]> git.proxmox.com Git - mirror_zfs.git/blob - module/zfs/metaslab.c
Undo c89 workarounds to match with upstream
[mirror_zfs.git] / module / zfs / metaslab.c
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2011, 2016 by Delphix. All rights reserved.
24 * Copyright (c) 2013 by Saso Kiselkov. All rights reserved.
25 */
26
27 #include <sys/zfs_context.h>
28 #include <sys/dmu.h>
29 #include <sys/dmu_tx.h>
30 #include <sys/space_map.h>
31 #include <sys/metaslab_impl.h>
32 #include <sys/vdev_impl.h>
33 #include <sys/zio.h>
34 #include <sys/spa_impl.h>
35 #include <sys/zfeature.h>
36
37 #define WITH_DF_BLOCK_ALLOCATOR
38
39 #define GANG_ALLOCATION(flags) \
40 ((flags) & (METASLAB_GANG_CHILD | METASLAB_GANG_HEADER))
41
42 /*
43 * Metaslab granularity, in bytes. This is roughly similar to what would be
44 * referred to as the "stripe size" in traditional RAID arrays. In normal
45 * operation, we will try to write this amount of data to a top-level vdev
46 * before moving on to the next one.
47 */
48 unsigned long metaslab_aliquot = 512 << 10;
49
50 uint64_t metaslab_gang_bang = SPA_MAXBLOCKSIZE + 1; /* force gang blocks */
51
52 /*
53 * The in-core space map representation is more compact than its on-disk form.
54 * The zfs_condense_pct determines how much more compact the in-core
55 * space map representation must be before we compact it on-disk.
56 * Values should be greater than or equal to 100.
57 */
58 int zfs_condense_pct = 200;
59
60 /*
61 * Condensing a metaslab is not guaranteed to actually reduce the amount of
62 * space used on disk. In particular, a space map uses data in increments of
63 * MAX(1 << ashift, space_map_blksz), so a metaslab might use the
64 * same number of blocks after condensing. Since the goal of condensing is to
65 * reduce the number of IOPs required to read the space map, we only want to
66 * condense when we can be sure we will reduce the number of blocks used by the
67 * space map. Unfortunately, we cannot precisely compute whether or not this is
68 * the case in metaslab_should_condense since we are holding ms_lock. Instead,
69 * we apply the following heuristic: do not condense a spacemap unless the
70 * uncondensed size consumes greater than zfs_metaslab_condense_block_threshold
71 * blocks.
72 */
73 int zfs_metaslab_condense_block_threshold = 4;
74
75 /*
76 * The zfs_mg_noalloc_threshold defines which metaslab groups should
77 * be eligible for allocation. The value is defined as a percentage of
78 * free space. Metaslab groups that have more free space than
79 * zfs_mg_noalloc_threshold are always eligible for allocations. Once
80 * a metaslab group's free space is less than or equal to the
81 * zfs_mg_noalloc_threshold the allocator will avoid allocating to that
82 * group unless all groups in the pool have reached zfs_mg_noalloc_threshold.
83 * Once all groups in the pool reach zfs_mg_noalloc_threshold then all
84 * groups are allowed to accept allocations. Gang blocks are always
85 * eligible to allocate on any metaslab group. The default value of 0 means
86 * no metaslab group will be excluded based on this criterion.
87 */
88 int zfs_mg_noalloc_threshold = 0;
89
90 /*
91 * Metaslab groups are considered eligible for allocations if their
92 * fragmenation metric (measured as a percentage) is less than or equal to
93 * zfs_mg_fragmentation_threshold. If a metaslab group exceeds this threshold
94 * then it will be skipped unless all metaslab groups within the metaslab
95 * class have also crossed this threshold.
96 */
97 int zfs_mg_fragmentation_threshold = 85;
98
99 /*
100 * Allow metaslabs to keep their active state as long as their fragmentation
101 * percentage is less than or equal to zfs_metaslab_fragmentation_threshold. An
102 * active metaslab that exceeds this threshold will no longer keep its active
103 * status allowing better metaslabs to be selected.
104 */
105 int zfs_metaslab_fragmentation_threshold = 70;
106
107 /*
108 * When set will load all metaslabs when pool is first opened.
109 */
110 int metaslab_debug_load = 0;
111
112 /*
113 * When set will prevent metaslabs from being unloaded.
114 */
115 int metaslab_debug_unload = 0;
116
117 /*
118 * Minimum size which forces the dynamic allocator to change
119 * it's allocation strategy. Once the space map cannot satisfy
120 * an allocation of this size then it switches to using more
121 * aggressive strategy (i.e search by size rather than offset).
122 */
123 uint64_t metaslab_df_alloc_threshold = SPA_OLD_MAXBLOCKSIZE;
124
125 /*
126 * The minimum free space, in percent, which must be available
127 * in a space map to continue allocations in a first-fit fashion.
128 * Once the space map's free space drops below this level we dynamically
129 * switch to using best-fit allocations.
130 */
131 int metaslab_df_free_pct = 4;
132
133 /*
134 * Percentage of all cpus that can be used by the metaslab taskq.
135 */
136 int metaslab_load_pct = 50;
137
138 /*
139 * Determines how many txgs a metaslab may remain loaded without having any
140 * allocations from it. As long as a metaslab continues to be used we will
141 * keep it loaded.
142 */
143 int metaslab_unload_delay = TXG_SIZE * 2;
144
145 /*
146 * Max number of metaslabs per group to preload.
147 */
148 int metaslab_preload_limit = SPA_DVAS_PER_BP;
149
150 /*
151 * Enable/disable preloading of metaslab.
152 */
153 int metaslab_preload_enabled = B_TRUE;
154
155 /*
156 * Enable/disable fragmentation weighting on metaslabs.
157 */
158 int metaslab_fragmentation_factor_enabled = B_TRUE;
159
160 /*
161 * Enable/disable lba weighting (i.e. outer tracks are given preference).
162 */
163 int metaslab_lba_weighting_enabled = B_TRUE;
164
165 /*
166 * Enable/disable metaslab group biasing.
167 */
168 int metaslab_bias_enabled = B_TRUE;
169
170
171 /*
172 * Enable/disable segment-based metaslab selection.
173 */
174 int zfs_metaslab_segment_weight_enabled = B_TRUE;
175
176 /*
177 * When using segment-based metaslab selection, we will continue
178 * allocating from the active metaslab until we have exhausted
179 * zfs_metaslab_switch_threshold of its buckets.
180 */
181 int zfs_metaslab_switch_threshold = 2;
182
183 /*
184 * Internal switch to enable/disable the metaslab allocation tracing
185 * facility.
186 */
187 #ifdef _METASLAB_TRACING
188 boolean_t metaslab_trace_enabled = B_TRUE;
189 #endif
190
191 /*
192 * Maximum entries that the metaslab allocation tracing facility will keep
193 * in a given list when running in non-debug mode. We limit the number
194 * of entries in non-debug mode to prevent us from using up too much memory.
195 * The limit should be sufficiently large that we don't expect any allocation
196 * to every exceed this value. In debug mode, the system will panic if this
197 * limit is ever reached allowing for further investigation.
198 */
199 #ifdef _METASLAB_TRACING
200 uint64_t metaslab_trace_max_entries = 5000;
201 #endif
202
203 static uint64_t metaslab_weight(metaslab_t *);
204 static void metaslab_set_fragmentation(metaslab_t *);
205
206 #ifdef _METASLAB_TRACING
207 kmem_cache_t *metaslab_alloc_trace_cache;
208 #endif
209
210 /*
211 * ==========================================================================
212 * Metaslab classes
213 * ==========================================================================
214 */
215 metaslab_class_t *
216 metaslab_class_create(spa_t *spa, metaslab_ops_t *ops)
217 {
218 metaslab_class_t *mc;
219
220 mc = kmem_zalloc(sizeof (metaslab_class_t), KM_SLEEP);
221
222 mc->mc_spa = spa;
223 mc->mc_rotor = NULL;
224 mc->mc_ops = ops;
225 mutex_init(&mc->mc_lock, NULL, MUTEX_DEFAULT, NULL);
226 refcount_create_tracked(&mc->mc_alloc_slots);
227
228 return (mc);
229 }
230
231 void
232 metaslab_class_destroy(metaslab_class_t *mc)
233 {
234 ASSERT(mc->mc_rotor == NULL);
235 ASSERT(mc->mc_alloc == 0);
236 ASSERT(mc->mc_deferred == 0);
237 ASSERT(mc->mc_space == 0);
238 ASSERT(mc->mc_dspace == 0);
239
240 refcount_destroy(&mc->mc_alloc_slots);
241 mutex_destroy(&mc->mc_lock);
242 kmem_free(mc, sizeof (metaslab_class_t));
243 }
244
245 int
246 metaslab_class_validate(metaslab_class_t *mc)
247 {
248 metaslab_group_t *mg;
249 vdev_t *vd;
250
251 /*
252 * Must hold one of the spa_config locks.
253 */
254 ASSERT(spa_config_held(mc->mc_spa, SCL_ALL, RW_READER) ||
255 spa_config_held(mc->mc_spa, SCL_ALL, RW_WRITER));
256
257 if ((mg = mc->mc_rotor) == NULL)
258 return (0);
259
260 do {
261 vd = mg->mg_vd;
262 ASSERT(vd->vdev_mg != NULL);
263 ASSERT3P(vd->vdev_top, ==, vd);
264 ASSERT3P(mg->mg_class, ==, mc);
265 ASSERT3P(vd->vdev_ops, !=, &vdev_hole_ops);
266 } while ((mg = mg->mg_next) != mc->mc_rotor);
267
268 return (0);
269 }
270
271 void
272 metaslab_class_space_update(metaslab_class_t *mc, int64_t alloc_delta,
273 int64_t defer_delta, int64_t space_delta, int64_t dspace_delta)
274 {
275 atomic_add_64(&mc->mc_alloc, alloc_delta);
276 atomic_add_64(&mc->mc_deferred, defer_delta);
277 atomic_add_64(&mc->mc_space, space_delta);
278 atomic_add_64(&mc->mc_dspace, dspace_delta);
279 }
280
281 uint64_t
282 metaslab_class_get_alloc(metaslab_class_t *mc)
283 {
284 return (mc->mc_alloc);
285 }
286
287 uint64_t
288 metaslab_class_get_deferred(metaslab_class_t *mc)
289 {
290 return (mc->mc_deferred);
291 }
292
293 uint64_t
294 metaslab_class_get_space(metaslab_class_t *mc)
295 {
296 return (mc->mc_space);
297 }
298
299 uint64_t
300 metaslab_class_get_dspace(metaslab_class_t *mc)
301 {
302 return (spa_deflate(mc->mc_spa) ? mc->mc_dspace : mc->mc_space);
303 }
304
305 void
306 metaslab_class_histogram_verify(metaslab_class_t *mc)
307 {
308 vdev_t *rvd = mc->mc_spa->spa_root_vdev;
309 uint64_t *mc_hist;
310 int i;
311
312 if ((zfs_flags & ZFS_DEBUG_HISTOGRAM_VERIFY) == 0)
313 return;
314
315 mc_hist = kmem_zalloc(sizeof (uint64_t) * RANGE_TREE_HISTOGRAM_SIZE,
316 KM_SLEEP);
317
318 for (int c = 0; c < rvd->vdev_children; c++) {
319 vdev_t *tvd = rvd->vdev_child[c];
320 metaslab_group_t *mg = tvd->vdev_mg;
321
322 /*
323 * Skip any holes, uninitialized top-levels, or
324 * vdevs that are not in this metalab class.
325 */
326 if (tvd->vdev_ishole || tvd->vdev_ms_shift == 0 ||
327 mg->mg_class != mc) {
328 continue;
329 }
330
331 for (i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i++)
332 mc_hist[i] += mg->mg_histogram[i];
333 }
334
335 for (i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i++)
336 VERIFY3U(mc_hist[i], ==, mc->mc_histogram[i]);
337
338 kmem_free(mc_hist, sizeof (uint64_t) * RANGE_TREE_HISTOGRAM_SIZE);
339 }
340
341 /*
342 * Calculate the metaslab class's fragmentation metric. The metric
343 * is weighted based on the space contribution of each metaslab group.
344 * The return value will be a number between 0 and 100 (inclusive), or
345 * ZFS_FRAG_INVALID if the metric has not been set. See comment above the
346 * zfs_frag_table for more information about the metric.
347 */
348 uint64_t
349 metaslab_class_fragmentation(metaslab_class_t *mc)
350 {
351 vdev_t *rvd = mc->mc_spa->spa_root_vdev;
352 uint64_t fragmentation = 0;
353
354 spa_config_enter(mc->mc_spa, SCL_VDEV, FTAG, RW_READER);
355
356 for (int c = 0; c < rvd->vdev_children; c++) {
357 vdev_t *tvd = rvd->vdev_child[c];
358 metaslab_group_t *mg = tvd->vdev_mg;
359
360 /*
361 * Skip any holes, uninitialized top-levels, or
362 * vdevs that are not in this metalab class.
363 */
364 if (tvd->vdev_ishole || tvd->vdev_ms_shift == 0 ||
365 mg->mg_class != mc) {
366 continue;
367 }
368
369 /*
370 * If a metaslab group does not contain a fragmentation
371 * metric then just bail out.
372 */
373 if (mg->mg_fragmentation == ZFS_FRAG_INVALID) {
374 spa_config_exit(mc->mc_spa, SCL_VDEV, FTAG);
375 return (ZFS_FRAG_INVALID);
376 }
377
378 /*
379 * Determine how much this metaslab_group is contributing
380 * to the overall pool fragmentation metric.
381 */
382 fragmentation += mg->mg_fragmentation *
383 metaslab_group_get_space(mg);
384 }
385 fragmentation /= metaslab_class_get_space(mc);
386
387 ASSERT3U(fragmentation, <=, 100);
388 spa_config_exit(mc->mc_spa, SCL_VDEV, FTAG);
389 return (fragmentation);
390 }
391
392 /*
393 * Calculate the amount of expandable space that is available in
394 * this metaslab class. If a device is expanded then its expandable
395 * space will be the amount of allocatable space that is currently not
396 * part of this metaslab class.
397 */
398 uint64_t
399 metaslab_class_expandable_space(metaslab_class_t *mc)
400 {
401 vdev_t *rvd = mc->mc_spa->spa_root_vdev;
402 uint64_t space = 0;
403
404 spa_config_enter(mc->mc_spa, SCL_VDEV, FTAG, RW_READER);
405 for (int c = 0; c < rvd->vdev_children; c++) {
406 vdev_t *tvd = rvd->vdev_child[c];
407 metaslab_group_t *mg = tvd->vdev_mg;
408
409 if (tvd->vdev_ishole || tvd->vdev_ms_shift == 0 ||
410 mg->mg_class != mc) {
411 continue;
412 }
413
414 /*
415 * Calculate if we have enough space to add additional
416 * metaslabs. We report the expandable space in terms
417 * of the metaslab size since that's the unit of expansion.
418 */
419 space += P2ALIGN(tvd->vdev_max_asize - tvd->vdev_asize,
420 1ULL << tvd->vdev_ms_shift);
421 }
422 spa_config_exit(mc->mc_spa, SCL_VDEV, FTAG);
423 return (space);
424 }
425
426 static int
427 metaslab_compare(const void *x1, const void *x2)
428 {
429 const metaslab_t *m1 = (const metaslab_t *)x1;
430 const metaslab_t *m2 = (const metaslab_t *)x2;
431
432 int cmp = AVL_CMP(m2->ms_weight, m1->ms_weight);
433 if (likely(cmp))
434 return (cmp);
435
436 IMPLY(AVL_CMP(m1->ms_start, m2->ms_start) == 0, m1 == m2);
437
438 return (AVL_CMP(m1->ms_start, m2->ms_start));
439 }
440
441 /*
442 * Verify that the space accounting on disk matches the in-core range_trees.
443 */
444 void
445 metaslab_verify_space(metaslab_t *msp, uint64_t txg)
446 {
447 spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
448 uint64_t allocated = 0;
449 uint64_t sm_free_space, msp_free_space;
450
451 ASSERT(MUTEX_HELD(&msp->ms_lock));
452
453 if ((zfs_flags & ZFS_DEBUG_METASLAB_VERIFY) == 0)
454 return;
455
456 /*
457 * We can only verify the metaslab space when we're called
458 * from syncing context with a loaded metaslab that has an allocated
459 * space map. Calling this in non-syncing context does not
460 * provide a consistent view of the metaslab since we're performing
461 * allocations in the future.
462 */
463 if (txg != spa_syncing_txg(spa) || msp->ms_sm == NULL ||
464 !msp->ms_loaded)
465 return;
466
467 sm_free_space = msp->ms_size - space_map_allocated(msp->ms_sm) -
468 space_map_alloc_delta(msp->ms_sm);
469
470 /*
471 * Account for future allocations since we would have already
472 * deducted that space from the ms_freetree.
473 */
474 for (int t = 0; t < TXG_CONCURRENT_STATES; t++) {
475 allocated +=
476 range_tree_space(msp->ms_alloctree[(txg + t) & TXG_MASK]);
477 }
478
479 msp_free_space = range_tree_space(msp->ms_tree) + allocated +
480 msp->ms_deferspace + range_tree_space(msp->ms_freedtree);
481
482 VERIFY3U(sm_free_space, ==, msp_free_space);
483 }
484
485 /*
486 * ==========================================================================
487 * Metaslab groups
488 * ==========================================================================
489 */
490 /*
491 * Update the allocatable flag and the metaslab group's capacity.
492 * The allocatable flag is set to true if the capacity is below
493 * the zfs_mg_noalloc_threshold or has a fragmentation value that is
494 * greater than zfs_mg_fragmentation_threshold. If a metaslab group
495 * transitions from allocatable to non-allocatable or vice versa then the
496 * metaslab group's class is updated to reflect the transition.
