]> git.proxmox.com Git - mirror_zfs.git/blob - module/zfs/metaslab.c
Error path in metaslab_load_impl() forgets to drop ms_sync_lock
[mirror_zfs.git] / module / zfs / metaslab.c
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2011, 2018 by Delphix. All rights reserved.
24 * Copyright (c) 2013 by Saso Kiselkov. All rights reserved.
25 * Copyright (c) 2017, Intel Corporation.
26 */
27
28 #include <sys/zfs_context.h>
29 #include <sys/dmu.h>
30 #include <sys/dmu_tx.h>
31 #include <sys/space_map.h>
32 #include <sys/metaslab_impl.h>
33 #include <sys/vdev_impl.h>
34 #include <sys/zio.h>
35 #include <sys/spa_impl.h>
36 #include <sys/zfeature.h>
37 #include <sys/vdev_indirect_mapping.h>
38 #include <sys/zap.h>
39
40 #define WITH_DF_BLOCK_ALLOCATOR
41
42 #define GANG_ALLOCATION(flags) \
43 ((flags) & (METASLAB_GANG_CHILD | METASLAB_GANG_HEADER))
44
45 /*
46 * Metaslab granularity, in bytes. This is roughly similar to what would be
47 * referred to as the "stripe size" in traditional RAID arrays. In normal
48 * operation, we will try to write this amount of data to a top-level vdev
49 * before moving on to the next one.
50 */
51 unsigned long metaslab_aliquot = 512 << 10;
52
53 /*
54 * For testing, make some blocks above a certain size be gang blocks.
55 */
56 unsigned long metaslab_force_ganging = SPA_MAXBLOCKSIZE + 1;
57
58 /*
59 * Since we can touch multiple metaslabs (and their respective space maps)
60 * with each transaction group, we benefit from having a smaller space map
61 * block size since it allows us to issue more I/O operations scattered
62 * around the disk.
63 */
64 int zfs_metaslab_sm_blksz = (1 << 12);
65
66 /*
67 * The in-core space map representation is more compact than its on-disk form.
68 * The zfs_condense_pct determines how much more compact the in-core
69 * space map representation must be before we compact it on-disk.
70 * Values should be greater than or equal to 100.
71 */
72 int zfs_condense_pct = 200;
73
74 /*
75 * Condensing a metaslab is not guaranteed to actually reduce the amount of
76 * space used on disk. In particular, a space map uses data in increments of
77 * MAX(1 << ashift, space_map_blksz), so a metaslab might use the
78 * same number of blocks after condensing. Since the goal of condensing is to
79 * reduce the number of IOPs required to read the space map, we only want to
80 * condense when we can be sure we will reduce the number of blocks used by the
81 * space map. Unfortunately, we cannot precisely compute whether or not this is
82 * the case in metaslab_should_condense since we are holding ms_lock. Instead,
83 * we apply the following heuristic: do not condense a spacemap unless the
84 * uncondensed size consumes greater than zfs_metaslab_condense_block_threshold
85 * blocks.
86 */
87 int zfs_metaslab_condense_block_threshold = 4;
88
89 /*
90 * The zfs_mg_noalloc_threshold defines which metaslab groups should
91 * be eligible for allocation. The value is defined as a percentage of
92 * free space. Metaslab groups that have more free space than
93 * zfs_mg_noalloc_threshold are always eligible for allocations. Once
94 * a metaslab group's free space is less than or equal to the
95 * zfs_mg_noalloc_threshold the allocator will avoid allocating to that
96 * group unless all groups in the pool have reached zfs_mg_noalloc_threshold.
97 * Once all groups in the pool reach zfs_mg_noalloc_threshold then all
98 * groups are allowed to accept allocations. Gang blocks are always
99 * eligible to allocate on any metaslab group. The default value of 0 means
100 * no metaslab group will be excluded based on this criterion.
101 */
102 int zfs_mg_noalloc_threshold = 0;
103
104 /*
105 * Metaslab groups are considered eligible for allocations if their
106 * fragmenation metric (measured as a percentage) is less than or equal to
107 * zfs_mg_fragmentation_threshold. If a metaslab group exceeds this threshold
108 * then it will be skipped unless all metaslab groups within the metaslab
109 * class have also crossed this threshold.
110 */
111 int zfs_mg_fragmentation_threshold = 85;
112
113 /*
114 * Allow metaslabs to keep their active state as long as their fragmentation
115 * percentage is less than or equal to zfs_metaslab_fragmentation_threshold. An
116 * active metaslab that exceeds this threshold will no longer keep its active
117 * status allowing better metaslabs to be selected.
118 */
119 int zfs_metaslab_fragmentation_threshold = 70;
120
121 /*
122 * When set will load all metaslabs when pool is first opened.
123 */
124 int metaslab_debug_load = 0;
125
126 /*
127 * When set will prevent metaslabs from being unloaded.
128 */
129 int metaslab_debug_unload = 0;
130
131 /*
132 * Minimum size which forces the dynamic allocator to change
133 * it's allocation strategy. Once the space map cannot satisfy
134 * an allocation of this size then it switches to using more
135 * aggressive strategy (i.e search by size rather than offset).
136 */
137 uint64_t metaslab_df_alloc_threshold = SPA_OLD_MAXBLOCKSIZE;
138
139 /*
140 * The minimum free space, in percent, which must be available
141 * in a space map to continue allocations in a first-fit fashion.
142 * Once the space map's free space drops below this level we dynamically
143 * switch to using best-fit allocations.
144 */
145 int metaslab_df_free_pct = 4;
146
147 /*
148 * Percentage of all cpus that can be used by the metaslab taskq.
149 */
150 int metaslab_load_pct = 50;
151
152 /*
153 * Determines how many txgs a metaslab may remain loaded without having any
154 * allocations from it. As long as a metaslab continues to be used we will
155 * keep it loaded.
156 */
157 int metaslab_unload_delay = TXG_SIZE * 2;
158
159 /*
160 * Max number of metaslabs per group to preload.
161 */
162 int metaslab_preload_limit = SPA_DVAS_PER_BP;
163
164 /*
165 * Enable/disable preloading of metaslab.
166 */
167 int metaslab_preload_enabled = B_TRUE;
168
169 /*
170 * Enable/disable fragmentation weighting on metaslabs.
171 */
172 int metaslab_fragmentation_factor_enabled = B_TRUE;
173
174 /*
175 * Enable/disable lba weighting (i.e. outer tracks are given preference).
176 */
177 int metaslab_lba_weighting_enabled = B_TRUE;
178
179 /*
180 * Enable/disable metaslab group biasing.
181 */
182 int metaslab_bias_enabled = B_TRUE;
183
184
185 /*
186 * Enable/disable remapping of indirect DVAs to their concrete vdevs.
187 */
188 boolean_t zfs_remap_blkptr_enable = B_TRUE;
189
190 /*
191 * Enable/disable segment-based metaslab selection.
192 */
193 int zfs_metaslab_segment_weight_enabled = B_TRUE;
194
195 /*
196 * When using segment-based metaslab selection, we will continue
197 * allocating from the active metaslab until we have exhausted
198 * zfs_metaslab_switch_threshold of its buckets.
199 */
200 int zfs_metaslab_switch_threshold = 2;
201
202 /*
203 * Internal switch to enable/disable the metaslab allocation tracing
204 * facility.
205 */
206 #ifdef _METASLAB_TRACING
207 boolean_t metaslab_trace_enabled = B_TRUE;
208 #endif
209
210 /*
211 * Maximum entries that the metaslab allocation tracing facility will keep
212 * in a given list when running in non-debug mode. We limit the number
213 * of entries in non-debug mode to prevent us from using up too much memory.
214 * The limit should be sufficiently large that we don't expect any allocation
215 * to every exceed this value. In debug mode, the system will panic if this
216 * limit is ever reached allowing for further investigation.
217 */
218 #ifdef _METASLAB_TRACING
219 uint64_t metaslab_trace_max_entries = 5000;
220 #endif
221
222 static uint64_t metaslab_weight(metaslab_t *);
223 static void metaslab_set_fragmentation(metaslab_t *);
224 static void metaslab_free_impl(vdev_t *, uint64_t, uint64_t, boolean_t);
225 static void metaslab_check_free_impl(vdev_t *, uint64_t, uint64_t);
226
227 static void metaslab_passivate(metaslab_t *msp, uint64_t weight);
228 static uint64_t metaslab_weight_from_range_tree(metaslab_t *msp);
229 #ifdef _METASLAB_TRACING
230 kmem_cache_t *metaslab_alloc_trace_cache;
231 #endif
232
233 /*
234 * ==========================================================================
235 * Metaslab classes
236 * ==========================================================================
237 */
238 metaslab_class_t *
239 metaslab_class_create(spa_t *spa, metaslab_ops_t *ops)
240 {
241 metaslab_class_t *mc;
242
243 mc = kmem_zalloc(sizeof (metaslab_class_t), KM_SLEEP);
244
245 mc->mc_spa = spa;
246 mc->mc_rotor = NULL;
247 mc->mc_ops = ops;
248 mutex_init(&mc->mc_lock, NULL, MUTEX_DEFAULT, NULL);
249 mc->mc_alloc_slots = kmem_zalloc(spa->spa_alloc_count *
250 sizeof (zfs_refcount_t), KM_SLEEP);
251 mc->mc_alloc_max_slots = kmem_zalloc(spa->spa_alloc_count *
252 sizeof (uint64_t), KM_SLEEP);
253 for (int i = 0; i < spa->spa_alloc_count; i++)
254 zfs_refcount_create_tracked(&mc->mc_alloc_slots[i]);
255
256 return (mc);
257 }
258
259 void
260 metaslab_class_destroy(metaslab_class_t *mc)
261 {
262 ASSERT(mc->mc_rotor == NULL);
263 ASSERT(mc->mc_alloc == 0);
264 ASSERT(mc->mc_deferred == 0);
265 ASSERT(mc->mc_space == 0);
266 ASSERT(mc->mc_dspace == 0);
267
268 for (int i = 0; i < mc->mc_spa->spa_alloc_count; i++)
269 zfs_refcount_destroy(&mc->mc_alloc_slots[i]);
270 kmem_free(mc->mc_alloc_slots, mc->mc_spa->spa_alloc_count *
271 sizeof (zfs_refcount_t));
272 kmem_free(mc->mc_alloc_max_slots, mc->mc_spa->spa_alloc_count *
273 sizeof (uint64_t));
274 mutex_destroy(&mc->mc_lock);
275 kmem_free(mc, sizeof (metaslab_class_t));
276 }
277
278 int
279 metaslab_class_validate(metaslab_class_t *mc)
280 {
281 metaslab_group_t *mg;
282 vdev_t *vd;
283
284 /*
285 * Must hold one of the spa_config locks.
286 */
287 ASSERT(spa_config_held(mc->mc_spa, SCL_ALL, RW_READER) ||
288 spa_config_held(mc->mc_spa, SCL_ALL, RW_WRITER));
289
290 if ((mg = mc->mc_rotor) == NULL)
291 return (0);
292
293 do {
294 vd = mg->mg_vd;
295 ASSERT(vd->vdev_mg != NULL);
296 ASSERT3P(vd->vdev_top, ==, vd);
297 ASSERT3P(mg->mg_class, ==, mc);
298 ASSERT3P(vd->vdev_ops, !=, &vdev_hole_ops);
299 } while ((mg = mg->mg_next) != mc->mc_rotor);
300
301 return (0);
302 }
303
304 static void
305 metaslab_class_space_update(metaslab_class_t *mc, int64_t alloc_delta,
306 int64_t defer_delta, int64_t space_delta, int64_t dspace_delta)
307 {
308 atomic_add_64(&mc->mc_alloc, alloc_delta);
309 atomic_add_64(&mc->mc_deferred, defer_delta);
310 atomic_add_64(&mc->mc_space, space_delta);
311 atomic_add_64(&mc->mc_dspace, dspace_delta);
312 }
313
314 uint64_t
315 metaslab_class_get_alloc(metaslab_class_t *mc)
316 {
317 return (mc->mc_alloc);
318 }
319
320 uint64_t
321 metaslab_class_get_deferred(metaslab_class_t *mc)
322 {
323 return (mc->mc_deferred);
324 }
325
326 uint64_t
327 metaslab_class_get_space(metaslab_class_t *mc)
328 {
329 return (mc->mc_space);
330 }
331
332 uint64_t
333 metaslab_class_get_dspace(metaslab_class_t *mc)
334 {
335 return (spa_deflate(mc->mc_spa) ? mc->mc_dspace : mc->mc_space);
336 }
337
338 void
339 metaslab_class_histogram_verify(metaslab_class_t *mc)
340 {
341 spa_t *spa = mc->mc_spa;
342 vdev_t *rvd = spa->spa_root_vdev;
343 uint64_t *mc_hist;
344 int i;
345
346 if ((zfs_flags & ZFS_DEBUG_HISTOGRAM_VERIFY) == 0)
347 return;
348
349 mc_hist = kmem_zalloc(sizeof (uint64_t) * RANGE_TREE_HISTOGRAM_SIZE,
350 KM_SLEEP);
351
352 for (int c = 0; c < rvd->vdev_children; c++) {
353 vdev_t *tvd = rvd->vdev_child[c];
354 metaslab_group_t *mg = tvd->vdev_mg;
355
356 /*
357 * Skip any holes, uninitialized top-levels, or
358 * vdevs that are not in this metalab class.
359 */
360 if (!vdev_is_concrete(tvd) || tvd->vdev_ms_shift == 0 ||
361 mg->mg_class != mc) {
362 continue;
363 }
364
365 for (i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i++)
366 mc_hist[i] += mg->mg_histogram[i];
367 }
368
369 for (i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i++)
370 VERIFY3U(mc_hist[i], ==, mc->mc_histogram[i]);
371
372 kmem_free(mc_hist, sizeof (uint64_t) * RANGE_TREE_HISTOGRAM_SIZE);
373 }
374
375 /*
376 * Calculate the metaslab class's fragmentation metric. The metric
377 * is weighted based on the space contribution of each metaslab group.
378 * The return value will be a number between 0 and 100 (inclusive), or
379 * ZFS_FRAG_INVALID if the metric has not been set. See comment above the
380 * zfs_frag_table for more information about the metric.
381 */
382 uint64_t
383 metaslab_class_fragmentation(metaslab_class_t *mc)
384 {
385 vdev_t *rvd = mc->mc_spa->spa_root_vdev;
386 uint64_t fragmentation = 0;
387
388 spa_config_enter(mc->mc_spa, SCL_VDEV, FTAG, RW_READER);
389
390 for (int c = 0; c < rvd->vdev_children; c++) {
391 vdev_t *tvd = rvd->vdev_child[c];
392 metaslab_group_t *mg = tvd->vdev_mg;
393
394 /*
395 * Skip any holes, uninitialized top-levels,
396 * or vdevs that are not in this metalab class.
397 */
398 if (!vdev_is_concrete(tvd) || tvd->vdev_ms_shift == 0 ||
399 mg->mg_class != mc) {
400 continue;
401 }
402
403 /*
404 * If a metaslab group does not contain a fragmentation
405 * metric then just bail out.
406 */
407 if (mg->mg_fragmentation == ZFS_FRAG_INVALID) {
408 spa_config_exit(mc->mc_spa, SCL_VDEV, FTAG);
409 return (ZFS_FRAG_INVALID);
410 }
411
412 /*
413 * Determine how much this metaslab_group is contributing
414 * to the overall pool fragmentation metric.
415 */
416 fragmentation += mg->mg_fragmentation *
417 metaslab_group_get_space(mg);
418 }
419 fragmentation /= metaslab_class_get_space(mc);
420
421 ASSERT3U(fragmentation, <=, 100);
422 spa_config_exit(mc->mc_spa, SCL_VDEV, FTAG);
423 return (fragmentation);
424 }
425
426 /*
427 * Calculate the amount of expandable space that is available in
428 * this metaslab class. If a device is expanded then its expandable
429 * space will be the amount of allocatable space that is currently not
430 * part of this metaslab class.
431 */
432 uint64_t
433 metaslab_class_expandable_space(metaslab_class_t *mc)
434 {
435 vdev_t *rvd = mc->mc_spa->spa_root_vdev;
436 uint64_t space = 0;
437
438 spa_config_enter(mc->mc_spa, SCL_VDEV, FTAG, RW_READER);
439 for (int c = 0; c < rvd->vdev_children; c++) {
440 vdev_t *tvd = rvd->vdev_child[c];
441 metaslab_group_t *mg = tvd->vdev_mg;
442
443 if (!vdev_is_concrete(tvd) || tvd->vdev_ms_shift == 0 ||
444 mg->mg_class != mc) {
445 continue;
446 }
447
448 /*
449 * Calculate if we have enough space to add additional
450 * metaslabs. We report the expandable space in terms
451 * of the metaslab size since that's the unit of expansion.
452 */
453 space += P2ALIGN(tvd->vdev_max_asize - tvd->vdev_asize,
454 1ULL << tvd->vdev_ms_shift);
455 }
456 spa_config_exit(mc->mc_spa, SCL_VDEV, FTAG);
457 return (space);
458 }
459
460 static int
461 metaslab_compare(const void *x1, const void *x2)
462 {
463 const metaslab_t *m1 = (const metaslab_t *)x1;
464 const metaslab_t *m2 = (const metaslab_t *)x2;
465
466 int sort1 = 0;
467 int sort2 = 0;
468 if (m1->ms_allocator != -1 && m1->ms_primary)
469 sort1 = 1;
470 else if (m1->ms_allocator != -1 && !m1->ms_primary)
471 sort1 = 2;
472 if (m2->ms_allocator != -1 && m2->ms_primary)
473 sort2 = 1;
474 else if (m2->ms_allocator != -1 && !m2->ms_primary)
475 sort2 = 2;
476
477 /*
478 * Sort inactive metaslabs first, then primaries, then secondaries. When
479 * selecting a metaslab to allocate from, an allocator first tries its
480 * primary, then secondary active metaslab. If it doesn't have active
481 * metaslabs, or can't allocate from them, it searches for an inactive
482 * metaslab to activate. If it can't find a suitable one, it will steal
483 * a primary or secondary metaslab from another allocator.
484 */
485 if (sort1 < sort2)
486 return (-1);
487 if (sort1 > sort2)
488 return (1);
489
490 int cmp = AVL_CMP(m2->ms_weight, m1->ms_weight);
491 if (likely(cmp))
492 return (cmp);
493
494 IMPLY(AVL_CMP(m1->ms_start, m2->ms_start) == 0, m1 == m2);
495
496 return (AVL_CMP(m1->ms_start, m2->ms_start));
497 }
498
499 uint64_t
500 metaslab_allocated_space(metaslab_t *msp)
501 {
502 return (msp->ms_allocated_space);
503 }
504
505 /*
506 * Verify that the space accounting on disk matches the in-core range_trees.
507 */
508 static void
509 metaslab_verify_space(metaslab_t *msp, uint64_t txg)
510 {
511 spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
512 uint64_t allocating = 0;
513 uint64_t sm_free_space, msp_free_space;
514
515 ASSERT(MUTEX_HELD(&msp->ms_lock));
516 ASSERT(!msp->ms_condensing);
517
518 if ((zfs_flags & ZFS_DEBUG_METASLAB_VERIFY) == 0)
519 return;
520
521 /*
522 * We can only verify the metaslab space when we're called
523 * from syncing context with a loaded metaslab that has an
524 * allocated space map. Calling this in non-syncing context
525 * does not provide a consistent view of the metaslab since
526 * we're performing allocations in the future.
527 */
528 if (txg != spa_syncing_txg(spa) || msp->ms_sm == NULL ||
529 !msp->ms_loaded)
530 return;
531
532 /*
533 * Even though the smp_alloc field can get negative (e.g.
534 * see vdev_checkpoint_sm), that should never be the case
535 * when it come's to a metaslab's space map.
536 */
537 ASSERT3S(space_map_allocated(msp->ms_sm), >=, 0);
538
539 sm_free_space = msp->ms_size - metaslab_allocated_space(msp);
540
541 /*
542 * Account for future allocations since we would have
543 * already deducted that space from the ms_allocatable.
544 */
545 for (int t = 0; t < TXG_CONCURRENT_STATES; t++) {
546 allocating +=
547 range_tree_space(msp->ms_allocating[(txg + t) & TXG_MASK]);
548 }
549
550 ASSERT3U(msp->ms_deferspace, ==,
551 range_tree_space(msp->ms_defer[0]) +
552 range_tree_space(msp->ms_defer[1]));
553
554 msp_free_space = range_tree_space(msp->ms_allocatable) + allocating +
555 msp->ms_deferspace + range_tree_space(msp->ms_freed);
556
557 VERIFY3U(sm_free_space, ==, msp_free_space);
558 }
559
560 /*
561 * ==========================================================================
562 * Metaslab groups
563 * ==========================================================================
564 */
565 /*
566 * Update the allocatable flag and the metaslab group's capacity.
567 * The allocatable flag is set to true if the capacity is below
568 * the zfs_mg_noalloc_threshold or has a fragmentation value that is
569 * greater than zfs_mg_fragmentation_threshold. If a metaslab group
570 * transitions from allocatable to non-allocatable or vice versa then the
571 * metaslab group's class is updated to reflect the transition.
572 */
573 static void
574 metaslab_group_alloc_update(metaslab_group_t *mg)
575 {
576 vdev_t *vd = mg->mg_vd;
577 metaslab_class_t *mc = mg->mg_class;
578 vdev_stat_t *vs = &vd->vdev_stat;
579 boolean_t was_allocatable;
580 boolean_t was_initialized;
581
582 ASSERT(vd == vd->vdev_top);
583 ASSERT3U(spa_config_held(mc->mc_spa, SCL_ALLOC, RW_READER), ==,
584 SCL_ALLOC);
585
586 mutex_enter(&mg->mg_lock);
587 was_allocatable = mg->mg_allocatable;
588 was_initialized = mg->mg_initialized;
589
590 mg->mg_free_capacity = ((vs->vs_space - vs->vs_alloc) * 100) /
591 (vs->vs_space + 1);
592
593 mutex_enter(&mc->mc_lock);
594
595 /*
596 * If the metaslab group was just added then it won't
597 * have any space until we finish syncing out this txg.
598 * At that point we will consider it initialized and available
599 * for allocations. We also don't consider non-activated
600 * metaslab groups (e.g. vdevs that are in the middle of being removed)
601 * to be initialized, because they can't be used for allocation.
602 */
603 mg->mg_initialized = metaslab_group_initialized(mg);
604 if (!was_initialized && mg->mg_initialized) {
605 mc->mc_groups++;
606 } else if (was_initialized && !mg->mg_initialized) {
607 ASSERT3U(mc->mc_groups, >, 0);
608 mc->mc_groups--;
609 }
610 if (mg->mg_initialized)
611 mg->mg_no_free_space = B_FALSE;
612
613 /*
614 * A metaslab group is considered allocatable if it has plenty
615 * of free space or is not heavily fragmented. We only take
616 * fragmentation into account if the metaslab group has a valid
617 * fragmentation metric (i.e. a value between 0 and 100).
618 */
619 mg->mg_allocatable = (mg->mg_activation_count > 0 &&
620 mg->mg_free_capacity > zfs_mg_noalloc_threshold &&
621 (mg->mg_fragmentation == ZFS_FRAG_INVALID ||
622 mg->mg_fragmentation <= zfs_mg_fragmentation_threshold));
623
624 /*
625 * The mc_alloc_groups maintains a count of the number of
626 * groups in this metaslab class that are still above the
627 * zfs_mg_noalloc_threshold. This is used by the allocating
628 * threads to determine if they should avoid allocations to
629 * a given group. The allocator will avoid allocations to a group
630 * if that group has reached or is below the zfs_mg_noalloc_threshold
631 * and there are still other groups that are above the threshold.
632 * When a group transitions from allocatable to non-allocatable or
633 * vice versa we update the metaslab class to reflect that change.
634 * When the mc_alloc_groups value drops to 0 that means that all
635 * groups have reached the zfs_mg_noalloc_threshold making all groups
636 * eligible for allocations. This effectively means that all devices
637 * are balanced again.
