]> git.proxmox.com Git - mirror_zfs.git/blob - module/zfs/metaslab.c
Illumos #3464
[mirror_zfs.git] / module / zfs / metaslab.c
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2012 by Delphix. All rights reserved.
24 */
25
26 #include <sys/zfs_context.h>
27 #include <sys/dmu.h>
28 #include <sys/dmu_tx.h>
29 #include <sys/space_map.h>
30 #include <sys/metaslab_impl.h>
31 #include <sys/vdev_impl.h>
32 #include <sys/zio.h>
33
34 #define WITH_DF_BLOCK_ALLOCATOR
35
36 /*
37 * Allow allocations to switch to gang blocks quickly. We do this to
38 * avoid having to load lots of space_maps in a given txg. There are,
39 * however, some cases where we want to avoid "fast" ganging and instead
40 * we want to do an exhaustive search of all metaslabs on this device.
41 * Currently we don't allow any gang, zil, or dump device related allocations
42 * to "fast" gang.
43 */
44 #define CAN_FASTGANG(flags) \
45 (!((flags) & (METASLAB_GANG_CHILD | METASLAB_GANG_HEADER | \
46 METASLAB_GANG_AVOID)))
47
48 uint64_t metaslab_aliquot = 512ULL << 10;
49 uint64_t metaslab_gang_bang = SPA_MAXBLOCKSIZE + 1; /* force gang blocks */
50
51 /*
52 * The in-core space map representation is more compact than its on-disk form.
53 * The zfs_condense_pct determines how much more compact the in-core
54 * space_map representation must be before we compact it on-disk.
55 * Values should be greater than or equal to 100.
56 */
57 int zfs_condense_pct = 200;
58
59 /*
60 * This value defines the number of allowed allocation failures per vdev.
61 * If a device reaches this threshold in a given txg then we consider skipping
62 * allocations on that device.
63 */
64 int zfs_mg_alloc_failures;
65
66 /*
67 * Metaslab debugging: when set, keeps all space maps in core to verify frees.
68 */
69 int metaslab_debug = 0;
70
71 /*
72 * Minimum size which forces the dynamic allocator to change
73 * it's allocation strategy. Once the space map cannot satisfy
74 * an allocation of this size then it switches to using more
75 * aggressive strategy (i.e search by size rather than offset).
76 */
77 uint64_t metaslab_df_alloc_threshold = SPA_MAXBLOCKSIZE;
78
79 /*
80 * The minimum free space, in percent, which must be available
81 * in a space map to continue allocations in a first-fit fashion.
82 * Once the space_map's free space drops below this level we dynamically
83 * switch to using best-fit allocations.
84 */
85 int metaslab_df_free_pct = 4;
86
87 /*
88 * A metaslab is considered "free" if it contains a contiguous
89 * segment which is greater than metaslab_min_alloc_size.
90 */
91 uint64_t metaslab_min_alloc_size = DMU_MAX_ACCESS;
92
93 /*
94 * Max number of space_maps to prefetch.
95 */
96 int metaslab_prefetch_limit = SPA_DVAS_PER_BP;
97
98 /*
99 * Percentage bonus multiplier for metaslabs that are in the bonus area.
100 */
101 int metaslab_smo_bonus_pct = 150;
102
103 /*
104 * ==========================================================================
105 * Metaslab classes
106 * ==========================================================================
107 */
108 metaslab_class_t *
109 metaslab_class_create(spa_t *spa, space_map_ops_t *ops)
110 {
111 metaslab_class_t *mc;
112
113 mc = kmem_zalloc(sizeof (metaslab_class_t), KM_PUSHPAGE);
114
115 mc->mc_spa = spa;
116 mc->mc_rotor = NULL;
117 mc->mc_ops = ops;
118 mutex_init(&mc->mc_fastwrite_lock, NULL, MUTEX_DEFAULT, NULL);
119
120 return (mc);
121 }
122
123 void
124 metaslab_class_destroy(metaslab_class_t *mc)
125 {
126 ASSERT(mc->mc_rotor == NULL);
127 ASSERT(mc->mc_alloc == 0);
128 ASSERT(mc->mc_deferred == 0);
129 ASSERT(mc->mc_space == 0);
130 ASSERT(mc->mc_dspace == 0);
131
132 mutex_destroy(&mc->mc_fastwrite_lock);
133 kmem_free(mc, sizeof (metaslab_class_t));
134 }
135
136 int
137 metaslab_class_validate(metaslab_class_t *mc)
138 {
139 metaslab_group_t *mg;
140 vdev_t *vd;
141
142 /*
143 * Must hold one of the spa_config locks.
144 */
145 ASSERT(spa_config_held(mc->mc_spa, SCL_ALL, RW_READER) ||
146 spa_config_held(mc->mc_spa, SCL_ALL, RW_WRITER));
147
148 if ((mg = mc->mc_rotor) == NULL)
149 return (0);
150
151 do {
152 vd = mg->mg_vd;
153 ASSERT(vd->vdev_mg != NULL);
154 ASSERT3P(vd->vdev_top, ==, vd);
155 ASSERT3P(mg->mg_class, ==, mc);
156 ASSERT3P(vd->vdev_ops, !=, &vdev_hole_ops);
157 } while ((mg = mg->mg_next) != mc->mc_rotor);
158
159 return (0);
160 }
161
162 void
163 metaslab_class_space_update(metaslab_class_t *mc, int64_t alloc_delta,
164 int64_t defer_delta, int64_t space_delta, int64_t dspace_delta)
165 {
166 atomic_add_64(&mc->mc_alloc, alloc_delta);
167 atomic_add_64(&mc->mc_deferred, defer_delta);
168 atomic_add_64(&mc->mc_space, space_delta);
169 atomic_add_64(&mc->mc_dspace, dspace_delta);
170 }
171
172 uint64_t
173 metaslab_class_get_alloc(metaslab_class_t *mc)
174 {
175 return (mc->mc_alloc);
176 }
177
178 uint64_t
179 metaslab_class_get_deferred(metaslab_class_t *mc)
180 {
181 return (mc->mc_deferred);
182 }
183
184 uint64_t
185 metaslab_class_get_space(metaslab_class_t *mc)
186 {
187 return (mc->mc_space);
188 }
189
190 uint64_t
191 metaslab_class_get_dspace(metaslab_class_t *mc)
192 {
193 return (spa_deflate(mc->mc_spa) ? mc->mc_dspace : mc->mc_space);
194 }
195
196 /*
197 * ==========================================================================
198 * Metaslab groups
199 * ==========================================================================
200 */
201 static int
202 metaslab_compare(const void *x1, const void *x2)
203 {
204 const metaslab_t *m1 = x1;
205 const metaslab_t *m2 = x2;
206
207 if (m1->ms_weight < m2->ms_weight)
208 return (1);
209 if (m1->ms_weight > m2->ms_weight)
210 return (-1);
211
212 /*
213 * If the weights are identical, use the offset to force uniqueness.
214 */
215 if (m1->ms_map->sm_start < m2->ms_map->sm_start)
216 return (-1);
217 if (m1->ms_map->sm_start > m2->ms_map->sm_start)
218 return (1);
219
220 ASSERT3P(m1, ==, m2);
221
222 return (0);
223 }
224
225 metaslab_group_t *
226 metaslab_group_create(metaslab_class_t *mc, vdev_t *vd)
227 {
228 metaslab_group_t *mg;
229
230 mg = kmem_zalloc(sizeof (metaslab_group_t), KM_PUSHPAGE);
231 mutex_init(&mg->mg_lock, NULL, MUTEX_DEFAULT, NULL);
232 avl_create(&mg->mg_metaslab_tree, metaslab_compare,
233 sizeof (metaslab_t), offsetof(struct metaslab, ms_group_node));
234 mg->mg_vd = vd;
235 mg->mg_class = mc;
236 mg->mg_activation_count = 0;
237
238 return (mg);
239 }
240
241 void
242 metaslab_group_destroy(metaslab_group_t *mg)
243 {
244 ASSERT(mg->mg_prev == NULL);
245 ASSERT(mg->mg_next == NULL);
246 /*
247 * We may have gone below zero with the activation count
248 * either because we never activated in the first place or
249 * because we're done, and possibly removing the vdev.
