]> git.proxmox.com Git - mirror_zfs.git/blob - module/zfs/metaslab.c
Merge branch 'illumos'
[mirror_zfs.git] / module / zfs / metaslab.c
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2011 by Delphix. All rights reserved.
24 */
25
26 #include <sys/zfs_context.h>
27 #include <sys/dmu.h>
28 #include <sys/dmu_tx.h>
29 #include <sys/space_map.h>
30 #include <sys/metaslab_impl.h>
31 #include <sys/vdev_impl.h>
32 #include <sys/zio.h>
33
34 #define WITH_DF_BLOCK_ALLOCATOR
35
36 /*
37 * Allow allocations to switch to gang blocks quickly. We do this to
38 * avoid having to load lots of space_maps in a given txg. There are,
39 * however, some cases where we want to avoid "fast" ganging and instead
40 * we want to do an exhaustive search of all metaslabs on this device.
41 * Currently we don't allow any gang or dump device related allocations
42 * to "fast" gang.
43 */
44 #define CAN_FASTGANG(flags) \
45 (!((flags) & (METASLAB_GANG_CHILD | METASLAB_GANG_HEADER | \
46 METASLAB_GANG_AVOID)))
47
48 uint64_t metaslab_aliquot = 512ULL << 10;
49 uint64_t metaslab_gang_bang = SPA_MAXBLOCKSIZE + 1; /* force gang blocks */
50
51 /*
52 * This value defines the number of allowed allocation failures per vdev.
53 * If a device reaches this threshold in a given txg then we consider skipping
54 * allocations on that device.
55 */
56 int zfs_mg_alloc_failures;
57
58 /*
59 * Metaslab debugging: when set, keeps all space maps in core to verify frees.
60 */
61 static int metaslab_debug = 0;
62
63 /*
64 * Minimum size which forces the dynamic allocator to change
65 * it's allocation strategy. Once the space map cannot satisfy
66 * an allocation of this size then it switches to using more
67 * aggressive strategy (i.e search by size rather than offset).
68 */
69 uint64_t metaslab_df_alloc_threshold = SPA_MAXBLOCKSIZE;
70
71 /*
72 * The minimum free space, in percent, which must be available
73 * in a space map to continue allocations in a first-fit fashion.
74 * Once the space_map's free space drops below this level we dynamically
75 * switch to using best-fit allocations.
76 */
77 int metaslab_df_free_pct = 4;
78
79 /*
80 * A metaslab is considered "free" if it contains a contiguous
81 * segment which is greater than metaslab_min_alloc_size.
82 */
83 uint64_t metaslab_min_alloc_size = DMU_MAX_ACCESS;
84
85 /*
86 * Max number of space_maps to prefetch.
87 */
88 int metaslab_prefetch_limit = SPA_DVAS_PER_BP;
89
90 /*
91 * Percentage bonus multiplier for metaslabs that are in the bonus area.
92 */
93 int metaslab_smo_bonus_pct = 150;
94
95 /*
96 * ==========================================================================
97 * Metaslab classes
98 * ==========================================================================
99 */
100 metaslab_class_t *
101 metaslab_class_create(spa_t *spa, space_map_ops_t *ops)
102 {
103 metaslab_class_t *mc;
104
105 mc = kmem_zalloc(sizeof (metaslab_class_t), KM_SLEEP);
106
107 mc->mc_spa = spa;
108 mc->mc_rotor = NULL;
109 mc->mc_ops = ops;
110
111 return (mc);
112 }
113
114 void
115 metaslab_class_destroy(metaslab_class_t *mc)
116 {
117 ASSERT(mc->mc_rotor == NULL);
118 ASSERT(mc->mc_alloc == 0);
119 ASSERT(mc->mc_deferred == 0);
120 ASSERT(mc->mc_space == 0);
121 ASSERT(mc->mc_dspace == 0);
122
123 kmem_free(mc, sizeof (metaslab_class_t));
124 }
125
126 int
127 metaslab_class_validate(metaslab_class_t *mc)
128 {
129 metaslab_group_t *mg;
130 vdev_t *vd;
131
132 /*
133 * Must hold one of the spa_config locks.
134 */
135 ASSERT(spa_config_held(mc->mc_spa, SCL_ALL, RW_READER) ||
136 spa_config_held(mc->mc_spa, SCL_ALL, RW_WRITER));
137
138 if ((mg = mc->mc_rotor) == NULL)
139 return (0);
140
141 do {
142 vd = mg->mg_vd;
143 ASSERT(vd->vdev_mg != NULL);
144 ASSERT3P(vd->vdev_top, ==, vd);
145 ASSERT3P(mg->mg_class, ==, mc);
146 ASSERT3P(vd->vdev_ops, !=, &vdev_hole_ops);
147 } while ((mg = mg->mg_next) != mc->mc_rotor);
148
149 return (0);
150 }
151
152 void
153 metaslab_class_space_update(metaslab_class_t *mc, int64_t alloc_delta,
154 int64_t defer_delta, int64_t space_delta, int64_t dspace_delta)
155 {
156 atomic_add_64(&mc->mc_alloc, alloc_delta);
157 atomic_add_64(&mc->mc_deferred, defer_delta);
158 atomic_add_64(&mc->mc_space, space_delta);
159 atomic_add_64(&mc->mc_dspace, dspace_delta);
160 }
161
162 uint64_t
163 metaslab_class_get_alloc(metaslab_class_t *mc)
164 {
165 return (mc->mc_alloc);
166 }
167
168 uint64_t
169 metaslab_class_get_deferred(metaslab_class_t *mc)
170 {
171 return (mc->mc_deferred);
172 }
173
174 uint64_t
175 metaslab_class_get_space(metaslab_class_t *mc)
176 {
177 return (mc->mc_space);
178 }
179
180 uint64_t
181 metaslab_class_get_dspace(metaslab_class_t *mc)
182 {
183 return (spa_deflate(mc->mc_spa) ? mc->mc_dspace : mc->mc_space);
184 }
185
186 /*
187 * ==========================================================================
188 * Metaslab groups
189 * ==========================================================================
190 */
191 static int
192 metaslab_compare(const void *x1, const void *x2)
193 {
194 const metaslab_t *m1 = x1;
195 const metaslab_t *m2 = x2;
196
197 if (m1->ms_weight < m2->ms_weight)
198 return (1);
199 if (m1->ms_weight > m2->ms_weight)
200 return (-1);
201
202 /*
203 * If the weights are identical, use the offset to force uniqueness.
204 */
205 if (m1->ms_map.sm_start < m2->ms_map.sm_start)
206 return (-1);
207 if (m1->ms_map.sm_start > m2->ms_map.sm_start)
208 return (1);
209
210 ASSERT3P(m1, ==, m2);
211
212 return (0);
213 }
214
215 metaslab_group_t *
216 metaslab_group_create(metaslab_class_t *mc, vdev_t *vd)
217 {
218 metaslab_group_t *mg;
219
220 mg = kmem_zalloc(sizeof (metaslab_group_t), KM_SLEEP);
221 mutex_init(&mg->mg_lock, NULL, MUTEX_DEFAULT, NULL);
222 avl_create(&mg->mg_metaslab_tree, metaslab_compare,
223 sizeof (metaslab_t), offsetof(struct metaslab, ms_group_node));
224 mg->mg_vd = vd;
225 mg->mg_class = mc;
226 mg->mg_activation_count = 0;
227
228 return (mg);
229 }
230
231 void
232 metaslab_group_destroy(metaslab_group_t *mg)
233 {
234 ASSERT(mg->mg_prev == NULL);
235 ASSERT(mg->mg_next == NULL);
236 /*
237 * We may have gone below zero with the activation count
238 * either because we never activated in the first place or
239 * because we're done, and possibly removing the vdev.