638 */
639 if (was_allocatable && !mg->mg_allocatable)
640 mc->mc_alloc_groups--;
641 else if (!was_allocatable && mg->mg_allocatable)
642 mc->mc_alloc_groups++;
643 mutex_exit(&mc->mc_lock);
644
645 mutex_exit(&mg->mg_lock);
646 }
647
648 metaslab_group_t *
649 metaslab_group_create(metaslab_class_t *mc, vdev_t *vd, int allocators)
650 {
651 metaslab_group_t *mg;
652
653 mg = kmem_zalloc(sizeof (metaslab_group_t), KM_SLEEP);
654 mutex_init(&mg->mg_lock, NULL, MUTEX_DEFAULT, NULL);
655 mutex_init(&mg->mg_ms_initialize_lock, NULL, MUTEX_DEFAULT, NULL);
656 cv_init(&mg->mg_ms_initialize_cv, NULL, CV_DEFAULT, NULL);
657 mg->mg_primaries = kmem_zalloc(allocators * sizeof (metaslab_t *),
658 KM_SLEEP);
659 mg->mg_secondaries = kmem_zalloc(allocators * sizeof (metaslab_t *),
660 KM_SLEEP);
661 avl_create(&mg->mg_metaslab_tree, metaslab_compare,
662 sizeof (metaslab_t), offsetof(struct metaslab, ms_group_node));
663 mg->mg_vd = vd;
664 mg->mg_class = mc;
665 mg->mg_activation_count = 0;
666 mg->mg_initialized = B_FALSE;
667 mg->mg_no_free_space = B_TRUE;
668 mg->mg_allocators = allocators;
669
670 mg->mg_alloc_queue_depth = kmem_zalloc(allocators *
671 sizeof (zfs_refcount_t), KM_SLEEP);
672 mg->mg_cur_max_alloc_queue_depth = kmem_zalloc(allocators *
673 sizeof (uint64_t), KM_SLEEP);
674 for (int i = 0; i < allocators; i++) {
675 zfs_refcount_create_tracked(&mg->mg_alloc_queue_depth[i]);
676 mg->mg_cur_max_alloc_queue_depth[i] = 0;
677 }
678
679 mg->mg_taskq = taskq_create("metaslab_group_taskq", metaslab_load_pct,
680 maxclsyspri, 10, INT_MAX, TASKQ_THREADS_CPU_PCT | TASKQ_DYNAMIC);
681
682 return (mg);
683 }
684
685 void
686 metaslab_group_destroy(metaslab_group_t *mg)
687 {
688 ASSERT(mg->mg_prev == NULL);
689 ASSERT(mg->mg_next == NULL);
690 /*
691 * We may have gone below zero with the activation count
692 * either because we never activated in the first place or
693 * because we're done, and possibly removing the vdev.
694 */
695 ASSERT(mg->mg_activation_count <= 0);
696
697 taskq_destroy(mg->mg_taskq);
698 avl_destroy(&mg->mg_metaslab_tree);
699 kmem_free(mg->mg_primaries, mg->mg_allocators * sizeof (metaslab_t *));
700 kmem_free(mg->mg_secondaries, mg->mg_allocators *
701 sizeof (metaslab_t *));
702 mutex_destroy(&mg->mg_lock);
703 mutex_destroy(&mg->mg_ms_initialize_lock);
704 cv_destroy(&mg->mg_ms_initialize_cv);
705
706 for (int i = 0; i < mg->mg_allocators; i++) {
707 zfs_refcount_destroy(&mg->mg_alloc_queue_depth[i]);
708 mg->mg_cur_max_alloc_queue_depth[i] = 0;
709 }
710 kmem_free(mg->mg_alloc_queue_depth, mg->mg_allocators *
711 sizeof (zfs_refcount_t));
712 kmem_free(mg->mg_cur_max_alloc_queue_depth, mg->mg_allocators *
713 sizeof (uint64_t));
714
715 kmem_free(mg, sizeof (metaslab_group_t));
716 }
717
718 void
719 metaslab_group_activate(metaslab_group_t *mg)
720 {
721 metaslab_class_t *mc = mg->mg_class;
722 metaslab_group_t *mgprev, *mgnext;
723
724 ASSERT3U(spa_config_held(mc->mc_spa, SCL_ALLOC, RW_WRITER), !=, 0);
725
726 ASSERT(mc->mc_rotor != mg);
727 ASSERT(mg->mg_prev == NULL);
728 ASSERT(mg->mg_next == NULL);
729 ASSERT(mg->mg_activation_count <= 0);
730
731 if (++mg->mg_activation_count <= 0)
732 return;
733
734 mg->mg_aliquot = metaslab_aliquot * MAX(1, mg->mg_vd->vdev_children);
735 metaslab_group_alloc_update(mg);
736
737 if ((mgprev = mc->mc_rotor) == NULL) {
738 mg->mg_prev = mg;
739 mg->mg_next = mg;
740 } else {
741 mgnext = mgprev->mg_next;
742 mg->mg_prev = mgprev;
743 mg->mg_next = mgnext;
744 mgprev->mg_next = mg;
745 mgnext->mg_prev = mg;
746 }
747 mc->mc_rotor = mg;
748 }
749
750 /*
751 * Passivate a metaslab group and remove it from the allocation rotor.
752 * Callers must hold both the SCL_ALLOC and SCL_ZIO lock prior to passivating
753 * a metaslab group. This function will momentarily drop spa_config_locks
754 * that are lower than the SCL_ALLOC lock (see comment below).
755 */
756 void
757 metaslab_group_passivate(metaslab_group_t *mg)
758 {
759 metaslab_class_t *mc = mg->mg_class;
760 spa_t *spa = mc->mc_spa;
761 metaslab_group_t *mgprev, *mgnext;
762 int locks = spa_config_held(spa, SCL_ALL, RW_WRITER);
763
764 ASSERT3U(spa_config_held(spa, SCL_ALLOC | SCL_ZIO, RW_WRITER), ==,
765 (SCL_ALLOC | SCL_ZIO));
766
767 if (--mg->mg_activation_count != 0) {
768 ASSERT(mc->mc_rotor != mg);
769 ASSERT(mg->mg_prev == NULL);
770 ASSERT(mg->mg_next == NULL);
771 ASSERT(mg->mg_activation_count < 0);
772 return;
773 }
774
775 /*
776 * The spa_config_lock is an array of rwlocks, ordered as
777 * follows (from highest to lowest):
778 * SCL_CONFIG > SCL_STATE > SCL_L2ARC > SCL_ALLOC >
779 * SCL_ZIO > SCL_FREE > SCL_VDEV
780 * (For more information about the spa_config_lock see spa_misc.c)
781 * The higher the lock, the broader its coverage. When we passivate
782 * a metaslab group, we must hold both the SCL_ALLOC and the SCL_ZIO
783 * config locks. However, the metaslab group's taskq might be trying
784 * to preload metaslabs so we must drop the SCL_ZIO lock and any
785 * lower locks to allow the I/O to complete. At a minimum,
786 * we continue to hold the SCL_ALLOC lock, which prevents any future
787 * allocations from taking place and any changes to the vdev tree.
788 */
789 spa_config_exit(spa, locks & ~(SCL_ZIO - 1), spa);
790 taskq_wait_outstanding(mg->mg_taskq, 0);
791 spa_config_enter(spa, locks & ~(SCL_ZIO - 1), spa, RW_WRITER);
792 metaslab_group_alloc_update(mg);
793 for (int i = 0; i < mg->mg_allocators; i++) {
794 metaslab_t *msp = mg->mg_primaries[i];
795 if (msp != NULL) {
796 mutex_enter(&msp->ms_lock);
797 metaslab_passivate(msp,
798 metaslab_weight_from_range_tree(msp));
799 mutex_exit(&msp->ms_lock);
800 }
801 msp = mg->mg_secondaries[i];
802 if (msp != NULL) {
803 mutex_enter(&msp->ms_lock);
804 metaslab_passivate(msp,
805 metaslab_weight_from_range_tree(msp));
806 mutex_exit(&msp->ms_lock);
807 }
808 }
809
810 mgprev = mg->mg_prev;
811 mgnext = mg->mg_next;
812
813 if (mg == mgnext) {
814 mc->mc_rotor = NULL;
815 } else {
816 mc->mc_rotor = mgnext;
817 mgprev->mg_next = mgnext;
818 mgnext->mg_prev = mgprev;
819 }
820
821 mg->mg_prev = NULL;
822 mg->mg_next = NULL;
823 }
824
825 boolean_t
826 metaslab_group_initialized(metaslab_group_t *mg)
827 {
828 vdev_t *vd = mg->mg_vd;
829 vdev_stat_t *vs = &vd->vdev_stat;
830
831 return (vs->vs_space != 0 && mg->mg_activation_count > 0);
832 }
833
834 uint64_t
835 metaslab_group_get_space(metaslab_group_t *mg)
836 {
837 return ((1ULL << mg->mg_vd->vdev_ms_shift) * mg->mg_vd->vdev_ms_count);
838 }
839
840 void
841 metaslab_group_histogram_verify(metaslab_group_t *mg)
842 {
843 uint64_t *mg_hist;
844 vdev_t *vd = mg->mg_vd;
845 uint64_t ashift = vd->vdev_ashift;
846 int i;
847
848 if ((zfs_flags & ZFS_DEBUG_HISTOGRAM_VERIFY) == 0)
849 return;
850
851 mg_hist = kmem_zalloc(sizeof (uint64_t) * RANGE_TREE_HISTOGRAM_SIZE,
852 KM_SLEEP);
853
854 ASSERT3U(RANGE_TREE_HISTOGRAM_SIZE, >=,
855 SPACE_MAP_HISTOGRAM_SIZE + ashift);
856
857 for (int m = 0; m < vd->vdev_ms_count; m++) {
858 metaslab_t *msp = vd->vdev_ms[m];
859 ASSERT(msp != NULL);
860
861 /* skip if not active or not a member */
862 if (msp->ms_sm == NULL || msp->ms_group != mg)
863 continue;
864
865 for (i = 0; i < SPACE_MAP_HISTOGRAM_SIZE; i++)
866 mg_hist[i + ashift] +=
867 msp->ms_sm->sm_phys->smp_histogram[i];
868 }
869
870 for (i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i ++)
871 VERIFY3U(mg_hist[i], ==, mg->mg_histogram[i]);
872
873 kmem_free(mg_hist, sizeof (uint64_t) * RANGE_TREE_HISTOGRAM_SIZE);
874 }
875
876 static void
877 metaslab_group_histogram_add(metaslab_group_t *mg, metaslab_t *msp)
878 {
879 metaslab_class_t *mc = mg->mg_class;
880 uint64_t ashift = mg->mg_vd->vdev_ashift;
881
882 ASSERT(MUTEX_HELD(&msp->ms_lock));
883 if (msp->ms_sm == NULL)
884 return;
885
886 mutex_enter(&mg->mg_lock);
887 for (int i = 0; i < SPACE_MAP_HISTOGRAM_SIZE; i++) {
888 mg->mg_histogram[i + ashift] +=
889 msp->ms_sm->sm_phys->smp_histogram[i];
890 mc->mc_histogram[i + ashift] +=
891 msp->ms_sm->sm_phys->smp_histogram[i];
892 }
893 mutex_exit(&mg->mg_lock);
894 }
895
896 void
897 metaslab_group_histogram_remove(metaslab_group_t *mg, metaslab_t *msp)
898 {
899 metaslab_class_t *mc = mg->mg_class;
900 uint64_t ashift = mg->mg_vd->vdev_ashift;
901
902 ASSERT(MUTEX_HELD(&msp->ms_lock));
903 if (msp->ms_sm == NULL)
904 return;
905
906 mutex_enter(&mg->mg_lock);
907 for (int i = 0; i < SPACE_MAP_HISTOGRAM_SIZE; i++) {
908 ASSERT3U(mg->mg_histogram[i + ashift], >=,
909 msp->ms_sm->sm_phys->smp_histogram[i]);
910 ASSERT3U(mc->mc_histogram[i + ashift], >=,
911 msp->ms_sm->sm_phys->smp_histogram[i]);
912
913 mg->mg_histogram[i + ashift] -=
914 msp->ms_sm->sm_phys->smp_histogram[i];
915 mc->mc_histogram[i + ashift] -=
916 msp->ms_sm->sm_phys->smp_histogram[i];
917 }
918 mutex_exit(&mg->mg_lock);
919 }
920
921 static void
922 metaslab_group_add(metaslab_group_t *mg, metaslab_t *msp)
923 {
924 ASSERT(msp->ms_group == NULL);
925 mutex_enter(&mg->mg_lock);
926 msp->ms_group = mg;
927 msp->ms_weight = 0;
928 avl_add(&mg->mg_metaslab_tree, msp);
929 mutex_exit(&mg->mg_lock);
930
931 mutex_enter(&msp->ms_lock);
932 metaslab_group_histogram_add(mg, msp);
933 mutex_exit(&msp->ms_lock);
934 }
935
936 static void
937 metaslab_group_remove(metaslab_group_t *mg, metaslab_t *msp)
938 {
939 mutex_enter(&msp->ms_lock);
940 metaslab_group_histogram_remove(mg, msp);
941 mutex_exit(&msp->ms_lock);
942
943 mutex_enter(&mg->mg_lock);
944 ASSERT(msp->ms_group == mg);
945 avl_remove(&mg->mg_metaslab_tree, msp);
946 msp->ms_group = NULL;
947 mutex_exit(&mg->mg_lock);
948 }
949
950 static void
951 metaslab_group_sort_impl(metaslab_group_t *mg, metaslab_t *msp, uint64_t weight)
952 {
953 ASSERT(MUTEX_HELD(&mg->mg_lock));
954 ASSERT(msp->ms_group == mg);
955 avl_remove(&mg->mg_metaslab_tree, msp);
956 msp->ms_weight = weight;
957 avl_add(&mg->mg_metaslab_tree, msp);
958
959 }
960
961 static void
962 metaslab_group_sort(metaslab_group_t *mg, metaslab_t *msp, uint64_t weight)
963 {
964 /*
965 * Although in principle the weight can be any value, in
966 * practice we do not use values in the range [1, 511].
967 */
968 ASSERT(weight >= SPA_MINBLOCKSIZE || weight == 0);
969 ASSERT(MUTEX_HELD(&msp->ms_lock));
970
971 mutex_enter(&mg->mg_lock);
972 metaslab_group_sort_impl(mg, msp, weight);
973 mutex_exit(&mg->mg_lock);
974 }
975
976 /*
977 * Calculate the fragmentation for a given metaslab group. We can use
978 * a simple average here since all metaslabs within the group must have
979 * the same size. The return value will be a value between 0 and 100
980 * (inclusive), or ZFS_FRAG_INVALID if less than half of the metaslab in this
981 * group have a fragmentation metric.
982 */
983 uint64_t
984 metaslab_group_fragmentation(metaslab_group_t *mg)
985 {
986 vdev_t *vd = mg->mg_vd;
987 uint64_t fragmentation = 0;
988 uint64_t valid_ms = 0;
989
990 for (int m = 0; m < vd->vdev_ms_count; m++) {
991 metaslab_t *msp = vd->vdev_ms[m];
992
993 if (msp->ms_fragmentation == ZFS_FRAG_INVALID)
994 continue;
995 if (msp->ms_group != mg)
996 continue;
997
998 valid_ms++;
999 fragmentation += msp->ms_fragmentation;
1000 }
1001
1002 if (valid_ms <= mg->mg_vd->vdev_ms_count / 2)
1003 return (ZFS_FRAG_INVALID);
1004
1005 fragmentation /= valid_ms;
1006 ASSERT3U(fragmentation, <=, 100);
1007 return (fragmentation);
1008 }
1009
1010 /*
1011 * Determine if a given metaslab group should skip allocations. A metaslab
1012 * group should avoid allocations if its free capacity is less than the
1013 * zfs_mg_noalloc_threshold or its fragmentation metric is greater than
1014 * zfs_mg_fragmentation_threshold and there is at least one metaslab group
1015 * that can still handle allocations. If the allocation throttle is enabled
1016 * then we skip allocations to devices that have reached their maximum
1017 * allocation queue depth unless the selected metaslab group is the only
1018 * eligible group remaining.
1019 */
1020 static boolean_t
1021 metaslab_group_allocatable(metaslab_group_t *mg, metaslab_group_t *rotor,
1022 uint64_t psize, int allocator, int d)
1023 {
1024 spa_t *spa = mg->mg_vd->vdev_spa;
1025 metaslab_class_t *mc = mg->mg_class;
1026
1027 /*
1028 * We can only consider skipping this metaslab group if it's
1029 * in the normal metaslab class and there are other metaslab
1030 * groups to select from. Otherwise, we always consider it eligible
1031 * for allocations.
1032 */
1033 if ((mc != spa_normal_class(spa) &&
1034 mc != spa_special_class(spa) &&
1035 mc != spa_dedup_class(spa)) ||
1036 mc->mc_groups <= 1)
1037 return (B_TRUE);
1038
1039 /*
1040 * If the metaslab group's mg_allocatable flag is set (see comments
1041 * in metaslab_group_alloc_update() for more information) and
1042 * the allocation throttle is disabled then allow allocations to this
1043 * device. However, if the allocation throttle is enabled then
1044 * check if we have reached our allocation limit (mg_alloc_queue_depth)
1045 * to determine if we should allow allocations to this metaslab group.
1046 * If all metaslab groups are no longer considered allocatable
1047 * (mc_alloc_groups == 0) or we're trying to allocate the smallest
1048 * gang block size then we allow allocations on this metaslab group
1049 * regardless of the mg_allocatable or throttle settings.
1050 */
1051 if (mg->mg_allocatable) {
1052 metaslab_group_t *mgp;
1053 int64_t qdepth;
1054 uint64_t qmax = mg->mg_cur_max_alloc_queue_depth[allocator];
1055
1056 if (!mc->mc_alloc_throttle_enabled)
1057 return (B_TRUE);
1058
1059 /*
1060 * If this metaslab group does not have any free space, then
1061 * there is no point in looking further.
1062 */
1063 if (mg->mg_no_free_space)
1064 return (B_FALSE);
1065
1066 /*
1067 * Relax allocation throttling for ditto blocks. Due to
1068 * random imbalances in allocation it tends to push copies
1069 * to one vdev, that looks a bit better at the moment.
1070 */
1071 qmax = qmax * (4 + d) / 4;
1072
1073 qdepth = zfs_refcount_count(
1074 &mg->mg_alloc_queue_depth[allocator]);
1075
1076 /*
1077 * If this metaslab group is below its qmax or it's
1078 * the only allocatable metasable group, then attempt
1079 * to allocate from it.
1080 */
1081 if (qdepth < qmax || mc->mc_alloc_groups == 1)
1082 return (B_TRUE);
1083 ASSERT3U(mc->mc_alloc_groups, >, 1);
1084
1085 /*
1086 * Since this metaslab group is at or over its qmax, we
1087 * need to determine if there are metaslab groups after this
1088 * one that might be able to handle this allocation. This is
1089 * racy since we can't hold the locks for all metaslab
1090 * groups at the same time when we make this check.
1091 */
1092 for (mgp = mg->mg_next; mgp != rotor; mgp = mgp->mg_next) {
1093 qmax = mgp->mg_cur_max_alloc_queue_depth[allocator];
1094 qmax = qmax * (4 + d) / 4;
1095 qdepth = zfs_refcount_count(
1096 &mgp->mg_alloc_queue_depth[allocator]);
1097
1098 /*
1099 * If there is another metaslab group that
1100 * might be able to handle the allocation, then
1101 * we return false so that we skip this group.
1102 */
1103 if (qdepth < qmax && !mgp->mg_no_free_space)
1104 return (B_FALSE);
1105 }
1106
1107 /*
1108 * We didn't find another group to handle the allocation
1109 * so we can't skip this metaslab group even though
1110 * we are at or over our qmax.
1111 */
1112 return (B_TRUE);
1113
1114 } else if (mc->mc_alloc_groups == 0 || psize == SPA_MINBLOCKSIZE) {
1115 return (B_TRUE);
1116 }
1117 return (B_FALSE);
1118 }
1119
1120 /*
1121 * ==========================================================================
1122 * Range tree callbacks
1123 * ==========================================================================
1124 */
1125
1126 /*
1127 * Comparison function for the private size-ordered tree. Tree is sorted
1128 * by size, larger sizes at the end of the tree.
1129 */
1130 static int
1131 metaslab_rangesize_compare(const void *x1, const void *x2)
1132 {
1133 const range_seg_t *r1 = x1;
1134 const range_seg_t *r2 = x2;
1135 uint64_t rs_size1 = r1->rs_end - r1->rs_start;
1136 uint64_t rs_size2 = r2->rs_end - r2->rs_start;
1137
1138 int cmp = AVL_CMP(rs_size1, rs_size2);
1139 if (likely(cmp))
1140 return (cmp);
1141
1142 return (AVL_CMP(r1->rs_start, r2->rs_start));
1143 }
1144
1145 /*
1146 * ==========================================================================
1147 * Common allocator routines
1148 * ==========================================================================
1149 */
1150
1151 /*
1152 * Return the maximum contiguous segment within the metaslab.
1153 */
1154 uint64_t
1155 metaslab_block_maxsize(metaslab_t *msp)
1156 {
1157 avl_tree_t *t = &msp->ms_allocatable_by_size;
1158 range_seg_t *rs;
1159
1160 if (t == NULL || (rs = avl_last(t)) == NULL)
1161 return (0ULL);
1162
1163 return (rs->rs_end - rs->rs_start);
1164 }
1165
1166 static range_seg_t *
1167 metaslab_block_find(avl_tree_t *t, uint64_t start, uint64_t size)
1168 {
1169 range_seg_t *rs, rsearch;
1170 avl_index_t where;
1171
1172 rsearch.rs_start = start;
1173 rsearch.rs_end = start + size;
1174
1175 rs = avl_find(t, &rsearch, &where);
1176 if (rs == NULL) {
1177 rs = avl_nearest(t, where, AVL_AFTER);
1178 }
1179
1180 return (rs);
1181 }
1182
1183 #if defined(WITH_FF_BLOCK_ALLOCATOR) || \
1184 defined(WITH_DF_BLOCK_ALLOCATOR) || \
1185 defined(WITH_CF_BLOCK_ALLOCATOR)
1186 /*
1187 * This is a helper function that can be used by the allocator to find
1188 * a suitable block to allocate. This will search the specified AVL
1189 * tree looking for a block that matches the specified criteria.
1190 */
1191 static uint64_t
1192 metaslab_block_picker(avl_tree_t *t, uint64_t *cursor, uint64_t size,
1193 uint64_t align)
1194 {
1195 range_seg_t *rs = metaslab_block_find(t, *cursor, size);
1196
1197 while (rs != NULL) {
1198 uint64_t offset = P2ROUNDUP(rs->rs_start, align);
1199
1200 if (offset + size <= rs->rs_end) {
1201 *cursor = offset + size;
1202 return (offset);
1203 }
1204 rs = AVL_NEXT(t, rs);
1205 }
1206
1207 /*
1208 * If we know we've searched the whole map (*cursor == 0), give up.
1209 * Otherwise, reset the cursor to the beginning and try again.
1210 */
1211 if (*cursor == 0)
1212 return (-1ULL);
1213
1214 *cursor = 0;
1215 return (metaslab_block_picker(t, cursor, size, align));
1216 }
1217 #endif /* WITH_FF/DF/CF_BLOCK_ALLOCATOR */
1218
1219 #if defined(WITH_FF_BLOCK_ALLOCATOR)
1220 /*
1221 * ==========================================================================
1222 * The first-fit block allocator
1223 * ==========================================================================
1224 */
1225 static uint64_t
1226 metaslab_ff_alloc(metaslab_t *msp, uint64_t size)
1227 {
1228 /*
1229 * Find the largest power of 2 block size that evenly divides the
1230 * requested size. This is used to try to allocate blocks with similar
1231 * alignment from the same area of the metaslab (i.e. same cursor
1232 * bucket) but it does not guarantee that other allocations sizes
1233 * may exist in the same region.
