that. We also need to
1766 * update the DSL Crypto Keys of all children inheritting their
1767 * encryption root to point to the new target. Otherwise, the check
1768 * function ensured that the encryption root will not change.
1769 */
1770 keylocation = kmem_alloc(ZAP_MAXVALUELEN, KM_SLEEP);
1771
1772 VERIFY0(dsl_dataset_hold_obj(dp,
1773 dsl_dir_phys(target)->dd_head_dataset_obj, FTAG, &targetds));
1774 VERIFY0(dsl_dataset_hold_obj(dp,
1775 dsl_dir_phys(origin)->dd_head_dataset_obj, FTAG, &originds));
1776
1777 VERIFY0(dsl_prop_get_dd(origin, zfs_prop_to_name(ZFS_PROP_KEYLOCATION),
1778 1, ZAP_MAXVALUELEN, keylocation, NULL, B_FALSE));
1779 dsl_prop_set_sync_impl(targetds, zfs_prop_to_name(ZFS_PROP_KEYLOCATION),
1780 ZPROP_SRC_LOCAL, 1, strlen(keylocation) + 1, keylocation, tx);
1781 dsl_prop_set_sync_impl(originds, zfs_prop_to_name(ZFS_PROP_KEYLOCATION),
1782 ZPROP_SRC_NONE, 0, 0, NULL, tx);
1783
1784 rw_enter(&dp->dp_spa->spa_keystore.sk_wkeys_lock, RW_WRITER);
1785 spa_keystore_change_key_sync_impl(rddobj, origin->dd_object,
1786 target->dd_object, NULL, B_FALSE, tx);
1787 rw_exit(&dp->dp_spa->spa_keystore.sk_wkeys_lock);
1788
1789 dsl_dataset_rele(targetds, FTAG);
1790 dsl_dataset_rele(originds, FTAG);
1791 kmem_free(keylocation, ZAP_MAXVALUELEN);
1792 }
1793
1794 int
1795 dmu_objset_create_crypt_check(dsl_dir_t *parentdd, dsl_crypto_params_t *dcp,
1796 boolean_t *will_encrypt)
1797 {
1798 int ret;
1799 uint64_t pcrypt, crypt;
1800 dsl_crypto_params_t dummy_dcp = { 0 };
1801
1802 if (will_encrypt != NULL)
1803 *will_encrypt = B_FALSE;
1804
1805 if (dcp == NULL)
1806 dcp = &dummy_dcp;
1807
1808 if (dcp->cp_cmd != DCP_CMD_NONE)
1809 return (SET_ERROR(EINVAL));
1810
1811 if (parentdd != NULL) {
1812 ret = dsl_dir_get_crypt(parentdd, &pcrypt);
1813 if (ret != 0)
1814 return (ret);
1815 } else {
1816 pcrypt = ZIO_CRYPT_OFF;
1817 }
1818
1819 crypt = (dcp->cp_crypt == ZIO_CRYPT_INHERIT) ? pcrypt : dcp->cp_crypt;
1820
1821 ASSERT3U(pcrypt, !=, ZIO_CRYPT_INHERIT);
1822 ASSERT3U(crypt, !=, ZIO_CRYPT_INHERIT);
1823
1824 /* check for valid dcp with no encryption (inherited or local) */
1825 if (crypt == ZIO_CRYPT_OFF) {
1826 /* Must not specify encryption params */
1827 if (dcp->cp_wkey != NULL ||
1828 (dcp->cp_keylocation != NULL &&
1829 strcmp(dcp->cp_keylocation, "none") != 0))
1830 return (SET_ERROR(EINVAL));
1831
1832 return (0);
1833 }
1834
1835 if (will_encrypt != NULL)
1836 *will_encrypt = B_TRUE;
1837
1838 /*
1839 * We will now definitely be encrypting. Check the feature flag. When
1840 * creating the pool the caller will check this for us since we won't
1841 * technically have the feature activated yet.
1842 */
1843 if (parentdd != NULL &&
1844 !spa_feature_is_enabled(parentdd->dd_pool->dp_spa,
1845 SPA_FEATURE_ENCRYPTION)) {
1846 return (SET_ERROR(EOPNOTSUPP));
1847 }
1848
1849 /* Check for errata #4 (encryption enabled, bookmark_v2 disabled) */
1850 if (parentdd != NULL &&
1851 !spa_feature_is_enabled(parentdd->dd_pool->dp_spa,
1852 SPA_FEATURE_BOOKMARK_V2)) {
1853 return (SET_ERROR(EOPNOTSUPP));
1854 }
1855
1856 /* handle inheritance */
1857 if (dcp->cp_wkey == NULL) {
1858 ASSERT3P(parentdd, !=, NULL);
1859
1860 /* key must be fully unspecified */
1861 if (dcp->cp_keylocation != NULL)
1862 return (SET_ERROR(EINVAL));
1863
1864 /* parent must have a key to inherit */
1865 if (pcrypt == ZIO_CRYPT_OFF)
1866 return (SET_ERROR(EINVAL));
1867
1868 /* check for parent key */
1869 ret = dmu_objset_check_wkey_loaded(parentdd);
1870 if (ret != 0)
1871 return (ret);
1872
1873 return (0);
1874 }
1875
1876 /* At this point we should have a fully specified key. Check location */
1877 if (dcp->cp_keylocation == NULL ||
1878 !zfs_prop_valid_keylocation(dcp->cp_keylocation, B_TRUE))
1879 return (SET_ERROR(EINVAL));
1880
1881 /* Must have fully specified keyformat */
1882 switch (dcp->cp_wkey->wk_keyformat) {
1883 case ZFS_KEYFORMAT_HEX:
1884 case ZFS_KEYFORMAT_RAW:
1885 /* requires no pbkdf2 iters and salt */
1886 if (dcp->cp_wkey->wk_salt != 0 || dcp->cp_wkey->wk_iters != 0)
1887 return (SET_ERROR(EINVAL));
1888 break;
1889 case ZFS_KEYFORMAT_PASSPHRASE:
1890 /* requires pbkdf2 iters and salt */
1891 if (dcp->cp_wkey->wk_salt == 0 ||
1892 dcp->cp_wkey->wk_iters < MIN_PBKDF2_ITERATIONS)
1893 return (SET_ERROR(EINVAL));
1894 break;
1895 case ZFS_KEYFORMAT_NONE:
1896 default:
1897 /* keyformat must be specified and valid */
1898 return (SET_ERROR(EINVAL));
1899 }
1900
1901 return (0);
1902 }
1903
1904 void
1905 dsl_dataset_create_crypt_sync(uint64_t dsobj, dsl_dir_t *dd,
1906 dsl_dataset_t *origin, dsl_crypto_params_t *dcp, dmu_tx_t *tx)
1907 {
1908 dsl_pool_t *dp = dd->dd_pool;
1909 uint64_t crypt;
1910 dsl_wrapping_key_t *wkey;
1911
1912 /* clones always use their origin's wrapping key */
1913 if (dsl_dir_is_clone(dd)) {
1914 ASSERT3P(dcp, ==, NULL);
1915
1916 /*
1917 * If this is an encrypted clone we just need to clone the
1918 * dck into dd. Zapify the dd so we can do that.