240 */
241 ASSERT(mg->mg_activation_count <= 0);
242
243 avl_destroy(&mg->mg_metaslab_tree);
244 mutex_destroy(&mg->mg_lock);
245 kmem_free(mg, sizeof (metaslab_group_t));
246 }
247
248 void
249 metaslab_group_activate(metaslab_group_t *mg)
250 {
251 metaslab_class_t *mc = mg->mg_class;
252 metaslab_group_t *mgprev, *mgnext;
253
254 ASSERT(spa_config_held(mc->mc_spa, SCL_ALLOC, RW_WRITER));
255
256 ASSERT(mc->mc_rotor != mg);
257 ASSERT(mg->mg_prev == NULL);
258 ASSERT(mg->mg_next == NULL);
259 ASSERT(mg->mg_activation_count <= 0);
260
261 if (++mg->mg_activation_count <= 0)
262 return;
263
264 mg->mg_aliquot = metaslab_aliquot * MAX(1, mg->mg_vd->vdev_children);
265
266 if ((mgprev = mc->mc_rotor) == NULL) {
267 mg->mg_prev = mg;
268 mg->mg_next = mg;
269 } else {
270 mgnext = mgprev->mg_next;
271 mg->mg_prev = mgprev;
272 mg->mg_next = mgnext;
273 mgprev->mg_next = mg;
274 mgnext->mg_prev = mg;
275 }
276 mc->mc_rotor = mg;
277 }
278
279 void
280 metaslab_group_passivate(metaslab_group_t *mg)
281 {
282 metaslab_class_t *mc = mg->mg_class;
283 metaslab_group_t *mgprev, *mgnext;
284
285 ASSERT(spa_config_held(mc->mc_spa, SCL_ALLOC, RW_WRITER));
286
287 if (--mg->mg_activation_count != 0) {
288 ASSERT(mc->mc_rotor != mg);
289 ASSERT(mg->mg_prev == NULL);
290 ASSERT(mg->mg_next == NULL);
291 ASSERT(mg->mg_activation_count < 0);
292 return;
293 }
294
295 mgprev = mg->mg_prev;
296 mgnext = mg->mg_next;
297
298 if (mg == mgnext) {
299 mc->mc_rotor = NULL;
300 } else {
301 mc->mc_rotor = mgnext;
302 mgprev->mg_next = mgnext;
303 mgnext->mg_prev = mgprev;
304 }
305
306 mg->mg_prev = NULL;
307 mg->mg_next = NULL;
308 }
309
310 static void
311 metaslab_group_add(metaslab_group_t *mg, metaslab_t *msp)
312 {
313 mutex_enter(&mg->mg_lock);
314 ASSERT(msp->ms_group == NULL);
315 msp->ms_group = mg;
316 msp->ms_weight = 0;
317 avl_add(&mg->mg_metaslab_tree, msp);
318 mutex_exit(&mg->mg_lock);
319 }
320
321 static void
322 metaslab_group_remove(metaslab_group_t *mg, metaslab_t *msp)
323 {
324 mutex_enter(&mg->mg_lock);
325 ASSERT(msp->ms_group == mg);
326 avl_remove(&mg->mg_metaslab_tree, msp);
327 msp->ms_group = NULL;
328 mutex_exit(&mg->mg_lock);
329 }
330
331 static void
332 metaslab_group_sort(metaslab_group_t *mg, metaslab_t *msp, uint64_t weight)
333 {
334 /*
335 * Although in principle the weight can be any value, in
336 * practice we do not use values in the range [1, 510].
337 */
338 ASSERT(weight >= SPA_MINBLOCKSIZE-1 || weight == 0);
339 ASSERT(MUTEX_HELD(&msp->ms_lock));
340
341 mutex_enter(&mg->mg_lock);
342 ASSERT(msp->ms_group == mg);
343 avl_remove(&mg->mg_metaslab_tree, msp);
344 msp->ms_weight = weight;
345 avl_add(&mg->mg_metaslab_tree, msp);
346 mutex_exit(&mg->mg_lock);
347 }
348
349 /*
350 * ==========================================================================
351 * Common allocator routines
352 * ==========================================================================
353 */
354 static int
355 metaslab_segsize_compare(const void *x1, const void *x2)
356 {
357 const space_seg_t *s1 = x1;
358 const space_seg_t *s2 = x2;
359 uint64_t ss_size1 = s1->ss_end - s1->ss_start;
360 uint64_t ss_size2 = s2->ss_end - s2->ss_start;
361
362 if (ss_size1 < ss_size2)
363 return (-1);
364 if (ss_size1 > ss_size2)
365 return (1);
366
367 if (s1->ss_start < s2->ss_start)
368 return (-1);
369 if (s1->ss_start > s2->ss_start)
370 return (1);
371
372 return (0);
373 }
374
375 #if defined(WITH_FF_BLOCK_ALLOCATOR) || \
376 defined(WITH_DF_BLOCK_ALLOCATOR) || \
377 defined(WITH_CDF_BLOCK_ALLOCATOR)
378 /*
379 * This is a helper function that can be used by the allocator to find
380 * a suitable block to allocate. This will search the specified AVL
381 * tree looking for a block that matches the specified criteria.
382 */
383 static uint64_t
384 metaslab_block_picker(avl_tree_t *t, uint64_t *cursor, uint64_t size,
385 uint64_t align)
386 {
387 space_seg_t *ss, ssearch;
388 avl_index_t where;
389
390 ssearch.ss_start = *cursor;
391 ssearch.ss_end = *cursor + size;
392
393 ss = avl_find(t, &ssearch, &where);
394 if (ss == NULL)
395 ss = avl_nearest(t, where, AVL_AFTER);
396
397 while (ss != NULL) {
398 uint64_t offset = P2ROUNDUP(ss->ss_start, align);
399
400 if (offset + size <= ss->ss_end) {
401 *cursor = offset + size;
402 return (offset);
403 }
404 ss = AVL_NEXT(t, ss);
405 }
406
407 /*
408 * If we know we've searched the whole map (*cursor == 0), give up.
409 * Otherwise, reset the cursor to the beginning and try again.
410 */
411 if (*cursor == 0)
412 return (-1ULL);
413
414 *cursor = 0;
415 return (metaslab_block_picker(t, cursor, size, align));
416 }
417 #endif /* WITH_FF/DF/CDF_BLOCK_ALLOCATOR */
418
419 static void
420 metaslab_pp_load(space_map_t *sm)
421 {
422 space_seg_t *ss;
423
424 ASSERT(sm->sm_ppd == NULL);
425 sm->sm_ppd = kmem_zalloc(64 * sizeof (uint64_t), KM_SLEEP);
426
427 sm->sm_pp_root = kmem_alloc(sizeof (avl_tree_t), KM_SLEEP);
428 avl_create(sm->sm_pp_root, metaslab_segsize_compare,
429 sizeof (space_seg_t), offsetof(struct space_seg, ss_pp_node));
430
431 for (ss = avl_first(&sm->sm_root); ss; ss = AVL_NEXT(&sm->sm_root, ss))
432 avl_add(sm->sm_pp_root, ss);
433 }
434
435 static void
436 metaslab_pp_unload(space_map_t *sm)
437 {
438 void *cookie = NULL;
439
440 kmem_free(sm->sm_ppd, 64 * sizeof (uint64_t));
441 sm->sm_ppd = NULL;
442
443 while (avl_destroy_nodes(sm->sm_pp_root, &cookie) != NULL) {
444 /* tear down the tree */
445 }
446
447 avl_destroy(sm->sm_pp_root);
448 kmem_free(sm->sm_pp_root, sizeof (avl_tree_t));
449 sm->sm_pp_root = NULL;
450 }
451
452 /* ARGSUSED */
453 static void
454 metaslab_pp_claim(space_map_t *sm, uint64_t start, uint64_t size)
455 {
456 /* No need to update cursor */
457 }
458
459 /* ARGSUSED */
460 static void
461 metaslab_pp_free(space_map_t *sm, uint64_t start, uint64_t size)
462 {
463 /* No need to update cursor */
464 }
465
466 /*
467 * Return the maximum contiguous segment within the metaslab.