1234 */
1235 uint64_t align = size & -size;
1236 uint64_t *cursor = &msp->ms_lbas[highbit64(align) - 1];
1237 avl_tree_t *t = &msp->ms_allocatable->rt_root;
1238
1239 return (metaslab_block_picker(t, cursor, size, align));
1240 }
1241
1242 static metaslab_ops_t metaslab_ff_ops = {
1243 metaslab_ff_alloc
1244 };
1245
1246 metaslab_ops_t *zfs_metaslab_ops = &metaslab_ff_ops;
1247 #endif /* WITH_FF_BLOCK_ALLOCATOR */
1248
1249 #if defined(WITH_DF_BLOCK_ALLOCATOR)
1250 /*
1251 * ==========================================================================
1252 * Dynamic block allocator -
1253 * Uses the first fit allocation scheme until space get low and then
1254 * adjusts to a best fit allocation method. Uses metaslab_df_alloc_threshold
1255 * and metaslab_df_free_pct to determine when to switch the allocation scheme.
1256 * ==========================================================================
1257 */
1258 static uint64_t
1259 metaslab_df_alloc(metaslab_t *msp, uint64_t size)
1260 {
1261 /*
1262 * Find the largest power of 2 block size that evenly divides the
1263 * requested size. This is used to try to allocate blocks with similar
1264 * alignment from the same area of the metaslab (i.e. same cursor
1265 * bucket) but it does not guarantee that other allocations sizes
1266 * may exist in the same region.
1267 */
1268 uint64_t align = size & -size;
1269 uint64_t *cursor = &msp->ms_lbas[highbit64(align) - 1];
1270 range_tree_t *rt = msp->ms_allocatable;
1271 avl_tree_t *t = &rt->rt_root;
1272 uint64_t max_size = metaslab_block_maxsize(msp);
1273 int free_pct = range_tree_space(rt) * 100 / msp->ms_size;
1274
1275 ASSERT(MUTEX_HELD(&msp->ms_lock));
1276 ASSERT3U(avl_numnodes(t), ==,
1277 avl_numnodes(&msp->ms_allocatable_by_size));
1278
1279 if (max_size < size)
1280 return (-1ULL);
1281
1282 /*
1283 * If we're running low on space switch to using the size
1284 * sorted AVL tree (best-fit).
1285 */
1286 if (max_size < metaslab_df_alloc_threshold ||
1287 free_pct < metaslab_df_free_pct) {
1288 t = &msp->ms_allocatable_by_size;
1289 *cursor = 0;
1290 }
1291
1292 return (metaslab_block_picker(t, cursor, size, 1ULL));
1293 }
1294
1295 static metaslab_ops_t metaslab_df_ops = {
1296 metaslab_df_alloc
1297 };
1298
1299 metaslab_ops_t *zfs_metaslab_ops = &metaslab_df_ops;
1300 #endif /* WITH_DF_BLOCK_ALLOCATOR */
1301
1302 #if defined(WITH_CF_BLOCK_ALLOCATOR)
1303 /*
1304 * ==========================================================================
1305 * Cursor fit block allocator -
1306 * Select the largest region in the metaslab, set the cursor to the beginning
1307 * of the range and the cursor_end to the end of the range. As allocations
1308 * are made advance the cursor. Continue allocating from the cursor until
1309 * the range is exhausted and then find a new range.
1310 * ==========================================================================
1311 */
1312 static uint64_t
1313 metaslab_cf_alloc(metaslab_t *msp, uint64_t size)
1314 {
1315 range_tree_t *rt = msp->ms_allocatable;
1316 avl_tree_t *t = &msp->ms_allocatable_by_size;
1317 uint64_t *cursor = &msp->ms_lbas[0];
1318 uint64_t *cursor_end = &msp->ms_lbas[1];
1319 uint64_t offset = 0;
1320
1321 ASSERT(MUTEX_HELD(&msp->ms_lock));
1322 ASSERT3U(avl_numnodes(t), ==, avl_numnodes(&rt->rt_root));
1323
1324 ASSERT3U(*cursor_end, >=, *cursor);
1325
1326 if ((*cursor + size) > *cursor_end) {
1327 range_seg_t *rs;
1328
1329 rs = avl_last(&msp->ms_allocatable_by_size);
1330 if (rs == NULL || (rs->rs_end - rs->rs_start) < size)
1331 return (-1ULL);
1332
1333 *cursor = rs->rs_start;
1334 *cursor_end = rs->rs_end;
1335 }
1336
1337 offset = *cursor;
1338 *cursor += size;
1339
1340 return (offset);
1341 }
1342
1343 static metaslab_ops_t metaslab_cf_ops = {
1344 metaslab_cf_alloc
1345 };
1346
1347 metaslab_ops_t *zfs_metaslab_ops = &metaslab_cf_ops;
1348 #endif /* WITH_CF_BLOCK_ALLOCATOR */
1349
1350 #if defined(WITH_NDF_BLOCK_ALLOCATOR)
1351 /*
1352 * ==========================================================================
1353 * New dynamic fit allocator -
1354 * Select a region that is large enough to allocate 2^metaslab_ndf_clump_shift
1355 * contiguous blocks. If no region is found then just use the largest segment
1356 * that remains.
1357 * ==========================================================================
1358 */
1359
1360 /*
1361 * Determines desired number of contiguous blocks (2^metaslab_ndf_clump_shift)
1362 * to request from the allocator.
1363 */
1364 uint64_t metaslab_ndf_clump_shift = 4;
1365
1366 static uint64_t
1367 metaslab_ndf_alloc(metaslab_t *msp, uint64_t size)
1368 {
1369 avl_tree_t *t = &msp->ms_allocatable->rt_root;
1370 avl_index_t where;
1371 range_seg_t *rs, rsearch;
1372 uint64_t hbit = highbit64(size);
1373 uint64_t *cursor = &msp->ms_lbas[hbit - 1];
1374 uint64_t max_size = metaslab_block_maxsize(msp);
1375
1376 ASSERT(MUTEX_HELD(&msp->ms_lock));
1377 ASSERT3U(avl_numnodes(t), ==,
1378 avl_numnodes(&msp->ms_allocatable_by_size));
1379
1380 if (max_size < size)
1381 return (-1ULL);
1382
1383 rsearch.rs_start = *cursor;
1384 rsearch.rs_end = *cursor + size;
1385
1386 rs = avl_find(t, &rsearch, &where);
1387 if (rs == NULL || (rs->rs_end - rs->rs_start) < size) {
1388 t = &msp->ms_allocatable_by_size;
1389
1390 rsearch.rs_start = 0;
1391 rsearch.rs_end = MIN(max_size,
1392 1ULL << (hbit + metaslab_ndf_clump_shift));
1393 rs = avl_find(t, &rsearch, &where);
1394 if (rs == NULL)
1395 rs = avl_nearest(t, where, AVL_AFTER);
1396 ASSERT(rs != NULL);
1397 }
1398
1399 if ((rs->rs_end - rs->rs_start) >= size) {
1400 *cursor = rs->rs_start + size;
1401 return (rs->rs_start);
1402 }
1403 return (-1ULL);
1404 }
1405
1406 static metaslab_ops_t metaslab_ndf_ops = {
1407 metaslab_ndf_alloc
1408 };
1409
1410 metaslab_ops_t *zfs_metaslab_ops = &metaslab_ndf_ops;
1411 #endif /* WITH_NDF_BLOCK_ALLOCATOR */
1412
1413
1414 /*
1415 * ==========================================================================
1416 * Metaslabs
1417 * ==========================================================================
1418 */
1419
1420 static void
1421 metaslab_aux_histograms_clear(metaslab_t *msp)
1422 {
1423 /*
1424 * Auxiliary histograms are only cleared when resetting them,
1425 * which can only happen while the metaslab is loaded.
1426 */
1427 ASSERT(msp->ms_loaded);
1428
1429 bzero(msp->ms_synchist, sizeof (msp->ms_synchist));
1430 for (int t = 0; t < TXG_DEFER_SIZE; t++)
1431 bzero(msp->ms_deferhist[t], sizeof (msp->ms_deferhist[t]));
1432 }
1433
1434 static void
1435 metaslab_aux_histogram_add(uint64_t *histogram, uint64_t shift,
1436 range_tree_t *rt)
1437 {
1438 /*
1439 * This is modeled after space_map_histogram_add(), so refer to that
1440 * function for implementation details. We want this to work like
1441 * the space map histogram, and not the range tree histogram, as we
1442 * are essentially constructing a delta that will be later subtracted
1443 * from the space map histogram.
1444 */
1445 int idx = 0;
1446 for (int i = shift; i < RANGE_TREE_HISTOGRAM_SIZE; i++) {
1447 ASSERT3U(i, >=, idx + shift);
1448 histogram[idx] += rt->rt_histogram[i] << (i - idx - shift);
1449
1450 if (idx < SPACE_MAP_HISTOGRAM_SIZE - 1) {
1451 ASSERT3U(idx + shift, ==, i);
1452 idx++;
1453 ASSERT3U(idx, <, SPACE_MAP_HISTOGRAM_SIZE);
1454 }
1455 }
1456 }
1457
1458 /*
1459 * Called at every sync pass that the metaslab gets synced.
1460 *
1461 * The reason is that we want our auxiliary histograms to be updated
1462 * wherever the metaslab's space map histogram is updated. This way
1463 * we stay consistent on which parts of the metaslab space map's
1464 * histogram are currently not available for allocations (e.g because
1465 * they are in the defer, freed, and freeing trees).
1466 */
1467 static void
1468 metaslab_aux_histograms_update(metaslab_t *msp)
1469 {
1470 space_map_t *sm = msp->ms_sm;
1471 ASSERT(sm != NULL);
1472
1473 /*
1474 * This is similar to the metaslab's space map histogram updates
1475 * that take place in metaslab_sync(). The only difference is that
1476 * we only care about segments that haven't made it into the
1477 * ms_allocatable tree yet.
1478 */
1479 if (msp->ms_loaded) {
1480 metaslab_aux_histograms_clear(msp);
1481
1482 metaslab_aux_histogram_add(msp->ms_synchist,
1483 sm->sm_shift, msp->ms_freed);
1484
1485 for (int t = 0; t < TXG_DEFER_SIZE; t++) {
1486 metaslab_aux_histogram_add(msp->ms_deferhist[t],
1487 sm->sm_shift, msp->ms_defer[t]);
1488 }
1489 }
1490
1491 metaslab_aux_histogram_add(msp->ms_synchist,
1492 sm->sm_shift, msp->ms_freeing);
1493 }
1494
1495 /*
1496 * Called every time we are done syncing (writing to) the metaslab,
1497 * i.e. at the end of each sync pass.
1498 * [see the comment in metaslab_impl.h for ms_synchist, ms_deferhist]
1499 */
1500 static void
1501 metaslab_aux_histograms_update_done(metaslab_t *msp, boolean_t defer_allowed)
1502 {
1503 spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
1504 space_map_t *sm = msp->ms_sm;
1505
1506 if (sm == NULL) {
1507 /*
1508 * We came here from metaslab_init() when creating/opening a
1509 * pool, looking at a metaslab that hasn't had any allocations
1510 * yet.
1511 */
1512 return;
1513 }
1514
1515 /*
1516 * This is similar to the actions that we take for the ms_freed
1517 * and ms_defer trees in metaslab_sync_done().
1518 */
1519 uint64_t hist_index = spa_syncing_txg(spa) % TXG_DEFER_SIZE;
1520 if (defer_allowed) {
1521 bcopy(msp->ms_synchist, msp->ms_deferhist[hist_index],
1522 sizeof (msp->ms_synchist));
1523 } else {
1524 bzero(msp->ms_deferhist[hist_index],
1525 sizeof (msp->ms_deferhist[hist_index]));
1526 }
1527 bzero(msp->ms_synchist, sizeof (msp->ms_synchist));
1528 }
1529
1530 /*
1531 * Ensure that the metaslab's weight and fragmentation are consistent
1532 * with the contents of the histogram (either the range tree's histogram
1533 * or the space map's depending whether the metaslab is loaded).
1534 */
1535 static void
1536 metaslab_verify_weight_and_frag(metaslab_t *msp)
1537 {
1538 ASSERT(MUTEX_HELD(&msp->ms_lock));
1539
1540 if ((zfs_flags & ZFS_DEBUG_METASLAB_VERIFY) == 0)
1541 return;
1542
1543 /* see comment in metaslab_verify_unflushed_changes() */
1544 if (msp->ms_group == NULL)
1545 return;
1546
1547 /*
1548 * Devices being removed always return a weight of 0 and leave
1549 * fragmentation and ms_max_size as is - there is nothing for
1550 * us to verify here.
1551 */
1552 vdev_t *vd = msp->ms_group->mg_vd;
1553 if (vd->vdev_removing)
1554 return;
1555
1556 /*
1557 * If the metaslab is dirty it probably means that we've done
1558 * some allocations or frees that have changed our histograms
1559 * and thus the weight.
1560 */
1561 for (int t = 0; t < TXG_SIZE; t++) {
1562 if (txg_list_member(&vd->vdev_ms_list, msp, t))
1563 return;
1564 }
1565
1566 /*
1567 * This verification checks that our in-memory state is consistent
1568 * with what's on disk. If the pool is read-only then there aren't
1569 * any changes and we just have the initially-loaded state.
1570 */
1571 if (!spa_writeable(msp->ms_group->mg_vd->vdev_spa))
1572 return;
1573
1574 /* some extra verification for in-core tree if you can */
1575 if (msp->ms_loaded) {
1576 range_tree_stat_verify(msp->ms_allocatable);
1577 VERIFY(space_map_histogram_verify(msp->ms_sm,
1578 msp->ms_allocatable));
1579 }
1580
1581 uint64_t weight = msp->ms_weight;
1582 uint64_t was_active = msp->ms_weight & METASLAB_ACTIVE_MASK;
1583 boolean_t space_based = WEIGHT_IS_SPACEBASED(msp->ms_weight);
1584 uint64_t frag = msp->ms_fragmentation;
1585 uint64_t max_segsize = msp->ms_max_size;
1586
1587 msp->ms_weight = 0;
1588 msp->ms_fragmentation = 0;
1589 msp->ms_max_size = 0;
1590
1591 /*
1592 * This function is used for verification purposes. Regardless of
1593 * whether metaslab_weight() thinks this metaslab should be active or
1594 * not, we want to ensure that the actual weight (and therefore the
1595 * value of ms_weight) would be the same if it was to be recalculated
1596 * at this point.
1597 */
1598 msp->ms_weight = metaslab_weight(msp) | was_active;
1599
1600 VERIFY3U(max_segsize, ==, msp->ms_max_size);
1601
1602 /*
1603 * If the weight type changed then there is no point in doing
1604 * verification. Revert fields to their original values.
1605 */
1606 if ((space_based && !WEIGHT_IS_SPACEBASED(msp->ms_weight)) ||
1607 (!space_based && WEIGHT_IS_SPACEBASED(msp->ms_weight))) {
1608 msp->ms_fragmentation = frag;
1609 msp->ms_weight = weight;
1610 return;
1611 }
1612
1613 VERIFY3U(msp->ms_fragmentation, ==, frag);
1614 VERIFY3U(msp->ms_weight, ==, weight);
1615 }
1616
1617 /*
1618 * Wait for any in-progress metaslab loads to complete.
1619 */
1620 static void
1621 metaslab_load_wait(metaslab_t *msp)
1622 {
1623 ASSERT(MUTEX_HELD(&msp->ms_lock));
1624
1625 while (msp->ms_loading) {
1626 ASSERT(!msp->ms_loaded);
1627 cv_wait(&msp->ms_load_cv, &msp->ms_lock);
1628 }
1629 }
1630
1631 static int
1632 metaslab_load_impl(metaslab_t *msp)
1633 {
1634 int error = 0;
1635
1636 ASSERT(MUTEX_HELD(&msp->ms_lock));
1637 ASSERT(msp->ms_loading);
1638 ASSERT(!msp->ms_condensing);
1639
1640 /*
1641 * We temporarily drop the lock to unblock other operations while we
1642 * are reading the space map. Therefore, metaslab_sync() and
1643 * metaslab_sync_done() can run at the same time as we do.
1644 *
1645 * metaslab_sync() can append to the space map while we are loading.
1646 * Therefore we load only entries that existed when we started the
1647 * load. Additionally, metaslab_sync_done() has to wait for the load
1648 * to complete because there are potential races like metaslab_load()
1649 * loading parts of the space map that are currently being appended
1650 * by metaslab_sync(). If we didn't, the ms_allocatable would have
1651 * entries that metaslab_sync_done() would try to re-add later.
1652 *
1653 * That's why before dropping the lock we remember the synced length
1654 * of the metaslab and read up to that point of the space map,
1655 * ignoring entries appended by metaslab_sync() that happen after we
1656 * drop the lock.
1657 */
1658 uint64_t length = msp->ms_synced_length;
1659 mutex_exit(&msp->ms_lock);
1660
1661 if (msp->ms_sm != NULL) {
1662 error = space_map_load_length(msp->ms_sm, msp->ms_allocatable,
1663 SM_FREE, length);
1664 } else {
1665 /*
1666 * The space map has not been allocated yet, so treat
1667 * all the space in the metaslab as free and add it to the
1668 * ms_allocatable tree.
1669 */
1670 range_tree_add(msp->ms_allocatable,
1671 msp->ms_start, msp->ms_size);
1672 }
1673
1674 /*
1675 * We need to grab the ms_sync_lock to prevent metaslab_sync() from
1676 * changing the ms_sm and the metaslab's range trees while we are
1677 * about to use them and populate the ms_allocatable. The ms_lock
1678 * is insufficient for this because metaslab_sync() doesn't hold
1679 * the ms_lock while writing the ms_checkpointing tree to disk.
1680 */
1681 mutex_enter(&msp->ms_sync_lock);
1682 mutex_enter(&msp->ms_lock);
1683 ASSERT(!msp->ms_condensing);
1684
1685 if (error != 0) {
1686 mutex_exit(&msp->ms_sync_lock);
1687 return (error);
1688 }
1689
1690 ASSERT3P(msp->ms_group, !=, NULL);
1691 msp->ms_loaded = B_TRUE;
1692
1693 /*
1694 * The ms_allocatable contains the segments that exist in the
1695 * ms_defer trees [see ms_synced_length]. Thus we need to remove
1696 * them from ms_allocatable as they will be added again in
1697 * metaslab_sync_done().
1698 */
1699 for (int t = 0; t < TXG_DEFER_SIZE; t++) {
1700 range_tree_walk(msp->ms_defer[t],
1701 range_tree_remove, msp->ms_allocatable);
1702 }
1703
1704 /*
1705 * Call metaslab_recalculate_weight_and_sort() now that the
1706 * metaslab is loaded so we get the metaslab's real weight.
1707 *
1708 * Unless this metaslab was created with older software and
1709 * has not yet been converted to use segment-based weight, we
1710 * expect the new weight to be better or equal to the weight
1711 * that the metaslab had while it was not loaded. This is
1712 * because the old weight does not take into account the
1713 * consolidation of adjacent segments between TXGs. [see
1714 * comment for ms_synchist and ms_deferhist[] for more info]
1715 */
1716 uint64_t weight = msp->ms_weight;
1717 metaslab_recalculate_weight_and_sort(msp);
1718 if (!WEIGHT_IS_SPACEBASED(weight))
1719 ASSERT3U(weight, <=, msp->ms_weight);
1720 msp->ms_max_size = metaslab_block_maxsize(msp);
1721
1722 spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
1723 metaslab_verify_space(msp, spa_syncing_txg(spa));
1724 mutex_exit(&msp->ms_sync_lock);
1725
1726 return (0);
1727 }
1728
1729 int
1730 metaslab_load(metaslab_t *msp)
1731 {
1732 ASSERT(MUTEX_HELD(&msp->ms_lock));
1733
1734 /*
1735 * There may be another thread loading the same metaslab, if that's
1736 * the case just wait until the other thread is done and return.
1737 */
1738 metaslab_load_wait(msp);
1739 if (msp->ms_loaded)
1740 return (0);
1741 VERIFY(!msp->ms_loading);
1742 ASSERT(!msp->ms_condensing);
1743
1744 msp->ms_loading = B_TRUE;
1745 int error = metaslab_load_impl(msp);
1746 msp->ms_loading = B_FALSE;
1747 cv_broadcast(&msp->ms_load_cv);
1748
1749 return (error);
1750 }
1751
1752 void
1753 metaslab_unload(metaslab_t *msp)
1754 {
1755 ASSERT(MUTEX_HELD(&msp->ms_lock));
1756
1757 metaslab_verify_weight_and_frag(msp);
1758
1759 range_tree_vacate(msp->ms_allocatable, NULL, NULL);
1760 msp->ms_loaded = B_FALSE;
1761
1762 msp->ms_weight &= ~METASLAB_ACTIVE_MASK;
1763 msp->ms_max_size = 0;
1764
1765 /*
1766 * We explicitly recalculate the metaslab's weight based on its space
1767 * map (as it is now not loaded). We want unload metaslabs to always
1768 * have their weights calculated from the space map histograms, while
1769 * loaded ones have it calculated from their in-core range tree
1770 * [see metaslab_load()]. This way, the weight reflects the information
1771 * available in-core, whether it is loaded or not
1772 *
1773 * If ms_group == NULL means that we came here from metaslab_fini(),
1774 * at which point it doesn't make sense for us to do the recalculation
1775 * and the sorting.
1776 */
1777 if (msp->ms_group != NULL)
1778 metaslab_recalculate_weight_and_sort(msp);
1779 }
1780
1781 static void
1782 metaslab_space_update(vdev_t *vd, metaslab_class_t *mc, int64_t alloc_delta,
1783 int64_t defer_delta, int64_t space_delta)
1784 {
1785 vdev_space_update(vd, alloc_delta, defer_delta, space_delta);
1786
1787 ASSERT3P(vd->vdev_spa->spa_root_vdev, ==, vd->vdev_parent);
1788 ASSERT(vd->vdev_ms_count != 0);
1789
1790 metaslab_class_space_update(mc, alloc_delta, defer_delta, space_delta,
1791 vdev_deflated_space(vd, space_delta));
1792 }
1793
1794 int
1795 metaslab_init(metaslab_group_t *mg, uint64_t id, uint64_t object, uint64_t txg,
1796 metaslab_t **msp)
1797 {
1798 vdev_t *vd = mg->mg_vd;
1799 spa_t *spa = vd->vdev_spa;
1800 objset_t *mos = spa->spa_meta_objset;
1801 metaslab_t *ms;
1802 int error;
1803
1804 ms = kmem_zalloc(sizeof (metaslab_t), KM_SLEEP);
1805 mutex_init(&ms->ms_lock, NULL, MUTEX_DEFAULT, NULL);
1806 mutex_init(&ms->ms_sync_lock, NULL, MUTEX_DEFAULT, NULL);
1807 cv_init(&ms->ms_load_cv, NULL, CV_DEFAULT, NULL);
1808
1809 ms->ms_id = id;
1810 ms->ms_start = id << vd->vdev_ms_shift;
1811 ms->ms_size = 1ULL << vd->vdev_ms_shift;
1812 ms->ms_allocator = -1;
1813 ms->ms_new = B_TRUE;
1814
1815 /*
1816 * We only open space map objects that already exist. All others
1817 * will be opened when we finally allocate an object for it.
1818 *
1819 * Note:
1820 * When called from vdev_expand(), we can't call into the DMU as
1821 * we are holding the spa_config_lock as a writer and we would
1822 * deadlock [see relevant comment in vdev_metaslab_init()]. in
1823 * that case, the object parameter is zero though, so we won't
1824 * call into the DMU.