1919 */
1920 if (origin->ds_dir->dd_crypto_obj != 0) {
1921 dmu_buf_will_dirty(dd->dd_dbuf, tx);
1922 dsl_dir_zapify(dd, tx);
1923
1924 dd->dd_crypto_obj =
1925 dsl_crypto_key_clone_sync(origin->ds_dir, tx);
1926 VERIFY0(zap_add(dp->dp_meta_objset, dd->dd_object,
1927 DD_FIELD_CRYPTO_KEY_OBJ, sizeof (uint64_t), 1,
1928 &dd->dd_crypto_obj, tx));
1929 }
1930
1931 return;
1932 }
1933
1934 /*
1935 * A NULL dcp at this point indicates this is the origin dataset
1936 * which does not have an objset to encrypt. Raw receives will handle
1937 * encryption separately later. In both cases we can simply return.
1938 */
1939 if (dcp == NULL || dcp->cp_cmd == DCP_CMD_RAW_RECV)
1940 return;
1941
1942 crypt = dcp->cp_crypt;
1943 wkey = dcp->cp_wkey;
1944
1945 /* figure out the effective crypt */
1946 if (crypt == ZIO_CRYPT_INHERIT && dd->dd_parent != NULL)
1947 VERIFY0(dsl_dir_get_crypt(dd->dd_parent, &crypt));
1948
1949 /* if we aren't doing encryption just return */
1950 if (crypt == ZIO_CRYPT_OFF || crypt == ZIO_CRYPT_INHERIT)
1951 return;
1952
1953 /* zapify the dd so that we can add the crypto key obj to it */
1954 dmu_buf_will_dirty(dd->dd_dbuf, tx);
1955 dsl_dir_zapify(dd, tx);
1956
1957 /* use the new key if given or inherit from the parent */
1958 if (wkey == NULL) {
1959 VERIFY0(spa_keystore_wkey_hold_dd(dp->dp_spa,
1960 dd->dd_parent, FTAG, &wkey));
1961 } else {
1962 wkey->wk_ddobj = dd->dd_object;
1963 }
1964
1965 ASSERT3P(wkey, !=, NULL);
1966
1967 /* Create or clone the DSL crypto key and activate the feature */
1968 dd->dd_crypto_obj = dsl_crypto_key_create_sync(crypt, wkey, tx);
1969 VERIFY0(zap_add(dp->dp_meta_objset, dd->dd_object,
1970 DD_FIELD_CRYPTO_KEY_OBJ, sizeof (uint64_t), 1, &dd->dd_crypto_obj,
1971 tx));
1972 dsl_dataset_activate_feature(dsobj, SPA_FEATURE_ENCRYPTION,
1973 (void *)B_TRUE, tx);
1974
1975 /*
1976 * If we inherited the wrapping key we release our reference now.
1977 * Otherwise, this is a new key and we need to load it into the
1978 * keystore.
1979 */
1980 if (dcp->cp_wkey == NULL) {
1981 dsl_wrapping_key_rele(wkey, FTAG);
1982 } else {
1983 VERIFY0(spa_keystore_load_wkey_impl(dp->dp_spa, wkey));
1984 }
1985 }
1986
1987 typedef struct dsl_crypto_recv_key_arg {
1988 uint64_t dcrka_dsobj;
1989 uint64_t dcrka_fromobj;
1990 dmu_objset_type_t dcrka_ostype;
1991 nvlist_t *dcrka_nvl;
1992 boolean_t dcrka_do_key;
1993 } dsl_crypto_recv_key_arg_t;
1994
1995 static int
1996 dsl_crypto_recv_raw_objset_check(dsl_dataset_t *ds, dsl_dataset_t *fromds,
1997 dmu_objset_type_t ostype, nvlist_t *nvl, dmu_tx_t *tx)
1998 {
1999 int ret;
2000 objset_t *os;
2001 dnode_t *mdn;
2002 uint8_t *buf = NULL;
2003 uint_t len;
2004 uint64_t intval, nlevels, blksz, ibs;
2005 uint64_t nblkptr, maxblkid;
2006
2007 if (ostype != DMU_OST_ZFS && ostype != DMU_OST_ZVOL)
2008 return (SET_ERROR(EINVAL));
2009
2010 /* raw receives also need info about the structure of the metadnode */
2011 ret = nvlist_lookup_uint64(nvl, "mdn_compress", &intval);
2012 if (ret != 0 || intval >= ZIO_COMPRESS_LEGACY_FUNCTIONS)
2013 return (SET_ERROR(EINVAL));
2014
2015 ret = nvlist_lookup_uint64(nvl, "mdn_checksum", &intval);
2016 if (ret != 0 || intval >= ZIO_CHECKSUM_LEGACY_FUNCTIONS)
2017 return (SET_ERROR(EINVAL));
2018
2019 ret = nvlist_lookup_uint64(nvl, "mdn_nlevels", &nlevels);
2020 if (ret != 0 || nlevels > DN_MAX_LEVELS)
2021 return (SET_ERROR(EINVAL));
2022
2023 ret = nvlist_lookup_uint64(nvl, "mdn_blksz", &blksz);
2024 if (ret != 0 || blksz < SPA_MINBLOCKSIZE)
2025 return (SET_ERROR(EINVAL));
2026 else if (blksz > spa_maxblocksize(tx->tx_pool->dp_spa))
2027 return (SET_ERROR(ENOTSUP));
2028
2029 ret = nvlist_lookup_uint64(nvl, "mdn_indblkshift", &ibs);
2030 if (ret != 0 || ibs < DN_MIN_INDBLKSHIFT || ibs > DN_MAX_INDBLKSHIFT)
2031 return (SET_ERROR(ENOTSUP));
2032
2033 ret = nvlist_lookup_uint64(nvl, "mdn_nblkptr", &nblkptr);
2034 if (ret != 0 || nblkptr != DN_MAX_NBLKPTR)
2035 return (SET_ERROR(ENOTSUP));
2036
2037 ret = nvlist_lookup_uint64(nvl, "mdn_maxblkid", &maxblkid);
2038 if (ret != 0)
2039 return (SET_ERROR(EINVAL));
2040
2041 ret = nvlist_lookup_uint8_array(nvl, "portable_mac", &buf, &len);
2042 if (ret != 0 || len != ZIO_OBJSET_MAC_LEN)
2043 return (SET_ERROR(EINVAL));
2044
2045 ret = dmu_objset_from_ds(ds, &os);
2046 if (ret != 0)
2047 return (ret);
2048
2049 mdn = DMU_META_DNODE(os);
2050
2051 /*
2052 * If we already created the objset, make sure its unchangeable
2053 * properties match the ones received in the nvlist.