250 */
251 ASSERT(mg->mg_activation_count <= 0);
252
253 avl_destroy(&mg->mg_metaslab_tree);
254 mutex_destroy(&mg->mg_lock);
255 kmem_free(mg, sizeof (metaslab_group_t));
256 }
257
258 void
259 metaslab_group_activate(metaslab_group_t *mg)
260 {
261 metaslab_class_t *mc = mg->mg_class;
262 metaslab_group_t *mgprev, *mgnext;
263
264 ASSERT(spa_config_held(mc->mc_spa, SCL_ALLOC, RW_WRITER));
265
266 ASSERT(mc->mc_rotor != mg);
267 ASSERT(mg->mg_prev == NULL);
268 ASSERT(mg->mg_next == NULL);
269 ASSERT(mg->mg_activation_count <= 0);
270
271 if (++mg->mg_activation_count <= 0)
272 return;
273
274 mg->mg_aliquot = metaslab_aliquot * MAX(1, mg->mg_vd->vdev_children);
275
276 if ((mgprev = mc->mc_rotor) == NULL) {
277 mg->mg_prev = mg;
278 mg->mg_next = mg;
279 } else {
280 mgnext = mgprev->mg_next;
281 mg->mg_prev = mgprev;
282 mg->mg_next = mgnext;
283 mgprev->mg_next = mg;
284 mgnext->mg_prev = mg;
285 }
286 mc->mc_rotor = mg;
287 }
288
289 void
290 metaslab_group_passivate(metaslab_group_t *mg)
291 {
292 metaslab_class_t *mc = mg->mg_class;
293 metaslab_group_t *mgprev, *mgnext;
294
295 ASSERT(spa_config_held(mc->mc_spa, SCL_ALLOC, RW_WRITER));
296
297 if (--mg->mg_activation_count != 0) {
298 ASSERT(mc->mc_rotor != mg);
299 ASSERT(mg->mg_prev == NULL);
300 ASSERT(mg->mg_next == NULL);
301 ASSERT(mg->mg_activation_count < 0);
302 return;
303 }
304
305 mgprev = mg->mg_prev;
306 mgnext = mg->mg_next;
307
308 if (mg == mgnext) {
309 mc->mc_rotor = NULL;
310 } else {
311 mc->mc_rotor = mgnext;
312 mgprev->mg_next = mgnext;
313 mgnext->mg_prev = mgprev;
314 }
315
316 mg->mg_prev = NULL;
317 mg->mg_next = NULL;
318 }
319
320 static void
321 metaslab_group_add(metaslab_group_t *mg, metaslab_t *msp)
322 {
323 mutex_enter(&mg->mg_lock);
324 ASSERT(msp->ms_group == NULL);
325 msp->ms_group = mg;
326 msp->ms_weight = 0;
327 avl_add(&mg->mg_metaslab_tree, msp);
328 mutex_exit(&mg->mg_lock);
329 }
330
331 static void
332 metaslab_group_remove(metaslab_group_t *mg, metaslab_t *msp)
333 {
334 mutex_enter(&mg->mg_lock);
335 ASSERT(msp->ms_group == mg);
336 avl_remove(&mg->mg_metaslab_tree, msp);
337 msp->ms_group = NULL;
338 mutex_exit(&mg->mg_lock);
339 }
340
341 static void
342 metaslab_group_sort(metaslab_group_t *mg, metaslab_t *msp, uint64_t weight)
343 {
344 /*
345 * Although in principle the weight can be any value, in
346 * practice we do not use values in the range [1, 510].
347 */
348 ASSERT(weight >= SPA_MINBLOCKSIZE-1 || weight == 0);
349 ASSERT(MUTEX_HELD(&msp->ms_lock));
350
351 mutex_enter(&mg->mg_lock);
352 ASSERT(msp->ms_group == mg);
353 avl_remove(&mg->mg_metaslab_tree, msp);
354 msp->ms_weight = weight;
355 avl_add(&mg->mg_metaslab_tree, msp);
356 mutex_exit(&mg->mg_lock);
357 }
358
359 /*
360 * ==========================================================================
361 * Common allocator routines
362 * ==========================================================================
363 */
364 static int
365 metaslab_segsize_compare(const void *x1, const void *x2)
366 {
367 const space_seg_t *s1 = x1;
368 const space_seg_t *s2 = x2;
369 uint64_t ss_size1 = s1->ss_end - s1->ss_start;
370 uint64_t ss_size2 = s2->ss_end - s2->ss_start;
371
372 if (ss_size1 < ss_size2)
373 return (-1);
374 if (ss_size1 > ss_size2)
375 return (1);
376
377 if (s1->ss_start < s2->ss_start)
378 return (-1);
379 if (s1->ss_start > s2->ss_start)
380 return (1);
381
382 return (0);
383 }
384
385 #if defined(WITH_FF_BLOCK_ALLOCATOR) || \
386 defined(WITH_DF_BLOCK_ALLOCATOR) || \
387 defined(WITH_CDF_BLOCK_ALLOCATOR)
388 /*
389 * This is a helper function that can be used by the allocator to find
390 * a suitable block to allocate. This will search the specified AVL
391 * tree looking for a block that matches the specified criteria.
392 */
393 static uint64_t
394 metaslab_block_picker(avl_tree_t *t, uint64_t *cursor, uint64_t size,
395 uint64_t align)
396 {
397 space_seg_t *ss, ssearch;
398 avl_index_t where;
399
400 ssearch.ss_start = *cursor;
401 ssearch.ss_end = *cursor + size;
402
403 ss = avl_find(t, &ssearch, &where);
404 if (ss == NULL)
405 ss = avl_nearest(t, where, AVL_AFTER);
406
407 while (ss != NULL) {
408 uint64_t offset = P2ROUNDUP(ss->ss_start, align);
409
410 if (offset + size <= ss->ss_end) {
411 *cursor = offset + size;
412 return (offset);
413 }
414 ss = AVL_NEXT(t, ss);
415 }
416
417 /*
418 * If we know we've searched the whole map (*cursor == 0), give up.
419 * Otherwise, reset the cursor to the beginning and try again.
420 */
421 if (*cursor == 0)
422 return (-1ULL);
423
424 *cursor = 0;
425 return (metaslab_block_picker(t, cursor, size, align));
426 }
427 #endif /* WITH_FF/DF/CDF_BLOCK_ALLOCATOR */
428
429 static void
430 metaslab_pp_load(space_map_t *sm)
431 {
432 space_seg_t *ss;
433
434 ASSERT(sm->sm_ppd == NULL);
435 sm->sm_ppd = kmem_zalloc(64 * sizeof (uint64_t), KM_PUSHPAGE);
436
437 sm->sm_pp_root = kmem_alloc(sizeof (avl_tree_t), KM_PUSHPAGE);
438 avl_create(sm->sm_pp_root, metaslab_segsize_compare,
439 sizeof (space_seg_t), offsetof(struct space_seg, ss_pp_node));
440
441 for (ss = avl_first(&sm->sm_root); ss; ss = AVL_NEXT(&sm->sm_root, ss))
442 avl_add(sm->sm_pp_root, ss);
443 }
444
445 static void
446 metaslab_pp_unload(space_map_t *sm)
447 {
448 void *cookie = NULL;
449
450 kmem_free(sm->sm_ppd, 64 * sizeof (uint64_t));
451 sm->sm_ppd = NULL;
452
453 while (avl_destroy_nodes(sm->sm_pp_root, &cookie) != NULL) {
454 /* tear down the tree */
455 }
456
457 avl_destroy(sm->sm_pp_root);
458 kmem_free(sm->sm_pp_root, sizeof (avl_tree_t));
459 sm->sm_pp_root = NULL;
460 }
461
462 /* ARGSUSED */
463 static void
464 metaslab_pp_claim(space_map_t *sm, uint64_t start, uint64_t size)
465 {
466 /* No need to update cursor */
467 }
468
469 /* ARGSUSED */
470 static void
471 metaslab_pp_free(space_map_t *sm, uint64_t start, uint64_t size)
472 {
473 /* No need to update cursor */
474 }
475
476 /*
477 * Return the maximum contiguous segment within the metaslab.
478 */
479 uint64_t
480 metaslab_pp_maxsize(space_map_t *sm)
481 {
482 avl_tree_t *t = sm->sm_pp_root;
483 space_seg_t *ss;
484
485 if (t == NULL || (ss = avl_last(t)) == NULL)
486 return (0ULL);
487
488 return (ss->ss_end - ss->ss_start);
489 }
490
491 #if defined(WITH_FF_BLOCK_ALLOCATOR)
492 /*
493 * ==========================================================================
494 * The first-fit block allocator
495 * ==========================================================================
496 */
497 static uint64_t
498 metaslab_ff_alloc(space_map_t *sm, uint64_t size)
499 {
500 avl_tree_t *t = &sm->sm_root;
501 uint64_t align = size & -size;
502 uint64_t *cursor = (uint64_t *)sm->sm_ppd + highbit(align) - 1;
503
504 return (metaslab_block_picker(t, cursor, size, align));
505 }
506
507 /* ARGSUSED */
508 boolean_t
509 metaslab_ff_fragmented(space_map_t *sm)
510 {
511 return (B_TRUE);
512 }
513
514 static space_map_ops_t metaslab_ff_ops = {
515 metaslab_pp_load,
516 metaslab_pp_unload,
517 metaslab_ff_alloc,
518 metaslab_pp_claim,
519 metaslab_pp_free,
520 metaslab_pp_maxsize,
521 metaslab_ff_fragmented
522 };
523
524 space_map_ops_t *zfs_metaslab_ops = &metaslab_ff_ops;
525 #endif /* WITH_FF_BLOCK_ALLOCATOR */
526
527 #if defined(WITH_DF_BLOCK_ALLOCATOR)
528 /*
529 * ==========================================================================
530 * Dynamic block allocator -
531 * Uses the first fit allocation scheme until space get low and then
532 * adjusts to a best fit allocation method. Uses metaslab_df_alloc_threshold
533 * and metaslab_df_free_pct to determine when to switch the allocation scheme.
534 * ==========================================================================
535 */
536 static uint64_t
537 metaslab_df_alloc(space_map_t *sm, uint64_t size)
538 {
539 avl_tree_t *t = &sm->sm_root;
540 uint64_t align = size & -size;
541 uint64_t *cursor = (uint64_t *)sm->sm_ppd + highbit(align) - 1;
542 uint64_t max_size = metaslab_pp_maxsize(sm);
543 int free_pct = sm->sm_space * 100 / sm->sm_size;
544
545 ASSERT(MUTEX_HELD(sm->sm_lock));
546 ASSERT3U(avl_numnodes(&sm->sm_root), ==, avl_numnodes(sm->sm_pp_root));
547
548 if (max_size < size)
549 return (-1ULL);
550
551 /*
552 * If we're running low on space switch to using the size
553 * sorted AVL tree (best-fit).
