]> git.proxmox.com Git - mirror_zfs.git/blob - module/zfs/metaslab.c
Use cstyle -cpP in `make cstyle` check
[mirror_zfs.git] / module / zfs / metaslab.c
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2011, 2015 by Delphix. All rights reserved.
24 * Copyright (c) 2013 by Saso Kiselkov. All rights reserved.
25 */
26
27 #include <sys/zfs_context.h>
28 #include <sys/dmu.h>
29 #include <sys/dmu_tx.h>
30 #include <sys/space_map.h>
31 #include <sys/metaslab_impl.h>
32 #include <sys/vdev_impl.h>
33 #include <sys/zio.h>
34 #include <sys/spa_impl.h>
35 #include <sys/zfeature.h>
36
37 #define WITH_DF_BLOCK_ALLOCATOR
38
39 #define GANG_ALLOCATION(flags) \
40 ((flags) & (METASLAB_GANG_CHILD | METASLAB_GANG_HEADER))
41
42 #define METASLAB_WEIGHT_PRIMARY (1ULL << 63)
43 #define METASLAB_WEIGHT_SECONDARY (1ULL << 62)
44 #define METASLAB_ACTIVE_MASK \
45 (METASLAB_WEIGHT_PRIMARY | METASLAB_WEIGHT_SECONDARY)
46
47 /*
48 * Metaslab granularity, in bytes. This is roughly similar to what would be
49 * referred to as the "stripe size" in traditional RAID arrays. In normal
50 * operation, we will try to write this amount of data to a top-level vdev
51 * before moving on to the next one.
52 */
53 unsigned long metaslab_aliquot = 512 << 10;
54
55 uint64_t metaslab_gang_bang = SPA_MAXBLOCKSIZE + 1; /* force gang blocks */
56
57 /*
58 * The in-core space map representation is more compact than its on-disk form.
59 * The zfs_condense_pct determines how much more compact the in-core
60 * space_map representation must be before we compact it on-disk.
61 * Values should be greater than or equal to 100.
62 */
63 int zfs_condense_pct = 200;
64
65 /*
66 * Condensing a metaslab is not guaranteed to actually reduce the amount of
67 * space used on disk. In particular, a space map uses data in increments of
68 * MAX(1 << ashift, space_map_blksz), so a metaslab might use the
69 * same number of blocks after condensing. Since the goal of condensing is to
70 * reduce the number of IOPs required to read the space map, we only want to
71 * condense when we can be sure we will reduce the number of blocks used by the
72 * space map. Unfortunately, we cannot precisely compute whether or not this is
73 * the case in metaslab_should_condense since we are holding ms_lock. Instead,
74 * we apply the following heuristic: do not condense a spacemap unless the
75 * uncondensed size consumes greater than zfs_metaslab_condense_block_threshold
76 * blocks.
77 */
78 int zfs_metaslab_condense_block_threshold = 4;
79
80 /*
81 * The zfs_mg_noalloc_threshold defines which metaslab groups should
82 * be eligible for allocation. The value is defined as a percentage of
83 * free space. Metaslab groups that have more free space than
84 * zfs_mg_noalloc_threshold are always eligible for allocations. Once
85 * a metaslab group's free space is less than or equal to the
86 * zfs_mg_noalloc_threshold the allocator will avoid allocating to that
87 * group unless all groups in the pool have reached zfs_mg_noalloc_threshold.
88 * Once all groups in the pool reach zfs_mg_noalloc_threshold then all
89 * groups are allowed to accept allocations. Gang blocks are always
90 * eligible to allocate on any metaslab group. The default value of 0 means
91 * no metaslab group will be excluded based on this criterion.
92 */
93 int zfs_mg_noalloc_threshold = 0;
94
95 /*
96 * Metaslab groups are considered eligible for allocations if their
97 * fragmenation metric (measured as a percentage) is less than or equal to
98 * zfs_mg_fragmentation_threshold. If a metaslab group exceeds this threshold
99 * then it will be skipped unless all metaslab groups within the metaslab
100 * class have also crossed this threshold.
101 */
102 int zfs_mg_fragmentation_threshold = 85;
103
104 /*
105 * Allow metaslabs to keep their active state as long as their fragmentation
106 * percentage is less than or equal to zfs_metaslab_fragmentation_threshold. An
107 * active metaslab that exceeds this threshold will no longer keep its active
108 * status allowing better metaslabs to be selected.
109 */
110 int zfs_metaslab_fragmentation_threshold = 70;
111
112 /*
113 * When set will load all metaslabs when pool is first opened.
114 */
115 int metaslab_debug_load = 0;
116
117 /*
118 * When set will prevent metaslabs from being unloaded.
119 */
120 int metaslab_debug_unload = 0;
121
122 /*
123 * Minimum size which forces the dynamic allocator to change
124 * it's allocation strategy. Once the space map cannot satisfy
125 * an allocation of this size then it switches to using more
126 * aggressive strategy (i.e search by size rather than offset).
127 */
128 uint64_t metaslab_df_alloc_threshold = SPA_MAXBLOCKSIZE;
129
130 /*
131 * The minimum free space, in percent, which must be available
132 * in a space map to continue allocations in a first-fit fashion.
133 * Once the space_map's free space drops below this level we dynamically
134 * switch to using best-fit allocations.
135 */
136 int metaslab_df_free_pct = 4;
137
138 /*
139 * Percentage of all cpus that can be used by the metaslab taskq.
140 */
141 int metaslab_load_pct = 50;
142
143 /*
144 * Determines how many txgs a metaslab may remain loaded without having any
145 * allocations from it. As long as a metaslab continues to be used we will
146 * keep it loaded.
147 */
148 int metaslab_unload_delay = TXG_SIZE * 2;
149
150 /*
151 * Max number of metaslabs per group to preload.
152 */
153 int metaslab_preload_limit = SPA_DVAS_PER_BP;
154
155 /*
156 * Enable/disable preloading of metaslab.
157 */
158 int metaslab_preload_enabled = B_TRUE;
159
160 /*
161 * Enable/disable fragmentation weighting on metaslabs.
162 */
163 int metaslab_fragmentation_factor_enabled = B_TRUE;
164
165 /*
166 * Enable/disable lba weighting (i.e. outer tracks are given preference).
167 */
168 int metaslab_lba_weighting_enabled = B_TRUE;
169
170 /*
171 * Enable/disable metaslab group biasing.
172 */
173 int metaslab_bias_enabled = B_TRUE;
174
175 static uint64_t metaslab_fragmentation(metaslab_t *);
176
177 /*
178 * ==========================================================================
179 * Metaslab classes
180 * ==========================================================================
181 */
182 metaslab_class_t *
183 metaslab_class_create(spa_t *spa, metaslab_ops_t *ops)
184 {
185 metaslab_class_t *mc;
186
187 mc = kmem_zalloc(sizeof (metaslab_class_t), KM_SLEEP);
188
189 mc->mc_spa = spa;
190 mc->mc_rotor = NULL;
191 mc->mc_ops = ops;
192 mutex_init(&mc->mc_lock, NULL, MUTEX_DEFAULT, NULL);
193 refcount_create_tracked(&mc->mc_alloc_slots);
194
195 return (mc);
196 }
197
198 void
199 metaslab_class_destroy(metaslab_class_t *mc)
200 {
201 ASSERT(mc->mc_rotor == NULL);
202 ASSERT(mc->mc_alloc == 0);
203 ASSERT(mc->mc_deferred == 0);
204 ASSERT(mc->mc_space == 0);
205 ASSERT(mc->mc_dspace == 0);
206
207 refcount_destroy(&mc->mc_alloc_slots);
208 mutex_destroy(&mc->mc_lock);
209 kmem_free(mc, sizeof (metaslab_class_t));
210 }
211
212 int
213 metaslab_class_validate(metaslab_class_t *mc)
214 {
215 metaslab_group_t *mg;
216 vdev_t *vd;
217
218 /*
219 * Must hold one of the spa_config locks.
220 */
221 ASSERT(spa_config_held(mc->mc_spa, SCL_ALL, RW_READER) ||
222 spa_config_held(mc->mc_spa, SCL_ALL, RW_WRITER));
223
224 if ((mg = mc->mc_rotor) == NULL)
225 return (0);
226
227 do {
228 vd = mg->mg_vd;
229 ASSERT(vd->vdev_mg != NULL);
230 ASSERT3P(vd->vdev_top, ==, vd);
231 ASSERT3P(mg->mg_class, ==, mc);
232 ASSERT3P(vd->vdev_ops, !=, &vdev_hole_ops);
233 } while ((mg = mg->mg_next) != mc->mc_rotor);
234
235 return (0);
236 }
237
238 void
239 metaslab_class_space_update(metaslab_class_t *mc, int64_t alloc_delta,
240 int64_t defer_delta, int64_t space_delta, int64_t dspace_delta)
241 {
242 atomic_add_64(&mc->mc_alloc, alloc_delta);
243 atomic_add_64(&mc->mc_deferred, defer_delta);
244 atomic_add_64(&mc->mc_space, space_delta);
245 atomic_add_64(&mc->mc_dspace, dspace_delta);
246 }
247
248 uint64_t
249 metaslab_class_get_alloc(metaslab_class_t *mc)
250 {
251 return (mc->mc_alloc);
252 }
253
254 uint64_t
255 metaslab_class_get_deferred(metaslab_class_t *mc)
256 {
257 return (mc->mc_deferred);
258 }
259
260 uint64_t
261 metaslab_class_get_space(metaslab_class_t *mc)
262 {
263 return (mc->mc_space);
264 }
265
266 uint64_t
267 metaslab_class_get_dspace(metaslab_class_t *mc)
268 {
269 return (spa_deflate(mc->mc_spa) ? mc->mc_dspace : mc->mc_space);
270 }
271
272 void
273 metaslab_class_histogram_verify(metaslab_class_t *mc)
274 {
275 vdev_t *rvd = mc->mc_spa->spa_root_vdev;
276 uint64_t *mc_hist;
277 int i, c;
278
279 if ((zfs_flags & ZFS_DEBUG_HISTOGRAM_VERIFY) == 0)
280 return;
281
282 mc_hist = kmem_zalloc(sizeof (uint64_t) * RANGE_TREE_HISTOGRAM_SIZE,
283 KM_SLEEP);
284
285 for (c = 0; c < rvd->vdev_children; c++) {
286 vdev_t *tvd = rvd->vdev_child[c];
287 metaslab_group_t *mg = tvd->vdev_mg;
288
289 /*
290 * Skip any holes, uninitialized top-levels, or
291 * vdevs that are not in this metalab class.
292 */
293 if (tvd->vdev_ishole || tvd->vdev_ms_shift == 0 ||
294 mg->mg_class != mc) {
295 continue;
296 }
297
298 for (i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i++)
299 mc_hist[i] += mg->mg_histogram[i];
300 }
301
302 for (i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i++)
303 VERIFY3U(mc_hist[i], ==, mc->mc_histogram[i]);
304
305 kmem_free(mc_hist, sizeof (uint64_t) * RANGE_TREE_HISTOGRAM_SIZE);
306 }
307
308 /*
309 * Calculate the metaslab class's fragmentation metric. The metric
310 * is weighted based on the space contribution of each metaslab group.
311 * The return value will be a number between 0 and 100 (inclusive), or
312 * ZFS_FRAG_INVALID if the metric has not been set. See comment above the
313 * zfs_frag_table for more information about the metric.
314 */
315 uint64_t
316 metaslab_class_fragmentation(metaslab_class_t *mc)
317 {
318 vdev_t *rvd = mc->mc_spa->spa_root_vdev;
319 uint64_t fragmentation = 0;
320 int c;
321
322 spa_config_enter(mc->mc_spa, SCL_VDEV, FTAG, RW_READER);
323
324 for (c = 0; c < rvd->vdev_children; c++) {
325 vdev_t *tvd = rvd->vdev_child[c];
326 metaslab_group_t *mg = tvd->vdev_mg;
327
328 /*
329 * Skip any holes, uninitialized top-levels, or
330 * vdevs that are not in this metalab class.
331 */
332 if (tvd->vdev_ishole || tvd->vdev_ms_shift == 0 ||
333 mg->mg_class != mc) {
334 continue;
335 }
336
337 /*
338 * If a metaslab group does not contain a fragmentation
339 * metric then just bail out.
340 */
341 if (mg->mg_fragmentation == ZFS_FRAG_INVALID) {
342 spa_config_exit(mc->mc_spa, SCL_VDEV, FTAG);
343 return (ZFS_FRAG_INVALID);
344 }
345
346 /*
347 * Determine how much this metaslab_group is contributing
348 * to the overall pool fragmentation metric.
349 */
350 fragmentation += mg->mg_fragmentation *
351 metaslab_group_get_space(mg);
352 }
353 fragmentation /= metaslab_class_get_space(mc);
354
355 ASSERT3U(fragmentation, <=, 100);
356 spa_config_exit(mc->mc_spa, SCL_VDEV, FTAG);
357 return (fragmentation);
358 }
359
360 /*
361 * Calculate the amount of expandable space that is available in
362 * this metaslab class. If a device is expanded then its expandable
363 * space will be the amount of allocatable space that is currently not
364 * part of this metaslab class.
365 */
366 uint64_t
367 metaslab_class_expandable_space(metaslab_class_t *mc)
368 {
369 vdev_t *rvd = mc->mc_spa->spa_root_vdev;
370 uint64_t space = 0;
371 int c;
372
373 spa_config_enter(mc->mc_spa, SCL_VDEV, FTAG, RW_READER);
374 for (c = 0; c < rvd->vdev_children; c++) {
375 vdev_t *tvd = rvd->vdev_child[c];
376 metaslab_group_t *mg = tvd->vdev_mg;
377
378 if (tvd->vdev_ishole || tvd->vdev_ms_shift == 0 ||
379 mg->mg_class != mc) {
380 continue;
381 }
382
383 space += tvd->vdev_max_asize - tvd->vdev_asize;
384 }
385 spa_config_exit(mc->mc_spa, SCL_VDEV, FTAG);
386 return (space);
387 }
388
389 /*
390 * ==========================================================================
391 * Metaslab groups
392 * ==========================================================================
393 */
394 static int
395 metaslab_compare(const void *x1, const void *x2)
396 {
397 const metaslab_t *m1 = (const metaslab_t *)x1;
398 const metaslab_t *m2 = (const metaslab_t *)x2;
399
400 int cmp = AVL_CMP(m2->ms_weight, m1->ms_weight);
401 if (likely(cmp))
402 return (cmp);
403
404 IMPLY(AVL_CMP(m1->ms_start, m2->ms_start) == 0, m1 == m2);
405
406 return (AVL_CMP(m1->ms_start, m2->ms_start));
407 }
408
409 /*
410 * Update the allocatable flag and the metaslab group's capacity.