497 */
498 static void
499 metaslab_group_alloc_update(metaslab_group_t *mg)
500 {
501 vdev_t *vd = mg->mg_vd;
502 metaslab_class_t *mc = mg->mg_class;
503 vdev_stat_t *vs = &vd->vdev_stat;
504 boolean_t was_allocatable;
505 boolean_t was_initialized;
506
507 ASSERT(vd == vd->vdev_top);
508
509 mutex_enter(&mg->mg_lock);
510 was_allocatable = mg->mg_allocatable;
511 was_initialized = mg->mg_initialized;
512
513 mg->mg_free_capacity = ((vs->vs_space - vs->vs_alloc) * 100) /
514 (vs->vs_space + 1);
515
516 mutex_enter(&mc->mc_lock);
517
518 /*
519 * If the metaslab group was just added then it won't
520 * have any space until we finish syncing out this txg.
521 * At that point we will consider it initialized and available
522 * for allocations. We also don't consider non-activated
523 * metaslab groups (e.g. vdevs that are in the middle of being removed)
524 * to be initialized, because they can't be used for allocation.
525 */
526 mg->mg_initialized = metaslab_group_initialized(mg);
527 if (!was_initialized && mg->mg_initialized) {
528 mc->mc_groups++;
529 } else if (was_initialized && !mg->mg_initialized) {
530 ASSERT3U(mc->mc_groups, >, 0);
531 mc->mc_groups--;
532 }
533 if (mg->mg_initialized)
534 mg->mg_no_free_space = B_FALSE;
535
536 /*
537 * A metaslab group is considered allocatable if it has plenty
538 * of free space or is not heavily fragmented. We only take
539 * fragmentation into account if the metaslab group has a valid
540 * fragmentation metric (i.e. a value between 0 and 100).
541 */
542 mg->mg_allocatable = (mg->mg_activation_count > 0 &&
543 mg->mg_free_capacity > zfs_mg_noalloc_threshold &&
544 (mg->mg_fragmentation == ZFS_FRAG_INVALID ||
545 mg->mg_fragmentation <= zfs_mg_fragmentation_threshold));
546
547 /*
548 * The mc_alloc_groups maintains a count of the number of
549 * groups in this metaslab class that are still above the
550 * zfs_mg_noalloc_threshold. This is used by the allocating
551 * threads to determine if they should avoid allocations to
552 * a given group. The allocator will avoid allocations to a group
553 * if that group has reached or is below the zfs_mg_noalloc_threshold
554 * and there are still other groups that are above the threshold.
555 * When a group transitions from allocatable to non-allocatable or
556 * vice versa we update the metaslab class to reflect that change.
557 * When the mc_alloc_groups value drops to 0 that means that all
558 * groups have reached the zfs_mg_noalloc_threshold making all groups
559 * eligible for allocations. This effectively means that all devices
560 * are balanced again.
561 */
562 if (was_allocatable && !mg->mg_allocatable)
563 mc->mc_alloc_groups--;
564 else if (!was_allocatable && mg->mg_allocatable)
565 mc->mc_alloc_groups++;
566 mutex_exit(&mc->mc_lock);
567
568 mutex_exit(&mg->mg_lock);
569 }
570
571 metaslab_group_t *
572 metaslab_group_create(metaslab_class_t *mc, vdev_t *vd)
573 {
574 metaslab_group_t *mg;
575
576 mg = kmem_zalloc(sizeof (metaslab_group_t), KM_SLEEP);
577 mutex_init(&mg->mg_lock, NULL, MUTEX_DEFAULT, NULL);
578 avl_create(&mg->mg_metaslab_tree, metaslab_compare,
579 sizeof (metaslab_t), offsetof(struct metaslab, ms_group_node));
580 mg->mg_vd = vd;
581 mg->mg_class = mc;
582 mg->mg_activation_count = 0;
583 mg->mg_initialized = B_FALSE;
584 mg->mg_no_free_space = B_TRUE;
585 refcount_create_tracked(&mg->mg_alloc_queue_depth);
586
587 mg->mg_taskq = taskq_create("metaslab_group_taskq", metaslab_load_pct,
588 maxclsyspri, 10, INT_MAX, TASKQ_THREADS_CPU_PCT | TASKQ_DYNAMIC);
589
590 return (mg);
591 }
592
593 void
594 metaslab_group_destroy(metaslab_group_t *mg)
595 {
596 ASSERT(mg->mg_prev == NULL);
597 ASSERT(mg->mg_next == NULL);
598 /*
599 * We may have gone below zero with the activation count
600 * either because we never activated in the first place or
601 * because we're done, and possibly removing the vdev.
602 */
603 ASSERT(mg->mg_activation_count <= 0);
604
605 taskq_destroy(mg->mg_taskq);
606 avl_destroy(&mg->mg_metaslab_tree);
607 mutex_destroy(&mg->mg_lock);
608 refcount_destroy(&mg->mg_alloc_queue_depth);
609 kmem_free(mg, sizeof (metaslab_group_t));
610 }
611
612 void
613 metaslab_group_activate(metaslab_group_t *mg)
614 {
615 metaslab_class_t *mc = mg->mg_class;
616 metaslab_group_t *mgprev, *mgnext;
617
618 ASSERT(spa_config_held(mc->mc_spa, SCL_ALLOC, RW_WRITER));
619
620 ASSERT(mc->mc_rotor != mg);
621 ASSERT(mg->mg_prev == NULL);
622 ASSERT(mg->mg_next == NULL);
623 ASSERT(mg->mg_activation_count <= 0);
624
625 if (++mg->mg_activation_count <= 0)
626 return;
627
628 mg->mg_aliquot = metaslab_aliquot * MAX(1, mg->mg_vd->vdev_children);
629 metaslab_group_alloc_update(mg);
630
631 if ((mgprev = mc->mc_rotor) == NULL) {
632 mg->mg_prev = mg;
633 mg->mg_next = mg;
634 } else {
635 mgnext = mgprev->mg_next;
636 mg->mg_prev = mgprev;
637 mg->mg_next = mgnext;
638 mgprev->mg_next = mg;
639 mgnext->mg_prev = mg;
640 }
641 mc->mc_rotor = mg;
642 }
643
644 void
645 metaslab_group_passivate(metaslab_group_t *mg)
646 {
647 metaslab_class_t *mc = mg->mg_class;
648 metaslab_group_t *mgprev, *mgnext;
649
650 ASSERT(spa_config_held(mc->mc_spa, SCL_ALLOC, RW_WRITER));
651
652 if (--mg->mg_activation_count != 0) {
653 ASSERT(mc->mc_rotor != mg);
654 ASSERT(mg->mg_prev == NULL);
655 ASSERT(mg->mg_next == NULL);
656 ASSERT(mg->mg_activation_count < 0);
657 return;
658 }
659
660 taskq_wait_outstanding(mg->mg_taskq, 0);
661 metaslab_group_alloc_update(mg);
662
663 mgprev = mg->mg_prev;
664 mgnext = mg->mg_next;
665
666 if (mg == mgnext) {
667 mc->mc_rotor = NULL;
668 } else {
669 mc->mc_rotor = mgnext;
670 mgprev->mg_next = mgnext;
671 mgnext->mg_prev = mgprev;
672 }
673
674 mg->mg_prev = NULL;
675 mg->mg_next = NULL;
676 }
677
678 boolean_t
679 metaslab_group_initialized(metaslab_group_t *mg)
680 {
681 vdev_t *vd = mg->mg_vd;
682 vdev_stat_t *vs = &vd->vdev_stat;
683
684 return (vs->vs_space != 0 && mg->mg_activation_count > 0);
685 }
686
687 uint64_t
688 metaslab_group_get_space(metaslab_group_t *mg)
689 {
690 return ((1ULL << mg->mg_vd->vdev_ms_shift) * mg->mg_vd->vdev_ms_count);
691 }
692
693 void
694 metaslab_group_histogram_verify(metaslab_group_t *mg)
695 {
696 uint64_t *mg_hist;
697 vdev_t *vd = mg->mg_vd;
698 uint64_t ashift = vd->vdev_ashift;
699 int i;
700
701 if ((zfs_flags & ZFS_DEBUG_HISTOGRAM_VERIFY) == 0)
702 return;
703
704 mg_hist = kmem_zalloc(sizeof (uint64_t) * RANGE_TREE_HISTOGRAM_SIZE,
705 KM_SLEEP);
706
707 ASSERT3U(RANGE_TREE_HISTOGRAM_SIZE, >=,
708 SPACE_MAP_HISTOGRAM_SIZE + ashift);
709
710 for (int m = 0; m < vd->vdev_ms_count; m++) {
711 metaslab_t *msp = vd->vdev_ms[m];
712
713 if (msp->ms_sm == NULL)
714 continue;
715
716 for (i = 0; i < SPACE_MAP_HISTOGRAM_SIZE; i++)
717 mg_hist[i + ashift] +=
718 msp->ms_sm->sm_phys->smp_histogram[i];
719 }
720
721 for (i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i ++)
722 VERIFY3U(mg_hist[i], ==, mg->mg_histogram[i]);
723
724 kmem_free(mg_hist, sizeof (uint64_t) * RANGE_TREE_HISTOGRAM_SIZE);
725 }
726
727 static void
728 metaslab_group_histogram_add(metaslab_group_t *mg, metaslab_t *msp)
729 {
730 metaslab_class_t *mc = mg->mg_class;
731 uint64_t ashift = mg->mg_vd->vdev_ashift;
732
733 ASSERT(MUTEX_HELD(&msp->ms_lock));
734 if (msp->ms_sm == NULL)
735 return;
736
737 mutex_enter(&mg->mg_lock);
738 for (int i = 0; i < SPACE_MAP_HISTOGRAM_SIZE; i++) {
739 mg->mg_histogram[i + ashift] +=
740 msp->ms_sm->sm_phys->smp_histogram[i];
741 mc->mc_histogram[i + ashift] +=
742 msp->ms_sm->sm_phys->smp_histogram[i];
743 }
744 mutex_exit(&mg->mg_lock);
745 }
746
747 void
748 metaslab_group_histogram_remove(metaslab_group_t *mg, metaslab_t *msp)
749 {
750 metaslab_class_t *mc = mg->mg_class;
751 uint64_t ashift = mg->mg_vd->vdev_ashift;
752
753 ASSERT(MUTEX_HELD(&msp->ms_lock));
754 if (msp->ms_sm == NULL)
755 return;
756
757 mutex_enter(&mg->mg_lock);
758 for (int i = 0; i < SPACE_MAP_HISTOGRAM_SIZE; i++) {
759 ASSERT3U(mg->mg_histogram[i + ashift], >=,
760 msp->ms_sm->sm_phys->smp_histogram[i]);
761 ASSERT3U(mc->mc_histogram[i + ashift], >=,
762 msp->ms_sm->sm_phys->smp_histogram[i]);
763
764 mg->mg_histogram[i + ashift] -=
765 msp->ms_sm->sm_phys->smp_histogram[i];
766 mc->mc_histogram[i + ashift] -=
767 msp->ms_sm->sm_phys->smp_histogram[i];
768 }
769 mutex_exit(&mg->mg_lock);
770 }
771
772 static void
773 metaslab_group_add(metaslab_group_t *mg, metaslab_t *msp)
774 {
775 ASSERT(msp->ms_group == NULL);
776 mutex_enter(&mg->mg_lock);
777 msp->ms_group = mg;
778 msp->ms_weight = 0;
779 avl_add(&mg->mg_metaslab_tree, msp);
780 mutex_exit(&mg->mg_lock);
781
782 mutex_enter(&msp->ms_lock);
783 metaslab_group_histogram_add(mg, msp);
784 mutex_exit(&msp->ms_lock);
785 }
786
787 static void
788 metaslab_group_remove(metaslab_group_t *mg, metaslab_t *msp)
789 {
790 mutex_enter(&msp->ms_lock);
791 metaslab_group_histogram_remove(mg, msp);
792 mutex_exit(&msp->ms_lock);
793
794 mutex_enter(&mg->mg_lock);
795 ASSERT(msp->ms_group == mg);
796 avl_remove(&mg->mg_metaslab_tree, msp);
797 msp->ms_group = NULL;
798 mutex_exit(&mg->mg_lock);
799 }
800
801 static void
802 metaslab_group_sort(metaslab_group_t *mg, metaslab_t *msp, uint64_t weight)
803 {
804 /*
805 * Although in principle the weight can be any value, in
806 * practice we do not use values in the range [1, 511].
807 */
808 ASSERT(weight >= SPA_MINBLOCKSIZE || weight == 0);
809 ASSERT(MUTEX_HELD(&msp->ms_lock));
810
811 mutex_enter(&mg->mg_lock);
812 ASSERT(msp->ms_group == mg);
813 avl_remove(&mg->mg_metaslab_tree, msp);
814 msp->ms_weight = weight;
815 avl_add(&mg->mg_metaslab_tree, msp);
816 mutex_exit(&mg->mg_lock);
817 }
818
819 /*
820 * Calculate the fragmentation for a given metaslab group. We can use
821 * a simple average here since all metaslabs within the group must have
822 * the same size. The return value will be a value between 0 and 100
823 * (inclusive), or ZFS_FRAG_INVALID if less than half of the metaslab in this
824 * group have a fragmentation metric.
825 */
826 uint64_t
827 metaslab_group_fragmentation(metaslab_group_t *mg)
828 {
829 vdev_t *vd = mg->mg_vd;
830 uint64_t fragmentation = 0;
831 uint64_t valid_ms = 0;
832
833 for (int m = 0; m < vd->vdev_ms_count; m++) {
834 metaslab_t *msp = vd->vdev_ms[m];
835
836 if (msp->ms_fragmentation == ZFS_FRAG_INVALID)
837 continue;
838
839 valid_ms++;
840 fragmentation += msp->ms_fragmentation;
841 }
842
843 if (valid_ms <= vd->vdev_ms_count / 2)
844 return (ZFS_FRAG_INVALID);
845
846 fragmentation /= valid_ms;
847 ASSERT3U(fragmentation, <=, 100);
848 return (fragmentation);
849 }
850
851 /*
852 * Determine if a given metaslab group should skip allocations. A metaslab
853 * group should avoid allocations if its free capacity is less than the
854 * zfs_mg_noalloc_threshold or its fragmentation metric is greater than
855 * zfs_mg_fragmentation_threshold and there is at least one metaslab group
856 * that can still handle allocations. If the allocation throttle is enabled
857 * then we skip allocations to devices that have reached their maximum
858 * allocation queue depth unless the selected metaslab group is the only
859 * eligible group remaining.
860 */
861 static boolean_t
862 metaslab_group_allocatable(metaslab_group_t *mg, metaslab_group_t *rotor,
863 uint64_t psize)
864 {
865 spa_t *spa = mg->mg_vd->vdev_spa;
866 metaslab_class_t *mc = mg->mg_class;
867
868 /*
869 * We can only consider skipping this metaslab group if it's
870 * in the normal metaslab class and there are other metaslab
871 * groups to select from. Otherwise, we always consider it eligible
872 * for allocations.
873 */
874 if (mc != spa_normal_class(spa) || mc->mc_groups <= 1)
875 return (B_TRUE);
876
877 /*
878 * If the metaslab group's mg_allocatable flag is set (see comments
879 * in metaslab_group_alloc_update() for more information) and
880 * the allocation throttle is disabled then allow allocations to this
881 * device. However, if the allocation throttle is enabled then
882 * check if we have reached our allocation limit (mg_alloc_queue_depth)
883 * to determine if we should allow allocations to this metaslab group.
884 * If all metaslab groups are no longer considered allocatable
885 * (mc_alloc_groups == 0) or we're trying to allocate the smallest
886 * gang block size then we allow allocations on this metaslab group
887 * regardless of the mg_allocatable or throttle settings.
888 */
889 if (mg->mg_allocatable) {
890 metaslab_group_t *mgp;
891 int64_t qdepth;
892 uint64_t qmax = mg->mg_max_alloc_queue_depth;
893
894 if (!mc->mc_alloc_throttle_enabled)
895 return (B_TRUE);
896
897 /*
898 * If this metaslab group does not have any free space, then
899 * there is no point in looking further.
900 */
901 if (mg->mg_no_free_space)
902 return (B_FALSE);
903
904 qdepth = refcount_count(&mg->mg_alloc_queue_depth);
905
906 /*
907 * If this metaslab group is below its qmax or it's
908 * the only allocatable metasable group, then attempt
909 * to allocate from it.
910 */
911 if (qdepth < qmax || mc->mc_alloc_groups == 1)
912 return (B_TRUE);
913 ASSERT3U(mc->mc_alloc_groups, >, 1);
914
915 /*
916 * Since this metaslab group is at or over its qmax, we
917 * need to determine if there are metaslab groups after this
918 * one that might be able to handle this allocation. This is
919 * racy since we can't hold the locks for all metaslab
920 * groups at the same time when we make this check.
921 */
922 for (mgp = mg->mg_next; mgp != rotor; mgp = mgp->mg_next) {
923 qmax = mgp->mg_max_alloc_queue_depth;
924
925 qdepth = refcount_count(&mgp->mg_alloc_queue_depth);
926
927 /*
928 * If there is another metaslab group that
929 * might be able to handle the allocation, then
930 * we return false so that we skip this group.
931 */
932 if (qdepth < qmax && !mgp->mg_no_free_space)
933 return (B_FALSE);
934 }
935
936 /*
937 * We didn't find another group to handle the allocation
938 * so we can't skip this metaslab group even though
939 * we are at or over our qmax.