1825 */
1826 if (object != 0) {
1827 error = space_map_open(&ms->ms_sm, mos, object, ms->ms_start,
1828 ms->ms_size, vd->vdev_ashift);
1829
1830 if (error != 0) {
1831 kmem_free(ms, sizeof (metaslab_t));
1832 return (error);
1833 }
1834
1835 ASSERT(ms->ms_sm != NULL);
1836 ms->ms_allocated_space = space_map_allocated(ms->ms_sm);
1837 }
1838
1839 /*
1840 * We create the ms_allocatable here, but we don't create the
1841 * other range trees until metaslab_sync_done(). This serves
1842 * two purposes: it allows metaslab_sync_done() to detect the
1843 * addition of new space; and for debugging, it ensures that
1844 * we'd data fault on any attempt to use this metaslab before
1845 * it's ready.
1846 */
1847 ms->ms_allocatable = range_tree_create_impl(&rt_avl_ops,
1848 &ms->ms_allocatable_by_size, metaslab_rangesize_compare, 0);
1849 metaslab_group_add(mg, ms);
1850
1851 metaslab_set_fragmentation(ms);
1852
1853 /*
1854 * If we're opening an existing pool (txg == 0) or creating
1855 * a new one (txg == TXG_INITIAL), all space is available now.
1856 * If we're adding space to an existing pool, the new space
1857 * does not become available until after this txg has synced.
1858 * The metaslab's weight will also be initialized when we sync
1859 * out this txg. This ensures that we don't attempt to allocate
1860 * from it before we have initialized it completely.
1861 */
1862 if (txg <= TXG_INITIAL) {
1863 metaslab_sync_done(ms, 0);
1864 metaslab_space_update(vd, mg->mg_class,
1865 metaslab_allocated_space(ms), 0, 0);
1866 }
1867
1868 /*
1869 * If metaslab_debug_load is set and we're initializing a metaslab
1870 * that has an allocated space map object then load the space map
1871 * so that we can verify frees.
1872 */
1873 if (metaslab_debug_load && ms->ms_sm != NULL) {
1874 mutex_enter(&ms->ms_lock);
1875 VERIFY0(metaslab_load(ms));
1876 mutex_exit(&ms->ms_lock);
1877 }
1878
1879 if (txg != 0) {
1880 vdev_dirty(vd, 0, NULL, txg);
1881 vdev_dirty(vd, VDD_METASLAB, ms, txg);
1882 }
1883
1884 *msp = ms;
1885
1886 return (0);
1887 }
1888
1889 void
1890 metaslab_fini(metaslab_t *msp)
1891 {
1892 metaslab_group_t *mg = msp->ms_group;
1893 vdev_t *vd = mg->mg_vd;
1894
1895 metaslab_group_remove(mg, msp);
1896
1897 mutex_enter(&msp->ms_lock);
1898 VERIFY(msp->ms_group == NULL);
1899 metaslab_space_update(vd, mg->mg_class,
1900 -metaslab_allocated_space(msp), 0, -msp->ms_size);
1901
1902 space_map_close(msp->ms_sm);
1903
1904 metaslab_unload(msp);
1905
1906 range_tree_destroy(msp->ms_allocatable);
1907 range_tree_destroy(msp->ms_freeing);
1908 range_tree_destroy(msp->ms_freed);
1909
1910 for (int t = 0; t < TXG_SIZE; t++) {
1911 range_tree_destroy(msp->ms_allocating[t]);
1912 }
1913
1914 for (int t = 0; t < TXG_DEFER_SIZE; t++) {
1915 range_tree_destroy(msp->ms_defer[t]);
1916 }
1917 ASSERT0(msp->ms_deferspace);
1918
1919 range_tree_destroy(msp->ms_checkpointing);
1920
1921 for (int t = 0; t < TXG_SIZE; t++)
1922 ASSERT(!txg_list_member(&vd->vdev_ms_list, msp, t));
1923
1924 mutex_exit(&msp->ms_lock);
1925 cv_destroy(&msp->ms_load_cv);
1926 mutex_destroy(&msp->ms_lock);
1927 mutex_destroy(&msp->ms_sync_lock);
1928 ASSERT3U(msp->ms_allocator, ==, -1);
1929
1930 kmem_free(msp, sizeof (metaslab_t));
1931 }
1932
1933 #define FRAGMENTATION_TABLE_SIZE 17
1934
1935 /*
1936 * This table defines a segment size based fragmentation metric that will
1937 * allow each metaslab to derive its own fragmentation value. This is done
1938 * by calculating the space in each bucket of the spacemap histogram and
1939 * multiplying that by the fragmentation metric in this table. Doing
1940 * this for all buckets and dividing it by the total amount of free
1941 * space in this metaslab (i.e. the total free space in all buckets) gives
1942 * us the fragmentation metric. This means that a high fragmentation metric
1943 * equates to most of the free space being comprised of small segments.
1944 * Conversely, if the metric is low, then most of the free space is in
1945 * large segments. A 10% change in fragmentation equates to approximately
1946 * double the number of segments.
1947 *
1948 * This table defines 0% fragmented space using 16MB segments. Testing has
1949 * shown that segments that are greater than or equal to 16MB do not suffer
1950 * from drastic performance problems. Using this value, we derive the rest
1951 * of the table. Since the fragmentation value is never stored on disk, it
1952 * is possible to change these calculations in the future.
1953 */
1954 int zfs_frag_table[FRAGMENTATION_TABLE_SIZE] = {
1955 100, /* 512B */
1956 100, /* 1K */
1957 98, /* 2K */
1958 95, /* 4K */
1959 90, /* 8K */
1960 80, /* 16K */
1961 70, /* 32K */
1962 60, /* 64K */
1963 50, /* 128K */
1964 40, /* 256K */
1965 30, /* 512K */
1966 20, /* 1M */
1967 15, /* 2M */
1968 10, /* 4M */
1969 5, /* 8M */
1970 0 /* 16M */
1971 };
1972
1973 /*
1974 * Calculate the metaslab's fragmentation metric and set ms_fragmentation.
1975 * Setting this value to ZFS_FRAG_INVALID means that the metaslab has not
1976 * been upgraded and does not support this metric. Otherwise, the return
1977 * value should be in the range [0, 100].
1978 */
1979 static void
1980 metaslab_set_fragmentation(metaslab_t *msp)
1981 {
1982 spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
1983 uint64_t fragmentation = 0;
1984 uint64_t total = 0;
1985 boolean_t feature_enabled = spa_feature_is_enabled(spa,
1986 SPA_FEATURE_SPACEMAP_HISTOGRAM);
1987
1988 if (!feature_enabled) {
1989 msp->ms_fragmentation = ZFS_FRAG_INVALID;
1990 return;
1991 }
1992
1993 /*
1994 * A null space map means that the entire metaslab is free
1995 * and thus is not fragmented.
1996 */
1997 if (msp->ms_sm == NULL) {
1998 msp->ms_fragmentation = 0;
1999 return;
2000 }
2001
2002 /*
2003 * If this metaslab's space map has not been upgraded, flag it
2004 * so that we upgrade next time we encounter it.
2005 */
2006 if (msp->ms_sm->sm_dbuf->db_size != sizeof (space_map_phys_t)) {
2007 uint64_t txg = spa_syncing_txg(spa);
2008 vdev_t *vd = msp->ms_group->mg_vd;
2009
2010 /*
2011 * If we've reached the final dirty txg, then we must
2012 * be shutting down the pool. We don't want to dirty
2013 * any data past this point so skip setting the condense
2014 * flag. We can retry this action the next time the pool
2015 * is imported.
2016 */
2017 if (spa_writeable(spa) && txg < spa_final_dirty_txg(spa)) {
2018 msp->ms_condense_wanted = B_TRUE;
2019 vdev_dirty(vd, VDD_METASLAB, msp, txg + 1);
2020 zfs_dbgmsg("txg %llu, requesting force condense: "
2021 "ms_id %llu, vdev_id %llu", txg, msp->ms_id,
2022 vd->vdev_id);
2023 }
2024 msp->ms_fragmentation = ZFS_FRAG_INVALID;
2025 return;
2026 }
2027
2028 for (int i = 0; i < SPACE_MAP_HISTOGRAM_SIZE; i++) {
2029 uint64_t space = 0;
2030 uint8_t shift = msp->ms_sm->sm_shift;
2031
2032 int idx = MIN(shift - SPA_MINBLOCKSHIFT + i,
2033 FRAGMENTATION_TABLE_SIZE - 1);
2034
2035 if (msp->ms_sm->sm_phys->smp_histogram[i] == 0)
2036 continue;
2037
2038 space = msp->ms_sm->sm_phys->smp_histogram[i] << (i + shift);
2039 total += space;
2040
2041 ASSERT3U(idx, <, FRAGMENTATION_TABLE_SIZE);
2042 fragmentation += space * zfs_frag_table[idx];
2043 }
2044
2045 if (total > 0)
2046 fragmentation /= total;
2047 ASSERT3U(fragmentation, <=, 100);
2048
2049 msp->ms_fragmentation = fragmentation;
2050 }
2051
2052 /*
2053 * Compute a weight -- a selection preference value -- for the given metaslab.
2054 * This is based on the amount of free space, the level of fragmentation,
2055 * the LBA range, and whether the metaslab is loaded.
2056 */
2057 static uint64_t
2058 metaslab_space_weight(metaslab_t *msp)
2059 {
2060 metaslab_group_t *mg = msp->ms_group;
2061 vdev_t *vd = mg->mg_vd;
2062 uint64_t weight, space;
2063
2064 ASSERT(MUTEX_HELD(&msp->ms_lock));
2065 ASSERT(!vd->vdev_removing);
2066
2067 /*
2068 * The baseline weight is the metaslab's free space.
2069 */
2070 space = msp->ms_size - metaslab_allocated_space(msp);
2071
2072 if (metaslab_fragmentation_factor_enabled &&
2073 msp->ms_fragmentation != ZFS_FRAG_INVALID) {
2074 /*
2075 * Use the fragmentation information to inversely scale
2076 * down the baseline weight. We need to ensure that we
2077 * don't exclude this metaslab completely when it's 100%
2078 * fragmented. To avoid this we reduce the fragmented value
2079 * by 1.
2080 */
2081 space = (space * (100 - (msp->ms_fragmentation - 1))) / 100;
2082
2083 /*
2084 * If space < SPA_MINBLOCKSIZE, then we will not allocate from
2085 * this metaslab again. The fragmentation metric may have
2086 * decreased the space to something smaller than
2087 * SPA_MINBLOCKSIZE, so reset the space to SPA_MINBLOCKSIZE
2088 * so that we can consume any remaining space.
2089 */
2090 if (space > 0 && space < SPA_MINBLOCKSIZE)
2091 space = SPA_MINBLOCKSIZE;
2092 }
2093 weight = space;
2094
2095 /*
2096 * Modern disks have uniform bit density and constant angular velocity.
2097 * Therefore, the outer recording zones are faster (higher bandwidth)
2098 * than the inner zones by the ratio of outer to inner track diameter,
2099 * which is typically around 2:1. We account for this by assigning
2100 * higher weight to lower metaslabs (multiplier ranging from 2x to 1x).
2101 * In effect, this means that we'll select the metaslab with the most
2102 * free bandwidth rather than simply the one with the most free space.
2103 */
2104 if (!vd->vdev_nonrot && metaslab_lba_weighting_enabled) {
2105 weight = 2 * weight - (msp->ms_id * weight) / vd->vdev_ms_count;
2106 ASSERT(weight >= space && weight <= 2 * space);
2107 }
2108
2109 /*
2110 * If this metaslab is one we're actively using, adjust its
2111 * weight to make it preferable to any inactive metaslab so
2112 * we'll polish it off. If the fragmentation on this metaslab
2113 * has exceed our threshold, then don't mark it active.
2114 */
2115 if (msp->ms_loaded && msp->ms_fragmentation != ZFS_FRAG_INVALID &&
2116 msp->ms_fragmentation <= zfs_metaslab_fragmentation_threshold) {
2117 weight |= (msp->ms_weight & METASLAB_ACTIVE_MASK);
2118 }
2119
2120 WEIGHT_SET_SPACEBASED(weight);
2121 return (weight);
2122 }
2123
2124 /*
2125 * Return the weight of the specified metaslab, according to the segment-based
2126 * weighting algorithm. The metaslab must be loaded. This function can
2127 * be called within a sync pass since it relies only on the metaslab's
2128 * range tree which is always accurate when the metaslab is loaded.
2129 */
2130 static uint64_t
2131 metaslab_weight_from_range_tree(metaslab_t *msp)
2132 {
2133 uint64_t weight = 0;
2134 uint32_t segments = 0;
2135
2136 ASSERT(msp->ms_loaded);
2137
2138 for (int i = RANGE_TREE_HISTOGRAM_SIZE - 1; i >= SPA_MINBLOCKSHIFT;
2139 i--) {
2140 uint8_t shift = msp->ms_group->mg_vd->vdev_ashift;
2141 int max_idx = SPACE_MAP_HISTOGRAM_SIZE + shift - 1;
2142
2143 segments <<= 1;
2144 segments += msp->ms_allocatable->rt_histogram[i];
2145
2146 /*
2147 * The range tree provides more precision than the space map
2148 * and must be downgraded so that all values fit within the
2149 * space map's histogram. This allows us to compare loaded
2150 * vs. unloaded metaslabs to determine which metaslab is
2151 * considered "best".
2152 */
2153 if (i > max_idx)
2154 continue;
2155
2156 if (segments != 0) {
2157 WEIGHT_SET_COUNT(weight, segments);
2158 WEIGHT_SET_INDEX(weight, i);
2159 WEIGHT_SET_ACTIVE(weight, 0);
2160 break;
2161 }
2162 }
2163 return (weight);
2164 }
2165
2166 /*
2167 * Calculate the weight based on the on-disk histogram. This should only
2168 * be called after a sync pass has completely finished since the on-disk
2169 * information is updated in metaslab_sync().
2170 */
2171 static uint64_t
2172 metaslab_weight_from_spacemap(metaslab_t *msp)
2173 {
2174 space_map_t *sm = msp->ms_sm;
2175 ASSERT(!msp->ms_loaded);
2176 ASSERT(sm != NULL);
2177 ASSERT3U(space_map_object(sm), !=, 0);
2178 ASSERT3U(sm->sm_dbuf->db_size, ==, sizeof (space_map_phys_t));
2179
2180 /*
2181 * Create a joint histogram from all the segments that have made
2182 * it to the metaslab's space map histogram, that are not yet
2183 * available for allocation because they are still in the freeing
2184 * pipeline (e.g. freeing, freed, and defer trees). Then subtract
2185 * these segments from the space map's histogram to get a more
2186 * accurate weight.
2187 */
2188 uint64_t deferspace_histogram[SPACE_MAP_HISTOGRAM_SIZE] = {0};
2189 for (int i = 0; i < SPACE_MAP_HISTOGRAM_SIZE; i++)
2190 deferspace_histogram[i] += msp->ms_synchist[i];
2191 for (int t = 0; t < TXG_DEFER_SIZE; t++) {
2192 for (int i = 0; i < SPACE_MAP_HISTOGRAM_SIZE; i++) {
2193 deferspace_histogram[i] += msp->ms_deferhist[t][i];
2194 }
2195 }
2196
2197 uint64_t weight = 0;
2198 for (int i = SPACE_MAP_HISTOGRAM_SIZE - 1; i >= 0; i--) {
2199 ASSERT3U(sm->sm_phys->smp_histogram[i], >=,
2200 deferspace_histogram[i]);
2201 uint64_t count =
2202 sm->sm_phys->smp_histogram[i] - deferspace_histogram[i];
2203 if (count != 0) {
2204 WEIGHT_SET_COUNT(weight, count);
2205 WEIGHT_SET_INDEX(weight, i + sm->sm_shift);
2206 WEIGHT_SET_ACTIVE(weight, 0);
2207 break;
2208 }
2209 }
2210 return (weight);
2211 }
2212
2213 /*
2214 * Compute a segment-based weight for the specified metaslab. The weight
2215 * is determined by highest bucket in the histogram. The information
2216 * for the highest bucket is encoded into the weight value.
2217 */
2218 static uint64_t
2219 metaslab_segment_weight(metaslab_t *msp)
2220 {
2221 metaslab_group_t *mg = msp->ms_group;
2222 uint64_t weight = 0;
2223 uint8_t shift = mg->mg_vd->vdev_ashift;
2224
2225 ASSERT(MUTEX_HELD(&msp->ms_lock));
2226
2227 /*
2228 * The metaslab is completely free.
2229 */
2230 if (metaslab_allocated_space(msp) == 0) {
2231 int idx = highbit64(msp->ms_size) - 1;
2232 int max_idx = SPACE_MAP_HISTOGRAM_SIZE + shift - 1;
2233
2234 if (idx < max_idx) {
2235 WEIGHT_SET_COUNT(weight, 1ULL);
2236 WEIGHT_SET_INDEX(weight, idx);
2237 } else {
2238 WEIGHT_SET_COUNT(weight, 1ULL << (idx - max_idx));
2239 WEIGHT_SET_INDEX(weight, max_idx);
2240 }
2241 WEIGHT_SET_ACTIVE(weight, 0);
2242 ASSERT(!WEIGHT_IS_SPACEBASED(weight));
2243
2244 return (weight);
2245 }
2246
2247 ASSERT3U(msp->ms_sm->sm_dbuf->db_size, ==, sizeof (space_map_phys_t));
2248
2249 /*
2250 * If the metaslab is fully allocated then just make the weight 0.
2251 */
2252 if (metaslab_allocated_space(msp) == msp->ms_size)
2253 return (0);
2254 /*
2255 * If the metaslab is already loaded, then use the range tree to
2256 * determine the weight. Otherwise, we rely on the space map information
2257 * to generate the weight.
2258 */
2259 if (msp->ms_loaded) {
2260 weight = metaslab_weight_from_range_tree(msp);
2261 } else {
2262 weight = metaslab_weight_from_spacemap(msp);
2263 }
2264
2265 /*
2266 * If the metaslab was active the last time we calculated its weight
2267 * then keep it active. We want to consume the entire region that
2268 * is associated with this weight.
2269 */
2270 if (msp->ms_activation_weight != 0 && weight != 0)
2271 WEIGHT_SET_ACTIVE(weight, WEIGHT_GET_ACTIVE(msp->ms_weight));
2272 return (weight);
2273 }
2274
2275 /*
2276 * Determine if we should attempt to allocate from this metaslab. If the
2277 * metaslab has a maximum size then we can quickly determine if the desired
2278 * allocation size can be satisfied. Otherwise, if we're using segment-based
2279 * weighting then we can determine the maximum allocation that this metaslab
2280 * can accommodate based on the index encoded in the weight. If we're using
2281 * space-based weights then rely on the entire weight (excluding the weight
2282 * type bit).
2283 */
2284 boolean_t
2285 metaslab_should_allocate(metaslab_t *msp, uint64_t asize)
2286 {
2287 boolean_t should_allocate;
2288
2289 if (msp->ms_max_size != 0)
2290 return (msp->ms_max_size >= asize);
2291
2292 if (!WEIGHT_IS_SPACEBASED(msp->ms_weight)) {
2293 /*
2294 * The metaslab segment weight indicates segments in the
2295 * range [2^i, 2^(i+1)), where i is the index in the weight.
2296 * Since the asize might be in the middle of the range, we
2297 * should attempt the allocation if asize < 2^(i+1).
2298 */
2299 should_allocate = (asize <
2300 1ULL << (WEIGHT_GET_INDEX(msp->ms_weight) + 1));
2301 } else {
2302 should_allocate = (asize <=
2303 (msp->ms_weight & ~METASLAB_WEIGHT_TYPE));
2304 }
2305 return (should_allocate);
2306 }
2307 static uint64_t
2308 metaslab_weight(metaslab_t *msp)
2309 {
2310 vdev_t *vd = msp->ms_group->mg_vd;
2311 spa_t *spa = vd->vdev_spa;
2312 uint64_t weight;
2313
2314 ASSERT(MUTEX_HELD(&msp->ms_lock));
2315
2316 /*
2317 * If this vdev is in the process of being removed, there is nothing
2318 * for us to do here.
2319 */
2320 if (vd->vdev_removing)
2321 return (0);
2322
2323 metaslab_set_fragmentation(msp);
2324
2325 /*
2326 * Update the maximum size if the metaslab is loaded. This will
2327 * ensure that we get an accurate maximum size if newly freed space
2328 * has been added back into the free tree.
2329 */
2330 if (msp->ms_loaded)
2331 msp->ms_max_size = metaslab_block_maxsize(msp);
2332 else
2333 ASSERT0(msp->ms_max_size);
2334
2335 /*
2336 * Segment-based weighting requires space map histogram support.
2337 */
2338 if (zfs_metaslab_segment_weight_enabled &&
2339 spa_feature_is_enabled(spa, SPA_FEATURE_SPACEMAP_HISTOGRAM) &&
2340 (msp->ms_sm == NULL || msp->ms_sm->sm_dbuf->db_size ==
2341 sizeof (space_map_phys_t))) {
2342 weight = metaslab_segment_weight(msp);
2343 } else {
2344 weight = metaslab_space_weight(msp);
2345 }
2346 return (weight);
2347 }
2348
2349 void
2350 metaslab_recalculate_weight_and_sort(metaslab_t *msp)
2351 {
2352 /* note: we preserve the mask (e.g. indication of primary, etc..) */
2353 uint64_t was_active = msp->ms_weight & METASLAB_ACTIVE_MASK;
2354 metaslab_group_sort(msp->ms_group, msp,
2355 metaslab_weight(msp) | was_active);
2356 }
2357
2358 static int
2359 metaslab_activate_allocator(metaslab_group_t *mg, metaslab_t *msp,
2360 int allocator, uint64_t activation_weight)
2361 {
2362 /*
2363 * If we're activating for the claim code, we don't want to actually
2364 * set the metaslab up for a specific allocator.
2365 */
2366 if (activation_weight == METASLAB_WEIGHT_CLAIM)
2367 return (0);
2368 metaslab_t **arr = (activation_weight == METASLAB_WEIGHT_PRIMARY ?
2369 mg->mg_primaries : mg->mg_secondaries);
2370
2371 ASSERT(MUTEX_HELD(&msp->ms_lock));
2372 mutex_enter(&mg->mg_lock);
2373 if (arr[allocator] != NULL) {
2374 mutex_exit(&mg->mg_lock);
2375 return (EEXIST);
2376 }
2377
2378 arr[allocator] = msp;
2379 ASSERT3S(msp->ms_allocator, ==, -1);
2380 msp->ms_allocator = allocator;
2381 msp->ms_primary = (activation_weight == METASLAB_WEIGHT_PRIMARY);
2382 mutex_exit(&mg->mg_lock);
2383
2384 return (0);
2385 }
2386
2387 static int
2388 metaslab_activate(metaslab_t *msp, int allocator, uint64_t activation_weight)
2389 {
2390 ASSERT(MUTEX_HELD(&msp->ms_lock));
2391
2392 if ((msp->ms_weight & METASLAB_ACTIVE_MASK) == 0) {
2393 int error = metaslab_load(msp);
2394 if (error != 0) {
2395 metaslab_group_sort(msp->ms_group, msp, 0);
2396 return (error);
2397 }
2398 if ((msp->ms_weight & METASLAB_ACTIVE_MASK) != 0) {
2399 /*
2400 * The metaslab was activated for another allocator
2401 * while we were waiting, we should reselect.
