]> git.proxmox.com Git - mirror_zfs.git/blob - module/zfs/metaslab.c
Illumos 4958 zdb trips assert on pools with ashift >= 0xe
[mirror_zfs.git] / module / zfs / metaslab.c
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2011, 2014 by Delphix. All rights reserved.
24 * Copyright (c) 2013 by Saso Kiselkov. All rights reserved.
25 */
26
27 #include <sys/zfs_context.h>
28 #include <sys/dmu.h>
29 #include <sys/dmu_tx.h>
30 #include <sys/space_map.h>
31 #include <sys/metaslab_impl.h>
32 #include <sys/vdev_impl.h>
33 #include <sys/zio.h>
34 #include <sys/spa_impl.h>
35 #include <sys/zfeature.h>
36
37 #define WITH_DF_BLOCK_ALLOCATOR
38
39 /*
40 * Allow allocations to switch to gang blocks quickly. We do this to
41 * avoid having to load lots of space_maps in a given txg. There are,
42 * however, some cases where we want to avoid "fast" ganging and instead
43 * we want to do an exhaustive search of all metaslabs on this device.
44 * Currently we don't allow any gang, slog, or dump device related allocations
45 * to "fast" gang.
46 */
47 #define CAN_FASTGANG(flags) \
48 (!((flags) & (METASLAB_GANG_CHILD | METASLAB_GANG_HEADER | \
49 METASLAB_GANG_AVOID)))
50
51 #define METASLAB_WEIGHT_PRIMARY (1ULL << 63)
52 #define METASLAB_WEIGHT_SECONDARY (1ULL << 62)
53 #define METASLAB_ACTIVE_MASK \
54 (METASLAB_WEIGHT_PRIMARY | METASLAB_WEIGHT_SECONDARY)
55
56 uint64_t metaslab_aliquot = 512ULL << 10;
57 uint64_t metaslab_gang_bang = SPA_MAXBLOCKSIZE + 1; /* force gang blocks */
58
59 /*
60 * The in-core space map representation is more compact than its on-disk form.
61 * The zfs_condense_pct determines how much more compact the in-core
62 * space_map representation must be before we compact it on-disk.
63 * Values should be greater than or equal to 100.
64 */
65 int zfs_condense_pct = 200;
66
67 /*
68 * Condensing a metaslab is not guaranteed to actually reduce the amount of
69 * space used on disk. In particular, a space map uses data in increments of
70 * MAX(1 << ashift, SPACE_MAP_INITIAL_BLOCKSIZE), so a metaslab might use the
71 * same number of blocks after condensing. Since the goal of condensing is to
72 * reduce the number of IOPs required to read the space map, we only want to
73 * condense when we can be sure we will reduce the number of blocks used by the
74 * space map. Unfortunately, we cannot precisely compute whether or not this is
75 * the case in metaslab_should_condense since we are holding ms_lock. Instead,
76 * we apply the following heuristic: do not condense a spacemap unless the
77 * uncondensed size consumes greater than zfs_metaslab_condense_block_threshold
78 * blocks.
79 */
80 int zfs_metaslab_condense_block_threshold = 4;
81
82 /*
83 * The zfs_mg_noalloc_threshold defines which metaslab groups should
84 * be eligible for allocation. The value is defined as a percentage of
85 * free space. Metaslab groups that have more free space than
86 * zfs_mg_noalloc_threshold are always eligible for allocations. Once
87 * a metaslab group's free space is less than or equal to the
88 * zfs_mg_noalloc_threshold the allocator will avoid allocating to that
89 * group unless all groups in the pool have reached zfs_mg_noalloc_threshold.
90 * Once all groups in the pool reach zfs_mg_noalloc_threshold then all
91 * groups are allowed to accept allocations. Gang blocks are always
92 * eligible to allocate on any metaslab group. The default value of 0 means
93 * no metaslab group will be excluded based on this criterion.
94 */
95 int zfs_mg_noalloc_threshold = 0;
96
97 /*
98 * Metaslab groups are considered eligible for allocations if their
99 * fragmenation metric (measured as a percentage) is less than or equal to
100 * zfs_mg_fragmentation_threshold. If a metaslab group exceeds this threshold
101 * then it will be skipped unless all metaslab groups within the metaslab
102 * class have also crossed this threshold.
103 */
104 int zfs_mg_fragmentation_threshold = 85;
105
106 /*
107 * Allow metaslabs to keep their active state as long as their fragmentation
108 * percentage is less than or equal to zfs_metaslab_fragmentation_threshold. An
109 * active metaslab that exceeds this threshold will no longer keep its active
110 * status allowing better metaslabs to be selected.
111 */
112 int zfs_metaslab_fragmentation_threshold = 70;
113
114 /*
115 * When set will load all metaslabs when pool is first opened.
116 */
117 int metaslab_debug_load = 0;
118
119 /*
120 * When set will prevent metaslabs from being unloaded.
121 */
122 int metaslab_debug_unload = 0;
123
124 /*
125 * Minimum size which forces the dynamic allocator to change
126 * it's allocation strategy. Once the space map cannot satisfy
127 * an allocation of this size then it switches to using more
128 * aggressive strategy (i.e search by size rather than offset).
129 */
130 uint64_t metaslab_df_alloc_threshold = SPA_MAXBLOCKSIZE;
131
132 /*
133 * The minimum free space, in percent, which must be available
134 * in a space map to continue allocations in a first-fit fashion.
135 * Once the space_map's free space drops below this level we dynamically
136 * switch to using best-fit allocations.
137 */
138 int metaslab_df_free_pct = 4;
139
140 /*
141 * A metaslab is considered "free" if it contains a contiguous
142 * segment which is greater than metaslab_min_alloc_size.
143 */
144 uint64_t metaslab_min_alloc_size = DMU_MAX_ACCESS;
145
146 /*
147 * Percentage of all cpus that can be used by the metaslab taskq.
148 */
149 int metaslab_load_pct = 50;
150
151 /*
152 * Determines how many txgs a metaslab may remain loaded without having any
153 * allocations from it. As long as a metaslab continues to be used we will
154 * keep it loaded.
155 */
156 int metaslab_unload_delay = TXG_SIZE * 2;
157
158 /*
159 * Max number of metaslabs per group to preload.
160 */
161 int metaslab_preload_limit = SPA_DVAS_PER_BP;
162
163 /*
164 * Enable/disable preloading of metaslab.
165 */
166 int metaslab_preload_enabled = B_TRUE;
167
168 /*
169 * Enable/disable fragmentation weighting on metaslabs.
170 */
171 int metaslab_fragmentation_factor_enabled = B_TRUE;
172
173 /*
174 * Enable/disable lba weighting (i.e. outer tracks are given preference).
175 */
176 int metaslab_lba_weighting_enabled = B_TRUE;
177
178 /*
179 * Enable/disable metaslab group biasing.
180 */
181 int metaslab_bias_enabled = B_TRUE;
182
183 static uint64_t metaslab_fragmentation(metaslab_t *);
184
185 /*
186 * ==========================================================================
187 * Metaslab classes
188 * ==========================================================================
189 */
190 metaslab_class_t *
191 metaslab_class_create(spa_t *spa, metaslab_ops_t *ops)
192 {
193 metaslab_class_t *mc;
194
195 mc = kmem_zalloc(sizeof (metaslab_class_t), KM_PUSHPAGE);
196
197 mc->mc_spa = spa;
198 mc->mc_rotor = NULL;
199 mc->mc_ops = ops;
200 mutex_init(&mc->mc_fastwrite_lock, NULL, MUTEX_DEFAULT, NULL);
201
202 return (mc);
203 }
204
205 void
206 metaslab_class_destroy(metaslab_class_t *mc)
207 {
208 ASSERT(mc->mc_rotor == NULL);
209 ASSERT(mc->mc_alloc == 0);
210 ASSERT(mc->mc_deferred == 0);
211 ASSERT(mc->mc_space == 0);
212 ASSERT(mc->mc_dspace == 0);
213
214 mutex_destroy(&mc->mc_fastwrite_lock);
215 kmem_free(mc, sizeof (metaslab_class_t));
216 }
217
218 int
219 metaslab_class_validate(metaslab_class_t *mc)
220 {
221 metaslab_group_t *mg;
222 vdev_t *vd;
223
224 /*
225 * Must hold one of the spa_config locks.
226 */
227 ASSERT(spa_config_held(mc->mc_spa, SCL_ALL, RW_READER) ||
228 spa_config_held(mc->mc_spa, SCL_ALL, RW_WRITER));
229
230 if ((mg = mc->mc_rotor) == NULL)
231 return (0);
232
233 do {
234 vd = mg->mg_vd;
235 ASSERT(vd->vdev_mg != NULL);
236 ASSERT3P(vd->vdev_top, ==, vd);
237 ASSERT3P(mg->mg_class, ==, mc);
238 ASSERT3P(vd->vdev_ops, !=, &vdev_hole_ops);
239 } while ((mg = mg->mg_next) != mc->mc_rotor);
240
241 return (0);
242 }
243
244 void
245 metaslab_class_space_update(metaslab_class_t *mc, int64_t alloc_delta,
246 int64_t defer_delta, int64_t space_delta, int64_t dspace_delta)
247 {
248 atomic_add_64(&mc->mc_alloc, alloc_delta);
249 atomic_add_64(&mc->mc_deferred, defer_delta);
250 atomic_add_64(&mc->mc_space, space_delta);
251 atomic_add_64(&mc->mc_dspace, dspace_delta);
252 }
253
254 uint64_t
255 metaslab_class_get_alloc(metaslab_class_t *mc)
256 {
257 return (mc->mc_alloc);
258 }
259
260 uint64_t
261 metaslab_class_get_deferred(metaslab_class_t *mc)
262 {
263 return (mc->mc_deferred);
264 }
265
266 uint64_t
267 metaslab_class_get_space(metaslab_class_t *mc)
268 {
269 return (mc->mc_space);
270 }
271
272 uint64_t
273 metaslab_class_get_dspace(metaslab_class_t *mc)
274 {
275 return (spa_deflate(mc->mc_spa) ? mc->mc_dspace : mc->mc_space);
276 }
277
278 void
279 metaslab_class_histogram_verify(metaslab_class_t *mc)
280 {
281 vdev_t *rvd = mc->mc_spa->spa_root_vdev;
282 uint64_t *mc_hist;
283 int i, c;
284
285 if ((zfs_flags & ZFS_DEBUG_HISTOGRAM_VERIFY) == 0)
286 return;
287
288 mc_hist = kmem_zalloc(sizeof (uint64_t) * RANGE_TREE_HISTOGRAM_SIZE,
289 KM_PUSHPAGE);
290
291 for (c = 0; c < rvd->vdev_children; c++) {
292 vdev_t *tvd = rvd->vdev_child[c];
293 metaslab_group_t *mg = tvd->vdev_mg;
294
295 /*
296 * Skip any holes, uninitialized top-levels, or
297 * vdevs that are not in this metalab class.
298 */
299 if (tvd->vdev_ishole || tvd->vdev_ms_shift == 0 ||
300 mg->mg_class != mc) {
301 continue;
302 }
303
304 for (i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i++)
305 mc_hist[i] += mg->mg_histogram[i];
306 }
307
308 for (i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i++)
309 VERIFY3U(mc_hist[i], ==, mc->mc_histogram[i]);
310
311 kmem_free(mc_hist, sizeof (uint64_t) * RANGE_TREE_HISTOGRAM_SIZE);
312 }
313
314 /*
315 * Calculate the metaslab class's fragmentation metric. The metric
316 * is weighted based on the space contribution of each metaslab group.
317 * The return value will be a number between 0 and 100 (inclusive), or
318 * ZFS_FRAG_INVALID if the metric has not been set. See comment above the
319 * zfs_frag_table for more information about the metric.
320 */
321 uint64_t
322 metaslab_class_fragmentation(metaslab_class_t *mc)
323 {
324 vdev_t *rvd = mc->mc_spa->spa_root_vdev;
325 uint64_t fragmentation = 0;
326 int c;
327
328 spa_config_enter(mc->mc_spa, SCL_VDEV, FTAG, RW_READER);
329
330 for (c = 0; c < rvd->vdev_children; c++) {
331 vdev_t *tvd = rvd->vdev_child[c];
332 metaslab_group_t *mg = tvd->vdev_mg;
333
334 /*
335 * Skip any holes, uninitialized top-levels, or
336 * vdevs that are not in this metalab class.
337 */
338 if (tvd->vdev_ishole || tvd->vdev_ms_shift == 0 ||
339 mg->mg_class != mc) {
340 continue;
341 }
342
343 /*
344 * If a metaslab group does not contain a fragmentation
345 * metric then just bail out.
346 */
347 if (mg->mg_fragmentation == ZFS_FRAG_INVALID) {
348 spa_config_exit(mc->mc_spa, SCL_VDEV, FTAG);
349 return (ZFS_FRAG_INVALID);
350 }
351
352 /*
353 * Determine how much this metaslab_group is contributing
354 * to the overall pool fragmentation metric.