468 */
469 uint64_t
470 metaslab_pp_maxsize(space_map_t *sm)
471 {
472 avl_tree_t *t = sm->sm_pp_root;
473 space_seg_t *ss;
474
475 if (t == NULL || (ss = avl_last(t)) == NULL)
476 return (0ULL);
477
478 return (ss->ss_end - ss->ss_start);
479 }
480
481 #if defined(WITH_FF_BLOCK_ALLOCATOR)
482 /*
483 * ==========================================================================
484 * The first-fit block allocator
485 * ==========================================================================
486 */
487 static uint64_t
488 metaslab_ff_alloc(space_map_t *sm, uint64_t size)
489 {
490 avl_tree_t *t = &sm->sm_root;
491 uint64_t align = size & -size;
492 uint64_t *cursor = (uint64_t *)sm->sm_ppd + highbit(align) - 1;
493
494 return (metaslab_block_picker(t, cursor, size, align));
495 }
496
497 /* ARGSUSED */
498 boolean_t
499 metaslab_ff_fragmented(space_map_t *sm)
500 {
501 return (B_TRUE);
502 }
503
504 static space_map_ops_t metaslab_ff_ops = {
505 metaslab_pp_load,
506 metaslab_pp_unload,
507 metaslab_ff_alloc,
508 metaslab_pp_claim,
509 metaslab_pp_free,
510 metaslab_pp_maxsize,
511 metaslab_ff_fragmented
512 };
513
514 space_map_ops_t *zfs_metaslab_ops = &metaslab_ff_ops;
515 #endif /* WITH_FF_BLOCK_ALLOCATOR */
516
517 #if defined(WITH_DF_BLOCK_ALLOCATOR)
518 /*
519 * ==========================================================================
520 * Dynamic block allocator -
521 * Uses the first fit allocation scheme until space get low and then
522 * adjusts to a best fit allocation method. Uses metaslab_df_alloc_threshold
523 * and metaslab_df_free_pct to determine when to switch the allocation scheme.
524 * ==========================================================================
525 */
526 static uint64_t
527 metaslab_df_alloc(space_map_t *sm, uint64_t size)
528 {
529 avl_tree_t *t = &sm->sm_root;
530 uint64_t align = size & -size;
531 uint64_t *cursor = (uint64_t *)sm->sm_ppd + highbit(align) - 1;
532 uint64_t max_size = metaslab_pp_maxsize(sm);
533 int free_pct = sm->sm_space * 100 / sm->sm_size;
534
535 ASSERT(MUTEX_HELD(sm->sm_lock));
536 ASSERT3U(avl_numnodes(&sm->sm_root), ==, avl_numnodes(sm->sm_pp_root));
537
538 if (max_size < size)
539 return (-1ULL);
540
541 /*
542 * If we're running low on space switch to using the size
543 * sorted AVL tree (best-fit).
544 */
545 if (max_size < metaslab_df_alloc_threshold ||
546 free_pct < metaslab_df_free_pct) {
547 t = sm->sm_pp_root;
548 *cursor = 0;
549 }
550
551 return (metaslab_block_picker(t, cursor, size, 1ULL));
552 }
553
554 static boolean_t
555 metaslab_df_fragmented(space_map_t *sm)
556 {
557 uint64_t max_size = metaslab_pp_maxsize(sm);
558 int free_pct = sm->sm_space * 100 / sm->sm_size;
559
560 if (max_size >= metaslab_df_alloc_threshold &&
561 free_pct >= metaslab_df_free_pct)
562 return (B_FALSE);
563
564 return (B_TRUE);
565 }
566
567 static space_map_ops_t metaslab_df_ops = {
568 metaslab_pp_load,
569 metaslab_pp_unload,
570 metaslab_df_alloc,
571 metaslab_pp_claim,
572 metaslab_pp_free,
573 metaslab_pp_maxsize,
574 metaslab_df_fragmented
575 };
576
577 space_map_ops_t *zfs_metaslab_ops = &metaslab_df_ops;
578 #endif /* WITH_DF_BLOCK_ALLOCATOR */
579
580 /*
581 * ==========================================================================
582 * Other experimental allocators
583 * ==========================================================================
584 */
585 #if defined(WITH_CDF_BLOCK_ALLOCATOR)
586 static uint64_t
587 metaslab_cdf_alloc(space_map_t *sm, uint64_t size)
588 {
589 avl_tree_t *t = &sm->sm_root;
590 uint64_t *cursor = (uint64_t *)sm->sm_ppd;
591 uint64_t *extent_end = (uint64_t *)sm->sm_ppd + 1;
592 uint64_t max_size = metaslab_pp_maxsize(sm);
593 uint64_t rsize = size;
594 uint64_t offset = 0;
595
596 ASSERT(MUTEX_HELD(sm->sm_lock));
597 ASSERT3U(avl_numnodes(&sm->sm_root), ==, avl_numnodes(sm->sm_pp_root));
598
599 if (max_size < size)
600 return (-1ULL);
601
602 ASSERT3U(*extent_end, >=, *cursor);
603
604 /*
605 * If we're running low on space switch to using the size
606 * sorted AVL tree (best-fit).
607 */
608 if ((*cursor + size) > *extent_end) {
609
610 t = sm->sm_pp_root;
611 *cursor = *extent_end = 0;
612
613 if (max_size > 2 * SPA_MAXBLOCKSIZE)
614 rsize = MIN(metaslab_min_alloc_size, max_size);
615 offset = metaslab_block_picker(t, extent_end, rsize, 1ULL);
616 if (offset != -1)
617 *cursor = offset + size;
618 } else {
619 offset = metaslab_block_picker(t, cursor, rsize, 1ULL);
620 }
621 ASSERT3U(*cursor, <=, *extent_end);
622 return (offset);
623 }
624
625 static boolean_t
626 metaslab_cdf_fragmented(space_map_t *sm)
627 {
628 uint64_t max_size = metaslab_pp_maxsize(sm);
629
630 if (max_size > (metaslab_min_alloc_size * 10))
631 return (B_FALSE);
632 return (B_TRUE);
633 }
634
635 static space_map_ops_t metaslab_cdf_ops = {
636 metaslab_pp_load,
637 metaslab_pp_unload,
638 metaslab_cdf_alloc,
639 metaslab_pp_claim,
640 metaslab_pp_free,
641 metaslab_pp_maxsize,
642 metaslab_cdf_fragmented
643 };
644
645 space_map_ops_t *zfs_metaslab_ops = &metaslab_cdf_ops;
646 #endif /* WITH_CDF_BLOCK_ALLOCATOR */
647
648 #if defined(WITH_NDF_BLOCK_ALLOCATOR)
649 uint64_t metaslab_ndf_clump_shift = 4;
650
651 static uint64_t
652 metaslab_ndf_alloc(space_map_t *sm, uint64_t size)
653 {
654 avl_tree_t *t = &sm->sm_root;
655 avl_index_t where;
656 space_seg_t *ss, ssearch;
657 uint64_t hbit = highbit(size);
658 uint64_t *cursor = (uint64_t *)sm->sm_ppd + hbit - 1;
659 uint64_t max_size = metaslab_pp_maxsize(sm);
660
661 ASSERT(MUTEX_HELD(sm->sm_lock));
662 ASSERT3U(avl_numnodes(&sm->sm_root), ==, avl_numnodes(sm->sm_pp_root));
663
664 if (max_size < size)
665 return (-1ULL);
666
667 ssearch.ss_start = *cursor;
668 ssearch.ss_end = *cursor + size;
669
670 ss = avl_find(t, &ssearch, &where);
671 if (ss == NULL || (ss->ss_start + size > ss->ss_end)) {
672 t = sm->sm_pp_root;
673
674 ssearch.ss_start = 0;
675 ssearch.ss_end = MIN(max_size,
676 1ULL << (hbit + metaslab_ndf_clump_shift));
677 ss = avl_find(t, &ssearch, &where);
678 if (ss == NULL)
679 ss = avl_nearest(t, where, AVL_AFTER);
680 ASSERT(ss != NULL);
681 }
682
683 if (ss != NULL) {
684 if (ss->ss_start + size <= ss->ss_end) {
685 *cursor = ss->ss_start + size;
686 return (ss->ss_start);
687 }
688 }
689 return (-1ULL);
690 }
691
692 static boolean_t
693 metaslab_ndf_fragmented(space_map_t *sm)
694 {
695 uint64_t max_size = metaslab_pp_maxsize(sm);
696
697 if (max_size > (metaslab_min_alloc_size << metaslab_ndf_clump_shift))
698 return (B_FALSE);
699 return (B_TRUE);
700 }
701
702
703 static space_map_ops_t metaslab_ndf_ops = {
704 metaslab_pp_load,
705 metaslab_pp_unload,
706 metaslab_ndf_alloc,
707 metaslab_pp_claim,
708 metaslab_pp_free,
709 metaslab_pp_maxsize,
710 metaslab_ndf_fragmented
711 };
712
713 space_map_ops_t *zfs_metaslab_ops = &metaslab_ndf_ops;
714 #endif /* WITH_NDF_BLOCK_ALLOCATOR */
715
716 /*
717 * ==========================================================================
718 * Metaslabs
719 * ==========================================================================
720 */
721 metaslab_t *
722 metaslab_init(metaslab_group_t *mg, space_map_obj_t *smo,
723 uint64_t start, uint64_t size, uint64_t txg)
724 {
725 vdev_t *vd = mg->mg_vd;
726 metaslab_t *msp;
727
728 msp = kmem_zalloc(sizeof (metaslab_t), KM_SLEEP);
729 mutex_init(&msp->ms_lock, NULL, MUTEX_DEFAULT, NULL);
730
731 msp->ms_smo_syncing = *smo;
732
733 /*
734 * We create the main space map here, but we don't create the
735 * allocmaps and freemaps until metaslab_sync_done(). This serves
736 * two purposes: it allows metaslab_sync_done() to detect the
737 * addition of new space; and for debugging, it ensures that we'd
738 * data fault on any attempt to use this metaslab before it's ready.