411 * The allocatable flag is set to true if the capacity is below
412 * the zfs_mg_noalloc_threshold or has a fragmentation value that is
413 * greater than zfs_mg_fragmentation_threshold. If a metaslab group
414 * transitions from allocatable to non-allocatable or vice versa then the
415 * metaslab group's class is updated to reflect the transition.
416 */
417 static void
418 metaslab_group_alloc_update(metaslab_group_t *mg)
419 {
420 vdev_t *vd = mg->mg_vd;
421 metaslab_class_t *mc = mg->mg_class;
422 vdev_stat_t *vs = &vd->vdev_stat;
423 boolean_t was_allocatable;
424 boolean_t was_initialized;
425
426 ASSERT(vd == vd->vdev_top);
427
428 mutex_enter(&mg->mg_lock);
429 was_allocatable = mg->mg_allocatable;
430 was_initialized = mg->mg_initialized;
431
432 mg->mg_free_capacity = ((vs->vs_space - vs->vs_alloc) * 100) /
433 (vs->vs_space + 1);
434
435 mutex_enter(&mc->mc_lock);
436
437 /*
438 * If the metaslab group was just added then it won't
439 * have any space until we finish syncing out this txg.
440 * At that point we will consider it initialized and available
441 * for allocations. We also don't consider non-activated
442 * metaslab groups (e.g. vdevs that are in the middle of being removed)
443 * to be initialized, because they can't be used for allocation.
444 */
445 mg->mg_initialized = metaslab_group_initialized(mg);
446 if (!was_initialized && mg->mg_initialized) {
447 mc->mc_groups++;
448 } else if (was_initialized && !mg->mg_initialized) {
449 ASSERT3U(mc->mc_groups, >, 0);
450 mc->mc_groups--;
451 }
452 if (mg->mg_initialized)
453 mg->mg_no_free_space = B_FALSE;
454
455 /*
456 * A metaslab group is considered allocatable if it has plenty
457 * of free space or is not heavily fragmented. We only take
458 * fragmentation into account if the metaslab group has a valid
459 * fragmentation metric (i.e. a value between 0 and 100).
460 */
461 mg->mg_allocatable = (mg->mg_activation_count > 0 &&
462 mg->mg_free_capacity > zfs_mg_noalloc_threshold &&
463 (mg->mg_fragmentation == ZFS_FRAG_INVALID ||
464 mg->mg_fragmentation <= zfs_mg_fragmentation_threshold));
465
466 /*
467 * The mc_alloc_groups maintains a count of the number of
468 * groups in this metaslab class that are still above the
469 * zfs_mg_noalloc_threshold. This is used by the allocating
470 * threads to determine if they should avoid allocations to
471 * a given group. The allocator will avoid allocations to a group
472 * if that group has reached or is below the zfs_mg_noalloc_threshold
473 * and there are still other groups that are above the threshold.
474 * When a group transitions from allocatable to non-allocatable or
475 * vice versa we update the metaslab class to reflect that change.
476 * When the mc_alloc_groups value drops to 0 that means that all
477 * groups have reached the zfs_mg_noalloc_threshold making all groups
478 * eligible for allocations. This effectively means that all devices
479 * are balanced again.
480 */
481 if (was_allocatable && !mg->mg_allocatable)
482 mc->mc_alloc_groups--;
483 else if (!was_allocatable && mg->mg_allocatable)
484 mc->mc_alloc_groups++;
485 mutex_exit(&mc->mc_lock);
486
487 mutex_exit(&mg->mg_lock);
488 }
489
490 metaslab_group_t *
491 metaslab_group_create(metaslab_class_t *mc, vdev_t *vd)
492 {
493 metaslab_group_t *mg;
494
495 mg = kmem_zalloc(sizeof (metaslab_group_t), KM_SLEEP);
496 mutex_init(&mg->mg_lock, NULL, MUTEX_DEFAULT, NULL);
497 avl_create(&mg->mg_metaslab_tree, metaslab_compare,
498 sizeof (metaslab_t), offsetof(struct metaslab, ms_group_node));
499 mg->mg_vd = vd;
500 mg->mg_class = mc;
501 mg->mg_activation_count = 0;
502 mg->mg_initialized = B_FALSE;
503 mg->mg_no_free_space = B_TRUE;
504 refcount_create_tracked(&mg->mg_alloc_queue_depth);
505
506 mg->mg_taskq = taskq_create("metaslab_group_taskq", metaslab_load_pct,
507 maxclsyspri, 10, INT_MAX, TASKQ_THREADS_CPU_PCT | TASKQ_DYNAMIC);
508
509 return (mg);
510 }
511
512 void
513 metaslab_group_destroy(metaslab_group_t *mg)
514 {
515 ASSERT(mg->mg_prev == NULL);
516 ASSERT(mg->mg_next == NULL);
517 /*
518 * We may have gone below zero with the activation count
519 * either because we never activated in the first place or
520 * because we're done, and possibly removing the vdev.
521 */
522 ASSERT(mg->mg_activation_count <= 0);
523
524 taskq_destroy(mg->mg_taskq);
525 avl_destroy(&mg->mg_metaslab_tree);
526 mutex_destroy(&mg->mg_lock);
527 refcount_destroy(&mg->mg_alloc_queue_depth);
528 kmem_free(mg, sizeof (metaslab_group_t));
529 }
530
531 void
532 metaslab_group_activate(metaslab_group_t *mg)
533 {
534 metaslab_class_t *mc = mg->mg_class;
535 metaslab_group_t *mgprev, *mgnext;
536
537 ASSERT(spa_config_held(mc->mc_spa, SCL_ALLOC, RW_WRITER));
538
539 ASSERT(mc->mc_rotor != mg);
540 ASSERT(mg->mg_prev == NULL);
541 ASSERT(mg->mg_next == NULL);
542 ASSERT(mg->mg_activation_count <= 0);
543
544 if (++mg->mg_activation_count <= 0)
545 return;
546
547 mg->mg_aliquot = metaslab_aliquot * MAX(1, mg->mg_vd->vdev_children);
548 metaslab_group_alloc_update(mg);
549
550 if ((mgprev = mc->mc_rotor) == NULL) {
551 mg->mg_prev = mg;
552 mg->mg_next = mg;
553 } else {
554 mgnext = mgprev->mg_next;
555 mg->mg_prev = mgprev;
556 mg->mg_next = mgnext;
557 mgprev->mg_next = mg;
558 mgnext->mg_prev = mg;
559 }
560 mc->mc_rotor = mg;
561 }
562
563 void
564 metaslab_group_passivate(metaslab_group_t *mg)
565 {
566 metaslab_class_t *mc = mg->mg_class;
567 metaslab_group_t *mgprev, *mgnext;
568
569 ASSERT(spa_config_held(mc->mc_spa, SCL_ALLOC, RW_WRITER));
570
571 if (--mg->mg_activation_count != 0) {
572 ASSERT(mc->mc_rotor != mg);
573 ASSERT(mg->mg_prev == NULL);
574 ASSERT(mg->mg_next == NULL);
575 ASSERT(mg->mg_activation_count < 0);
576 return;
577 }
578
579 taskq_wait_outstanding(mg->mg_taskq, 0);
580 metaslab_group_alloc_update(mg);
581
582 mgprev = mg->mg_prev;
583 mgnext = mg->mg_next;
584
585 if (mg == mgnext) {
586 mc->mc_rotor = NULL;
587 } else {
588 mc->mc_rotor = mgnext;
589 mgprev->mg_next = mgnext;
590 mgnext->mg_prev = mgprev;
591 }
592
593 mg->mg_prev = NULL;
594 mg->mg_next = NULL;
595 }
596
597 boolean_t
598 metaslab_group_initialized(metaslab_group_t *mg)
599 {
600 vdev_t *vd = mg->mg_vd;
601 vdev_stat_t *vs = &vd->vdev_stat;
602
603 return (vs->vs_space != 0 && mg->mg_activation_count > 0);
604 }
605
606 uint64_t
607 metaslab_group_get_space(metaslab_group_t *mg)
608 {
609 return ((1ULL << mg->mg_vd->vdev_ms_shift) * mg->mg_vd->vdev_ms_count);
610 }
611
612 void
613 metaslab_group_histogram_verify(metaslab_group_t *mg)
614 {
615 uint64_t *mg_hist;
616 vdev_t *vd = mg->mg_vd;
617 uint64_t ashift = vd->vdev_ashift;
618 int i, m;
619
620 if ((zfs_flags & ZFS_DEBUG_HISTOGRAM_VERIFY) == 0)
621 return;
622
623 mg_hist = kmem_zalloc(sizeof (uint64_t) * RANGE_TREE_HISTOGRAM_SIZE,
624 KM_SLEEP);
625
626 ASSERT3U(RANGE_TREE_HISTOGRAM_SIZE, >=,
627 SPACE_MAP_HISTOGRAM_SIZE + ashift);
628
629 for (m = 0; m < vd->vdev_ms_count; m++) {
630 metaslab_t *msp = vd->vdev_ms[m];
631
632 if (msp->ms_sm == NULL)
633 continue;
634
635 for (i = 0; i < SPACE_MAP_HISTOGRAM_SIZE; i++)
636 mg_hist[i + ashift] +=
637 msp->ms_sm->sm_phys->smp_histogram[i];
638 }
639
640 for (i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i ++)
641 VERIFY3U(mg_hist[i], ==, mg->mg_histogram[i]);
642
643 kmem_free(mg_hist, sizeof (uint64_t) * RANGE_TREE_HISTOGRAM_SIZE);
644 }
645
646 static void
647 metaslab_group_histogram_add(metaslab_group_t *mg, metaslab_t *msp)
648 {
649 metaslab_class_t *mc = mg->mg_class;
650 uint64_t ashift = mg->mg_vd->vdev_ashift;
651 int i;
652
653 ASSERT(MUTEX_HELD(&msp->ms_lock));
654 if (msp->ms_sm == NULL)
655 return;
656
657 mutex_enter(&mg->mg_lock);
658 for (i = 0; i < SPACE_MAP_HISTOGRAM_SIZE; i++) {
659 mg->mg_histogram[i + ashift] +=
660 msp->ms_sm->sm_phys->smp_histogram[i];
661 mc->mc_histogram[i + ashift] +=
662 msp->ms_sm->sm_phys->smp_histogram[i];
663 }
664 mutex_exit(&mg->mg_lock);
665 }
666
667 void
668 metaslab_group_histogram_remove(metaslab_group_t *mg, metaslab_t *msp)
669 {
670 metaslab_class_t *mc = mg->mg_class;
671 uint64_t ashift = mg->mg_vd->vdev_ashift;
672 int i;
673
674 ASSERT(MUTEX_HELD(&msp->ms_lock));
675 if (msp->ms_sm == NULL)
676 return;
677
678 mutex_enter(&mg->mg_lock);
679 for (i = 0; i < SPACE_MAP_HISTOGRAM_SIZE; i++) {
680 ASSERT3U(mg->mg_histogram[i + ashift], >=,
681 msp->ms_sm->sm_phys->smp_histogram[i]);
682 ASSERT3U(mc->mc_histogram[i + ashift], >=,
683 msp->ms_sm->sm_phys->smp_histogram[i]);
684
685 mg->mg_histogram[i + ashift] -=
686 msp->ms_sm->sm_phys->smp_histogram[i];
687 mc->mc_histogram[i + ashift] -=
688 msp->ms_sm->sm_phys->smp_histogram[i];
689 }
690 mutex_exit(&mg->mg_lock);
691 }
692
693 static void
694 metaslab_group_add(metaslab_group_t *mg, metaslab_t *msp)
695 {
696 ASSERT(msp->ms_group == NULL);
697 mutex_enter(&mg->mg_lock);
698 msp->ms_group = mg;
699 msp->ms_weight = 0;
700 avl_add(&mg->mg_metaslab_tree, msp);
701 mutex_exit(&mg->mg_lock);
702
703 mutex_enter(&msp->ms_lock);
704 metaslab_group_histogram_add(mg, msp);
705 mutex_exit(&msp->ms_lock);
706 }
707
708 static void
709 metaslab_group_remove(metaslab_group_t *mg, metaslab_t *msp)
710 {
711 mutex_enter(&msp->ms_lock);
712 metaslab_group_histogram_remove(mg, msp);
713 mutex_exit(&msp->ms_lock);
714
715 mutex_enter(&mg->mg_lock);
716 ASSERT(msp->ms_group == mg);
717 avl_remove(&mg->mg_metaslab_tree, msp);
718 msp->ms_group = NULL;
719 mutex_exit(&mg->mg_lock);
720 }
721
722 static void
723 metaslab_group_sort(metaslab_group_t *mg, metaslab_t *msp, uint64_t weight)
724 {
725 /*
726 * Although in principle the weight can be any value, in
727 * practice we do not use values in the range [1, 511].
728 */
729 ASSERT(weight >= SPA_MINBLOCKSIZE || weight == 0);
730 ASSERT(MUTEX_HELD(&msp->ms_lock));
731
732 mutex_enter(&mg->mg_lock);
733 ASSERT(msp->ms_group == mg);
734 avl_remove(&mg->mg_metaslab_tree, msp);
735 msp->ms_weight = weight;
736 avl_add(&mg->mg_metaslab_tree, msp);
737 mutex_exit(&mg->mg_lock);
738 }
739
740 /*
741 * Calculate the fragmentation for a given metaslab group. We can use
742 * a simple average here since all metaslabs within the group must have
743 * the same size. The return value will be a value between 0 and 100
744 * (inclusive), or ZFS_FRAG_INVALID if less than half of the metaslab in this
745 * group have a fragmentation metric.
746 */
747 uint64_t
748 metaslab_group_fragmentation(metaslab_group_t *mg)
749 {
750 vdev_t *vd = mg->mg_vd;
751 uint64_t fragmentation = 0;
752 uint64_t valid_ms = 0;
753 int m;
754
755 for (m = 0; m < vd->vdev_ms_count; m++) {
756 metaslab_t *msp = vd->vdev_ms[m];
757
758 if (msp->ms_fragmentation == ZFS_FRAG_INVALID)
759 continue;
760
761 valid_ms++;
762 fragmentation += msp->ms_fragmentation;
763 }
764
765 if (valid_ms <= vd->vdev_ms_count / 2)
766 return (ZFS_FRAG_INVALID);
767
768 fragmentation /= valid_ms;
769 ASSERT3U(fragmentation, <=, 100);
770 return (fragmentation);
771 }
772
773 /*
774 * Determine if a given metaslab group should skip allocations. A metaslab
775 * group should avoid allocations if its free capacity is less than the
776 * zfs_mg_noalloc_threshold or its fragmentation metric is greater than
777 * zfs_mg_fragmentation_threshold and there is at least one metaslab group
778 * that can still handle allocations. If the allocation throttle is enabled
779 * then we skip allocations to devices that have reached their maximum
780 * allocation queue depth unless the selected metaslab group is the only
781 * eligible group remaining.