355 */
356 fragmentation += mg->mg_fragmentation *
357 metaslab_group_get_space(mg);
358 }
359 fragmentation /= metaslab_class_get_space(mc);
360
361 ASSERT3U(fragmentation, <=, 100);
362 spa_config_exit(mc->mc_spa, SCL_VDEV, FTAG);
363 return (fragmentation);
364 }
365
366 /*
367 * Calculate the amount of expandable space that is available in
368 * this metaslab class. If a device is expanded then its expandable
369 * space will be the amount of allocatable space that is currently not
370 * part of this metaslab class.
371 */
372 uint64_t
373 metaslab_class_expandable_space(metaslab_class_t *mc)
374 {
375 vdev_t *rvd = mc->mc_spa->spa_root_vdev;
376 uint64_t space = 0;
377 int c;
378
379 spa_config_enter(mc->mc_spa, SCL_VDEV, FTAG, RW_READER);
380 for (c = 0; c < rvd->vdev_children; c++) {
381 vdev_t *tvd = rvd->vdev_child[c];
382 metaslab_group_t *mg = tvd->vdev_mg;
383
384 if (tvd->vdev_ishole || tvd->vdev_ms_shift == 0 ||
385 mg->mg_class != mc) {
386 continue;
387 }
388
389 space += tvd->vdev_max_asize - tvd->vdev_asize;
390 }
391 spa_config_exit(mc->mc_spa, SCL_VDEV, FTAG);
392 return (space);
393 }
394
395 /*
396 * ==========================================================================
397 * Metaslab groups
398 * ==========================================================================
399 */
400 static int
401 metaslab_compare(const void *x1, const void *x2)
402 {
403 const metaslab_t *m1 = x1;
404 const metaslab_t *m2 = x2;
405
406 if (m1->ms_weight < m2->ms_weight)
407 return (1);
408 if (m1->ms_weight > m2->ms_weight)
409 return (-1);
410
411 /*
412 * If the weights are identical, use the offset to force uniqueness.
413 */
414 if (m1->ms_start < m2->ms_start)
415 return (-1);
416 if (m1->ms_start > m2->ms_start)
417 return (1);
418
419 ASSERT3P(m1, ==, m2);
420
421 return (0);
422 }
423
424 /*
425 * Update the allocatable flag and the metaslab group's capacity.
426 * The allocatable flag is set to true if the capacity is below
427 * the zfs_mg_noalloc_threshold. If a metaslab group transitions
428 * from allocatable to non-allocatable or vice versa then the metaslab
429 * group's class is updated to reflect the transition.
430 */
431 static void
432 metaslab_group_alloc_update(metaslab_group_t *mg)
433 {
434 vdev_t *vd = mg->mg_vd;
435 metaslab_class_t *mc = mg->mg_class;
436 vdev_stat_t *vs = &vd->vdev_stat;
437 boolean_t was_allocatable;
438
439 ASSERT(vd == vd->vdev_top);
440
441 mutex_enter(&mg->mg_lock);
442 was_allocatable = mg->mg_allocatable;
443
444 mg->mg_free_capacity = ((vs->vs_space - vs->vs_alloc) * 100) /
445 (vs->vs_space + 1);
446
447 /*
448 * A metaslab group is considered allocatable if it has plenty
449 * of free space or is not heavily fragmented. We only take
450 * fragmentation into account if the metaslab group has a valid
451 * fragmentation metric (i.e. a value between 0 and 100).
452 */
453 mg->mg_allocatable = (mg->mg_free_capacity > zfs_mg_noalloc_threshold &&
454 (mg->mg_fragmentation == ZFS_FRAG_INVALID ||
455 mg->mg_fragmentation <= zfs_mg_fragmentation_threshold));
456
457 /*
458 * The mc_alloc_groups maintains a count of the number of
459 * groups in this metaslab class that are still above the
460 * zfs_mg_noalloc_threshold. This is used by the allocating
461 * threads to determine if they should avoid allocations to
462 * a given group. The allocator will avoid allocations to a group
463 * if that group has reached or is below the zfs_mg_noalloc_threshold
464 * and there are still other groups that are above the threshold.
465 * When a group transitions from allocatable to non-allocatable or
466 * vice versa we update the metaslab class to reflect that change.
467 * When the mc_alloc_groups value drops to 0 that means that all
468 * groups have reached the zfs_mg_noalloc_threshold making all groups
469 * eligible for allocations. This effectively means that all devices
470 * are balanced again.
471 */
472 if (was_allocatable && !mg->mg_allocatable)
473 mc->mc_alloc_groups--;
474 else if (!was_allocatable && mg->mg_allocatable)
475 mc->mc_alloc_groups++;
476
477 mutex_exit(&mg->mg_lock);
478 }
479
480 metaslab_group_t *
481 metaslab_group_create(metaslab_class_t *mc, vdev_t *vd)
482 {
483 metaslab_group_t *mg;
484
485 mg = kmem_zalloc(sizeof (metaslab_group_t), KM_PUSHPAGE);
486 mutex_init(&mg->mg_lock, NULL, MUTEX_DEFAULT, NULL);
487 avl_create(&mg->mg_metaslab_tree, metaslab_compare,
488 sizeof (metaslab_t), offsetof(struct metaslab, ms_group_node));
489 mg->mg_vd = vd;
490 mg->mg_class = mc;
491 mg->mg_activation_count = 0;
492
493 mg->mg_taskq = taskq_create("metaslab_group_taskq", metaslab_load_pct,
494 minclsyspri, 10, INT_MAX, TASKQ_THREADS_CPU_PCT);
495
496 return (mg);
497 }
498
499 void
500 metaslab_group_destroy(metaslab_group_t *mg)
501 {
502 ASSERT(mg->mg_prev == NULL);
503 ASSERT(mg->mg_next == NULL);
504 /*
505 * We may have gone below zero with the activation count
506 * either because we never activated in the first place or
507 * because we're done, and possibly removing the vdev.
508 */
509 ASSERT(mg->mg_activation_count <= 0);
510
511 taskq_destroy(mg->mg_taskq);
512 avl_destroy(&mg->mg_metaslab_tree);
513 mutex_destroy(&mg->mg_lock);
514 kmem_free(mg, sizeof (metaslab_group_t));
515 }
516
517 void
518 metaslab_group_activate(metaslab_group_t *mg)
519 {
520 metaslab_class_t *mc = mg->mg_class;
521 metaslab_group_t *mgprev, *mgnext;
522
523 ASSERT(spa_config_held(mc->mc_spa, SCL_ALLOC, RW_WRITER));
524
525 ASSERT(mc->mc_rotor != mg);
526 ASSERT(mg->mg_prev == NULL);
527 ASSERT(mg->mg_next == NULL);
528 ASSERT(mg->mg_activation_count <= 0);
529
530 if (++mg->mg_activation_count <= 0)
531 return;
532
533 mg->mg_aliquot = metaslab_aliquot * MAX(1, mg->mg_vd->vdev_children);
534 metaslab_group_alloc_update(mg);
535
536 if ((mgprev = mc->mc_rotor) == NULL) {
537 mg->mg_prev = mg;
538 mg->mg_next = mg;
539 } else {
540 mgnext = mgprev->mg_next;
541 mg->mg_prev = mgprev;
542 mg->mg_next = mgnext;
543 mgprev->mg_next = mg;
544 mgnext->mg_prev = mg;
545 }
546 mc->mc_rotor = mg;
547 }
548
549 void
550 metaslab_group_passivate(metaslab_group_t *mg)
551 {
552 metaslab_class_t *mc = mg->mg_class;
553 metaslab_group_t *mgprev, *mgnext;
554
555 ASSERT(spa_config_held(mc->mc_spa, SCL_ALLOC, RW_WRITER));
556
557 if (--mg->mg_activation_count != 0) {
558 ASSERT(mc->mc_rotor != mg);
559 ASSERT(mg->mg_prev == NULL);
560 ASSERT(mg->mg_next == NULL);
561 ASSERT(mg->mg_activation_count < 0);
562 return;
563 }
564
565 taskq_wait(mg->mg_taskq);
566 metaslab_group_alloc_update(mg);
567
568 mgprev = mg->mg_prev;
569 mgnext = mg->mg_next;
570
571 if (mg == mgnext) {
572 mc->mc_rotor = NULL;
573 } else {
574 mc->mc_rotor = mgnext;
575 mgprev->mg_next = mgnext;
576 mgnext->mg_prev = mgprev;
577 }
578
579 mg->mg_prev = NULL;
580 mg->mg_next = NULL;
581 }
582
583 uint64_t
584 metaslab_group_get_space(metaslab_group_t *mg)
585 {
586 return ((1ULL << mg->mg_vd->vdev_ms_shift) * mg->mg_vd->vdev_ms_count);
587 }
588
589 void
590 metaslab_group_histogram_verify(metaslab_group_t *mg)
591 {
592 uint64_t *mg_hist;
593 vdev_t *vd = mg->mg_vd;
594 uint64_t ashift = vd->vdev_ashift;
595 int i, m;
596
597 if ((zfs_flags & ZFS_DEBUG_HISTOGRAM_VERIFY) == 0)
598 return;
599
600 mg_hist = kmem_zalloc(sizeof (uint64_t) * RANGE_TREE_HISTOGRAM_SIZE,
601 KM_PUSHPAGE);
602
603 ASSERT3U(RANGE_TREE_HISTOGRAM_SIZE, >=,
604 SPACE_MAP_HISTOGRAM_SIZE + ashift);
605
606 for (m = 0; m < vd->vdev_ms_count; m++) {
607 metaslab_t *msp = vd->vdev_ms[m];
608
609 if (msp->ms_sm == NULL)
610 continue;
611
612 for (i = 0; i < SPACE_MAP_HISTOGRAM_SIZE; i++)
613 mg_hist[i + ashift] +=
614 msp->ms_sm->sm_phys->smp_histogram[i];
615 }
616
617 for (i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i ++)
618 VERIFY3U(mg_hist[i], ==, mg->mg_histogram[i]);
619
620 kmem_free(mg_hist, sizeof (uint64_t) * RANGE_TREE_HISTOGRAM_SIZE);
621 }
622
623 static void
624 metaslab_group_histogram_add(metaslab_group_t *mg, metaslab_t *msp)
625 {
626 metaslab_class_t *mc = mg->mg_class;
627 uint64_t ashift = mg->mg_vd->vdev_ashift;
628 int i;
629
630 ASSERT(MUTEX_HELD(&msp->ms_lock));
631 if (msp->ms_sm == NULL)
632 return;
633
634 mutex_enter(&mg->mg_lock);
635 for (i = 0; i < SPACE_MAP_HISTOGRAM_SIZE; i++) {
636 mg->mg_histogram[i + ashift] +=
637 msp->ms_sm->sm_phys->smp_histogram[i];
638 mc->mc_histogram[i + ashift] +=
639 msp->ms_sm->sm_phys->smp_histogram[i];
640 }
641 mutex_exit(&mg->mg_lock);
642 }
643
644 void
645 metaslab_group_histogram_remove(metaslab_group_t *mg, metaslab_t *msp)
646 {
647 metaslab_class_t *mc = mg->mg_class;
648 uint64_t ashift = mg->mg_vd->vdev_ashift;
649 int i;
650
651 ASSERT(MUTEX_HELD(&msp->ms_lock));
652 if (msp->ms_sm == NULL)
653 return;
654
655 mutex_enter(&mg->mg_lock);
656 for (i = 0; i < SPACE_MAP_HISTOGRAM_SIZE; i++) {
657 ASSERT3U(mg->mg_histogram[i + ashift], >=,
658 msp->ms_sm->sm_phys->smp_histogram[i]);
659 ASSERT3U(mc->mc_histogram[i + ashift], >=,
660 msp->ms_sm->sm_phys->smp_histogram[i]);
661
662 mg->mg_histogram[i + ashift] -=
663 msp->ms_sm->sm_phys->smp_histogram[i];
664 mc->mc_histogram[i + ashift] -=
665 msp->ms_sm->sm_phys->smp_histogram[i];
666 }
667 mutex_exit(&mg->mg_lock);
668 }
669
670 static void
671 metaslab_group_add(metaslab_group_t *mg, metaslab_t *msp)
672 {
673 ASSERT(msp->ms_group == NULL);
674 mutex_enter(&mg->mg_lock);
675 msp->ms_group = mg;
676 msp->ms_weight = 0;
677 avl_add(&mg->mg_metaslab_tree, msp);
678 mutex_exit(&mg->mg_lock);
679
680 mutex_enter(&msp->ms_lock);
681 metaslab_group_histogram_add(mg, msp);
682 mutex_exit(&msp->ms_lock);
683 }
684
685 static void
686 metaslab_group_remove(metaslab_group_t *mg, metaslab_t *msp)
687 {
688 mutex_enter(&msp->ms_lock);
689 metaslab_group_histogram_remove(mg, msp);
690 mutex_exit(&msp->ms_lock);
691
692 mutex_enter(&mg->mg_lock);
693 ASSERT(msp->ms_group == mg);
694 avl_remove(&mg->mg_metaslab_tree, msp);
695 msp->ms_group = NULL;
696 mutex_exit(&mg->mg_lock);
697 }
698
699 static void
700 metaslab_group_sort(metaslab_group_t *mg, metaslab_t *msp, uint64_t weight)
701 {
702 /*
703 * Although in principle the weight can be any value, in
704 * practice we do not use values in the range [1, 511].