2054 */
2055 rrw_enter(&ds->ds_bp_rwlock, RW_READER, FTAG);
2056 if (!BP_IS_HOLE(dsl_dataset_get_blkptr(ds)) &&
2057 (mdn->dn_nlevels != nlevels || mdn->dn_datablksz != blksz ||
2058 mdn->dn_indblkshift != ibs || mdn->dn_nblkptr != nblkptr)) {
2059 rrw_exit(&ds->ds_bp_rwlock, FTAG);
2060 return (SET_ERROR(EINVAL));
2061 }
2062 rrw_exit(&ds->ds_bp_rwlock, FTAG);
2063
2064 /*
2065 * Check that the ivset guid of the fromds matches the one from the
2066 * send stream. Older versions of the encryption code did not have
2067 * an ivset guid on the from dataset and did not send one in the
2068 * stream. For these streams we provide the
2069 * zfs_disable_ivset_guid_check tunable to allow these datasets to
2070 * be received with a generated ivset guid.
2071 */
2072 if (fromds != NULL && !zfs_disable_ivset_guid_check) {
2073 uint64_t from_ivset_guid = 0;
2074 intval = 0;
2075
2076 (void) nvlist_lookup_uint64(nvl, "from_ivset_guid", &intval);
2077 (void) zap_lookup(tx->tx_pool->dp_meta_objset,
2078 fromds->ds_object, DS_FIELD_IVSET_GUID,
2079 sizeof (from_ivset_guid), 1, &from_ivset_guid);
2080
2081 if (intval == 0 || from_ivset_guid == 0)
2082 return (SET_ERROR(ZFS_ERR_FROM_IVSET_GUID_MISSING));
2083
2084 if (intval != from_ivset_guid)
2085 return (SET_ERROR(ZFS_ERR_FROM_IVSET_GUID_MISMATCH));
2086 }
2087
2088 return (0);
2089 }
2090
2091 static void
2092 dsl_crypto_recv_raw_objset_sync(dsl_dataset_t *ds, dmu_objset_type_t ostype,
2093 nvlist_t *nvl, dmu_tx_t *tx)
2094 {
2095 dsl_pool_t *dp = tx->tx_pool;
2096 objset_t *os;
2097 dnode_t *mdn;
2098 zio_t *zio;
2099 uint8_t *portable_mac;
2100 uint_t len;
2101 uint64_t compress, checksum, nlevels, blksz, ibs, maxblkid;
2102 boolean_t newds = B_FALSE;
2103
2104 VERIFY0(dmu_objset_from_ds(ds, &os));
2105 mdn = DMU_META_DNODE(os);
2106
2107 /*
2108 * Fetch the values we need from the nvlist. "to_ivset_guid" must
2109 * be set on the snapshot, which doesn't exist yet. The receive
2110 * code will take care of this for us later.
2111 */
2112 compress = fnvlist_lookup_uint64(nvl, "mdn_compress");
2113 checksum = fnvlist_lookup_uint64(nvl, "mdn_checksum");
2114 nlevels = fnvlist_lookup_uint64(nvl, "mdn_nlevels");
2115 blksz = fnvlist_lookup_uint64(nvl, "mdn_blksz");
2116 ibs = fnvlist_lookup_uint64(nvl, "mdn_indblkshift");
2117 maxblkid = fnvlist_lookup_uint64(nvl, "mdn_maxblkid");
2118 VERIFY0(nvlist_lookup_uint8_array(nvl, "portable_mac", &portable_mac,
2119 &len));
2120
2121 /* if we haven't created an objset for the ds yet, do that now */
2122 rrw_enter(&ds->ds_bp_rwlock, RW_READER, FTAG);
2123 if (BP_IS_HOLE(dsl_dataset_get_blkptr(ds))) {
2124 (void) dmu_objset_create_impl_dnstats(dp->dp_spa, ds,
2125 dsl_dataset_get_blkptr(ds), ostype, nlevels, blksz,
2126 ibs, tx);
2127 newds = B_TRUE;
2128 }
2129 rrw_exit(&ds->ds_bp_rwlock, FTAG);
2130
2131 /*
2132 * Set the portable MAC. The local MAC will always be zero since the
2133 * incoming data will all be portable and user accounting will be
2134 * deferred until the next mount. Afterwards, flag the os to be
2135 * written out raw next time.
2136 */
2137 arc_release(os->os_phys_buf, &os->os_phys_buf);
2138 memcpy(os->os_phys->os_portable_mac, portable_mac, ZIO_OBJSET_MAC_LEN);
2139 memset(os->os_phys->os_local_mac, 0, ZIO_OBJSET_MAC_LEN);
2140 os->os_flags &= ~OBJSET_FLAG_USERACCOUNTING_COMPLETE;
2141 os->os_next_write_raw[tx->tx_txg & TXG_MASK] = B_TRUE;
2142
2143 /* set metadnode compression and checksum */
2144 mdn->dn_compress = compress;
2145 mdn->dn_checksum = checksum;
2146
2147 rw_enter(&mdn->dn_struct_rwlock, RW_WRITER);
2148 dnode_new_blkid(mdn, maxblkid, tx, B_FALSE, B_TRUE);
2149 rw_exit(&mdn->dn_struct_rwlock);
2150
2151 /*
2152 * We can't normally dirty the dataset in syncing context unless
2153 * we are creating a new dataset. In this case, we perform a
2154 * pseudo txg sync here instead.
2155 */
2156 if (newds) {
2157 dsl_dataset_dirty(ds, tx);
2158 } else {
2159 zio = zio_root(dp->dp_spa, NULL, NULL, ZIO_FLAG_MUSTSUCCEED);
2160 dsl_dataset_sync(ds, zio, tx);
2161 VERIFY0(zio_wait(zio));
2162 dsl_dataset_sync_done(ds, tx);
2163 }
2164 }
2165
2166 int
2167 dsl_crypto_recv_raw_key_check(dsl_dataset_t *ds, nvlist_t *nvl, dmu_tx_t *tx)
2168 {
2169 int ret;
2170 objset_t *mos = tx->tx_pool->dp_meta_objset;
2171 uint8_t *buf = NULL;
2172 uint_t len;
2173 uint64_t intval, key_guid, version;
2174 boolean_t is_passphrase = B_FALSE;
2175
2176 ASSERT(dsl_dataset_phys(ds)->ds_flags & DS_FLAG_INCONSISTENT);
2177
2178 /*
2179 * Read and check all the encryption values from the nvlist. We need
2180 * all of the fields of a DSL Crypto Key, as well as a fully specified
2181 * wrapping key.
2182 */
2183 ret = nvlist_lookup_uint64(nvl, DSL_CRYPTO_KEY_CRYPTO_SUITE, &intval);
2184 if (ret != 0 || intval <= ZIO_CRYPT_OFF)
2185 return (SET_ERROR(EINVAL));
2186
2187 /*
2188 * Flag a future crypto suite that we don't support differently, so
2189 * we can return a more useful error to the user.
2190 */
2191 if (intval >= ZIO_CRYPT_FUNCTIONS)
2192 return (SET_ERROR(ZFS_ERR_CRYPTO_NOTSUP));
2193
2194 ret = nvlist_lookup_uint64(nvl, DSL_CRYPTO_KEY_GUID, &intval);
2195 if (ret != 0)
2196 return (SET_ERROR(EINVAL));
2197
2198 /*
2199 * If this is an incremental receive make sure the given key guid
2200 * matches the one we already have.