940 */
941 return (B_TRUE);
942
943 } else if (mc->mc_alloc_groups == 0 || psize == SPA_MINBLOCKSIZE) {
944 return (B_TRUE);
945 }
946 return (B_FALSE);
947 }
948
949 /*
950 * ==========================================================================
951 * Range tree callbacks
952 * ==========================================================================
953 */
954
955 /*
956 * Comparison function for the private size-ordered tree. Tree is sorted
957 * by size, larger sizes at the end of the tree.
958 */
959 static int
960 metaslab_rangesize_compare(const void *x1, const void *x2)
961 {
962 const range_seg_t *r1 = x1;
963 const range_seg_t *r2 = x2;
964 uint64_t rs_size1 = r1->rs_end - r1->rs_start;
965 uint64_t rs_size2 = r2->rs_end - r2->rs_start;
966
967 int cmp = AVL_CMP(rs_size1, rs_size2);
968 if (likely(cmp))
969 return (cmp);
970
971 return (AVL_CMP(r1->rs_start, r2->rs_start));
972 }
973
974 /*
975 * Create any block allocator specific components. The current allocators
976 * rely on using both a size-ordered range_tree_t and an array of uint64_t's.
977 */
978 static void
979 metaslab_rt_create(range_tree_t *rt, void *arg)
980 {
981 metaslab_t *msp = arg;
982
983 ASSERT3P(rt->rt_arg, ==, msp);
984 ASSERT(msp->ms_tree == NULL);
985
986 avl_create(&msp->ms_size_tree, metaslab_rangesize_compare,
987 sizeof (range_seg_t), offsetof(range_seg_t, rs_pp_node));
988 }
989
990 /*
991 * Destroy the block allocator specific components.
992 */
993 static void
994 metaslab_rt_destroy(range_tree_t *rt, void *arg)
995 {
996 metaslab_t *msp = arg;
997
998 ASSERT3P(rt->rt_arg, ==, msp);
999 ASSERT3P(msp->ms_tree, ==, rt);
1000 ASSERT0(avl_numnodes(&msp->ms_size_tree));
1001
1002 avl_destroy(&msp->ms_size_tree);
1003 }
1004
1005 static void
1006 metaslab_rt_add(range_tree_t *rt, range_seg_t *rs, void *arg)
1007 {
1008 metaslab_t *msp = arg;
1009
1010 ASSERT3P(rt->rt_arg, ==, msp);
1011 ASSERT3P(msp->ms_tree, ==, rt);
1012 VERIFY(!msp->ms_condensing);
1013 avl_add(&msp->ms_size_tree, rs);
1014 }
1015
1016 static void
1017 metaslab_rt_remove(range_tree_t *rt, range_seg_t *rs, void *arg)
1018 {
1019 metaslab_t *msp = arg;
1020
1021 ASSERT3P(rt->rt_arg, ==, msp);
1022 ASSERT3P(msp->ms_tree, ==, rt);
1023 VERIFY(!msp->ms_condensing);
1024 avl_remove(&msp->ms_size_tree, rs);
1025 }
1026
1027 static void
1028 metaslab_rt_vacate(range_tree_t *rt, void *arg)
1029 {
1030 metaslab_t *msp = arg;
1031
1032 ASSERT3P(rt->rt_arg, ==, msp);
1033 ASSERT3P(msp->ms_tree, ==, rt);
1034
1035 /*
1036 * Normally one would walk the tree freeing nodes along the way.
1037 * Since the nodes are shared with the range trees we can avoid
1038 * walking all nodes and just reinitialize the avl tree. The nodes
1039 * will be freed by the range tree, so we don't want to free them here.
1040 */
1041 avl_create(&msp->ms_size_tree, metaslab_rangesize_compare,
1042 sizeof (range_seg_t), offsetof(range_seg_t, rs_pp_node));
1043 }
1044
1045 static range_tree_ops_t metaslab_rt_ops = {
1046 metaslab_rt_create,
1047 metaslab_rt_destroy,
1048 metaslab_rt_add,
1049 metaslab_rt_remove,
1050 metaslab_rt_vacate
1051 };
1052
1053 /*
1054 * ==========================================================================
1055 * Common allocator routines
1056 * ==========================================================================
1057 */
1058
1059 /*
1060 * Return the maximum contiguous segment within the metaslab.
1061 */
1062 uint64_t
1063 metaslab_block_maxsize(metaslab_t *msp)
1064 {
1065 avl_tree_t *t = &msp->ms_size_tree;
1066 range_seg_t *rs;
1067
1068 if (t == NULL || (rs = avl_last(t)) == NULL)
1069 return (0ULL);
1070
1071 return (rs->rs_end - rs->rs_start);
1072 }
1073
1074 static range_seg_t *
1075 metaslab_block_find(avl_tree_t *t, uint64_t start, uint64_t size)
1076 {
1077 range_seg_t *rs, rsearch;
1078 avl_index_t where;
1079
1080 rsearch.rs_start = start;
1081 rsearch.rs_end = start + size;
1082
1083 rs = avl_find(t, &rsearch, &where);
1084 if (rs == NULL) {
1085 rs = avl_nearest(t, where, AVL_AFTER);
1086 }
1087
1088 return (rs);
1089 }
1090
1091 #if defined(WITH_FF_BLOCK_ALLOCATOR) || \
1092 defined(WITH_DF_BLOCK_ALLOCATOR) || \
1093 defined(WITH_CF_BLOCK_ALLOCATOR)
1094 /*
1095 * This is a helper function that can be used by the allocator to find
1096 * a suitable block to allocate. This will search the specified AVL
1097 * tree looking for a block that matches the specified criteria.
1098 */
1099 static uint64_t
1100 metaslab_block_picker(avl_tree_t *t, uint64_t *cursor, uint64_t size,
1101 uint64_t align)
1102 {
1103 range_seg_t *rs = metaslab_block_find(t, *cursor, size);
1104
1105 while (rs != NULL) {
1106 uint64_t offset = P2ROUNDUP(rs->rs_start, align);
1107
1108 if (offset + size <= rs->rs_end) {
1109 *cursor = offset + size;
1110 return (offset);
1111 }
1112 rs = AVL_NEXT(t, rs);
1113 }
1114
1115 /*
1116 * If we know we've searched the whole map (*cursor == 0), give up.
1117 * Otherwise, reset the cursor to the beginning and try again.
1118 */
1119 if (*cursor == 0)
1120 return (-1ULL);
1121
1122 *cursor = 0;
1123 return (metaslab_block_picker(t, cursor, size, align));
1124 }
1125 #endif /* WITH_FF/DF/CF_BLOCK_ALLOCATOR */
1126
1127 #if defined(WITH_FF_BLOCK_ALLOCATOR)
1128 /*
1129 * ==========================================================================
1130 * The first-fit block allocator
1131 * ==========================================================================
1132 */
1133 static uint64_t
1134 metaslab_ff_alloc(metaslab_t *msp, uint64_t size)
1135 {
1136 /*
1137 * Find the largest power of 2 block size that evenly divides the
1138 * requested size. This is used to try to allocate blocks with similar
1139 * alignment from the same area of the metaslab (i.e. same cursor
1140 * bucket) but it does not guarantee that other allocations sizes
1141 * may exist in the same region.
1142 */
1143 uint64_t align = size & -size;
1144 uint64_t *cursor = &msp->ms_lbas[highbit64(align) - 1];
1145 avl_tree_t *t = &msp->ms_tree->rt_root;
1146
1147 return (metaslab_block_picker(t, cursor, size, align));
1148 }
1149
1150 static metaslab_ops_t metaslab_ff_ops = {
1151 metaslab_ff_alloc
1152 };
1153
1154 metaslab_ops_t *zfs_metaslab_ops = &metaslab_ff_ops;
1155 #endif /* WITH_FF_BLOCK_ALLOCATOR */
1156
1157 #if defined(WITH_DF_BLOCK_ALLOCATOR)
1158 /*
1159 * ==========================================================================
1160 * Dynamic block allocator -
1161 * Uses the first fit allocation scheme until space get low and then
1162 * adjusts to a best fit allocation method. Uses metaslab_df_alloc_threshold
1163 * and metaslab_df_free_pct to determine when to switch the allocation scheme.
1164 * ==========================================================================
1165 */
1166 static uint64_t
1167 metaslab_df_alloc(metaslab_t *msp, uint64_t size)
1168 {
1169 /*
1170 * Find the largest power of 2 block size that evenly divides the
1171 * requested size. This is used to try to allocate blocks with similar
1172 * alignment from the same area of the metaslab (i.e. same cursor
1173 * bucket) but it does not guarantee that other allocations sizes
1174 * may exist in the same region.
1175 */
1176 uint64_t align = size & -size;
1177 uint64_t *cursor = &msp->ms_lbas[highbit64(align) - 1];
1178 range_tree_t *rt = msp->ms_tree;
1179 avl_tree_t *t = &rt->rt_root;
1180 uint64_t max_size = metaslab_block_maxsize(msp);
1181 int free_pct = range_tree_space(rt) * 100 / msp->ms_size;
1182
1183 ASSERT(MUTEX_HELD(&msp->ms_lock));
1184 ASSERT3U(avl_numnodes(t), ==, avl_numnodes(&msp->ms_size_tree));
1185
1186 if (max_size < size)
1187 return (-1ULL);
1188
1189 /*
1190 * If we're running low on space switch to using the size
1191 * sorted AVL tree (best-fit).
1192 */
1193 if (max_size < metaslab_df_alloc_threshold ||
1194 free_pct < metaslab_df_free_pct) {
1195 t = &msp->ms_size_tree;
1196 *cursor = 0;
1197 }
1198
1199 return (metaslab_block_picker(t, cursor, size, 1ULL));
1200 }
1201
1202 static metaslab_ops_t metaslab_df_ops = {
1203 metaslab_df_alloc
1204 };
1205
1206 metaslab_ops_t *zfs_metaslab_ops = &metaslab_df_ops;
1207 #endif /* WITH_DF_BLOCK_ALLOCATOR */
1208
1209 #if defined(WITH_CF_BLOCK_ALLOCATOR)
1210 /*
1211 * ==========================================================================
1212 * Cursor fit block allocator -
1213 * Select the largest region in the metaslab, set the cursor to the beginning
1214 * of the range and the cursor_end to the end of the range. As allocations
1215 * are made advance the cursor. Continue allocating from the cursor until
1216 * the range is exhausted and then find a new range.
1217 * ==========================================================================
1218 */
1219 static uint64_t
1220 metaslab_cf_alloc(metaslab_t *msp, uint64_t size)
1221 {
1222 range_tree_t *rt = msp->ms_tree;
1223 avl_tree_t *t = &msp->ms_size_tree;
1224 uint64_t *cursor = &msp->ms_lbas[0];
1225 uint64_t *cursor_end = &msp->ms_lbas[1];
1226 uint64_t offset = 0;
1227
1228 ASSERT(MUTEX_HELD(&msp->ms_lock));
1229 ASSERT3U(avl_numnodes(t), ==, avl_numnodes(&rt->rt_root));
1230
1231 ASSERT3U(*cursor_end, >=, *cursor);
1232
1233 if ((*cursor + size) > *cursor_end) {
1234 range_seg_t *rs;
1235
1236 rs = avl_last(&msp->ms_size_tree);
1237 if (rs == NULL || (rs->rs_end - rs->rs_start) < size)
1238 return (-1ULL);
1239
1240 *cursor = rs->rs_start;
1241 *cursor_end = rs->rs_end;
1242 }
1243
1244 offset = *cursor;
1245 *cursor += size;
1246
1247 return (offset);
1248 }
1249
1250 static metaslab_ops_t metaslab_cf_ops = {
1251 metaslab_cf_alloc
1252 };
1253
1254 metaslab_ops_t *zfs_metaslab_ops = &metaslab_cf_ops;
1255 #endif /* WITH_CF_BLOCK_ALLOCATOR */
1256
1257 #if defined(WITH_NDF_BLOCK_ALLOCATOR)
1258 /*
1259 * ==========================================================================
1260 * New dynamic fit allocator -
1261 * Select a region that is large enough to allocate 2^metaslab_ndf_clump_shift
1262 * contiguous blocks. If no region is found then just use the largest segment
1263 * that remains.
1264 * ==========================================================================
1265 */
1266
1267 /*
1268 * Determines desired number of contiguous blocks (2^metaslab_ndf_clump_shift)
1269 * to request from the allocator.
1270 */
1271 uint64_t metaslab_ndf_clump_shift = 4;
1272
1273 static uint64_t
1274 metaslab_ndf_alloc(metaslab_t *msp, uint64_t size)
1275 {
1276 avl_tree_t *t = &msp->ms_tree->rt_root;
1277 avl_index_t where;
1278 range_seg_t *rs, rsearch;
1279 uint64_t hbit = highbit64(size);
1280 uint64_t *cursor = &msp->ms_lbas[hbit - 1];
1281 uint64_t max_size = metaslab_block_maxsize(msp);
1282
1283 ASSERT(MUTEX_HELD(&msp->ms_lock));
1284 ASSERT3U(avl_numnodes(t), ==, avl_numnodes(&msp->ms_size_tree));
1285
1286 if (max_size < size)
1287 return (-1ULL);
1288
1289 rsearch.rs_start = *cursor;
1290 rsearch.rs_end = *cursor + size;
1291
1292 rs = avl_find(t, &rsearch, &where);
1293 if (rs == NULL || (rs->rs_end - rs->rs_start) < size) {
1294 t = &msp->ms_size_tree;
1295
1296 rsearch.rs_start = 0;
1297 rsearch.rs_end = MIN(max_size,
1298 1ULL << (hbit + metaslab_ndf_clump_shift));
1299 rs = avl_find(t, &rsearch, &where);
1300 if (rs == NULL)
1301 rs = avl_nearest(t, where, AVL_AFTER);
1302 ASSERT(rs != NULL);
1303 }
1304
1305 if ((rs->rs_end - rs->rs_start) >= size) {
1306 *cursor = rs->rs_start + size;
1307 return (rs->rs_start);
1308 }
1309 return (-1ULL);
1310 }
1311
1312 static metaslab_ops_t metaslab_ndf_ops = {
1313 metaslab_ndf_alloc
1314 };
1315
1316 metaslab_ops_t *zfs_metaslab_ops = &metaslab_ndf_ops;
1317 #endif /* WITH_NDF_BLOCK_ALLOCATOR */
1318
1319
1320 /*
1321 * ==========================================================================
1322 * Metaslabs
1323 * ==========================================================================
1324 */
1325
1326 /*
1327 * Wait for any in-progress metaslab loads to complete.
1328 */
1329 void
1330 metaslab_load_wait(metaslab_t *msp)
1331 {
1332 ASSERT(MUTEX_HELD(&msp->ms_lock));
1333
1334 while (msp->ms_loading) {
1335 ASSERT(!msp->ms_loaded);
1336 cv_wait(&msp->ms_load_cv, &msp->ms_lock);
1337 }
1338 }
1339
1340 int
1341 metaslab_load(metaslab_t *msp)
1342 {
1343 int error = 0;
1344 boolean_t success = B_FALSE;
1345
1346 ASSERT(MUTEX_HELD(&msp->ms_lock));
1347 ASSERT(!msp->ms_loaded);
1348 ASSERT(!msp->ms_loading);
1349
1350 msp->ms_loading = B_TRUE;
1351
1352 /*
1353 * If the space map has not been allocated yet, then treat
1354 * all the space in the metaslab as free and add it to the
1355 * ms_tree.
1356 */
1357 if (msp->ms_sm != NULL)
1358 error = space_map_load(msp->ms_sm, msp->ms_tree, SM_FREE);
1359 else
1360 range_tree_add(msp->ms_tree, msp->ms_start, msp->ms_size);
1361
1362 success = (error == 0);
1363 msp->ms_loading = B_FALSE;
1364
1365 if (success) {
1366 ASSERT3P(msp->ms_group, !=, NULL);
1367 msp->ms_loaded = B_TRUE;
1368
1369 for (int t = 0; t < TXG_DEFER_SIZE; t++) {
1370 range_tree_walk(msp->ms_defertree[t],
1371 range_tree_remove, msp->ms_tree);
1372 }
1373 msp->ms_max_size = metaslab_block_maxsize(msp);
1374 }
1375 cv_broadcast(&msp->ms_load_cv);
1376 return (error);
1377 }
1378
1379 void
1380 metaslab_unload(metaslab_t *msp)
1381 {
1382 ASSERT(MUTEX_HELD(&msp->ms_lock));
1383 range_tree_vacate(msp->ms_tree, NULL, NULL);
1384 msp->ms_loaded = B_FALSE;
1385 msp->ms_weight &= ~METASLAB_ACTIVE_MASK;
1386 msp->ms_max_size = 0;
1387 }
1388
1389 int
1390 metaslab_init(metaslab_group_t *mg, uint64_t id, uint64_t object, uint64_t txg,
1391 metaslab_t **msp)
1392 {
1393 vdev_t *vd = mg->mg_vd;
1394 objset_t *mos = vd->vdev_spa->spa_meta_objset;
1395 metaslab_t *ms;
1396 int error;
1397
1398 ms = kmem_zalloc(sizeof (metaslab_t), KM_SLEEP);
1399 mutex_init(&ms->ms_lock, NULL, MUTEX_DEFAULT, NULL);
1400 cv_init(&ms->ms_load_cv, NULL, CV_DEFAULT, NULL);
1401 ms->ms_id = id;
1402 ms->ms_start = id << vd->vdev_ms_shift;
1403 ms->ms_size = 1ULL << vd->vdev_ms_shift;
1404
1405 /*
1406 * We only open space map objects that already exist. All others
1407 * will be opened when we finally allocate an object for it.