705 */
706 ASSERT(weight >= SPA_MINBLOCKSIZE || weight == 0);
707 ASSERT(MUTEX_HELD(&msp->ms_lock));
708
709 mutex_enter(&mg->mg_lock);
710 ASSERT(msp->ms_group == mg);
711 avl_remove(&mg->mg_metaslab_tree, msp);
712 msp->ms_weight = weight;
713 avl_add(&mg->mg_metaslab_tree, msp);
714 mutex_exit(&mg->mg_lock);
715 }
716
717 /*
718 * Calculate the fragmentation for a given metaslab group. We can use
719 * a simple average here since all metaslabs within the group must have
720 * the same size. The return value will be a value between 0 and 100
721 * (inclusive), or ZFS_FRAG_INVALID if less than half of the metaslab in this
722 * group have a fragmentation metric.
723 */
724 uint64_t
725 metaslab_group_fragmentation(metaslab_group_t *mg)
726 {
727 vdev_t *vd = mg->mg_vd;
728 uint64_t fragmentation = 0;
729 uint64_t valid_ms = 0;
730 int m;
731
732 for (m = 0; m < vd->vdev_ms_count; m++) {
733 metaslab_t *msp = vd->vdev_ms[m];
734
735 if (msp->ms_fragmentation == ZFS_FRAG_INVALID)
736 continue;
737
738 valid_ms++;
739 fragmentation += msp->ms_fragmentation;
740 }
741
742 if (valid_ms <= vd->vdev_ms_count / 2)
743 return (ZFS_FRAG_INVALID);
744
745 fragmentation /= valid_ms;
746 ASSERT3U(fragmentation, <=, 100);
747 return (fragmentation);
748 }
749
750 /*
751 * Determine if a given metaslab group should skip allocations. A metaslab
752 * group should avoid allocations if its free capacity is less than the
753 * zfs_mg_noalloc_threshold or its fragmentation metric is greater than
754 * zfs_mg_fragmentation_threshold and there is at least one metaslab group
755 * that can still handle allocations.
756 */
757 static boolean_t
758 metaslab_group_allocatable(metaslab_group_t *mg)
759 {
760 vdev_t *vd = mg->mg_vd;
761 spa_t *spa = vd->vdev_spa;
762 metaslab_class_t *mc = mg->mg_class;
763
764 /*
765 * We use two key metrics to determine if a metaslab group is
766 * considered allocatable -- free space and fragmentation. If
767 * the free space is greater than the free space threshold and
768 * the fragmentation is less than the fragmentation threshold then
769 * consider the group allocatable. There are two case when we will
770 * not consider these key metrics. The first is if the group is
771 * associated with a slog device and the second is if all groups
772 * in this metaslab class have already been consider ineligible
773 * for allocations.
774 */
775 return ((mg->mg_free_capacity > zfs_mg_noalloc_threshold &&
776 (mg->mg_fragmentation == ZFS_FRAG_INVALID ||
777 mg->mg_fragmentation <= zfs_mg_fragmentation_threshold)) ||
778 mc != spa_normal_class(spa) || mc->mc_alloc_groups == 0);
779 }
780
781 /*
782 * ==========================================================================
783 * Range tree callbacks
784 * ==========================================================================
785 */
786
787 /*
788 * Comparison function for the private size-ordered tree. Tree is sorted
789 * by size, larger sizes at the end of the tree.
790 */
791 static int
792 metaslab_rangesize_compare(const void *x1, const void *x2)
793 {
794 const range_seg_t *r1 = x1;
795 const range_seg_t *r2 = x2;
796 uint64_t rs_size1 = r1->rs_end - r1->rs_start;
797 uint64_t rs_size2 = r2->rs_end - r2->rs_start;
798
799 if (rs_size1 < rs_size2)
800 return (-1);
801 if (rs_size1 > rs_size2)
802 return (1);
803
804 if (r1->rs_start < r2->rs_start)
805 return (-1);
806
807 if (r1->rs_start > r2->rs_start)
808 return (1);
809
810 return (0);
811 }
812
813 /*
814 * Create any block allocator specific components. The current allocators
815 * rely on using both a size-ordered range_tree_t and an array of uint64_t's.
816 */
817 static void
818 metaslab_rt_create(range_tree_t *rt, void *arg)
819 {
820 metaslab_t *msp = arg;
821
822 ASSERT3P(rt->rt_arg, ==, msp);
823 ASSERT(msp->ms_tree == NULL);
824
825 avl_create(&msp->ms_size_tree, metaslab_rangesize_compare,
826 sizeof (range_seg_t), offsetof(range_seg_t, rs_pp_node));
827 }
828
829 /*
830 * Destroy the block allocator specific components.
831 */
832 static void
833 metaslab_rt_destroy(range_tree_t *rt, void *arg)
834 {
835 metaslab_t *msp = arg;
836
837 ASSERT3P(rt->rt_arg, ==, msp);
838 ASSERT3P(msp->ms_tree, ==, rt);
839 ASSERT0(avl_numnodes(&msp->ms_size_tree));
840
841 avl_destroy(&msp->ms_size_tree);
842 }
843
844 static void
845 metaslab_rt_add(range_tree_t *rt, range_seg_t *rs, void *arg)
846 {
847 metaslab_t *msp = arg;
848
849 ASSERT3P(rt->rt_arg, ==, msp);
850 ASSERT3P(msp->ms_tree, ==, rt);
851 VERIFY(!msp->ms_condensing);
852 avl_add(&msp->ms_size_tree, rs);
853 }
854
855 static void
856 metaslab_rt_remove(range_tree_t *rt, range_seg_t *rs, void *arg)
857 {
858 metaslab_t *msp = arg;
859
860 ASSERT3P(rt->rt_arg, ==, msp);
861 ASSERT3P(msp->ms_tree, ==, rt);
862 VERIFY(!msp->ms_condensing);
863 avl_remove(&msp->ms_size_tree, rs);
864 }
865
866 static void
867 metaslab_rt_vacate(range_tree_t *rt, void *arg)
868 {
869 metaslab_t *msp = arg;
870
871 ASSERT3P(rt->rt_arg, ==, msp);
872 ASSERT3P(msp->ms_tree, ==, rt);
873
874 /*
875 * Normally one would walk the tree freeing nodes along the way.
876 * Since the nodes are shared with the range trees we can avoid
877 * walking all nodes and just reinitialize the avl tree. The nodes
878 * will be freed by the range tree, so we don't want to free them here.
879 */
880 avl_create(&msp->ms_size_tree, metaslab_rangesize_compare,
881 sizeof (range_seg_t), offsetof(range_seg_t, rs_pp_node));
882 }
883
884 static range_tree_ops_t metaslab_rt_ops = {
885 metaslab_rt_create,
886 metaslab_rt_destroy,
887 metaslab_rt_add,
888 metaslab_rt_remove,
889 metaslab_rt_vacate
890 };
891
892 /*
893 * ==========================================================================
894 * Metaslab block operations
895 * ==========================================================================
896 */
897
898 /*
899 * Return the maximum contiguous segment within the metaslab.
900 */
901 uint64_t
902 metaslab_block_maxsize(metaslab_t *msp)
903 {
904 avl_tree_t *t = &msp->ms_size_tree;
905 range_seg_t *rs;
906
907 if (t == NULL || (rs = avl_last(t)) == NULL)
908 return (0ULL);
909
910 return (rs->rs_end - rs->rs_start);
911 }
912
913 uint64_t
914 metaslab_block_alloc(metaslab_t *msp, uint64_t size)
915 {
916 uint64_t start;
917 range_tree_t *rt = msp->ms_tree;
918
919 VERIFY(!msp->ms_condensing);
920
921 start = msp->ms_ops->msop_alloc(msp, size);
922 if (start != -1ULL) {
923 vdev_t *vd = msp->ms_group->mg_vd;
924
925 VERIFY0(P2PHASE(start, 1ULL << vd->vdev_ashift));
926 VERIFY0(P2PHASE(size, 1ULL << vd->vdev_ashift));
927 VERIFY3U(range_tree_space(rt) - size, <=, msp->ms_size);
928 range_tree_remove(rt, start, size);
929 }
930 return (start);
931 }
932
933 /*
934 * ==========================================================================
935 * Common allocator routines
936 * ==========================================================================
937 */
938
939 #if defined(WITH_FF_BLOCK_ALLOCATOR) || \
940 defined(WITH_DF_BLOCK_ALLOCATOR) || \
941 defined(WITH_CF_BLOCK_ALLOCATOR)
942 /*
943 * This is a helper function that can be used by the allocator to find
944 * a suitable block to allocate. This will search the specified AVL
945 * tree looking for a block that matches the specified criteria.
946 */
947 static uint64_t
948 metaslab_block_picker(avl_tree_t *t, uint64_t *cursor, uint64_t size,
949 uint64_t align)
950 {
951 range_seg_t *rs, rsearch;
952 avl_index_t where;
953
954 rsearch.rs_start = *cursor;
955 rsearch.rs_end = *cursor + size;
956
957 rs = avl_find(t, &rsearch, &where);
958 if (rs == NULL)
959 rs = avl_nearest(t, where, AVL_AFTER);
960
961 while (rs != NULL) {
962 uint64_t offset = P2ROUNDUP(rs->rs_start, align);
963
964 if (offset + size <= rs->rs_end) {
965 *cursor = offset + size;
966 return (offset);
967 }
968 rs = AVL_NEXT(t, rs);
969 }
970
971 /*
972 * If we know we've searched the whole map (*cursor == 0), give up.
973 * Otherwise, reset the cursor to the beginning and try again.
974 */
975 if (*cursor == 0)
976 return (-1ULL);
977
978 *cursor = 0;
979 return (metaslab_block_picker(t, cursor, size, align));
980 }
981 #endif /* WITH_FF/DF/CF_BLOCK_ALLOCATOR */
982
983 #if defined(WITH_FF_BLOCK_ALLOCATOR)
984 /*
985 * ==========================================================================
986 * The first-fit block allocator
987 * ==========================================================================
988 */
989 static uint64_t
990 metaslab_ff_alloc(metaslab_t *msp, uint64_t size)
991 {
992 /*
993 * Find the largest power of 2 block size that evenly divides the
994 * requested size. This is used to try to allocate blocks with similar
995 * alignment from the same area of the metaslab (i.e. same cursor
996 * bucket) but it does not guarantee that other allocations sizes
997 * may exist in the same region.
998 */
999 uint64_t align = size & -size;
1000 uint64_t *cursor = &msp->ms_lbas[highbit64(align) - 1];
1001 avl_tree_t *t = &msp->ms_tree->rt_root;
1002
1003 return (metaslab_block_picker(t, cursor, size, align));
1004 }
1005
1006 static metaslab_ops_t metaslab_ff_ops = {
1007 metaslab_ff_alloc
1008 };
1009
1010 metaslab_ops_t *zfs_metaslab_ops = &metaslab_ff_ops;
1011 #endif /* WITH_FF_BLOCK_ALLOCATOR */
1012
1013 #if defined(WITH_DF_BLOCK_ALLOCATOR)
1014 /*
1015 * ==========================================================================
1016 * Dynamic block allocator -
1017 * Uses the first fit allocation scheme until space get low and then
1018 * adjusts to a best fit allocation method. Uses metaslab_df_alloc_threshold
1019 * and metaslab_df_free_pct to determine when to switch the allocation scheme.
1020 * ==========================================================================
1021 */
1022 static uint64_t
1023 metaslab_df_alloc(metaslab_t *msp, uint64_t size)
1024 {
1025 /*
1026 * Find the largest power of 2 block size that evenly divides the
1027 * requested size. This is used to try to allocate blocks with similar
1028 * alignment from the same area of the metaslab (i.e. same cursor
1029 * bucket) but it does not guarantee that other allocations sizes
1030 * may exist in the same region.
1031 */
1032 uint64_t align = size & -size;
1033 uint64_t *cursor = &msp->ms_lbas[highbit64(align) - 1];
1034 range_tree_t *rt = msp->ms_tree;
1035 avl_tree_t *t = &rt->rt_root;
1036 uint64_t max_size = metaslab_block_maxsize(msp);
1037 int free_pct = range_tree_space(rt) * 100 / msp->ms_size;
1038
1039 ASSERT(MUTEX_HELD(&msp->ms_lock));
1040 ASSERT3U(avl_numnodes(t), ==, avl_numnodes(&msp->ms_size_tree));
1041
1042 if (max_size < size)
1043 return (-1ULL);
1044
1045 /*
1046 * If we're running low on space switch to using the size
1047 * sorted AVL tree (best-fit).