2201 */
2202 if (ds->ds_dir->dd_crypto_obj != 0) {
2203 ret = zap_lookup(mos, ds->ds_dir->dd_crypto_obj,
2204 DSL_CRYPTO_KEY_GUID, 8, 1, &key_guid);
2205 if (ret != 0)
2206 return (ret);
2207 if (intval != key_guid)
2208 return (SET_ERROR(EACCES));
2209 }
2210
2211 ret = nvlist_lookup_uint8_array(nvl, DSL_CRYPTO_KEY_MASTER_KEY,
2212 &buf, &len);
2213 if (ret != 0 || len != MASTER_KEY_MAX_LEN)
2214 return (SET_ERROR(EINVAL));
2215
2216 ret = nvlist_lookup_uint8_array(nvl, DSL_CRYPTO_KEY_HMAC_KEY,
2217 &buf, &len);
2218 if (ret != 0 || len != SHA512_HMAC_KEYLEN)
2219 return (SET_ERROR(EINVAL));
2220
2221 ret = nvlist_lookup_uint8_array(nvl, DSL_CRYPTO_KEY_IV, &buf, &len);
2222 if (ret != 0 || len != WRAPPING_IV_LEN)
2223 return (SET_ERROR(EINVAL));
2224
2225 ret = nvlist_lookup_uint8_array(nvl, DSL_CRYPTO_KEY_MAC, &buf, &len);
2226 if (ret != 0 || len != WRAPPING_MAC_LEN)
2227 return (SET_ERROR(EINVAL));
2228
2229 /*
2230 * We don't support receiving old on-disk formats. The version 0
2231 * implementation protected several fields in an objset that were
2232 * not always portable during a raw receive. As a result, we call
2233 * the old version an on-disk errata #3.
2234 */
2235 ret = nvlist_lookup_uint64(nvl, DSL_CRYPTO_KEY_VERSION, &version);
2236 if (ret != 0 || version != ZIO_CRYPT_KEY_CURRENT_VERSION)
2237 return (SET_ERROR(ENOTSUP));
2238
2239 ret = nvlist_lookup_uint64(nvl, zfs_prop_to_name(ZFS_PROP_KEYFORMAT),
2240 &intval);
2241 if (ret != 0 || intval >= ZFS_KEYFORMAT_FORMATS ||
2242 intval == ZFS_KEYFORMAT_NONE)
2243 return (SET_ERROR(EINVAL));
2244
2245 is_passphrase = (intval == ZFS_KEYFORMAT_PASSPHRASE);
2246
2247 /*
2248 * for raw receives we allow any number of pbkdf2iters since there
2249 * won't be a chance for the user to change it.
2250 */
2251 ret = nvlist_lookup_uint64(nvl, zfs_prop_to_name(ZFS_PROP_PBKDF2_ITERS),
2252 &intval);
2253 if (ret != 0 || (is_passphrase == (intval == 0)))
2254 return (SET_ERROR(EINVAL));
2255
2256 ret = nvlist_lookup_uint64(nvl, zfs_prop_to_name(ZFS_PROP_PBKDF2_SALT),
2257 &intval);
2258 if (ret != 0 || (is_passphrase == (intval == 0)))
2259 return (SET_ERROR(EINVAL));
2260
2261 return (0);
2262 }
2263
2264 void
2265 dsl_crypto_recv_raw_key_sync(dsl_dataset_t *ds, nvlist_t *nvl, dmu_tx_t *tx)
2266 {
2267 dsl_pool_t *dp = tx->tx_pool;
2268 objset_t *mos = dp->dp_meta_objset;
2269 dsl_dir_t *dd = ds->ds_dir;
2270 uint_t len;
2271 uint64_t rddobj, one = 1;
2272 uint8_t *keydata, *hmac_keydata, *iv, *mac;
2273 uint64_t crypt, key_guid, keyformat, iters, salt;
2274 uint64_t version = ZIO_CRYPT_KEY_CURRENT_VERSION;
2275 const char *keylocation = "prompt";
2276
2277 /* lookup the values we need to create the DSL Crypto Key */
2278 crypt = fnvlist_lookup_uint64(nvl, DSL_CRYPTO_KEY_CRYPTO_SUITE);
2279 key_guid = fnvlist_lookup_uint64(nvl, DSL_CRYPTO_KEY_GUID);
2280 keyformat = fnvlist_lookup_uint64(nvl,
2281 zfs_prop_to_name(ZFS_PROP_KEYFORMAT));
2282 iters = fnvlist_lookup_uint64(nvl,
2283 zfs_prop_to_name(ZFS_PROP_PBKDF2_ITERS));
2284 salt = fnvlist_lookup_uint64(nvl,
2285 zfs_prop_to_name(ZFS_PROP_PBKDF2_SALT));
2286 VERIFY0(nvlist_lookup_uint8_array(nvl, DSL_CRYPTO_KEY_MASTER_KEY,
2287 &keydata, &len));
2288 VERIFY0(nvlist_lookup_uint8_array(nvl, DSL_CRYPTO_KEY_HMAC_KEY,
2289 &hmac_keydata, &len));
2290 VERIFY0(nvlist_lookup_uint8_array(nvl, DSL_CRYPTO_KEY_IV, &iv, &len));
2291 VERIFY0(nvlist_lookup_uint8_array(nvl, DSL_CRYPTO_KEY_MAC, &mac, &len));
2292
2293 /* if this is a new dataset setup the DSL Crypto Key. */
2294 if (dd->dd_crypto_obj == 0) {
2295 /* zapify the dsl dir so we can add the key object to it */
2296 dmu_buf_will_dirty(dd->dd_dbuf, tx);
2297 dsl_dir_zapify(dd, tx);
2298
2299 /* create the DSL Crypto Key on disk and activate the feature */
2300 dd->dd_crypto_obj = zap_create(mos,
2301 DMU_OTN_ZAP_METADATA, DMU_OT_NONE, 0, tx);
2302 VERIFY0(zap_update(tx->tx_pool->dp_meta_objset,
2303 dd->dd_crypto_obj, DSL_CRYPTO_KEY_REFCOUNT,
2304 sizeof (uint64_t), 1, &one, tx));
2305 VERIFY0(zap_update(tx->tx_pool->dp_meta_objset,
2306 dd->dd_crypto_obj, DSL_CRYPTO_KEY_VERSION,
2307 sizeof (uint64_t), 1, &version, tx));
2308
2309 dsl_dataset_activate_feature(ds->ds_object,
2310 SPA_FEATURE_ENCRYPTION, (void *)B_TRUE, tx);
2311 ds->ds_feature[SPA_FEATURE_ENCRYPTION] = (void *)B_TRUE;
2312
2313 /* save the dd_crypto_obj on disk */
2314 VERIFY0(zap_add(mos, dd->dd_object, DD_FIELD_CRYPTO_KEY_OBJ,
2315 sizeof (uint64_t), 1, &dd->dd_crypto_obj, tx));
2316
2317 /*
2318 * Set the keylocation to prompt by default. If keylocation
2319 * has been provided via the properties, this will be overridden
2320 * later.