2402 */
2403 return (SET_ERROR(EBUSY));
2404 }
2405 if ((error = metaslab_activate_allocator(msp->ms_group, msp,
2406 allocator, activation_weight)) != 0) {
2407 return (error);
2408 }
2409
2410 msp->ms_activation_weight = msp->ms_weight;
2411 metaslab_group_sort(msp->ms_group, msp,
2412 msp->ms_weight | activation_weight);
2413 }
2414 ASSERT(msp->ms_loaded);
2415 ASSERT(msp->ms_weight & METASLAB_ACTIVE_MASK);
2416
2417 return (0);
2418 }
2419
2420 static void
2421 metaslab_passivate_allocator(metaslab_group_t *mg, metaslab_t *msp,
2422 uint64_t weight)
2423 {
2424 ASSERT(MUTEX_HELD(&msp->ms_lock));
2425 if (msp->ms_weight & METASLAB_WEIGHT_CLAIM) {
2426 metaslab_group_sort(mg, msp, weight);
2427 return;
2428 }
2429
2430 mutex_enter(&mg->mg_lock);
2431 ASSERT3P(msp->ms_group, ==, mg);
2432 if (msp->ms_primary) {
2433 ASSERT3U(0, <=, msp->ms_allocator);
2434 ASSERT3U(msp->ms_allocator, <, mg->mg_allocators);
2435 ASSERT3P(mg->mg_primaries[msp->ms_allocator], ==, msp);
2436 ASSERT(msp->ms_weight & METASLAB_WEIGHT_PRIMARY);
2437 mg->mg_primaries[msp->ms_allocator] = NULL;
2438 } else {
2439 ASSERT(msp->ms_weight & METASLAB_WEIGHT_SECONDARY);
2440 ASSERT3P(mg->mg_secondaries[msp->ms_allocator], ==, msp);
2441 mg->mg_secondaries[msp->ms_allocator] = NULL;
2442 }
2443 msp->ms_allocator = -1;
2444 metaslab_group_sort_impl(mg, msp, weight);
2445 mutex_exit(&mg->mg_lock);
2446 }
2447
2448 static void
2449 metaslab_passivate(metaslab_t *msp, uint64_t weight)
2450 {
2451 ASSERTV(uint64_t size = weight & ~METASLAB_WEIGHT_TYPE);
2452
2453 /*
2454 * If size < SPA_MINBLOCKSIZE, then we will not allocate from
2455 * this metaslab again. In that case, it had better be empty,
2456 * or we would be leaving space on the table.
2457 */
2458 ASSERT(!WEIGHT_IS_SPACEBASED(msp->ms_weight) ||
2459 size >= SPA_MINBLOCKSIZE ||
2460 range_tree_space(msp->ms_allocatable) == 0);
2461 ASSERT0(weight & METASLAB_ACTIVE_MASK);
2462
2463 msp->ms_activation_weight = 0;
2464 metaslab_passivate_allocator(msp->ms_group, msp, weight);
2465 ASSERT((msp->ms_weight & METASLAB_ACTIVE_MASK) == 0);
2466 }
2467
2468 /*
2469 * Segment-based metaslabs are activated once and remain active until
2470 * we either fail an allocation attempt (similar to space-based metaslabs)
2471 * or have exhausted the free space in zfs_metaslab_switch_threshold
2472 * buckets since the metaslab was activated. This function checks to see
2473 * if we've exhaused the zfs_metaslab_switch_threshold buckets in the
2474 * metaslab and passivates it proactively. This will allow us to select a
2475 * metaslab with a larger contiguous region, if any, remaining within this
2476 * metaslab group. If we're in sync pass > 1, then we continue using this
2477 * metaslab so that we don't dirty more block and cause more sync passes.
2478 */
2479 void
2480 metaslab_segment_may_passivate(metaslab_t *msp)
2481 {
2482 spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
2483
2484 if (WEIGHT_IS_SPACEBASED(msp->ms_weight) || spa_sync_pass(spa) > 1)
2485 return;
2486
2487 /*
2488 * Since we are in the middle of a sync pass, the most accurate
2489 * information that is accessible to us is the in-core range tree
2490 * histogram; calculate the new weight based on that information.
2491 */
2492 uint64_t weight = metaslab_weight_from_range_tree(msp);
2493 int activation_idx = WEIGHT_GET_INDEX(msp->ms_activation_weight);
2494 int current_idx = WEIGHT_GET_INDEX(weight);
2495
2496 if (current_idx <= activation_idx - zfs_metaslab_switch_threshold)
2497 metaslab_passivate(msp, weight);
2498 }
2499
2500 static void
2501 metaslab_preload(void *arg)
2502 {
2503 metaslab_t *msp = arg;
2504 spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
2505 fstrans_cookie_t cookie = spl_fstrans_mark();
2506
2507 ASSERT(!MUTEX_HELD(&msp->ms_group->mg_lock));
2508
2509 mutex_enter(&msp->ms_lock);
2510 (void) metaslab_load(msp);
2511 msp->ms_selected_txg = spa_syncing_txg(spa);
2512 mutex_exit(&msp->ms_lock);
2513 spl_fstrans_unmark(cookie);
2514 }
2515
2516 static void
2517 metaslab_group_preload(metaslab_group_t *mg)
2518 {
2519 spa_t *spa = mg->mg_vd->vdev_spa;
2520 metaslab_t *msp;
2521 avl_tree_t *t = &mg->mg_metaslab_tree;
2522 int m = 0;
2523
2524 if (spa_shutting_down(spa) || !metaslab_preload_enabled) {
2525 taskq_wait_outstanding(mg->mg_taskq, 0);
2526 return;
2527 }
2528
2529 mutex_enter(&mg->mg_lock);
2530
2531 /*
2532 * Load the next potential metaslabs
2533 */
2534 for (msp = avl_first(t); msp != NULL; msp = AVL_NEXT(t, msp)) {
2535 ASSERT3P(msp->ms_group, ==, mg);
2536
2537 /*
2538 * We preload only the maximum number of metaslabs specified
2539 * by metaslab_preload_limit. If a metaslab is being forced
2540 * to condense then we preload it too. This will ensure
2541 * that force condensing happens in the next txg.
2542 */
2543 if (++m > metaslab_preload_limit && !msp->ms_condense_wanted) {
2544 continue;
2545 }
2546
2547 VERIFY(taskq_dispatch(mg->mg_taskq, metaslab_preload,
2548 msp, TQ_SLEEP) != TASKQID_INVALID);
2549 }
2550 mutex_exit(&mg->mg_lock);
2551 }
2552
2553 /*
2554 * Determine if the space map's on-disk footprint is past our tolerance
2555 * for inefficiency. We would like to use the following criteria to make
2556 * our decision:
2557 *
2558 * 1. The size of the space map object should not dramatically increase as a
2559 * result of writing out the free space range tree.
2560 *
2561 * 2. The minimal on-disk space map representation is zfs_condense_pct/100
2562 * times the size than the free space range tree representation
2563 * (i.e. zfs_condense_pct = 110 and in-core = 1MB, minimal = 1.1MB).
2564 *
2565 * 3. The on-disk size of the space map should actually decrease.
2566 *
2567 * Unfortunately, we cannot compute the on-disk size of the space map in this
2568 * context because we cannot accurately compute the effects of compression, etc.
2569 * Instead, we apply the heuristic described in the block comment for
2570 * zfs_metaslab_condense_block_threshold - we only condense if the space used
2571 * is greater than a threshold number of blocks.
2572 */
2573 static boolean_t
2574 metaslab_should_condense(metaslab_t *msp)
2575 {
2576 space_map_t *sm = msp->ms_sm;
2577 vdev_t *vd = msp->ms_group->mg_vd;
2578 uint64_t vdev_blocksize = 1 << vd->vdev_ashift;
2579 uint64_t current_txg = spa_syncing_txg(vd->vdev_spa);
2580
2581 ASSERT(MUTEX_HELD(&msp->ms_lock));
2582 ASSERT(msp->ms_loaded);
2583
2584 /*
2585 * Allocations and frees in early passes are generally more space
2586 * efficient (in terms of blocks described in space map entries)
2587 * than the ones in later passes (e.g. we don't compress after
2588 * sync pass 5) and condensing a metaslab multiple times in a txg
2589 * could degrade performance.
2590 *
2591 * Thus we prefer condensing each metaslab at most once every txg at
2592 * the earliest sync pass possible. If a metaslab is eligible for
2593 * condensing again after being considered for condensing within the
2594 * same txg, it will hopefully be dirty in the next txg where it will
2595 * be condensed at an earlier pass.
2596 */
2597 if (msp->ms_condense_checked_txg == current_txg)
2598 return (B_FALSE);
2599 msp->ms_condense_checked_txg = current_txg;
2600
2601 /*
2602 * We always condense metaslabs that are empty and metaslabs for
2603 * which a condense request has been made.
2604 */
2605 if (avl_is_empty(&msp->ms_allocatable_by_size) ||
2606 msp->ms_condense_wanted)
2607 return (B_TRUE);
2608
2609 uint64_t object_size = space_map_length(msp->ms_sm);
2610 uint64_t optimal_size = space_map_estimate_optimal_size(sm,
2611 msp->ms_allocatable, SM_NO_VDEVID);
2612
2613 dmu_object_info_t doi;
2614 dmu_object_info_from_db(sm->sm_dbuf, &doi);
2615 uint64_t record_size = MAX(doi.doi_data_block_size, vdev_blocksize);
2616
2617 return (object_size >= (optimal_size * zfs_condense_pct / 100) &&
2618 object_size > zfs_metaslab_condense_block_threshold * record_size);
2619 }
2620
2621 /*
2622 * Condense the on-disk space map representation to its minimized form.
2623 * The minimized form consists of a small number of allocations followed by
2624 * the entries of the free range tree.
2625 */
2626 static void
2627 metaslab_condense(metaslab_t *msp, uint64_t txg, dmu_tx_t *tx)
2628 {
2629 range_tree_t *condense_tree;
2630 space_map_t *sm = msp->ms_sm;
2631
2632 ASSERT(MUTEX_HELD(&msp->ms_lock));
2633 ASSERT(msp->ms_loaded);
2634
2635
2636 zfs_dbgmsg("condensing: txg %llu, msp[%llu] %p, vdev id %llu, "
2637 "spa %s, smp size %llu, segments %lu, forcing condense=%s", txg,
2638 msp->ms_id, msp, msp->ms_group->mg_vd->vdev_id,
2639 msp->ms_group->mg_vd->vdev_spa->spa_name,
2640 space_map_length(msp->ms_sm),
2641 avl_numnodes(&msp->ms_allocatable->rt_root),
2642 msp->ms_condense_wanted ? "TRUE" : "FALSE");
2643
2644 msp->ms_condense_wanted = B_FALSE;
2645
2646 /*
2647 * Create an range tree that is 100% allocated. We remove segments
2648 * that have been freed in this txg, any deferred frees that exist,
2649 * and any allocation in the future. Removing segments should be
2650 * a relatively inexpensive operation since we expect these trees to
2651 * have a small number of nodes.
2652 */
2653 condense_tree = range_tree_create(NULL, NULL);
2654 range_tree_add(condense_tree, msp->ms_start, msp->ms_size);
2655
2656 range_tree_walk(msp->ms_freeing, range_tree_remove, condense_tree);
2657 range_tree_walk(msp->ms_freed, range_tree_remove, condense_tree);
2658
2659 for (int t = 0; t < TXG_DEFER_SIZE; t++) {
2660 range_tree_walk(msp->ms_defer[t],
2661 range_tree_remove, condense_tree);
2662 }
2663
2664 for (int t = 1; t < TXG_CONCURRENT_STATES; t++) {
2665 range_tree_walk(msp->ms_allocating[(txg + t) & TXG_MASK],
2666 range_tree_remove, condense_tree);
2667 }
2668
2669 /*
2670 * We're about to drop the metaslab's lock thus allowing
2671 * other consumers to change it's content. Set the
2672 * metaslab's ms_condensing flag to ensure that
2673 * allocations on this metaslab do not occur while we're
2674 * in the middle of committing it to disk. This is only critical
2675 * for ms_allocatable as all other range trees use per txg
2676 * views of their content.
2677 */
2678 msp->ms_condensing = B_TRUE;
2679
2680 mutex_exit(&msp->ms_lock);
2681 space_map_truncate(sm, zfs_metaslab_sm_blksz, tx);
2682
2683 /*
2684 * While we would ideally like to create a space map representation
2685 * that consists only of allocation records, doing so can be
2686 * prohibitively expensive because the in-core free tree can be
2687 * large, and therefore computationally expensive to subtract
2688 * from the condense_tree. Instead we sync out two trees, a cheap
2689 * allocation only tree followed by the in-core free tree. While not
2690 * optimal, this is typically close to optimal, and much cheaper to
2691 * compute.
2692 */
2693 space_map_write(sm, condense_tree, SM_ALLOC, SM_NO_VDEVID, tx);
2694 range_tree_vacate(condense_tree, NULL, NULL);
2695 range_tree_destroy(condense_tree);
2696
2697 space_map_write(sm, msp->ms_allocatable, SM_FREE, SM_NO_VDEVID, tx);
2698 mutex_enter(&msp->ms_lock);
2699 msp->ms_condensing = B_FALSE;
2700 }
2701
2702 /*
2703 * Write a metaslab to disk in the context of the specified transaction group.
2704 */
2705 void
2706 metaslab_sync(metaslab_t *msp, uint64_t txg)
2707 {
2708 metaslab_group_t *mg = msp->ms_group;
2709 vdev_t *vd = mg->mg_vd;
2710 spa_t *spa = vd->vdev_spa;
2711 objset_t *mos = spa_meta_objset(spa);
2712 range_tree_t *alloctree = msp->ms_allocating[txg & TXG_MASK];
2713 dmu_tx_t *tx;
2714 uint64_t object = space_map_object(msp->ms_sm);
2715
2716 ASSERT(!vd->vdev_ishole);
2717
2718 /*
2719 * This metaslab has just been added so there's no work to do now.
2720 */
2721 if (msp->ms_freeing == NULL) {
2722 ASSERT3P(alloctree, ==, NULL);
2723 return;
2724 }
2725
2726 ASSERT3P(alloctree, !=, NULL);
2727 ASSERT3P(msp->ms_freeing, !=, NULL);
2728 ASSERT3P(msp->ms_freed, !=, NULL);
2729 ASSERT3P(msp->ms_checkpointing, !=, NULL);
2730
2731 /*
2732 * Normally, we don't want to process a metaslab if there are no
2733 * allocations or frees to perform. However, if the metaslab is being
2734 * forced to condense and it's loaded, we need to let it through.
2735 */
2736 if (range_tree_is_empty(alloctree) &&
2737 range_tree_is_empty(msp->ms_freeing) &&
2738 range_tree_is_empty(msp->ms_checkpointing) &&
2739 !(msp->ms_loaded && msp->ms_condense_wanted))
2740 return;
2741
2742
2743 VERIFY(txg <= spa_final_dirty_txg(spa));
2744
2745 /*
2746 * The only state that can actually be changing concurrently
2747 * with metaslab_sync() is the metaslab's ms_allocatable. No
2748 * other thread can be modifying this txg's alloc, freeing,
2749 * freed, or space_map_phys_t. We drop ms_lock whenever we
2750 * could call into the DMU, because the DMU can call down to
2751 * us (e.g. via zio_free()) at any time.
2752 *
2753 * The spa_vdev_remove_thread() can be reading metaslab state
2754 * concurrently, and it is locked out by the ms_sync_lock.
2755 * Note that the ms_lock is insufficient for this, because it
2756 * is dropped by space_map_write().
2757 */
2758 tx = dmu_tx_create_assigned(spa_get_dsl(spa), txg);
2759
2760 if (msp->ms_sm == NULL) {
2761 uint64_t new_object;
2762
2763 new_object = space_map_alloc(mos, zfs_metaslab_sm_blksz, tx);
2764 VERIFY3U(new_object, !=, 0);
2765
2766 VERIFY0(space_map_open(&msp->ms_sm, mos, new_object,
2767 msp->ms_start, msp->ms_size, vd->vdev_ashift));
2768
2769 ASSERT(msp->ms_sm != NULL);
2770 ASSERT0(metaslab_allocated_space(msp));
2771 }
2772
2773 if (!range_tree_is_empty(msp->ms_checkpointing) &&
2774 vd->vdev_checkpoint_sm == NULL) {
2775 ASSERT(spa_has_checkpoint(spa));
2776
2777 uint64_t new_object = space_map_alloc(mos,
2778 vdev_standard_sm_blksz, tx);
2779 VERIFY3U(new_object, !=, 0);
2780
2781 VERIFY0(space_map_open(&vd->vdev_checkpoint_sm,
2782 mos, new_object, 0, vd->vdev_asize, vd->vdev_ashift));
2783 ASSERT3P(vd->vdev_checkpoint_sm, !=, NULL);
2784
2785 /*
2786 * We save the space map object as an entry in vdev_top_zap
2787 * so it can be retrieved when the pool is reopened after an
2788 * export or through zdb.
2789 */
2790 VERIFY0(zap_add(vd->vdev_spa->spa_meta_objset,
2791 vd->vdev_top_zap, VDEV_TOP_ZAP_POOL_CHECKPOINT_SM,
2792 sizeof (new_object), 1, &new_object, tx));
2793 }
2794
2795 mutex_enter(&msp->ms_sync_lock);
2796 mutex_enter(&msp->ms_lock);
2797
2798 /*
2799 * Note: metaslab_condense() clears the space map's histogram.
2800 * Therefore we must verify and remove this histogram before
2801 * condensing.
2802 */
2803 metaslab_group_histogram_verify(mg);
2804 metaslab_class_histogram_verify(mg->mg_class);
2805 metaslab_group_histogram_remove(mg, msp);
2806
2807 if (msp->ms_loaded && metaslab_should_condense(msp)) {
2808 metaslab_condense(msp, txg, tx);
2809 } else {
2810 mutex_exit(&msp->ms_lock);
2811 space_map_write(msp->ms_sm, alloctree, SM_ALLOC,
2812 SM_NO_VDEVID, tx);
2813 space_map_write(msp->ms_sm, msp->ms_freeing, SM_FREE,
2814 SM_NO_VDEVID, tx);
2815 mutex_enter(&msp->ms_lock);
2816 }
2817
2818 msp->ms_allocated_space += range_tree_space(alloctree);
2819 ASSERT3U(msp->ms_allocated_space, >=,
2820 range_tree_space(msp->ms_freeing));
2821 msp->ms_allocated_space -= range_tree_space(msp->ms_freeing);
2822
2823 if (!range_tree_is_empty(msp->ms_checkpointing)) {
2824 ASSERT(spa_has_checkpoint(spa));
2825 ASSERT3P(vd->vdev_checkpoint_sm, !=, NULL);
2826
2827 /*
2828 * Since we are doing writes to disk and the ms_checkpointing
2829 * tree won't be changing during that time, we drop the
2830 * ms_lock while writing to the checkpoint space map.
2831 */
2832 mutex_exit(&msp->ms_lock);
2833 space_map_write(vd->vdev_checkpoint_sm,
2834 msp->ms_checkpointing, SM_FREE, SM_NO_VDEVID, tx);
2835 mutex_enter(&msp->ms_lock);
2836
2837 spa->spa_checkpoint_info.sci_dspace +=
2838 range_tree_space(msp->ms_checkpointing);
2839 vd->vdev_stat.vs_checkpoint_space +=
2840 range_tree_space(msp->ms_checkpointing);
2841 ASSERT3U(vd->vdev_stat.vs_checkpoint_space, ==,
2842 -space_map_allocated(vd->vdev_checkpoint_sm));
2843
2844 range_tree_vacate(msp->ms_checkpointing, NULL, NULL);
2845 }
2846
2847 if (msp->ms_loaded) {
2848 /*
2849 * When the space map is loaded, we have an accurate
2850 * histogram in the range tree. This gives us an opportunity
2851 * to bring the space map's histogram up-to-date so we clear
2852 * it first before updating it.
2853 */
2854 space_map_histogram_clear(msp->ms_sm);
2855 space_map_histogram_add(msp->ms_sm, msp->ms_allocatable, tx);
2856
2857 /*
2858 * Since we've cleared the histogram we need to add back
2859 * any free space that has already been processed, plus
2860 * any deferred space. This allows the on-disk histogram
2861 * to accurately reflect all free space even if some space
2862 * is not yet available for allocation (i.e. deferred).
2863 */
2864 space_map_histogram_add(msp->ms_sm, msp->ms_freed, tx);
2865
2866 /*
2867 * Add back any deferred free space that has not been
2868 * added back into the in-core free tree yet. This will
2869 * ensure that we don't end up with a space map histogram
2870 * that is completely empty unless the metaslab is fully
2871 * allocated.
2872 */
2873 for (int t = 0; t < TXG_DEFER_SIZE; t++) {
2874 space_map_histogram_add(msp->ms_sm,
2875 msp->ms_defer[t], tx);
2876 }
2877 }
2878
2879 /*
2880 * Always add the free space from this sync pass to the space
2881 * map histogram. We want to make sure that the on-disk histogram
2882 * accounts for all free space. If the space map is not loaded,
2883 * then we will lose some accuracy but will correct it the next
2884 * time we load the space map.
2885 */
2886 space_map_histogram_add(msp->ms_sm, msp->ms_freeing, tx);
2887 metaslab_aux_histograms_update(msp);
2888
2889 metaslab_group_histogram_add(mg, msp);
2890 metaslab_group_histogram_verify(mg);
2891 metaslab_class_histogram_verify(mg->mg_class);
2892
2893 /*
2894 * For sync pass 1, we avoid traversing this txg's free range tree
2895 * and instead will just swap the pointers for freeing and freed.
2896 * We can safely do this since the freed_tree is guaranteed to be
2897 * empty on the initial pass.
2898 */
2899 if (spa_sync_pass(spa) == 1) {
2900 range_tree_swap(&msp->ms_freeing, &msp->ms_freed);
2901 ASSERT0(msp->ms_allocated_this_txg);
2902 } else {
2903 range_tree_vacate(msp->ms_freeing,
2904 range_tree_add, msp->ms_freed);
2905 }
2906 msp->ms_allocated_this_txg += range_tree_space(alloctree);
2907 range_tree_vacate(alloctree, NULL, NULL);
2908
2909 ASSERT0(range_tree_space(msp->ms_allocating[txg & TXG_MASK]));
2910 ASSERT0(range_tree_space(msp->ms_allocating[TXG_CLEAN(txg)
2911 & TXG_MASK]));
2912 ASSERT0(range_tree_space(msp->ms_freeing));
2913 ASSERT0(range_tree_space(msp->ms_checkpointing));
2914
2915 mutex_exit(&msp->ms_lock);
2916
2917 if (object != space_map_object(msp->ms_sm)) {
2918 object = space_map_object(msp->ms_sm);
2919 dmu_write(mos, vd->vdev_ms_array, sizeof (uint64_t) *
2920 msp->ms_id, sizeof (uint64_t), &object, tx);
2921 }
2922 mutex_exit(&msp->ms_sync_lock);
2923 dmu_tx_commit(tx);
2924 }
2925
2926 /*
2927 * Called after a transaction group has completely synced to mark
2928 * all of the metaslab's free space as usable.
2929 */
2930 void
2931 metaslab_sync_done(metaslab_t *msp, uint64_t txg)
2932 {
2933 metaslab_group_t *mg = msp->ms_group;
2934 vdev_t *vd = mg->mg_vd;
2935 spa_t *spa = vd->vdev_spa;
2936 range_tree_t **defer_tree;
2937 int64_t alloc_delta, defer_delta;
2938 boolean_t defer_allowed = B_TRUE;
2939
2940 ASSERT(!vd->vdev_ishole);
2941
2942 mutex_enter(&msp->ms_lock);
2943
2944 /*
2945 * If this metaslab is just becoming available, initialize its
2946 * range trees and add its capacity to the vdev.