1048 */
1049 if (max_size < metaslab_df_alloc_threshold ||
1050 free_pct < metaslab_df_free_pct) {
1051 t = &msp->ms_size_tree;
1052 *cursor = 0;
1053 }
1054
1055 return (metaslab_block_picker(t, cursor, size, 1ULL));
1056 }
1057
1058 static metaslab_ops_t metaslab_df_ops = {
1059 metaslab_df_alloc
1060 };
1061
1062 metaslab_ops_t *zfs_metaslab_ops = &metaslab_df_ops;
1063 #endif /* WITH_DF_BLOCK_ALLOCATOR */
1064
1065 #if defined(WITH_CF_BLOCK_ALLOCATOR)
1066 /*
1067 * ==========================================================================
1068 * Cursor fit block allocator -
1069 * Select the largest region in the metaslab, set the cursor to the beginning
1070 * of the range and the cursor_end to the end of the range. As allocations
1071 * are made advance the cursor. Continue allocating from the cursor until
1072 * the range is exhausted and then find a new range.
1073 * ==========================================================================
1074 */
1075 static uint64_t
1076 metaslab_cf_alloc(metaslab_t *msp, uint64_t size)
1077 {
1078 range_tree_t *rt = msp->ms_tree;
1079 avl_tree_t *t = &msp->ms_size_tree;
1080 uint64_t *cursor = &msp->ms_lbas[0];
1081 uint64_t *cursor_end = &msp->ms_lbas[1];
1082 uint64_t offset = 0;
1083
1084 ASSERT(MUTEX_HELD(&msp->ms_lock));
1085 ASSERT3U(avl_numnodes(t), ==, avl_numnodes(&rt->rt_root));
1086
1087 ASSERT3U(*cursor_end, >=, *cursor);
1088
1089 if ((*cursor + size) > *cursor_end) {
1090 range_seg_t *rs;
1091
1092 rs = avl_last(&msp->ms_size_tree);
1093 if (rs == NULL || (rs->rs_end - rs->rs_start) < size)
1094 return (-1ULL);
1095
1096 *cursor = rs->rs_start;
1097 *cursor_end = rs->rs_end;
1098 }
1099
1100 offset = *cursor;
1101 *cursor += size;
1102
1103 return (offset);
1104 }
1105
1106 static metaslab_ops_t metaslab_cf_ops = {
1107 metaslab_cf_alloc
1108 };
1109
1110 metaslab_ops_t *zfs_metaslab_ops = &metaslab_cf_ops;
1111 #endif /* WITH_CF_BLOCK_ALLOCATOR */
1112
1113 #if defined(WITH_NDF_BLOCK_ALLOCATOR)
1114 /*
1115 * ==========================================================================
1116 * New dynamic fit allocator -
1117 * Select a region that is large enough to allocate 2^metaslab_ndf_clump_shift
1118 * contiguous blocks. If no region is found then just use the largest segment
1119 * that remains.
1120 * ==========================================================================
1121 */
1122
1123 /*
1124 * Determines desired number of contiguous blocks (2^metaslab_ndf_clump_shift)
1125 * to request from the allocator.
1126 */
1127 uint64_t metaslab_ndf_clump_shift = 4;
1128
1129 static uint64_t
1130 metaslab_ndf_alloc(metaslab_t *msp, uint64_t size)
1131 {
1132 avl_tree_t *t = &msp->ms_tree->rt_root;
1133 avl_index_t where;
1134 range_seg_t *rs, rsearch;
1135 uint64_t hbit = highbit64(size);
1136 uint64_t *cursor = &msp->ms_lbas[hbit - 1];
1137 uint64_t max_size = metaslab_block_maxsize(msp);
1138
1139 ASSERT(MUTEX_HELD(&msp->ms_lock));
1140 ASSERT3U(avl_numnodes(t), ==, avl_numnodes(&msp->ms_size_tree));
1141
1142 if (max_size < size)
1143 return (-1ULL);
1144
1145 rsearch.rs_start = *cursor;
1146 rsearch.rs_end = *cursor + size;
1147
1148 rs = avl_find(t, &rsearch, &where);
1149 if (rs == NULL || (rs->rs_end - rs->rs_start) < size) {
1150 t = &msp->ms_size_tree;
1151
1152 rsearch.rs_start = 0;
1153 rsearch.rs_end = MIN(max_size,
1154 1ULL << (hbit + metaslab_ndf_clump_shift));
1155 rs = avl_find(t, &rsearch, &where);
1156 if (rs == NULL)
1157 rs = avl_nearest(t, where, AVL_AFTER);
1158 ASSERT(rs != NULL);
1159 }
1160
1161 if ((rs->rs_end - rs->rs_start) >= size) {
1162 *cursor = rs->rs_start + size;
1163 return (rs->rs_start);
1164 }
1165 return (-1ULL);
1166 }
1167
1168 static metaslab_ops_t metaslab_ndf_ops = {
1169 metaslab_ndf_alloc
1170 };
1171
1172 metaslab_ops_t *zfs_metaslab_ops = &metaslab_ndf_ops;
1173 #endif /* WITH_NDF_BLOCK_ALLOCATOR */
1174
1175
1176 /*
1177 * ==========================================================================
1178 * Metaslabs
1179 * ==========================================================================
1180 */
1181
1182 /*
1183 * Wait for any in-progress metaslab loads to complete.
1184 */
1185 void
1186 metaslab_load_wait(metaslab_t *msp)
1187 {
1188 ASSERT(MUTEX_HELD(&msp->ms_lock));
1189
1190 while (msp->ms_loading) {
1191 ASSERT(!msp->ms_loaded);
1192 cv_wait(&msp->ms_load_cv, &msp->ms_lock);
1193 }
1194 }
1195
1196 int
1197 metaslab_load(metaslab_t *msp)
1198 {
1199 int error = 0;
1200 int t;
1201
1202 ASSERT(MUTEX_HELD(&msp->ms_lock));
1203 ASSERT(!msp->ms_loaded);
1204 ASSERT(!msp->ms_loading);
1205
1206 msp->ms_loading = B_TRUE;
1207
1208 /*
1209 * If the space map has not been allocated yet, then treat
1210 * all the space in the metaslab as free and add it to the
1211 * ms_tree.
1212 */
1213 if (msp->ms_sm != NULL)
1214 error = space_map_load(msp->ms_sm, msp->ms_tree, SM_FREE);
1215 else
1216 range_tree_add(msp->ms_tree, msp->ms_start, msp->ms_size);
1217
1218 msp->ms_loaded = (error == 0);
1219 msp->ms_loading = B_FALSE;
1220
1221 if (msp->ms_loaded) {
1222 for (t = 0; t < TXG_DEFER_SIZE; t++) {
1223 range_tree_walk(msp->ms_defertree[t],
1224 range_tree_remove, msp->ms_tree);
1225 }
1226 }
1227 cv_broadcast(&msp->ms_load_cv);
1228 return (error);
1229 }
1230
1231 void
1232 metaslab_unload(metaslab_t *msp)
1233 {
1234 ASSERT(MUTEX_HELD(&msp->ms_lock));
1235 range_tree_vacate(msp->ms_tree, NULL, NULL);
1236 msp->ms_loaded = B_FALSE;
1237 msp->ms_weight &= ~METASLAB_ACTIVE_MASK;
1238 }
1239
1240 metaslab_t *
1241 metaslab_init(metaslab_group_t *mg, uint64_t id, uint64_t object, uint64_t txg)
1242 {
1243 vdev_t *vd = mg->mg_vd;
1244 objset_t *mos = vd->vdev_spa->spa_meta_objset;
1245 metaslab_t *msp;
1246
1247 msp = kmem_zalloc(sizeof (metaslab_t), KM_PUSHPAGE);
1248 mutex_init(&msp->ms_lock, NULL, MUTEX_DEFAULT, NULL);
1249 cv_init(&msp->ms_load_cv, NULL, CV_DEFAULT, NULL);
1250 msp->ms_id = id;
1251 msp->ms_start = id << vd->vdev_ms_shift;
1252 msp->ms_size = 1ULL << vd->vdev_ms_shift;
1253
1254 /*
1255 * We only open space map objects that already exist. All others
1256 * will be opened when we finally allocate an object for it.
1257 */
1258 if (object != 0) {
1259 VERIFY0(space_map_open(&msp->ms_sm, mos, object, msp->ms_start,
1260 msp->ms_size, vd->vdev_ashift, &msp->ms_lock));
1261 ASSERT(msp->ms_sm != NULL);
1262 }
1263
1264 /*
1265 * We create the main range tree here, but we don't create the
1266 * alloctree and freetree until metaslab_sync_done(). This serves
1267 * two purposes: it allows metaslab_sync_done() to detect the
1268 * addition of new space; and for debugging, it ensures that we'd
1269 * data fault on any attempt to use this metaslab before it's ready.
1270 */
1271 msp->ms_tree = range_tree_create(&metaslab_rt_ops, msp, &msp->ms_lock);
1272 metaslab_group_add(mg, msp);
1273
1274 msp->ms_fragmentation = metaslab_fragmentation(msp);
1275 msp->ms_ops = mg->mg_class->mc_ops;
1276
1277 /*
1278 * If we're opening an existing pool (txg == 0) or creating
1279 * a new one (txg == TXG_INITIAL), all space is available now.
1280 * If we're adding space to an existing pool, the new space
1281 * does not become available until after this txg has synced.
1282 */
1283 if (txg <= TXG_INITIAL)
1284 metaslab_sync_done(msp, 0);
1285
1286 /*
1287 * If metaslab_debug_load is set and we're initializing a metaslab
1288 * that has an allocated space_map object then load the its space
1289 * map so that can verify frees.
1290 */
1291 if (metaslab_debug_load && msp->ms_sm != NULL) {
1292 mutex_enter(&msp->ms_lock);
1293 VERIFY0(metaslab_load(msp));
1294 mutex_exit(&msp->ms_lock);
1295 }
1296
1297 if (txg != 0) {
1298 vdev_dirty(vd, 0, NULL, txg);
1299 vdev_dirty(vd, VDD_METASLAB, msp, txg);
1300 }
1301
1302 return (msp);
1303 }
1304
1305 void
1306 metaslab_fini(metaslab_t *msp)
1307 {
1308 int t;
1309
1310 metaslab_group_t *mg = msp->ms_group;
1311
1312 metaslab_group_remove(mg, msp);
1313
1314 mutex_enter(&msp->ms_lock);
1315
1316 VERIFY(msp->ms_group == NULL);
1317 vdev_space_update(mg->mg_vd, -space_map_allocated(msp->ms_sm),
1318 0, -msp->ms_size);
1319 space_map_close(msp->ms_sm);
1320
1321 metaslab_unload(msp);
1322 range_tree_destroy(msp->ms_tree);
1323
1324 for (t = 0; t < TXG_SIZE; t++) {
1325 range_tree_destroy(msp->ms_alloctree[t]);
1326 range_tree_destroy(msp->ms_freetree[t]);
1327 }
1328
1329 for (t = 0; t < TXG_DEFER_SIZE; t++) {
1330 range_tree_destroy(msp->ms_defertree[t]);
1331 }
1332
1333 ASSERT0(msp->ms_deferspace);
1334
1335 mutex_exit(&msp->ms_lock);
1336 cv_destroy(&msp->ms_load_cv);
1337 mutex_destroy(&msp->ms_lock);
1338
1339 kmem_free(msp, sizeof (metaslab_t));
1340 }
1341
1342 #define FRAGMENTATION_TABLE_SIZE 17
1343
1344 /*
1345 * This table defines a segment size based fragmentation metric that will
1346 * allow each metaslab to derive its own fragmentation value. This is done
1347 * by calculating the space in each bucket of the spacemap histogram and
1348 * multiplying that by the fragmetation metric in this table. Doing
1349 * this for all buckets and dividing it by the total amount of free
1350 * space in this metaslab (i.e. the total free space in all buckets) gives
1351 * us the fragmentation metric. This means that a high fragmentation metric
1352 * equates to most of the free space being comprised of small segments.
1353 * Conversely, if the metric is low, then most of the free space is in
1354 * large segments. A 10% change in fragmentation equates to approximately
1355 * double the number of segments.
1356 *
1357 * This table defines 0% fragmented space using 16MB segments. Testing has
1358 * shown that segments that are greater than or equal to 16MB do not suffer
1359 * from drastic performance problems. Using this value, we derive the rest
1360 * of the table. Since the fragmentation value is never stored on disk, it
1361 * is possible to change these calculations in the future.
1362 */
1363 int zfs_frag_table[FRAGMENTATION_TABLE_SIZE] = {
1364 100, /* 512B */
1365 100, /* 1K */
1366 98, /* 2K */
1367 95, /* 4K */
1368 90, /* 8K */
1369 80, /* 16K */
1370 70, /* 32K */
1371 60, /* 64K */
1372 50, /* 128K */
1373 40, /* 256K */
1374 30, /* 512K */
1375 20, /* 1M */
1376 15, /* 2M */
1377 10, /* 4M */
1378 5, /* 8M */
1379 0 /* 16M */
1380 };
1381
1382 /*
1383 * Calclate the metaslab's fragmentation metric. A return value
1384 * of ZFS_FRAG_INVALID means that the metaslab has not been upgraded and does
1385 * not support this metric. Otherwise, the return value should be in the
1386 * range [0, 100].