2321 */
2322 dsl_prop_set_sync_impl(ds,
2323 zfs_prop_to_name(ZFS_PROP_KEYLOCATION),
2324 ZPROP_SRC_LOCAL, 1, strlen(keylocation) + 1,
2325 keylocation, tx);
2326
2327 rddobj = dd->dd_object;
2328 } else {
2329 VERIFY0(dsl_dir_get_encryption_root_ddobj(dd, &rddobj));
2330 }
2331
2332 /* sync the key data to the ZAP object on disk */
2333 dsl_crypto_key_sync_impl(mos, dd->dd_crypto_obj, crypt,
2334 rddobj, key_guid, iv, mac, keydata, hmac_keydata, keyformat, salt,
2335 iters, tx);
2336 }
2337
2338 static int
2339 dsl_crypto_recv_key_check(void *arg, dmu_tx_t *tx)
2340 {
2341 int ret;
2342 dsl_crypto_recv_key_arg_t *dcrka = arg;
2343 dsl_dataset_t *ds = NULL, *fromds = NULL;
2344
2345 ret = dsl_dataset_hold_obj(tx->tx_pool, dcrka->dcrka_dsobj,
2346 FTAG, &ds);
2347 if (ret != 0)
2348 goto out;
2349
2350 if (dcrka->dcrka_fromobj != 0) {
2351 ret = dsl_dataset_hold_obj(tx->tx_pool, dcrka->dcrka_fromobj,
2352 FTAG, &fromds);
2353 if (ret != 0)
2354 goto out;
2355 }
2356
2357 ret = dsl_crypto_recv_raw_objset_check(ds, fromds,
2358 dcrka->dcrka_ostype, dcrka->dcrka_nvl, tx);
2359 if (ret != 0)
2360 goto out;
2361
2362 /*
2363 * We run this check even if we won't be doing this part of
2364 * the receive now so that we don't make the user wait until
2365 * the receive finishes to fail.
2366 */
2367 ret = dsl_crypto_recv_raw_key_check(ds, dcrka->dcrka_nvl, tx);
2368 if (ret != 0)
2369 goto out;
2370
2371 out:
2372 if (ds != NULL)
2373 dsl_dataset_rele(ds, FTAG);
2374 if (fromds != NULL)
2375 dsl_dataset_rele(fromds, FTAG);
2376 return (ret);
2377 }
2378
2379 static void
2380 dsl_crypto_recv_key_sync(void *arg, dmu_tx_t *tx)
2381 {
2382 dsl_crypto_recv_key_arg_t *dcrka = arg;
2383 dsl_dataset_t *ds;
2384
2385 VERIFY0(dsl_dataset_hold_obj(tx->tx_pool, dcrka->dcrka_dsobj,
2386 FTAG, &ds));
2387 dsl_crypto_recv_raw_objset_sync(ds, dcrka->dcrka_ostype,
2388 dcrka->dcrka_nvl, tx);
2389 if (dcrka->dcrka_do_key)
2390 dsl_crypto_recv_raw_key_sync(ds, dcrka->dcrka_nvl, tx);
2391 dsl_dataset_rele(ds, FTAG);
2392 }
2393
2394 /*
2395 * This function is used to sync an nvlist representing a DSL Crypto Key and
2396 * the associated encryption parameters. The key will be written exactly as is
2397 * without wrapping it.
2398 */
2399 int
2400 dsl_crypto_recv_raw(const char *poolname, uint64_t dsobj, uint64_t fromobj,
2401 dmu_objset_type_t ostype, nvlist_t *nvl, boolean_t do_key)
2402 {
2403 dsl_crypto_recv_key_arg_t dcrka;
2404
2405 dcrka.dcrka_dsobj = dsobj;
2406 dcrka.dcrka_fromobj = fromobj;
2407 dcrka.dcrka_ostype = ostype;
2408 dcrka.dcrka_nvl = nvl;
2409 dcrka.dcrka_do_key = do_key;
2410
2411 return (dsl_sync_task(poolname, dsl_crypto_recv_key_check,
2412 dsl_crypto_recv_key_sync, &dcrka, 1, ZFS_SPACE_CHECK_NORMAL));
2413 }
2414
2415 int
2416 dsl_crypto_populate_key_nvlist(objset_t *os, uint64_t from_ivset_guid,
2417 nvlist_t **nvl_out)
2418 {
2419 int ret;
2420 dsl_dataset_t *ds = os->os_dsl_dataset;
2421 dnode_t *mdn;
2422 uint64_t rddobj;
2423 nvlist_t *nvl = NULL;
2424 uint64_t dckobj = ds->ds_dir->dd_crypto_obj;
2425 dsl_dir_t *rdd = NULL;
2426 dsl_pool_t *dp = ds->ds_dir->dd_pool;
2427 objset_t *mos = dp->dp_meta_objset;
2428 uint64_t crypt = 0, key_guid = 0, format = 0;
2429 uint64_t iters = 0, salt = 0, version = 0;
2430 uint64_t to_ivset_guid = 0;
2431 uint8_t raw_keydata[MASTER_KEY_MAX_LEN];
2432 uint8_t raw_hmac_keydata[SHA512_HMAC_KEYLEN];
2433 uint8_t iv[WRAPPING_IV_LEN];
2434 uint8_t mac[WRAPPING_MAC_LEN];
2435
2436 ASSERT(dckobj != 0);
2437
2438 mdn = DMU_META_DNODE(os);
2439
2440 nvl = fnvlist_alloc();
2441
2442 /* lookup values from the DSL Crypto Key */
2443 ret = zap_lookup(mos, dckobj, DSL_CRYPTO_KEY_CRYPTO_SUITE, 8, 1,
2444 &crypt);
2445 if (ret != 0)
2446 goto error;
2447
2448 ret = zap_lookup(mos, dckobj, DSL_CRYPTO_KEY_GUID, 8, 1, &key_guid);
2449 if (ret != 0)
2450 goto error;
2451
2452 ret = zap_lookup(mos, dckobj, DSL_CRYPTO_KEY_MASTER_KEY, 1,
2453 MASTER_KEY_MAX_LEN, raw_keydata);
2454 if (ret != 0)
2455 goto error;
2456
2457 ret = zap_lookup(mos, dckobj, DSL_CRYPTO_KEY_HMAC_KEY, 1,
2458 SHA512_HMAC_KEYLEN, raw_hmac_keydata);
2459 if (ret != 0)
2460 goto error;
2461
2462 ret = zap_lookup(mos, dckobj, DSL_CRYPTO_KEY_IV, 1, WRAPPING_IV_LEN,
2463 iv);
2464 if (ret != 0)
2465 goto error;
2466
2467 ret = zap_lookup(mos, dckobj, DSL_CRYPTO_KEY_MAC, 1, WRAPPING_MAC_LEN,
2468 mac);
2469 if (ret != 0)
2470 goto error;
2471
2472 /* see zfs_disable_ivset_guid_check tunable for errata info */
2473 ret = zap_lookup(mos, ds->ds_object, DS_FIELD_IVSET_GUID, 8, 1,
2474 &to_ivset_guid);
2475 if (ret != 0)
2476 ASSERT3U(dp->dp_spa->spa_errata, !=, 0);
2477
2478 /*
2479 * We don't support raw sends of legacy on-disk formats. See the
2480 * comment in dsl_crypto_recv_key_check() for details.