782 */
783 static boolean_t
784 metaslab_group_allocatable(metaslab_group_t *mg, metaslab_group_t *rotor,
785 uint64_t psize)
786 {
787 spa_t *spa = mg->mg_vd->vdev_spa;
788 metaslab_class_t *mc = mg->mg_class;
789
790 /*
791 * We can only consider skipping this metaslab group if it's
792 * in the normal metaslab class and there are other metaslab
793 * groups to select from. Otherwise, we always consider it eligible
794 * for allocations.
795 */
796 if (mc != spa_normal_class(spa) || mc->mc_groups <= 1)
797 return (B_TRUE);
798
799 /*
800 * If the metaslab group's mg_allocatable flag is set (see comments
801 * in metaslab_group_alloc_update() for more information) and
802 * the allocation throttle is disabled then allow allocations to this
803 * device. However, if the allocation throttle is enabled then
804 * check if we have reached our allocation limit (mg_alloc_queue_depth)
805 * to determine if we should allow allocations to this metaslab group.
806 * If all metaslab groups are no longer considered allocatable
807 * (mc_alloc_groups == 0) or we're trying to allocate the smallest
808 * gang block size then we allow allocations on this metaslab group
809 * regardless of the mg_allocatable or throttle settings.
810 */
811 if (mg->mg_allocatable) {
812 metaslab_group_t *mgp;
813 int64_t qdepth;
814 uint64_t qmax = mg->mg_max_alloc_queue_depth;
815
816 if (!mc->mc_alloc_throttle_enabled)
817 return (B_TRUE);
818
819 /*
820 * If this metaslab group does not have any free space, then
821 * there is no point in looking further.
822 */
823 if (mg->mg_no_free_space)
824 return (B_FALSE);
825
826 qdepth = refcount_count(&mg->mg_alloc_queue_depth);
827
828 /*
829 * If this metaslab group is below its qmax or it's
830 * the only allocatable metasable group, then attempt
831 * to allocate from it.
832 */
833 if (qdepth < qmax || mc->mc_alloc_groups == 1)
834 return (B_TRUE);
835 ASSERT3U(mc->mc_alloc_groups, >, 1);
836
837 /*
838 * Since this metaslab group is at or over its qmax, we
839 * need to determine if there are metaslab groups after this
840 * one that might be able to handle this allocation. This is
841 * racy since we can't hold the locks for all metaslab
842 * groups at the same time when we make this check.
843 */
844 for (mgp = mg->mg_next; mgp != rotor; mgp = mgp->mg_next) {
845 qmax = mgp->mg_max_alloc_queue_depth;
846
847 qdepth = refcount_count(&mgp->mg_alloc_queue_depth);
848
849 /*
850 * If there is another metaslab group that
851 * might be able to handle the allocation, then
852 * we return false so that we skip this group.
853 */
854 if (qdepth < qmax && !mgp->mg_no_free_space)
855 return (B_FALSE);
856 }
857
858 /*
859 * We didn't find another group to handle the allocation
860 * so we can't skip this metaslab group even though
861 * we are at or over our qmax.
862 */
863 return (B_TRUE);
864
865 } else if (mc->mc_alloc_groups == 0 || psize == SPA_MINBLOCKSIZE) {
866 return (B_TRUE);
867 }
868 return (B_FALSE);
869 }
870
871 /*
872 * ==========================================================================
873 * Range tree callbacks
874 * ==========================================================================
875 */
876
877 /*
878 * Comparison function for the private size-ordered tree. Tree is sorted
879 * by size, larger sizes at the end of the tree.
880 */
881 static int
882 metaslab_rangesize_compare(const void *x1, const void *x2)
883 {
884 const range_seg_t *r1 = x1;
885 const range_seg_t *r2 = x2;
886 uint64_t rs_size1 = r1->rs_end - r1->rs_start;
887 uint64_t rs_size2 = r2->rs_end - r2->rs_start;
888
889 int cmp = AVL_CMP(rs_size1, rs_size2);
890 if (likely(cmp))
891 return (cmp);
892
893 return (AVL_CMP(r1->rs_start, r2->rs_start));
894 }
895
896 /*
897 * Create any block allocator specific components. The current allocators
898 * rely on using both a size-ordered range_tree_t and an array of uint64_t's.
899 */
900 static void
901 metaslab_rt_create(range_tree_t *rt, void *arg)
902 {
903 metaslab_t *msp = arg;
904
905 ASSERT3P(rt->rt_arg, ==, msp);
906 ASSERT(msp->ms_tree == NULL);
907
908 avl_create(&msp->ms_size_tree, metaslab_rangesize_compare,
909 sizeof (range_seg_t), offsetof(range_seg_t, rs_pp_node));
910 }
911
912 /*
913 * Destroy the block allocator specific components.
914 */
915 static void
916 metaslab_rt_destroy(range_tree_t *rt, void *arg)
917 {
918 metaslab_t *msp = arg;
919
920 ASSERT3P(rt->rt_arg, ==, msp);
921 ASSERT3P(msp->ms_tree, ==, rt);
922 ASSERT0(avl_numnodes(&msp->ms_size_tree));
923
924 avl_destroy(&msp->ms_size_tree);
925 }
926
927 static void
928 metaslab_rt_add(range_tree_t *rt, range_seg_t *rs, void *arg)
929 {
930 metaslab_t *msp = arg;
931
932 ASSERT3P(rt->rt_arg, ==, msp);
933 ASSERT3P(msp->ms_tree, ==, rt);
934 VERIFY(!msp->ms_condensing);
935 avl_add(&msp->ms_size_tree, rs);
936 }
937
938 static void
939 metaslab_rt_remove(range_tree_t *rt, range_seg_t *rs, void *arg)
940 {
941 metaslab_t *msp = arg;
942
943 ASSERT3P(rt->rt_arg, ==, msp);
944 ASSERT3P(msp->ms_tree, ==, rt);
945 VERIFY(!msp->ms_condensing);
946 avl_remove(&msp->ms_size_tree, rs);
947 }
948
949 static void
950 metaslab_rt_vacate(range_tree_t *rt, void *arg)
951 {
952 metaslab_t *msp = arg;
953
954 ASSERT3P(rt->rt_arg, ==, msp);
955 ASSERT3P(msp->ms_tree, ==, rt);
956
957 /*
958 * Normally one would walk the tree freeing nodes along the way.
959 * Since the nodes are shared with the range trees we can avoid
960 * walking all nodes and just reinitialize the avl tree. The nodes
961 * will be freed by the range tree, so we don't want to free them here.
962 */
963 avl_create(&msp->ms_size_tree, metaslab_rangesize_compare,
964 sizeof (range_seg_t), offsetof(range_seg_t, rs_pp_node));
965 }
966
967 static range_tree_ops_t metaslab_rt_ops = {
968 metaslab_rt_create,
969 metaslab_rt_destroy,
970 metaslab_rt_add,
971 metaslab_rt_remove,
972 metaslab_rt_vacate
973 };
974
975 /*
976 * ==========================================================================
977 * Metaslab block operations
978 * ==========================================================================
979 */
980
981 /*
982 * Return the maximum contiguous segment within the metaslab.
983 */
984 uint64_t
985 metaslab_block_maxsize(metaslab_t *msp)
986 {
987 avl_tree_t *t = &msp->ms_size_tree;
988 range_seg_t *rs;
989
990 if (t == NULL || (rs = avl_last(t)) == NULL)
991 return (0ULL);
992
993 return (rs->rs_end - rs->rs_start);
994 }
995
996 uint64_t
997 metaslab_block_alloc(metaslab_t *msp, uint64_t size)
998 {
999 uint64_t start;
1000 range_tree_t *rt = msp->ms_tree;
1001
1002 VERIFY(!msp->ms_condensing);
1003
1004 start = msp->ms_ops->msop_alloc(msp, size);
1005 if (start != -1ULL) {
1006 vdev_t *vd = msp->ms_group->mg_vd;
1007
1008 VERIFY0(P2PHASE(start, 1ULL << vd->vdev_ashift));
1009 VERIFY0(P2PHASE(size, 1ULL << vd->vdev_ashift));
1010 VERIFY3U(range_tree_space(rt) - size, <=, msp->ms_size);
1011 range_tree_remove(rt, start, size);
1012 }
1013 return (start);
1014 }
1015
1016 /*
1017 * ==========================================================================
1018 * Common allocator routines
1019 * ==========================================================================
1020 */
1021
1022 #if defined(WITH_FF_BLOCK_ALLOCATOR) || \
1023 defined(WITH_DF_BLOCK_ALLOCATOR) || \
1024 defined(WITH_CF_BLOCK_ALLOCATOR)
1025 /*
1026 * This is a helper function that can be used by the allocator to find
1027 * a suitable block to allocate. This will search the specified AVL
1028 * tree looking for a block that matches the specified criteria.
1029 */
1030 static uint64_t
1031 metaslab_block_picker(avl_tree_t *t, uint64_t *cursor, uint64_t size,
1032 uint64_t align)
1033 {
1034 range_seg_t *rs, rsearch;
1035 avl_index_t where;
1036
1037 rsearch.rs_start = *cursor;
1038 rsearch.rs_end = *cursor + size;
1039
1040 rs = avl_find(t, &rsearch, &where);
1041 if (rs == NULL)
1042 rs = avl_nearest(t, where, AVL_AFTER);
1043
1044 while (rs != NULL) {
1045 uint64_t offset = P2ROUNDUP(rs->rs_start, align);
1046
1047 if (offset + size <= rs->rs_end) {
1048 *cursor = offset + size;
1049 return (offset);
1050 }
1051 rs = AVL_NEXT(t, rs);
1052 }
1053
1054 /*
1055 * If we know we've searched the whole map (*cursor == 0), give up.
1056 * Otherwise, reset the cursor to the beginning and try again.
1057 */
1058 if (*cursor == 0)
1059 return (-1ULL);
1060
1061 *cursor = 0;
1062 return (metaslab_block_picker(t, cursor, size, align));
1063 }
1064 #endif /* WITH_FF/DF/CF_BLOCK_ALLOCATOR */
1065
1066 #if defined(WITH_FF_BLOCK_ALLOCATOR)
1067 /*
1068 * ==========================================================================
1069 * The first-fit block allocator
1070 * ==========================================================================
1071 */
1072 static uint64_t
1073 metaslab_ff_alloc(metaslab_t *msp, uint64_t size)
1074 {
1075 /*
1076 * Find the largest power of 2 block size that evenly divides the
1077 * requested size. This is used to try to allocate blocks with similar
1078 * alignment from the same area of the metaslab (i.e. same cursor
1079 * bucket) but it does not guarantee that other allocations sizes
1080 * may exist in the same region.
1081 */
1082 uint64_t align = size & -size;
1083 uint64_t *cursor = &msp->ms_lbas[highbit64(align) - 1];
1084 avl_tree_t *t = &msp->ms_tree->rt_root;
1085
1086 return (metaslab_block_picker(t, cursor, size, align));
1087 }
1088
1089 static metaslab_ops_t metaslab_ff_ops = {
1090 metaslab_ff_alloc
1091 };
1092
1093 metaslab_ops_t *zfs_metaslab_ops = &metaslab_ff_ops;
1094 #endif /* WITH_FF_BLOCK_ALLOCATOR */
1095
1096 #if defined(WITH_DF_BLOCK_ALLOCATOR)
1097 /*
1098 * ==========================================================================
1099 * Dynamic block allocator -
1100 * Uses the first fit allocation scheme until space get low and then
1101 * adjusts to a best fit allocation method. Uses metaslab_df_alloc_threshold
1102 * and metaslab_df_free_pct to determine when to switch the allocation scheme.
1103 * ==========================================================================
1104 */
1105 static uint64_t
1106 metaslab_df_alloc(metaslab_t *msp, uint64_t size)
1107 {
1108 /*
1109 * Find the largest power of 2 block size that evenly divides the
1110 * requested size. This is used to try to allocate blocks with similar
1111 * alignment from the same area of the metaslab (i.e. same cursor
1112 * bucket) but it does not guarantee that other allocations sizes
1113 * may exist in the same region.
1114 */
1115 uint64_t align = size & -size;
1116 uint64_t *cursor = &msp->ms_lbas[highbit64(align) - 1];
1117 range_tree_t *rt = msp->ms_tree;
1118 avl_tree_t *t = &rt->rt_root;
1119 uint64_t max_size = metaslab_block_maxsize(msp);
1120 int free_pct = range_tree_space(rt) * 100 / msp->ms_size;
1121
1122 ASSERT(MUTEX_HELD(&msp->ms_lock));
1123 ASSERT3U(avl_numnodes(t), ==, avl_numnodes(&msp->ms_size_tree));
1124
1125 if (max_size < size)
1126 return (-1ULL);
1127
1128 /*
1129 * If we're running low on space switch to using the size
1130 * sorted AVL tree (best-fit).
1131 */
1132 if (max_size < metaslab_df_alloc_threshold ||
1133 free_pct < metaslab_df_free_pct) {
1134 t = &msp->ms_size_tree;
1135 *cursor = 0;
1136 }
1137
1138 return (metaslab_block_picker(t, cursor, size, 1ULL));
1139 }
1140
1141 static metaslab_ops_t metaslab_df_ops = {
1142 metaslab_df_alloc
1143 };
1144
1145 metaslab_ops_t *zfs_metaslab_ops = &metaslab_df_ops;
1146 #endif /* WITH_DF_BLOCK_ALLOCATOR */
1147
1148 #if defined(WITH_CF_BLOCK_ALLOCATOR)
1149 /*
1150 * ==========================================================================
1151 * Cursor fit block allocator -
1152 * Select the largest region in the metaslab, set the cursor to the beginning
1153 * of the range and the cursor_end to the end of the range. As allocations
1154 * are made advance the cursor. Continue allocating from the cursor until
1155 * the range is exhausted and then find a new range.