1387 */
1388 static uint64_t
1389 metaslab_fragmentation(metaslab_t *msp)
1390 {
1391 spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
1392 uint64_t fragmentation = 0;
1393 uint64_t total = 0;
1394 boolean_t feature_enabled = spa_feature_is_enabled(spa,
1395 SPA_FEATURE_SPACEMAP_HISTOGRAM);
1396 int i;
1397
1398 if (!feature_enabled)
1399 return (ZFS_FRAG_INVALID);
1400
1401 /*
1402 * A null space map means that the entire metaslab is free
1403 * and thus is not fragmented.
1404 */
1405 if (msp->ms_sm == NULL)
1406 return (0);
1407
1408 /*
1409 * If this metaslab's space_map has not been upgraded, flag it
1410 * so that we upgrade next time we encounter it.
1411 */
1412 if (msp->ms_sm->sm_dbuf->db_size != sizeof (space_map_phys_t)) {
1413 vdev_t *vd = msp->ms_group->mg_vd;
1414
1415 if (spa_writeable(vd->vdev_spa)) {
1416 uint64_t txg = spa_syncing_txg(spa);
1417
1418 msp->ms_condense_wanted = B_TRUE;
1419 vdev_dirty(vd, VDD_METASLAB, msp, txg + 1);
1420 spa_dbgmsg(spa, "txg %llu, requesting force condense: "
1421 "msp %p, vd %p", txg, msp, vd);
1422 }
1423 return (ZFS_FRAG_INVALID);
1424 }
1425
1426 for (i = 0; i < SPACE_MAP_HISTOGRAM_SIZE; i++) {
1427 uint64_t space = 0;
1428 uint8_t shift = msp->ms_sm->sm_shift;
1429 int idx = MIN(shift - SPA_MINBLOCKSHIFT + i,
1430 FRAGMENTATION_TABLE_SIZE - 1);
1431
1432 if (msp->ms_sm->sm_phys->smp_histogram[i] == 0)
1433 continue;
1434
1435 space = msp->ms_sm->sm_phys->smp_histogram[i] << (i + shift);
1436 total += space;
1437
1438 ASSERT3U(idx, <, FRAGMENTATION_TABLE_SIZE);
1439 fragmentation += space * zfs_frag_table[idx];
1440 }
1441
1442 if (total > 0)
1443 fragmentation /= total;
1444 ASSERT3U(fragmentation, <=, 100);
1445 return (fragmentation);
1446 }
1447
1448 /*
1449 * Compute a weight -- a selection preference value -- for the given metaslab.
1450 * This is based on the amount of free space, the level of fragmentation,
1451 * the LBA range, and whether the metaslab is loaded.
1452 */
1453 static uint64_t
1454 metaslab_weight(metaslab_t *msp)
1455 {
1456 metaslab_group_t *mg = msp->ms_group;
1457 vdev_t *vd = mg->mg_vd;
1458 uint64_t weight, space;
1459
1460 ASSERT(MUTEX_HELD(&msp->ms_lock));
1461
1462 /*
1463 * This vdev is in the process of being removed so there is nothing
1464 * for us to do here.
1465 */
1466 if (vd->vdev_removing) {
1467 ASSERT0(space_map_allocated(msp->ms_sm));
1468 ASSERT0(vd->vdev_ms_shift);
1469 return (0);
1470 }
1471
1472 /*
1473 * The baseline weight is the metaslab's free space.
1474 */
1475 space = msp->ms_size - space_map_allocated(msp->ms_sm);
1476
1477 msp->ms_fragmentation = metaslab_fragmentation(msp);
1478 if (metaslab_fragmentation_factor_enabled &&
1479 msp->ms_fragmentation != ZFS_FRAG_INVALID) {
1480 /*
1481 * Use the fragmentation information to inversely scale
1482 * down the baseline weight. We need to ensure that we
1483 * don't exclude this metaslab completely when it's 100%
1484 * fragmented. To avoid this we reduce the fragmented value
1485 * by 1.
1486 */
1487 space = (space * (100 - (msp->ms_fragmentation - 1))) / 100;
1488
1489 /*
1490 * If space < SPA_MINBLOCKSIZE, then we will not allocate from
1491 * this metaslab again. The fragmentation metric may have
1492 * decreased the space to something smaller than
1493 * SPA_MINBLOCKSIZE, so reset the space to SPA_MINBLOCKSIZE
1494 * so that we can consume any remaining space.
1495 */
1496 if (space > 0 && space < SPA_MINBLOCKSIZE)
1497 space = SPA_MINBLOCKSIZE;
1498 }
1499 weight = space;
1500
1501 /*
1502 * Modern disks have uniform bit density and constant angular velocity.
1503 * Therefore, the outer recording zones are faster (higher bandwidth)
1504 * than the inner zones by the ratio of outer to inner track diameter,
1505 * which is typically around 2:1. We account for this by assigning
1506 * higher weight to lower metaslabs (multiplier ranging from 2x to 1x).
1507 * In effect, this means that we'll select the metaslab with the most
1508 * free bandwidth rather than simply the one with the most free space.
1509 */
1510 if (metaslab_lba_weighting_enabled) {
1511 weight = 2 * weight - (msp->ms_id * weight) / vd->vdev_ms_count;
1512 ASSERT(weight >= space && weight <= 2 * space);
1513 }
1514
1515 /*
1516 * If this metaslab is one we're actively using, adjust its
1517 * weight to make it preferable to any inactive metaslab so
1518 * we'll polish it off. If the fragmentation on this metaslab
1519 * has exceed our threshold, then don't mark it active.
1520 */
1521 if (msp->ms_loaded && msp->ms_fragmentation != ZFS_FRAG_INVALID &&
1522 msp->ms_fragmentation <= zfs_metaslab_fragmentation_threshold) {
1523 weight |= (msp->ms_weight & METASLAB_ACTIVE_MASK);
1524 }
1525
1526 return (weight);
1527 }
1528
1529 static int
1530 metaslab_activate(metaslab_t *msp, uint64_t activation_weight)
1531 {
1532 ASSERT(MUTEX_HELD(&msp->ms_lock));
1533
1534 if ((msp->ms_weight & METASLAB_ACTIVE_MASK) == 0) {
1535 metaslab_load_wait(msp);
1536 if (!msp->ms_loaded) {
1537 int error = metaslab_load(msp);
1538 if (error) {
1539 metaslab_group_sort(msp->ms_group, msp, 0);
1540 return (error);
1541 }
1542 }
1543
1544 metaslab_group_sort(msp->ms_group, msp,
1545 msp->ms_weight | activation_weight);
1546 }
1547 ASSERT(msp->ms_loaded);
1548 ASSERT(msp->ms_weight & METASLAB_ACTIVE_MASK);
1549
1550 return (0);
1551 }
1552
1553 static void
1554 metaslab_passivate(metaslab_t *msp, uint64_t size)
1555 {
1556 /*
1557 * If size < SPA_MINBLOCKSIZE, then we will not allocate from
1558 * this metaslab again. In that case, it had better be empty,
1559 * or we would be leaving space on the table.
1560 */
1561 ASSERT(size >= SPA_MINBLOCKSIZE || range_tree_space(msp->ms_tree) == 0);
1562 metaslab_group_sort(msp->ms_group, msp, MIN(msp->ms_weight, size));
1563 ASSERT((msp->ms_weight & METASLAB_ACTIVE_MASK) == 0);
1564 }
1565
1566 static void
1567 metaslab_preload(void *arg)
1568 {
1569 metaslab_t *msp = arg;
1570 spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
1571
1572 ASSERT(!MUTEX_HELD(&msp->ms_group->mg_lock));
1573
1574 mutex_enter(&msp->ms_lock);
1575 metaslab_load_wait(msp);
1576 if (!msp->ms_loaded)
1577 (void) metaslab_load(msp);
1578
1579 /*
1580 * Set the ms_access_txg value so that we don't unload it right away.
1581 */
1582 msp->ms_access_txg = spa_syncing_txg(spa) + metaslab_unload_delay + 1;
1583 mutex_exit(&msp->ms_lock);
1584 }
1585
1586 static void
1587 metaslab_group_preload(metaslab_group_t *mg)
1588 {
1589 spa_t *spa = mg->mg_vd->vdev_spa;
1590 metaslab_t *msp;
1591 avl_tree_t *t = &mg->mg_metaslab_tree;
1592 int m = 0;
1593
1594 if (spa_shutting_down(spa) || !metaslab_preload_enabled) {
1595 taskq_wait(mg->mg_taskq);
1596 return;
1597 }
1598
1599 mutex_enter(&mg->mg_lock);
1600 /*
1601 * Load the next potential metaslabs
1602 */
1603 msp = avl_first(t);
1604 while (msp != NULL) {
1605 metaslab_t *msp_next = AVL_NEXT(t, msp);
1606
1607 /*
1608 * We preload only the maximum number of metaslabs specified
1609 * by metaslab_preload_limit. If a metaslab is being forced
1610 * to condense then we preload it too. This will ensure
1611 * that force condensing happens in the next txg.
1612 */
1613 if (++m > metaslab_preload_limit && !msp->ms_condense_wanted) {
1614 msp = msp_next;
1615 continue;
1616 }
1617
1618 /*
1619 * We must drop the metaslab group lock here to preserve
1620 * lock ordering with the ms_lock (when grabbing both
1621 * the mg_lock and the ms_lock, the ms_lock must be taken
1622 * first). As a result, it is possible that the ordering
1623 * of the metaslabs within the avl tree may change before
1624 * we reacquire the lock. The metaslab cannot be removed from
1625 * the tree while we're in syncing context so it is safe to
1626 * drop the mg_lock here. If the metaslabs are reordered
1627 * nothing will break -- we just may end up loading a
1628 * less than optimal one.
1629 */
1630 mutex_exit(&mg->mg_lock);
1631 VERIFY(taskq_dispatch(mg->mg_taskq, metaslab_preload,
1632 msp, TQ_PUSHPAGE) != 0);
1633 mutex_enter(&mg->mg_lock);
1634 msp = msp_next;
1635 }
1636 mutex_exit(&mg->mg_lock);
1637 }
1638
1639 /*
1640 * Determine if the space map's on-disk footprint is past our tolerance
1641 * for inefficiency. We would like to use the following criteria to make
1642 * our decision:
1643 *
1644 * 1. The size of the space map object should not dramatically increase as a
1645 * result of writing out the free space range tree.
1646 *
1647 * 2. The minimal on-disk space map representation is zfs_condense_pct/100
1648 * times the size than the free space range tree representation
1649 * (i.e. zfs_condense_pct = 110 and in-core = 1MB, minimal = 1.1.MB).
1650 *
1651 * 3. The on-disk size of the space map should actually decrease.
1652 *
1653 * Checking the first condition is tricky since we don't want to walk
1654 * the entire AVL tree calculating the estimated on-disk size. Instead we
1655 * use the size-ordered range tree in the metaslab and calculate the
1656 * size required to write out the largest segment in our free tree. If the
1657 * size required to represent that segment on disk is larger than the space
1658 * map object then we avoid condensing this map.
1659 *
1660 * To determine the second criterion we use a best-case estimate and assume
1661 * each segment can be represented on-disk as a single 64-bit entry. We refer
1662 * to this best-case estimate as the space map's minimal form.
1663 *
1664 * Unfortunately, we cannot compute the on-disk size of the space map in this
1665 * context because we cannot accurately compute the effects of compression, etc.
1666 * Instead, we apply the heuristic described in the block comment for
1667 * zfs_metaslab_condense_block_threshold - we only condense if the space used
1668 * is greater than a threshold number of blocks.
1669 */
1670 static boolean_t
1671 metaslab_should_condense(metaslab_t *msp)
1672 {
1673 space_map_t *sm = msp->ms_sm;
1674 range_seg_t *rs;
1675 uint64_t size, entries, segsz, object_size, optimal_size, record_size;
1676 dmu_object_info_t doi;
1677 uint64_t vdev_blocksize = 1 << msp->ms_group->mg_vd->vdev_ashift;
1678
1679 ASSERT(MUTEX_HELD(&msp->ms_lock));
1680 ASSERT(msp->ms_loaded);
1681
1682 /*
1683 * Use the ms_size_tree range tree, which is ordered by size, to
1684 * obtain the largest segment in the free tree. We always condense
1685 * metaslabs that are empty and metaslabs for which a condense
1686 * request has been made.
1687 */
1688 rs = avl_last(&msp->ms_size_tree);
1689 if (rs == NULL || msp->ms_condense_wanted)
1690 return (B_TRUE);
1691
1692 /*
1693 * Calculate the number of 64-bit entries this segment would
1694 * require when written to disk. If this single segment would be
1695 * larger on-disk than the entire current on-disk structure, then
1696 * clearly condensing will increase the on-disk structure size.