739 */
740 space_map_create(&msp->ms_map, start, size,
741 vd->vdev_ashift, &msp->ms_lock);
742
743 metaslab_group_add(mg, msp);
744
745 if (metaslab_debug && smo->smo_object != 0) {
746 mutex_enter(&msp->ms_lock);
747 VERIFY(space_map_load(&msp->ms_map, mg->mg_class->mc_ops,
748 SM_FREE, smo, spa_meta_objset(vd->vdev_spa)) == 0);
749 mutex_exit(&msp->ms_lock);
750 }
751
752 /*
753 * If we're opening an existing pool (txg == 0) or creating
754 * a new one (txg == TXG_INITIAL), all space is available now.
755 * If we're adding space to an existing pool, the new space
756 * does not become available until after this txg has synced.
757 */
758 if (txg <= TXG_INITIAL)
759 metaslab_sync_done(msp, 0);
760
761 if (txg != 0) {
762 vdev_dirty(vd, 0, NULL, txg);
763 vdev_dirty(vd, VDD_METASLAB, msp, txg);
764 }
765
766 return (msp);
767 }
768
769 void
770 metaslab_fini(metaslab_t *msp)
771 {
772 metaslab_group_t *mg = msp->ms_group;
773 int t;
774
775 vdev_space_update(mg->mg_vd,
776 -msp->ms_smo.smo_alloc, 0, -msp->ms_map.sm_size);
777
778 metaslab_group_remove(mg, msp);
779
780 mutex_enter(&msp->ms_lock);
781
782 space_map_unload(&msp->ms_map);
783 space_map_destroy(&msp->ms_map);
784
785 for (t = 0; t < TXG_SIZE; t++) {
786 space_map_destroy(&msp->ms_allocmap[t]);
787 space_map_destroy(&msp->ms_freemap[t]);
788 }
789
790 for (t = 0; t < TXG_DEFER_SIZE; t++)
791 space_map_destroy(&msp->ms_defermap[t]);
792
793 ASSERT3S(msp->ms_deferspace, ==, 0);
794
795 mutex_exit(&msp->ms_lock);
796 mutex_destroy(&msp->ms_lock);
797
798 kmem_free(msp, sizeof (metaslab_t));
799 }
800
801 #define METASLAB_WEIGHT_PRIMARY (1ULL << 63)
802 #define METASLAB_WEIGHT_SECONDARY (1ULL << 62)
803 #define METASLAB_ACTIVE_MASK \
804 (METASLAB_WEIGHT_PRIMARY | METASLAB_WEIGHT_SECONDARY)
805
806 static uint64_t
807 metaslab_weight(metaslab_t *msp)
808 {
809 metaslab_group_t *mg = msp->ms_group;
810 space_map_t *sm = &msp->ms_map;
811 space_map_obj_t *smo = &msp->ms_smo;
812 vdev_t *vd = mg->mg_vd;
813 uint64_t weight, space;
814
815 ASSERT(MUTEX_HELD(&msp->ms_lock));
816
817 /*
818 * The baseline weight is the metaslab's free space.
819 */
820 space = sm->sm_size - smo->smo_alloc;
821 weight = space;
822
823 /*
824 * Modern disks have uniform bit density and constant angular velocity.
825 * Therefore, the outer recording zones are faster (higher bandwidth)
826 * than the inner zones by the ratio of outer to inner track diameter,
827 * which is typically around 2:1. We account for this by assigning
828 * higher weight to lower metaslabs (multiplier ranging from 2x to 1x).
829 * In effect, this means that we'll select the metaslab with the most
830 * free bandwidth rather than simply the one with the most free space.
831 */
832 weight = 2 * weight -
833 ((sm->sm_start >> vd->vdev_ms_shift) * weight) / vd->vdev_ms_count;
834 ASSERT(weight >= space && weight <= 2 * space);
835
836 /*
837 * For locality, assign higher weight to metaslabs which have
838 * a lower offset than what we've already activated.
839 */
840 if (sm->sm_start <= mg->mg_bonus_area)
841 weight *= (metaslab_smo_bonus_pct / 100);
842 ASSERT(weight >= space &&
843 weight <= 2 * (metaslab_smo_bonus_pct / 100) * space);
844
845 if (sm->sm_loaded && !sm->sm_ops->smop_fragmented(sm)) {
846 /*
847 * If this metaslab is one we're actively using, adjust its
848 * weight to make it preferable to any inactive metaslab so
849 * we'll polish it off.
850 */
851 weight |= (msp->ms_weight & METASLAB_ACTIVE_MASK);
852 }
853 return (weight);
854 }
855
856 static void
857 metaslab_prefetch(metaslab_group_t *mg)
858 {
859 spa_t *spa = mg->mg_vd->vdev_spa;
860 metaslab_t *msp;
861 avl_tree_t *t = &mg->mg_metaslab_tree;
862 int m;
863
864 mutex_enter(&mg->mg_lock);
865
866 /*
867 * Prefetch the next potential metaslabs
868 */
869 for (msp = avl_first(t), m = 0; msp; msp = AVL_NEXT(t, msp), m++) {
870 space_map_t *sm = &msp->ms_map;
871 space_map_obj_t *smo = &msp->ms_smo;
872
873 /* If we have reached our prefetch limit then we're done */
874 if (m >= metaslab_prefetch_limit)
875 break;
876
877 if (!sm->sm_loaded && smo->smo_object != 0) {
878 mutex_exit(&mg->mg_lock);
879 dmu_prefetch(spa_meta_objset(spa), smo->smo_object,
880 0ULL, smo->smo_objsize);
881 mutex_enter(&mg->mg_lock);
882 }
883 }
884 mutex_exit(&mg->mg_lock);
885 }
886
887 static int
888 metaslab_activate(metaslab_t *msp, uint64_t activation_weight)
889 {
890 metaslab_group_t *mg = msp->ms_group;
891 space_map_t *sm = &msp->ms_map;
892 space_map_ops_t *sm_ops = msp->ms_group->mg_class->mc_ops;
893 int t;
894
895 ASSERT(MUTEX_HELD(&msp->ms_lock));
896
897 if ((msp->ms_weight & METASLAB_ACTIVE_MASK) == 0) {
898 space_map_load_wait(sm);
899 if (!sm->sm_loaded) {
900 int error = space_map_load(sm, sm_ops, SM_FREE,
901 &msp->ms_smo,
902 spa_meta_objset(msp->ms_group->mg_vd->vdev_spa));
903 if (error) {
904 metaslab_group_sort(msp->ms_group, msp, 0);
905 return (error);
906 }
907 for (t = 0; t < TXG_DEFER_SIZE; t++)
908 space_map_walk(&msp->ms_defermap[t],
909 space_map_claim, sm);
910
911 }
912
913 /*
914 * Track the bonus area as we activate new metaslabs.