2947 */
2948 if (msp->ms_freed == NULL) {
2949 for (int t = 0; t < TXG_SIZE; t++) {
2950 ASSERT(msp->ms_allocating[t] == NULL);
2951
2952 msp->ms_allocating[t] = range_tree_create(NULL, NULL);
2953 }
2954
2955 ASSERT3P(msp->ms_freeing, ==, NULL);
2956 msp->ms_freeing = range_tree_create(NULL, NULL);
2957
2958 ASSERT3P(msp->ms_freed, ==, NULL);
2959 msp->ms_freed = range_tree_create(NULL, NULL);
2960
2961 for (int t = 0; t < TXG_DEFER_SIZE; t++) {
2962 ASSERT(msp->ms_defer[t] == NULL);
2963
2964 msp->ms_defer[t] = range_tree_create(NULL, NULL);
2965 }
2966
2967 ASSERT3P(msp->ms_checkpointing, ==, NULL);
2968 msp->ms_checkpointing = range_tree_create(NULL, NULL);
2969
2970 metaslab_space_update(vd, mg->mg_class, 0, 0, msp->ms_size);
2971 }
2972 ASSERT0(range_tree_space(msp->ms_freeing));
2973 ASSERT0(range_tree_space(msp->ms_checkpointing));
2974
2975 defer_tree = &msp->ms_defer[txg % TXG_DEFER_SIZE];
2976
2977 uint64_t free_space = metaslab_class_get_space(spa_normal_class(spa)) -
2978 metaslab_class_get_alloc(spa_normal_class(spa));
2979 if (free_space <= spa_get_slop_space(spa) || vd->vdev_removing) {
2980 defer_allowed = B_FALSE;
2981 }
2982
2983 defer_delta = 0;
2984 alloc_delta = msp->ms_allocated_this_txg -
2985 range_tree_space(msp->ms_freed);
2986 if (defer_allowed) {
2987 defer_delta = range_tree_space(msp->ms_freed) -
2988 range_tree_space(*defer_tree);
2989 } else {
2990 defer_delta -= range_tree_space(*defer_tree);
2991 }
2992
2993 metaslab_space_update(vd, mg->mg_class, alloc_delta + defer_delta,
2994 defer_delta, 0);
2995
2996 /*
2997 * If there's a metaslab_load() in progress, wait for it to complete
2998 * so that we have a consistent view of the in-core space map.
2999 */
3000 metaslab_load_wait(msp);
3001
3002 /*
3003 * Move the frees from the defer_tree back to the free
3004 * range tree (if it's loaded). Swap the freed_tree and
3005 * the defer_tree -- this is safe to do because we've
3006 * just emptied out the defer_tree.
3007 */
3008 range_tree_vacate(*defer_tree,
3009 msp->ms_loaded ? range_tree_add : NULL, msp->ms_allocatable);
3010 if (defer_allowed) {
3011 range_tree_swap(&msp->ms_freed, defer_tree);
3012 } else {
3013 range_tree_vacate(msp->ms_freed,
3014 msp->ms_loaded ? range_tree_add : NULL,
3015 msp->ms_allocatable);
3016 }
3017
3018 msp->ms_synced_length = space_map_length(msp->ms_sm);
3019
3020 msp->ms_deferspace += defer_delta;
3021 ASSERT3S(msp->ms_deferspace, >=, 0);
3022 ASSERT3S(msp->ms_deferspace, <=, msp->ms_size);
3023 if (msp->ms_deferspace != 0) {
3024 /*
3025 * Keep syncing this metaslab until all deferred frees
3026 * are back in circulation.
3027 */
3028 vdev_dirty(vd, VDD_METASLAB, msp, txg + 1);
3029 }
3030 metaslab_aux_histograms_update_done(msp, defer_allowed);
3031
3032 if (msp->ms_new) {
3033 msp->ms_new = B_FALSE;
3034 mutex_enter(&mg->mg_lock);
3035 mg->mg_ms_ready++;
3036 mutex_exit(&mg->mg_lock);
3037 }
3038
3039 /*
3040 * Re-sort metaslab within its group now that we've adjusted
3041 * its allocatable space.
3042 */
3043 metaslab_recalculate_weight_and_sort(msp);
3044
3045 /*
3046 * If the metaslab is loaded and we've not tried to load or allocate
3047 * from it in 'metaslab_unload_delay' txgs, then unload it.
3048 */
3049 if (msp->ms_loaded &&
3050 msp->ms_initializing == 0 &&
3051 msp->ms_selected_txg + metaslab_unload_delay < txg) {
3052
3053 for (int t = 1; t < TXG_CONCURRENT_STATES; t++) {
3054 VERIFY0(range_tree_space(
3055 msp->ms_allocating[(txg + t) & TXG_MASK]));
3056 }
3057 if (msp->ms_allocator != -1) {
3058 metaslab_passivate(msp, msp->ms_weight &
3059 ~METASLAB_ACTIVE_MASK);
3060 }
3061
3062 if (!metaslab_debug_unload)
3063 metaslab_unload(msp);
3064 }
3065
3066 ASSERT0(range_tree_space(msp->ms_allocating[txg & TXG_MASK]));
3067 ASSERT0(range_tree_space(msp->ms_freeing));
3068 ASSERT0(range_tree_space(msp->ms_freed));
3069 ASSERT0(range_tree_space(msp->ms_checkpointing));
3070
3071 msp->ms_allocated_this_txg = 0;
3072 mutex_exit(&msp->ms_lock);
3073 }
3074
3075 void
3076 metaslab_sync_reassess(metaslab_group_t *mg)
3077 {
3078 spa_t *spa = mg->mg_class->mc_spa;
3079
3080 spa_config_enter(spa, SCL_ALLOC, FTAG, RW_READER);
3081 metaslab_group_alloc_update(mg);
3082 mg->mg_fragmentation = metaslab_group_fragmentation(mg);
3083
3084 /*
3085 * Preload the next potential metaslabs but only on active
3086 * metaslab groups. We can get into a state where the metaslab
3087 * is no longer active since we dirty metaslabs as we remove a
3088 * a device, thus potentially making the metaslab group eligible
3089 * for preloading.
3090 */
3091 if (mg->mg_activation_count > 0) {
3092 metaslab_group_preload(mg);
3093 }
3094 spa_config_exit(spa, SCL_ALLOC, FTAG);
3095 }
3096
3097 /*
3098 * When writing a ditto block (i.e. more than one DVA for a given BP) on
3099 * the same vdev as an existing DVA of this BP, then try to allocate it
3100 * on a different metaslab than existing DVAs (i.e. a unique metaslab).
3101 */
3102 static boolean_t
3103 metaslab_is_unique(metaslab_t *msp, dva_t *dva)
3104 {
3105 uint64_t dva_ms_id;
3106
3107 if (DVA_GET_ASIZE(dva) == 0)
3108 return (B_TRUE);
3109
3110 if (msp->ms_group->mg_vd->vdev_id != DVA_GET_VDEV(dva))
3111 return (B_TRUE);
3112
3113 dva_ms_id = DVA_GET_OFFSET(dva) >> msp->ms_group->mg_vd->vdev_ms_shift;
3114
3115 return (msp->ms_id != dva_ms_id);
3116 }
3117
3118 /*
3119 * ==========================================================================
3120 * Metaslab allocation tracing facility
3121 * ==========================================================================
3122 */
3123 #ifdef _METASLAB_TRACING
3124 kstat_t *metaslab_trace_ksp;
3125 kstat_named_t metaslab_trace_over_limit;
3126
3127 void
3128 metaslab_alloc_trace_init(void)
3129 {
3130 ASSERT(metaslab_alloc_trace_cache == NULL);
3131 metaslab_alloc_trace_cache = kmem_cache_create(
3132 "metaslab_alloc_trace_cache", sizeof (metaslab_alloc_trace_t),
3133 0, NULL, NULL, NULL, NULL, NULL, 0);
3134 metaslab_trace_ksp = kstat_create("zfs", 0, "metaslab_trace_stats",
3135 "misc", KSTAT_TYPE_NAMED, 1, KSTAT_FLAG_VIRTUAL);
3136 if (metaslab_trace_ksp != NULL) {
3137 metaslab_trace_ksp->ks_data = &metaslab_trace_over_limit;
3138 kstat_named_init(&metaslab_trace_over_limit,
3139 "metaslab_trace_over_limit", KSTAT_DATA_UINT64);
3140 kstat_install(metaslab_trace_ksp);
3141 }
3142 }
3143
3144 void
3145 metaslab_alloc_trace_fini(void)
3146 {
3147 if (metaslab_trace_ksp != NULL) {
3148 kstat_delete(metaslab_trace_ksp);
3149 metaslab_trace_ksp = NULL;
3150 }
3151 kmem_cache_destroy(metaslab_alloc_trace_cache);
3152 metaslab_alloc_trace_cache = NULL;
3153 }
3154
3155 /*
3156 * Add an allocation trace element to the allocation tracing list.
3157 */
3158 static void
3159 metaslab_trace_add(zio_alloc_list_t *zal, metaslab_group_t *mg,
3160 metaslab_t *msp, uint64_t psize, uint32_t dva_id, uint64_t offset,
3161 int allocator)
3162 {
3163 metaslab_alloc_trace_t *mat;
3164
3165 if (!metaslab_trace_enabled)
3166 return;
3167
3168 /*
3169 * When the tracing list reaches its maximum we remove
3170 * the second element in the list before adding a new one.
3171 * By removing the second element we preserve the original
3172 * entry as a clue to what allocations steps have already been
3173 * performed.
3174 */
3175 if (zal->zal_size == metaslab_trace_max_entries) {
3176 metaslab_alloc_trace_t *mat_next;
3177 #ifdef DEBUG
3178 panic("too many entries in allocation list");
3179 #endif
3180 atomic_inc_64(&metaslab_trace_over_limit.value.ui64);
3181 zal->zal_size--;
3182 mat_next = list_next(&zal->zal_list, list_head(&zal->zal_list));
3183 list_remove(&zal->zal_list, mat_next);
3184 kmem_cache_free(metaslab_alloc_trace_cache, mat_next);
3185 }
3186
3187 mat = kmem_cache_alloc(metaslab_alloc_trace_cache, KM_SLEEP);
3188 list_link_init(&mat->mat_list_node);
3189 mat->mat_mg = mg;
3190 mat->mat_msp = msp;
3191 mat->mat_size = psize;
3192 mat->mat_dva_id = dva_id;
3193 mat->mat_offset = offset;
3194 mat->mat_weight = 0;
3195 mat->mat_allocator = allocator;
3196
3197 if (msp != NULL)
3198 mat->mat_weight = msp->ms_weight;
3199
3200 /*
3201 * The list is part of the zio so locking is not required. Only
3202 * a single thread will perform allocations for a given zio.
3203 */
3204 list_insert_tail(&zal->zal_list, mat);
3205 zal->zal_size++;
3206
3207 ASSERT3U(zal->zal_size, <=, metaslab_trace_max_entries);
3208 }
3209
3210 void
3211 metaslab_trace_init(zio_alloc_list_t *zal)
3212 {
3213 list_create(&zal->zal_list, sizeof (metaslab_alloc_trace_t),
3214 offsetof(metaslab_alloc_trace_t, mat_list_node));
3215 zal->zal_size = 0;
3216 }
3217
3218 void
3219 metaslab_trace_fini(zio_alloc_list_t *zal)
3220 {
3221 metaslab_alloc_trace_t *mat;
3222
3223 while ((mat = list_remove_head(&zal->zal_list)) != NULL)
3224 kmem_cache_free(metaslab_alloc_trace_cache, mat);
3225 list_destroy(&zal->zal_list);
3226 zal->zal_size = 0;
3227 }
3228 #else
3229
3230 #define metaslab_trace_add(zal, mg, msp, psize, id, off, alloc)
3231
3232 void
3233 metaslab_alloc_trace_init(void)
3234 {
3235 }
3236
3237 void
3238 metaslab_alloc_trace_fini(void)
3239 {
3240 }
3241
3242 void
3243 metaslab_trace_init(zio_alloc_list_t *zal)
3244 {
3245 }
3246
3247 void
3248 metaslab_trace_fini(zio_alloc_list_t *zal)
3249 {
3250 }
3251
3252 #endif /* _METASLAB_TRACING */
3253
3254 /*
3255 * ==========================================================================
3256 * Metaslab block operations
3257 * ==========================================================================
3258 */
3259
3260 static void
3261 metaslab_group_alloc_increment(spa_t *spa, uint64_t vdev, void *tag, int flags,
3262 int allocator)
3263 {
3264 if (!(flags & METASLAB_ASYNC_ALLOC) ||
3265 (flags & METASLAB_DONT_THROTTLE))
3266 return;
3267
3268 metaslab_group_t *mg = vdev_lookup_top(spa, vdev)->vdev_mg;
3269 if (!mg->mg_class->mc_alloc_throttle_enabled)
3270 return;
3271
3272 (void) zfs_refcount_add(&mg->mg_alloc_queue_depth[allocator], tag);
3273 }
3274
3275 static void
3276 metaslab_group_increment_qdepth(metaslab_group_t *mg, int allocator)
3277 {
3278 uint64_t max = mg->mg_max_alloc_queue_depth;
3279 uint64_t cur = mg->mg_cur_max_alloc_queue_depth[allocator];
3280 while (cur < max) {
3281 if (atomic_cas_64(&mg->mg_cur_max_alloc_queue_depth[allocator],
3282 cur, cur + 1) == cur) {
3283 atomic_inc_64(
3284 &mg->mg_class->mc_alloc_max_slots[allocator]);
3285 return;
3286 }
3287 cur = mg->mg_cur_max_alloc_queue_depth[allocator];
3288 }
3289 }
3290
3291 void
3292 metaslab_group_alloc_decrement(spa_t *spa, uint64_t vdev, void *tag, int flags,
3293 int allocator, boolean_t io_complete)
3294 {
3295 if (!(flags & METASLAB_ASYNC_ALLOC) ||
3296 (flags & METASLAB_DONT_THROTTLE))
3297 return;
3298
3299 metaslab_group_t *mg = vdev_lookup_top(spa, vdev)->vdev_mg;
3300 if (!mg->mg_class->mc_alloc_throttle_enabled)
3301 return;
3302
3303 (void) zfs_refcount_remove(&mg->mg_alloc_queue_depth[allocator], tag);
3304 if (io_complete)
3305 metaslab_group_increment_qdepth(mg, allocator);
3306 }
3307
3308 void
3309 metaslab_group_alloc_verify(spa_t *spa, const blkptr_t *bp, void *tag,
3310 int allocator)
3311 {
3312 #ifdef ZFS_DEBUG
3313 const dva_t *dva = bp->blk_dva;
3314 int ndvas = BP_GET_NDVAS(bp);
3315
3316 for (int d = 0; d < ndvas; d++) {
3317 uint64_t vdev = DVA_GET_VDEV(&dva[d]);
3318 metaslab_group_t *mg = vdev_lookup_top(spa, vdev)->vdev_mg;
3319 VERIFY(zfs_refcount_not_held(
3320 &mg->mg_alloc_queue_depth[allocator], tag));
3321 }
3322 #endif
3323 }
3324
3325 static uint64_t
3326 metaslab_block_alloc(metaslab_t *msp, uint64_t size, uint64_t txg)
3327 {
3328 uint64_t start;
3329 range_tree_t *rt = msp->ms_allocatable;
3330 metaslab_class_t *mc = msp->ms_group->mg_class;
3331
3332 VERIFY(!msp->ms_condensing);
3333 VERIFY0(msp->ms_initializing);
3334
3335 start = mc->mc_ops->msop_alloc(msp, size);
3336 if (start != -1ULL) {
3337 metaslab_group_t *mg = msp->ms_group;
3338 vdev_t *vd = mg->mg_vd;
3339
3340 VERIFY0(P2PHASE(start, 1ULL << vd->vdev_ashift));
3341 VERIFY0(P2PHASE(size, 1ULL << vd->vdev_ashift));
3342 VERIFY3U(range_tree_space(rt) - size, <=, msp->ms_size);
3343 range_tree_remove(rt, start, size);
3344
3345 if (range_tree_is_empty(msp->ms_allocating[txg & TXG_MASK]))
3346 vdev_dirty(mg->mg_vd, VDD_METASLAB, msp, txg);
3347
3348 range_tree_add(msp->ms_allocating[txg & TXG_MASK], start, size);
3349
3350 /* Track the last successful allocation */
3351 msp->ms_alloc_txg = txg;
3352 metaslab_verify_space(msp, txg);
3353 }
3354
3355 /*
3356 * Now that we've attempted the allocation we need to update the
3357 * metaslab's maximum block size since it may have changed.
3358 */
3359 msp->ms_max_size = metaslab_block_maxsize(msp);
3360 return (start);
3361 }
3362
3363 /*
3364 * Find the metaslab with the highest weight that is less than what we've
3365 * already tried. In the common case, this means that we will examine each
3366 * metaslab at most once. Note that concurrent callers could reorder metaslabs
3367 * by activation/passivation once we have dropped the mg_lock. If a metaslab is
3368 * activated by another thread, and we fail to allocate from the metaslab we
3369 * have selected, we may not try the newly-activated metaslab, and instead
3370 * activate another metaslab. This is not optimal, but generally does not cause
3371 * any problems (a possible exception being if every metaslab is completely full
3372 * except for the the newly-activated metaslab which we fail to examine).
3373 */
3374 static metaslab_t *
3375 find_valid_metaslab(metaslab_group_t *mg, uint64_t activation_weight,
3376 dva_t *dva, int d, boolean_t want_unique, uint64_t asize, int allocator,
3377 zio_alloc_list_t *zal, metaslab_t *search, boolean_t *was_active)
3378 {
3379 avl_index_t idx;
3380 avl_tree_t *t = &mg->mg_metaslab_tree;
3381 metaslab_t *msp = avl_find(t, search, &idx);
3382 if (msp == NULL)
3383 msp = avl_nearest(t, idx, AVL_AFTER);
3384
3385 for (; msp != NULL; msp = AVL_NEXT(t, msp)) {
3386 int i;
3387 if (!metaslab_should_allocate(msp, asize)) {
3388 metaslab_trace_add(zal, mg, msp, asize, d,
3389 TRACE_TOO_SMALL, allocator);
3390 continue;
3391 }
3392
3393 /*
3394 * If the selected metaslab is condensing or being
3395 * initialized, skip it.
3396 */
3397 if (msp->ms_condensing || msp->ms_initializing > 0)
3398 continue;
3399
3400 *was_active = msp->ms_allocator != -1;
3401 /*
3402 * If we're activating as primary, this is our first allocation
3403 * from this disk, so we don't need to check how close we are.
3404 * If the metaslab under consideration was already active,
3405 * we're getting desperate enough to steal another allocator's
3406 * metaslab, so we still don't care about distances.
3407 */
3408 if (activation_weight == METASLAB_WEIGHT_PRIMARY || *was_active)
3409 break;
3410
3411 for (i = 0; i < d; i++) {
3412 if (want_unique &&
3413 !metaslab_is_unique(msp, &dva[i]))
3414 break; /* try another metaslab */
3415 }
3416 if (i == d)
3417 break;
3418 }
3419
3420 if (msp != NULL) {
3421 search->ms_weight = msp->ms_weight;
3422 search->ms_start = msp->ms_start + 1;
3423 search->ms_allocator = msp->ms_allocator;
3424 search->ms_primary = msp->ms_primary;
3425 }
3426 return (msp);
3427 }
3428
3429 /* ARGSUSED */
3430 static uint64_t
3431 metaslab_group_alloc_normal(metaslab_group_t *mg, zio_alloc_list_t *zal,
3432 uint64_t asize, uint64_t txg, boolean_t want_unique, dva_t *dva,
3433 int d, int allocator)
3434 {
3435 metaslab_t *msp = NULL;
3436 uint64_t offset = -1ULL;
3437 uint64_t activation_weight;
3438
3439 activation_weight = METASLAB_WEIGHT_PRIMARY;
3440 for (int i = 0; i < d; i++) {
3441 if (activation_weight == METASLAB_WEIGHT_PRIMARY &&
3442 DVA_GET_VDEV(&dva[i]) == mg->mg_vd->vdev_id) {
3443 activation_weight = METASLAB_WEIGHT_SECONDARY;
3444 } else if (activation_weight == METASLAB_WEIGHT_SECONDARY &&
3445 DVA_GET_VDEV(&dva[i]) == mg->mg_vd->vdev_id) {
3446 activation_weight = METASLAB_WEIGHT_CLAIM;
3447 break;
3448 }
3449 }
3450
3451 /*
3452 * If we don't have enough metaslabs active to fill the entire array, we
3453 * just use the 0th slot.
3454 */
3455 if (mg->mg_ms_ready < mg->mg_allocators * 3)
3456 allocator = 0;
3457
3458 ASSERT3U(mg->mg_vd->vdev_ms_count, >=, 2);
3459
3460 metaslab_t *search = kmem_alloc(sizeof (*search), KM_SLEEP);
3461 search->ms_weight = UINT64_MAX;
3462 search->ms_start = 0;
3463 /*
3464 * At the end of the metaslab tree are the already-active metaslabs,
3465 * first the primaries, then the secondaries. When we resume searching
3466 * through the tree, we need to consider ms_allocator and ms_primary so
3467 * we start in the location right after where we left off, and don't
3468 * accidentally loop forever considering the same metaslabs.
3469 */
3470 search->ms_allocator = -1;
3471 search->ms_primary = B_TRUE;
3472 for (;;) {
3473 boolean_t was_active = B_FALSE;
3474
3475 mutex_enter(&mg->mg_lock);
3476
3477 if (activation_weight == METASLAB_WEIGHT_PRIMARY &&
3478 mg->mg_primaries[allocator] != NULL) {
3479 msp = mg->mg_primaries[allocator];
3480 was_active = B_TRUE;
3481 } else if (activation_weight == METASLAB_WEIGHT_SECONDARY &&
3482 mg->mg_secondaries[allocator] != NULL) {
3483 msp = mg->mg_secondaries[allocator];
3484 was_active = B_TRUE;
3485 } else {
3486 msp = find_valid_metaslab(mg, activation_weight, dva, d,
3487 want_unique, asize, allocator, zal, search,
3488 &was_active);
3489 }
3490
3491 mutex_exit(&mg->mg_lock);
3492 if (msp == NULL) {
3493 kmem_free(search, sizeof (*search));
3494 return (-1ULL);
3495 }
3496
3497 mutex_enter(&msp->ms_lock);
3498 /*
3499 * Ensure that the metaslab we have selected is still
3500 * capable of handling our request. It's possible that
3501 * another thread may have changed the weight while we
3502 * were blocked on the metaslab lock. We check the
3503 * active status first to see if we need to reselect
3504 * a new metaslab.
3505 */
3506 if (was_active && !(msp->ms_weight & METASLAB_ACTIVE_MASK)) {
3507 mutex_exit(&msp->ms_lock);
3508 continue;
3509 }
3510
3511 /*
3512 * If the metaslab is freshly activated for an allocator that
3513 * isn't the one we're allocating from, or if it's a primary and
3514 * we're seeking a secondary (or vice versa), we go back and
3515 * select a new metaslab.
3516 */
3517 if (!was_active && (msp->ms_weight & METASLAB_ACTIVE_MASK) &&
3518 (msp->ms_allocator != -1) &&
3519 (msp->ms_allocator != allocator || ((activation_weight ==
3520 METASLAB_WEIGHT_PRIMARY) != msp->ms_primary))) {
3521 mutex_exit(&msp->ms_lock);
3522 continue;
3523 }
3524
3525 if (msp->ms_weight & METASLAB_WEIGHT_CLAIM &&
3526 activation_weight != METASLAB_WEIGHT_CLAIM) {
3527 metaslab_passivate(msp, msp->ms_weight &
3528 ~METASLAB_WEIGHT_CLAIM);
3529 mutex_exit(&msp->ms_lock);
3530 continue;
3531 }
3532
3533 if (metaslab_activate(msp, allocator, activation_weight) != 0) {
3534 mutex_exit(&msp->ms_lock);
3535 continue;
3536 }
3537
3538 msp->ms_selected_txg = txg;
3539
3540 /*
3541 * Now that we have the lock, recheck to see if we should
3542 * continue to use this metaslab for this allocation. The
3543 * the metaslab is now loaded so metaslab_should_allocate() can
3544 * accurately determine if the allocation attempt should
3545 * proceed.
3546 */
3547 if (!metaslab_should_allocate(msp, asize)) {
3548 /* Passivate this metaslab and select a new one. */
3549 metaslab_trace_add(zal, mg, msp, asize, d,
3550 TRACE_TOO_SMALL, allocator);
3551 goto next;
3552 }
3553
3554
3555 /*
3556 * If this metaslab is currently condensing then pick again as
3557 * we can't manipulate this metaslab until it's committed
3558 * to disk. If this metaslab is being initialized, we shouldn't
3559 * allocate from it since the allocated region might be
3560 * overwritten after allocation.