1697 */
1698 size = (rs->rs_end - rs->rs_start) >> sm->sm_shift;
1699 entries = size / (MIN(size, SM_RUN_MAX));
1700 segsz = entries * sizeof (uint64_t);
1701
1702 optimal_size = sizeof (uint64_t) * avl_numnodes(&msp->ms_tree->rt_root);
1703 object_size = space_map_length(msp->ms_sm);
1704
1705 dmu_object_info_from_db(sm->sm_dbuf, &doi);
1706 record_size = MAX(doi.doi_data_block_size, vdev_blocksize);
1707
1708 return (segsz <= object_size &&
1709 object_size >= (optimal_size * zfs_condense_pct / 100) &&
1710 object_size > zfs_metaslab_condense_block_threshold * record_size);
1711 }
1712
1713 /*
1714 * Condense the on-disk space map representation to its minimized form.
1715 * The minimized form consists of a small number of allocations followed by
1716 * the entries of the free range tree.
1717 */
1718 static void
1719 metaslab_condense(metaslab_t *msp, uint64_t txg, dmu_tx_t *tx)
1720 {
1721 spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
1722 range_tree_t *freetree = msp->ms_freetree[txg & TXG_MASK];
1723 range_tree_t *condense_tree;
1724 space_map_t *sm = msp->ms_sm;
1725 int t;
1726
1727 ASSERT(MUTEX_HELD(&msp->ms_lock));
1728 ASSERT3U(spa_sync_pass(spa), ==, 1);
1729 ASSERT(msp->ms_loaded);
1730
1731
1732 spa_dbgmsg(spa, "condensing: txg %llu, msp[%llu] %p, "
1733 "smp size %llu, segments %lu, forcing condense=%s", txg,
1734 msp->ms_id, msp, space_map_length(msp->ms_sm),
1735 avl_numnodes(&msp->ms_tree->rt_root),
1736 msp->ms_condense_wanted ? "TRUE" : "FALSE");
1737
1738 msp->ms_condense_wanted = B_FALSE;
1739
1740 /*
1741 * Create an range tree that is 100% allocated. We remove segments
1742 * that have been freed in this txg, any deferred frees that exist,
1743 * and any allocation in the future. Removing segments should be
1744 * a relatively inexpensive operation since we expect these trees to
1745 * have a small number of nodes.
1746 */
1747 condense_tree = range_tree_create(NULL, NULL, &msp->ms_lock);
1748 range_tree_add(condense_tree, msp->ms_start, msp->ms_size);
1749
1750 /*
1751 * Remove what's been freed in this txg from the condense_tree.
1752 * Since we're in sync_pass 1, we know that all the frees from
1753 * this txg are in the freetree.
1754 */
1755 range_tree_walk(freetree, range_tree_remove, condense_tree);
1756
1757 for (t = 0; t < TXG_DEFER_SIZE; t++) {
1758 range_tree_walk(msp->ms_defertree[t],
1759 range_tree_remove, condense_tree);
1760 }
1761
1762 for (t = 1; t < TXG_CONCURRENT_STATES; t++) {
1763 range_tree_walk(msp->ms_alloctree[(txg + t) & TXG_MASK],
1764 range_tree_remove, condense_tree);
1765 }
1766
1767 /*
1768 * We're about to drop the metaslab's lock thus allowing
1769 * other consumers to change it's content. Set the
1770 * metaslab's ms_condensing flag to ensure that
1771 * allocations on this metaslab do not occur while we're
1772 * in the middle of committing it to disk. This is only critical
1773 * for the ms_tree as all other range trees use per txg
1774 * views of their content.
1775 */
1776 msp->ms_condensing = B_TRUE;
1777
1778 mutex_exit(&msp->ms_lock);
1779 space_map_truncate(sm, tx);
1780 mutex_enter(&msp->ms_lock);
1781
1782 /*
1783 * While we would ideally like to create a space_map representation
1784 * that consists only of allocation records, doing so can be
1785 * prohibitively expensive because the in-core free tree can be
1786 * large, and therefore computationally expensive to subtract
1787 * from the condense_tree. Instead we sync out two trees, a cheap
1788 * allocation only tree followed by the in-core free tree. While not
1789 * optimal, this is typically close to optimal, and much cheaper to
1790 * compute.
1791 */
1792 space_map_write(sm, condense_tree, SM_ALLOC, tx);
1793 range_tree_vacate(condense_tree, NULL, NULL);
1794 range_tree_destroy(condense_tree);
1795
1796 space_map_write(sm, msp->ms_tree, SM_FREE, tx);
1797 msp->ms_condensing = B_FALSE;
1798 }
1799
1800 /*
1801 * Write a metaslab to disk in the context of the specified transaction group.
1802 */
1803 void
1804 metaslab_sync(metaslab_t *msp, uint64_t txg)
1805 {
1806 metaslab_group_t *mg = msp->ms_group;
1807 vdev_t *vd = mg->mg_vd;
1808 spa_t *spa = vd->vdev_spa;
1809 objset_t *mos = spa_meta_objset(spa);
1810 range_tree_t *alloctree = msp->ms_alloctree[txg & TXG_MASK];
1811 range_tree_t **freetree = &msp->ms_freetree[txg & TXG_MASK];
1812 range_tree_t **freed_tree =
1813 &msp->ms_freetree[TXG_CLEAN(txg) & TXG_MASK];
1814 dmu_tx_t *tx;
1815 uint64_t object = space_map_object(msp->ms_sm);
1816
1817 ASSERT(!vd->vdev_ishole);
1818
1819 /*
1820 * This metaslab has just been added so there's no work to do now.
1821 */
1822 if (*freetree == NULL) {
1823 ASSERT3P(alloctree, ==, NULL);
1824 return;
1825 }
1826
1827 ASSERT3P(alloctree, !=, NULL);
1828 ASSERT3P(*freetree, !=, NULL);
1829 ASSERT3P(*freed_tree, !=, NULL);
1830
1831 /*
1832 * Normally, we don't want to process a metaslab if there
1833 * are no allocations or frees to perform. However, if the metaslab
1834 * is being forced to condense we need to let it through.
1835 */
1836 if (range_tree_space(alloctree) == 0 &&
1837 range_tree_space(*freetree) == 0 &&
1838 !msp->ms_condense_wanted)
1839 return;
1840
1841 /*
1842 * The only state that can actually be changing concurrently with
1843 * metaslab_sync() is the metaslab's ms_tree. No other thread can
1844 * be modifying this txg's alloctree, freetree, freed_tree, or
1845 * space_map_phys_t. Therefore, we only hold ms_lock to satify
1846 * space_map ASSERTs. We drop it whenever we call into the DMU,
1847 * because the DMU can call down to us (e.g. via zio_free()) at
1848 * any time.
1849 */
1850
1851 tx = dmu_tx_create_assigned(spa_get_dsl(spa), txg);
1852
1853 if (msp->ms_sm == NULL) {
1854 uint64_t new_object;
1855
1856 new_object = space_map_alloc(mos, tx);
1857 VERIFY3U(new_object, !=, 0);
1858
1859 VERIFY0(space_map_open(&msp->ms_sm, mos, new_object,
1860 msp->ms_start, msp->ms_size, vd->vdev_ashift,
1861 &msp->ms_lock));
1862 ASSERT(msp->ms_sm != NULL);
1863 }
1864
1865 mutex_enter(&msp->ms_lock);
1866
1867 if (msp->ms_loaded && spa_sync_pass(spa) == 1 &&
1868 metaslab_should_condense(msp)) {
1869 metaslab_condense(msp, txg, tx);
1870 } else {
1871 space_map_write(msp->ms_sm, alloctree, SM_ALLOC, tx);
1872 space_map_write(msp->ms_sm, *freetree, SM_FREE, tx);
1873 }
1874
1875 metaslab_group_histogram_verify(mg);
1876 metaslab_class_histogram_verify(mg->mg_class);
1877 metaslab_group_histogram_remove(mg, msp);
1878 if (msp->ms_loaded) {
1879 /*
1880 * When the space map is loaded, we have an accruate
1881 * histogram in the range tree. This gives us an opportunity
1882 * to bring the space map's histogram up-to-date so we clear
1883 * it first before updating it.
1884 */
1885 space_map_histogram_clear(msp->ms_sm);
1886 space_map_histogram_add(msp->ms_sm, msp->ms_tree, tx);
1887 } else {
1888 /*
1889 * Since the space map is not loaded we simply update the
1890 * exisiting histogram with what was freed in this txg. This
1891 * means that the on-disk histogram may not have an accurate
1892 * view of the free space but it's close enough to allow
1893 * us to make allocation decisions.
1894 */
1895 space_map_histogram_add(msp->ms_sm, *freetree, tx);
1896 }
1897 metaslab_group_histogram_add(mg, msp);
1898 metaslab_group_histogram_verify(mg);
1899 metaslab_class_histogram_verify(mg->mg_class);
1900
1901 /*
1902 * For sync pass 1, we avoid traversing this txg's free range tree
1903 * and instead will just swap the pointers for freetree and
1904 * freed_tree. We can safely do this since the freed_tree is
1905 * guaranteed to be empty on the initial pass.
1906 */
1907 if (spa_sync_pass(spa) == 1) {
1908 range_tree_swap(freetree, freed_tree);
1909 } else {
1910 range_tree_vacate(*freetree, range_tree_add, *freed_tree);
1911 }
1912 range_tree_vacate(alloctree, NULL, NULL);
1913
1914 ASSERT0(range_tree_space(msp->ms_alloctree[txg & TXG_MASK]));
1915 ASSERT0(range_tree_space(msp->ms_freetree[txg & TXG_MASK]));
1916
1917 mutex_exit(&msp->ms_lock);
1918
1919 if (object != space_map_object(msp->ms_sm)) {
1920 object = space_map_object(msp->ms_sm);
1921 dmu_write(mos, vd->vdev_ms_array, sizeof (uint64_t) *
1922 msp->ms_id, sizeof (uint64_t), &object, tx);
1923 }
1924 dmu_tx_commit(tx);
1925 }
1926
1927 /*
1928 * Called after a transaction group has completely synced to mark
1929 * all of the metaslab's free space as usable.
1930 */
1931 void
1932 metaslab_sync_done(metaslab_t *msp, uint64_t txg)
1933 {
1934 metaslab_group_t *mg = msp->ms_group;
1935 vdev_t *vd = mg->mg_vd;
1936 range_tree_t **freed_tree;
1937 range_tree_t **defer_tree;
1938 int64_t alloc_delta, defer_delta;
1939 int t;
1940
1941 ASSERT(!vd->vdev_ishole);
1942
1943 mutex_enter(&msp->ms_lock);
1944
1945 /*
1946 * If this metaslab is just becoming available, initialize its
1947 * alloctrees, freetrees, and defertree and add its capacity to
1948 * the vdev.
1949 */
1950 if (msp->ms_freetree[TXG_CLEAN(txg) & TXG_MASK] == NULL) {
1951 for (t = 0; t < TXG_SIZE; t++) {
1952 ASSERT(msp->ms_alloctree[t] == NULL);
1953 ASSERT(msp->ms_freetree[t] == NULL);
1954
1955 msp->ms_alloctree[t] = range_tree_create(NULL, msp,
1956 &msp->ms_lock);
1957 msp->ms_freetree[t] = range_tree_create(NULL, msp,
1958 &msp->ms_lock);
1959 }
1960
1961 for (t = 0; t < TXG_DEFER_SIZE; t++) {
1962 ASSERT(msp->ms_defertree[t] == NULL);
1963
1964 msp->ms_defertree[t] = range_tree_create(NULL, msp,
1965 &msp->ms_lock);
1966 }
1967
1968 vdev_space_update(vd, 0, 0, msp->ms_size);
1969 }
1970
1971 freed_tree = &msp->ms_freetree[TXG_CLEAN(txg) & TXG_MASK];
1972 defer_tree = &msp->ms_defertree[txg % TXG_DEFER_SIZE];
1973
1974 alloc_delta = space_map_alloc_delta(msp->ms_sm);
1975 defer_delta = range_tree_space(*freed_tree) -
1976 range_tree_space(*defer_tree);
1977
1978 vdev_space_update(vd, alloc_delta + defer_delta, defer_delta, 0);
1979
1980 ASSERT0(range_tree_space(msp->ms_alloctree[txg & TXG_MASK]));
1981 ASSERT0(range_tree_space(msp->ms_freetree[txg & TXG_MASK]));
1982
1983 /*
1984 * If there's a metaslab_load() in progress, wait for it to complete
1985 * so that we have a consistent view of the in-core space map.
1986 */
1987 metaslab_load_wait(msp);
1988
1989 /*
1990 * Move the frees from the defer_tree back to the free
1991 * range tree (if it's loaded). Swap the freed_tree and the
1992 * defer_tree -- this is safe to do because we've just emptied out
1993 * the defer_tree.