554 */
555 if (max_size < metaslab_df_alloc_threshold ||
556 free_pct < metaslab_df_free_pct) {
557 t = sm->sm_pp_root;
558 *cursor = 0;
559 }
560
561 return (metaslab_block_picker(t, cursor, size, 1ULL));
562 }
563
564 static boolean_t
565 metaslab_df_fragmented(space_map_t *sm)
566 {
567 uint64_t max_size = metaslab_pp_maxsize(sm);
568 int free_pct = sm->sm_space * 100 / sm->sm_size;
569
570 if (max_size >= metaslab_df_alloc_threshold &&
571 free_pct >= metaslab_df_free_pct)
572 return (B_FALSE);
573
574 return (B_TRUE);
575 }
576
577 static space_map_ops_t metaslab_df_ops = {
578 metaslab_pp_load,
579 metaslab_pp_unload,
580 metaslab_df_alloc,
581 metaslab_pp_claim,
582 metaslab_pp_free,
583 metaslab_pp_maxsize,
584 metaslab_df_fragmented
585 };
586
587 space_map_ops_t *zfs_metaslab_ops = &metaslab_df_ops;
588 #endif /* WITH_DF_BLOCK_ALLOCATOR */
589
590 /*
591 * ==========================================================================
592 * Other experimental allocators
593 * ==========================================================================
594 */
595 #if defined(WITH_CDF_BLOCK_ALLOCATOR)
596 static uint64_t
597 metaslab_cdf_alloc(space_map_t *sm, uint64_t size)
598 {
599 avl_tree_t *t = &sm->sm_root;
600 uint64_t *cursor = (uint64_t *)sm->sm_ppd;
601 uint64_t *extent_end = (uint64_t *)sm->sm_ppd + 1;
602 uint64_t max_size = metaslab_pp_maxsize(sm);
603 uint64_t rsize = size;
604 uint64_t offset = 0;
605
606 ASSERT(MUTEX_HELD(sm->sm_lock));
607 ASSERT3U(avl_numnodes(&sm->sm_root), ==, avl_numnodes(sm->sm_pp_root));
608
609 if (max_size < size)
610 return (-1ULL);
611
612 ASSERT3U(*extent_end, >=, *cursor);
613
614 /*
615 * If we're running low on space switch to using the size
616 * sorted AVL tree (best-fit).
617 */
618 if ((*cursor + size) > *extent_end) {
619
620 t = sm->sm_pp_root;
621 *cursor = *extent_end = 0;
622
623 if (max_size > 2 * SPA_MAXBLOCKSIZE)
624 rsize = MIN(metaslab_min_alloc_size, max_size);
625 offset = metaslab_block_picker(t, extent_end, rsize, 1ULL);
626 if (offset != -1)
627 *cursor = offset + size;
628 } else {
629 offset = metaslab_block_picker(t, cursor, rsize, 1ULL);
630 }
631 ASSERT3U(*cursor, <=, *extent_end);
632 return (offset);
633 }
634
635 static boolean_t
636 metaslab_cdf_fragmented(space_map_t *sm)
637 {
638 uint64_t max_size = metaslab_pp_maxsize(sm);
639
640 if (max_size > (metaslab_min_alloc_size * 10))
641 return (B_FALSE);
642 return (B_TRUE);
643 }
644
645 static space_map_ops_t metaslab_cdf_ops = {
646 metaslab_pp_load,
647 metaslab_pp_unload,
648 metaslab_cdf_alloc,
649 metaslab_pp_claim,
650 metaslab_pp_free,
651 metaslab_pp_maxsize,
652 metaslab_cdf_fragmented
653 };
654
655 space_map_ops_t *zfs_metaslab_ops = &metaslab_cdf_ops;
656 #endif /* WITH_CDF_BLOCK_ALLOCATOR */
657
658 #if defined(WITH_NDF_BLOCK_ALLOCATOR)
659 uint64_t metaslab_ndf_clump_shift = 4;
660
661 static uint64_t
662 metaslab_ndf_alloc(space_map_t *sm, uint64_t size)
663 {
664 avl_tree_t *t = &sm->sm_root;
665 avl_index_t where;
666 space_seg_t *ss, ssearch;
667 uint64_t hbit = highbit(size);
668 uint64_t *cursor = (uint64_t *)sm->sm_ppd + hbit - 1;
669 uint64_t max_size = metaslab_pp_maxsize(sm);
670
671 ASSERT(MUTEX_HELD(sm->sm_lock));
672 ASSERT3U(avl_numnodes(&sm->sm_root), ==, avl_numnodes(sm->sm_pp_root));
673
674 if (max_size < size)
675 return (-1ULL);
676
677 ssearch.ss_start = *cursor;
678 ssearch.ss_end = *cursor + size;
679
680 ss = avl_find(t, &ssearch, &where);
681 if (ss == NULL || (ss->ss_start + size > ss->ss_end)) {
682 t = sm->sm_pp_root;
683
684 ssearch.ss_start = 0;
685 ssearch.ss_end = MIN(max_size,
686 1ULL << (hbit + metaslab_ndf_clump_shift));
687 ss = avl_find(t, &ssearch, &where);
688 if (ss == NULL)
689 ss = avl_nearest(t, where, AVL_AFTER);
690 ASSERT(ss != NULL);
691 }
692
693 if (ss != NULL) {
694 if (ss->ss_start + size <= ss->ss_end) {
695 *cursor = ss->ss_start + size;
696 return (ss->ss_start);
697 }
698 }
699 return (-1ULL);
700 }
701
702 static boolean_t
703 metaslab_ndf_fragmented(space_map_t *sm)
704 {
705 uint64_t max_size = metaslab_pp_maxsize(sm);
706
707 if (max_size > (metaslab_min_alloc_size << metaslab_ndf_clump_shift))
708 return (B_FALSE);
709 return (B_TRUE);
710 }
711
712
713 static space_map_ops_t metaslab_ndf_ops = {
714 metaslab_pp_load,
715 metaslab_pp_unload,
716 metaslab_ndf_alloc,
717 metaslab_pp_claim,
718 metaslab_pp_free,
719 metaslab_pp_maxsize,
720 metaslab_ndf_fragmented
721 };
722
723 space_map_ops_t *zfs_metaslab_ops = &metaslab_ndf_ops;
724 #endif /* WITH_NDF_BLOCK_ALLOCATOR */
725
726 /*
727 * ==========================================================================
728 * Metaslabs
729 * ==========================================================================
730 */
731 metaslab_t *
732 metaslab_init(metaslab_group_t *mg, space_map_obj_t *smo,
733 uint64_t start, uint64_t size, uint64_t txg)
734 {
735 vdev_t *vd = mg->mg_vd;
736 metaslab_t *msp;
737
738 msp = kmem_zalloc(sizeof (metaslab_t), KM_PUSHPAGE);
739 mutex_init(&msp->ms_lock, NULL, MUTEX_DEFAULT, NULL);
740
741 msp->ms_smo_syncing = *smo;
742
743 /*
744 * We create the main space map here, but we don't create the
745 * allocmaps and freemaps until metaslab_sync_done(). This serves
746 * two purposes: it allows metaslab_sync_done() to detect the
747 * addition of new space; and for debugging, it ensures that we'd
748 * data fault on any attempt to use this metaslab before it's ready.
749 */
750 msp->ms_map = kmem_zalloc(sizeof (space_map_t), KM_PUSHPAGE);
751 space_map_create(msp->ms_map, start, size,
752 vd->vdev_ashift, &msp->ms_lock);
753
754 metaslab_group_add(mg, msp);
755
756 if (metaslab_debug && smo->smo_object != 0) {
757 mutex_enter(&msp->ms_lock);
758 VERIFY(space_map_load(msp->ms_map, mg->mg_class->mc_ops,
759 SM_FREE, smo, spa_meta_objset(vd->vdev_spa)) == 0);
760 mutex_exit(&msp->ms_lock);
761 }
762
763 /*
764 * If we're opening an existing pool (txg == 0) or creating
765 * a new one (txg == TXG_INITIAL), all space is available now.
766 * If we're adding space to an existing pool, the new space
767 * does not become available until after this txg has synced.
768 */
769 if (txg <= TXG_INITIAL)
770 metaslab_sync_done(msp, 0);
771
772 if (txg != 0) {
773 vdev_dirty(vd, 0, NULL, txg);
774 vdev_dirty(vd, VDD_METASLAB, msp, txg);
775 }
776
777 return (msp);
778 }
779
780 void
781 metaslab_fini(metaslab_t *msp)
782 {
783 metaslab_group_t *mg = msp->ms_group;
784 int t;
785
786 vdev_space_update(mg->mg_vd,
787 -msp->ms_smo.smo_alloc, 0, -msp->ms_map->sm_size);
788
789 metaslab_group_remove(mg, msp);
790
791 mutex_enter(&msp->ms_lock);
792
793 space_map_unload(msp->ms_map);
794 space_map_destroy(msp->ms_map);
795 kmem_free(msp->ms_map, sizeof (*msp->ms_map));
796
797 for (t = 0; t < TXG_SIZE; t++) {
798 space_map_destroy(msp->ms_allocmap[t]);
799 space_map_destroy(msp->ms_freemap[t]);
800 kmem_free(msp->ms_allocmap[t], sizeof (*msp->ms_allocmap[t]));
801 kmem_free(msp->ms_freemap[t], sizeof (*msp->ms_freemap[t]));
802 }
803
804 for (t = 0; t < TXG_DEFER_SIZE; t++) {
805 space_map_destroy(msp->ms_defermap[t]);
806 kmem_free(msp->ms_defermap[t], sizeof (*msp->ms_defermap[t]));
807 }
808
809 ASSERT0(msp->ms_deferspace);
810
811 mutex_exit(&msp->ms_lock);
812 mutex_destroy(&msp->ms_lock);
813
814 kmem_free(msp, sizeof (metaslab_t));
815 }
816
817 #define METASLAB_WEIGHT_PRIMARY (1ULL << 63)
818 #define METASLAB_WEIGHT_SECONDARY (1ULL << 62)
819 #define METASLAB_ACTIVE_MASK \
820 (METASLAB_WEIGHT_PRIMARY | METASLAB_WEIGHT_SECONDARY)
821
822 static uint64_t
823 metaslab_weight(metaslab_t *msp)
824 {
825 metaslab_group_t *mg = msp->ms_group;
826 space_map_t *sm = msp->ms_map;
827 space_map_obj_t *smo = &msp->ms_smo;
828 vdev_t *vd = mg->mg_vd;
829 uint64_t weight, space;
830
831 ASSERT(MUTEX_HELD(&msp->ms_lock));
832
833 /*
834 * The baseline weight is the metaslab's free space.