2481 */
2482 ret = zap_lookup(mos, dckobj, DSL_CRYPTO_KEY_VERSION, 8, 1, &version);
2483 if (ret != 0 || version != ZIO_CRYPT_KEY_CURRENT_VERSION) {
2484 dp->dp_spa->spa_errata = ZPOOL_ERRATA_ZOL_6845_ENCRYPTION;
2485 ret = SET_ERROR(ENOTSUP);
2486 goto error;
2487 }
2488
2489 /*
2490 * Lookup wrapping key properties. An early version of the code did
2491 * not correctly add these values to the wrapping key or the DSL
2492 * Crypto Key on disk for non encryption roots, so to be safe we
2493 * always take the slightly circuitous route of looking it up from
2494 * the encryption root's key.
2495 */
2496 ret = dsl_dir_get_encryption_root_ddobj(ds->ds_dir, &rddobj);
2497 if (ret != 0)
2498 goto error;
2499
2500 dsl_pool_config_enter(dp, FTAG);
2501
2502 ret = dsl_dir_hold_obj(dp, rddobj, NULL, FTAG, &rdd);
2503 if (ret != 0)
2504 goto error_unlock;
2505
2506 ret = zap_lookup(dp->dp_meta_objset, rdd->dd_crypto_obj,
2507 zfs_prop_to_name(ZFS_PROP_KEYFORMAT), 8, 1, &format);
2508 if (ret != 0)
2509 goto error_unlock;
2510
2511 if (format == ZFS_KEYFORMAT_PASSPHRASE) {
2512 ret = zap_lookup(dp->dp_meta_objset, rdd->dd_crypto_obj,
2513 zfs_prop_to_name(ZFS_PROP_PBKDF2_ITERS), 8, 1, &iters);
2514 if (ret != 0)
2515 goto error_unlock;
2516
2517 ret = zap_lookup(dp->dp_meta_objset, rdd->dd_crypto_obj,
2518 zfs_prop_to_name(ZFS_PROP_PBKDF2_SALT), 8, 1, &salt);
2519 if (ret != 0)
2520 goto error_unlock;
2521 }
2522
2523 dsl_dir_rele(rdd, FTAG);
2524 dsl_pool_config_exit(dp, FTAG);
2525
2526 fnvlist_add_uint64(nvl, DSL_CRYPTO_KEY_CRYPTO_SUITE, crypt);
2527 fnvlist_add_uint64(nvl, DSL_CRYPTO_KEY_GUID, key_guid);
2528 fnvlist_add_uint64(nvl, DSL_CRYPTO_KEY_VERSION, version);
2529 VERIFY0(nvlist_add_uint8_array(nvl, DSL_CRYPTO_KEY_MASTER_KEY,
2530 raw_keydata, MASTER_KEY_MAX_LEN));
2531 VERIFY0(nvlist_add_uint8_array(nvl, DSL_CRYPTO_KEY_HMAC_KEY,
2532 raw_hmac_keydata, SHA512_HMAC_KEYLEN));
2533 VERIFY0(nvlist_add_uint8_array(nvl, DSL_CRYPTO_KEY_IV, iv,
2534 WRAPPING_IV_LEN));
2535 VERIFY0(nvlist_add_uint8_array(nvl, DSL_CRYPTO_KEY_MAC, mac,
2536 WRAPPING_MAC_LEN));
2537 VERIFY0(nvlist_add_uint8_array(nvl, "portable_mac",
2538 os->os_phys->os_portable_mac, ZIO_OBJSET_MAC_LEN));
2539 fnvlist_add_uint64(nvl, zfs_prop_to_name(ZFS_PROP_KEYFORMAT), format);
2540 fnvlist_add_uint64(nvl, zfs_prop_to_name(ZFS_PROP_PBKDF2_ITERS), iters);
2541 fnvlist_add_uint64(nvl, zfs_prop_to_name(ZFS_PROP_PBKDF2_SALT), salt);
2542 fnvlist_add_uint64(nvl, "mdn_checksum", mdn->dn_checksum);
2543 fnvlist_add_uint64(nvl, "mdn_compress", mdn->dn_compress);
2544 fnvlist_add_uint64(nvl, "mdn_nlevels", mdn->dn_nlevels);
2545 fnvlist_add_uint64(nvl, "mdn_blksz", mdn->dn_datablksz);
2546 fnvlist_add_uint64(nvl, "mdn_indblkshift", mdn->dn_indblkshift);
2547 fnvlist_add_uint64(nvl, "mdn_nblkptr", mdn->dn_nblkptr);
2548 fnvlist_add_uint64(nvl, "mdn_maxblkid", mdn->dn_maxblkid);
2549 fnvlist_add_uint64(nvl, "to_ivset_guid", to_ivset_guid);
2550 fnvlist_add_uint64(nvl, "from_ivset_guid", from_ivset_guid);
2551
2552 *nvl_out = nvl;
2553 return (0);
2554
2555 error_unlock:
2556 dsl_pool_config_exit(dp, FTAG);
2557 error:
2558 if (rdd != NULL)
2559 dsl_dir_rele(rdd, FTAG);
2560 nvlist_free(nvl);
2561
2562 *nvl_out = NULL;
2563 return (ret);
2564 }
2565
2566 uint64_t
2567 dsl_crypto_key_create_sync(uint64_t crypt, dsl_wrapping_key_t *wkey,
2568 dmu_tx_t *tx)
2569 {
2570 dsl_crypto_key_t dck;
2571 uint64_t version = ZIO_CRYPT_KEY_CURRENT_VERSION;
2572 uint64_t one = 1ULL;
2573
2574 ASSERT(dmu_tx_is_syncing(tx));
2575 ASSERT3U(crypt, <, ZIO_CRYPT_FUNCTIONS);
2576 ASSERT3U(crypt, >, ZIO_CRYPT_OFF);
2577
2578 /* create the DSL Crypto Key ZAP object */
2579 dck.dck_obj = zap_create(tx->tx_pool->dp_meta_objset,
2580 DMU_OTN_ZAP_METADATA, DMU_OT_NONE, 0, tx);
2581
2582 /* fill in the key (on the stack) and sync it to disk */
2583 dck.dck_wkey = wkey;
2584 VERIFY0(zio_crypt_key_init(crypt, &dck.dck_key));
2585
2586 dsl_crypto_key_sync(&dck, tx);
2587 VERIFY0(zap_update(tx->tx_pool->dp_meta_objset, dck.dck_obj,
2588 DSL_CRYPTO_KEY_REFCOUNT, sizeof (uint64_t), 1, &one, tx));
2589 VERIFY0(zap_update(tx->tx_pool->dp_meta_objset, dck.dck_obj,
2590 DSL_CRYPTO_KEY_VERSION, sizeof (uint64_t), 1, &version, tx));
2591
2592 zio_crypt_key_destroy(&dck.dck_key);
2593 memset(&dck.dck_key, 0, sizeof (zio_crypt_key_t));
2594
2595 return (dck.dck_obj);
2596 }
2597
2598 uint64_t
2599 dsl_crypto_key_clone_sync(dsl_dir_t *origindd, dmu_tx_t *tx)
2600 {
2601 objset_t *mos = tx->tx_pool->dp_meta_objset;
2602
2603 ASSERT(dmu_tx_is_syncing(tx));
2604
2605 VERIFY0(zap_increment(mos, origindd->dd_crypto_obj,
2606 DSL_CRYPTO_KEY_REFCOUNT, 1, tx));
2607
2608 return (origindd->dd_crypto_obj);
2609 }
2610
2611 void
2612 dsl_crypto_key_destroy_sync(uint64_t dckobj, dmu_tx_t *tx)
2613 {
2614 objset_t *mos = tx->tx_pool->dp_meta_objset;
2615 uint64_t refcnt;
2616