1994 */
1995 range_tree_vacate(*defer_tree,
1996 msp->ms_loaded ? range_tree_add : NULL, msp->ms_tree);
1997 range_tree_swap(freed_tree, defer_tree);
1998
1999 space_map_update(msp->ms_sm);
2000
2001 msp->ms_deferspace += defer_delta;
2002 ASSERT3S(msp->ms_deferspace, >=, 0);
2003 ASSERT3S(msp->ms_deferspace, <=, msp->ms_size);
2004 if (msp->ms_deferspace != 0) {
2005 /*
2006 * Keep syncing this metaslab until all deferred frees
2007 * are back in circulation.
2008 */
2009 vdev_dirty(vd, VDD_METASLAB, msp, txg + 1);
2010 }
2011
2012 if (msp->ms_loaded && msp->ms_access_txg < txg) {
2013 for (t = 1; t < TXG_CONCURRENT_STATES; t++) {
2014 VERIFY0(range_tree_space(
2015 msp->ms_alloctree[(txg + t) & TXG_MASK]));
2016 }
2017
2018 if (!metaslab_debug_unload)
2019 metaslab_unload(msp);
2020 }
2021
2022 metaslab_group_sort(mg, msp, metaslab_weight(msp));
2023 mutex_exit(&msp->ms_lock);
2024 }
2025
2026 void
2027 metaslab_sync_reassess(metaslab_group_t *mg)
2028 {
2029 metaslab_group_alloc_update(mg);
2030 mg->mg_fragmentation = metaslab_group_fragmentation(mg);
2031
2032 /*
2033 * Preload the next potential metaslabs
2034 */
2035 metaslab_group_preload(mg);
2036 }
2037
2038 static uint64_t
2039 metaslab_distance(metaslab_t *msp, dva_t *dva)
2040 {
2041 uint64_t ms_shift = msp->ms_group->mg_vd->vdev_ms_shift;
2042 uint64_t offset = DVA_GET_OFFSET(dva) >> ms_shift;
2043 uint64_t start = msp->ms_id;
2044
2045 if (msp->ms_group->mg_vd->vdev_id != DVA_GET_VDEV(dva))
2046 return (1ULL << 63);
2047
2048 if (offset < start)
2049 return ((start - offset) << ms_shift);
2050 if (offset > start)
2051 return ((offset - start) << ms_shift);
2052 return (0);
2053 }
2054
2055 static uint64_t
2056 metaslab_group_alloc(metaslab_group_t *mg, uint64_t psize, uint64_t asize,
2057 uint64_t txg, uint64_t min_distance, dva_t *dva, int d)
2058 {
2059 spa_t *spa = mg->mg_vd->vdev_spa;
2060 metaslab_t *msp = NULL;
2061 uint64_t offset = -1ULL;
2062 avl_tree_t *t = &mg->mg_metaslab_tree;
2063 uint64_t activation_weight;
2064 uint64_t target_distance;
2065 int i;
2066
2067 activation_weight = METASLAB_WEIGHT_PRIMARY;
2068 for (i = 0; i < d; i++) {
2069 if (DVA_GET_VDEV(&dva[i]) == mg->mg_vd->vdev_id) {
2070 activation_weight = METASLAB_WEIGHT_SECONDARY;
2071 break;
2072 }
2073 }
2074
2075 for (;;) {
2076 boolean_t was_active;
2077
2078 mutex_enter(&mg->mg_lock);
2079 for (msp = avl_first(t); msp; msp = AVL_NEXT(t, msp)) {
2080 if (msp->ms_weight < asize) {
2081 spa_dbgmsg(spa, "%s: failed to meet weight "
2082 "requirement: vdev %llu, txg %llu, mg %p, "
2083 "msp %p, psize %llu, asize %llu, "
2084 "weight %llu", spa_name(spa),
2085 mg->mg_vd->vdev_id, txg,
2086 mg, msp, psize, asize, msp->ms_weight);
2087 mutex_exit(&mg->mg_lock);
2088 return (-1ULL);
2089 }
2090
2091 /*
2092 * If the selected metaslab is condensing, skip it.
2093 */
2094 if (msp->ms_condensing)
2095 continue;
2096
2097 was_active = msp->ms_weight & METASLAB_ACTIVE_MASK;
2098 if (activation_weight == METASLAB_WEIGHT_PRIMARY)
2099 break;
2100
2101 target_distance = min_distance +
2102 (space_map_allocated(msp->ms_sm) != 0 ? 0 :
2103 min_distance >> 1);
2104
2105 for (i = 0; i < d; i++)
2106 if (metaslab_distance(msp, &dva[i]) <
2107 target_distance)
2108 break;
2109 if (i == d)
2110 break;
2111 }
2112 mutex_exit(&mg->mg_lock);
2113 if (msp == NULL)
2114 return (-1ULL);
2115
2116 mutex_enter(&msp->ms_lock);
2117
2118 /*
2119 * Ensure that the metaslab we have selected is still
2120 * capable of handling our request. It's possible that
2121 * another thread may have changed the weight while we
2122 * were blocked on the metaslab lock.
2123 */
2124 if (msp->ms_weight < asize || (was_active &&
2125 !(msp->ms_weight & METASLAB_ACTIVE_MASK) &&
2126 activation_weight == METASLAB_WEIGHT_PRIMARY)) {
2127 mutex_exit(&msp->ms_lock);
2128 continue;
2129 }
2130
2131 if ((msp->ms_weight & METASLAB_WEIGHT_SECONDARY) &&
2132 activation_weight == METASLAB_WEIGHT_PRIMARY) {
2133 metaslab_passivate(msp,
2134 msp->ms_weight & ~METASLAB_ACTIVE_MASK);
2135 mutex_exit(&msp->ms_lock);
2136 continue;
2137 }
2138
2139 if (metaslab_activate(msp, activation_weight) != 0) {
2140 mutex_exit(&msp->ms_lock);
2141 continue;
2142 }
2143
2144 /*
2145 * If this metaslab is currently condensing then pick again as
2146 * we can't manipulate this metaslab until it's committed
2147 * to disk.
2148 */
2149 if (msp->ms_condensing) {
2150 mutex_exit(&msp->ms_lock);
2151 continue;
2152 }
2153
2154 if ((offset = metaslab_block_alloc(msp, asize)) != -1ULL)
2155 break;
2156
2157 metaslab_passivate(msp, metaslab_block_maxsize(msp));
2158 mutex_exit(&msp->ms_lock);
2159 }
2160
2161 if (range_tree_space(msp->ms_alloctree[txg & TXG_MASK]) == 0)
2162 vdev_dirty(mg->mg_vd, VDD_METASLAB, msp, txg);
2163
2164 range_tree_add(msp->ms_alloctree[txg & TXG_MASK], offset, asize);
2165 msp->ms_access_txg = txg + metaslab_unload_delay;
2166
2167 mutex_exit(&msp->ms_lock);
2168
2169 return (offset);
2170 }
2171
2172 /*
2173 * Allocate a block for the specified i/o.
2174 */
2175 static int
2176 metaslab_alloc_dva(spa_t *spa, metaslab_class_t *mc, uint64_t psize,
2177 dva_t *dva, int d, dva_t *hintdva, uint64_t txg, int flags)
2178 {
2179 metaslab_group_t *mg, *fast_mg, *rotor;
2180 vdev_t *vd;
2181 int dshift = 3;
2182 int all_zero;
2183 int zio_lock = B_FALSE;
2184 boolean_t allocatable;
2185 uint64_t offset = -1ULL;
2186 uint64_t asize;
2187 uint64_t distance;
2188
2189 ASSERT(!DVA_IS_VALID(&dva[d]));
2190
2191 /*
2192 * For testing, make some blocks above a certain size be gang blocks.
2193 */
2194 if (psize >= metaslab_gang_bang && (ddi_get_lbolt() & 3) == 0)
2195 return (SET_ERROR(ENOSPC));
2196
2197 if (flags & METASLAB_FASTWRITE)
2198 mutex_enter(&mc->mc_fastwrite_lock);
2199
2200 /*
2201 * Start at the rotor and loop through all mgs until we find something.
2202 * Note that there's no locking on mc_rotor or mc_aliquot because
2203 * nothing actually breaks if we miss a few updates -- we just won't
2204 * allocate quite as evenly. It all balances out over time.
2205 *
2206 * If we are doing ditto or log blocks, try to spread them across
2207 * consecutive vdevs. If we're forced to reuse a vdev before we've
2208 * allocated all of our ditto blocks, then try and spread them out on
2209 * that vdev as much as possible. If it turns out to not be possible,
2210 * gradually lower our standards until anything becomes acceptable.
2211 * Also, allocating on consecutive vdevs (as opposed to random vdevs)
2212 * gives us hope of containing our fault domains to something we're
2213 * able to reason about. Otherwise, any two top-level vdev failures
2214 * will guarantee the loss of data. With consecutive allocation,
2215 * only two adjacent top-level vdev failures will result in data loss.
2216 *
2217 * If we are doing gang blocks (hintdva is non-NULL), try to keep
2218 * ourselves on the same vdev as our gang block header. That
2219 * way, we can hope for locality in vdev_cache, plus it makes our
2220 * fault domains something tractable.
2221 */
2222 if (hintdva) {
2223 vd = vdev_lookup_top(spa, DVA_GET_VDEV(&hintdva[d]));
2224
2225 /*
2226 * It's possible the vdev we're using as the hint no
2227 * longer exists (i.e. removed). Consult the rotor when
2228 * all else fails.
2229 */
2230 if (vd != NULL) {
2231 mg = vd->vdev_mg;
2232
2233 if (flags & METASLAB_HINTBP_AVOID &&
2234 mg->mg_next != NULL)
2235 mg = mg->mg_next;
2236 } else {
2237 mg = mc->mc_rotor;
2238 }
2239 } else if (d != 0) {
2240 vd = vdev_lookup_top(spa, DVA_GET_VDEV(&dva[d - 1]));
2241 mg = vd->vdev_mg->mg_next;
2242 } else if (flags & METASLAB_FASTWRITE) {
2243 mg = fast_mg = mc->mc_rotor;
2244
2245 do {
2246 if (fast_mg->mg_vd->vdev_pending_fastwrite <
2247 mg->mg_vd->vdev_pending_fastwrite)
2248 mg = fast_mg;
2249 } while ((fast_mg = fast_mg->mg_next) != mc->mc_rotor);
2250
2251 } else {
2252 mg = mc->mc_rotor;
2253 }
2254
2255 /*
2256 * If the hint put us into the wrong metaslab class, or into a
2257 * metaslab group that has been passivated, just follow the rotor.
2258 */
2259 if (mg->mg_class != mc || mg->mg_activation_count <= 0)
2260 mg = mc->mc_rotor;
2261
2262 rotor = mg;
2263 top:
2264 all_zero = B_TRUE;
2265 do {
2266 ASSERT(mg->mg_activation_count == 1);
2267
2268 vd = mg->mg_vd;
2269
2270 /*
2271 * Don't allocate from faulted devices.
2272 */
2273 if (zio_lock) {
2274 spa_config_enter(spa, SCL_ZIO, FTAG, RW_READER);
2275 allocatable = vdev_allocatable(vd);
2276 spa_config_exit(spa, SCL_ZIO, FTAG);
2277 } else {
2278 allocatable = vdev_allocatable(vd);
2279 }
2280
2281 /*
2282 * Determine if the selected metaslab group is eligible
2283 * for allocations. If we're ganging or have requested
2284 * an allocation for the smallest gang block size
2285 * then we don't want to avoid allocating to the this
2286 * metaslab group. If we're in this condition we should
2287 * try to allocate from any device possible so that we
2288 * don't inadvertently return ENOSPC and suspend the pool
2289 * even though space is still available.
2290 */
2291 if (allocatable && CAN_FASTGANG(flags) &&
2292 psize > SPA_GANGBLOCKSIZE)
2293 allocatable = metaslab_group_allocatable(mg);
2294
2295 if (!allocatable)
2296 goto next;
2297
2298 /*
2299 * Avoid writing single-copy data to a failing vdev
2300 * unless the user instructs us that it is okay.
2301 */
2302 if ((vd->vdev_stat.vs_write_errors > 0 ||
2303 vd->vdev_state < VDEV_STATE_HEALTHY) &&
2304 d == 0 && dshift == 3 && vd->vdev_children == 0) {
2305 all_zero = B_FALSE;
2306 goto next;
2307 }
2308
2309 ASSERT(mg->mg_class == mc);
2310
2311 distance = vd->vdev_asize >> dshift;
2312 if (distance <= (1ULL << vd->vdev_ms_shift))
2313 distance = 0;
2314 else
2315 all_zero = B_FALSE;
2316
2317 asize = vdev_psize_to_asize(vd, psize);
2318 ASSERT(P2PHASE(asize, 1ULL << vd->vdev_ashift) == 0);
2319
2320 offset = metaslab_group_alloc(mg, psize, asize, txg, distance,
2321 dva, d);
2322 if (offset != -1ULL) {
2323 /*
2324 * If we've just selected this metaslab group,
2325 * figure out whether the corresponding vdev is
2326 * over- or under-used relative to the pool,
2327 * and set an allocation bias to even it out.