1408 */
1409 if (object != 0) {
1410 error = space_map_open(&ms->ms_sm, mos, object, ms->ms_start,
1411 ms->ms_size, vd->vdev_ashift, &ms->ms_lock);
1412
1413 if (error != 0) {
1414 kmem_free(ms, sizeof (metaslab_t));
1415 return (error);
1416 }
1417
1418 ASSERT(ms->ms_sm != NULL);
1419 }
1420
1421 /*
1422 * We create the main range tree here, but we don't create the
1423 * other range trees until metaslab_sync_done(). This serves
1424 * two purposes: it allows metaslab_sync_done() to detect the
1425 * addition of new space; and for debugging, it ensures that we'd
1426 * data fault on any attempt to use this metaslab before it's ready.
1427 */
1428 ms->ms_tree = range_tree_create(&metaslab_rt_ops, ms, &ms->ms_lock);
1429 metaslab_group_add(mg, ms);
1430
1431 metaslab_set_fragmentation(ms);
1432
1433 /*
1434 * If we're opening an existing pool (txg == 0) or creating
1435 * a new one (txg == TXG_INITIAL), all space is available now.
1436 * If we're adding space to an existing pool, the new space
1437 * does not become available until after this txg has synced.
1438 * The metaslab's weight will also be initialized when we sync
1439 * out this txg. This ensures that we don't attempt to allocate
1440 * from it before we have initialized it completely.
1441 */
1442 if (txg <= TXG_INITIAL)
1443 metaslab_sync_done(ms, 0);
1444
1445 /*
1446 * If metaslab_debug_load is set and we're initializing a metaslab
1447 * that has an allocated space map object then load the its space
1448 * map so that can verify frees.
1449 */
1450 if (metaslab_debug_load && ms->ms_sm != NULL) {
1451 mutex_enter(&ms->ms_lock);
1452 VERIFY0(metaslab_load(ms));
1453 mutex_exit(&ms->ms_lock);
1454 }
1455
1456 if (txg != 0) {
1457 vdev_dirty(vd, 0, NULL, txg);
1458 vdev_dirty(vd, VDD_METASLAB, ms, txg);
1459 }
1460
1461 *msp = ms;
1462
1463 return (0);
1464 }
1465
1466 void
1467 metaslab_fini(metaslab_t *msp)
1468 {
1469 metaslab_group_t *mg = msp->ms_group;
1470
1471 metaslab_group_remove(mg, msp);
1472
1473 mutex_enter(&msp->ms_lock);
1474 VERIFY(msp->ms_group == NULL);
1475 vdev_space_update(mg->mg_vd, -space_map_allocated(msp->ms_sm),
1476 0, -msp->ms_size);
1477 space_map_close(msp->ms_sm);
1478
1479 metaslab_unload(msp);
1480 range_tree_destroy(msp->ms_tree);
1481 range_tree_destroy(msp->ms_freeingtree);
1482 range_tree_destroy(msp->ms_freedtree);
1483
1484 for (int t = 0; t < TXG_SIZE; t++) {
1485 range_tree_destroy(msp->ms_alloctree[t]);
1486 }
1487
1488 for (int t = 0; t < TXG_DEFER_SIZE; t++) {
1489 range_tree_destroy(msp->ms_defertree[t]);
1490 }
1491
1492 ASSERT0(msp->ms_deferspace);
1493
1494 mutex_exit(&msp->ms_lock);
1495 cv_destroy(&msp->ms_load_cv);
1496 mutex_destroy(&msp->ms_lock);
1497
1498 kmem_free(msp, sizeof (metaslab_t));
1499 }
1500
1501 #define FRAGMENTATION_TABLE_SIZE 17
1502
1503 /*
1504 * This table defines a segment size based fragmentation metric that will
1505 * allow each metaslab to derive its own fragmentation value. This is done
1506 * by calculating the space in each bucket of the spacemap histogram and
1507 * multiplying that by the fragmetation metric in this table. Doing
1508 * this for all buckets and dividing it by the total amount of free
1509 * space in this metaslab (i.e. the total free space in all buckets) gives
1510 * us the fragmentation metric. This means that a high fragmentation metric
1511 * equates to most of the free space being comprised of small segments.
1512 * Conversely, if the metric is low, then most of the free space is in
1513 * large segments. A 10% change in fragmentation equates to approximately
1514 * double the number of segments.
1515 *
1516 * This table defines 0% fragmented space using 16MB segments. Testing has
1517 * shown that segments that are greater than or equal to 16MB do not suffer
1518 * from drastic performance problems. Using this value, we derive the rest
1519 * of the table. Since the fragmentation value is never stored on disk, it
1520 * is possible to change these calculations in the future.
1521 */
1522 int zfs_frag_table[FRAGMENTATION_TABLE_SIZE] = {
1523 100, /* 512B */
1524 100, /* 1K */
1525 98, /* 2K */
1526 95, /* 4K */
1527 90, /* 8K */
1528 80, /* 16K */
1529 70, /* 32K */
1530 60, /* 64K */
1531 50, /* 128K */
1532 40, /* 256K */
1533 30, /* 512K */
1534 20, /* 1M */
1535 15, /* 2M */
1536 10, /* 4M */
1537 5, /* 8M */
1538 0 /* 16M */
1539 };
1540
1541 /*
1542 * Calclate the metaslab's fragmentation metric. A return value
1543 * of ZFS_FRAG_INVALID means that the metaslab has not been upgraded and does
1544 * not support this metric. Otherwise, the return value should be in the
1545 * range [0, 100].
1546 */
1547 static void
1548 metaslab_set_fragmentation(metaslab_t *msp)
1549 {
1550 spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
1551 uint64_t fragmentation = 0;
1552 uint64_t total = 0;
1553 boolean_t feature_enabled = spa_feature_is_enabled(spa,
1554 SPA_FEATURE_SPACEMAP_HISTOGRAM);
1555
1556 if (!feature_enabled) {
1557 msp->ms_fragmentation = ZFS_FRAG_INVALID;
1558 return;
1559 }
1560
1561 /*
1562 * A null space map means that the entire metaslab is free
1563 * and thus is not fragmented.
1564 */
1565 if (msp->ms_sm == NULL) {
1566 msp->ms_fragmentation = 0;
1567 return;
1568 }
1569
1570 /*
1571 * If this metaslab's space map has not been upgraded, flag it
1572 * so that we upgrade next time we encounter it.
1573 */
1574 if (msp->ms_sm->sm_dbuf->db_size != sizeof (space_map_phys_t)) {
1575 uint64_t txg = spa_syncing_txg(spa);
1576 vdev_t *vd = msp->ms_group->mg_vd;
1577
1578 /*
1579 * If we've reached the final dirty txg, then we must
1580 * be shutting down the pool. We don't want to dirty
1581 * any data past this point so skip setting the condense
1582 * flag. We can retry this action the next time the pool
1583 * is imported.
1584 */
1585 if (spa_writeable(spa) && txg < spa_final_dirty_txg(spa)) {
1586 msp->ms_condense_wanted = B_TRUE;
1587 vdev_dirty(vd, VDD_METASLAB, msp, txg + 1);
1588 spa_dbgmsg(spa, "txg %llu, requesting force condense: "
1589 "ms_id %llu, vdev_id %llu", txg, msp->ms_id,
1590 vd->vdev_id);
1591 }
1592 msp->ms_fragmentation = ZFS_FRAG_INVALID;
1593 return;
1594 }
1595
1596 for (int i = 0; i < SPACE_MAP_HISTOGRAM_SIZE; i++) {
1597 uint64_t space = 0;
1598 uint8_t shift = msp->ms_sm->sm_shift;
1599
1600 int idx = MIN(shift - SPA_MINBLOCKSHIFT + i,
1601 FRAGMENTATION_TABLE_SIZE - 1);
1602
1603 if (msp->ms_sm->sm_phys->smp_histogram[i] == 0)
1604 continue;
1605
1606 space = msp->ms_sm->sm_phys->smp_histogram[i] << (i + shift);
1607 total += space;
1608
1609 ASSERT3U(idx, <, FRAGMENTATION_TABLE_SIZE);
1610 fragmentation += space * zfs_frag_table[idx];
1611 }
1612
1613 if (total > 0)
1614 fragmentation /= total;
1615 ASSERT3U(fragmentation, <=, 100);
1616
1617 msp->ms_fragmentation = fragmentation;
1618 }
1619
1620 /*
1621 * Compute a weight -- a selection preference value -- for the given metaslab.
1622 * This is based on the amount of free space, the level of fragmentation,
1623 * the LBA range, and whether the metaslab is loaded.
1624 */
1625 static uint64_t
1626 metaslab_space_weight(metaslab_t *msp)
1627 {
1628 metaslab_group_t *mg = msp->ms_group;
1629 vdev_t *vd = mg->mg_vd;
1630 uint64_t weight, space;
1631
1632 ASSERT(MUTEX_HELD(&msp->ms_lock));
1633 ASSERT(!vd->vdev_removing);
1634
1635 /*
1636 * The baseline weight is the metaslab's free space.
1637 */
1638 space = msp->ms_size - space_map_allocated(msp->ms_sm);
1639
1640 if (metaslab_fragmentation_factor_enabled &&
1641 msp->ms_fragmentation != ZFS_FRAG_INVALID) {
1642 /*
1643 * Use the fragmentation information to inversely scale
1644 * down the baseline weight. We need to ensure that we
1645 * don't exclude this metaslab completely when it's 100%
1646 * fragmented. To avoid this we reduce the fragmented value
1647 * by 1.
1648 */
1649 space = (space * (100 - (msp->ms_fragmentation - 1))) / 100;
1650
1651 /*
1652 * If space < SPA_MINBLOCKSIZE, then we will not allocate from
1653 * this metaslab again. The fragmentation metric may have
1654 * decreased the space to something smaller than
1655 * SPA_MINBLOCKSIZE, so reset the space to SPA_MINBLOCKSIZE
1656 * so that we can consume any remaining space.
1657 */
1658 if (space > 0 && space < SPA_MINBLOCKSIZE)
1659 space = SPA_MINBLOCKSIZE;
1660 }
1661 weight = space;
1662
1663 /*
1664 * Modern disks have uniform bit density and constant angular velocity.
1665 * Therefore, the outer recording zones are faster (higher bandwidth)
1666 * than the inner zones by the ratio of outer to inner track diameter,
1667 * which is typically around 2:1. We account for this by assigning
1668 * higher weight to lower metaslabs (multiplier ranging from 2x to 1x).
1669 * In effect, this means that we'll select the metaslab with the most
1670 * free bandwidth rather than simply the one with the most free space.
1671 */
1672 if (!vd->vdev_nonrot && metaslab_lba_weighting_enabled) {
1673 weight = 2 * weight - (msp->ms_id * weight) / vd->vdev_ms_count;
1674 ASSERT(weight >= space && weight <= 2 * space);
1675 }
1676
1677 /*
1678 * If this metaslab is one we're actively using, adjust its
1679 * weight to make it preferable to any inactive metaslab so
1680 * we'll polish it off. If the fragmentation on this metaslab
1681 * has exceed our threshold, then don't mark it active.
1682 */
1683 if (msp->ms_loaded && msp->ms_fragmentation != ZFS_FRAG_INVALID &&
1684 msp->ms_fragmentation <= zfs_metaslab_fragmentation_threshold) {
1685 weight |= (msp->ms_weight & METASLAB_ACTIVE_MASK);
1686 }
1687
1688 WEIGHT_SET_SPACEBASED(weight);
1689 return (weight);
1690 }
1691
1692 /*
1693 * Return the weight of the specified metaslab, according to the segment-based
1694 * weighting algorithm. The metaslab must be loaded. This function can
1695 * be called within a sync pass since it relies only on the metaslab's
1696 * range tree which is always accurate when the metaslab is loaded.
1697 */
1698 static uint64_t
1699 metaslab_weight_from_range_tree(metaslab_t *msp)
1700 {
1701 uint64_t weight = 0;
1702 uint32_t segments = 0;
1703
1704 ASSERT(msp->ms_loaded);
1705
1706 for (int i = RANGE_TREE_HISTOGRAM_SIZE - 1; i >= SPA_MINBLOCKSHIFT;
1707 i--) {
1708 uint8_t shift = msp->ms_group->mg_vd->vdev_ashift;
1709 int max_idx = SPACE_MAP_HISTOGRAM_SIZE + shift - 1;
1710
1711 segments <<= 1;
1712 segments += msp->ms_tree->rt_histogram[i];
1713
1714 /*
1715 * The range tree provides more precision than the space map
1716 * and must be downgraded so that all values fit within the
1717 * space map's histogram. This allows us to compare loaded
1718 * vs. unloaded metaslabs to determine which metaslab is
1719 * considered "best".
1720 */
1721 if (i > max_idx)
1722 continue;
1723
1724 if (segments != 0) {
1725 WEIGHT_SET_COUNT(weight, segments);
1726 WEIGHT_SET_INDEX(weight, i);
1727 WEIGHT_SET_ACTIVE(weight, 0);
1728 break;
1729 }
1730 }
1731 return (weight);
1732 }
1733
1734 /*
1735 * Calculate the weight based on the on-disk histogram. This should only
1736 * be called after a sync pass has completely finished since the on-disk
1737 * information is updated in metaslab_sync().
1738 */
1739 static uint64_t
1740 metaslab_weight_from_spacemap(metaslab_t *msp)
1741 {
1742 uint64_t weight = 0;
1743
1744 for (int i = SPACE_MAP_HISTOGRAM_SIZE - 1; i >= 0; i--) {
1745 if (msp->ms_sm->sm_phys->smp_histogram[i] != 0) {
1746 WEIGHT_SET_COUNT(weight,
1747 msp->ms_sm->sm_phys->smp_histogram[i]);
1748 WEIGHT_SET_INDEX(weight, i +
1749 msp->ms_sm->sm_shift);
1750 WEIGHT_SET_ACTIVE(weight, 0);
1751 break;
1752 }
1753 }
1754 return (weight);
1755 }
1756
1757 /*
1758 * Compute a segment-based weight for the specified metaslab. The weight
1759 * is determined by highest bucket in the histogram. The information
1760 * for the highest bucket is encoded into the weight value.
1761 */
1762 static uint64_t
1763 metaslab_segment_weight(metaslab_t *msp)
1764 {
1765 metaslab_group_t *mg = msp->ms_group;
1766 uint64_t weight = 0;
1767 uint8_t shift = mg->mg_vd->vdev_ashift;
1768
1769 ASSERT(MUTEX_HELD(&msp->ms_lock));
1770
1771 /*
1772 * The metaslab is completely free.
1773 */
1774 if (space_map_allocated(msp->ms_sm) == 0) {
1775 int idx = highbit64(msp->ms_size) - 1;
1776 int max_idx = SPACE_MAP_HISTOGRAM_SIZE + shift - 1;
1777
1778 if (idx < max_idx) {
1779 WEIGHT_SET_COUNT(weight, 1ULL);
1780 WEIGHT_SET_INDEX(weight, idx);
1781 } else {
1782 WEIGHT_SET_COUNT(weight, 1ULL << (idx - max_idx));
1783 WEIGHT_SET_INDEX(weight, max_idx);
1784 }
1785 WEIGHT_SET_ACTIVE(weight, 0);
1786 ASSERT(!WEIGHT_IS_SPACEBASED(weight));
1787
1788 return (weight);
1789 }
1790
1791 ASSERT3U(msp->ms_sm->sm_dbuf->db_size, ==, sizeof (space_map_phys_t));
1792
1793 /*
1794 * If the metaslab is fully allocated then just make the weight 0.
1795 */
1796 if (space_map_allocated(msp->ms_sm) == msp->ms_size)
1797 return (0);
1798 /*
1799 * If the metaslab is already loaded, then use the range tree to
1800 * determine the weight. Otherwise, we rely on the space map information
1801 * to generate the weight.
1802 */
1803 if (msp->ms_loaded) {
1804 weight = metaslab_weight_from_range_tree(msp);
1805 } else {
1806 weight = metaslab_weight_from_spacemap(msp);
1807 }
1808
1809 /*
1810 * If the metaslab was active the last time we calculated its weight
1811 * then keep it active. We want to consume the entire region that
1812 * is associated with this weight.
1813 */
1814 if (msp->ms_activation_weight != 0 && weight != 0)
1815 WEIGHT_SET_ACTIVE(weight, WEIGHT_GET_ACTIVE(msp->ms_weight));
1816 return (weight);
1817 }
1818
1819 /*
1820 * Determine if we should attempt to allocate from this metaslab. If the
1821 * metaslab has a maximum size then we can quickly determine if the desired
1822 * allocation size can be satisfied. Otherwise, if we're using segment-based
1823 * weighting then we can determine the maximum allocation that this metaslab
1824 * can accommodate based on the index encoded in the weight. If we're using
1825 * space-based weights then rely on the entire weight (excluding the weight
1826 * type bit).
1827 */
1828 boolean_t
1829 metaslab_should_allocate(metaslab_t *msp, uint64_t asize)
1830 {
1831 boolean_t should_allocate;
1832
1833 if (msp->ms_max_size != 0)
1834 return (msp->ms_max_size >= asize);
1835
1836 if (!WEIGHT_IS_SPACEBASED(msp->ms_weight)) {
1837 /*
1838 * The metaslab segment weight indicates segments in the
1839 * range [2^i, 2^(i+1)), where i is the index in the weight.
1840 * Since the asize might be in the middle of the range, we
1841 * should attempt the allocation if asize < 2^(i+1).
1842 */
1843 should_allocate = (asize <
1844 1ULL << (WEIGHT_GET_INDEX(msp->ms_weight) + 1));
1845 } else {
1846 should_allocate = (asize <=
1847 (msp->ms_weight & ~METASLAB_WEIGHT_TYPE));
1848 }
1849 return (should_allocate);
1850 }
1851 static uint64_t
1852 metaslab_weight(metaslab_t *msp)
1853 {
1854 vdev_t *vd = msp->ms_group->mg_vd;
1855 spa_t *spa = vd->vdev_spa;
1856 uint64_t weight;
1857
1858 ASSERT(MUTEX_HELD(&msp->ms_lock));
1859
1860 /*
1861 * This vdev is in the process of being removed so there is nothing
1862 * for us to do here.