915 */
916 if (sm->sm_start > mg->mg_bonus_area) {
917 mutex_enter(&mg->mg_lock);
918 mg->mg_bonus_area = sm->sm_start;
919 mutex_exit(&mg->mg_lock);
920 }
921
922 metaslab_group_sort(msp->ms_group, msp,
923 msp->ms_weight | activation_weight);
924 }
925 ASSERT(sm->sm_loaded);
926 ASSERT(msp->ms_weight & METASLAB_ACTIVE_MASK);
927
928 return (0);
929 }
930
931 static void
932 metaslab_passivate(metaslab_t *msp, uint64_t size)
933 {
934 /*
935 * If size < SPA_MINBLOCKSIZE, then we will not allocate from
936 * this metaslab again. In that case, it had better be empty,
937 * or we would be leaving space on the table.
938 */
939 ASSERT(size >= SPA_MINBLOCKSIZE || msp->ms_map.sm_space == 0);
940 metaslab_group_sort(msp->ms_group, msp, MIN(msp->ms_weight, size));
941 ASSERT((msp->ms_weight & METASLAB_ACTIVE_MASK) == 0);
942 }
943
944 /*
945 * Write a metaslab to disk in the context of the specified transaction group.
946 */
947 void
948 metaslab_sync(metaslab_t *msp, uint64_t txg)
949 {
950 vdev_t *vd = msp->ms_group->mg_vd;
951 spa_t *spa = vd->vdev_spa;
952 objset_t *mos = spa_meta_objset(spa);
953 space_map_t *allocmap = &msp->ms_allocmap[txg & TXG_MASK];
954 space_map_t *freemap = &msp->ms_freemap[txg & TXG_MASK];
955 space_map_t *freed_map = &msp->ms_freemap[TXG_CLEAN(txg) & TXG_MASK];
956 space_map_t *sm = &msp->ms_map;
957 space_map_obj_t *smo = &msp->ms_smo_syncing;
958 dmu_buf_t *db;
959 dmu_tx_t *tx;
960 int t;
961
962 ASSERT(!vd->vdev_ishole);
963
964 if (allocmap->sm_space == 0 && freemap->sm_space == 0)
965 return;
966
967 /*
968 * The only state that can actually be changing concurrently with
969 * metaslab_sync() is the metaslab's ms_map. No other thread can
970 * be modifying this txg's allocmap, freemap, freed_map, or smo.
971 * Therefore, we only hold ms_lock to satify space_map ASSERTs.
972 * We drop it whenever we call into the DMU, because the DMU
973 * can call down to us (e.g. via zio_free()) at any time.
974 */
975
976 tx = dmu_tx_create_assigned(spa_get_dsl(spa), txg);
977
978 if (smo->smo_object == 0) {
979 ASSERT(smo->smo_objsize == 0);
980 ASSERT(smo->smo_alloc == 0);
981 smo->smo_object = dmu_object_alloc(mos,
982 DMU_OT_SPACE_MAP, 1 << SPACE_MAP_BLOCKSHIFT,
983 DMU_OT_SPACE_MAP_HEADER, sizeof (*smo), tx);
984 ASSERT(smo->smo_object != 0);
985 dmu_write(mos, vd->vdev_ms_array, sizeof (uint64_t) *
986 (sm->sm_start >> vd->vdev_ms_shift),
987 sizeof (uint64_t), &smo->smo_object, tx);
988 }
989
990 mutex_enter(&msp->ms_lock);
991
992 space_map_walk(freemap, space_map_add, freed_map);
993
994 if (sm->sm_loaded && spa_sync_pass(spa) == 1 && smo->smo_objsize >=
995 2 * sizeof (uint64_t) * avl_numnodes(&sm->sm_root)) {
996 /*
997 * The in-core space map representation is twice as compact
998 * as the on-disk one, so it's time to condense the latter
999 * by generating a pure allocmap from first principles.
1000 *
1001 * This metaslab is 100% allocated,
1002 * minus the content of the in-core map (sm),
1003 * minus what's been freed this txg (freed_map),
1004 * minus deferred frees (ms_defermap[]),
1005 * minus allocations from txgs in the future
1006 * (because they haven't been committed yet).
1007 */
1008 space_map_vacate(allocmap, NULL, NULL);
1009 space_map_vacate(freemap, NULL, NULL);
1010
1011 space_map_add(allocmap, allocmap->sm_start, allocmap->sm_size);
1012
1013 space_map_walk(sm, space_map_remove, allocmap);
1014 space_map_walk(freed_map, space_map_remove, allocmap);
1015
1016 for (t = 0; t < TXG_DEFER_SIZE; t++)
1017 space_map_walk(&msp->ms_defermap[t],
1018 space_map_remove, allocmap);
1019
1020 for (t = 1; t < TXG_CONCURRENT_STATES; t++)
1021 space_map_walk(&msp->ms_allocmap[(txg + t) & TXG_MASK],
1022 space_map_remove, allocmap);
1023
1024 mutex_exit(&msp->ms_lock);
1025 space_map_truncate(smo, mos, tx);
1026 mutex_enter(&msp->ms_lock);
1027 }
1028
1029 space_map_sync(allocmap, SM_ALLOC, smo, mos, tx);
1030 space_map_sync(freemap, SM_FREE, smo, mos, tx);
1031
1032 mutex_exit(&msp->ms_lock);
1033
1034 VERIFY(0 == dmu_bonus_hold(mos, smo->smo_object, FTAG, &db));
1035 dmu_buf_will_dirty(db, tx);
1036 ASSERT3U(db->db_size, >=, sizeof (*smo));
1037 bcopy(smo, db->db_data, sizeof (*smo));
1038 dmu_buf_rele(db, FTAG);
1039
1040 dmu_tx_commit(tx);
1041 }
1042
1043 /*
1044 * Called after a transaction group has completely synced to mark
1045 * all of the metaslab's free space as usable.
1046 */
1047 void
1048 metaslab_sync_done(metaslab_t *msp, uint64_t txg)
1049 {
1050 space_map_obj_t *smo = &msp->ms_smo;
1051 space_map_obj_t *smosync = &msp->ms_smo_syncing;
1052 space_map_t *sm = &msp->ms_map;
1053 space_map_t *freed_map = &msp->ms_freemap[TXG_CLEAN(txg) & TXG_MASK];
1054 space_map_t *defer_map = &msp->ms_defermap[txg % TXG_DEFER_SIZE];
1055 metaslab_group_t *mg = msp->ms_group;
1056 vdev_t *vd = mg->mg_vd;
1057 int64_t alloc_delta, defer_delta;
1058 int t;
1059
1060 ASSERT(!vd->vdev_ishole);
1061
1062 mutex_enter(&msp->ms_lock);
1063
1064 /*
1065 * If this metaslab is just becoming available, initialize its
1066 * allocmaps and freemaps and add its capacity to the vdev.
1067 */
1068 if (freed_map->sm_size == 0) {
1069 for (t = 0; t < TXG_SIZE; t++) {
1070 space_map_create(&msp->ms_allocmap[t], sm->sm_start,
1071 sm->sm_size, sm->sm_shift, sm->sm_lock);
1072 space_map_create(&msp->ms_freemap[t], sm->sm_start,
1073 sm->sm_size, sm->sm_shift, sm->sm_lock);
1074 }
1075
1076 for (t = 0; t < TXG_DEFER_SIZE; t++)
1077 space_map_create(&msp->ms_defermap[t], sm->sm_start,
1078 sm->sm_size, sm->sm_shift, sm->sm_lock);
1079
1080 vdev_space_update(vd, 0, 0, sm->sm_size);
1081 }
1082
1083 alloc_delta = smosync->smo_alloc - smo->smo_alloc;
1084 defer_delta = freed_map->sm_space - defer_map->sm_space;
1085
1086 vdev_space_update(vd, alloc_delta + defer_delta, defer_delta, 0);
1087
1088 ASSERT(msp->ms_allocmap[txg & TXG_MASK].sm_space == 0);
1089 ASSERT(msp->ms_freemap[txg & TXG_MASK].sm_space == 0);
1090
1091 /*
1092 * If there's a space_map_load() in progress, wait for it to complete
1093 * so that we have a consistent view of the in-core space map.