1156 * ==========================================================================
1157 */
1158 static uint64_t
1159 metaslab_cf_alloc(metaslab_t *msp, uint64_t size)
1160 {
1161 range_tree_t *rt = msp->ms_tree;
1162 avl_tree_t *t = &msp->ms_size_tree;
1163 uint64_t *cursor = &msp->ms_lbas[0];
1164 uint64_t *cursor_end = &msp->ms_lbas[1];
1165 uint64_t offset = 0;
1166
1167 ASSERT(MUTEX_HELD(&msp->ms_lock));
1168 ASSERT3U(avl_numnodes(t), ==, avl_numnodes(&rt->rt_root));
1169
1170 ASSERT3U(*cursor_end, >=, *cursor);
1171
1172 if ((*cursor + size) > *cursor_end) {
1173 range_seg_t *rs;
1174
1175 rs = avl_last(&msp->ms_size_tree);
1176 if (rs == NULL || (rs->rs_end - rs->rs_start) < size)
1177 return (-1ULL);
1178
1179 *cursor = rs->rs_start;
1180 *cursor_end = rs->rs_end;
1181 }
1182
1183 offset = *cursor;
1184 *cursor += size;
1185
1186 return (offset);
1187 }
1188
1189 static metaslab_ops_t metaslab_cf_ops = {
1190 metaslab_cf_alloc
1191 };
1192
1193 metaslab_ops_t *zfs_metaslab_ops = &metaslab_cf_ops;
1194 #endif /* WITH_CF_BLOCK_ALLOCATOR */
1195
1196 #if defined(WITH_NDF_BLOCK_ALLOCATOR)
1197 /*
1198 * ==========================================================================
1199 * New dynamic fit allocator -
1200 * Select a region that is large enough to allocate 2^metaslab_ndf_clump_shift
1201 * contiguous blocks. If no region is found then just use the largest segment
1202 * that remains.
1203 * ==========================================================================
1204 */
1205
1206 /*
1207 * Determines desired number of contiguous blocks (2^metaslab_ndf_clump_shift)
1208 * to request from the allocator.
1209 */
1210 uint64_t metaslab_ndf_clump_shift = 4;
1211
1212 static uint64_t
1213 metaslab_ndf_alloc(metaslab_t *msp, uint64_t size)
1214 {
1215 avl_tree_t *t = &msp->ms_tree->rt_root;
1216 avl_index_t where;
1217 range_seg_t *rs, rsearch;
1218 uint64_t hbit = highbit64(size);
1219 uint64_t *cursor = &msp->ms_lbas[hbit - 1];
1220 uint64_t max_size = metaslab_block_maxsize(msp);
1221
1222 ASSERT(MUTEX_HELD(&msp->ms_lock));
1223 ASSERT3U(avl_numnodes(t), ==, avl_numnodes(&msp->ms_size_tree));
1224
1225 if (max_size < size)
1226 return (-1ULL);
1227
1228 rsearch.rs_start = *cursor;
1229 rsearch.rs_end = *cursor + size;
1230
1231 rs = avl_find(t, &rsearch, &where);
1232 if (rs == NULL || (rs->rs_end - rs->rs_start) < size) {
1233 t = &msp->ms_size_tree;
1234
1235 rsearch.rs_start = 0;
1236 rsearch.rs_end = MIN(max_size,
1237 1ULL << (hbit + metaslab_ndf_clump_shift));
1238 rs = avl_find(t, &rsearch, &where);
1239 if (rs == NULL)
1240 rs = avl_nearest(t, where, AVL_AFTER);
1241 ASSERT(rs != NULL);
1242 }
1243
1244 if ((rs->rs_end - rs->rs_start) >= size) {
1245 *cursor = rs->rs_start + size;
1246 return (rs->rs_start);
1247 }
1248 return (-1ULL);
1249 }
1250
1251 static metaslab_ops_t metaslab_ndf_ops = {
1252 metaslab_ndf_alloc
1253 };
1254
1255 metaslab_ops_t *zfs_metaslab_ops = &metaslab_ndf_ops;
1256 #endif /* WITH_NDF_BLOCK_ALLOCATOR */
1257
1258
1259 /*
1260 * ==========================================================================
1261 * Metaslabs
1262 * ==========================================================================
1263 */
1264
1265 /*
1266 * Wait for any in-progress metaslab loads to complete.
1267 */
1268 void
1269 metaslab_load_wait(metaslab_t *msp)
1270 {
1271 ASSERT(MUTEX_HELD(&msp->ms_lock));
1272
1273 while (msp->ms_loading) {
1274 ASSERT(!msp->ms_loaded);
1275 cv_wait(&msp->ms_load_cv, &msp->ms_lock);
1276 }
1277 }
1278
1279 int
1280 metaslab_load(metaslab_t *msp)
1281 {
1282 int error = 0;
1283 int t;
1284
1285 ASSERT(MUTEX_HELD(&msp->ms_lock));
1286 ASSERT(!msp->ms_loaded);
1287 ASSERT(!msp->ms_loading);
1288
1289 msp->ms_loading = B_TRUE;
1290
1291 /*
1292 * If the space map has not been allocated yet, then treat
1293 * all the space in the metaslab as free and add it to the
1294 * ms_tree.
1295 */
1296 if (msp->ms_sm != NULL)
1297 error = space_map_load(msp->ms_sm, msp->ms_tree, SM_FREE);
1298 else
1299 range_tree_add(msp->ms_tree, msp->ms_start, msp->ms_size);
1300
1301 msp->ms_loaded = (error == 0);
1302 msp->ms_loading = B_FALSE;
1303
1304 if (msp->ms_loaded) {
1305 for (t = 0; t < TXG_DEFER_SIZE; t++) {
1306 range_tree_walk(msp->ms_defertree[t],
1307 range_tree_remove, msp->ms_tree);
1308 }
1309 }
1310 cv_broadcast(&msp->ms_load_cv);
1311 return (error);
1312 }
1313
1314 void
1315 metaslab_unload(metaslab_t *msp)
1316 {
1317 ASSERT(MUTEX_HELD(&msp->ms_lock));
1318 range_tree_vacate(msp->ms_tree, NULL, NULL);
1319 msp->ms_loaded = B_FALSE;
1320 msp->ms_weight &= ~METASLAB_ACTIVE_MASK;
1321 }
1322
1323 int
1324 metaslab_init(metaslab_group_t *mg, uint64_t id, uint64_t object, uint64_t txg,
1325 metaslab_t **msp)
1326 {
1327 vdev_t *vd = mg->mg_vd;
1328 objset_t *mos = vd->vdev_spa->spa_meta_objset;
1329 metaslab_t *ms;
1330 int error;
1331
1332 ms = kmem_zalloc(sizeof (metaslab_t), KM_SLEEP);
1333 mutex_init(&ms->ms_lock, NULL, MUTEX_DEFAULT, NULL);
1334 cv_init(&ms->ms_load_cv, NULL, CV_DEFAULT, NULL);
1335 ms->ms_id = id;
1336 ms->ms_start = id << vd->vdev_ms_shift;
1337 ms->ms_size = 1ULL << vd->vdev_ms_shift;
1338
1339 /*
1340 * We only open space map objects that already exist. All others
1341 * will be opened when we finally allocate an object for it.
1342 */
1343 if (object != 0) {
1344 error = space_map_open(&ms->ms_sm, mos, object, ms->ms_start,
1345 ms->ms_size, vd->vdev_ashift, &ms->ms_lock);
1346
1347 if (error != 0) {
1348 kmem_free(ms, sizeof (metaslab_t));
1349 return (error);
1350 }
1351
1352 ASSERT(ms->ms_sm != NULL);
1353 }
1354
1355 /*
1356 * We create the main range tree here, but we don't create the
1357 * alloctree and freetree until metaslab_sync_done(). This serves
1358 * two purposes: it allows metaslab_sync_done() to detect the
1359 * addition of new space; and for debugging, it ensures that we'd
1360 * data fault on any attempt to use this metaslab before it's ready.
1361 */
1362 ms->ms_tree = range_tree_create(&metaslab_rt_ops, ms, &ms->ms_lock);
1363 metaslab_group_add(mg, ms);
1364
1365 ms->ms_fragmentation = metaslab_fragmentation(ms);
1366 ms->ms_ops = mg->mg_class->mc_ops;
1367
1368 /*
1369 * If we're opening an existing pool (txg == 0) or creating
1370 * a new one (txg == TXG_INITIAL), all space is available now.
1371 * If we're adding space to an existing pool, the new space
1372 * does not become available until after this txg has synced.
1373 */
1374 if (txg <= TXG_INITIAL)
1375 metaslab_sync_done(ms, 0);
1376
1377 /*
1378 * If metaslab_debug_load is set and we're initializing a metaslab
1379 * that has an allocated space_map object then load the its space
1380 * map so that can verify frees.
1381 */
1382 if (metaslab_debug_load && ms->ms_sm != NULL) {
1383 mutex_enter(&ms->ms_lock);
1384 VERIFY0(metaslab_load(ms));
1385 mutex_exit(&ms->ms_lock);
1386 }
1387
1388 if (txg != 0) {
1389 vdev_dirty(vd, 0, NULL, txg);
1390 vdev_dirty(vd, VDD_METASLAB, ms, txg);
1391 }
1392
1393 *msp = ms;
1394
1395 return (0);
1396 }
1397
1398 void
1399 metaslab_fini(metaslab_t *msp)
1400 {
1401 int t;
1402
1403 metaslab_group_t *mg = msp->ms_group;
1404
1405 metaslab_group_remove(mg, msp);
1406
1407 mutex_enter(&msp->ms_lock);
1408
1409 VERIFY(msp->ms_group == NULL);
1410 vdev_space_update(mg->mg_vd, -space_map_allocated(msp->ms_sm),
1411 0, -msp->ms_size);
1412 space_map_close(msp->ms_sm);
1413
1414 metaslab_unload(msp);
1415 range_tree_destroy(msp->ms_tree);
1416
1417 for (t = 0; t < TXG_SIZE; t++) {
1418 range_tree_destroy(msp->ms_alloctree[t]);
1419 range_tree_destroy(msp->ms_freetree[t]);
1420 }
1421
1422 for (t = 0; t < TXG_DEFER_SIZE; t++) {
1423 range_tree_destroy(msp->ms_defertree[t]);
1424 }
1425
1426 ASSERT0(msp->ms_deferspace);
1427
1428 mutex_exit(&msp->ms_lock);
1429 cv_destroy(&msp->ms_load_cv);
1430 mutex_destroy(&msp->ms_lock);
1431
1432 kmem_free(msp, sizeof (metaslab_t));
1433 }
1434
1435 #define FRAGMENTATION_TABLE_SIZE 17
1436
1437 /*
1438 * This table defines a segment size based fragmentation metric that will
1439 * allow each metaslab to derive its own fragmentation value. This is done
1440 * by calculating the space in each bucket of the spacemap histogram and
1441 * multiplying that by the fragmetation metric in this table. Doing
1442 * this for all buckets and dividing it by the total amount of free
1443 * space in this metaslab (i.e. the total free space in all buckets) gives
1444 * us the fragmentation metric. This means that a high fragmentation metric
1445 * equates to most of the free space being comprised of small segments.
1446 * Conversely, if the metric is low, then most of the free space is in
1447 * large segments. A 10% change in fragmentation equates to approximately
1448 * double the number of segments.
1449 *
1450 * This table defines 0% fragmented space using 16MB segments. Testing has
1451 * shown that segments that are greater than or equal to 16MB do not suffer
1452 * from drastic performance problems. Using this value, we derive the rest
1453 * of the table. Since the fragmentation value is never stored on disk, it
1454 * is possible to change these calculations in the future.
1455 */
1456 int zfs_frag_table[FRAGMENTATION_TABLE_SIZE] = {
1457 100, /* 512B */
1458 100, /* 1K */
1459 98, /* 2K */
1460 95, /* 4K */
1461 90, /* 8K */
1462 80, /* 16K */
1463 70, /* 32K */
1464 60, /* 64K */
1465 50, /* 128K */
1466 40, /* 256K */
1467 30, /* 512K */
1468 20, /* 1M */
1469 15, /* 2M */
1470 10, /* 4M */
1471 5, /* 8M */
1472 0 /* 16M */
1473 };
1474
1475 /*
1476 * Calclate the metaslab's fragmentation metric. A return value
1477 * of ZFS_FRAG_INVALID means that the metaslab has not been upgraded and does
1478 * not support this metric. Otherwise, the return value should be in the
1479 * range [0, 100].
1480 */
1481 static uint64_t
1482 metaslab_fragmentation(metaslab_t *msp)
1483 {
1484 spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
1485 uint64_t fragmentation = 0;
1486 uint64_t total = 0;
1487 boolean_t feature_enabled = spa_feature_is_enabled(spa,
1488 SPA_FEATURE_SPACEMAP_HISTOGRAM);
1489 int i;
1490
1491 if (!feature_enabled)
1492 return (ZFS_FRAG_INVALID);
1493
1494 /*
1495 * A null space map means that the entire metaslab is free
1496 * and thus is not fragmented.
1497 */
1498 if (msp->ms_sm == NULL)
1499 return (0);
1500
1501 /*
1502 * If this metaslab's space_map has not been upgraded, flag it
1503 * so that we upgrade next time we encounter it.
1504 */
1505 if (msp->ms_sm->sm_dbuf->db_size != sizeof (space_map_phys_t)) {
1506 vdev_t *vd = msp->ms_group->mg_vd;
1507
1508 if (spa_writeable(vd->vdev_spa)) {
1509 uint64_t txg = spa_syncing_txg(spa);
1510
1511 msp->ms_condense_wanted = B_TRUE;
1512 vdev_dirty(vd, VDD_METASLAB, msp, txg + 1);
1513 spa_dbgmsg(spa, "txg %llu, requesting force condense: "
1514 "msp %p, vd %p", txg, msp, vd);
1515 }
1516 return (ZFS_FRAG_INVALID);
1517 }
1518
1519 for (i = 0; i < SPACE_MAP_HISTOGRAM_SIZE; i++) {
1520 uint64_t space = 0;
1521 uint8_t shift = msp->ms_sm->sm_shift;
1522 int idx = MIN(shift - SPA_MINBLOCKSHIFT + i,
1523 FRAGMENTATION_TABLE_SIZE - 1);
1524
1525 if (msp->ms_sm->sm_phys->smp_histogram[i] == 0)
1526 continue;
1527
1528 space = msp->ms_sm->sm_phys->smp_histogram[i] << (i + shift);
1529 total += space;
1530
1531 ASSERT3U(idx, <, FRAGMENTATION_TABLE_SIZE);
1532 fragmentation += space * zfs_frag_table[idx];
1533 }
1534
1535 if (total > 0)
1536 fragmentation /= total;
1537 ASSERT3U(fragmentation, <=, 100);
1538 return (fragmentation);
1539 }
1540
1541 /*
1542 * Compute a weight -- a selection preference value -- for the given metaslab.
1543 * This is based on the amount of free space, the level of fragmentation,
1544 * the LBA range, and whether the metaslab is loaded.