1863 */
1864 if (vd->vdev_removing) {
1865 ASSERT0(space_map_allocated(msp->ms_sm));
1866 ASSERT0(vd->vdev_ms_shift);
1867 return (0);
1868 }
1869
1870 metaslab_set_fragmentation(msp);
1871
1872 /*
1873 * Update the maximum size if the metaslab is loaded. This will
1874 * ensure that we get an accurate maximum size if newly freed space
1875 * has been added back into the free tree.
1876 */
1877 if (msp->ms_loaded)
1878 msp->ms_max_size = metaslab_block_maxsize(msp);
1879
1880 /*
1881 * Segment-based weighting requires space map histogram support.
1882 */
1883 if (zfs_metaslab_segment_weight_enabled &&
1884 spa_feature_is_enabled(spa, SPA_FEATURE_SPACEMAP_HISTOGRAM) &&
1885 (msp->ms_sm == NULL || msp->ms_sm->sm_dbuf->db_size ==
1886 sizeof (space_map_phys_t))) {
1887 weight = metaslab_segment_weight(msp);
1888 } else {
1889 weight = metaslab_space_weight(msp);
1890 }
1891 return (weight);
1892 }
1893
1894 static int
1895 metaslab_activate(metaslab_t *msp, uint64_t activation_weight)
1896 {
1897 ASSERT(MUTEX_HELD(&msp->ms_lock));
1898
1899 if ((msp->ms_weight & METASLAB_ACTIVE_MASK) == 0) {
1900 metaslab_load_wait(msp);
1901 if (!msp->ms_loaded) {
1902 int error = metaslab_load(msp);
1903 if (error) {
1904 metaslab_group_sort(msp->ms_group, msp, 0);
1905 return (error);
1906 }
1907 }
1908
1909 msp->ms_activation_weight = msp->ms_weight;
1910 metaslab_group_sort(msp->ms_group, msp,
1911 msp->ms_weight | activation_weight);
1912 }
1913 ASSERT(msp->ms_loaded);
1914 ASSERT(msp->ms_weight & METASLAB_ACTIVE_MASK);
1915
1916 return (0);
1917 }
1918
1919 static void
1920 metaslab_passivate(metaslab_t *msp, uint64_t weight)
1921 {
1922 ASSERTV(uint64_t size = weight & ~METASLAB_WEIGHT_TYPE);
1923
1924 /*
1925 * If size < SPA_MINBLOCKSIZE, then we will not allocate from
1926 * this metaslab again. In that case, it had better be empty,
1927 * or we would be leaving space on the table.
1928 */
1929 ASSERT(!WEIGHT_IS_SPACEBASED(msp->ms_weight) ||
1930 size >= SPA_MINBLOCKSIZE ||
1931 range_tree_space(msp->ms_tree) == 0);
1932 ASSERT0(weight & METASLAB_ACTIVE_MASK);
1933
1934 msp->ms_activation_weight = 0;
1935 metaslab_group_sort(msp->ms_group, msp, weight);
1936 ASSERT((msp->ms_weight & METASLAB_ACTIVE_MASK) == 0);
1937 }
1938
1939 /*
1940 * Segment-based metaslabs are activated once and remain active until
1941 * we either fail an allocation attempt (similar to space-based metaslabs)
1942 * or have exhausted the free space in zfs_metaslab_switch_threshold
1943 * buckets since the metaslab was activated. This function checks to see
1944 * if we've exhaused the zfs_metaslab_switch_threshold buckets in the
1945 * metaslab and passivates it proactively. This will allow us to select a
1946 * metaslab with a larger contiguous region, if any, remaining within this
1947 * metaslab group. If we're in sync pass > 1, then we continue using this
1948 * metaslab so that we don't dirty more block and cause more sync passes.
1949 */
1950 void
1951 metaslab_segment_may_passivate(metaslab_t *msp)
1952 {
1953 spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
1954
1955 if (WEIGHT_IS_SPACEBASED(msp->ms_weight) || spa_sync_pass(spa) > 1)
1956 return;
1957
1958 /*
1959 * Since we are in the middle of a sync pass, the most accurate
1960 * information that is accessible to us is the in-core range tree
1961 * histogram; calculate the new weight based on that information.
1962 */
1963 uint64_t weight = metaslab_weight_from_range_tree(msp);
1964 int activation_idx = WEIGHT_GET_INDEX(msp->ms_activation_weight);
1965 int current_idx = WEIGHT_GET_INDEX(weight);
1966
1967 if (current_idx <= activation_idx - zfs_metaslab_switch_threshold)
1968 metaslab_passivate(msp, weight);
1969 }
1970
1971 static void
1972 metaslab_preload(void *arg)
1973 {
1974 metaslab_t *msp = arg;
1975 spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
1976 fstrans_cookie_t cookie = spl_fstrans_mark();
1977
1978 ASSERT(!MUTEX_HELD(&msp->ms_group->mg_lock));
1979
1980 mutex_enter(&msp->ms_lock);
1981 metaslab_load_wait(msp);
1982 if (!msp->ms_loaded)
1983 (void) metaslab_load(msp);
1984 msp->ms_selected_txg = spa_syncing_txg(spa);
1985 mutex_exit(&msp->ms_lock);
1986 spl_fstrans_unmark(cookie);
1987 }
1988
1989 static void
1990 metaslab_group_preload(metaslab_group_t *mg)
1991 {
1992 spa_t *spa = mg->mg_vd->vdev_spa;
1993 metaslab_t *msp;
1994 avl_tree_t *t = &mg->mg_metaslab_tree;
1995 int m = 0;
1996
1997 if (spa_shutting_down(spa) || !metaslab_preload_enabled) {
1998 taskq_wait_outstanding(mg->mg_taskq, 0);
1999 return;
2000 }
2001
2002 mutex_enter(&mg->mg_lock);
2003 /*
2004 * Load the next potential metaslabs
2005 */
2006 for (msp = avl_first(t); msp != NULL; msp = AVL_NEXT(t, msp)) {
2007 /*
2008 * We preload only the maximum number of metaslabs specified
2009 * by metaslab_preload_limit. If a metaslab is being forced
2010 * to condense then we preload it too. This will ensure
2011 * that force condensing happens in the next txg.
2012 */
2013 if (++m > metaslab_preload_limit && !msp->ms_condense_wanted) {
2014 continue;
2015 }
2016
2017 VERIFY(taskq_dispatch(mg->mg_taskq, metaslab_preload,
2018 msp, TQ_SLEEP) != TASKQID_INVALID);
2019 }
2020 mutex_exit(&mg->mg_lock);
2021 }
2022
2023 /*
2024 * Determine if the space map's on-disk footprint is past our tolerance
2025 * for inefficiency. We would like to use the following criteria to make
2026 * our decision:
2027 *
2028 * 1. The size of the space map object should not dramatically increase as a
2029 * result of writing out the free space range tree.
2030 *
2031 * 2. The minimal on-disk space map representation is zfs_condense_pct/100
2032 * times the size than the free space range tree representation
2033 * (i.e. zfs_condense_pct = 110 and in-core = 1MB, minimal = 1.1.MB).
2034 *
2035 * 3. The on-disk size of the space map should actually decrease.
2036 *
2037 * Checking the first condition is tricky since we don't want to walk
2038 * the entire AVL tree calculating the estimated on-disk size. Instead we
2039 * use the size-ordered range tree in the metaslab and calculate the
2040 * size required to write out the largest segment in our free tree. If the
2041 * size required to represent that segment on disk is larger than the space
2042 * map object then we avoid condensing this map.
2043 *
2044 * To determine the second criterion we use a best-case estimate and assume
2045 * each segment can be represented on-disk as a single 64-bit entry. We refer
2046 * to this best-case estimate as the space map's minimal form.
2047 *
2048 * Unfortunately, we cannot compute the on-disk size of the space map in this
2049 * context because we cannot accurately compute the effects of compression, etc.
2050 * Instead, we apply the heuristic described in the block comment for
2051 * zfs_metaslab_condense_block_threshold - we only condense if the space used
2052 * is greater than a threshold number of blocks.
2053 */
2054 static boolean_t
2055 metaslab_should_condense(metaslab_t *msp)
2056 {
2057 space_map_t *sm = msp->ms_sm;
2058 range_seg_t *rs;
2059 uint64_t size, entries, segsz, object_size, optimal_size, record_size;
2060 dmu_object_info_t doi;
2061 uint64_t vdev_blocksize = 1ULL << msp->ms_group->mg_vd->vdev_ashift;
2062
2063 ASSERT(MUTEX_HELD(&msp->ms_lock));
2064 ASSERT(msp->ms_loaded);
2065
2066 /*
2067 * Use the ms_size_tree range tree, which is ordered by size, to
2068 * obtain the largest segment in the free tree. We always condense
2069 * metaslabs that are empty and metaslabs for which a condense
2070 * request has been made.
2071 */
2072 rs = avl_last(&msp->ms_size_tree);
2073 if (rs == NULL || msp->ms_condense_wanted)
2074 return (B_TRUE);
2075
2076 /*
2077 * Calculate the number of 64-bit entries this segment would
2078 * require when written to disk. If this single segment would be
2079 * larger on-disk than the entire current on-disk structure, then
2080 * clearly condensing will increase the on-disk structure size.
2081 */
2082 size = (rs->rs_end - rs->rs_start) >> sm->sm_shift;
2083 entries = size / (MIN(size, SM_RUN_MAX));
2084 segsz = entries * sizeof (uint64_t);
2085
2086 optimal_size = sizeof (uint64_t) * avl_numnodes(&msp->ms_tree->rt_root);
2087 object_size = space_map_length(msp->ms_sm);
2088
2089 dmu_object_info_from_db(sm->sm_dbuf, &doi);
2090 record_size = MAX(doi.doi_data_block_size, vdev_blocksize);
2091
2092 return (segsz <= object_size &&
2093 object_size >= (optimal_size * zfs_condense_pct / 100) &&
2094 object_size > zfs_metaslab_condense_block_threshold * record_size);
2095 }
2096
2097 /*
2098 * Condense the on-disk space map representation to its minimized form.
2099 * The minimized form consists of a small number of allocations followed by
2100 * the entries of the free range tree.
2101 */
2102 static void
2103 metaslab_condense(metaslab_t *msp, uint64_t txg, dmu_tx_t *tx)
2104 {
2105 spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
2106 range_tree_t *condense_tree;
2107 space_map_t *sm = msp->ms_sm;
2108
2109 ASSERT(MUTEX_HELD(&msp->ms_lock));
2110 ASSERT3U(spa_sync_pass(spa), ==, 1);
2111 ASSERT(msp->ms_loaded);
2112
2113
2114 spa_dbgmsg(spa, "condensing: txg %llu, msp[%llu] %p, vdev id %llu, "
2115 "spa %s, smp size %llu, segments %lu, forcing condense=%s", txg,
2116 msp->ms_id, msp, msp->ms_group->mg_vd->vdev_id,
2117 msp->ms_group->mg_vd->vdev_spa->spa_name,
2118 space_map_length(msp->ms_sm), avl_numnodes(&msp->ms_tree->rt_root),
2119 msp->ms_condense_wanted ? "TRUE" : "FALSE");
2120
2121 msp->ms_condense_wanted = B_FALSE;
2122
2123 /*
2124 * Create an range tree that is 100% allocated. We remove segments
2125 * that have been freed in this txg, any deferred frees that exist,
2126 * and any allocation in the future. Removing segments should be
2127 * a relatively inexpensive operation since we expect these trees to
2128 * have a small number of nodes.
2129 */
2130 condense_tree = range_tree_create(NULL, NULL, &msp->ms_lock);
2131 range_tree_add(condense_tree, msp->ms_start, msp->ms_size);
2132
2133 /*
2134 * Remove what's been freed in this txg from the condense_tree.
2135 * Since we're in sync_pass 1, we know that all the frees from
2136 * this txg are in the freeingtree.
2137 */
2138 range_tree_walk(msp->ms_freeingtree, range_tree_remove, condense_tree);
2139
2140 for (int t = 0; t < TXG_DEFER_SIZE; t++) {
2141 range_tree_walk(msp->ms_defertree[t],
2142 range_tree_remove, condense_tree);
2143 }
2144
2145 for (int t = 1; t < TXG_CONCURRENT_STATES; t++) {
2146 range_tree_walk(msp->ms_alloctree[(txg + t) & TXG_MASK],
2147 range_tree_remove, condense_tree);
2148 }
2149
2150 /*
2151 * We're about to drop the metaslab's lock thus allowing
2152 * other consumers to change it's content. Set the
2153 * metaslab's ms_condensing flag to ensure that
2154 * allocations on this metaslab do not occur while we're
2155 * in the middle of committing it to disk. This is only critical
2156 * for the ms_tree as all other range trees use per txg
2157 * views of their content.
2158 */
2159 msp->ms_condensing = B_TRUE;
2160
2161 mutex_exit(&msp->ms_lock);
2162 space_map_truncate(sm, tx);
2163 mutex_enter(&msp->ms_lock);
2164
2165 /*
2166 * While we would ideally like to create a space map representation
2167 * that consists only of allocation records, doing so can be
2168 * prohibitively expensive because the in-core free tree can be
2169 * large, and therefore computationally expensive to subtract
2170 * from the condense_tree. Instead we sync out two trees, a cheap
2171 * allocation only tree followed by the in-core free tree. While not
2172 * optimal, this is typically close to optimal, and much cheaper to
2173 * compute.
2174 */
2175 space_map_write(sm, condense_tree, SM_ALLOC, tx);
2176 range_tree_vacate(condense_tree, NULL, NULL);
2177 range_tree_destroy(condense_tree);
2178
2179 space_map_write(sm, msp->ms_tree, SM_FREE, tx);
2180 msp->ms_condensing = B_FALSE;
2181 }
2182
2183 /*
2184 * Write a metaslab to disk in the context of the specified transaction group.
2185 */
2186 void
2187 metaslab_sync(metaslab_t *msp, uint64_t txg)
2188 {
2189 metaslab_group_t *mg = msp->ms_group;
2190 vdev_t *vd = mg->mg_vd;
2191 spa_t *spa = vd->vdev_spa;
2192 objset_t *mos = spa_meta_objset(spa);
2193 range_tree_t *alloctree = msp->ms_alloctree[txg & TXG_MASK];
2194 dmu_tx_t *tx;
2195 uint64_t object = space_map_object(msp->ms_sm);
2196
2197 ASSERT(!vd->vdev_ishole);
2198
2199 /*
2200 * This metaslab has just been added so there's no work to do now.
2201 */
2202 if (msp->ms_freeingtree == NULL) {
2203 ASSERT3P(alloctree, ==, NULL);
2204 return;
2205 }
2206
2207 ASSERT3P(alloctree, !=, NULL);
2208 ASSERT3P(msp->ms_freeingtree, !=, NULL);
2209 ASSERT3P(msp->ms_freedtree, !=, NULL);
2210
2211 /*
2212 * Normally, we don't want to process a metaslab if there
2213 * are no allocations or frees to perform. However, if the metaslab
2214 * is being forced to condense and it's loaded, we need to let it
2215 * through.
2216 */
2217 if (range_tree_space(alloctree) == 0 &&
2218 range_tree_space(msp->ms_freeingtree) == 0 &&
2219 !(msp->ms_loaded && msp->ms_condense_wanted))
2220 return;
2221
2222
2223 VERIFY(txg <= spa_final_dirty_txg(spa));
2224
2225 /*
2226 * The only state that can actually be changing concurrently with
2227 * metaslab_sync() is the metaslab's ms_tree. No other thread can
2228 * be modifying this txg's alloctree, freeingtree, freedtree, or
2229 * space_map_phys_t. Therefore, we only hold ms_lock to satify
2230 * space map ASSERTs. We drop it whenever we call into the DMU,
2231 * because the DMU can call down to us (e.g. via zio_free()) at
2232 * any time.
2233 */
2234
2235 tx = dmu_tx_create_assigned(spa_get_dsl(spa), txg);
2236
2237 if (msp->ms_sm == NULL) {
2238 uint64_t new_object;
2239
2240 new_object = space_map_alloc(mos, tx);
2241 VERIFY3U(new_object, !=, 0);
2242
2243 VERIFY0(space_map_open(&msp->ms_sm, mos, new_object,
2244 msp->ms_start, msp->ms_size, vd->vdev_ashift,
2245 &msp->ms_lock));
2246 ASSERT(msp->ms_sm != NULL);
2247 }
2248
2249 mutex_enter(&msp->ms_lock);
2250
2251 /*
2252 * Note: metaslab_condense() clears the space map's histogram.
2253 * Therefore we must verify and remove this histogram before
2254 * condensing.
2255 */
2256 metaslab_group_histogram_verify(mg);
2257 metaslab_class_histogram_verify(mg->mg_class);
2258 metaslab_group_histogram_remove(mg, msp);
2259
2260 if (msp->ms_loaded && spa_sync_pass(spa) == 1 &&
2261 metaslab_should_condense(msp)) {
2262 metaslab_condense(msp, txg, tx);
2263 } else {
2264 space_map_write(msp->ms_sm, alloctree, SM_ALLOC, tx);
2265 space_map_write(msp->ms_sm, msp->ms_freeingtree, SM_FREE, tx);
2266 }
2267
2268 if (msp->ms_loaded) {
2269 /*
2270 * When the space map is loaded, we have an accruate
2271 * histogram in the range tree. This gives us an opportunity
2272 * to bring the space map's histogram up-to-date so we clear
2273 * it first before updating it.