3561 */
3562 if (msp->ms_condensing) {
3563 metaslab_trace_add(zal, mg, msp, asize, d,
3564 TRACE_CONDENSING, allocator);
3565 metaslab_passivate(msp, msp->ms_weight &
3566 ~METASLAB_ACTIVE_MASK);
3567 mutex_exit(&msp->ms_lock);
3568 continue;
3569 } else if (msp->ms_initializing > 0) {
3570 metaslab_trace_add(zal, mg, msp, asize, d,
3571 TRACE_INITIALIZING, allocator);
3572 metaslab_passivate(msp, msp->ms_weight &
3573 ~METASLAB_ACTIVE_MASK);
3574 mutex_exit(&msp->ms_lock);
3575 continue;
3576 }
3577
3578 offset = metaslab_block_alloc(msp, asize, txg);
3579 metaslab_trace_add(zal, mg, msp, asize, d, offset, allocator);
3580
3581 if (offset != -1ULL) {
3582 /* Proactively passivate the metaslab, if needed */
3583 metaslab_segment_may_passivate(msp);
3584 break;
3585 }
3586 next:
3587 ASSERT(msp->ms_loaded);
3588
3589 /*
3590 * We were unable to allocate from this metaslab so determine
3591 * a new weight for this metaslab. Now that we have loaded
3592 * the metaslab we can provide a better hint to the metaslab
3593 * selector.
3594 *
3595 * For space-based metaslabs, we use the maximum block size.
3596 * This information is only available when the metaslab
3597 * is loaded and is more accurate than the generic free
3598 * space weight that was calculated by metaslab_weight().
3599 * This information allows us to quickly compare the maximum
3600 * available allocation in the metaslab to the allocation
3601 * size being requested.
3602 *
3603 * For segment-based metaslabs, determine the new weight
3604 * based on the highest bucket in the range tree. We
3605 * explicitly use the loaded segment weight (i.e. the range
3606 * tree histogram) since it contains the space that is
3607 * currently available for allocation and is accurate
3608 * even within a sync pass.
3609 */
3610 if (WEIGHT_IS_SPACEBASED(msp->ms_weight)) {
3611 uint64_t weight = metaslab_block_maxsize(msp);
3612 WEIGHT_SET_SPACEBASED(weight);
3613 metaslab_passivate(msp, weight);
3614 } else {
3615 metaslab_passivate(msp,
3616 metaslab_weight_from_range_tree(msp));
3617 }
3618
3619 /*
3620 * We have just failed an allocation attempt, check
3621 * that metaslab_should_allocate() agrees. Otherwise,
3622 * we may end up in an infinite loop retrying the same
3623 * metaslab.
3624 */
3625 ASSERT(!metaslab_should_allocate(msp, asize));
3626
3627 mutex_exit(&msp->ms_lock);
3628 }
3629 mutex_exit(&msp->ms_lock);
3630 kmem_free(search, sizeof (*search));
3631 return (offset);
3632 }
3633
3634 static uint64_t
3635 metaslab_group_alloc(metaslab_group_t *mg, zio_alloc_list_t *zal,
3636 uint64_t asize, uint64_t txg, boolean_t want_unique, dva_t *dva,
3637 int d, int allocator)
3638 {
3639 uint64_t offset;
3640 ASSERT(mg->mg_initialized);
3641
3642 offset = metaslab_group_alloc_normal(mg, zal, asize, txg, want_unique,
3643 dva, d, allocator);
3644
3645 mutex_enter(&mg->mg_lock);
3646 if (offset == -1ULL) {
3647 mg->mg_failed_allocations++;
3648 metaslab_trace_add(zal, mg, NULL, asize, d,
3649 TRACE_GROUP_FAILURE, allocator);
3650 if (asize == SPA_GANGBLOCKSIZE) {
3651 /*
3652 * This metaslab group was unable to allocate
3653 * the minimum gang block size so it must be out of
3654 * space. We must notify the allocation throttle
3655 * to start skipping allocation attempts to this
3656 * metaslab group until more space becomes available.
3657 * Note: this failure cannot be caused by the
3658 * allocation throttle since the allocation throttle
3659 * is only responsible for skipping devices and
3660 * not failing block allocations.
3661 */
3662 mg->mg_no_free_space = B_TRUE;
3663 }
3664 }
3665 mg->mg_allocations++;
3666 mutex_exit(&mg->mg_lock);
3667 return (offset);
3668 }
3669
3670 /*
3671 * Allocate a block for the specified i/o.
3672 */
3673 int
3674 metaslab_alloc_dva(spa_t *spa, metaslab_class_t *mc, uint64_t psize,
3675 dva_t *dva, int d, dva_t *hintdva, uint64_t txg, int flags,
3676 zio_alloc_list_t *zal, int allocator)
3677 {
3678 metaslab_group_t *mg, *fast_mg, *rotor;
3679 vdev_t *vd;
3680 boolean_t try_hard = B_FALSE;
3681
3682 ASSERT(!DVA_IS_VALID(&dva[d]));
3683
3684 /*
3685 * For testing, make some blocks above a certain size be gang blocks.
3686 * This will result in more split blocks when using device removal,
3687 * and a large number of split blocks coupled with ztest-induced
3688 * damage can result in extremely long reconstruction times. This
3689 * will also test spilling from special to normal.
3690 */
3691 if (psize >= metaslab_force_ganging && (spa_get_random(100) < 3)) {
3692 metaslab_trace_add(zal, NULL, NULL, psize, d, TRACE_FORCE_GANG,
3693 allocator);
3694 return (SET_ERROR(ENOSPC));
3695 }
3696
3697 /*
3698 * Start at the rotor and loop through all mgs until we find something.
3699 * Note that there's no locking on mc_rotor or mc_aliquot because
3700 * nothing actually breaks if we miss a few updates -- we just won't
3701 * allocate quite as evenly. It all balances out over time.
3702 *
3703 * If we are doing ditto or log blocks, try to spread them across
3704 * consecutive vdevs. If we're forced to reuse a vdev before we've
3705 * allocated all of our ditto blocks, then try and spread them out on
3706 * that vdev as much as possible. If it turns out to not be possible,
3707 * gradually lower our standards until anything becomes acceptable.
3708 * Also, allocating on consecutive vdevs (as opposed to random vdevs)
3709 * gives us hope of containing our fault domains to something we're
3710 * able to reason about. Otherwise, any two top-level vdev failures
3711 * will guarantee the loss of data. With consecutive allocation,
3712 * only two adjacent top-level vdev failures will result in data loss.
3713 *
3714 * If we are doing gang blocks (hintdva is non-NULL), try to keep
3715 * ourselves on the same vdev as our gang block header. That
3716 * way, we can hope for locality in vdev_cache, plus it makes our
3717 * fault domains something tractable.
3718 */
3719 if (hintdva) {
3720 vd = vdev_lookup_top(spa, DVA_GET_VDEV(&hintdva[d]));
3721
3722 /*
3723 * It's possible the vdev we're using as the hint no
3724 * longer exists or its mg has been closed (e.g. by
3725 * device removal). Consult the rotor when
3726 * all else fails.
3727 */
3728 if (vd != NULL && vd->vdev_mg != NULL) {
3729 mg = vd->vdev_mg;
3730
3731 if (flags & METASLAB_HINTBP_AVOID &&
3732 mg->mg_next != NULL)
3733 mg = mg->mg_next;
3734 } else {
3735 mg = mc->mc_rotor;
3736 }
3737 } else if (d != 0) {
3738 vd = vdev_lookup_top(spa, DVA_GET_VDEV(&dva[d - 1]));
3739 mg = vd->vdev_mg->mg_next;
3740 } else if (flags & METASLAB_FASTWRITE) {
3741 mg = fast_mg = mc->mc_rotor;
3742
3743 do {
3744 if (fast_mg->mg_vd->vdev_pending_fastwrite <
3745 mg->mg_vd->vdev_pending_fastwrite)
3746 mg = fast_mg;
3747 } while ((fast_mg = fast_mg->mg_next) != mc->mc_rotor);
3748
3749 } else {
3750 ASSERT(mc->mc_rotor != NULL);
3751 mg = mc->mc_rotor;
3752 }
3753
3754 /*
3755 * If the hint put us into the wrong metaslab class, or into a
3756 * metaslab group that has been passivated, just follow the rotor.
3757 */
3758 if (mg->mg_class != mc || mg->mg_activation_count <= 0)
3759 mg = mc->mc_rotor;
3760
3761 rotor = mg;
3762 top:
3763 do {
3764 boolean_t allocatable;
3765
3766 ASSERT(mg->mg_activation_count == 1);
3767 vd = mg->mg_vd;
3768
3769 /*
3770 * Don't allocate from faulted devices.
3771 */
3772 if (try_hard) {
3773 spa_config_enter(spa, SCL_ZIO, FTAG, RW_READER);
3774 allocatable = vdev_allocatable(vd);
3775 spa_config_exit(spa, SCL_ZIO, FTAG);
3776 } else {
3777 allocatable = vdev_allocatable(vd);
3778 }
3779
3780 /*
3781 * Determine if the selected metaslab group is eligible
3782 * for allocations. If we're ganging then don't allow
3783 * this metaslab group to skip allocations since that would
3784 * inadvertently return ENOSPC and suspend the pool
3785 * even though space is still available.
3786 */
3787 if (allocatable && !GANG_ALLOCATION(flags) && !try_hard) {
3788 allocatable = metaslab_group_allocatable(mg, rotor,
3789 psize, allocator, d);
3790 }
3791
3792 if (!allocatable) {
3793 metaslab_trace_add(zal, mg, NULL, psize, d,
3794 TRACE_NOT_ALLOCATABLE, allocator);
3795 goto next;
3796 }
3797
3798 ASSERT(mg->mg_initialized);
3799
3800 /*
3801 * Avoid writing single-copy data to a failing,
3802 * non-redundant vdev, unless we've already tried all
3803 * other vdevs.
3804 */
3805 if ((vd->vdev_stat.vs_write_errors > 0 ||
3806 vd->vdev_state < VDEV_STATE_HEALTHY) &&
3807 d == 0 && !try_hard && vd->vdev_children == 0) {
3808 metaslab_trace_add(zal, mg, NULL, psize, d,
3809 TRACE_VDEV_ERROR, allocator);
3810 goto next;
3811 }
3812
3813 ASSERT(mg->mg_class == mc);
3814
3815 uint64_t asize = vdev_psize_to_asize(vd, psize);
3816 ASSERT(P2PHASE(asize, 1ULL << vd->vdev_ashift) == 0);
3817
3818 /*
3819 * If we don't need to try hard, then require that the
3820 * block be on an different metaslab from any other DVAs
3821 * in this BP (unique=true). If we are trying hard, then
3822 * allow any metaslab to be used (unique=false).
3823 */
3824 uint64_t offset = metaslab_group_alloc(mg, zal, asize, txg,
3825 !try_hard, dva, d, allocator);
3826
3827 if (offset != -1ULL) {
3828 /*
3829 * If we've just selected this metaslab group,
3830 * figure out whether the corresponding vdev is
3831 * over- or under-used relative to the pool,
3832 * and set an allocation bias to even it out.
3833 *
3834 * Bias is also used to compensate for unequally
3835 * sized vdevs so that space is allocated fairly.
3836 */
3837 if (mc->mc_aliquot == 0 && metaslab_bias_enabled) {
3838 vdev_stat_t *vs = &vd->vdev_stat;
3839 int64_t vs_free = vs->vs_space - vs->vs_alloc;
3840 int64_t mc_free = mc->mc_space - mc->mc_alloc;
3841 int64_t ratio;
3842
3843 /*
3844 * Calculate how much more or less we should
3845 * try to allocate from this device during
3846 * this iteration around the rotor.
3847 *
3848 * This basically introduces a zero-centered
3849 * bias towards the devices with the most
3850 * free space, while compensating for vdev
3851 * size differences.
3852 *
3853 * Examples:
3854 * vdev V1 = 16M/128M
3855 * vdev V2 = 16M/128M
3856 * ratio(V1) = 100% ratio(V2) = 100%
3857 *
3858 * vdev V1 = 16M/128M
3859 * vdev V2 = 64M/128M
3860 * ratio(V1) = 127% ratio(V2) = 72%
3861 *
3862 * vdev V1 = 16M/128M
3863 * vdev V2 = 64M/512M
3864 * ratio(V1) = 40% ratio(V2) = 160%
3865 */
3866 ratio = (vs_free * mc->mc_alloc_groups * 100) /
3867 (mc_free + 1);
3868 mg->mg_bias = ((ratio - 100) *
3869 (int64_t)mg->mg_aliquot) / 100;
3870 } else if (!metaslab_bias_enabled) {
3871 mg->mg_bias = 0;
3872 }
3873
3874 if ((flags & METASLAB_FASTWRITE) ||
3875 atomic_add_64_nv(&mc->mc_aliquot, asize) >=
3876 mg->mg_aliquot + mg->mg_bias) {
3877 mc->mc_rotor = mg->mg_next;
3878 mc->mc_aliquot = 0;
3879 }
3880
3881 DVA_SET_VDEV(&dva[d], vd->vdev_id);
3882 DVA_SET_OFFSET(&dva[d], offset);
3883 DVA_SET_GANG(&dva[d],
3884 ((flags & METASLAB_GANG_HEADER) ? 1 : 0));
3885 DVA_SET_ASIZE(&dva[d], asize);
3886
3887 if (flags & METASLAB_FASTWRITE) {
3888 atomic_add_64(&vd->vdev_pending_fastwrite,
3889 psize);
3890 }
3891
3892 return (0);
3893 }
3894 next:
3895 mc->mc_rotor = mg->mg_next;
3896 mc->mc_aliquot = 0;
3897 } while ((mg = mg->mg_next) != rotor);
3898
3899 /*
3900 * If we haven't tried hard, do so now.
3901 */
3902 if (!try_hard) {
3903 try_hard = B_TRUE;
3904 goto top;
3905 }
3906
3907 bzero(&dva[d], sizeof (dva_t));
3908
3909 metaslab_trace_add(zal, rotor, NULL, psize, d, TRACE_ENOSPC, allocator);
3910 return (SET_ERROR(ENOSPC));
3911 }
3912
3913 void
3914 metaslab_free_concrete(vdev_t *vd, uint64_t offset, uint64_t asize,
3915 boolean_t checkpoint)
3916 {
3917 metaslab_t *msp;
3918 spa_t *spa = vd->vdev_spa;
3919
3920 ASSERT(vdev_is_concrete(vd));
3921 ASSERT3U(spa_config_held(spa, SCL_ALL, RW_READER), !=, 0);
3922 ASSERT3U(offset >> vd->vdev_ms_shift, <, vd->vdev_ms_count);
3923
3924 msp = vd->vdev_ms[offset >> vd->vdev_ms_shift];
3925
3926 VERIFY(!msp->ms_condensing);
3927 VERIFY3U(offset, >=, msp->ms_start);
3928 VERIFY3U(offset + asize, <=, msp->ms_start + msp->ms_size);
3929 VERIFY0(P2PHASE(offset, 1ULL << vd->vdev_ashift));
3930 VERIFY0(P2PHASE(asize, 1ULL << vd->vdev_ashift));
3931
3932 metaslab_check_free_impl(vd, offset, asize);
3933
3934 mutex_enter(&msp->ms_lock);
3935 if (range_tree_is_empty(msp->ms_freeing) &&
3936 range_tree_is_empty(msp->ms_checkpointing)) {
3937 vdev_dirty(vd, VDD_METASLAB, msp, spa_syncing_txg(spa));
3938 }
3939
3940 if (checkpoint) {
3941 ASSERT(spa_has_checkpoint(spa));
3942 range_tree_add(msp->ms_checkpointing, offset, asize);
3943 } else {
3944 range_tree_add(msp->ms_freeing, offset, asize);
3945 }
3946 mutex_exit(&msp->ms_lock);
3947 }
3948
3949 /* ARGSUSED */
3950 void
3951 metaslab_free_impl_cb(uint64_t inner_offset, vdev_t *vd, uint64_t offset,
3952 uint64_t size, void *arg)
3953 {
3954 boolean_t *checkpoint = arg;
3955
3956 ASSERT3P(checkpoint, !=, NULL);
3957
3958 if (vd->vdev_ops->vdev_op_remap != NULL)
3959 vdev_indirect_mark_obsolete(vd, offset, size);
3960 else
3961 metaslab_free_impl(vd, offset, size, *checkpoint);
3962 }
3963
3964 static void
3965 metaslab_free_impl(vdev_t *vd, uint64_t offset, uint64_t size,
3966 boolean_t checkpoint)
3967 {
3968 spa_t *spa = vd->vdev_spa;
3969
3970 ASSERT3U(spa_config_held(spa, SCL_ALL, RW_READER), !=, 0);
3971
3972 if (spa_syncing_txg(spa) > spa_freeze_txg(spa))
3973 return;
3974
3975 if (spa->spa_vdev_removal != NULL &&
3976 spa->spa_vdev_removal->svr_vdev_id == vd->vdev_id &&
3977 vdev_is_concrete(vd)) {
3978 /*
3979 * Note: we check if the vdev is concrete because when
3980 * we complete the removal, we first change the vdev to be
3981 * an indirect vdev (in open context), and then (in syncing
3982 * context) clear spa_vdev_removal.
3983 */
3984 free_from_removing_vdev(vd, offset, size);
3985 } else if (vd->vdev_ops->vdev_op_remap != NULL) {
3986 vdev_indirect_mark_obsolete(vd, offset, size);
3987 vd->vdev_ops->vdev_op_remap(vd, offset, size,
3988 metaslab_free_impl_cb, &checkpoint);
3989 } else {
3990 metaslab_free_concrete(vd, offset, size, checkpoint);
3991 }
3992 }
3993
3994 typedef struct remap_blkptr_cb_arg {
3995 blkptr_t *rbca_bp;
3996 spa_remap_cb_t rbca_cb;
3997 vdev_t *rbca_remap_vd;
3998 uint64_t rbca_remap_offset;
3999 void *rbca_cb_arg;
4000 } remap_blkptr_cb_arg_t;
4001
4002 void
4003 remap_blkptr_cb(uint64_t inner_offset, vdev_t *vd, uint64_t offset,
4004 uint64_t size, void *arg)
4005 {
4006 remap_blkptr_cb_arg_t *rbca = arg;
4007 blkptr_t *bp = rbca->rbca_bp;
4008
4009 /* We can not remap split blocks. */
4010 if (size != DVA_GET_ASIZE(&bp->blk_dva[0]))
4011 return;
4012 ASSERT0(inner_offset);
4013
4014 if (rbca->rbca_cb != NULL) {
4015 /*
4016 * At this point we know that we are not handling split
4017 * blocks and we invoke the callback on the previous
4018 * vdev which must be indirect.
4019 */
4020 ASSERT3P(rbca->rbca_remap_vd->vdev_ops, ==, &vdev_indirect_ops);
4021
4022 rbca->rbca_cb(rbca->rbca_remap_vd->vdev_id,
4023 rbca->rbca_remap_offset, size, rbca->rbca_cb_arg);
4024
4025 /* set up remap_blkptr_cb_arg for the next call */
4026 rbca->rbca_remap_vd = vd;
4027 rbca->rbca_remap_offset = offset;
4028 }
4029
4030 /*
4031 * The phys birth time is that of dva[0]. This ensures that we know
4032 * when each dva was written, so that resilver can determine which
4033 * blocks need to be scrubbed (i.e. those written during the time
4034 * the vdev was offline). It also ensures that the key used in
4035 * the ARC hash table is unique (i.e. dva[0] + phys_birth). If
4036 * we didn't change the phys_birth, a lookup in the ARC for a
4037 * remapped BP could find the data that was previously stored at
4038 * this vdev + offset.
4039 */
4040 vdev_t *oldvd = vdev_lookup_top(vd->vdev_spa,
4041 DVA_GET_VDEV(&bp->blk_dva[0]));
4042 vdev_indirect_births_t *vib = oldvd->vdev_indirect_births;
4043 bp->blk_phys_birth = vdev_indirect_births_physbirth(vib,
4044 DVA_GET_OFFSET(&bp->blk_dva[0]), DVA_GET_ASIZE(&bp->blk_dva[0]));
4045
4046 DVA_SET_VDEV(&bp->blk_dva[0], vd->vdev_id);
4047 DVA_SET_OFFSET(&bp->blk_dva[0], offset);
4048 }
4049
4050 /*
4051 * If the block pointer contains any indirect DVAs, modify them to refer to
4052 * concrete DVAs. Note that this will sometimes not be possible, leaving
4053 * the indirect DVA in place. This happens if the indirect DVA spans multiple
4054 * segments in the mapping (i.e. it is a "split block").
4055 *
4056 * If the BP was remapped, calls the callback on the original dva (note the
4057 * callback can be called multiple times if the original indirect DVA refers
4058 * to another indirect DVA, etc).
4059 *
4060 * Returns TRUE if the BP was remapped.
4061 */
4062 boolean_t
4063 spa_remap_blkptr(spa_t *spa, blkptr_t *bp, spa_remap_cb_t callback, void *arg)
4064 {
4065 remap_blkptr_cb_arg_t rbca;
4066
4067 if (!zfs_remap_blkptr_enable)
4068 return (B_FALSE);
4069
4070 if (!spa_feature_is_enabled(spa, SPA_FEATURE_OBSOLETE_COUNTS))
4071 return (B_FALSE);
4072
4073 /*
4074 * Dedup BP's can not be remapped, because ddt_phys_select() depends
4075 * on DVA[0] being the same in the BP as in the DDT (dedup table).
4076 */
4077 if (BP_GET_DEDUP(bp))
4078 return (B_FALSE);
4079
4080 /*
4081 * Gang blocks can not be remapped, because
4082 * zio_checksum_gang_verifier() depends on the DVA[0] that's in
4083 * the BP used to read the gang block header (GBH) being the same
4084 * as the DVA[0] that we allocated for the GBH.
4085 */
4086 if (BP_IS_GANG(bp))
4087 return (B_FALSE);
4088
4089 /*
4090 * Embedded BP's have no DVA to remap.
4091 */
4092 if (BP_GET_NDVAS(bp) < 1)
4093 return (B_FALSE);
4094
4095 /*
4096 * Note: we only remap dva[0]. If we remapped other dvas, we
4097 * would no longer know what their phys birth txg is.
4098 */
4099 dva_t *dva = &bp->blk_dva[0];
4100
4101 uint64_t offset = DVA_GET_OFFSET(dva);
4102 uint64_t size = DVA_GET_ASIZE(dva);
4103 vdev_t *vd = vdev_lookup_top(spa, DVA_GET_VDEV(dva));
4104
4105 if (vd->vdev_ops->vdev_op_remap == NULL)
4106 return (B_FALSE);
4107
4108 rbca.rbca_bp = bp;
4109 rbca.rbca_cb = callback;
4110 rbca.rbca_remap_vd = vd;
4111 rbca.rbca_remap_offset = offset;
4112 rbca.rbca_cb_arg = arg;
4113
4114 /*
4115 * remap_blkptr_cb() will be called in order for each level of
4116 * indirection, until a concrete vdev is reached or a split block is
4117 * encountered. old_vd and old_offset are updated within the callback
4118 * as we go from the one indirect vdev to the next one (either concrete
4119 * or indirect again) in that order.
4120 */
4121 vd->vdev_ops->vdev_op_remap(vd, offset, size, remap_blkptr_cb, &rbca);
4122
4123 /* Check if the DVA wasn't remapped because it is a split block */
4124 if (DVA_GET_VDEV(&rbca.rbca_bp->blk_dva[0]) == vd->vdev_id)
4125 return (B_FALSE);
4126
4127 return (B_TRUE);
4128 }
4129
4130 /*
4131 * Undo the allocation of a DVA which happened in the given transaction group.