835 */
836 space = sm->sm_size - smo->smo_alloc;
837 weight = space;
838
839 /*
840 * Modern disks have uniform bit density and constant angular velocity.
841 * Therefore, the outer recording zones are faster (higher bandwidth)
842 * than the inner zones by the ratio of outer to inner track diameter,
843 * which is typically around 2:1. We account for this by assigning
844 * higher weight to lower metaslabs (multiplier ranging from 2x to 1x).
845 * In effect, this means that we'll select the metaslab with the most
846 * free bandwidth rather than simply the one with the most free space.
847 */
848 weight = 2 * weight -
849 ((sm->sm_start >> vd->vdev_ms_shift) * weight) / vd->vdev_ms_count;
850 ASSERT(weight >= space && weight <= 2 * space);
851
852 /*
853 * For locality, assign higher weight to metaslabs which have
854 * a lower offset than what we've already activated.
855 */
856 if (sm->sm_start <= mg->mg_bonus_area)
857 weight *= (metaslab_smo_bonus_pct / 100);
858 ASSERT(weight >= space &&
859 weight <= 2 * (metaslab_smo_bonus_pct / 100) * space);
860
861 if (sm->sm_loaded && !sm->sm_ops->smop_fragmented(sm)) {
862 /*
863 * If this metaslab is one we're actively using, adjust its
864 * weight to make it preferable to any inactive metaslab so
865 * we'll polish it off.
866 */
867 weight |= (msp->ms_weight & METASLAB_ACTIVE_MASK);
868 }
869 return (weight);
870 }
871
872 static void
873 metaslab_prefetch(metaslab_group_t *mg)
874 {
875 spa_t *spa = mg->mg_vd->vdev_spa;
876 metaslab_t *msp;
877 avl_tree_t *t = &mg->mg_metaslab_tree;
878 int m;
879
880 mutex_enter(&mg->mg_lock);
881
882 /*
883 * Prefetch the next potential metaslabs
884 */
885 for (msp = avl_first(t), m = 0; msp; msp = AVL_NEXT(t, msp), m++) {
886 space_map_t *sm = msp->ms_map;
887 space_map_obj_t *smo = &msp->ms_smo;
888
889 /* If we have reached our prefetch limit then we're done */
890 if (m >= metaslab_prefetch_limit)
891 break;
892
893 if (!sm->sm_loaded && smo->smo_object != 0) {
894 mutex_exit(&mg->mg_lock);
895 dmu_prefetch(spa_meta_objset(spa), smo->smo_object,
896 0ULL, smo->smo_objsize);
897 mutex_enter(&mg->mg_lock);
898 }
899 }
900 mutex_exit(&mg->mg_lock);
901 }
902
903 static int
904 metaslab_activate(metaslab_t *msp, uint64_t activation_weight)
905 {
906 metaslab_group_t *mg = msp->ms_group;
907 space_map_t *sm = msp->ms_map;
908 space_map_ops_t *sm_ops = msp->ms_group->mg_class->mc_ops;
909 int t;
910
911 ASSERT(MUTEX_HELD(&msp->ms_lock));
912
913 if ((msp->ms_weight & METASLAB_ACTIVE_MASK) == 0) {
914 space_map_load_wait(sm);
915 if (!sm->sm_loaded) {
916 space_map_obj_t *smo = &msp->ms_smo;
917
918 int error = space_map_load(sm, sm_ops, SM_FREE, smo,
919 spa_meta_objset(msp->ms_group->mg_vd->vdev_spa));
920 if (error) {
921 metaslab_group_sort(msp->ms_group, msp, 0);
922 return (error);
923 }
924 for (t = 0; t < TXG_DEFER_SIZE; t++)
925 space_map_walk(msp->ms_defermap[t],
926 space_map_claim, sm);
927
928 }
929
930 /*
931 * Track the bonus area as we activate new metaslabs.
932 */
933 if (sm->sm_start > mg->mg_bonus_area) {
934 mutex_enter(&mg->mg_lock);
935 mg->mg_bonus_area = sm->sm_start;
936 mutex_exit(&mg->mg_lock);
937 }
938
939 metaslab_group_sort(msp->ms_group, msp,
940 msp->ms_weight | activation_weight);
941 }
942 ASSERT(sm->sm_loaded);
943 ASSERT(msp->ms_weight & METASLAB_ACTIVE_MASK);
944
945 return (0);
946 }
947
948 static void
949 metaslab_passivate(metaslab_t *msp, uint64_t size)
950 {
951 /*
952 * If size < SPA_MINBLOCKSIZE, then we will not allocate from
953 * this metaslab again. In that case, it had better be empty,
954 * or we would be leaving space on the table.
955 */
956 ASSERT(size >= SPA_MINBLOCKSIZE || msp->ms_map->sm_space == 0);
957 metaslab_group_sort(msp->ms_group, msp, MIN(msp->ms_weight, size));
958 ASSERT((msp->ms_weight & METASLAB_ACTIVE_MASK) == 0);
959 }
960
961 /*
962 * Determine if the in-core space map representation can be condensed on-disk.
963 * We would like to use the following criteria to make our decision:
964 *
965 * 1. The size of the space map object should not dramatically increase as a
966 * result of writing out our in-core free map.
967 *
968 * 2. The minimal on-disk space map representation is zfs_condense_pct/100
969 * times the size than the in-core representation (i.e. zfs_condense_pct = 110
970 * and in-core = 1MB, minimal = 1.1.MB).
971 *
972 * Checking the first condition is tricky since we don't want to walk
973 * the entire AVL tree calculating the estimated on-disk size. Instead we
974 * use the size-ordered AVL tree in the space map and calculate the
975 * size required for the largest segment in our in-core free map. If the
976 * size required to represent that segment on disk is larger than the space
977 * map object then we avoid condensing this map.
978 *
979 * To determine the second criterion we use a best-case estimate and assume
980 * each segment can be represented on-disk as a single 64-bit entry. We refer
981 * to this best-case estimate as the space map's minimal form.
982 */
983 static boolean_t
984 metaslab_should_condense(metaslab_t *msp)
985 {
986 space_map_t *sm = msp->ms_map;
987 space_map_obj_t *smo = &msp->ms_smo_syncing;
988 space_seg_t *ss;
989 uint64_t size, entries, segsz;
990
991 ASSERT(MUTEX_HELD(&msp->ms_lock));
992 ASSERT(sm->sm_loaded);
993
994 /*
995 * Use the sm_pp_root AVL tree, which is ordered by size, to obtain
996 * the largest segment in the in-core free map. If the tree is
997 * empty then we should condense the map.
998 */
999 ss = avl_last(sm->sm_pp_root);
1000 if (ss == NULL)
1001 return (B_TRUE);
1002
1003 /*
1004 * Calculate the number of 64-bit entries this segment would
1005 * require when written to disk. If this single segment would be
1006 * larger on-disk than the entire current on-disk structure, then
1007 * clearly condensing will increase the on-disk structure size.
1008 */
1009 size = (ss->ss_end - ss->ss_start) >> sm->sm_shift;
1010 entries = size / (MIN(size, SM_RUN_MAX));
1011 segsz = entries * sizeof (uint64_t);
1012
1013 return (segsz <= smo->smo_objsize &&
1014 smo->smo_objsize >= (zfs_condense_pct *
1015 sizeof (uint64_t) * avl_numnodes(&sm->sm_root)) / 100);
1016 }
1017
1018 /*
1019 * Condense the on-disk space map representation to its minimized form.
1020 * The minimized form consists of a small number of allocations followed by
1021 * the in-core free map.
1022 */
1023 static void
1024 metaslab_condense(metaslab_t *msp, uint64_t txg, dmu_tx_t *tx)
1025 {
1026 spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
1027 space_map_t *freemap = msp->ms_freemap[txg & TXG_MASK];
1028 space_map_t condense_map;
1029 space_map_t *sm = msp->ms_map;
1030 objset_t *mos = spa_meta_objset(spa);
1031 space_map_obj_t *smo = &msp->ms_smo_syncing;
1032 int t;
1033
1034 ASSERT(MUTEX_HELD(&msp->ms_lock));
1035 ASSERT3U(spa_sync_pass(spa), ==, 1);
1036 ASSERT(sm->sm_loaded);
1037
1038 spa_dbgmsg(spa, "condensing: txg %llu, msp[%llu] %p, "
1039 "smo size %llu, segments %lu", txg,
1040 (msp->ms_map->sm_start / msp->ms_map->sm_size), msp,
1041 smo->smo_objsize, avl_numnodes(&sm->sm_root));
1042
1043 /*
1044 * Create an map that is a 100% allocated map. We remove segments
1045 * that have been freed in this txg, any deferred frees that exist,
1046 * and any allocation in the future. Removing segments should be
1047 * a relatively inexpensive operation since we expect these maps to
1048 * a small number of nodes.
1049 */
1050 space_map_create(&condense_map, sm->sm_start, sm->sm_size,
1051 sm->sm_shift, sm->sm_lock);
1052 space_map_add(&condense_map, condense_map.sm_start,
1053 condense_map.sm_size);
1054
1055 /*
1056 * Remove what's been freed in this txg from the condense_map.