2617 /* Decrement the refcount, destroy if this is the last reference */
2618 VERIFY0(zap_lookup(mos, dckobj, DSL_CRYPTO_KEY_REFCOUNT,
2619 sizeof (uint64_t), 1, &refcnt));
2620
2621 if (refcnt != 1) {
2622 VERIFY0(zap_increment(mos, dckobj, DSL_CRYPTO_KEY_REFCOUNT,
2623 -1, tx));
2624 } else {
2625 VERIFY0(zap_destroy(mos, dckobj, tx));
2626 }
2627 }
2628
2629 void
2630 dsl_dataset_crypt_stats(dsl_dataset_t *ds, nvlist_t *nv)
2631 {
2632 uint64_t intval;
2633 dsl_dir_t *dd = ds->ds_dir;
2634 dsl_dir_t *enc_root;
2635 char buf[ZFS_MAX_DATASET_NAME_LEN];
2636
2637 if (dd->dd_crypto_obj == 0)
2638 return;
2639
2640 intval = dsl_dataset_get_keystatus(dd);
2641 dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_KEYSTATUS, intval);
2642
2643 if (dsl_dir_get_crypt(dd, &intval) == 0)
2644 dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_ENCRYPTION, intval);
2645 if (zap_lookup(dd->dd_pool->dp_meta_objset, dd->dd_crypto_obj,
2646 DSL_CRYPTO_KEY_GUID, 8, 1, &intval) == 0) {
2647 dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_KEY_GUID, intval);
2648 }
2649 if (zap_lookup(dd->dd_pool->dp_meta_objset, dd->dd_crypto_obj,
2650 zfs_prop_to_name(ZFS_PROP_KEYFORMAT), 8, 1, &intval) == 0) {
2651 dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_KEYFORMAT, intval);
2652 }
2653 if (zap_lookup(dd->dd_pool->dp_meta_objset, dd->dd_crypto_obj,
2654 zfs_prop_to_name(ZFS_PROP_PBKDF2_SALT), 8, 1, &intval) == 0) {
2655 dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_PBKDF2_SALT, intval);
2656 }
2657 if (zap_lookup(dd->dd_pool->dp_meta_objset, dd->dd_crypto_obj,
2658 zfs_prop_to_name(ZFS_PROP_PBKDF2_ITERS), 8, 1, &intval) == 0) {
2659 dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_PBKDF2_ITERS, intval);
2660 }
2661 if (zap_lookup(dd->dd_pool->dp_meta_objset, ds->ds_object,
2662 DS_FIELD_IVSET_GUID, 8, 1, &intval) == 0) {
2663 dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_IVSET_GUID, intval);
2664 }
2665
2666 if (dsl_dir_get_encryption_root_ddobj(dd, &intval) == 0) {
2667 if (dsl_dir_hold_obj(dd->dd_pool, intval, NULL, FTAG,
2668 &enc_root) == 0) {
2669 dsl_dir_name(enc_root, buf);
2670 dsl_dir_rele(enc_root, FTAG);
2671 dsl_prop_nvlist_add_string(nv,
2672 ZFS_PROP_ENCRYPTION_ROOT, buf);
2673 }
2674 }
2675 }
2676
2677 int
2678 spa_crypt_get_salt(spa_t *spa, uint64_t dsobj, uint8_t *salt)
2679 {
2680 int ret;
2681 dsl_crypto_key_t *dck = NULL;
2682
2683 /* look up the key from the spa's keystore */
2684 ret = spa_keystore_lookup_key(spa, dsobj, FTAG, &dck);
2685 if (ret != 0)
2686 goto error;
2687
2688 ret = zio_crypt_key_get_salt(&dck->dck_key, salt);
2689 if (ret != 0)
2690 goto error;
2691
2692 spa_keystore_dsl_key_rele(spa, dck, FTAG);
2693 return (0);
2694
2695 error:
2696 if (dck != NULL)
2697 spa_keystore_dsl_key_rele(spa, dck, FTAG);
2698 return (ret);
2699 }
2700
2701 /*
2702 * Objset blocks are a special case for MAC generation. These blocks have 2
2703 * 256-bit MACs which are embedded within the block itself, rather than a
2704 * single 128 bit MAC. As a result, this function handles encoding and decoding
2705 * the MACs on its own, unlike other functions in this file.
2706 */
2707 int
2708 spa_do_crypt_objset_mac_abd(boolean_t generate, spa_t *spa, uint64_t dsobj,
2709 abd_t *abd, uint_t datalen, boolean_t byteswap)
2710 {
2711 int ret;
2712 dsl_crypto_key_t *dck = NULL;
2713 void *buf = abd_borrow_buf_copy(abd, datalen);
2714 objset_phys_t *osp = buf;
2715 uint8_t portable_mac[ZIO_OBJSET_MAC_LEN];
2716 uint8_t local_mac[ZIO_OBJSET_MAC_LEN];
2717 const uint8_t zeroed_mac[ZIO_OBJSET_MAC_LEN] = {0};
2718
2719 /* look up the key from the spa's keystore */
2720 ret = spa_keystore_lookup_key(spa, dsobj, FTAG, &dck);
2721 if (ret != 0)
2722 goto error;
2723
2724 /* calculate both HMACs */
2725 ret = zio_crypt_do_objset_hmacs(&dck->dck_key, buf, datalen,
2726 byteswap, portable_mac, local_mac);
2727 if (ret != 0)
2728 goto error;
2729
2730 spa_keystore_dsl_key_rele(spa, dck, FTAG);
2731
2732 /* if we are generating encode the HMACs in the objset_phys_t */
2733 if (generate) {
2734 memcpy(osp->os_portable_mac, portable_mac, ZIO_OBJSET_MAC_LEN);
2735 memcpy(osp->os_local_mac, local_mac, ZIO_OBJSET_MAC_LEN);
2736 abd_return_buf_copy(abd, buf, datalen);
2737 return (0);
2738 }
2739
2740 if (memcmp(portable_mac, osp->os_portable_mac,
2741 ZIO_OBJSET_MAC_LEN) != 0 ||
2742 memcmp(local_mac, osp->os_local_mac, ZIO_OBJSET_MAC_LEN) != 0) {
2743 /*
2744 * If the MAC is zeroed out, we failed to decrypt it.
2745 * This should only arise, at least on Linux,
2746 * if we hit edge case handling for useraccounting, since we
2747 * shouldn't get here without bailing out on error earlier
2748 * otherwise.
2749 *
2750 * So if we're in that case, we can just fall through and
2751 * special-casing noticing that it's zero will handle it
2752 * elsewhere, since we can just regenerate it.