4132 */
4133 void
4134 metaslab_unalloc_dva(spa_t *spa, const dva_t *dva, uint64_t txg)
4135 {
4136 metaslab_t *msp;
4137 vdev_t *vd;
4138 uint64_t vdev = DVA_GET_VDEV(dva);
4139 uint64_t offset = DVA_GET_OFFSET(dva);
4140 uint64_t size = DVA_GET_ASIZE(dva);
4141
4142 ASSERT(DVA_IS_VALID(dva));
4143 ASSERT3U(spa_config_held(spa, SCL_ALL, RW_READER), !=, 0);
4144
4145 if (txg > spa_freeze_txg(spa))
4146 return;
4147
4148 if ((vd = vdev_lookup_top(spa, vdev)) == NULL || !DVA_IS_VALID(dva) ||
4149 (offset >> vd->vdev_ms_shift) >= vd->vdev_ms_count) {
4150 zfs_panic_recover("metaslab_free_dva(): bad DVA %llu:%llu:%llu",
4151 (u_longlong_t)vdev, (u_longlong_t)offset,
4152 (u_longlong_t)size);
4153 return;
4154 }
4155
4156 ASSERT(!vd->vdev_removing);
4157 ASSERT(vdev_is_concrete(vd));
4158 ASSERT0(vd->vdev_indirect_config.vic_mapping_object);
4159 ASSERT3P(vd->vdev_indirect_mapping, ==, NULL);
4160
4161 if (DVA_GET_GANG(dva))
4162 size = vdev_psize_to_asize(vd, SPA_GANGBLOCKSIZE);
4163
4164 msp = vd->vdev_ms[offset >> vd->vdev_ms_shift];
4165
4166 mutex_enter(&msp->ms_lock);
4167 range_tree_remove(msp->ms_allocating[txg & TXG_MASK],
4168 offset, size);
4169
4170 VERIFY(!msp->ms_condensing);
4171 VERIFY3U(offset, >=, msp->ms_start);
4172 VERIFY3U(offset + size, <=, msp->ms_start + msp->ms_size);
4173 VERIFY3U(range_tree_space(msp->ms_allocatable) + size, <=,
4174 msp->ms_size);
4175 VERIFY0(P2PHASE(offset, 1ULL << vd->vdev_ashift));
4176 VERIFY0(P2PHASE(size, 1ULL << vd->vdev_ashift));
4177 range_tree_add(msp->ms_allocatable, offset, size);
4178 mutex_exit(&msp->ms_lock);
4179 }
4180
4181 /*
4182 * Free the block represented by the given DVA.
4183 */
4184 void
4185 metaslab_free_dva(spa_t *spa, const dva_t *dva, boolean_t checkpoint)
4186 {
4187 uint64_t vdev = DVA_GET_VDEV(dva);
4188 uint64_t offset = DVA_GET_OFFSET(dva);
4189 uint64_t size = DVA_GET_ASIZE(dva);
4190 vdev_t *vd = vdev_lookup_top(spa, vdev);
4191
4192 ASSERT(DVA_IS_VALID(dva));
4193 ASSERT3U(spa_config_held(spa, SCL_ALL, RW_READER), !=, 0);
4194
4195 if (DVA_GET_GANG(dva)) {
4196 size = vdev_psize_to_asize(vd, SPA_GANGBLOCKSIZE);
4197 }
4198
4199 metaslab_free_impl(vd, offset, size, checkpoint);
4200 }
4201
4202 /*
4203 * Reserve some allocation slots. The reservation system must be called
4204 * before we call into the allocator. If there aren't any available slots
4205 * then the I/O will be throttled until an I/O completes and its slots are
4206 * freed up. The function returns true if it was successful in placing
4207 * the reservation.
4208 */
4209 boolean_t
4210 metaslab_class_throttle_reserve(metaslab_class_t *mc, int slots, int allocator,
4211 zio_t *zio, int flags)
4212 {
4213 uint64_t available_slots = 0;
4214 boolean_t slot_reserved = B_FALSE;
4215 uint64_t max = mc->mc_alloc_max_slots[allocator];
4216
4217 ASSERT(mc->mc_alloc_throttle_enabled);
4218 mutex_enter(&mc->mc_lock);
4219
4220 uint64_t reserved_slots =
4221 zfs_refcount_count(&mc->mc_alloc_slots[allocator]);
4222 if (reserved_slots < max)
4223 available_slots = max - reserved_slots;
4224
4225 if (slots <= available_slots || GANG_ALLOCATION(flags) ||
4226 flags & METASLAB_MUST_RESERVE) {
4227 /*
4228 * We reserve the slots individually so that we can unreserve
4229 * them individually when an I/O completes.
4230 */
4231 for (int d = 0; d < slots; d++) {
4232 reserved_slots =
4233 zfs_refcount_add(&mc->mc_alloc_slots[allocator],
4234 zio);
4235 }
4236 zio->io_flags |= ZIO_FLAG_IO_ALLOCATING;
4237 slot_reserved = B_TRUE;
4238 }
4239
4240 mutex_exit(&mc->mc_lock);
4241 return (slot_reserved);
4242 }
4243
4244 void
4245 metaslab_class_throttle_unreserve(metaslab_class_t *mc, int slots,
4246 int allocator, zio_t *zio)
4247 {
4248 ASSERT(mc->mc_alloc_throttle_enabled);
4249 mutex_enter(&mc->mc_lock);
4250 for (int d = 0; d < slots; d++) {
4251 (void) zfs_refcount_remove(&mc->mc_alloc_slots[allocator],
4252 zio);
4253 }
4254 mutex_exit(&mc->mc_lock);
4255 }
4256
4257 static int
4258 metaslab_claim_concrete(vdev_t *vd, uint64_t offset, uint64_t size,
4259 uint64_t txg)
4260 {
4261 metaslab_t *msp;
4262 spa_t *spa = vd->vdev_spa;
4263 int error = 0;
4264
4265 if (offset >> vd->vdev_ms_shift >= vd->vdev_ms_count)
4266 return (SET_ERROR(ENXIO));
4267
4268 ASSERT3P(vd->vdev_ms, !=, NULL);
4269 msp = vd->vdev_ms[offset >> vd->vdev_ms_shift];
4270
4271 mutex_enter(&msp->ms_lock);
4272
4273 if ((txg != 0 && spa_writeable(spa)) || !msp->ms_loaded) {
4274 error = metaslab_activate(msp, 0, METASLAB_WEIGHT_CLAIM);
4275 if (error == EBUSY) {
4276 ASSERT(msp->ms_loaded);
4277 ASSERT(msp->ms_weight & METASLAB_ACTIVE_MASK);
4278 error = 0;
4279 }
4280 }
4281
4282 if (error == 0 &&
4283 !range_tree_contains(msp->ms_allocatable, offset, size))
4284 error = SET_ERROR(ENOENT);
4285
4286 if (error || txg == 0) { /* txg == 0 indicates dry run */
4287 mutex_exit(&msp->ms_lock);
4288 return (error);
4289 }
4290
4291 VERIFY(!msp->ms_condensing);
4292 VERIFY0(P2PHASE(offset, 1ULL << vd->vdev_ashift));
4293 VERIFY0(P2PHASE(size, 1ULL << vd->vdev_ashift));
4294 VERIFY3U(range_tree_space(msp->ms_allocatable) - size, <=,
4295 msp->ms_size);
4296 range_tree_remove(msp->ms_allocatable, offset, size);
4297
4298 if (spa_writeable(spa)) { /* don't dirty if we're zdb(1M) */
4299 if (range_tree_is_empty(msp->ms_allocating[txg & TXG_MASK]))
4300 vdev_dirty(vd, VDD_METASLAB, msp, txg);
4301 range_tree_add(msp->ms_allocating[txg & TXG_MASK],
4302 offset, size);
4303 }
4304
4305 mutex_exit(&msp->ms_lock);
4306
4307 return (0);
4308 }
4309
4310 typedef struct metaslab_claim_cb_arg_t {
4311 uint64_t mcca_txg;
4312 int mcca_error;
4313 } metaslab_claim_cb_arg_t;
4314
4315 /* ARGSUSED */
4316 static void
4317 metaslab_claim_impl_cb(uint64_t inner_offset, vdev_t *vd, uint64_t offset,
4318 uint64_t size, void *arg)
4319 {
4320 metaslab_claim_cb_arg_t *mcca_arg = arg;
4321
4322 if (mcca_arg->mcca_error == 0) {
4323 mcca_arg->mcca_error = metaslab_claim_concrete(vd, offset,
4324 size, mcca_arg->mcca_txg);
4325 }
4326 }
4327
4328 int
4329 metaslab_claim_impl(vdev_t *vd, uint64_t offset, uint64_t size, uint64_t txg)
4330 {
4331 if (vd->vdev_ops->vdev_op_remap != NULL) {
4332 metaslab_claim_cb_arg_t arg;
4333
4334 /*
4335 * Only zdb(1M) can claim on indirect vdevs. This is used
4336 * to detect leaks of mapped space (that are not accounted
4337 * for in the obsolete counts, spacemap, or bpobj).
4338 */
4339 ASSERT(!spa_writeable(vd->vdev_spa));
4340 arg.mcca_error = 0;
4341 arg.mcca_txg = txg;
4342
4343 vd->vdev_ops->vdev_op_remap(vd, offset, size,
4344 metaslab_claim_impl_cb, &arg);
4345
4346 if (arg.mcca_error == 0) {
4347 arg.mcca_error = metaslab_claim_concrete(vd,
4348 offset, size, txg);
4349 }
4350 return (arg.mcca_error);
4351 } else {
4352 return (metaslab_claim_concrete(vd, offset, size, txg));
4353 }
4354 }
4355
4356 /*
4357 * Intent log support: upon opening the pool after a crash, notify the SPA
4358 * of blocks that the intent log has allocated for immediate write, but
4359 * which are still considered free by the SPA because the last transaction
4360 * group didn't commit yet.
4361 */
4362 static int
4363 metaslab_claim_dva(spa_t *spa, const dva_t *dva, uint64_t txg)
4364 {
4365 uint64_t vdev = DVA_GET_VDEV(dva);
4366 uint64_t offset = DVA_GET_OFFSET(dva);
4367 uint64_t size = DVA_GET_ASIZE(dva);
4368 vdev_t *vd;
4369
4370 if ((vd = vdev_lookup_top(spa, vdev)) == NULL) {
4371 return (SET_ERROR(ENXIO));
4372 }
4373
4374 ASSERT(DVA_IS_VALID(dva));
4375
4376 if (DVA_GET_GANG(dva))
4377 size = vdev_psize_to_asize(vd, SPA_GANGBLOCKSIZE);
4378
4379 return (metaslab_claim_impl(vd, offset, size, txg));
4380 }
4381
4382 int
4383 metaslab_alloc(spa_t *spa, metaslab_class_t *mc, uint64_t psize, blkptr_t *bp,
4384 int ndvas, uint64_t txg, blkptr_t *hintbp, int flags,
4385 zio_alloc_list_t *zal, zio_t *zio, int allocator)
4386 {
4387 dva_t *dva = bp->blk_dva;
4388 dva_t *hintdva = (hintbp != NULL) ? hintbp->blk_dva : NULL;
4389 int error = 0;
4390
4391 ASSERT(bp->blk_birth == 0);
4392 ASSERT(BP_PHYSICAL_BIRTH(bp) == 0);
4393
4394 spa_config_enter(spa, SCL_ALLOC, FTAG, RW_READER);
4395
4396 if (mc->mc_rotor == NULL) { /* no vdevs in this class */
4397 spa_config_exit(spa, SCL_ALLOC, FTAG);
4398 return (SET_ERROR(ENOSPC));
4399 }
4400
4401 ASSERT(ndvas > 0 && ndvas <= spa_max_replication(spa));
4402 ASSERT(BP_GET_NDVAS(bp) == 0);
4403 ASSERT(hintbp == NULL || ndvas <= BP_GET_NDVAS(hintbp));
4404 ASSERT3P(zal, !=, NULL);
4405
4406 for (int d = 0; d < ndvas; d++) {
4407 error = metaslab_alloc_dva(spa, mc, psize, dva, d, hintdva,
4408 txg, flags, zal, allocator);
4409 if (error != 0) {
4410 for (d--; d >= 0; d--) {
4411 metaslab_unalloc_dva(spa, &dva[d], txg);
4412 metaslab_group_alloc_decrement(spa,
4413 DVA_GET_VDEV(&dva[d]), zio, flags,
4414 allocator, B_FALSE);
4415 bzero(&dva[d], sizeof (dva_t));
4416 }
4417 spa_config_exit(spa, SCL_ALLOC, FTAG);
4418 return (error);
4419 } else {
4420 /*
4421 * Update the metaslab group's queue depth
4422 * based on the newly allocated dva.
4423 */
4424 metaslab_group_alloc_increment(spa,
4425 DVA_GET_VDEV(&dva[d]), zio, flags, allocator);
4426 }
4427
4428 }
4429 ASSERT(error == 0);
4430 ASSERT(BP_GET_NDVAS(bp) == ndvas);
4431
4432 spa_config_exit(spa, SCL_ALLOC, FTAG);
4433
4434 BP_SET_BIRTH(bp, txg, 0);
4435
4436 return (0);
4437 }
4438
4439 void
4440 metaslab_free(spa_t *spa, const blkptr_t *bp, uint64_t txg, boolean_t now)
4441 {
4442 const dva_t *dva = bp->blk_dva;
4443 int ndvas = BP_GET_NDVAS(bp);
4444
4445 ASSERT(!BP_IS_HOLE(bp));
4446 ASSERT(!now || bp->blk_birth >= spa_syncing_txg(spa));
4447
4448 /*
4449 * If we have a checkpoint for the pool we need to make sure that
4450 * the blocks that we free that are part of the checkpoint won't be
4451 * reused until the checkpoint is discarded or we revert to it.
4452 *
4453 * The checkpoint flag is passed down the metaslab_free code path
4454 * and is set whenever we want to add a block to the checkpoint's
4455 * accounting. That is, we "checkpoint" blocks that existed at the
4456 * time the checkpoint was created and are therefore referenced by
4457 * the checkpointed uberblock.
4458 *
4459 * Note that, we don't checkpoint any blocks if the current
4460 * syncing txg <= spa_checkpoint_txg. We want these frees to sync
4461 * normally as they will be referenced by the checkpointed uberblock.
4462 */
4463 boolean_t checkpoint = B_FALSE;
4464 if (bp->blk_birth <= spa->spa_checkpoint_txg &&
4465 spa_syncing_txg(spa) > spa->spa_checkpoint_txg) {
4466 /*
4467 * At this point, if the block is part of the checkpoint
4468 * there is no way it was created in the current txg.
4469 */
4470 ASSERT(!now);
4471 ASSERT3U(spa_syncing_txg(spa), ==, txg);
4472 checkpoint = B_TRUE;
4473 }
4474
4475 spa_config_enter(spa, SCL_FREE, FTAG, RW_READER);
4476
4477 for (int d = 0; d < ndvas; d++) {
4478 if (now) {
4479 metaslab_unalloc_dva(spa, &dva[d], txg);
4480 } else {
4481 ASSERT3U(txg, ==, spa_syncing_txg(spa));
4482 metaslab_free_dva(spa, &dva[d], checkpoint);
4483 }
4484 }
4485
4486 spa_config_exit(spa, SCL_FREE, FTAG);
4487 }
4488
4489 int
4490 metaslab_claim(spa_t *spa, const blkptr_t *bp, uint64_t txg)
4491 {
4492 const dva_t *dva = bp->blk_dva;
4493 int ndvas = BP_GET_NDVAS(bp);
4494 int error = 0;
4495
4496 ASSERT(!BP_IS_HOLE(bp));
4497
4498 if (txg != 0) {
4499 /*
4500 * First do a dry run to make sure all DVAs are claimable,
4501 * so we don't have to unwind from partial failures below.
4502 */
4503 if ((error = metaslab_claim(spa, bp, 0)) != 0)
4504 return (error);
4505 }
4506
4507 spa_config_enter(spa, SCL_ALLOC, FTAG, RW_READER);
4508
4509 for (int d = 0; d < ndvas; d++) {
4510 error = metaslab_claim_dva(spa, &dva[d], txg);
4511 if (error != 0)
4512 break;
4513 }
4514
4515 spa_config_exit(spa, SCL_ALLOC, FTAG);
4516
4517 ASSERT(error == 0 || txg == 0);
4518
4519 return (error);
4520 }
4521
4522 void
4523 metaslab_fastwrite_mark(spa_t *spa, const blkptr_t *bp)
4524 {
4525 const dva_t *dva = bp->blk_dva;
4526 int ndvas = BP_GET_NDVAS(bp);
4527 uint64_t psize = BP_GET_PSIZE(bp);
4528 int d;
4529 vdev_t *vd;
4530
4531 ASSERT(!BP_IS_HOLE(bp));
4532 ASSERT(!BP_IS_EMBEDDED(bp));
4533 ASSERT(psize > 0);
4534
4535 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
4536
4537 for (d = 0; d < ndvas; d++) {
4538 if ((vd = vdev_lookup_top(spa, DVA_GET_VDEV(&dva[d]))) == NULL)
4539 continue;
4540 atomic_add_64(&vd->vdev_pending_fastwrite, psize);
4541 }
4542
4543 spa_config_exit(spa, SCL_VDEV, FTAG);
4544 }
4545
4546 void
4547 metaslab_fastwrite_unmark(spa_t *spa, const blkptr_t *bp)
4548 {
4549 const dva_t *dva = bp->blk_dva;
4550 int ndvas = BP_GET_NDVAS(bp);
4551 uint64_t psize = BP_GET_PSIZE(bp);
4552 int d;
4553 vdev_t *vd;
4554
4555 ASSERT(!BP_IS_HOLE(bp));
4556 ASSERT(!BP_IS_EMBEDDED(bp));
4557 ASSERT(psize > 0);
4558
4559 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
4560
4561 for (d = 0; d < ndvas; d++) {
4562 if ((vd = vdev_lookup_top(spa, DVA_GET_VDEV(&dva[d]))) == NULL)
4563 continue;
4564 ASSERT3U(vd->vdev_pending_fastwrite, >=, psize);
4565 atomic_sub_64(&vd->vdev_pending_fastwrite, psize);
4566 }
4567
4568 spa_config_exit(spa, SCL_VDEV, FTAG);
4569 }
4570
4571 /* ARGSUSED */
4572 static void
4573 metaslab_check_free_impl_cb(uint64_t inner, vdev_t *vd, uint64_t offset,
4574 uint64_t size, void *arg)
4575 {
4576 if (vd->vdev_ops == &vdev_indirect_ops)
4577 return;
4578
4579 metaslab_check_free_impl(vd, offset, size);
4580 }
4581
4582 static void
4583 metaslab_check_free_impl(vdev_t *vd, uint64_t offset, uint64_t size)
4584 {
4585 metaslab_t *msp;
4586 ASSERTV(spa_t *spa = vd->vdev_spa);
4587
4588 if ((zfs_flags & ZFS_DEBUG_ZIO_FREE) == 0)
4589 return;
4590
4591 if (vd->vdev_ops->vdev_op_remap != NULL) {
4592 vd->vdev_ops->vdev_op_remap(vd, offset, size,
4593 metaslab_check_free_impl_cb, NULL);
4594 return;
4595 }
4596
4597 ASSERT(vdev_is_concrete(vd));
4598 ASSERT3U(offset >> vd->vdev_ms_shift, <, vd->vdev_ms_count);
4599 ASSERT3U(spa_config_held(spa, SCL_ALL, RW_READER), !=, 0);
4600
4601 msp = vd->vdev_ms[offset >> vd->vdev_ms_shift];
4602
4603 mutex_enter(&msp->ms_lock);
4604 if (msp->ms_loaded) {
4605 range_tree_verify_not_present(msp->ms_allocatable,
4606 offset, size);
4607 }
4608
4609 range_tree_verify_not_present(msp->ms_freeing, offset, size);
4610 range_tree_verify_not_present(msp->ms_checkpointing, offset, size);
4611 range_tree_verify_not_present(msp->ms_freed, offset, size);
4612 for (int j = 0; j < TXG_DEFER_SIZE; j++)
4613 range_tree_verify_not_present(msp->ms_defer[j], offset, size);
4614 mutex_exit(&msp->ms_lock);
4615 }
4616
4617 void
4618 metaslab_check_free(spa_t *spa, const blkptr_t *bp)
4619 {
4620 if ((zfs_flags & ZFS_DEBUG_ZIO_FREE) == 0)
4621 return;
4622
4623 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
4624 for (int i = 0; i < BP_GET_NDVAS(bp); i++) {
4625 uint64_t vdev = DVA_GET_VDEV(&bp->blk_dva[i]);
4626 vdev_t *vd = vdev_lookup_top(spa, vdev);
4627 uint64_t offset = DVA_GET_OFFSET(&bp->blk_dva[i]);
4628 uint64_t size = DVA_GET_ASIZE(&bp->blk_dva[i]);
4629
4630 if (DVA_GET_GANG(&bp->blk_dva[i]))
4631 size = vdev_psize_to_asize(vd, SPA_GANGBLOCKSIZE);
4632
4633 ASSERT3P(vd, !=, NULL);
4634
4635 metaslab_check_free_impl(vd, offset, size);
4636 }
4637 spa_config_exit(spa, SCL_VDEV, FTAG);
4638 }
4639
4640 #if defined(_KERNEL)
4641 /* BEGIN CSTYLED */
4642 module_param(metaslab_aliquot, ulong, 0644);
4643 MODULE_PARM_DESC(metaslab_aliquot,
4644 "allocation granularity (a.k.a. stripe size)");
4645
4646 module_param(metaslab_debug_load, int, 0644);
4647 MODULE_PARM_DESC(metaslab_debug_load,
4648 "load all metaslabs when pool is first opened");
4649
4650 module_param(metaslab_debug_unload, int, 0644);
4651 MODULE_PARM_DESC(metaslab_debug_unload,
4652 "prevent metaslabs from being unloaded");
4653
4654 module_param(metaslab_preload_enabled, int, 0644);
4655 MODULE_PARM_DESC(metaslab_preload_enabled,
4656 "preload potential metaslabs during reassessment");
4657
4658 module_param(zfs_mg_noalloc_threshold, int, 0644);
4659 MODULE_PARM_DESC(zfs_mg_noalloc_threshold,
4660 "percentage of free space for metaslab group to allow allocation");
4661
4662 module_param(zfs_mg_fragmentation_threshold, int, 0644);
4663 MODULE_PARM_DESC(zfs_mg_fragmentation_threshold,
4664 "fragmentation for metaslab group to allow allocation");
4665
4666 module_param(zfs_metaslab_fragmentation_threshold, int, 0644);
4667 MODULE_PARM_DESC(zfs_metaslab_fragmentation_threshold,
4668 "fragmentation for metaslab to allow allocation");
4669
4670 module_param(metaslab_fragmentation_factor_enabled, int, 0644);
4671 MODULE_PARM_DESC(metaslab_fragmentation_factor_enabled,
4672 "use the fragmentation metric to prefer less fragmented metaslabs");
4673
4674 module_param(metaslab_lba_weighting_enabled, int, 0644);
4675 MODULE_PARM_DESC(metaslab_lba_weighting_enabled,
4676 "prefer metaslabs with lower LBAs");
4677
4678 module_param(metaslab_bias_enabled, int, 0644);
4679 MODULE_PARM_DESC(metaslab_bias_enabled,
4680 "enable metaslab group biasing");
4681
4682 module_param(zfs_metaslab_segment_weight_enabled, int, 0644);
4683 MODULE_PARM_DESC(zfs_metaslab_segment_weight_enabled,
4684 "enable segment-based metaslab selection");
4685
4686 module_param(zfs_metaslab_switch_threshold, int, 0644);
4687 MODULE_PARM_DESC(zfs_metaslab_switch_threshold,
4688 "segment-based metaslab selection maximum buckets before switching");
4689
4690 module_param(metaslab_force_ganging, ulong, 0644);
4691 MODULE_PARM_DESC(metaslab_force_ganging,
4692 "blocks larger than this size are forced to be gang blocks");
4693 /* END CSTYLED */
4694
4695 #endif