1057 * Since we're in sync_pass 1, we know that all the frees from
1058 * this txg are in the freemap.
1059 */
1060 space_map_walk(freemap, space_map_remove, &condense_map);
1061
1062 for (t = 0; t < TXG_DEFER_SIZE; t++)
1063 space_map_walk(msp->ms_defermap[t],
1064 space_map_remove, &condense_map);
1065
1066 for (t = 1; t < TXG_CONCURRENT_STATES; t++)
1067 space_map_walk(msp->ms_allocmap[(txg + t) & TXG_MASK],
1068 space_map_remove, &condense_map);
1069
1070 /*
1071 * We're about to drop the metaslab's lock thus allowing
1072 * other consumers to change it's content. Set the
1073 * space_map's sm_condensing flag to ensure that
1074 * allocations on this metaslab do not occur while we're
1075 * in the middle of committing it to disk. This is only critical
1076 * for the ms_map as all other space_maps use per txg
1077 * views of their content.
1078 */
1079 sm->sm_condensing = B_TRUE;
1080
1081 mutex_exit(&msp->ms_lock);
1082 space_map_truncate(smo, mos, tx);
1083 mutex_enter(&msp->ms_lock);
1084
1085 /*
1086 * While we would ideally like to create a space_map representation
1087 * that consists only of allocation records, doing so can be
1088 * prohibitively expensive because the in-core free map can be
1089 * large, and therefore computationally expensive to subtract
1090 * from the condense_map. Instead we sync out two maps, a cheap
1091 * allocation only map followed by the in-core free map. While not
1092 * optimal, this is typically close to optimal, and much cheaper to
1093 * compute.
1094 */
1095 space_map_sync(&condense_map, SM_ALLOC, smo, mos, tx);
1096 space_map_vacate(&condense_map, NULL, NULL);
1097 space_map_destroy(&condense_map);
1098
1099 space_map_sync(sm, SM_FREE, smo, mos, tx);
1100 sm->sm_condensing = B_FALSE;
1101
1102 spa_dbgmsg(spa, "condensed: txg %llu, msp[%llu] %p, "
1103 "smo size %llu", txg,
1104 (msp->ms_map->sm_start / msp->ms_map->sm_size), msp,
1105 smo->smo_objsize);
1106 }
1107
1108 /*
1109 * Write a metaslab to disk in the context of the specified transaction group.
1110 */
1111 void
1112 metaslab_sync(metaslab_t *msp, uint64_t txg)
1113 {
1114 vdev_t *vd = msp->ms_group->mg_vd;
1115 spa_t *spa = vd->vdev_spa;
1116 objset_t *mos = spa_meta_objset(spa);
1117 space_map_t *allocmap = msp->ms_allocmap[txg & TXG_MASK];
1118 space_map_t **freemap = &msp->ms_freemap[txg & TXG_MASK];
1119 space_map_t **freed_map = &msp->ms_freemap[TXG_CLEAN(txg) & TXG_MASK];
1120 space_map_t *sm = msp->ms_map;
1121 space_map_obj_t *smo = &msp->ms_smo_syncing;
1122 dmu_buf_t *db;
1123 dmu_tx_t *tx;
1124
1125 ASSERT(!vd->vdev_ishole);
1126
1127 /*
1128 * This metaslab has just been added so there's no work to do now.
1129 */
1130 if (*freemap == NULL) {
1131 ASSERT3P(allocmap, ==, NULL);
1132 return;
1133 }
1134
1135 ASSERT3P(allocmap, !=, NULL);
1136 ASSERT3P(*freemap, !=, NULL);
1137 ASSERT3P(*freed_map, !=, NULL);
1138
1139 if (allocmap->sm_space == 0 && (*freemap)->sm_space == 0)
1140 return;
1141
1142 /*
1143 * The only state that can actually be changing concurrently with
1144 * metaslab_sync() is the metaslab's ms_map. No other thread can
1145 * be modifying this txg's allocmap, freemap, freed_map, or smo.
1146 * Therefore, we only hold ms_lock to satify space_map ASSERTs.
1147 * We drop it whenever we call into the DMU, because the DMU
1148 * can call down to us (e.g. via zio_free()) at any time.
1149 */
1150
1151 tx = dmu_tx_create_assigned(spa_get_dsl(spa), txg);
1152
1153 if (smo->smo_object == 0) {
1154 ASSERT(smo->smo_objsize == 0);
1155 ASSERT(smo->smo_alloc == 0);
1156 smo->smo_object = dmu_object_alloc(mos,
1157 DMU_OT_SPACE_MAP, 1 << SPACE_MAP_BLOCKSHIFT,
1158 DMU_OT_SPACE_MAP_HEADER, sizeof (*smo), tx);
1159 ASSERT(smo->smo_object != 0);
1160 dmu_write(mos, vd->vdev_ms_array, sizeof (uint64_t) *
1161 (sm->sm_start >> vd->vdev_ms_shift),
1162 sizeof (uint64_t), &smo->smo_object, tx);
1163 }
1164
1165 mutex_enter(&msp->ms_lock);
1166
1167 if (sm->sm_loaded && spa_sync_pass(spa) == 1 &&
1168 metaslab_should_condense(msp)) {
1169 metaslab_condense(msp, txg, tx);
1170 } else {
1171 space_map_sync(allocmap, SM_ALLOC, smo, mos, tx);
1172 space_map_sync(*freemap, SM_FREE, smo, mos, tx);
1173 }
1174
1175 space_map_vacate(allocmap, NULL, NULL);
1176
1177 /*
1178 * For sync pass 1, we avoid walking the entire space map and
1179 * instead will just swap the pointers for freemap and
1180 * freed_map. We can safely do this since the freed_map is
1181 * guaranteed to be empty on the initial pass.
1182 */
1183 if (spa_sync_pass(spa) == 1) {
1184 ASSERT0((*freed_map)->sm_space);
1185 ASSERT0(avl_numnodes(&(*freed_map)->sm_root));
1186 space_map_swap(freemap, freed_map);
1187 } else {
1188 space_map_vacate(*freemap, space_map_add, *freed_map);
1189 }
1190
1191 ASSERT0(msp->ms_allocmap[txg & TXG_MASK]->sm_space);
1192 ASSERT0(msp->ms_freemap[txg & TXG_MASK]->sm_space);
1193
1194 mutex_exit(&msp->ms_lock);
1195
1196 VERIFY0(dmu_bonus_hold(mos, smo->smo_object, FTAG, &db));
1197 dmu_buf_will_dirty(db, tx);
1198 ASSERT3U(db->db_size, >=, sizeof (*smo));
1199 bcopy(smo, db->db_data, sizeof (*smo));
1200 dmu_buf_rele(db, FTAG);
1201
1202 dmu_tx_commit(tx);
1203 }
1204
1205 /*
1206 * Called after a transaction group has completely synced to mark
1207 * all of the metaslab's free space as usable.
1208 */
1209 void
1210 metaslab_sync_done(metaslab_t *msp, uint64_t txg)
1211 {
1212 space_map_obj_t *smo = &msp->ms_smo;
1213 space_map_obj_t *smosync = &msp->ms_smo_syncing;
1214 space_map_t *sm = msp->ms_map;
1215 space_map_t *freed_map = msp->ms_freemap[TXG_CLEAN(txg) & TXG_MASK];
1216 space_map_t *defer_map = msp->ms_defermap[txg % TXG_DEFER_SIZE];
1217 metaslab_group_t *mg = msp->ms_group;
1218 vdev_t *vd = mg->mg_vd;
1219 int64_t alloc_delta, defer_delta;
1220 int t;
1221
1222 ASSERT(!vd->vdev_ishole);
1223
1224 mutex_enter(&msp->ms_lock);
1225
1226 /*
1227 * If this metaslab is just becoming available, initialize its
1228 * allocmaps, freemaps, and defermap and add its capacity to the vdev.
1229 */
1230 if (freed_map == NULL) {
1231 ASSERT(defer_map == NULL);
1232 for (t = 0; t < TXG_SIZE; t++) {
1233 msp->ms_allocmap[t] = kmem_zalloc(sizeof (space_map_t),
1234 KM_PUSHPAGE);
1235 space_map_create(msp->ms_allocmap[t], sm->sm_start,
1236 sm->sm_size, sm->sm_shift, sm->sm_lock);
1237 msp->ms_freemap[t] = kmem_zalloc(sizeof (space_map_t),
1238 KM_PUSHPAGE);
1239 space_map_create(msp->ms_freemap[t], sm->sm_start,
1240 sm->sm_size, sm->sm_shift, sm->sm_lock);
1241 }
1242
1243 for (t = 0; t < TXG_DEFER_SIZE; t++) {
1244 msp->ms_defermap[t] = kmem_zalloc(sizeof (space_map_t),
1245 KM_PUSHPAGE);
1246 space_map_create(msp->ms_defermap[t], sm->sm_start,
1247 sm->sm_size, sm->sm_shift, sm->sm_lock);
1248 }
1249
1250 freed_map = msp->ms_freemap[TXG_CLEAN(txg) & TXG_MASK];
1251 defer_map = msp->ms_defermap[txg % TXG_DEFER_SIZE];
1252
1253 vdev_space_update(vd, 0, 0, sm->sm_size);
1254 }
1255
1256 alloc_delta = smosync->smo_alloc - smo->smo_alloc;
1257 defer_delta = freed_map->sm_space - defer_map->sm_space;
1258
1259 vdev_space_update(vd, alloc_delta + defer_delta, defer_delta, 0);
1260
1261 ASSERT(msp->ms_allocmap[txg & TXG_MASK]->sm_space == 0);
1262 ASSERT(msp->ms_freemap[txg & TXG_MASK]->sm_space == 0);
1263
1264 /*
1265 * If there's a space_map_load() in progress, wait for it to complete
1266 * so that we have a consistent view of the in-core space map.