1545 */
1546 static uint64_t
1547 metaslab_weight(metaslab_t *msp)
1548 {
1549 metaslab_group_t *mg = msp->ms_group;
1550 vdev_t *vd = mg->mg_vd;
1551 uint64_t weight, space;
1552
1553 ASSERT(MUTEX_HELD(&msp->ms_lock));
1554
1555 /*
1556 * This vdev is in the process of being removed so there is nothing
1557 * for us to do here.
1558 */
1559 if (vd->vdev_removing) {
1560 ASSERT0(space_map_allocated(msp->ms_sm));
1561 ASSERT0(vd->vdev_ms_shift);
1562 return (0);
1563 }
1564
1565 /*
1566 * The baseline weight is the metaslab's free space.
1567 */
1568 space = msp->ms_size - space_map_allocated(msp->ms_sm);
1569
1570 msp->ms_fragmentation = metaslab_fragmentation(msp);
1571 if (metaslab_fragmentation_factor_enabled &&
1572 msp->ms_fragmentation != ZFS_FRAG_INVALID) {
1573 /*
1574 * Use the fragmentation information to inversely scale
1575 * down the baseline weight. We need to ensure that we
1576 * don't exclude this metaslab completely when it's 100%
1577 * fragmented. To avoid this we reduce the fragmented value
1578 * by 1.
1579 */
1580 space = (space * (100 - (msp->ms_fragmentation - 1))) / 100;
1581
1582 /*
1583 * If space < SPA_MINBLOCKSIZE, then we will not allocate from
1584 * this metaslab again. The fragmentation metric may have
1585 * decreased the space to something smaller than
1586 * SPA_MINBLOCKSIZE, so reset the space to SPA_MINBLOCKSIZE
1587 * so that we can consume any remaining space.
1588 */
1589 if (space > 0 && space < SPA_MINBLOCKSIZE)
1590 space = SPA_MINBLOCKSIZE;
1591 }
1592 weight = space;
1593
1594 /*
1595 * Modern disks have uniform bit density and constant angular velocity.
1596 * Therefore, the outer recording zones are faster (higher bandwidth)
1597 * than the inner zones by the ratio of outer to inner track diameter,
1598 * which is typically around 2:1. We account for this by assigning
1599 * higher weight to lower metaslabs (multiplier ranging from 2x to 1x).
1600 * In effect, this means that we'll select the metaslab with the most
1601 * free bandwidth rather than simply the one with the most free space.
1602 */
1603 if (!vd->vdev_nonrot && metaslab_lba_weighting_enabled) {
1604 weight = 2 * weight - (msp->ms_id * weight) / vd->vdev_ms_count;
1605 ASSERT(weight >= space && weight <= 2 * space);
1606 }
1607
1608 /*
1609 * If this metaslab is one we're actively using, adjust its
1610 * weight to make it preferable to any inactive metaslab so
1611 * we'll polish it off. If the fragmentation on this metaslab
1612 * has exceed our threshold, then don't mark it active.
1613 */
1614 if (msp->ms_loaded && msp->ms_fragmentation != ZFS_FRAG_INVALID &&
1615 msp->ms_fragmentation <= zfs_metaslab_fragmentation_threshold) {
1616 weight |= (msp->ms_weight & METASLAB_ACTIVE_MASK);
1617 }
1618
1619 return (weight);
1620 }
1621
1622 static int
1623 metaslab_activate(metaslab_t *msp, uint64_t activation_weight)
1624 {
1625 ASSERT(MUTEX_HELD(&msp->ms_lock));
1626
1627 if ((msp->ms_weight & METASLAB_ACTIVE_MASK) == 0) {
1628 metaslab_load_wait(msp);
1629 if (!msp->ms_loaded) {
1630 int error = metaslab_load(msp);
1631 if (error) {
1632 metaslab_group_sort(msp->ms_group, msp, 0);
1633 return (error);
1634 }
1635 }
1636
1637 metaslab_group_sort(msp->ms_group, msp,
1638 msp->ms_weight | activation_weight);
1639 }
1640 ASSERT(msp->ms_loaded);
1641 ASSERT(msp->ms_weight & METASLAB_ACTIVE_MASK);
1642
1643 return (0);
1644 }
1645
1646 static void
1647 metaslab_passivate(metaslab_t *msp, uint64_t size)
1648 {
1649 /*
1650 * If size < SPA_MINBLOCKSIZE, then we will not allocate from
1651 * this metaslab again. In that case, it had better be empty,
1652 * or we would be leaving space on the table.
1653 */
1654 ASSERT(size >= SPA_MINBLOCKSIZE || range_tree_space(msp->ms_tree) == 0);
1655 metaslab_group_sort(msp->ms_group, msp, MIN(msp->ms_weight, size));
1656 ASSERT((msp->ms_weight & METASLAB_ACTIVE_MASK) == 0);
1657 }
1658
1659 static void
1660 metaslab_preload(void *arg)
1661 {
1662 metaslab_t *msp = arg;
1663 spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
1664 fstrans_cookie_t cookie = spl_fstrans_mark();
1665
1666 ASSERT(!MUTEX_HELD(&msp->ms_group->mg_lock));
1667
1668 mutex_enter(&msp->ms_lock);
1669 metaslab_load_wait(msp);
1670 if (!msp->ms_loaded)
1671 (void) metaslab_load(msp);
1672
1673 /*
1674 * Set the ms_access_txg value so that we don't unload it right away.
1675 */
1676 msp->ms_access_txg = spa_syncing_txg(spa) + metaslab_unload_delay + 1;
1677 mutex_exit(&msp->ms_lock);
1678 spl_fstrans_unmark(cookie);
1679 }
1680
1681 static void
1682 metaslab_group_preload(metaslab_group_t *mg)
1683 {
1684 spa_t *spa = mg->mg_vd->vdev_spa;
1685 metaslab_t *msp;
1686 avl_tree_t *t = &mg->mg_metaslab_tree;
1687 int m = 0;
1688
1689 if (spa_shutting_down(spa) || !metaslab_preload_enabled) {
1690 taskq_wait_outstanding(mg->mg_taskq, 0);
1691 return;
1692 }
1693
1694 mutex_enter(&mg->mg_lock);
1695 /*
1696 * Load the next potential metaslabs
1697 */
1698 msp = avl_first(t);
1699 while (msp != NULL) {
1700 metaslab_t *msp_next = AVL_NEXT(t, msp);
1701
1702 /*
1703 * We preload only the maximum number of metaslabs specified
1704 * by metaslab_preload_limit. If a metaslab is being forced
1705 * to condense then we preload it too. This will ensure
1706 * that force condensing happens in the next txg.
1707 */
1708 if (++m > metaslab_preload_limit && !msp->ms_condense_wanted) {
1709 msp = msp_next;
1710 continue;
1711 }
1712
1713 /*
1714 * We must drop the metaslab group lock here to preserve
1715 * lock ordering with the ms_lock (when grabbing both
1716 * the mg_lock and the ms_lock, the ms_lock must be taken
1717 * first). As a result, it is possible that the ordering
1718 * of the metaslabs within the avl tree may change before
1719 * we reacquire the lock. The metaslab cannot be removed from
1720 * the tree while we're in syncing context so it is safe to
1721 * drop the mg_lock here. If the metaslabs are reordered
1722 * nothing will break -- we just may end up loading a
1723 * less than optimal one.
1724 */
1725 mutex_exit(&mg->mg_lock);
1726 VERIFY(taskq_dispatch(mg->mg_taskq, metaslab_preload,
1727 msp, TQ_SLEEP) != TASKQID_INVALID);
1728 mutex_enter(&mg->mg_lock);
1729 msp = msp_next;
1730 }
1731 mutex_exit(&mg->mg_lock);
1732 }
1733
1734 /*
1735 * Determine if the space map's on-disk footprint is past our tolerance
1736 * for inefficiency. We would like to use the following criteria to make
1737 * our decision:
1738 *
1739 * 1. The size of the space map object should not dramatically increase as a
1740 * result of writing out the free space range tree.
1741 *
1742 * 2. The minimal on-disk space map representation is zfs_condense_pct/100
1743 * times the size than the free space range tree representation
1744 * (i.e. zfs_condense_pct = 110 and in-core = 1MB, minimal = 1.1.MB).
1745 *
1746 * 3. The on-disk size of the space map should actually decrease.
1747 *
1748 * Checking the first condition is tricky since we don't want to walk
1749 * the entire AVL tree calculating the estimated on-disk size. Instead we
1750 * use the size-ordered range tree in the metaslab and calculate the
1751 * size required to write out the largest segment in our free tree. If the
1752 * size required to represent that segment on disk is larger than the space
1753 * map object then we avoid condensing this map.
1754 *
1755 * To determine the second criterion we use a best-case estimate and assume
1756 * each segment can be represented on-disk as a single 64-bit entry. We refer
1757 * to this best-case estimate as the space map's minimal form.
1758 *
1759 * Unfortunately, we cannot compute the on-disk size of the space map in this
1760 * context because we cannot accurately compute the effects of compression, etc.
1761 * Instead, we apply the heuristic described in the block comment for
1762 * zfs_metaslab_condense_block_threshold - we only condense if the space used
1763 * is greater than a threshold number of blocks.
1764 */
1765 static boolean_t
1766 metaslab_should_condense(metaslab_t *msp)
1767 {
1768 space_map_t *sm = msp->ms_sm;
1769 range_seg_t *rs;
1770 uint64_t size, entries, segsz, object_size, optimal_size, record_size;
1771 dmu_object_info_t doi;
1772 uint64_t vdev_blocksize = 1ULL << msp->ms_group->mg_vd->vdev_ashift;
1773
1774 ASSERT(MUTEX_HELD(&msp->ms_lock));
1775 ASSERT(msp->ms_loaded);
1776
1777 /*
1778 * Use the ms_size_tree range tree, which is ordered by size, to
1779 * obtain the largest segment in the free tree. We always condense
1780 * metaslabs that are empty and metaslabs for which a condense
1781 * request has been made.
1782 */
1783 rs = avl_last(&msp->ms_size_tree);
1784 if (rs == NULL || msp->ms_condense_wanted)
1785 return (B_TRUE);
1786
1787 /*
1788 * Calculate the number of 64-bit entries this segment would
1789 * require when written to disk. If this single segment would be
1790 * larger on-disk than the entire current on-disk structure, then
1791 * clearly condensing will increase the on-disk structure size.
1792 */
1793 size = (rs->rs_end - rs->rs_start) >> sm->sm_shift;
1794 entries = size / (MIN(size, SM_RUN_MAX));
1795 segsz = entries * sizeof (uint64_t);
1796
1797 optimal_size = sizeof (uint64_t) * avl_numnodes(&msp->ms_tree->rt_root);
1798 object_size = space_map_length(msp->ms_sm);
1799
1800 dmu_object_info_from_db(sm->sm_dbuf, &doi);
1801 record_size = MAX(doi.doi_data_block_size, vdev_blocksize);
1802
1803 return (segsz <= object_size &&
1804 object_size >= (optimal_size * zfs_condense_pct / 100) &&
1805 object_size > zfs_metaslab_condense_block_threshold * record_size);
1806 }
1807
1808 /*
1809 * Condense the on-disk space map representation to its minimized form.
1810 * The minimized form consists of a small number of allocations followed by
1811 * the entries of the free range tree.
1812 */
1813 static void
1814 metaslab_condense(metaslab_t *msp, uint64_t txg, dmu_tx_t *tx)
1815 {
1816 spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
1817 range_tree_t *freetree = msp->ms_freetree[txg & TXG_MASK];
1818 range_tree_t *condense_tree;
1819 space_map_t *sm = msp->ms_sm;
1820 int t;
1821
1822 ASSERT(MUTEX_HELD(&msp->ms_lock));
1823 ASSERT3U(spa_sync_pass(spa), ==, 1);
1824 ASSERT(msp->ms_loaded);
1825
1826
1827 spa_dbgmsg(spa, "condensing: txg %llu, msp[%llu] %p, vdev id %llu, "
1828 "spa %s, smp size %llu, segments %lu, forcing condense=%s", txg,
1829 msp->ms_id, msp, msp->ms_group->mg_vd->vdev_id,
1830 msp->ms_group->mg_vd->vdev_spa->spa_name,
1831 space_map_length(msp->ms_sm), avl_numnodes(&msp->ms_tree->rt_root),
1832 msp->ms_condense_wanted ? "TRUE" : "FALSE");
1833
1834 msp->ms_condense_wanted = B_FALSE;
1835
1836 /*
1837 * Create an range tree that is 100% allocated. We remove segments
1838 * that have been freed in this txg, any deferred frees that exist,
1839 * and any allocation in the future. Removing segments should be
1840 * a relatively inexpensive operation since we expect these trees to
1841 * have a small number of nodes.
1842 */
1843 condense_tree = range_tree_create(NULL, NULL, &msp->ms_lock);
1844 range_tree_add(condense_tree, msp->ms_start, msp->ms_size);
1845
1846 /*
1847 * Remove what's been freed in this txg from the condense_tree.
1848 * Since we're in sync_pass 1, we know that all the frees from
1849 * this txg are in the freetree.
1850 */
1851 range_tree_walk(freetree, range_tree_remove, condense_tree);
1852
1853 for (t = 0; t < TXG_DEFER_SIZE; t++) {
1854 range_tree_walk(msp->ms_defertree[t],
1855 range_tree_remove, condense_tree);
1856 }
1857
1858 for (t = 1; t < TXG_CONCURRENT_STATES; t++) {
1859 range_tree_walk(msp->ms_alloctree[(txg + t) & TXG_MASK],
1860 range_tree_remove, condense_tree);
1861 }
1862
1863 /*
1864 * We're about to drop the metaslab's lock thus allowing
1865 * other consumers to change it's content. Set the
1866 * metaslab's ms_condensing flag to ensure that
1867 * allocations on this metaslab do not occur while we're
1868 * in the middle of committing it to disk. This is only critical
1869 * for the ms_tree as all other range trees use per txg
1870 * views of their content.
1871 */
1872 msp->ms_condensing = B_TRUE;
1873
1874 mutex_exit(&msp->ms_lock);
1875 space_map_truncate(sm, tx);
1876 mutex_enter(&msp->ms_lock);
1877
1878 /*
1879 * While we would ideally like to create a space_map representation
1880 * that consists only of allocation records, doing so can be
1881 * prohibitively expensive because the in-core free tree can be
1882 * large, and therefore computationally expensive to subtract
1883 * from the condense_tree. Instead we sync out two trees, a cheap
1884 * allocation only tree followed by the in-core free tree. While not
1885 * optimal, this is typically close to optimal, and much cheaper to
1886 * compute.
1887 */
1888 space_map_write(sm, condense_tree, SM_ALLOC, tx);
1889 range_tree_vacate(condense_tree, NULL, NULL);
1890 range_tree_destroy(condense_tree);
1891
1892 space_map_write(sm, msp->ms_tree, SM_FREE, tx);
1893 msp->ms_condensing = B_FALSE;
1894 }
1895
1896 /*
1897 * Write a metaslab to disk in the context of the specified transaction group.