2753 */
2754 if (memcmp(local_mac, zeroed_mac, ZIO_OBJSET_MAC_LEN) != 0) {
2755 abd_return_buf(abd, buf, datalen);
2756 return (SET_ERROR(ECKSUM));
2757 }
2758 }
2759
2760 abd_return_buf(abd, buf, datalen);
2761
2762 return (0);
2763
2764 error:
2765 if (dck != NULL)
2766 spa_keystore_dsl_key_rele(spa, dck, FTAG);
2767 abd_return_buf(abd, buf, datalen);
2768 return (ret);
2769 }
2770
2771 int
2772 spa_do_crypt_mac_abd(boolean_t generate, spa_t *spa, uint64_t dsobj, abd_t *abd,
2773 uint_t datalen, uint8_t *mac)
2774 {
2775 int ret;
2776 dsl_crypto_key_t *dck = NULL;
2777 uint8_t *buf = abd_borrow_buf_copy(abd, datalen);
2778 uint8_t digestbuf[ZIO_DATA_MAC_LEN];
2779
2780 /* look up the key from the spa's keystore */
2781 ret = spa_keystore_lookup_key(spa, dsobj, FTAG, &dck);
2782 if (ret != 0)
2783 goto error;
2784
2785 /* perform the hmac */
2786 ret = zio_crypt_do_hmac(&dck->dck_key, buf, datalen,
2787 digestbuf, ZIO_DATA_MAC_LEN);
2788 if (ret != 0)
2789 goto error;
2790
2791 abd_return_buf(abd, buf, datalen);
2792 spa_keystore_dsl_key_rele(spa, dck, FTAG);
2793
2794 /*
2795 * Truncate and fill in mac buffer if we were asked to generate a MAC.
2796 * Otherwise verify that the MAC matched what we expected.
2797 */
2798 if (generate) {
2799 memcpy(mac, digestbuf, ZIO_DATA_MAC_LEN);
2800 return (0);
2801 }
2802
2803 if (memcmp(digestbuf, mac, ZIO_DATA_MAC_LEN) != 0)
2804 return (SET_ERROR(ECKSUM));
2805
2806 return (0);
2807
2808 error:
2809 if (dck != NULL)
2810 spa_keystore_dsl_key_rele(spa, dck, FTAG);
2811 abd_return_buf(abd, buf, datalen);
2812 return (ret);
2813 }
2814
2815 /*
2816 * This function serves as a multiplexer for encryption and decryption of
2817 * all blocks (except the L2ARC). For encryption, it will populate the IV,
2818 * salt, MAC, and cabd (the ciphertext). On decryption it will simply use
2819 * these fields to populate pabd (the plaintext).
2820 */
2821 int
2822 spa_do_crypt_abd(boolean_t encrypt, spa_t *spa, const zbookmark_phys_t *zb,
2823 dmu_object_type_t ot, boolean_t dedup, boolean_t bswap, uint8_t *salt,
2824 uint8_t *iv, uint8_t *mac, uint_t datalen, abd_t *pabd, abd_t *cabd,
2825 boolean_t *no_crypt)
2826 {
2827 int ret;
2828 dsl_crypto_key_t *dck = NULL;
2829 uint8_t *plainbuf = NULL, *cipherbuf = NULL;
2830
2831 ASSERT(spa_feature_is_active(spa, SPA_FEATURE_ENCRYPTION));
2832
2833 /* look up the key from the spa's keystore */
2834 ret = spa_keystore_lookup_key(spa, zb->zb_objset, FTAG, &dck);
2835 if (ret != 0) {
2836 ret = SET_ERROR(EACCES);
2837 return (ret);
2838 }
2839
2840 if (encrypt) {
2841 plainbuf = abd_borrow_buf_copy(pabd, datalen);
2842 cipherbuf = abd_borrow_buf(cabd, datalen);
2843 } else {
2844 plainbuf = abd_borrow_buf(pabd, datalen);
2845 cipherbuf = abd_borrow_buf_copy(cabd, datalen);
2846 }
2847
2848 /*
2849 * Both encryption and decryption functions need a salt for key
2850 * generation and an IV. When encrypting a non-dedup block, we
2851 * generate the salt and IV randomly to be stored by the caller. Dedup
2852 * blocks perform a (more expensive) HMAC of the plaintext to obtain
2853 * the salt and the IV. ZIL blocks have their salt and IV generated
2854 * at allocation time in zio_alloc_zil(). On decryption, we simply use
2855 * the provided values.
2856 */
2857 if (encrypt && ot != DMU_OT_INTENT_LOG && !dedup) {
2858 ret = zio_crypt_key_get_salt(&dck->dck_key, salt);
2859 if (ret != 0)
2860 goto error;
2861
2862 ret = zio_crypt_generate_iv(iv);
2863 if (ret != 0)
2864 goto error;
2865 } else if (encrypt && dedup) {
2866 ret = zio_crypt_generate_iv_salt_dedup(&dck->dck_key,
2867 plainbuf, datalen, iv, salt);
2868 if (ret != 0)
2869 goto error;
2870 }
2871
2872 /* call lower level function to perform encryption / decryption */
2873 ret = zio_do_crypt_data(encrypt, &dck->dck_key, ot, bswap, salt, iv,
2874 mac, datalen, plainbuf, cipherbuf, no_crypt);
2875
2876 /*
2877 * Handle injected decryption faults. Unfortunately, we cannot inject
2878 * faults for dnode blocks because we might trigger the panic in
2879 * dbuf_prepare_encrypted_dnode_leaf(), which exists because syncing
2880 * context is not prepared to handle malicious decryption failures.
2881 */
2882 if (zio_injection_enabled && !encrypt && ot != DMU_OT_DNODE && ret == 0)
2883 ret = zio_handle_decrypt_injection(spa, zb, ot, ECKSUM);
2884 if (ret != 0)
2885 goto error;
2886
2887 if (encrypt) {
2888 abd_return_buf(pabd, plainbuf, datalen);
2889 abd_return_buf_copy(cabd, cipherbuf, datalen);
2890 } else {
2891 abd_return_buf_copy(pabd, plainbuf, datalen);
2892 abd_return_buf(cabd, cipherbuf, datalen);
2893 }
2894
2895 spa_keystore_dsl_key_rele(spa, dck, FTAG);
2896
2897 return (0);
2898
2899 error:
2900 if (encrypt) {
2901 /* zero out any state we might have changed while encrypting */
2902 memset(salt, 0, ZIO_DATA_SALT_LEN);
2903 memset(iv, 0, ZIO_DATA_IV_LEN);
2904 memset(mac, 0, ZIO_DATA_MAC_LEN);
2905 abd_return_buf(pabd, plainbuf, datalen);
2906 abd_return_buf_copy(cabd, cipherbuf, datalen);
2907 } else {
2908 abd_return_buf_copy(pabd, plainbuf, datalen);
2909 abd_return_buf(cabd, cipherbuf, datalen);
2910 }
2911
2912 spa_keystore_dsl_key_rele(spa, dck, FTAG);
2913
2914 return (ret);
2915 }
2916
2917 ZFS_MODULE_PARAM(zfs, zfs_, disable_ivset_guid_check, INT, ZMOD_RW,
2918 "Set to allow raw receives without IVset guids");