1267 * Then, add defer_map (oldest deferred frees) to this map and
1268 * transfer freed_map (this txg's frees) to defer_map.
1269 */
1270 space_map_load_wait(sm);
1271 space_map_vacate(defer_map, sm->sm_loaded ? space_map_free : NULL, sm);
1272 space_map_vacate(freed_map, space_map_add, defer_map);
1273
1274 *smo = *smosync;
1275
1276 msp->ms_deferspace += defer_delta;
1277 ASSERT3S(msp->ms_deferspace, >=, 0);
1278 ASSERT3S(msp->ms_deferspace, <=, sm->sm_size);
1279 if (msp->ms_deferspace != 0) {
1280 /*
1281 * Keep syncing this metaslab until all deferred frees
1282 * are back in circulation.
1283 */
1284 vdev_dirty(vd, VDD_METASLAB, msp, txg + 1);
1285 }
1286
1287 /*
1288 * If the map is loaded but no longer active, evict it as soon as all
1289 * future allocations have synced. (If we unloaded it now and then
1290 * loaded a moment later, the map wouldn't reflect those allocations.)
1291 */
1292 if (sm->sm_loaded && (msp->ms_weight & METASLAB_ACTIVE_MASK) == 0) {
1293 int evictable = 1;
1294
1295 for (t = 1; t < TXG_CONCURRENT_STATES; t++)
1296 if (msp->ms_allocmap[(txg + t) & TXG_MASK]->sm_space)
1297 evictable = 0;
1298
1299 if (evictable && !metaslab_debug)
1300 space_map_unload(sm);
1301 }
1302
1303 metaslab_group_sort(mg, msp, metaslab_weight(msp));
1304
1305 mutex_exit(&msp->ms_lock);
1306 }
1307
1308 void
1309 metaslab_sync_reassess(metaslab_group_t *mg)
1310 {
1311 vdev_t *vd = mg->mg_vd;
1312 int64_t failures = mg->mg_alloc_failures;
1313 int m;
1314
1315 /*
1316 * Re-evaluate all metaslabs which have lower offsets than the
1317 * bonus area.
1318 */
1319 for (m = 0; m < vd->vdev_ms_count; m++) {
1320 metaslab_t *msp = vd->vdev_ms[m];
1321
1322 if (msp->ms_map->sm_start > mg->mg_bonus_area)
1323 break;
1324
1325 mutex_enter(&msp->ms_lock);
1326 metaslab_group_sort(mg, msp, metaslab_weight(msp));
1327 mutex_exit(&msp->ms_lock);
1328 }
1329
1330 atomic_add_64(&mg->mg_alloc_failures, -failures);
1331
1332 /*
1333 * Prefetch the next potential metaslabs
1334 */
1335 metaslab_prefetch(mg);
1336 }
1337
1338 static uint64_t
1339 metaslab_distance(metaslab_t *msp, dva_t *dva)
1340 {
1341 uint64_t ms_shift = msp->ms_group->mg_vd->vdev_ms_shift;
1342 uint64_t offset = DVA_GET_OFFSET(dva) >> ms_shift;
1343 uint64_t start = msp->ms_map->sm_start >> ms_shift;
1344
1345 if (msp->ms_group->mg_vd->vdev_id != DVA_GET_VDEV(dva))
1346 return (1ULL << 63);
1347
1348 if (offset < start)
1349 return ((start - offset) << ms_shift);
1350 if (offset > start)
1351 return ((offset - start) << ms_shift);
1352 return (0);
1353 }
1354
1355 static uint64_t
1356 metaslab_group_alloc(metaslab_group_t *mg, uint64_t psize, uint64_t asize,
1357 uint64_t txg, uint64_t min_distance, dva_t *dva, int d, int flags)
1358 {
1359 spa_t *spa = mg->mg_vd->vdev_spa;
1360 metaslab_t *msp = NULL;
1361 uint64_t offset = -1ULL;
1362 avl_tree_t *t = &mg->mg_metaslab_tree;
1363 uint64_t activation_weight;
1364 uint64_t target_distance;
1365 int i;
1366
1367 activation_weight = METASLAB_WEIGHT_PRIMARY;
1368 for (i = 0; i < d; i++) {
1369 if (DVA_GET_VDEV(&dva[i]) == mg->mg_vd->vdev_id) {
1370 activation_weight = METASLAB_WEIGHT_SECONDARY;
1371 break;
1372 }
1373 }
1374
1375 for (;;) {
1376 boolean_t was_active;
1377
1378 mutex_enter(&mg->mg_lock);
1379 for (msp = avl_first(t); msp; msp = AVL_NEXT(t, msp)) {
1380 if (msp->ms_weight < asize) {
1381 spa_dbgmsg(spa, "%s: failed to meet weight "
1382 "requirement: vdev %llu, txg %llu, mg %p, "
1383 "msp %p, psize %llu, asize %llu, "
1384 "failures %llu, weight %llu",
1385 spa_name(spa), mg->mg_vd->vdev_id, txg,
1386 mg, msp, psize, asize,
1387 mg->mg_alloc_failures, msp->ms_weight);
1388 mutex_exit(&mg->mg_lock);
1389 return (-1ULL);
1390 }
1391 was_active = msp->ms_weight & METASLAB_ACTIVE_MASK;
1392 if (activation_weight == METASLAB_WEIGHT_PRIMARY)
1393 break;
1394
1395 target_distance = min_distance +
1396 (msp->ms_smo.smo_alloc ? 0 : min_distance >> 1);
1397
1398 for (i = 0; i < d; i++)
1399 if (metaslab_distance(msp, &dva[i]) <
1400 target_distance)
1401 break;
1402 if (i == d)
1403 break;
1404 }
1405 mutex_exit(&mg->mg_lock);
1406 if (msp == NULL)
1407 return (-1ULL);
1408
1409 /*
1410 * If we've already reached the allowable number of failed
1411 * allocation attempts on this metaslab group then we
1412 * consider skipping it. We skip it only if we're allowed
1413 * to "fast" gang, the physical size is larger than
1414 * a gang block, and we're attempting to allocate from
1415 * the primary metaslab.
1416 */
1417 if (mg->mg_alloc_failures > zfs_mg_alloc_failures &&
1418 CAN_FASTGANG(flags) && psize > SPA_GANGBLOCKSIZE &&
1419 activation_weight == METASLAB_WEIGHT_PRIMARY) {
1420 spa_dbgmsg(spa, "%s: skipping metaslab group: "
1421 "vdev %llu, txg %llu, mg %p, psize %llu, "
1422 "asize %llu, failures %llu", spa_name(spa),
1423 mg->mg_vd->vdev_id, txg, mg, psize, asize,
1424 mg->mg_alloc_failures);
1425 return (-1ULL);
1426 }
1427
1428 mutex_enter(&msp->ms_lock);
1429
1430 /*
1431 * If this metaslab is currently condensing then pick again as
1432 * we can't manipulate this metaslab until it's committed
1433 * to disk.
1434 */
1435 if (msp->ms_map->sm_condensing) {
1436 mutex_exit(&msp->ms_lock);
1437 continue;
1438 }
1439
1440 /*
1441 * Ensure that the metaslab we have selected is still
1442 * capable of handling our request. It's possible that
1443 * another thread may have changed the weight while we
1444 * were blocked on the metaslab lock.
1445 */
1446 if (msp->ms_weight < asize || (was_active &&
1447 !(msp->ms_weight & METASLAB_ACTIVE_MASK) &&
1448 activation_weight == METASLAB_WEIGHT_PRIMARY)) {
1449 mutex_exit(&msp->ms_lock);
1450 continue;
1451 }
1452
1453 if ((msp->ms_weight & METASLAB_WEIGHT_SECONDARY) &&
1454 activation_weight == METASLAB_WEIGHT_PRIMARY) {
1455 metaslab_passivate(msp,
1456 msp->ms_weight & ~METASLAB_ACTIVE_MASK);
1457 mutex_exit(&msp->ms_lock);
1458 continue;
1459 }
1460
1461 if (metaslab_activate(msp, activation_weight) != 0) {
1462 mutex_exit(&msp->ms_lock);
1463 continue;
1464 }
1465
1466 if ((offset = space_map_alloc(msp->ms_map, asize)) != -1ULL)
1467 break;
1468
1469 atomic_inc_64(&mg->mg_alloc_failures);
1470
1471 metaslab_passivate(msp, space_map_maxsize(msp->ms_map));
1472
1473 mutex_exit(&msp->ms_lock);
1474 }
1475
1476 if (msp->ms_allocmap[txg & TXG_MASK]->sm_space == 0)
1477 vdev_dirty(mg->mg_vd, VDD_METASLAB, msp, txg);
1478
1479 space_map_add(msp->ms_allocmap[txg & TXG_MASK], offset, asize);
1480
1481 mutex_exit(&msp->ms_lock);
1482
1483 return (offset);
1484 }
1485
1486 /*
1487 * Allocate a block for the specified i/o.
1488 */
1489 static int
1490 metaslab_alloc_dva(spa_t *spa, metaslab_class_t *mc, uint64_t psize,
1491 dva_t *dva, int d, dva_t *hintdva, uint64_t txg, int flags)
1492 {
1493 metaslab_group_t *mg, *fast_mg, *rotor;
1494 vdev_t *vd;
1495 int dshift = 3;
1496 int all_zero;
1497 int zio_lock = B_FALSE;
1498 boolean_t allocatable;
1499 uint64_t offset = -1ULL;
1500 uint64_t asize;
1501 uint64_t distance;
1502
1503 ASSERT(!DVA_IS_VALID(&dva[d]));
1504
1505 /*
1506 * For testing, make some blocks above a certain size be gang blocks.