1898 */
1899 void
1900 metaslab_sync(metaslab_t *msp, uint64_t txg)
1901 {
1902 metaslab_group_t *mg = msp->ms_group;
1903 vdev_t *vd = mg->mg_vd;
1904 spa_t *spa = vd->vdev_spa;
1905 objset_t *mos = spa_meta_objset(spa);
1906 range_tree_t *alloctree = msp->ms_alloctree[txg & TXG_MASK];
1907 range_tree_t **freetree = &msp->ms_freetree[txg & TXG_MASK];
1908 range_tree_t **freed_tree =
1909 &msp->ms_freetree[TXG_CLEAN(txg) & TXG_MASK];
1910 dmu_tx_t *tx;
1911 uint64_t object = space_map_object(msp->ms_sm);
1912
1913 ASSERT(!vd->vdev_ishole);
1914
1915 /*
1916 * This metaslab has just been added so there's no work to do now.
1917 */
1918 if (*freetree == NULL) {
1919 ASSERT3P(alloctree, ==, NULL);
1920 return;
1921 }
1922
1923 ASSERT3P(alloctree, !=, NULL);
1924 ASSERT3P(*freetree, !=, NULL);
1925 ASSERT3P(*freed_tree, !=, NULL);
1926
1927 /*
1928 * Normally, we don't want to process a metaslab if there
1929 * are no allocations or frees to perform. However, if the metaslab
1930 * is being forced to condense we need to let it through.
1931 */
1932 if (range_tree_space(alloctree) == 0 &&
1933 range_tree_space(*freetree) == 0 &&
1934 !msp->ms_condense_wanted)
1935 return;
1936
1937 /*
1938 * The only state that can actually be changing concurrently with
1939 * metaslab_sync() is the metaslab's ms_tree. No other thread can
1940 * be modifying this txg's alloctree, freetree, freed_tree, or
1941 * space_map_phys_t. Therefore, we only hold ms_lock to satify
1942 * space_map ASSERTs. We drop it whenever we call into the DMU,
1943 * because the DMU can call down to us (e.g. via zio_free()) at
1944 * any time.
1945 */
1946
1947 tx = dmu_tx_create_assigned(spa_get_dsl(spa), txg);
1948
1949 if (msp->ms_sm == NULL) {
1950 uint64_t new_object;
1951
1952 new_object = space_map_alloc(mos, tx);
1953 VERIFY3U(new_object, !=, 0);
1954
1955 VERIFY0(space_map_open(&msp->ms_sm, mos, new_object,
1956 msp->ms_start, msp->ms_size, vd->vdev_ashift,
1957 &msp->ms_lock));
1958 ASSERT(msp->ms_sm != NULL);
1959 }
1960
1961 mutex_enter(&msp->ms_lock);
1962
1963 /*
1964 * Note: metaslab_condense() clears the space_map's histogram.
1965 * Therefore we muse verify and remove this histogram before
1966 * condensing.
1967 */
1968 metaslab_group_histogram_verify(mg);
1969 metaslab_class_histogram_verify(mg->mg_class);
1970 metaslab_group_histogram_remove(mg, msp);
1971
1972 if (msp->ms_loaded && spa_sync_pass(spa) == 1 &&
1973 metaslab_should_condense(msp)) {
1974 metaslab_condense(msp, txg, tx);
1975 } else {
1976 space_map_write(msp->ms_sm, alloctree, SM_ALLOC, tx);
1977 space_map_write(msp->ms_sm, *freetree, SM_FREE, tx);
1978 }
1979
1980 if (msp->ms_loaded) {
1981 /*
1982 * When the space map is loaded, we have an accruate
1983 * histogram in the range tree. This gives us an opportunity
1984 * to bring the space map's histogram up-to-date so we clear
1985 * it first before updating it.
1986 */
1987 space_map_histogram_clear(msp->ms_sm);
1988 space_map_histogram_add(msp->ms_sm, msp->ms_tree, tx);
1989 } else {
1990 /*
1991 * Since the space map is not loaded we simply update the
1992 * exisiting histogram with what was freed in this txg. This
1993 * means that the on-disk histogram may not have an accurate
1994 * view of the free space but it's close enough to allow
1995 * us to make allocation decisions.
1996 */
1997 space_map_histogram_add(msp->ms_sm, *freetree, tx);
1998 }
1999 metaslab_group_histogram_add(mg, msp);
2000 metaslab_group_histogram_verify(mg);
2001 metaslab_class_histogram_verify(mg->mg_class);
2002
2003 /*
2004 * For sync pass 1, we avoid traversing this txg's free range tree
2005 * and instead will just swap the pointers for freetree and
2006 * freed_tree. We can safely do this since the freed_tree is
2007 * guaranteed to be empty on the initial pass.
2008 */
2009 if (spa_sync_pass(spa) == 1) {
2010 range_tree_swap(freetree, freed_tree);
2011 } else {
2012 range_tree_vacate(*freetree, range_tree_add, *freed_tree);
2013 }
2014 range_tree_vacate(alloctree, NULL, NULL);
2015
2016 ASSERT0(range_tree_space(msp->ms_alloctree[txg & TXG_MASK]));
2017 ASSERT0(range_tree_space(msp->ms_freetree[txg & TXG_MASK]));
2018
2019 mutex_exit(&msp->ms_lock);
2020
2021 if (object != space_map_object(msp->ms_sm)) {
2022 object = space_map_object(msp->ms_sm);
2023 dmu_write(mos, vd->vdev_ms_array, sizeof (uint64_t) *
2024 msp->ms_id, sizeof (uint64_t), &object, tx);
2025 }
2026 dmu_tx_commit(tx);
2027 }
2028
2029 /*
2030 * Called after a transaction group has completely synced to mark
2031 * all of the metaslab's free space as usable.
2032 */
2033 void
2034 metaslab_sync_done(metaslab_t *msp, uint64_t txg)
2035 {
2036 metaslab_group_t *mg = msp->ms_group;
2037 vdev_t *vd = mg->mg_vd;
2038 range_tree_t **freed_tree;
2039 range_tree_t **defer_tree;
2040 int64_t alloc_delta, defer_delta;
2041 int t;
2042
2043 ASSERT(!vd->vdev_ishole);
2044
2045 mutex_enter(&msp->ms_lock);
2046
2047 /*
2048 * If this metaslab is just becoming available, initialize its
2049 * alloctrees, freetrees, and defertree and add its capacity to
2050 * the vdev.
2051 */
2052 if (msp->ms_freetree[TXG_CLEAN(txg) & TXG_MASK] == NULL) {
2053 for (t = 0; t < TXG_SIZE; t++) {
2054 ASSERT(msp->ms_alloctree[t] == NULL);
2055 ASSERT(msp->ms_freetree[t] == NULL);
2056
2057 msp->ms_alloctree[t] = range_tree_create(NULL, msp,
2058 &msp->ms_lock);
2059 msp->ms_freetree[t] = range_tree_create(NULL, msp,
2060 &msp->ms_lock);
2061 }
2062
2063 for (t = 0; t < TXG_DEFER_SIZE; t++) {
2064 ASSERT(msp->ms_defertree[t] == NULL);
2065
2066 msp->ms_defertree[t] = range_tree_create(NULL, msp,
2067 &msp->ms_lock);
2068 }
2069
2070 vdev_space_update(vd, 0, 0, msp->ms_size);
2071 }
2072
2073 freed_tree = &msp->ms_freetree[TXG_CLEAN(txg) & TXG_MASK];
2074 defer_tree = &msp->ms_defertree[txg % TXG_DEFER_SIZE];
2075
2076 alloc_delta = space_map_alloc_delta(msp->ms_sm);
2077 defer_delta = range_tree_space(*freed_tree) -
2078 range_tree_space(*defer_tree);
2079
2080 vdev_space_update(vd, alloc_delta + defer_delta, defer_delta, 0);
2081
2082 ASSERT0(range_tree_space(msp->ms_alloctree[txg & TXG_MASK]));
2083 ASSERT0(range_tree_space(msp->ms_freetree[txg & TXG_MASK]));
2084
2085 /*
2086 * If there's a metaslab_load() in progress, wait for it to complete
2087 * so that we have a consistent view of the in-core space map.
2088 */
2089 metaslab_load_wait(msp);
2090
2091 /*
2092 * Move the frees from the defer_tree back to the free
2093 * range tree (if it's loaded). Swap the freed_tree and the
2094 * defer_tree -- this is safe to do because we've just emptied out
2095 * the defer_tree.
2096 */
2097 range_tree_vacate(*defer_tree,
2098 msp->ms_loaded ? range_tree_add : NULL, msp->ms_tree);
2099 range_tree_swap(freed_tree, defer_tree);
2100
2101 space_map_update(msp->ms_sm);
2102
2103 msp->ms_deferspace += defer_delta;
2104 ASSERT3S(msp->ms_deferspace, >=, 0);
2105 ASSERT3S(msp->ms_deferspace, <=, msp->ms_size);
2106 if (msp->ms_deferspace != 0) {
2107 /*
2108 * Keep syncing this metaslab until all deferred frees
2109 * are back in circulation.
2110 */
2111 vdev_dirty(vd, VDD_METASLAB, msp, txg + 1);
2112 }
2113
2114 if (msp->ms_loaded && msp->ms_access_txg < txg) {
2115 for (t = 1; t < TXG_CONCURRENT_STATES; t++) {
2116 VERIFY0(range_tree_space(
2117 msp->ms_alloctree[(txg + t) & TXG_MASK]));
2118 }
2119
2120 if (!metaslab_debug_unload)
2121 metaslab_unload(msp);
2122 }
2123
2124 metaslab_group_sort(mg, msp, metaslab_weight(msp));
2125 mutex_exit(&msp->ms_lock);
2126 }
2127
2128 void
2129 metaslab_sync_reassess(metaslab_group_t *mg)
2130 {
2131 metaslab_group_alloc_update(mg);
2132 mg->mg_fragmentation = metaslab_group_fragmentation(mg);
2133
2134 /*
2135 * Preload the next potential metaslabs
2136 */
2137 metaslab_group_preload(mg);
2138 }
2139
2140 static uint64_t
2141 metaslab_distance(metaslab_t *msp, dva_t *dva)
2142 {
2143 uint64_t ms_shift = msp->ms_group->mg_vd->vdev_ms_shift;
2144 uint64_t offset = DVA_GET_OFFSET(dva) >> ms_shift;
2145 uint64_t start = msp->ms_id;
2146
2147 if (msp->ms_group->mg_vd->vdev_id != DVA_GET_VDEV(dva))
2148 return (1ULL << 63);
2149
2150 if (offset < start)
2151 return ((start - offset) << ms_shift);
2152 if (offset > start)
2153 return ((offset - start) << ms_shift);
2154 return (0);
2155 }
2156
2157 /*
2158 * ==========================================================================
2159 * Metaslab block operations
2160 * ==========================================================================
2161 */
2162
2163 static void
2164 metaslab_group_alloc_increment(spa_t *spa, uint64_t vdev, void *tag, int flags)
2165 {
2166 metaslab_group_t *mg;
2167
2168 if (!(flags & METASLAB_ASYNC_ALLOC) ||
2169 flags & METASLAB_DONT_THROTTLE)
2170 return;
2171
2172 mg = vdev_lookup_top(spa, vdev)->vdev_mg;
2173 if (!mg->mg_class->mc_alloc_throttle_enabled)
2174 return;
2175
2176 (void) refcount_add(&mg->mg_alloc_queue_depth, tag);
2177 }
2178
2179 void
2180 metaslab_group_alloc_decrement(spa_t *spa, uint64_t vdev, void *tag, int flags)
2181 {
2182 metaslab_group_t *mg;
2183
2184 if (!(flags & METASLAB_ASYNC_ALLOC) ||
2185 flags & METASLAB_DONT_THROTTLE)
2186 return;
2187
2188 mg = vdev_lookup_top(spa, vdev)->vdev_mg;
2189 if (!mg->mg_class->mc_alloc_throttle_enabled)
2190 return;
2191
2192 (void) refcount_remove(&mg->mg_alloc_queue_depth, tag);
2193 }
2194
2195 void
2196 metaslab_group_alloc_verify(spa_t *spa, const blkptr_t *bp, void *tag)
2197 {
2198 #ifdef ZFS_DEBUG
2199 const dva_t *dva = bp->blk_dva;
2200 int ndvas = BP_GET_NDVAS(bp);
2201 int d;
2202
2203 for (d = 0; d < ndvas; d++) {
2204 uint64_t vdev = DVA_GET_VDEV(&dva[d]);
2205 metaslab_group_t *mg = vdev_lookup_top(spa, vdev)->vdev_mg;
2206 VERIFY(refcount_not_held(&mg->mg_alloc_queue_depth, tag));
2207 }
2208 #endif
2209 }
2210
2211 static uint64_t
2212 metaslab_group_alloc(metaslab_group_t *mg, uint64_t asize,
2213 uint64_t txg, uint64_t min_distance, dva_t *dva, int d)
2214 {
2215 spa_t *spa = mg->mg_vd->vdev_spa;
2216 metaslab_t *msp = NULL;
2217 uint64_t offset = -1ULL;
2218 avl_tree_t *t = &mg->mg_metaslab_tree;
2219 uint64_t activation_weight;
2220 uint64_t target_distance;
2221 int i;
2222
2223 activation_weight = METASLAB_WEIGHT_PRIMARY;
2224 for (i = 0; i < d; i++) {
2225 if (DVA_GET_VDEV(&dva[i]) == mg->mg_vd->vdev_id) {
2226 activation_weight = METASLAB_WEIGHT_SECONDARY;
2227 break;
2228 }
2229 }
2230
2231 for (;;) {
2232 boolean_t was_active;
2233
2234 mutex_enter(&mg->mg_lock);
2235 for (msp = avl_first(t); msp; msp = AVL_NEXT(t, msp)) {
2236 if (msp->ms_weight < asize) {
2237 spa_dbgmsg(spa, "%s: failed to meet weight "
2238 "requirement: vdev %llu, txg %llu, mg %p, "
2239 "msp %p, asize %llu, "
2240 "weight %llu", spa_name(spa),
2241 mg->mg_vd->vdev_id, txg,
2242 mg, msp, asize, msp->ms_weight);
2243 mutex_exit(&mg->mg_lock);
2244 return (-1ULL);
2245 }
2246
2247 /*
2248 * If the selected metaslab is condensing, skip it.