2274 */
2275 space_map_histogram_clear(msp->ms_sm);
2276 space_map_histogram_add(msp->ms_sm, msp->ms_tree, tx);
2277
2278 /*
2279 * Since we've cleared the histogram we need to add back
2280 * any free space that has already been processed, plus
2281 * any deferred space. This allows the on-disk histogram
2282 * to accurately reflect all free space even if some space
2283 * is not yet available for allocation (i.e. deferred).
2284 */
2285 space_map_histogram_add(msp->ms_sm, msp->ms_freedtree, tx);
2286
2287 /*
2288 * Add back any deferred free space that has not been
2289 * added back into the in-core free tree yet. This will
2290 * ensure that we don't end up with a space map histogram
2291 * that is completely empty unless the metaslab is fully
2292 * allocated.
2293 */
2294 for (int t = 0; t < TXG_DEFER_SIZE; t++) {
2295 space_map_histogram_add(msp->ms_sm,
2296 msp->ms_defertree[t], tx);
2297 }
2298 }
2299
2300 /*
2301 * Always add the free space from this sync pass to the space
2302 * map histogram. We want to make sure that the on-disk histogram
2303 * accounts for all free space. If the space map is not loaded,
2304 * then we will lose some accuracy but will correct it the next
2305 * time we load the space map.
2306 */
2307 space_map_histogram_add(msp->ms_sm, msp->ms_freeingtree, tx);
2308
2309 metaslab_group_histogram_add(mg, msp);
2310 metaslab_group_histogram_verify(mg);
2311 metaslab_class_histogram_verify(mg->mg_class);
2312
2313 /*
2314 * For sync pass 1, we avoid traversing this txg's free range tree
2315 * and instead will just swap the pointers for freeingtree and
2316 * freedtree. We can safely do this since the freed_tree is
2317 * guaranteed to be empty on the initial pass.
2318 */
2319 if (spa_sync_pass(spa) == 1) {
2320 range_tree_swap(&msp->ms_freeingtree, &msp->ms_freedtree);
2321 } else {
2322 range_tree_vacate(msp->ms_freeingtree,
2323 range_tree_add, msp->ms_freedtree);
2324 }
2325 range_tree_vacate(alloctree, NULL, NULL);
2326
2327 ASSERT0(range_tree_space(msp->ms_alloctree[txg & TXG_MASK]));
2328 ASSERT0(range_tree_space(msp->ms_alloctree[TXG_CLEAN(txg) & TXG_MASK]));
2329 ASSERT0(range_tree_space(msp->ms_freeingtree));
2330
2331 mutex_exit(&msp->ms_lock);
2332
2333 if (object != space_map_object(msp->ms_sm)) {
2334 object = space_map_object(msp->ms_sm);
2335 dmu_write(mos, vd->vdev_ms_array, sizeof (uint64_t) *
2336 msp->ms_id, sizeof (uint64_t), &object, tx);
2337 }
2338 dmu_tx_commit(tx);
2339 }
2340
2341 /*
2342 * Called after a transaction group has completely synced to mark
2343 * all of the metaslab's free space as usable.
2344 */
2345 void
2346 metaslab_sync_done(metaslab_t *msp, uint64_t txg)
2347 {
2348 metaslab_group_t *mg = msp->ms_group;
2349 vdev_t *vd = mg->mg_vd;
2350 spa_t *spa = vd->vdev_spa;
2351 range_tree_t **defer_tree;
2352 int64_t alloc_delta, defer_delta;
2353 boolean_t defer_allowed = B_TRUE;
2354
2355 ASSERT(!vd->vdev_ishole);
2356
2357 mutex_enter(&msp->ms_lock);
2358
2359 /*
2360 * If this metaslab is just becoming available, initialize its
2361 * range trees and add its capacity to the vdev.
2362 */
2363 if (msp->ms_freedtree == NULL) {
2364 for (int t = 0; t < TXG_SIZE; t++) {
2365 ASSERT(msp->ms_alloctree[t] == NULL);
2366
2367 msp->ms_alloctree[t] = range_tree_create(NULL, msp,
2368 &msp->ms_lock);
2369 }
2370
2371 ASSERT3P(msp->ms_freeingtree, ==, NULL);
2372 msp->ms_freeingtree = range_tree_create(NULL, msp,
2373 &msp->ms_lock);
2374
2375 ASSERT3P(msp->ms_freedtree, ==, NULL);
2376 msp->ms_freedtree = range_tree_create(NULL, msp,
2377 &msp->ms_lock);
2378
2379 for (int t = 0; t < TXG_DEFER_SIZE; t++) {
2380 ASSERT(msp->ms_defertree[t] == NULL);
2381
2382 msp->ms_defertree[t] = range_tree_create(NULL, msp,
2383 &msp->ms_lock);
2384 }
2385
2386 vdev_space_update(vd, 0, 0, msp->ms_size);
2387 }
2388
2389 defer_tree = &msp->ms_defertree[txg % TXG_DEFER_SIZE];
2390
2391 uint64_t free_space = metaslab_class_get_space(spa_normal_class(spa)) -
2392 metaslab_class_get_alloc(spa_normal_class(spa));
2393 if (free_space <= spa_get_slop_space(spa)) {
2394 defer_allowed = B_FALSE;
2395 }
2396
2397 defer_delta = 0;
2398 alloc_delta = space_map_alloc_delta(msp->ms_sm);
2399 if (defer_allowed) {
2400 defer_delta = range_tree_space(msp->ms_freedtree) -
2401 range_tree_space(*defer_tree);
2402 } else {
2403 defer_delta -= range_tree_space(*defer_tree);
2404 }
2405
2406 vdev_space_update(vd, alloc_delta + defer_delta, defer_delta, 0);
2407
2408 /*
2409 * If there's a metaslab_load() in progress, wait for it to complete
2410 * so that we have a consistent view of the in-core space map.
2411 */
2412 metaslab_load_wait(msp);
2413
2414 /*
2415 * Move the frees from the defer_tree back to the free
2416 * range tree (if it's loaded). Swap the freed_tree and the
2417 * defer_tree -- this is safe to do because we've just emptied out
2418 * the defer_tree.
2419 */
2420 range_tree_vacate(*defer_tree,
2421 msp->ms_loaded ? range_tree_add : NULL, msp->ms_tree);
2422 if (defer_allowed) {
2423 range_tree_swap(&msp->ms_freedtree, defer_tree);
2424 } else {
2425 range_tree_vacate(msp->ms_freedtree,
2426 msp->ms_loaded ? range_tree_add : NULL, msp->ms_tree);
2427 }
2428
2429 space_map_update(msp->ms_sm);
2430
2431 msp->ms_deferspace += defer_delta;
2432 ASSERT3S(msp->ms_deferspace, >=, 0);
2433 ASSERT3S(msp->ms_deferspace, <=, msp->ms_size);
2434 if (msp->ms_deferspace != 0) {
2435 /*
2436 * Keep syncing this metaslab until all deferred frees
2437 * are back in circulation.
2438 */
2439 vdev_dirty(vd, VDD_METASLAB, msp, txg + 1);
2440 }
2441
2442 /*
2443 * Calculate the new weights before unloading any metaslabs.
2444 * This will give us the most accurate weighting.
2445 */
2446 metaslab_group_sort(mg, msp, metaslab_weight(msp));
2447
2448 /*
2449 * If the metaslab is loaded and we've not tried to load or allocate
2450 * from it in 'metaslab_unload_delay' txgs, then unload it.
2451 */
2452 if (msp->ms_loaded &&
2453 msp->ms_selected_txg + metaslab_unload_delay < txg) {
2454
2455 for (int t = 1; t < TXG_CONCURRENT_STATES; t++) {
2456 VERIFY0(range_tree_space(
2457 msp->ms_alloctree[(txg + t) & TXG_MASK]));
2458 }
2459
2460 if (!metaslab_debug_unload)
2461 metaslab_unload(msp);
2462 }
2463
2464 mutex_exit(&msp->ms_lock);
2465 }
2466
2467 void
2468 metaslab_sync_reassess(metaslab_group_t *mg)
2469 {
2470 metaslab_group_alloc_update(mg);
2471 mg->mg_fragmentation = metaslab_group_fragmentation(mg);
2472
2473 /*
2474 * Preload the next potential metaslabs
2475 */
2476 metaslab_group_preload(mg);
2477 }
2478
2479 static uint64_t
2480 metaslab_distance(metaslab_t *msp, dva_t *dva)
2481 {
2482 uint64_t ms_shift = msp->ms_group->mg_vd->vdev_ms_shift;
2483 uint64_t offset = DVA_GET_OFFSET(dva) >> ms_shift;
2484 uint64_t start = msp->ms_id;
2485
2486 if (msp->ms_group->mg_vd->vdev_id != DVA_GET_VDEV(dva))
2487 return (1ULL << 63);
2488
2489 if (offset < start)
2490 return ((start - offset) << ms_shift);
2491 if (offset > start)
2492 return ((offset - start) << ms_shift);
2493 return (0);
2494 }
2495
2496 /*
2497 * ==========================================================================
2498 * Metaslab allocation tracing facility
2499 * ==========================================================================
2500 */
2501 #ifdef _METASLAB_TRACING
2502 kstat_t *metaslab_trace_ksp;
2503 kstat_named_t metaslab_trace_over_limit;
2504
2505 void
2506 metaslab_alloc_trace_init(void)
2507 {
2508 ASSERT(metaslab_alloc_trace_cache == NULL);
2509 metaslab_alloc_trace_cache = kmem_cache_create(
2510 "metaslab_alloc_trace_cache", sizeof (metaslab_alloc_trace_t),
2511 0, NULL, NULL, NULL, NULL, NULL, 0);
2512 metaslab_trace_ksp = kstat_create("zfs", 0, "metaslab_trace_stats",
2513 "misc", KSTAT_TYPE_NAMED, 1, KSTAT_FLAG_VIRTUAL);
2514 if (metaslab_trace_ksp != NULL) {
2515 metaslab_trace_ksp->ks_data = &metaslab_trace_over_limit;
2516 kstat_named_init(&metaslab_trace_over_limit,
2517 "metaslab_trace_over_limit", KSTAT_DATA_UINT64);
2518 kstat_install(metaslab_trace_ksp);
2519 }
2520 }
2521
2522 void
2523 metaslab_alloc_trace_fini(void)
2524 {
2525 if (metaslab_trace_ksp != NULL) {
2526 kstat_delete(metaslab_trace_ksp);
2527 metaslab_trace_ksp = NULL;
2528 }
2529 kmem_cache_destroy(metaslab_alloc_trace_cache);
2530 metaslab_alloc_trace_cache = NULL;
2531 }
2532
2533 /*
2534 * Add an allocation trace element to the allocation tracing list.
2535 */
2536 static void
2537 metaslab_trace_add(zio_alloc_list_t *zal, metaslab_group_t *mg,
2538 metaslab_t *msp, uint64_t psize, uint32_t dva_id, uint64_t offset)
2539 {
2540 metaslab_alloc_trace_t *mat;
2541
2542 if (!metaslab_trace_enabled)
2543 return;
2544
2545 /*
2546 * When the tracing list reaches its maximum we remove
2547 * the second element in the list before adding a new one.
2548 * By removing the second element we preserve the original
2549 * entry as a clue to what allocations steps have already been
2550 * performed.
2551 */
2552 if (zal->zal_size == metaslab_trace_max_entries) {
2553 metaslab_alloc_trace_t *mat_next;
2554 #ifdef DEBUG
2555 panic("too many entries in allocation list");
2556 #endif
2557 atomic_inc_64(&metaslab_trace_over_limit.value.ui64);
2558 zal->zal_size--;
2559 mat_next = list_next(&zal->zal_list, list_head(&zal->zal_list));
2560 list_remove(&zal->zal_list, mat_next);
2561 kmem_cache_free(metaslab_alloc_trace_cache, mat_next);
2562 }
2563
2564 mat = kmem_cache_alloc(metaslab_alloc_trace_cache, KM_SLEEP);
2565 list_link_init(&mat->mat_list_node);
2566 mat->mat_mg = mg;
2567 mat->mat_msp = msp;
2568 mat->mat_size = psize;
2569 mat->mat_dva_id = dva_id;
2570 mat->mat_offset = offset;
2571 mat->mat_weight = 0;
2572
2573 if (msp != NULL)
2574 mat->mat_weight = msp->ms_weight;
2575
2576 /*
2577 * The list is part of the zio so locking is not required. Only
2578 * a single thread will perform allocations for a given zio.
2579 */
2580 list_insert_tail(&zal->zal_list, mat);
2581 zal->zal_size++;
2582
2583 ASSERT3U(zal->zal_size, <=, metaslab_trace_max_entries);
2584 }
2585
2586 void
2587 metaslab_trace_init(zio_alloc_list_t *zal)
2588 {
2589 list_create(&zal->zal_list, sizeof (metaslab_alloc_trace_t),
2590 offsetof(metaslab_alloc_trace_t, mat_list_node));
2591 zal->zal_size = 0;
2592 }
2593
2594 void
2595 metaslab_trace_fini(zio_alloc_list_t *zal)
2596 {
2597 metaslab_alloc_trace_t *mat;
2598
2599 while ((mat = list_remove_head(&zal->zal_list)) != NULL)
2600 kmem_cache_free(metaslab_alloc_trace_cache, mat);
2601 list_destroy(&zal->zal_list);
2602 zal->zal_size = 0;
2603 }
2604 #else
2605
2606 #define metaslab_trace_add(zal, mg, msp, psize, id, off)
2607
2608 void
2609 metaslab_alloc_trace_init(void)
2610 {
2611 }
2612
2613 void
2614 metaslab_alloc_trace_fini(void)
2615 {
2616 }
2617
2618 void
2619 metaslab_trace_init(zio_alloc_list_t *zal)
2620 {
2621 }
2622
2623 void
2624 metaslab_trace_fini(zio_alloc_list_t *zal)
2625 {
2626 }
2627
2628 #endif /* _METASLAB_TRACING */
2629
2630 /*
2631 * ==========================================================================
2632 * Metaslab block operations
2633 * ==========================================================================
2634 */
2635
2636 static void
2637 metaslab_group_alloc_increment(spa_t *spa, uint64_t vdev, void *tag, int flags)
2638 {
2639 if (!(flags & METASLAB_ASYNC_ALLOC) ||
2640 flags & METASLAB_DONT_THROTTLE)
2641 return;
2642
2643 metaslab_group_t *mg = vdev_lookup_top(spa, vdev)->vdev_mg;
2644 if (!mg->mg_class->mc_alloc_throttle_enabled)
2645 return;
2646
2647 (void) refcount_add(&mg->mg_alloc_queue_depth, tag);
2648 }
2649
2650 void
2651 metaslab_group_alloc_decrement(spa_t *spa, uint64_t vdev, void *tag, int flags)
2652 {
2653 if (!(flags & METASLAB_ASYNC_ALLOC) ||
2654 flags & METASLAB_DONT_THROTTLE)
2655 return;
2656
2657 metaslab_group_t *mg = vdev_lookup_top(spa, vdev)->vdev_mg;
2658 if (!mg->mg_class->mc_alloc_throttle_enabled)
2659 return;
2660
2661 (void) refcount_remove(&mg->mg_alloc_queue_depth, tag);
2662 }
2663
2664 void
2665 metaslab_group_alloc_verify(spa_t *spa, const blkptr_t *bp, void *tag)
2666 {
2667 #ifdef ZFS_DEBUG
2668 const dva_t *dva = bp->blk_dva;
2669 int ndvas = BP_GET_NDVAS(bp);
2670
2671 for (int d = 0; d < ndvas; d++) {
2672 uint64_t vdev = DVA_GET_VDEV(&dva[d]);
2673 metaslab_group_t *mg = vdev_lookup_top(spa, vdev)->vdev_mg;
2674 VERIFY(refcount_not_held(&mg->mg_alloc_queue_depth, tag));
2675 }
2676 #endif
2677 }
2678
2679 static uint64_t
2680 metaslab_block_alloc(metaslab_t *msp, uint64_t size, uint64_t txg)
2681 {
2682 uint64_t start;
2683 range_tree_t *rt = msp->ms_tree;
2684 metaslab_class_t *mc = msp->ms_group->mg_class;
2685
2686 VERIFY(!msp->ms_condensing);
2687
2688 start = mc->mc_ops->msop_alloc(msp, size);
2689 if (start != -1ULL) {
2690 metaslab_group_t *mg = msp->ms_group;
2691 vdev_t *vd = mg->mg_vd;
2692
2693 VERIFY0(P2PHASE(start, 1ULL << vd->vdev_ashift));
2694 VERIFY0(P2PHASE(size, 1ULL << vd->vdev_ashift));
2695 VERIFY3U(range_tree_space(rt) - size, <=, msp->ms_size);
2696 range_tree_remove(rt, start, size);
2697
2698 if (range_tree_space(msp->ms_alloctree[txg & TXG_MASK]) == 0)
2699 vdev_dirty(mg->mg_vd, VDD_METASLAB, msp, txg);
2700
2701 range_tree_add(msp->ms_alloctree[txg & TXG_MASK], start, size);
2702
2703 /* Track the last successful allocation */
2704 msp->ms_alloc_txg = txg;
2705 metaslab_verify_space(msp, txg);
2706 }
2707
2708 /*
2709 * Now that we've attempted the allocation we need to update the
2710 * metaslab's maximum block size since it may have changed.