1507 */
1508 if (psize >= metaslab_gang_bang && (ddi_get_lbolt() & 3) == 0)
1509 return (ENOSPC);
1510
1511 if (flags & METASLAB_FASTWRITE)
1512 mutex_enter(&mc->mc_fastwrite_lock);
1513
1514 /*
1515 * Start at the rotor and loop through all mgs until we find something.
1516 * Note that there's no locking on mc_rotor or mc_aliquot because
1517 * nothing actually breaks if we miss a few updates -- we just won't
1518 * allocate quite as evenly. It all balances out over time.
1519 *
1520 * If we are doing ditto or log blocks, try to spread them across
1521 * consecutive vdevs. If we're forced to reuse a vdev before we've
1522 * allocated all of our ditto blocks, then try and spread them out on
1523 * that vdev as much as possible. If it turns out to not be possible,
1524 * gradually lower our standards until anything becomes acceptable.
1525 * Also, allocating on consecutive vdevs (as opposed to random vdevs)
1526 * gives us hope of containing our fault domains to something we're
1527 * able to reason about. Otherwise, any two top-level vdev failures
1528 * will guarantee the loss of data. With consecutive allocation,
1529 * only two adjacent top-level vdev failures will result in data loss.
1530 *
1531 * If we are doing gang blocks (hintdva is non-NULL), try to keep
1532 * ourselves on the same vdev as our gang block header. That
1533 * way, we can hope for locality in vdev_cache, plus it makes our
1534 * fault domains something tractable.
1535 */
1536 if (hintdva) {
1537 vd = vdev_lookup_top(spa, DVA_GET_VDEV(&hintdva[d]));
1538
1539 /*
1540 * It's possible the vdev we're using as the hint no
1541 * longer exists (i.e. removed). Consult the rotor when
1542 * all else fails.
1543 */
1544 if (vd != NULL) {
1545 mg = vd->vdev_mg;
1546
1547 if (flags & METASLAB_HINTBP_AVOID &&
1548 mg->mg_next != NULL)
1549 mg = mg->mg_next;
1550 } else {
1551 mg = mc->mc_rotor;
1552 }
1553 } else if (d != 0) {
1554 vd = vdev_lookup_top(spa, DVA_GET_VDEV(&dva[d - 1]));
1555 mg = vd->vdev_mg->mg_next;
1556 } else if (flags & METASLAB_FASTWRITE) {
1557 mg = fast_mg = mc->mc_rotor;
1558
1559 do {
1560 if (fast_mg->mg_vd->vdev_pending_fastwrite <
1561 mg->mg_vd->vdev_pending_fastwrite)
1562 mg = fast_mg;
1563 } while ((fast_mg = fast_mg->mg_next) != mc->mc_rotor);
1564
1565 } else {
1566 mg = mc->mc_rotor;
1567 }
1568
1569 /*
1570 * If the hint put us into the wrong metaslab class, or into a
1571 * metaslab group that has been passivated, just follow the rotor.
1572 */
1573 if (mg->mg_class != mc || mg->mg_activation_count <= 0)
1574 mg = mc->mc_rotor;
1575
1576 rotor = mg;
1577 top:
1578 all_zero = B_TRUE;
1579 do {
1580 ASSERT(mg->mg_activation_count == 1);
1581
1582 vd = mg->mg_vd;
1583
1584 /*
1585 * Don't allocate from faulted devices.
1586 */
1587 if (zio_lock) {
1588 spa_config_enter(spa, SCL_ZIO, FTAG, RW_READER);
1589 allocatable = vdev_allocatable(vd);
1590 spa_config_exit(spa, SCL_ZIO, FTAG);
1591 } else {
1592 allocatable = vdev_allocatable(vd);
1593 }
1594 if (!allocatable)
1595 goto next;
1596
1597 /*
1598 * Avoid writing single-copy data to a failing vdev
1599 */
1600 if ((vd->vdev_stat.vs_write_errors > 0 ||
1601 vd->vdev_state < VDEV_STATE_HEALTHY) &&
1602 d == 0 && dshift == 3) {
1603 all_zero = B_FALSE;
1604 goto next;
1605 }
1606
1607 ASSERT(mg->mg_class == mc);
1608
1609 distance = vd->vdev_asize >> dshift;
1610 if (distance <= (1ULL << vd->vdev_ms_shift))
1611 distance = 0;
1612 else
1613 all_zero = B_FALSE;
1614
1615 asize = vdev_psize_to_asize(vd, psize);
1616 ASSERT(P2PHASE(asize, 1ULL << vd->vdev_ashift) == 0);
1617
1618 offset = metaslab_group_alloc(mg, psize, asize, txg, distance,
1619 dva, d, flags);
1620 if (offset != -1ULL) {
1621 /*
1622 * If we've just selected this metaslab group,
1623 * figure out whether the corresponding vdev is
1624 * over- or under-used relative to the pool,
1625 * and set an allocation bias to even it out.
1626 */
1627 if (mc->mc_aliquot == 0) {
1628 vdev_stat_t *vs = &vd->vdev_stat;
1629 int64_t vu, cu;
1630
1631 vu = (vs->vs_alloc * 100) / (vs->vs_space + 1);
1632 cu = (mc->mc_alloc * 100) / (mc->mc_space + 1);
1633
1634 /*
1635 * Calculate how much more or less we should
1636 * try to allocate from this device during
1637 * this iteration around the rotor.
1638 * For example, if a device is 80% full
1639 * and the pool is 20% full then we should
1640 * reduce allocations by 60% on this device.
1641 *
1642 * mg_bias = (20 - 80) * 512K / 100 = -307K
1643 *
1644 * This reduces allocations by 307K for this
1645 * iteration.
1646 */
1647 mg->mg_bias = ((cu - vu) *
1648 (int64_t)mg->mg_aliquot) / 100;
1649 }
1650
1651 if ((flags & METASLAB_FASTWRITE) ||
1652 atomic_add_64_nv(&mc->mc_aliquot, asize) >=
1653 mg->mg_aliquot + mg->mg_bias) {
1654 mc->mc_rotor = mg->mg_next;
1655 mc->mc_aliquot = 0;
1656 }
1657
1658 DVA_SET_VDEV(&dva[d], vd->vdev_id);
1659 DVA_SET_OFFSET(&dva[d], offset);
1660 DVA_SET_GANG(&dva[d], !!(flags & METASLAB_GANG_HEADER));
1661 DVA_SET_ASIZE(&dva[d], asize);
1662
1663 if (flags & METASLAB_FASTWRITE) {
1664 atomic_add_64(&vd->vdev_pending_fastwrite,
1665 psize);
1666 mutex_exit(&mc->mc_fastwrite_lock);
1667 }
1668
1669 return (0);
1670 }
1671 next:
1672 mc->mc_rotor = mg->mg_next;
1673 mc->mc_aliquot = 0;
1674 } while ((mg = mg->mg_next) != rotor);
1675
1676 if (!all_zero) {
1677 dshift++;
1678 ASSERT(dshift < 64);
1679 goto top;
1680 }
1681
1682 if (!allocatable && !zio_lock) {
1683 dshift = 3;
1684 zio_lock = B_TRUE;
1685 goto top;
1686 }
1687
1688 bzero(&dva[d], sizeof (dva_t));
1689
1690 if (flags & METASLAB_FASTWRITE)
1691 mutex_exit(&mc->mc_fastwrite_lock);
1692 return (ENOSPC);
1693 }
1694
1695 /*
1696 * Free the block represented by DVA in the context of the specified
1697 * transaction group.
1698 */
1699 static void
1700 metaslab_free_dva(spa_t *spa, const dva_t *dva, uint64_t txg, boolean_t now)
1701 {
1702 uint64_t vdev = DVA_GET_VDEV(dva);
1703 uint64_t offset = DVA_GET_OFFSET(dva);
1704 uint64_t size = DVA_GET_ASIZE(dva);
1705 vdev_t *vd;
1706 metaslab_t *msp;
1707
1708 ASSERT(DVA_IS_VALID(dva));
1709
1710 if (txg > spa_freeze_txg(spa))
1711 return;
1712
1713 if ((vd = vdev_lookup_top(spa, vdev)) == NULL ||
1714 (offset >> vd->vdev_ms_shift) >= vd->vdev_ms_count) {
1715 cmn_err(CE_WARN, "metaslab_free_dva(): bad DVA %llu:%llu",
1716 (u_longlong_t)vdev, (u_longlong_t)offset);
1717 ASSERT(0);
1718 return;
1719 }
1720
1721 msp = vd->vdev_ms[offset >> vd->vdev_ms_shift];
1722
1723 if (DVA_GET_GANG(dva))
1724 size = vdev_psize_to_asize(vd, SPA_GANGBLOCKSIZE);
1725
1726 mutex_enter(&msp->ms_lock);
1727
1728 if (now) {
1729 space_map_remove(msp->ms_allocmap[txg & TXG_MASK],
1730 offset, size);
1731 space_map_free(msp->ms_map, offset, size);
1732 } else {
1733 if (msp->ms_freemap[txg & TXG_MASK]->sm_space == 0)
1734 vdev_dirty(vd, VDD_METASLAB, msp, txg);
1735 space_map_add(msp->ms_freemap[txg & TXG_MASK], offset, size);
1736 }
1737
1738 mutex_exit(&msp->ms_lock);
1739 }
1740
1741 /*
1742 * Intent log support: upon opening the pool after a crash, notify the SPA
1743 * of blocks that the intent log has allocated for immediate write, but
1744 * which are still considered free by the SPA because the last transaction
1745 * group didn't commit yet.