1094 * Then, add defer_map (oldest deferred frees) to this map and
1095 * transfer freed_map (this txg's frees) to defer_map.
1096 */
1097 space_map_load_wait(sm);
1098 space_map_vacate(defer_map, sm->sm_loaded ? space_map_free : NULL, sm);
1099 space_map_vacate(freed_map, space_map_add, defer_map);
1100
1101 *smo = *smosync;
1102
1103 msp->ms_deferspace += defer_delta;
1104 ASSERT3S(msp->ms_deferspace, >=, 0);
1105 ASSERT3S(msp->ms_deferspace, <=, sm->sm_size);
1106 if (msp->ms_deferspace != 0) {
1107 /*
1108 * Keep syncing this metaslab until all deferred frees
1109 * are back in circulation.
1110 */
1111 vdev_dirty(vd, VDD_METASLAB, msp, txg + 1);
1112 }
1113
1114 /*
1115 * If the map is loaded but no longer active, evict it as soon as all
1116 * future allocations have synced. (If we unloaded it now and then
1117 * loaded a moment later, the map wouldn't reflect those allocations.)
1118 */
1119 if (sm->sm_loaded && (msp->ms_weight & METASLAB_ACTIVE_MASK) == 0) {
1120 int evictable = 1;
1121
1122 for (t = 1; t < TXG_CONCURRENT_STATES; t++)
1123 if (msp->ms_allocmap[(txg + t) & TXG_MASK].sm_space)
1124 evictable = 0;
1125
1126 if (evictable && !metaslab_debug)
1127 space_map_unload(sm);
1128 }
1129
1130 metaslab_group_sort(mg, msp, metaslab_weight(msp));
1131
1132 mutex_exit(&msp->ms_lock);
1133 }
1134
1135 void
1136 metaslab_sync_reassess(metaslab_group_t *mg)
1137 {
1138 vdev_t *vd = mg->mg_vd;
1139 int64_t failures = mg->mg_alloc_failures;
1140 int m;
1141
1142 /*
1143 * Re-evaluate all metaslabs which have lower offsets than the
1144 * bonus area.
1145 */
1146 for (m = 0; m < vd->vdev_ms_count; m++) {
1147 metaslab_t *msp = vd->vdev_ms[m];
1148
1149 if (msp->ms_map.sm_start > mg->mg_bonus_area)
1150 break;
1151
1152 mutex_enter(&msp->ms_lock);
1153 metaslab_group_sort(mg, msp, metaslab_weight(msp));
1154 mutex_exit(&msp->ms_lock);
1155 }
1156
1157 atomic_add_64(&mg->mg_alloc_failures, -failures);
1158
1159 /*
1160 * Prefetch the next potential metaslabs
1161 */
1162 metaslab_prefetch(mg);
1163 }
1164
1165 static uint64_t
1166 metaslab_distance(metaslab_t *msp, dva_t *dva)
1167 {
1168 uint64_t ms_shift = msp->ms_group->mg_vd->vdev_ms_shift;
1169 uint64_t offset = DVA_GET_OFFSET(dva) >> ms_shift;
1170 uint64_t start = msp->ms_map.sm_start >> ms_shift;
1171
1172 if (msp->ms_group->mg_vd->vdev_id != DVA_GET_VDEV(dva))
1173 return (1ULL << 63);
1174
1175 if (offset < start)
1176 return ((start - offset) << ms_shift);
1177 if (offset > start)
1178 return ((offset - start) << ms_shift);
1179 return (0);
1180 }
1181
1182 static uint64_t
1183 metaslab_group_alloc(metaslab_group_t *mg, uint64_t psize, uint64_t asize,
1184 uint64_t txg, uint64_t min_distance, dva_t *dva, int d, int flags)
1185 {
1186 spa_t *spa = mg->mg_vd->vdev_spa;
1187 metaslab_t *msp = NULL;
1188 uint64_t offset = -1ULL;
1189 avl_tree_t *t = &mg->mg_metaslab_tree;
1190 uint64_t activation_weight;
1191 uint64_t target_distance;
1192 int i;
1193
1194 activation_weight = METASLAB_WEIGHT_PRIMARY;
1195 for (i = 0; i < d; i++) {
1196 if (DVA_GET_VDEV(&dva[i]) == mg->mg_vd->vdev_id) {
1197 activation_weight = METASLAB_WEIGHT_SECONDARY;
1198 break;
1199 }
1200 }
1201
1202 for (;;) {
1203 boolean_t was_active;
1204
1205 mutex_enter(&mg->mg_lock);
1206 for (msp = avl_first(t); msp; msp = AVL_NEXT(t, msp)) {
1207 if (msp->ms_weight < asize) {
1208 spa_dbgmsg(spa, "%s: failed to meet weight "
1209 "requirement: vdev %llu, txg %llu, mg %p, "
1210 "msp %p, psize %llu, asize %llu, "
1211 "failures %llu, weight %llu",
1212 spa_name(spa), mg->mg_vd->vdev_id, txg,
1213 mg, msp, psize, asize,
1214 mg->mg_alloc_failures, msp->ms_weight);
1215 mutex_exit(&mg->mg_lock);
1216 return (-1ULL);
1217 }
1218 was_active = msp->ms_weight & METASLAB_ACTIVE_MASK;
1219 if (activation_weight == METASLAB_WEIGHT_PRIMARY)
1220 break;
1221
1222 target_distance = min_distance +
1223 (msp->ms_smo.smo_alloc ? 0 : min_distance >> 1);
1224
1225 for (i = 0; i < d; i++)
1226 if (metaslab_distance(msp, &dva[i]) <
1227 target_distance)
1228 break;
1229 if (i == d)
1230 break;
1231 }
1232 mutex_exit(&mg->mg_lock);
1233 if (msp == NULL)
1234 return (-1ULL);
1235
1236 /*
1237 * If we've already reached the allowable number of failed
1238 * allocation attempts on this metaslab group then we
1239 * consider skipping it. We skip it only if we're allowed
1240 * to "fast" gang, the physical size is larger than
1241 * a gang block, and we're attempting to allocate from
1242 * the primary metaslab.
1243 */
1244 if (mg->mg_alloc_failures > zfs_mg_alloc_failures &&
1245 CAN_FASTGANG(flags) && psize > SPA_GANGBLOCKSIZE &&
1246 activation_weight == METASLAB_WEIGHT_PRIMARY) {
1247 spa_dbgmsg(spa, "%s: skipping metaslab group: "
1248 "vdev %llu, txg %llu, mg %p, psize %llu, "
1249 "asize %llu, failures %llu", spa_name(spa),
1250 mg->mg_vd->vdev_id, txg, mg, psize, asize,
1251 mg->mg_alloc_failures);
1252 return (-1ULL);
1253 }
1254
1255 mutex_enter(&msp->ms_lock);
1256
1257 /*
1258 * Ensure that the metaslab we have selected is still
1259 * capable of handling our request. It's possible that
1260 * another thread may have changed the weight while we
1261 * were blocked on the metaslab lock.