2711 */
2712 msp->ms_max_size = metaslab_block_maxsize(msp);
2713 return (start);
2714 }
2715
2716 static uint64_t
2717 metaslab_group_alloc_normal(metaslab_group_t *mg, zio_alloc_list_t *zal,
2718 uint64_t asize, uint64_t txg, uint64_t min_distance, dva_t *dva, int d)
2719 {
2720 metaslab_t *msp = NULL;
2721 uint64_t offset = -1ULL;
2722 uint64_t activation_weight;
2723 uint64_t target_distance;
2724 int i;
2725
2726 activation_weight = METASLAB_WEIGHT_PRIMARY;
2727 for (i = 0; i < d; i++) {
2728 if (DVA_GET_VDEV(&dva[i]) == mg->mg_vd->vdev_id) {
2729 activation_weight = METASLAB_WEIGHT_SECONDARY;
2730 break;
2731 }
2732 }
2733
2734 metaslab_t *search = kmem_alloc(sizeof (*search), KM_SLEEP);
2735 search->ms_weight = UINT64_MAX;
2736 search->ms_start = 0;
2737 for (;;) {
2738 boolean_t was_active;
2739 avl_tree_t *t = &mg->mg_metaslab_tree;
2740 avl_index_t idx;
2741
2742 mutex_enter(&mg->mg_lock);
2743
2744 /*
2745 * Find the metaslab with the highest weight that is less
2746 * than what we've already tried. In the common case, this
2747 * means that we will examine each metaslab at most once.
2748 * Note that concurrent callers could reorder metaslabs
2749 * by activation/passivation once we have dropped the mg_lock.
2750 * If a metaslab is activated by another thread, and we fail
2751 * to allocate from the metaslab we have selected, we may
2752 * not try the newly-activated metaslab, and instead activate
2753 * another metaslab. This is not optimal, but generally
2754 * does not cause any problems (a possible exception being
2755 * if every metaslab is completely full except for the
2756 * the newly-activated metaslab which we fail to examine).
2757 */
2758 msp = avl_find(t, search, &idx);
2759 if (msp == NULL)
2760 msp = avl_nearest(t, idx, AVL_AFTER);
2761 for (; msp != NULL; msp = AVL_NEXT(t, msp)) {
2762
2763 if (!metaslab_should_allocate(msp, asize)) {
2764 metaslab_trace_add(zal, mg, msp, asize, d,
2765 TRACE_TOO_SMALL);
2766 continue;
2767 }
2768
2769 /*
2770 * If the selected metaslab is condensing, skip it.
2771 */
2772 if (msp->ms_condensing)
2773 continue;
2774
2775 was_active = msp->ms_weight & METASLAB_ACTIVE_MASK;
2776 if (activation_weight == METASLAB_WEIGHT_PRIMARY)
2777 break;
2778
2779 target_distance = min_distance +
2780 (space_map_allocated(msp->ms_sm) != 0 ? 0 :
2781 min_distance >> 1);
2782
2783 for (i = 0; i < d; i++) {
2784 if (metaslab_distance(msp, &dva[i]) <
2785 target_distance)
2786 break;
2787 }
2788 if (i == d)
2789 break;
2790 }
2791 mutex_exit(&mg->mg_lock);
2792 if (msp == NULL) {
2793 kmem_free(search, sizeof (*search));
2794 return (-1ULL);
2795 }
2796 search->ms_weight = msp->ms_weight;
2797 search->ms_start = msp->ms_start + 1;
2798
2799 mutex_enter(&msp->ms_lock);
2800
2801 /*
2802 * Ensure that the metaslab we have selected is still
2803 * capable of handling our request. It's possible that
2804 * another thread may have changed the weight while we
2805 * were blocked on the metaslab lock. We check the
2806 * active status first to see if we need to reselect
2807 * a new metaslab.
2808 */
2809 if (was_active && !(msp->ms_weight & METASLAB_ACTIVE_MASK)) {
2810 mutex_exit(&msp->ms_lock);
2811 continue;
2812 }
2813
2814 if ((msp->ms_weight & METASLAB_WEIGHT_SECONDARY) &&
2815 activation_weight == METASLAB_WEIGHT_PRIMARY) {
2816 metaslab_passivate(msp,
2817 msp->ms_weight & ~METASLAB_ACTIVE_MASK);
2818 mutex_exit(&msp->ms_lock);
2819 continue;
2820 }
2821
2822 if (metaslab_activate(msp, activation_weight) != 0) {
2823 mutex_exit(&msp->ms_lock);
2824 continue;
2825 }
2826 msp->ms_selected_txg = txg;
2827
2828 /*
2829 * Now that we have the lock, recheck to see if we should
2830 * continue to use this metaslab for this allocation. The
2831 * the metaslab is now loaded so metaslab_should_allocate() can
2832 * accurately determine if the allocation attempt should
2833 * proceed.
2834 */
2835 if (!metaslab_should_allocate(msp, asize)) {
2836 /* Passivate this metaslab and select a new one. */
2837 metaslab_trace_add(zal, mg, msp, asize, d,
2838 TRACE_TOO_SMALL);
2839 goto next;
2840 }
2841
2842
2843 /*
2844 * If this metaslab is currently condensing then pick again as
2845 * we can't manipulate this metaslab until it's committed
2846 * to disk.
2847 */
2848 if (msp->ms_condensing) {
2849 metaslab_trace_add(zal, mg, msp, asize, d,
2850 TRACE_CONDENSING);
2851 mutex_exit(&msp->ms_lock);
2852 continue;
2853 }
2854
2855 offset = metaslab_block_alloc(msp, asize, txg);
2856 metaslab_trace_add(zal, mg, msp, asize, d, offset);
2857
2858 if (offset != -1ULL) {
2859 /* Proactively passivate the metaslab, if needed */
2860 metaslab_segment_may_passivate(msp);
2861 break;
2862 }
2863 next:
2864 ASSERT(msp->ms_loaded);
2865
2866 /*
2867 * We were unable to allocate from this metaslab so determine
2868 * a new weight for this metaslab. Now that we have loaded
2869 * the metaslab we can provide a better hint to the metaslab
2870 * selector.
2871 *
2872 * For space-based metaslabs, we use the maximum block size.
2873 * This information is only available when the metaslab
2874 * is loaded and is more accurate than the generic free
2875 * space weight that was calculated by metaslab_weight().
2876 * This information allows us to quickly compare the maximum
2877 * available allocation in the metaslab to the allocation
2878 * size being requested.
2879 *
2880 * For segment-based metaslabs, determine the new weight
2881 * based on the highest bucket in the range tree. We
2882 * explicitly use the loaded segment weight (i.e. the range
2883 * tree histogram) since it contains the space that is
2884 * currently available for allocation and is accurate
2885 * even within a sync pass.
2886 */
2887 if (WEIGHT_IS_SPACEBASED(msp->ms_weight)) {
2888 uint64_t weight = metaslab_block_maxsize(msp);
2889 WEIGHT_SET_SPACEBASED(weight);
2890 metaslab_passivate(msp, weight);
2891 } else {
2892 metaslab_passivate(msp,
2893 metaslab_weight_from_range_tree(msp));
2894 }
2895
2896 /*
2897 * We have just failed an allocation attempt, check
2898 * that metaslab_should_allocate() agrees. Otherwise,
2899 * we may end up in an infinite loop retrying the same
2900 * metaslab.
2901 */
2902 ASSERT(!metaslab_should_allocate(msp, asize));
2903 mutex_exit(&msp->ms_lock);
2904 }
2905 mutex_exit(&msp->ms_lock);
2906 kmem_free(search, sizeof (*search));
2907 return (offset);
2908 }
2909
2910 static uint64_t
2911 metaslab_group_alloc(metaslab_group_t *mg, zio_alloc_list_t *zal,
2912 uint64_t asize, uint64_t txg, uint64_t min_distance, dva_t *dva, int d)
2913 {
2914 uint64_t offset;
2915 ASSERT(mg->mg_initialized);
2916
2917 offset = metaslab_group_alloc_normal(mg, zal, asize, txg,
2918 min_distance, dva, d);
2919
2920 mutex_enter(&mg->mg_lock);
2921 if (offset == -1ULL) {
2922 mg->mg_failed_allocations++;
2923 metaslab_trace_add(zal, mg, NULL, asize, d,
2924 TRACE_GROUP_FAILURE);
2925 if (asize == SPA_GANGBLOCKSIZE) {
2926 /*
2927 * This metaslab group was unable to allocate
2928 * the minimum gang block size so it must be out of
2929 * space. We must notify the allocation throttle
2930 * to start skipping allocation attempts to this
2931 * metaslab group until more space becomes available.
2932 * Note: this failure cannot be caused by the
2933 * allocation throttle since the allocation throttle
2934 * is only responsible for skipping devices and
2935 * not failing block allocations.
2936 */
2937 mg->mg_no_free_space = B_TRUE;
2938 }
2939 }
2940 mg->mg_allocations++;
2941 mutex_exit(&mg->mg_lock);
2942 return (offset);
2943 }
2944
2945 /*
2946 * If we have to write a ditto block (i.e. more than one DVA for a given BP)
2947 * on the same vdev as an existing DVA of this BP, then try to allocate it
2948 * at least (vdev_asize / (2 ^ ditto_same_vdev_distance_shift)) away from the
2949 * existing DVAs.
2950 */
2951 int ditto_same_vdev_distance_shift = 3;
2952
2953 /*
2954 * Allocate a block for the specified i/o.
2955 */
2956 static int
2957 metaslab_alloc_dva(spa_t *spa, metaslab_class_t *mc, uint64_t psize,
2958 dva_t *dva, int d, dva_t *hintdva, uint64_t txg, int flags,
2959 zio_alloc_list_t *zal)
2960 {
2961 metaslab_group_t *mg, *fast_mg, *rotor;
2962 vdev_t *vd;
2963 boolean_t try_hard = B_FALSE;
2964
2965 ASSERT(!DVA_IS_VALID(&dva[d]));
2966
2967 /*
2968 * For testing, make some blocks above a certain size be gang blocks.
2969 */
2970 if (psize >= metaslab_gang_bang && (ddi_get_lbolt() & 3) == 0) {
2971 metaslab_trace_add(zal, NULL, NULL, psize, d, TRACE_FORCE_GANG);
2972 return (SET_ERROR(ENOSPC));
2973 }
2974
2975 /*
2976 * Start at the rotor and loop through all mgs until we find something.
2977 * Note that there's no locking on mc_rotor or mc_aliquot because
2978 * nothing actually breaks if we miss a few updates -- we just won't
2979 * allocate quite as evenly. It all balances out over time.
2980 *
2981 * If we are doing ditto or log blocks, try to spread them across
2982 * consecutive vdevs. If we're forced to reuse a vdev before we've
2983 * allocated all of our ditto blocks, then try and spread them out on
2984 * that vdev as much as possible. If it turns out to not be possible,
2985 * gradually lower our standards until anything becomes acceptable.
2986 * Also, allocating on consecutive vdevs (as opposed to random vdevs)
2987 * gives us hope of containing our fault domains to something we're
2988 * able to reason about. Otherwise, any two top-level vdev failures
2989 * will guarantee the loss of data. With consecutive allocation,
2990 * only two adjacent top-level vdev failures will result in data loss.
2991 *
2992 * If we are doing gang blocks (hintdva is non-NULL), try to keep
2993 * ourselves on the same vdev as our gang block header. That
2994 * way, we can hope for locality in vdev_cache, plus it makes our
2995 * fault domains something tractable.
2996 */
2997 if (hintdva) {
2998 vd = vdev_lookup_top(spa, DVA_GET_VDEV(&hintdva[d]));
2999
3000 /*
3001 * It's possible the vdev we're using as the hint no
3002 * longer exists (i.e. removed). Consult the rotor when
3003 * all else fails.
3004 */
3005 if (vd != NULL) {
3006 mg = vd->vdev_mg;
3007
3008 if (flags & METASLAB_HINTBP_AVOID &&
3009 mg->mg_next != NULL)
3010 mg = mg->mg_next;
3011 } else {
3012 mg = mc->mc_rotor;
3013 }
3014 } else if (d != 0) {
3015 vd = vdev_lookup_top(spa, DVA_GET_VDEV(&dva[d - 1]));
3016 mg = vd->vdev_mg->mg_next;
3017 } else if (flags & METASLAB_FASTWRITE) {
3018 mg = fast_mg = mc->mc_rotor;
3019
3020 do {
3021 if (fast_mg->mg_vd->vdev_pending_fastwrite <
3022 mg->mg_vd->vdev_pending_fastwrite)
3023 mg = fast_mg;
3024 } while ((fast_mg = fast_mg->mg_next) != mc->mc_rotor);
3025
3026 } else {
3027 mg = mc->mc_rotor;
3028 }
3029
3030 /*
3031 * If the hint put us into the wrong metaslab class, or into a
3032 * metaslab group that has been passivated, just follow the rotor.
3033 */
3034 if (mg->mg_class != mc || mg->mg_activation_count <= 0)
3035 mg = mc->mc_rotor;
3036
3037 rotor = mg;
3038 top:
3039 do {
3040 boolean_t allocatable;
3041
3042 ASSERT(mg->mg_activation_count == 1);
3043 vd = mg->mg_vd;
3044
3045 /*
3046 * Don't allocate from faulted devices.
3047 */
3048 if (try_hard) {
3049 spa_config_enter(spa, SCL_ZIO, FTAG, RW_READER);
3050 allocatable = vdev_allocatable(vd);
3051 spa_config_exit(spa, SCL_ZIO, FTAG);
3052 } else {
3053 allocatable = vdev_allocatable(vd);
3054 }
3055
3056 /*
3057 * Determine if the selected metaslab group is eligible
3058 * for allocations. If we're ganging then don't allow
3059 * this metaslab group to skip allocations since that would
3060 * inadvertently return ENOSPC and suspend the pool
3061 * even though space is still available.
3062 */
3063 if (allocatable && !GANG_ALLOCATION(flags) && !try_hard) {
3064 allocatable = metaslab_group_allocatable(mg, rotor,
3065 psize);
3066 }
3067
3068 if (!allocatable) {
3069 metaslab_trace_add(zal, mg, NULL, psize, d,
3070 TRACE_NOT_ALLOCATABLE);
3071 goto next;
3072 }
3073
3074 ASSERT(mg->mg_initialized);
3075
3076 /*
3077 * Avoid writing single-copy data to a failing,
3078 * non-redundant vdev, unless we've already tried all
3079 * other vdevs.
3080 */
3081 if ((vd->vdev_stat.vs_write_errors > 0 ||
3082 vd->vdev_state < VDEV_STATE_HEALTHY) &&
3083 d == 0 && !try_hard && vd->vdev_children == 0) {
3084 metaslab_trace_add(zal, mg, NULL, psize, d,
3085 TRACE_VDEV_ERROR);
3086 goto next;
3087 }
3088
3089 ASSERT(mg->mg_class == mc);
3090
3091 /*
3092 * If we don't need to try hard, then require that the
3093 * block be 1/8th of the device away from any other DVAs
3094 * in this BP. If we are trying hard, allow any offset
3095 * to be used (distance=0).
3096 */
3097 uint64_t distance = 0;
3098 if (!try_hard) {
3099 distance = vd->vdev_asize >>
3100 ditto_same_vdev_distance_shift;
3101 if (distance <= (1ULL << vd->vdev_ms_shift))
3102 distance = 0;
3103 }
3104
3105 uint64_t asize = vdev_psize_to_asize(vd, psize);
3106 ASSERT(P2PHASE(asize, 1ULL << vd->vdev_ashift) == 0);
3107
3108 uint64_t offset = metaslab_group_alloc(mg, zal, asize, txg,
3109 distance, dva, d);
3110
3111 if (offset != -1ULL) {
3112 /*
3113 * If we've just selected this metaslab group,
3114 * figure out whether the corresponding vdev is
3115 * over- or under-used relative to the pool,
3116 * and set an allocation bias to even it out.
3117 *
3118 * Bias is also used to compensate for unequally
3119 * sized vdevs so that space is allocated fairly.
3120 */
3121 if (mc->mc_aliquot == 0 && metaslab_bias_enabled) {
3122 vdev_stat_t *vs = &vd->vdev_stat;
3123 int64_t vs_free = vs->vs_space - vs->vs_alloc;
3124 int64_t mc_free = mc->mc_space - mc->mc_alloc;
3125 int64_t ratio;
3126
3127 /*
3128 * Calculate how much more or less we should
3129 * try to allocate from this device during
3130 * this iteration around the rotor.
3131 *
3132 * This basically introduces a zero-centered
3133 * bias towards the devices with the most
3134 * free space, while compensating for vdev
3135 * size differences.
3136 *
3137 * Examples:
3138 * vdev V1 = 16M/128M
3139 * vdev V2 = 16M/128M
3140 * ratio(V1) = 100% ratio(V2) = 100%
3141 *
3142 * vdev V1 = 16M/128M
3143 * vdev V2 = 64M/128M
3144 * ratio(V1) = 127% ratio(V2) = 72%
3145 *
3146 * vdev V1 = 16M/128M
3147 * vdev V2 = 64M/512M
3148 * ratio(V1) = 40% ratio(V2) = 160%
3149 */
3150 ratio = (vs_free * mc->mc_alloc_groups * 100) /
3151 (mc_free + 1);
3152 mg->mg_bias = ((ratio - 100) *
3153 (int64_t)mg->mg_aliquot) / 100;
3154 } else if (!metaslab_bias_enabled) {
3155 mg->mg_bias = 0;
3156 }
3157
3158 if ((flags & METASLAB_FASTWRITE) ||
3159 atomic_add_64_nv(&mc->mc_aliquot, asize) >=
3160 mg->mg_aliquot + mg->mg_bias) {
3161 mc->mc_rotor = mg->mg_next;
3162 mc->mc_aliquot = 0;
3163 }
3164
3165 DVA_SET_VDEV(&dva[d], vd->vdev_id);
3166 DVA_SET_OFFSET(&dva[d], offset);
3167 DVA_SET_GANG(&dva[d],
3168 ((flags & METASLAB_GANG_HEADER) ? 1 : 0));
3169 DVA_SET_ASIZE(&dva[d], asize);
3170
3171 if (flags & METASLAB_FASTWRITE) {
3172 atomic_add_64(&vd->vdev_pending_fastwrite,
3173 psize);
3174 }
3175
3176 return (0);
3177 }
3178 next:
3179 mc->mc_rotor = mg->mg_next;
3180 mc->mc_aliquot = 0;
3181 } while ((mg = mg->mg_next) != rotor);
3182
3183 /*
3184 * If we haven't tried hard, do so now.