1746 */
1747 static int
1748 metaslab_claim_dva(spa_t *spa, const dva_t *dva, uint64_t txg)
1749 {
1750 uint64_t vdev = DVA_GET_VDEV(dva);
1751 uint64_t offset = DVA_GET_OFFSET(dva);
1752 uint64_t size = DVA_GET_ASIZE(dva);
1753 vdev_t *vd;
1754 metaslab_t *msp;
1755 int error = 0;
1756
1757 ASSERT(DVA_IS_VALID(dva));
1758
1759 if ((vd = vdev_lookup_top(spa, vdev)) == NULL ||
1760 (offset >> vd->vdev_ms_shift) >= vd->vdev_ms_count)
1761 return (ENXIO);
1762
1763 msp = vd->vdev_ms[offset >> vd->vdev_ms_shift];
1764
1765 if (DVA_GET_GANG(dva))
1766 size = vdev_psize_to_asize(vd, SPA_GANGBLOCKSIZE);
1767
1768 mutex_enter(&msp->ms_lock);
1769
1770 if ((txg != 0 && spa_writeable(spa)) || !msp->ms_map->sm_loaded)
1771 error = metaslab_activate(msp, METASLAB_WEIGHT_SECONDARY);
1772
1773 if (error == 0 && !space_map_contains(msp->ms_map, offset, size))
1774 error = ENOENT;
1775
1776 if (error || txg == 0) { /* txg == 0 indicates dry run */
1777 mutex_exit(&msp->ms_lock);
1778 return (error);
1779 }
1780
1781 space_map_claim(msp->ms_map, offset, size);
1782
1783 if (spa_writeable(spa)) { /* don't dirty if we're zdb(1M) */
1784 if (msp->ms_allocmap[txg & TXG_MASK]->sm_space == 0)
1785 vdev_dirty(vd, VDD_METASLAB, msp, txg);
1786 space_map_add(msp->ms_allocmap[txg & TXG_MASK], offset, size);
1787 }
1788
1789 mutex_exit(&msp->ms_lock);
1790
1791 return (0);
1792 }
1793
1794 int
1795 metaslab_alloc(spa_t *spa, metaslab_class_t *mc, uint64_t psize, blkptr_t *bp,
1796 int ndvas, uint64_t txg, blkptr_t *hintbp, int flags)
1797 {
1798 dva_t *dva = bp->blk_dva;
1799 dva_t *hintdva = hintbp->blk_dva;
1800 int d, error = 0;
1801
1802 ASSERT(bp->blk_birth == 0);
1803 ASSERT(BP_PHYSICAL_BIRTH(bp) == 0);
1804
1805 spa_config_enter(spa, SCL_ALLOC, FTAG, RW_READER);
1806
1807 if (mc->mc_rotor == NULL) { /* no vdevs in this class */
1808 spa_config_exit(spa, SCL_ALLOC, FTAG);
1809 return (ENOSPC);
1810 }
1811
1812 ASSERT(ndvas > 0 && ndvas <= spa_max_replication(spa));
1813 ASSERT(BP_GET_NDVAS(bp) == 0);
1814 ASSERT(hintbp == NULL || ndvas <= BP_GET_NDVAS(hintbp));
1815
1816 for (d = 0; d < ndvas; d++) {
1817 error = metaslab_alloc_dva(spa, mc, psize, dva, d, hintdva,
1818 txg, flags);
1819 if (error) {
1820 for (d--; d >= 0; d--) {
1821 metaslab_free_dva(spa, &dva[d], txg, B_TRUE);
1822 bzero(&dva[d], sizeof (dva_t));
1823 }
1824 spa_config_exit(spa, SCL_ALLOC, FTAG);
1825 return (error);
1826 }
1827 }
1828 ASSERT(error == 0);
1829 ASSERT(BP_GET_NDVAS(bp) == ndvas);
1830
1831 spa_config_exit(spa, SCL_ALLOC, FTAG);
1832
1833 BP_SET_BIRTH(bp, txg, txg);
1834
1835 return (0);
1836 }
1837
1838 void
1839 metaslab_free(spa_t *spa, const blkptr_t *bp, uint64_t txg, boolean_t now)
1840 {
1841 const dva_t *dva = bp->blk_dva;
1842 int d, ndvas = BP_GET_NDVAS(bp);
1843
1844 ASSERT(!BP_IS_HOLE(bp));
1845 ASSERT(!now || bp->blk_birth >= spa_syncing_txg(spa));
1846
1847 spa_config_enter(spa, SCL_FREE, FTAG, RW_READER);
1848
1849 for (d = 0; d < ndvas; d++)
1850 metaslab_free_dva(spa, &dva[d], txg, now);
1851
1852 spa_config_exit(spa, SCL_FREE, FTAG);
1853 }
1854
1855 int
1856 metaslab_claim(spa_t *spa, const blkptr_t *bp, uint64_t txg)
1857 {
1858 const dva_t *dva = bp->blk_dva;
1859 int ndvas = BP_GET_NDVAS(bp);
1860 int d, error = 0;
1861
1862 ASSERT(!BP_IS_HOLE(bp));
1863
1864 if (txg != 0) {
1865 /*
1866 * First do a dry run to make sure all DVAs are claimable,
1867 * so we don't have to unwind from partial failures below.
1868 */
1869 if ((error = metaslab_claim(spa, bp, 0)) != 0)
1870 return (error);
1871 }
1872
1873 spa_config_enter(spa, SCL_ALLOC, FTAG, RW_READER);
1874
1875 for (d = 0; d < ndvas; d++)
1876 if ((error = metaslab_claim_dva(spa, &dva[d], txg)) != 0)
1877 break;
1878
1879 spa_config_exit(spa, SCL_ALLOC, FTAG);
1880
1881 ASSERT(error == 0 || txg == 0);
1882
1883 return (error);
1884 }
1885
1886 void metaslab_fastwrite_mark(spa_t *spa, const blkptr_t *bp)
1887 {
1888 const dva_t *dva = bp->blk_dva;
1889 int ndvas = BP_GET_NDVAS(bp);
1890 uint64_t psize = BP_GET_PSIZE(bp);
1891 int d;
1892 vdev_t *vd;
1893
1894 ASSERT(!BP_IS_HOLE(bp));
1895 ASSERT(psize > 0);
1896
1897 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
1898
1899 for (d = 0; d < ndvas; d++) {
1900 if ((vd = vdev_lookup_top(spa, DVA_GET_VDEV(&dva[d]))) == NULL)
1901 continue;
1902 atomic_add_64(&vd->vdev_pending_fastwrite, psize);
1903 }
1904
1905 spa_config_exit(spa, SCL_VDEV, FTAG);
1906 }
1907
1908 void metaslab_fastwrite_unmark(spa_t *spa, const blkptr_t *bp)
1909 {
1910 const dva_t *dva = bp->blk_dva;
1911 int ndvas = BP_GET_NDVAS(bp);
1912 uint64_t psize = BP_GET_PSIZE(bp);
1913 int d;
1914 vdev_t *vd;
1915
1916 ASSERT(!BP_IS_HOLE(bp));
1917 ASSERT(psize > 0);
1918
1919 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
1920
1921 for (d = 0; d < ndvas; d++) {
1922 if ((vd = vdev_lookup_top(spa, DVA_GET_VDEV(&dva[d]))) == NULL)
1923 continue;
1924 ASSERT3U(vd->vdev_pending_fastwrite, >=, psize);
1925 atomic_sub_64(&vd->vdev_pending_fastwrite, psize);
1926 }
1927
1928 spa_config_exit(spa, SCL_VDEV, FTAG);
1929 }
1930
1931 static void
1932 checkmap(space_map_t *sm, uint64_t off, uint64_t size)
1933 {
1934 space_seg_t *ss;
1935 avl_index_t where;
1936
1937 mutex_enter(sm->sm_lock);
1938 ss = space_map_find(sm, off, size, &where);
1939 if (ss != NULL)
1940 panic("freeing free block; ss=%p", (void *)ss);
1941 mutex_exit(sm->sm_lock);
1942 }
1943
1944 void
1945 metaslab_check_free(spa_t *spa, const blkptr_t *bp)
1946 {
1947 int i, j;
1948
1949 if ((zfs_flags & ZFS_DEBUG_ZIO_FREE) == 0)
1950 return;
1951
1952 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
1953 for (i = 0; i < BP_GET_NDVAS(bp); i++) {
1954 uint64_t vdid = DVA_GET_VDEV(&bp->blk_dva[i]);
1955 vdev_t *vd = vdev_lookup_top(spa, vdid);
1956 uint64_t off = DVA_GET_OFFSET(&bp->blk_dva[i]);
1957 uint64_t size = DVA_GET_ASIZE(&bp->blk_dva[i]);
1958 metaslab_t *ms = vd->vdev_ms[off >> vd->vdev_ms_shift];
1959
1960 if (ms->ms_map->sm_loaded)
1961 checkmap(ms->ms_map, off, size);
1962
1963 for (j = 0; j < TXG_SIZE; j++)
1964 checkmap(ms->ms_freemap[j], off, size);
1965 for (j = 0; j < TXG_DEFER_SIZE; j++)
1966 checkmap(ms->ms_defermap[j], off, size);
1967 }
1968 spa_config_exit(spa, SCL_VDEV, FTAG);
1969 }
1970
1971 #if defined(_KERNEL) && defined(HAVE_SPL)
1972 module_param(metaslab_debug, int, 0644);
1973 MODULE_PARM_DESC(metaslab_debug, "keep space maps in core to verify frees");
1974 #endif /* _KERNEL && HAVE_SPL */