1262 */
1263 if (msp->ms_weight < asize || (was_active &&
1264 !(msp->ms_weight & METASLAB_ACTIVE_MASK) &&
1265 activation_weight == METASLAB_WEIGHT_PRIMARY)) {
1266 mutex_exit(&msp->ms_lock);
1267 continue;
1268 }
1269
1270 if ((msp->ms_weight & METASLAB_WEIGHT_SECONDARY) &&
1271 activation_weight == METASLAB_WEIGHT_PRIMARY) {
1272 metaslab_passivate(msp,
1273 msp->ms_weight & ~METASLAB_ACTIVE_MASK);
1274 mutex_exit(&msp->ms_lock);
1275 continue;
1276 }
1277
1278 if (metaslab_activate(msp, activation_weight) != 0) {
1279 mutex_exit(&msp->ms_lock);
1280 continue;
1281 }
1282
1283 if ((offset = space_map_alloc(&msp->ms_map, asize)) != -1ULL)
1284 break;
1285
1286 atomic_inc_64(&mg->mg_alloc_failures);
1287
1288 metaslab_passivate(msp, space_map_maxsize(&msp->ms_map));
1289
1290 mutex_exit(&msp->ms_lock);
1291 }
1292
1293 if (msp->ms_allocmap[txg & TXG_MASK].sm_space == 0)
1294 vdev_dirty(mg->mg_vd, VDD_METASLAB, msp, txg);
1295
1296 space_map_add(&msp->ms_allocmap[txg & TXG_MASK], offset, asize);
1297
1298 mutex_exit(&msp->ms_lock);
1299
1300 return (offset);
1301 }
1302
1303 /*
1304 * Allocate a block for the specified i/o.
1305 */
1306 static int
1307 metaslab_alloc_dva(spa_t *spa, metaslab_class_t *mc, uint64_t psize,
1308 dva_t *dva, int d, dva_t *hintdva, uint64_t txg, int flags)
1309 {
1310 metaslab_group_t *mg, *rotor;
1311 vdev_t *vd;
1312 int dshift = 3;
1313 int all_zero;
1314 int zio_lock = B_FALSE;
1315 boolean_t allocatable;
1316 uint64_t offset = -1ULL;
1317 uint64_t asize;
1318 uint64_t distance;
1319
1320 ASSERT(!DVA_IS_VALID(&dva[d]));
1321
1322 /*
1323 * For testing, make some blocks above a certain size be gang blocks.
1324 */
1325 if (psize >= metaslab_gang_bang && (ddi_get_lbolt() & 3) == 0)
1326 return (ENOSPC);
1327
1328 /*
1329 * Start at the rotor and loop through all mgs until we find something.
1330 * Note that there's no locking on mc_rotor or mc_aliquot because
1331 * nothing actually breaks if we miss a few updates -- we just won't
1332 * allocate quite as evenly. It all balances out over time.
1333 *
1334 * If we are doing ditto or log blocks, try to spread them across
1335 * consecutive vdevs. If we're forced to reuse a vdev before we've
1336 * allocated all of our ditto blocks, then try and spread them out on
1337 * that vdev as much as possible. If it turns out to not be possible,
1338 * gradually lower our standards until anything becomes acceptable.
1339 * Also, allocating on consecutive vdevs (as opposed to random vdevs)
1340 * gives us hope of containing our fault domains to something we're
1341 * able to reason about. Otherwise, any two top-level vdev failures
1342 * will guarantee the loss of data. With consecutive allocation,
1343 * only two adjacent top-level vdev failures will result in data loss.
1344 *
1345 * If we are doing gang blocks (hintdva is non-NULL), try to keep
1346 * ourselves on the same vdev as our gang block header. That
1347 * way, we can hope for locality in vdev_cache, plus it makes our
1348 * fault domains something tractable.
1349 */
1350 if (hintdva) {
1351 vd = vdev_lookup_top(spa, DVA_GET_VDEV(&hintdva[d]));
1352
1353 /*
1354 * It's possible the vdev we're using as the hint no
1355 * longer exists (i.e. removed). Consult the rotor when
1356 * all else fails.
1357 */
1358 if (vd != NULL) {
1359 mg = vd->vdev_mg;
1360
1361 if (flags & METASLAB_HINTBP_AVOID &&
1362 mg->mg_next != NULL)
1363 mg = mg->mg_next;
1364 } else {
1365 mg = mc->mc_rotor;
1366 }
1367 } else if (d != 0) {
1368 vd = vdev_lookup_top(spa, DVA_GET_VDEV(&dva[d - 1]));
1369 mg = vd->vdev_mg->mg_next;
1370 } else {
1371 mg = mc->mc_rotor;
1372 }
1373
1374 /*
1375 * If the hint put us into the wrong metaslab class, or into a
1376 * metaslab group that has been passivated, just follow the rotor.
1377 */
1378 if (mg->mg_class != mc || mg->mg_activation_count <= 0)
1379 mg = mc->mc_rotor;
1380
1381 rotor = mg;
1382 top:
1383 all_zero = B_TRUE;
1384 do {
1385 ASSERT(mg->mg_activation_count == 1);
1386
1387 vd = mg->mg_vd;
1388
1389 /*
1390 * Don't allocate from faulted devices.
1391 */
1392 if (zio_lock) {
1393 spa_config_enter(spa, SCL_ZIO, FTAG, RW_READER);
1394 allocatable = vdev_allocatable(vd);
1395 spa_config_exit(spa, SCL_ZIO, FTAG);
1396 } else {
1397 allocatable = vdev_allocatable(vd);
1398 }
1399 if (!allocatable)
1400 goto next;
1401
1402 /*
1403 * Avoid writing single-copy data to a failing vdev
1404 */
1405 if ((vd->vdev_stat.vs_write_errors > 0 ||
1406 vd->vdev_state < VDEV_STATE_HEALTHY) &&
1407 d == 0 && dshift == 3) {
1408 all_zero = B_FALSE;
1409 goto next;
1410 }
1411
1412 ASSERT(mg->mg_class == mc);
1413
1414 distance = vd->vdev_asize >> dshift;
1415 if (distance <= (1ULL << vd->vdev_ms_shift))
1416 distance = 0;
1417 else
1418 all_zero = B_FALSE;
1419
1420 asize = vdev_psize_to_asize(vd, psize);
1421 ASSERT(P2PHASE(asize, 1ULL << vd->vdev_ashift) == 0);
1422
1423 offset = metaslab_group_alloc(mg, psize, asize, txg, distance,
1424 dva, d, flags);
1425 if (offset != -1ULL) {
1426 /*
1427 * If we've just selected this metaslab group,
1428 * figure out whether the corresponding vdev is
1429 * over- or under-used relative to the pool,
1430 * and set an allocation bias to even it out.
1431 */
1432 if (mc->mc_aliquot == 0) {
1433 vdev_stat_t *vs = &vd->vdev_stat;
1434 int64_t vu, cu;
1435
1436 vu = (vs->vs_alloc * 100) / (vs->vs_space + 1);
1437 cu = (mc->mc_alloc * 100) / (mc->mc_space + 1);
1438
1439 /*
1440 * Calculate how much more or less we should
1441 * try to allocate from this device during
1442 * this iteration around the rotor.
1443 * For example, if a device is 80% full
1444 * and the pool is 20% full then we should
1445 * reduce allocations by 60% on this device.
1446 *
1447 * mg_bias = (20 - 80) * 512K / 100 = -307K
1448 *
1449 * This reduces allocations by 307K for this
1450 * iteration.
1451 */
1452 mg->mg_bias = ((cu - vu) *
1453 (int64_t)mg->mg_aliquot) / 100;
1454 }
1455
1456 if (atomic_add_64_nv(&mc->mc_aliquot, asize) >=
1457 mg->mg_aliquot + mg->mg_bias) {
1458 mc->mc_rotor = mg->mg_next;
1459 mc->mc_aliquot = 0;
1460 }
1461
1462 DVA_SET_VDEV(&dva[d], vd->vdev_id);
1463 DVA_SET_OFFSET(&dva[d], offset);
1464 DVA_SET_GANG(&dva[d], !!(flags & METASLAB_GANG_HEADER));
1465 DVA_SET_ASIZE(&dva[d], asize);
1466
1467 return (0);
1468 }
1469 next:
1470 mc->mc_rotor = mg->mg_next;
1471 mc->mc_aliquot = 0;
1472 } while ((mg = mg->mg_next) != rotor);
1473
1474 if (!all_zero) {
1475 dshift++;
1476 ASSERT(dshift < 64);
1477 goto top;
1478 }
1479
1480 if (!allocatable && !zio_lock) {
1481 dshift = 3;
1482 zio_lock = B_TRUE;
1483 goto top;
1484 }
1485
1486 bzero(&dva[d], sizeof (dva_t));
1487
1488 return (ENOSPC);
1489 }
1490
1491 /*
1492 * Free the block represented by DVA in the context of the specified
1493 * transaction group.