3185 */
3186 if (!try_hard) {
3187 try_hard = B_TRUE;
3188 goto top;
3189 }
3190
3191 bzero(&dva[d], sizeof (dva_t));
3192
3193 metaslab_trace_add(zal, rotor, NULL, psize, d, TRACE_ENOSPC);
3194 return (SET_ERROR(ENOSPC));
3195 }
3196
3197 /*
3198 * Free the block represented by DVA in the context of the specified
3199 * transaction group.
3200 */
3201 static void
3202 metaslab_free_dva(spa_t *spa, const dva_t *dva, uint64_t txg, boolean_t now)
3203 {
3204 uint64_t vdev = DVA_GET_VDEV(dva);
3205 uint64_t offset = DVA_GET_OFFSET(dva);
3206 uint64_t size = DVA_GET_ASIZE(dva);
3207 vdev_t *vd;
3208 metaslab_t *msp;
3209
3210 if (txg > spa_freeze_txg(spa))
3211 return;
3212
3213 if ((vd = vdev_lookup_top(spa, vdev)) == NULL || !DVA_IS_VALID(dva) ||
3214 (offset >> vd->vdev_ms_shift) >= vd->vdev_ms_count) {
3215 zfs_panic_recover("metaslab_free_dva(): bad DVA %llu:%llu:%llu",
3216 (u_longlong_t)vdev, (u_longlong_t)offset,
3217 (u_longlong_t)size);
3218 return;
3219 }
3220
3221 msp = vd->vdev_ms[offset >> vd->vdev_ms_shift];
3222
3223 if (DVA_GET_GANG(dva))
3224 size = vdev_psize_to_asize(vd, SPA_GANGBLOCKSIZE);
3225
3226 mutex_enter(&msp->ms_lock);
3227
3228 if (now) {
3229 range_tree_remove(msp->ms_alloctree[txg & TXG_MASK],
3230 offset, size);
3231
3232 VERIFY(!msp->ms_condensing);
3233 VERIFY3U(offset, >=, msp->ms_start);
3234 VERIFY3U(offset + size, <=, msp->ms_start + msp->ms_size);
3235 VERIFY3U(range_tree_space(msp->ms_tree) + size, <=,
3236 msp->ms_size);
3237 VERIFY0(P2PHASE(offset, 1ULL << vd->vdev_ashift));
3238 VERIFY0(P2PHASE(size, 1ULL << vd->vdev_ashift));
3239 range_tree_add(msp->ms_tree, offset, size);
3240 msp->ms_max_size = metaslab_block_maxsize(msp);
3241 } else {
3242 VERIFY3U(txg, ==, spa->spa_syncing_txg);
3243 if (range_tree_space(msp->ms_freeingtree) == 0)
3244 vdev_dirty(vd, VDD_METASLAB, msp, txg);
3245 range_tree_add(msp->ms_freeingtree, offset, size);
3246 }
3247
3248 mutex_exit(&msp->ms_lock);
3249 }
3250
3251 /*
3252 * Intent log support: upon opening the pool after a crash, notify the SPA
3253 * of blocks that the intent log has allocated for immediate write, but
3254 * which are still considered free by the SPA because the last transaction
3255 * group didn't commit yet.
3256 */
3257 static int
3258 metaslab_claim_dva(spa_t *spa, const dva_t *dva, uint64_t txg)
3259 {
3260 uint64_t vdev = DVA_GET_VDEV(dva);
3261 uint64_t offset = DVA_GET_OFFSET(dva);
3262 uint64_t size = DVA_GET_ASIZE(dva);
3263 vdev_t *vd;
3264 metaslab_t *msp;
3265 int error = 0;
3266
3267 ASSERT(DVA_IS_VALID(dva));
3268
3269 if ((vd = vdev_lookup_top(spa, vdev)) == NULL ||
3270 (offset >> vd->vdev_ms_shift) >= vd->vdev_ms_count)
3271 return (SET_ERROR(ENXIO));
3272
3273 msp = vd->vdev_ms[offset >> vd->vdev_ms_shift];
3274
3275 if (DVA_GET_GANG(dva))
3276 size = vdev_psize_to_asize(vd, SPA_GANGBLOCKSIZE);
3277
3278 mutex_enter(&msp->ms_lock);
3279
3280 if ((txg != 0 && spa_writeable(spa)) || !msp->ms_loaded)
3281 error = metaslab_activate(msp, METASLAB_WEIGHT_SECONDARY);
3282
3283 if (error == 0 && !range_tree_contains(msp->ms_tree, offset, size))
3284 error = SET_ERROR(ENOENT);
3285
3286 if (error || txg == 0) { /* txg == 0 indicates dry run */
3287 mutex_exit(&msp->ms_lock);
3288 return (error);
3289 }
3290
3291 VERIFY(!msp->ms_condensing);
3292 VERIFY0(P2PHASE(offset, 1ULL << vd->vdev_ashift));
3293 VERIFY0(P2PHASE(size, 1ULL << vd->vdev_ashift));
3294 VERIFY3U(range_tree_space(msp->ms_tree) - size, <=, msp->ms_size);
3295 range_tree_remove(msp->ms_tree, offset, size);
3296
3297 if (spa_writeable(spa)) { /* don't dirty if we're zdb(1M) */
3298 if (range_tree_space(msp->ms_alloctree[txg & TXG_MASK]) == 0)
3299 vdev_dirty(vd, VDD_METASLAB, msp, txg);
3300 range_tree_add(msp->ms_alloctree[txg & TXG_MASK], offset, size);
3301 }
3302
3303 mutex_exit(&msp->ms_lock);
3304
3305 return (0);
3306 }
3307
3308 /*
3309 * Reserve some allocation slots. The reservation system must be called
3310 * before we call into the allocator. If there aren't any available slots
3311 * then the I/O will be throttled until an I/O completes and its slots are
3312 * freed up. The function returns true if it was successful in placing
3313 * the reservation.
3314 */
3315 boolean_t
3316 metaslab_class_throttle_reserve(metaslab_class_t *mc, int slots, zio_t *zio,
3317 int flags)
3318 {
3319 uint64_t available_slots = 0;
3320 boolean_t slot_reserved = B_FALSE;
3321
3322 ASSERT(mc->mc_alloc_throttle_enabled);
3323 mutex_enter(&mc->mc_lock);
3324
3325 uint64_t reserved_slots = refcount_count(&mc->mc_alloc_slots);
3326 if (reserved_slots < mc->mc_alloc_max_slots)
3327 available_slots = mc->mc_alloc_max_slots - reserved_slots;
3328
3329 if (slots <= available_slots || GANG_ALLOCATION(flags)) {
3330 /*
3331 * We reserve the slots individually so that we can unreserve
3332 * them individually when an I/O completes.
3333 */
3334 for (int d = 0; d < slots; d++) {
3335 reserved_slots = refcount_add(&mc->mc_alloc_slots, zio);
3336 }
3337 zio->io_flags |= ZIO_FLAG_IO_ALLOCATING;
3338 slot_reserved = B_TRUE;
3339 }
3340
3341 mutex_exit(&mc->mc_lock);
3342 return (slot_reserved);
3343 }
3344
3345 void
3346 metaslab_class_throttle_unreserve(metaslab_class_t *mc, int slots, zio_t *zio)
3347 {
3348 ASSERT(mc->mc_alloc_throttle_enabled);
3349 mutex_enter(&mc->mc_lock);
3350 for (int d = 0; d < slots; d++) {
3351 (void) refcount_remove(&mc->mc_alloc_slots, zio);
3352 }
3353 mutex_exit(&mc->mc_lock);
3354 }
3355
3356 int
3357 metaslab_alloc(spa_t *spa, metaslab_class_t *mc, uint64_t psize, blkptr_t *bp,
3358 int ndvas, uint64_t txg, blkptr_t *hintbp, int flags,
3359 zio_alloc_list_t *zal, zio_t *zio)
3360 {
3361 dva_t *dva = bp->blk_dva;
3362 dva_t *hintdva = hintbp->blk_dva;
3363 int error = 0;
3364
3365 ASSERT(bp->blk_birth == 0);
3366 ASSERT(BP_PHYSICAL_BIRTH(bp) == 0);
3367
3368 spa_config_enter(spa, SCL_ALLOC, FTAG, RW_READER);
3369
3370 if (mc->mc_rotor == NULL) { /* no vdevs in this class */
3371 spa_config_exit(spa, SCL_ALLOC, FTAG);
3372 return (SET_ERROR(ENOSPC));
3373 }
3374
3375 ASSERT(ndvas > 0 && ndvas <= spa_max_replication(spa));
3376 ASSERT(BP_GET_NDVAS(bp) == 0);
3377 ASSERT(hintbp == NULL || ndvas <= BP_GET_NDVAS(hintbp));
3378 ASSERT3P(zal, !=, NULL);
3379
3380 for (int d = 0; d < ndvas; d++) {
3381 error = metaslab_alloc_dva(spa, mc, psize, dva, d, hintdva,
3382 txg, flags, zal);
3383 if (error != 0) {
3384 for (d--; d >= 0; d--) {
3385 metaslab_free_dva(spa, &dva[d], txg, B_TRUE);
3386 metaslab_group_alloc_decrement(spa,
3387 DVA_GET_VDEV(&dva[d]), zio, flags);
3388 bzero(&dva[d], sizeof (dva_t));
3389 }
3390 spa_config_exit(spa, SCL_ALLOC, FTAG);
3391 return (error);
3392 } else {
3393 /*
3394 * Update the metaslab group's queue depth
3395 * based on the newly allocated dva.
3396 */
3397 metaslab_group_alloc_increment(spa,
3398 DVA_GET_VDEV(&dva[d]), zio, flags);
3399 }
3400
3401 }
3402 ASSERT(error == 0);
3403 ASSERT(BP_GET_NDVAS(bp) == ndvas);
3404
3405 spa_config_exit(spa, SCL_ALLOC, FTAG);
3406
3407 BP_SET_BIRTH(bp, txg, 0);
3408
3409 return (0);
3410 }
3411
3412 void
3413 metaslab_free(spa_t *spa, const blkptr_t *bp, uint64_t txg, boolean_t now)
3414 {
3415 const dva_t *dva = bp->blk_dva;
3416 int ndvas = BP_GET_NDVAS(bp);
3417
3418 ASSERT(!BP_IS_HOLE(bp));
3419 ASSERT(!now || bp->blk_birth >= spa_syncing_txg(spa));
3420
3421 spa_config_enter(spa, SCL_FREE, FTAG, RW_READER);
3422
3423 for (int d = 0; d < ndvas; d++)
3424 metaslab_free_dva(spa, &dva[d], txg, now);
3425
3426 spa_config_exit(spa, SCL_FREE, FTAG);
3427 }
3428
3429 int
3430 metaslab_claim(spa_t *spa, const blkptr_t *bp, uint64_t txg)
3431 {
3432 const dva_t *dva = bp->blk_dva;
3433 int ndvas = BP_GET_NDVAS(bp);
3434 int error = 0;
3435
3436 ASSERT(!BP_IS_HOLE(bp));
3437
3438 if (txg != 0) {
3439 /*
3440 * First do a dry run to make sure all DVAs are claimable,
3441 * so we don't have to unwind from partial failures below.
3442 */
3443 if ((error = metaslab_claim(spa, bp, 0)) != 0)
3444 return (error);
3445 }
3446
3447 spa_config_enter(spa, SCL_ALLOC, FTAG, RW_READER);
3448
3449 for (int d = 0; d < ndvas; d++)
3450 if ((error = metaslab_claim_dva(spa, &dva[d], txg)) != 0)
3451 break;
3452
3453 spa_config_exit(spa, SCL_ALLOC, FTAG);
3454
3455 ASSERT(error == 0 || txg == 0);
3456
3457 return (error);
3458 }
3459
3460 void
3461 metaslab_fastwrite_mark(spa_t *spa, const blkptr_t *bp)
3462 {
3463 const dva_t *dva = bp->blk_dva;
3464 int ndvas = BP_GET_NDVAS(bp);
3465 uint64_t psize = BP_GET_PSIZE(bp);
3466 int d;
3467 vdev_t *vd;
3468
3469 ASSERT(!BP_IS_HOLE(bp));
3470 ASSERT(!BP_IS_EMBEDDED(bp));
3471 ASSERT(psize > 0);
3472
3473 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
3474
3475 for (d = 0; d < ndvas; d++) {
3476 if ((vd = vdev_lookup_top(spa, DVA_GET_VDEV(&dva[d]))) == NULL)
3477 continue;
3478 atomic_add_64(&vd->vdev_pending_fastwrite, psize);
3479 }
3480
3481 spa_config_exit(spa, SCL_VDEV, FTAG);
3482 }
3483
3484 void
3485 metaslab_fastwrite_unmark(spa_t *spa, const blkptr_t *bp)
3486 {
3487 const dva_t *dva = bp->blk_dva;
3488 int ndvas = BP_GET_NDVAS(bp);
3489 uint64_t psize = BP_GET_PSIZE(bp);
3490 int d;
3491 vdev_t *vd;
3492
3493 ASSERT(!BP_IS_HOLE(bp));
3494 ASSERT(!BP_IS_EMBEDDED(bp));
3495 ASSERT(psize > 0);
3496
3497 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
3498
3499 for (d = 0; d < ndvas; d++) {
3500 if ((vd = vdev_lookup_top(spa, DVA_GET_VDEV(&dva[d]))) == NULL)
3501 continue;
3502 ASSERT3U(vd->vdev_pending_fastwrite, >=, psize);
3503 atomic_sub_64(&vd->vdev_pending_fastwrite, psize);
3504 }
3505
3506 spa_config_exit(spa, SCL_VDEV, FTAG);
3507 }
3508
3509 void
3510 metaslab_check_free(spa_t *spa, const blkptr_t *bp)
3511 {
3512 if ((zfs_flags & ZFS_DEBUG_ZIO_FREE) == 0)
3513 return;
3514
3515 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
3516 for (int i = 0; i < BP_GET_NDVAS(bp); i++) {
3517 uint64_t vdev = DVA_GET_VDEV(&bp->blk_dva[i]);
3518 vdev_t *vd = vdev_lookup_top(spa, vdev);
3519 uint64_t offset = DVA_GET_OFFSET(&bp->blk_dva[i]);
3520 uint64_t size = DVA_GET_ASIZE(&bp->blk_dva[i]);
3521 metaslab_t *msp = vd->vdev_ms[offset >> vd->vdev_ms_shift];
3522
3523 if (msp->ms_loaded)
3524 range_tree_verify(msp->ms_tree, offset, size);
3525
3526 range_tree_verify(msp->ms_freeingtree, offset, size);
3527 range_tree_verify(msp->ms_freedtree, offset, size);
3528 for (int j = 0; j < TXG_DEFER_SIZE; j++)
3529 range_tree_verify(msp->ms_defertree[j], offset, size);
3530 }
3531 spa_config_exit(spa, SCL_VDEV, FTAG);
3532 }
3533
3534 #if defined(_KERNEL) && defined(HAVE_SPL)
3535 /* CSTYLED */
3536 module_param(metaslab_aliquot, ulong, 0644);
3537 MODULE_PARM_DESC(metaslab_aliquot,
3538 "allocation granularity (a.k.a. stripe size)");
3539
3540 module_param(metaslab_debug_load, int, 0644);
3541 MODULE_PARM_DESC(metaslab_debug_load,
3542 "load all metaslabs when pool is first opened");
3543
3544 module_param(metaslab_debug_unload, int, 0644);
3545 MODULE_PARM_DESC(metaslab_debug_unload,
3546 "prevent metaslabs from being unloaded");
3547
3548 module_param(metaslab_preload_enabled, int, 0644);
3549 MODULE_PARM_DESC(metaslab_preload_enabled,
3550 "preload potential metaslabs during reassessment");
3551
3552 module_param(zfs_mg_noalloc_threshold, int, 0644);
3553 MODULE_PARM_DESC(zfs_mg_noalloc_threshold,
3554 "percentage of free space for metaslab group to allow allocation");
3555
3556 module_param(zfs_mg_fragmentation_threshold, int, 0644);
3557 MODULE_PARM_DESC(zfs_mg_fragmentation_threshold,
3558 "fragmentation for metaslab group to allow allocation");
3559
3560 module_param(zfs_metaslab_fragmentation_threshold, int, 0644);
3561 MODULE_PARM_DESC(zfs_metaslab_fragmentation_threshold,
3562 "fragmentation for metaslab to allow allocation");
3563
3564 module_param(metaslab_fragmentation_factor_enabled, int, 0644);
3565 MODULE_PARM_DESC(metaslab_fragmentation_factor_enabled,
3566 "use the fragmentation metric to prefer less fragmented metaslabs");
3567
3568 module_param(metaslab_lba_weighting_enabled, int, 0644);
3569 MODULE_PARM_DESC(metaslab_lba_weighting_enabled,
3570 "prefer metaslabs with lower LBAs");
3571
3572 module_param(metaslab_bias_enabled, int, 0644);
3573 MODULE_PARM_DESC(metaslab_bias_enabled,
3574 "enable metaslab group biasing");
3575
3576 module_param(zfs_metaslab_segment_weight_enabled, int, 0644);
3577 MODULE_PARM_DESC(zfs_metaslab_segment_weight_enabled,
3578 "enable segment-based metaslab selection");
3579
3580 module_param(zfs_metaslab_switch_threshold, int, 0644);
3581 MODULE_PARM_DESC(zfs_metaslab_switch_threshold,
3582 "segment-based metaslab selection maximum buckets before switching");
3583 #endif /* _KERNEL && HAVE_SPL */