2249 */
2250 if (msp->ms_condensing)
2251 continue;
2252
2253 was_active = msp->ms_weight & METASLAB_ACTIVE_MASK;
2254 if (activation_weight == METASLAB_WEIGHT_PRIMARY)
2255 break;
2256
2257 target_distance = min_distance +
2258 (space_map_allocated(msp->ms_sm) != 0 ? 0 :
2259 min_distance >> 1);
2260
2261 for (i = 0; i < d; i++)
2262 if (metaslab_distance(msp, &dva[i]) <
2263 target_distance)
2264 break;
2265 if (i == d)
2266 break;
2267 }
2268 mutex_exit(&mg->mg_lock);
2269 if (msp == NULL)
2270 return (-1ULL);
2271
2272 mutex_enter(&msp->ms_lock);
2273
2274 /*
2275 * Ensure that the metaslab we have selected is still
2276 * capable of handling our request. It's possible that
2277 * another thread may have changed the weight while we
2278 * were blocked on the metaslab lock.
2279 */
2280 if (msp->ms_weight < asize || (was_active &&
2281 !(msp->ms_weight & METASLAB_ACTIVE_MASK) &&
2282 activation_weight == METASLAB_WEIGHT_PRIMARY)) {
2283 mutex_exit(&msp->ms_lock);
2284 continue;
2285 }
2286
2287 if ((msp->ms_weight & METASLAB_WEIGHT_SECONDARY) &&
2288 activation_weight == METASLAB_WEIGHT_PRIMARY) {
2289 metaslab_passivate(msp,
2290 msp->ms_weight & ~METASLAB_ACTIVE_MASK);
2291 mutex_exit(&msp->ms_lock);
2292 continue;
2293 }
2294
2295 if (metaslab_activate(msp, activation_weight) != 0) {
2296 mutex_exit(&msp->ms_lock);
2297 continue;
2298 }
2299
2300 /*
2301 * If this metaslab is currently condensing then pick again as
2302 * we can't manipulate this metaslab until it's committed
2303 * to disk.
2304 */
2305 if (msp->ms_condensing) {
2306 mutex_exit(&msp->ms_lock);
2307 continue;
2308 }
2309
2310 if ((offset = metaslab_block_alloc(msp, asize)) != -1ULL)
2311 break;
2312
2313 metaslab_passivate(msp, metaslab_block_maxsize(msp));
2314 mutex_exit(&msp->ms_lock);
2315 }
2316
2317 if (range_tree_space(msp->ms_alloctree[txg & TXG_MASK]) == 0)
2318 vdev_dirty(mg->mg_vd, VDD_METASLAB, msp, txg);
2319
2320 range_tree_add(msp->ms_alloctree[txg & TXG_MASK], offset, asize);
2321 msp->ms_access_txg = txg + metaslab_unload_delay;
2322
2323 mutex_exit(&msp->ms_lock);
2324 return (offset);
2325 }
2326
2327 /*
2328 * Allocate a block for the specified i/o.
2329 */
2330 static int
2331 metaslab_alloc_dva(spa_t *spa, metaslab_class_t *mc, uint64_t psize,
2332 dva_t *dva, int d, dva_t *hintdva, uint64_t txg, int flags)
2333 {
2334 metaslab_group_t *mg, *fast_mg, *rotor;
2335 vdev_t *vd;
2336 int dshift = 3;
2337 int all_zero;
2338 int zio_lock = B_FALSE;
2339 boolean_t allocatable;
2340 uint64_t asize;
2341 uint64_t distance;
2342
2343 ASSERT(!DVA_IS_VALID(&dva[d]));
2344
2345 /*
2346 * For testing, make some blocks above a certain size be gang blocks.
2347 */
2348 if (psize >= metaslab_gang_bang && (ddi_get_lbolt() & 3) == 0)
2349 return (SET_ERROR(ENOSPC));
2350
2351 /*
2352 * Start at the rotor and loop through all mgs until we find something.
2353 * Note that there's no locking on mc_rotor or mc_aliquot because
2354 * nothing actually breaks if we miss a few updates -- we just won't
2355 * allocate quite as evenly. It all balances out over time.
2356 *
2357 * If we are doing ditto or log blocks, try to spread them across
2358 * consecutive vdevs. If we're forced to reuse a vdev before we've
2359 * allocated all of our ditto blocks, then try and spread them out on
2360 * that vdev as much as possible. If it turns out to not be possible,
2361 * gradually lower our standards until anything becomes acceptable.
2362 * Also, allocating on consecutive vdevs (as opposed to random vdevs)
2363 * gives us hope of containing our fault domains to something we're
2364 * able to reason about. Otherwise, any two top-level vdev failures
2365 * will guarantee the loss of data. With consecutive allocation,
2366 * only two adjacent top-level vdev failures will result in data loss.
2367 *
2368 * If we are doing gang blocks (hintdva is non-NULL), try to keep
2369 * ourselves on the same vdev as our gang block header. That
2370 * way, we can hope for locality in vdev_cache, plus it makes our
2371 * fault domains something tractable.
2372 */
2373 if (hintdva) {
2374 vd = vdev_lookup_top(spa, DVA_GET_VDEV(&hintdva[d]));
2375
2376 /*
2377 * It's possible the vdev we're using as the hint no
2378 * longer exists (i.e. removed). Consult the rotor when
2379 * all else fails.
2380 */
2381 if (vd != NULL) {
2382 mg = vd->vdev_mg;
2383
2384 if (flags & METASLAB_HINTBP_AVOID &&
2385 mg->mg_next != NULL)
2386 mg = mg->mg_next;
2387 } else {
2388 mg = mc->mc_rotor;
2389 }
2390 } else if (d != 0) {
2391 vd = vdev_lookup_top(spa, DVA_GET_VDEV(&dva[d - 1]));
2392 mg = vd->vdev_mg->mg_next;
2393 } else if (flags & METASLAB_FASTWRITE) {
2394 mg = fast_mg = mc->mc_rotor;
2395
2396 do {
2397 if (fast_mg->mg_vd->vdev_pending_fastwrite <
2398 mg->mg_vd->vdev_pending_fastwrite)
2399 mg = fast_mg;
2400 } while ((fast_mg = fast_mg->mg_next) != mc->mc_rotor);
2401
2402 } else {
2403 mg = mc->mc_rotor;
2404 }
2405
2406 /*
2407 * If the hint put us into the wrong metaslab class, or into a
2408 * metaslab group that has been passivated, just follow the rotor.
2409 */
2410 if (mg->mg_class != mc || mg->mg_activation_count <= 0)
2411 mg = mc->mc_rotor;
2412
2413 rotor = mg;
2414 top:
2415 all_zero = B_TRUE;
2416 do {
2417 uint64_t offset;
2418
2419 ASSERT(mg->mg_activation_count == 1);
2420 vd = mg->mg_vd;
2421
2422 /*
2423 * Don't allocate from faulted devices.
2424 */
2425 if (zio_lock) {
2426 spa_config_enter(spa, SCL_ZIO, FTAG, RW_READER);
2427 allocatable = vdev_allocatable(vd);
2428 spa_config_exit(spa, SCL_ZIO, FTAG);
2429 } else {
2430 allocatable = vdev_allocatable(vd);
2431 }
2432
2433 /*
2434 * Determine if the selected metaslab group is eligible
2435 * for allocations. If we're ganging then don't allow
2436 * this metaslab group to skip allocations since that would
2437 * inadvertently return ENOSPC and suspend the pool
2438 * even though space is still available.
2439 */
2440 if (allocatable && !GANG_ALLOCATION(flags) && !zio_lock) {
2441 allocatable = metaslab_group_allocatable(mg, rotor,
2442 psize);
2443 }
2444
2445 if (!allocatable)
2446 goto next;
2447
2448 ASSERT(mg->mg_initialized);
2449
2450 /*
2451 * Avoid writing single-copy data to a failing vdev.
2452 */
2453 if ((vd->vdev_stat.vs_write_errors > 0 ||
2454 vd->vdev_state < VDEV_STATE_HEALTHY) &&
2455 d == 0 && dshift == 3 && vd->vdev_children == 0) {
2456 all_zero = B_FALSE;
2457 goto next;
2458 }
2459
2460 ASSERT(mg->mg_class == mc);
2461
2462 distance = vd->vdev_asize >> dshift;
2463 if (distance <= (1ULL << vd->vdev_ms_shift))
2464 distance = 0;
2465 else
2466 all_zero = B_FALSE;
2467
2468 asize = vdev_psize_to_asize(vd, psize);
2469 ASSERT(P2PHASE(asize, 1ULL << vd->vdev_ashift) == 0);
2470
2471 offset = metaslab_group_alloc(mg, asize, txg, distance, dva, d);
2472
2473 mutex_enter(&mg->mg_lock);
2474 if (offset == -1ULL) {
2475 mg->mg_failed_allocations++;
2476 if (asize == SPA_GANGBLOCKSIZE) {
2477 /*
2478 * This metaslab group was unable to allocate
2479 * the minimum gang block size so it must be
2480 * out of space. We must notify the allocation
2481 * throttle to start skipping allocation
2482 * attempts to this metaslab group until more
2483 * space becomes available.
2484 *
2485 * Note: this failure cannot be caused by the
2486 * allocation throttle since the allocation
2487 * throttle is only responsible for skipping
2488 * devices and not failing block allocations.
2489 */
2490 mg->mg_no_free_space = B_TRUE;
2491 }
2492 }
2493 mg->mg_allocations++;
2494 mutex_exit(&mg->mg_lock);
2495
2496 if (offset != -1ULL) {
2497 /*
2498 * If we've just selected this metaslab group,
2499 * figure out whether the corresponding vdev is
2500 * over- or under-used relative to the pool,
2501 * and set an allocation bias to even it out.
2502 *
2503 * Bias is also used to compensate for unequally
2504 * sized vdevs so that space is allocated fairly.
2505 */
2506 if (mc->mc_aliquot == 0 && metaslab_bias_enabled) {
2507 vdev_stat_t *vs = &vd->vdev_stat;
2508 int64_t vs_free = vs->vs_space - vs->vs_alloc;
2509 int64_t mc_free = mc->mc_space - mc->mc_alloc;
2510 int64_t ratio;
2511
2512 /*
2513 * Calculate how much more or less we should
2514 * try to allocate from this device during
2515 * this iteration around the rotor.
2516 *
2517 * This basically introduces a zero-centered
2518 * bias towards the devices with the most
2519 * free space, while compensating for vdev
2520 * size differences.
2521 *
2522 * Examples:
2523 * vdev V1 = 16M/128M
2524 * vdev V2 = 16M/128M
2525 * ratio(V1) = 100% ratio(V2) = 100%
2526 *
2527 * vdev V1 = 16M/128M
2528 * vdev V2 = 64M/128M
2529 * ratio(V1) = 127% ratio(V2) = 72%
2530 *
2531 * vdev V1 = 16M/128M
2532 * vdev V2 = 64M/512M
2533 * ratio(V1) = 40% ratio(V2) = 160%
2534 */
2535 ratio = (vs_free * mc->mc_alloc_groups * 100) /
2536 (mc_free + 1);
2537 mg->mg_bias = ((ratio - 100) *
2538 (int64_t)mg->mg_aliquot) / 100;
2539 } else if (!metaslab_bias_enabled) {
2540 mg->mg_bias = 0;
2541 }
2542
2543 if ((flags & METASLAB_FASTWRITE) ||
2544 atomic_add_64_nv(&mc->mc_aliquot, asize) >=
2545 mg->mg_aliquot + mg->mg_bias) {
2546 mc->mc_rotor = mg->mg_next;
2547 mc->mc_aliquot = 0;
2548 }
2549
2550 DVA_SET_VDEV(&dva[d], vd->vdev_id);
2551 DVA_SET_OFFSET(&dva[d], offset);
2552 DVA_SET_GANG(&dva[d],
2553 ((flags & METASLAB_GANG_HEADER) ? 1 : 0));
2554 DVA_SET_ASIZE(&dva[d], asize);
2555
2556 if (flags & METASLAB_FASTWRITE) {
2557 atomic_add_64(&vd->vdev_pending_fastwrite,
2558 psize);
2559 }
2560
2561 return (0);
2562 }
2563 next:
2564 mc->mc_rotor = mg->mg_next;
2565 mc->mc_aliquot = 0;
2566 } while ((mg = mg->mg_next) != rotor);
2567
2568 if (!all_zero) {
2569 dshift++;
2570 ASSERT(dshift < 64);
2571 goto top;
2572 }
2573
2574 if (!allocatable && !zio_lock) {
2575 dshift = 3;
2576 zio_lock = B_TRUE;
2577 goto top;
2578 }
2579
2580 bzero(&dva[d], sizeof (dva_t));
2581
2582 return (SET_ERROR(ENOSPC));
2583 }
2584
2585 /*
2586 * Free the block represented by DVA in the context of the specified
2587 * transaction group.
2588 */
2589 static void
2590 metaslab_free_dva(spa_t *spa, const dva_t *dva, uint64_t txg, boolean_t now)
2591 {
2592 uint64_t vdev = DVA_GET_VDEV(dva);
2593 uint64_t offset = DVA_GET_OFFSET(dva);
2594 uint64_t size = DVA_GET_ASIZE(dva);
2595 vdev_t *vd;
2596 metaslab_t *msp;
2597
2598 if (txg > spa_freeze_txg(spa))
2599 return;
2600
2601 if ((vd = vdev_lookup_top(spa, vdev)) == NULL || !DVA_IS_VALID(dva) ||
2602 (offset >> vd->vdev_ms_shift) >= vd->vdev_ms_count) {
2603 zfs_panic_recover("metaslab_free_dva(): bad DVA %llu:%llu:%llu",
2604 (u_longlong_t)vdev, (u_longlong_t)offset,
2605 (u_longlong_t)size);
2606 return;
2607 }
2608
2609 msp = vd->vdev_ms[offset >> vd->vdev_ms_shift];
2610
2611 if (DVA_GET_GANG(dva))
2612 size = vdev_psize_to_asize(vd, SPA_GANGBLOCKSIZE);
2613
2614 mutex_enter(&msp->ms_lock);
2615
2616 if (now) {
2617 range_tree_remove(msp->ms_alloctree[txg & TXG_MASK],
2618 offset, size);
2619
2620 VERIFY(!msp->ms_condensing);
2621 VERIFY3U(offset, >=, msp->ms_start);
2622 VERIFY3U(offset + size, <=, msp->ms_start + msp->ms_size);
2623 VERIFY3U(range_tree_space(msp->ms_tree) + size, <=,
2624 msp->ms_size);
2625 VERIFY0(P2PHASE(offset, 1ULL << vd->vdev_ashift));
2626 VERIFY0(P2PHASE(size, 1ULL << vd->vdev_ashift));
2627 range_tree_add(msp->ms_tree, offset, size);
2628 } else {
2629 if (range_tree_space(msp->ms_freetree[txg & TXG_MASK]) == 0)
2630 vdev_dirty(vd, VDD_METASLAB, msp, txg);
2631 range_tree_add(msp->ms_freetree[txg & TXG_MASK],
2632 offset, size);
2633 }
2634
2635 mutex_exit(&msp->ms_lock);
2636 }
2637
2638 /*
2639 * Intent log support: upon opening the pool after a crash, notify the SPA
2640 * of blocks that the intent log has allocated for immediate write, but
2641 * which are still considered free by the SPA because the last transaction
2642 * group didn't commit yet.