1494 */
1495 static void
1496 metaslab_free_dva(spa_t *spa, const dva_t *dva, uint64_t txg, boolean_t now)
1497 {
1498 uint64_t vdev = DVA_GET_VDEV(dva);
1499 uint64_t offset = DVA_GET_OFFSET(dva);
1500 uint64_t size = DVA_GET_ASIZE(dva);
1501 vdev_t *vd;
1502 metaslab_t *msp;
1503
1504 ASSERT(DVA_IS_VALID(dva));
1505
1506 if (txg > spa_freeze_txg(spa))
1507 return;
1508
1509 if ((vd = vdev_lookup_top(spa, vdev)) == NULL ||
1510 (offset >> vd->vdev_ms_shift) >= vd->vdev_ms_count) {
1511 cmn_err(CE_WARN, "metaslab_free_dva(): bad DVA %llu:%llu",
1512 (u_longlong_t)vdev, (u_longlong_t)offset);
1513 ASSERT(0);
1514 return;
1515 }
1516
1517 msp = vd->vdev_ms[offset >> vd->vdev_ms_shift];
1518
1519 if (DVA_GET_GANG(dva))
1520 size = vdev_psize_to_asize(vd, SPA_GANGBLOCKSIZE);
1521
1522 mutex_enter(&msp->ms_lock);
1523
1524 if (now) {
1525 space_map_remove(&msp->ms_allocmap[txg & TXG_MASK],
1526 offset, size);
1527 space_map_free(&msp->ms_map, offset, size);
1528 } else {
1529 if (msp->ms_freemap[txg & TXG_MASK].sm_space == 0)
1530 vdev_dirty(vd, VDD_METASLAB, msp, txg);
1531 space_map_add(&msp->ms_freemap[txg & TXG_MASK], offset, size);
1532 }
1533
1534 mutex_exit(&msp->ms_lock);
1535 }
1536
1537 /*
1538 * Intent log support: upon opening the pool after a crash, notify the SPA
1539 * of blocks that the intent log has allocated for immediate write, but
1540 * which are still considered free by the SPA because the last transaction
1541 * group didn't commit yet.
1542 */
1543 static int
1544 metaslab_claim_dva(spa_t *spa, const dva_t *dva, uint64_t txg)
1545 {
1546 uint64_t vdev = DVA_GET_VDEV(dva);
1547 uint64_t offset = DVA_GET_OFFSET(dva);
1548 uint64_t size = DVA_GET_ASIZE(dva);
1549 vdev_t *vd;
1550 metaslab_t *msp;
1551 int error = 0;
1552
1553 ASSERT(DVA_IS_VALID(dva));
1554
1555 if ((vd = vdev_lookup_top(spa, vdev)) == NULL ||
1556 (offset >> vd->vdev_ms_shift) >= vd->vdev_ms_count)
1557 return (ENXIO);
1558
1559 msp = vd->vdev_ms[offset >> vd->vdev_ms_shift];
1560
1561 if (DVA_GET_GANG(dva))
1562 size = vdev_psize_to_asize(vd, SPA_GANGBLOCKSIZE);
1563
1564 mutex_enter(&msp->ms_lock);
1565
1566 if ((txg != 0 && spa_writeable(spa)) || !msp->ms_map.sm_loaded)
1567 error = metaslab_activate(msp, METASLAB_WEIGHT_SECONDARY);
1568
1569 if (error == 0 && !space_map_contains(&msp->ms_map, offset, size))
1570 error = ENOENT;
1571
1572 if (error || txg == 0) { /* txg == 0 indicates dry run */
1573 mutex_exit(&msp->ms_lock);
1574 return (error);
1575 }
1576
1577 space_map_claim(&msp->ms_map, offset, size);
1578
1579 if (spa_writeable(spa)) { /* don't dirty if we're zdb(1M) */
1580 if (msp->ms_allocmap[txg & TXG_MASK].sm_space == 0)
1581 vdev_dirty(vd, VDD_METASLAB, msp, txg);
1582 space_map_add(&msp->ms_allocmap[txg & TXG_MASK], offset, size);
1583 }
1584
1585 mutex_exit(&msp->ms_lock);
1586
1587 return (0);
1588 }
1589
1590 int
1591 metaslab_alloc(spa_t *spa, metaslab_class_t *mc, uint64_t psize, blkptr_t *bp,
1592 int ndvas, uint64_t txg, blkptr_t *hintbp, int flags)
1593 {
1594 dva_t *dva = bp->blk_dva;
1595 dva_t *hintdva = hintbp->blk_dva;
1596 int d, error = 0;
1597
1598 ASSERT(bp->blk_birth == 0);
1599 ASSERT(BP_PHYSICAL_BIRTH(bp) == 0);
1600
1601 spa_config_enter(spa, SCL_ALLOC, FTAG, RW_READER);
1602
1603 if (mc->mc_rotor == NULL) { /* no vdevs in this class */
1604 spa_config_exit(spa, SCL_ALLOC, FTAG);
1605 return (ENOSPC);
1606 }
1607
1608 ASSERT(ndvas > 0 && ndvas <= spa_max_replication(spa));
1609 ASSERT(BP_GET_NDVAS(bp) == 0);
1610 ASSERT(hintbp == NULL || ndvas <= BP_GET_NDVAS(hintbp));
1611
1612 for (d = 0; d < ndvas; d++) {
1613 error = metaslab_alloc_dva(spa, mc, psize, dva, d, hintdva,
1614 txg, flags);
1615 if (error) {
1616 for (d--; d >= 0; d--) {
1617 metaslab_free_dva(spa, &dva[d], txg, B_TRUE);
1618 bzero(&dva[d], sizeof (dva_t));
1619 }
1620 spa_config_exit(spa, SCL_ALLOC, FTAG);
1621 return (error);
1622 }
1623 }
1624 ASSERT(error == 0);
1625 ASSERT(BP_GET_NDVAS(bp) == ndvas);
1626
1627 spa_config_exit(spa, SCL_ALLOC, FTAG);
1628
1629 BP_SET_BIRTH(bp, txg, txg);
1630
1631 return (0);
1632 }
1633
1634 void
1635 metaslab_free(spa_t *spa, const blkptr_t *bp, uint64_t txg, boolean_t now)
1636 {
1637 const dva_t *dva = bp->blk_dva;
1638 int d, ndvas = BP_GET_NDVAS(bp);
1639
1640 ASSERT(!BP_IS_HOLE(bp));
1641 ASSERT(!now || bp->blk_birth >= spa_syncing_txg(spa));
1642
1643 spa_config_enter(spa, SCL_FREE, FTAG, RW_READER);
1644
1645 for (d = 0; d < ndvas; d++)
1646 metaslab_free_dva(spa, &dva[d], txg, now);
1647
1648 spa_config_exit(spa, SCL_FREE, FTAG);
1649 }
1650
1651 int
1652 metaslab_claim(spa_t *spa, const blkptr_t *bp, uint64_t txg)
1653 {
1654 const dva_t *dva = bp->blk_dva;
1655 int ndvas = BP_GET_NDVAS(bp);
1656 int d, error = 0;
1657
1658 ASSERT(!BP_IS_HOLE(bp));
1659
1660 if (txg != 0) {
1661 /*
1662 * First do a dry run to make sure all DVAs are claimable,
1663 * so we don't have to unwind from partial failures below.
1664 */
1665 if ((error = metaslab_claim(spa, bp, 0)) != 0)
1666 return (error);
1667 }
1668
1669 spa_config_enter(spa, SCL_ALLOC, FTAG, RW_READER);
1670
1671 for (d = 0; d < ndvas; d++)
1672 if ((error = metaslab_claim_dva(spa, &dva[d], txg)) != 0)
1673 break;
1674
1675 spa_config_exit(spa, SCL_ALLOC, FTAG);
1676
1677 ASSERT(error == 0 || txg == 0);
1678
1679 return (error);
1680 }