2643 */
2644 static int
2645 metaslab_claim_dva(spa_t *spa, const dva_t *dva, uint64_t txg)
2646 {
2647 uint64_t vdev = DVA_GET_VDEV(dva);
2648 uint64_t offset = DVA_GET_OFFSET(dva);
2649 uint64_t size = DVA_GET_ASIZE(dva);
2650 vdev_t *vd;
2651 metaslab_t *msp;
2652 int error = 0;
2653
2654 ASSERT(DVA_IS_VALID(dva));
2655
2656 if ((vd = vdev_lookup_top(spa, vdev)) == NULL ||
2657 (offset >> vd->vdev_ms_shift) >= vd->vdev_ms_count)
2658 return (SET_ERROR(ENXIO));
2659
2660 msp = vd->vdev_ms[offset >> vd->vdev_ms_shift];
2661
2662 if (DVA_GET_GANG(dva))
2663 size = vdev_psize_to_asize(vd, SPA_GANGBLOCKSIZE);
2664
2665 mutex_enter(&msp->ms_lock);
2666
2667 if ((txg != 0 && spa_writeable(spa)) || !msp->ms_loaded)
2668 error = metaslab_activate(msp, METASLAB_WEIGHT_SECONDARY);
2669
2670 if (error == 0 && !range_tree_contains(msp->ms_tree, offset, size))
2671 error = SET_ERROR(ENOENT);
2672
2673 if (error || txg == 0) { /* txg == 0 indicates dry run */
2674 mutex_exit(&msp->ms_lock);
2675 return (error);
2676 }
2677
2678 VERIFY(!msp->ms_condensing);
2679 VERIFY0(P2PHASE(offset, 1ULL << vd->vdev_ashift));
2680 VERIFY0(P2PHASE(size, 1ULL << vd->vdev_ashift));
2681 VERIFY3U(range_tree_space(msp->ms_tree) - size, <=, msp->ms_size);
2682 range_tree_remove(msp->ms_tree, offset, size);
2683
2684 if (spa_writeable(spa)) { /* don't dirty if we're zdb(1M) */
2685 if (range_tree_space(msp->ms_alloctree[txg & TXG_MASK]) == 0)
2686 vdev_dirty(vd, VDD_METASLAB, msp, txg);
2687 range_tree_add(msp->ms_alloctree[txg & TXG_MASK], offset, size);
2688 }
2689
2690 mutex_exit(&msp->ms_lock);
2691
2692 return (0);
2693 }
2694
2695 /*
2696 * Reserve some allocation slots. The reservation system must be called
2697 * before we call into the allocator. If there aren't any available slots
2698 * then the I/O will be throttled until an I/O completes and its slots are
2699 * freed up. The function returns true if it was successful in placing
2700 * the reservation.
2701 */
2702 boolean_t
2703 metaslab_class_throttle_reserve(metaslab_class_t *mc, int slots, zio_t *zio,
2704 int flags)
2705 {
2706 uint64_t available_slots = 0;
2707 uint64_t reserved_slots;
2708 boolean_t slot_reserved = B_FALSE;
2709
2710 ASSERT(mc->mc_alloc_throttle_enabled);
2711 mutex_enter(&mc->mc_lock);
2712
2713 reserved_slots = refcount_count(&mc->mc_alloc_slots);
2714 if (reserved_slots < mc->mc_alloc_max_slots)
2715 available_slots = mc->mc_alloc_max_slots - reserved_slots;
2716
2717 if (slots <= available_slots || GANG_ALLOCATION(flags)) {
2718 int d;
2719
2720 /*
2721 * We reserve the slots individually so that we can unreserve
2722 * them individually when an I/O completes.
2723 */
2724 for (d = 0; d < slots; d++) {
2725 reserved_slots = refcount_add(&mc->mc_alloc_slots, zio);
2726 }
2727 zio->io_flags |= ZIO_FLAG_IO_ALLOCATING;
2728 slot_reserved = B_TRUE;
2729 }
2730
2731 mutex_exit(&mc->mc_lock);
2732 return (slot_reserved);
2733 }
2734
2735 void
2736 metaslab_class_throttle_unreserve(metaslab_class_t *mc, int slots, zio_t *zio)
2737 {
2738 int d;
2739
2740 ASSERT(mc->mc_alloc_throttle_enabled);
2741 mutex_enter(&mc->mc_lock);
2742 for (d = 0; d < slots; d++) {
2743 (void) refcount_remove(&mc->mc_alloc_slots, zio);
2744 }
2745 mutex_exit(&mc->mc_lock);
2746 }
2747
2748 int
2749 metaslab_alloc(spa_t *spa, metaslab_class_t *mc, uint64_t psize, blkptr_t *bp,
2750 int ndvas, uint64_t txg, blkptr_t *hintbp, int flags, zio_t *zio)
2751 {
2752 dva_t *dva = bp->blk_dva;
2753 dva_t *hintdva = hintbp->blk_dva;
2754 int d, error = 0;
2755
2756 ASSERT(bp->blk_birth == 0);
2757 ASSERT(BP_PHYSICAL_BIRTH(bp) == 0);
2758
2759 spa_config_enter(spa, SCL_ALLOC, FTAG, RW_READER);
2760
2761 if (mc->mc_rotor == NULL) { /* no vdevs in this class */
2762 spa_config_exit(spa, SCL_ALLOC, FTAG);
2763 return (SET_ERROR(ENOSPC));
2764 }
2765
2766 ASSERT(ndvas > 0 && ndvas <= spa_max_replication(spa));
2767 ASSERT(BP_GET_NDVAS(bp) == 0);
2768 ASSERT(hintbp == NULL || ndvas <= BP_GET_NDVAS(hintbp));
2769
2770 for (d = 0; d < ndvas; d++) {
2771 error = metaslab_alloc_dva(spa, mc, psize, dva, d, hintdva,
2772 txg, flags);
2773 if (error != 0) {
2774 for (d--; d >= 0; d--) {
2775 metaslab_free_dva(spa, &dva[d], txg, B_TRUE);
2776 metaslab_group_alloc_decrement(spa,
2777 DVA_GET_VDEV(&dva[d]), zio, flags);
2778 bzero(&dva[d], sizeof (dva_t));
2779 }
2780 spa_config_exit(spa, SCL_ALLOC, FTAG);
2781 return (error);
2782 } else {
2783 /*
2784 * Update the metaslab group's queue depth
2785 * based on the newly allocated dva.
2786 */
2787 metaslab_group_alloc_increment(spa,
2788 DVA_GET_VDEV(&dva[d]), zio, flags);
2789 }
2790
2791 }
2792 ASSERT(error == 0);
2793 ASSERT(BP_GET_NDVAS(bp) == ndvas);
2794
2795 spa_config_exit(spa, SCL_ALLOC, FTAG);
2796
2797 BP_SET_BIRTH(bp, txg, 0);
2798
2799 return (0);
2800 }
2801
2802 void
2803 metaslab_free(spa_t *spa, const blkptr_t *bp, uint64_t txg, boolean_t now)
2804 {
2805 const dva_t *dva = bp->blk_dva;
2806 int d, ndvas = BP_GET_NDVAS(bp);
2807
2808 ASSERT(!BP_IS_HOLE(bp));
2809 ASSERT(!now || bp->blk_birth >= spa_syncing_txg(spa));
2810
2811 spa_config_enter(spa, SCL_FREE, FTAG, RW_READER);
2812
2813 for (d = 0; d < ndvas; d++)
2814 metaslab_free_dva(spa, &dva[d], txg, now);
2815
2816 spa_config_exit(spa, SCL_FREE, FTAG);
2817 }
2818
2819 int
2820 metaslab_claim(spa_t *spa, const blkptr_t *bp, uint64_t txg)
2821 {
2822 const dva_t *dva = bp->blk_dva;
2823 int ndvas = BP_GET_NDVAS(bp);
2824 int d, error = 0;
2825
2826 ASSERT(!BP_IS_HOLE(bp));
2827
2828 if (txg != 0) {
2829 /*
2830 * First do a dry run to make sure all DVAs are claimable,
2831 * so we don't have to unwind from partial failures below.
2832 */
2833 if ((error = metaslab_claim(spa, bp, 0)) != 0)
2834 return (error);
2835 }
2836
2837 spa_config_enter(spa, SCL_ALLOC, FTAG, RW_READER);
2838
2839 for (d = 0; d < ndvas; d++)
2840 if ((error = metaslab_claim_dva(spa, &dva[d], txg)) != 0)
2841 break;
2842
2843 spa_config_exit(spa, SCL_ALLOC, FTAG);
2844
2845 ASSERT(error == 0 || txg == 0);
2846
2847 return (error);
2848 }
2849
2850 void
2851 metaslab_fastwrite_mark(spa_t *spa, const blkptr_t *bp)
2852 {
2853 const dva_t *dva = bp->blk_dva;
2854 int ndvas = BP_GET_NDVAS(bp);
2855 uint64_t psize = BP_GET_PSIZE(bp);
2856 int d;
2857 vdev_t *vd;
2858
2859 ASSERT(!BP_IS_HOLE(bp));
2860 ASSERT(!BP_IS_EMBEDDED(bp));
2861 ASSERT(psize > 0);
2862
2863 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
2864
2865 for (d = 0; d < ndvas; d++) {
2866 if ((vd = vdev_lookup_top(spa, DVA_GET_VDEV(&dva[d]))) == NULL)
2867 continue;
2868 atomic_add_64(&vd->vdev_pending_fastwrite, psize);
2869 }
2870
2871 spa_config_exit(spa, SCL_VDEV, FTAG);
2872 }
2873
2874 void
2875 metaslab_fastwrite_unmark(spa_t *spa, const blkptr_t *bp)
2876 {
2877 const dva_t *dva = bp->blk_dva;
2878 int ndvas = BP_GET_NDVAS(bp);
2879 uint64_t psize = BP_GET_PSIZE(bp);
2880 int d;
2881 vdev_t *vd;
2882
2883 ASSERT(!BP_IS_HOLE(bp));
2884 ASSERT(!BP_IS_EMBEDDED(bp));
2885 ASSERT(psize > 0);
2886
2887 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
2888
2889 for (d = 0; d < ndvas; d++) {
2890 if ((vd = vdev_lookup_top(spa, DVA_GET_VDEV(&dva[d]))) == NULL)
2891 continue;
2892 ASSERT3U(vd->vdev_pending_fastwrite, >=, psize);
2893 atomic_sub_64(&vd->vdev_pending_fastwrite, psize);
2894 }
2895
2896 spa_config_exit(spa, SCL_VDEV, FTAG);
2897 }
2898
2899 void
2900 metaslab_check_free(spa_t *spa, const blkptr_t *bp)
2901 {
2902 int i, j;
2903
2904 if ((zfs_flags & ZFS_DEBUG_ZIO_FREE) == 0)
2905 return;
2906
2907 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
2908 for (i = 0; i < BP_GET_NDVAS(bp); i++) {
2909 uint64_t vdev = DVA_GET_VDEV(&bp->blk_dva[i]);
2910 vdev_t *vd = vdev_lookup_top(spa, vdev);
2911 uint64_t offset = DVA_GET_OFFSET(&bp->blk_dva[i]);
2912 uint64_t size = DVA_GET_ASIZE(&bp->blk_dva[i]);
2913 metaslab_t *msp = vd->vdev_ms[offset >> vd->vdev_ms_shift];
2914
2915 if (msp->ms_loaded)
2916 range_tree_verify(msp->ms_tree, offset, size);
2917
2918 for (j = 0; j < TXG_SIZE; j++)
2919 range_tree_verify(msp->ms_freetree[j], offset, size);
2920 for (j = 0; j < TXG_DEFER_SIZE; j++)
2921 range_tree_verify(msp->ms_defertree[j], offset, size);
2922 }
2923 spa_config_exit(spa, SCL_VDEV, FTAG);
2924 }
2925
2926 #if defined(_KERNEL) && defined(HAVE_SPL)
2927 /* CSTYLED */
2928 module_param(metaslab_aliquot, ulong, 0644);
2929 MODULE_PARM_DESC(metaslab_aliquot,
2930 "allocation granularity (a.k.a. stripe size)");
2931
2932 module_param(metaslab_debug_load, int, 0644);
2933 MODULE_PARM_DESC(metaslab_debug_load,
2934 "load all metaslabs when pool is first opened");
2935
2936 module_param(metaslab_debug_unload, int, 0644);
2937 MODULE_PARM_DESC(metaslab_debug_unload,
2938 "prevent metaslabs from being unloaded");
2939
2940 module_param(metaslab_preload_enabled, int, 0644);
2941 MODULE_PARM_DESC(metaslab_preload_enabled,
2942 "preload potential metaslabs during reassessment");
2943
2944 module_param(zfs_mg_noalloc_threshold, int, 0644);
2945 MODULE_PARM_DESC(zfs_mg_noalloc_threshold,
2946 "percentage of free space for metaslab group to allow allocation");
2947
2948 module_param(zfs_mg_fragmentation_threshold, int, 0644);
2949 MODULE_PARM_DESC(zfs_mg_fragmentation_threshold,
2950 "fragmentation for metaslab group to allow allocation");
2951
2952 module_param(zfs_metaslab_fragmentation_threshold, int, 0644);
2953 MODULE_PARM_DESC(zfs_metaslab_fragmentation_threshold,
2954 "fragmentation for metaslab to allow allocation");
2955
2956 module_param(metaslab_fragmentation_factor_enabled, int, 0644);
2957 MODULE_PARM_DESC(metaslab_fragmentation_factor_enabled,
2958 "use the fragmentation metric to prefer less fragmented metaslabs");
2959
2960 module_param(metaslab_lba_weighting_enabled, int, 0644);
2961 MODULE_PARM_DESC(metaslab_lba_weighting_enabled,
2962 "prefer metaslabs with lower LBAs");
2963
2964 module_param(metaslab_bias_enabled, int, 0644);
2965 MODULE_PARM_DESC(metaslab_bias_enabled,
2966 "enable metaslab group biasing");
2967 #endif /* _KERNEL && HAVE_SPL */