2328 */
2329 if (mc->mc_aliquot == 0 && metaslab_bias_enabled) {
2330 vdev_stat_t *vs = &vd->vdev_stat;
2331 int64_t vu, cu;
2332
2333 vu = (vs->vs_alloc * 100) / (vs->vs_space + 1);
2334 cu = (mc->mc_alloc * 100) / (mc->mc_space + 1);
2335
2336 /*
2337 * Calculate how much more or less we should
2338 * try to allocate from this device during
2339 * this iteration around the rotor.
2340 * For example, if a device is 80% full
2341 * and the pool is 20% full then we should
2342 * reduce allocations by 60% on this device.
2343 *
2344 * mg_bias = (20 - 80) * 512K / 100 = -307K
2345 *
2346 * This reduces allocations by 307K for this
2347 * iteration.
2348 */
2349 mg->mg_bias = ((cu - vu) *
2350 (int64_t)mg->mg_aliquot) / 100;
2351 } else if (!metaslab_bias_enabled) {
2352 mg->mg_bias = 0;
2353 }
2354
2355 if ((flags & METASLAB_FASTWRITE) ||
2356 atomic_add_64_nv(&mc->mc_aliquot, asize) >=
2357 mg->mg_aliquot + mg->mg_bias) {
2358 mc->mc_rotor = mg->mg_next;
2359 mc->mc_aliquot = 0;
2360 }
2361
2362 DVA_SET_VDEV(&dva[d], vd->vdev_id);
2363 DVA_SET_OFFSET(&dva[d], offset);
2364 DVA_SET_GANG(&dva[d], !!(flags & METASLAB_GANG_HEADER));
2365 DVA_SET_ASIZE(&dva[d], asize);
2366
2367 if (flags & METASLAB_FASTWRITE) {
2368 atomic_add_64(&vd->vdev_pending_fastwrite,
2369 psize);
2370 mutex_exit(&mc->mc_fastwrite_lock);
2371 }
2372
2373 return (0);
2374 }
2375 next:
2376 mc->mc_rotor = mg->mg_next;
2377 mc->mc_aliquot = 0;
2378 } while ((mg = mg->mg_next) != rotor);
2379
2380 if (!all_zero) {
2381 dshift++;
2382 ASSERT(dshift < 64);
2383 goto top;
2384 }
2385
2386 if (!allocatable && !zio_lock) {
2387 dshift = 3;
2388 zio_lock = B_TRUE;
2389 goto top;
2390 }
2391
2392 bzero(&dva[d], sizeof (dva_t));
2393
2394 if (flags & METASLAB_FASTWRITE)
2395 mutex_exit(&mc->mc_fastwrite_lock);
2396
2397 return (SET_ERROR(ENOSPC));
2398 }
2399
2400 /*
2401 * Free the block represented by DVA in the context of the specified
2402 * transaction group.
2403 */
2404 static void
2405 metaslab_free_dva(spa_t *spa, const dva_t *dva, uint64_t txg, boolean_t now)
2406 {
2407 uint64_t vdev = DVA_GET_VDEV(dva);
2408 uint64_t offset = DVA_GET_OFFSET(dva);
2409 uint64_t size = DVA_GET_ASIZE(dva);
2410 vdev_t *vd;
2411 metaslab_t *msp;
2412
2413 ASSERT(DVA_IS_VALID(dva));
2414
2415 if (txg > spa_freeze_txg(spa))
2416 return;
2417
2418 if ((vd = vdev_lookup_top(spa, vdev)) == NULL ||
2419 (offset >> vd->vdev_ms_shift) >= vd->vdev_ms_count) {
2420 cmn_err(CE_WARN, "metaslab_free_dva(): bad DVA %llu:%llu",
2421 (u_longlong_t)vdev, (u_longlong_t)offset);
2422 ASSERT(0);
2423 return;
2424 }
2425
2426 msp = vd->vdev_ms[offset >> vd->vdev_ms_shift];
2427
2428 if (DVA_GET_GANG(dva))
2429 size = vdev_psize_to_asize(vd, SPA_GANGBLOCKSIZE);
2430
2431 mutex_enter(&msp->ms_lock);
2432
2433 if (now) {
2434 range_tree_remove(msp->ms_alloctree[txg & TXG_MASK],
2435 offset, size);
2436
2437 VERIFY(!msp->ms_condensing);
2438 VERIFY3U(offset, >=, msp->ms_start);
2439 VERIFY3U(offset + size, <=, msp->ms_start + msp->ms_size);
2440 VERIFY3U(range_tree_space(msp->ms_tree) + size, <=,
2441 msp->ms_size);
2442 VERIFY0(P2PHASE(offset, 1ULL << vd->vdev_ashift));
2443 VERIFY0(P2PHASE(size, 1ULL << vd->vdev_ashift));
2444 range_tree_add(msp->ms_tree, offset, size);
2445 } else {
2446 if (range_tree_space(msp->ms_freetree[txg & TXG_MASK]) == 0)
2447 vdev_dirty(vd, VDD_METASLAB, msp, txg);
2448 range_tree_add(msp->ms_freetree[txg & TXG_MASK],
2449 offset, size);
2450 }
2451
2452 mutex_exit(&msp->ms_lock);
2453 }
2454
2455 /*
2456 * Intent log support: upon opening the pool after a crash, notify the SPA
2457 * of blocks that the intent log has allocated for immediate write, but
2458 * which are still considered free by the SPA because the last transaction
2459 * group didn't commit yet.
2460 */
2461 static int
2462 metaslab_claim_dva(spa_t *spa, const dva_t *dva, uint64_t txg)
2463 {
2464 uint64_t vdev = DVA_GET_VDEV(dva);
2465 uint64_t offset = DVA_GET_OFFSET(dva);
2466 uint64_t size = DVA_GET_ASIZE(dva);
2467 vdev_t *vd;
2468 metaslab_t *msp;
2469 int error = 0;
2470
2471 ASSERT(DVA_IS_VALID(dva));
2472
2473 if ((vd = vdev_lookup_top(spa, vdev)) == NULL ||
2474 (offset >> vd->vdev_ms_shift) >= vd->vdev_ms_count)
2475 return (SET_ERROR(ENXIO));
2476
2477 msp = vd->vdev_ms[offset >> vd->vdev_ms_shift];
2478
2479 if (DVA_GET_GANG(dva))
2480 size = vdev_psize_to_asize(vd, SPA_GANGBLOCKSIZE);
2481
2482 mutex_enter(&msp->ms_lock);
2483
2484 if ((txg != 0 && spa_writeable(spa)) || !msp->ms_loaded)
2485 error = metaslab_activate(msp, METASLAB_WEIGHT_SECONDARY);
2486
2487 if (error == 0 && !range_tree_contains(msp->ms_tree, offset, size))
2488 error = SET_ERROR(ENOENT);
2489
2490 if (error || txg == 0) { /* txg == 0 indicates dry run */
2491 mutex_exit(&msp->ms_lock);
2492 return (error);
2493 }
2494
2495 VERIFY(!msp->ms_condensing);
2496 VERIFY0(P2PHASE(offset, 1ULL << vd->vdev_ashift));
2497 VERIFY0(P2PHASE(size, 1ULL << vd->vdev_ashift));
2498 VERIFY3U(range_tree_space(msp->ms_tree) - size, <=, msp->ms_size);
2499 range_tree_remove(msp->ms_tree, offset, size);
2500
2501 if (spa_writeable(spa)) { /* don't dirty if we're zdb(1M) */
2502 if (range_tree_space(msp->ms_alloctree[txg & TXG_MASK]) == 0)
2503 vdev_dirty(vd, VDD_METASLAB, msp, txg);
2504 range_tree_add(msp->ms_alloctree[txg & TXG_MASK], offset, size);
2505 }
2506
2507 mutex_exit(&msp->ms_lock);
2508
2509 return (0);
2510 }
2511
2512 int
2513 metaslab_alloc(spa_t *spa, metaslab_class_t *mc, uint64_t psize, blkptr_t *bp,
2514 int ndvas, uint64_t txg, blkptr_t *hintbp, int flags)
2515 {
2516 dva_t *dva = bp->blk_dva;
2517 dva_t *hintdva = hintbp->blk_dva;
2518 int d, error = 0;
2519
2520 ASSERT(bp->blk_birth == 0);
2521 ASSERT(BP_PHYSICAL_BIRTH(bp) == 0);
2522
2523 spa_config_enter(spa, SCL_ALLOC, FTAG, RW_READER);
2524
2525 if (mc->mc_rotor == NULL) { /* no vdevs in this class */
2526 spa_config_exit(spa, SCL_ALLOC, FTAG);
2527 return (SET_ERROR(ENOSPC));
2528 }
2529
2530 ASSERT(ndvas > 0 && ndvas <= spa_max_replication(spa));
2531 ASSERT(BP_GET_NDVAS(bp) == 0);
2532 ASSERT(hintbp == NULL || ndvas <= BP_GET_NDVAS(hintbp));
2533
2534 for (d = 0; d < ndvas; d++) {
2535 error = metaslab_alloc_dva(spa, mc, psize, dva, d, hintdva,
2536 txg, flags);
2537 if (error != 0) {
2538 for (d--; d >= 0; d--) {
2539 metaslab_free_dva(spa, &dva[d], txg, B_TRUE);
2540 bzero(&dva[d], sizeof (dva_t));
2541 }
2542 spa_config_exit(spa, SCL_ALLOC, FTAG);
2543 return (error);
2544 }
2545 }
2546 ASSERT(error == 0);
2547 ASSERT(BP_GET_NDVAS(bp) == ndvas);
2548
2549 spa_config_exit(spa, SCL_ALLOC, FTAG);
2550
2551 BP_SET_BIRTH(bp, txg, txg);
2552
2553 return (0);
2554 }
2555
2556 void
2557 metaslab_free(spa_t *spa, const blkptr_t *bp, uint64_t txg, boolean_t now)
2558 {
2559 const dva_t *dva = bp->blk_dva;
2560 int d, ndvas = BP_GET_NDVAS(bp);
2561
2562 ASSERT(!BP_IS_HOLE(bp));
2563 ASSERT(!now || bp->blk_birth >= spa_syncing_txg(spa));
2564
2565 spa_config_enter(spa, SCL_FREE, FTAG, RW_READER);
2566
2567 for (d = 0; d < ndvas; d++)
2568 metaslab_free_dva(spa, &dva[d], txg, now);
2569
2570 spa_config_exit(spa, SCL_FREE, FTAG);
2571 }
2572
2573 int
2574 metaslab_claim(spa_t *spa, const blkptr_t *bp, uint64_t txg)
2575 {
2576 const dva_t *dva = bp->blk_dva;
2577 int ndvas = BP_GET_NDVAS(bp);
2578 int d, error = 0;
2579
2580 ASSERT(!BP_IS_HOLE(bp));
2581
2582 if (txg != 0) {
2583 /*
2584 * First do a dry run to make sure all DVAs are claimable,
2585 * so we don't have to unwind from partial failures below.
2586 */
2587 if ((error = metaslab_claim(spa, bp, 0)) != 0)
2588 return (error);
2589 }
2590
2591 spa_config_enter(spa, SCL_ALLOC, FTAG, RW_READER);
2592
2593 for (d = 0; d < ndvas; d++)
2594 if ((error = metaslab_claim_dva(spa, &dva[d], txg)) != 0)
2595 break;
2596
2597 spa_config_exit(spa, SCL_ALLOC, FTAG);
2598
2599 ASSERT(error == 0 || txg == 0);
2600
2601 return (error);
2602 }
2603
2604 void
2605 metaslab_fastwrite_mark(spa_t *spa, const blkptr_t *bp)
2606 {
2607 const dva_t *dva = bp->blk_dva;
2608 int ndvas = BP_GET_NDVAS(bp);
2609 uint64_t psize = BP_GET_PSIZE(bp);
2610 int d;
2611 vdev_t *vd;
2612
2613 ASSERT(!BP_IS_HOLE(bp));
2614 ASSERT(!BP_IS_EMBEDDED(bp));
2615 ASSERT(psize > 0);
2616
2617 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
2618
2619 for (d = 0; d < ndvas; d++) {
2620 if ((vd = vdev_lookup_top(spa, DVA_GET_VDEV(&dva[d]))) == NULL)
2621 continue;
2622 atomic_add_64(&vd->vdev_pending_fastwrite, psize);
2623 }
2624
2625 spa_config_exit(spa, SCL_VDEV, FTAG);
2626 }
2627
2628 void
2629 metaslab_fastwrite_unmark(spa_t *spa, const blkptr_t *bp)
2630 {
2631 const dva_t *dva = bp->blk_dva;
2632 int ndvas = BP_GET_NDVAS(bp);
2633 uint64_t psize = BP_GET_PSIZE(bp);
2634 int d;
2635 vdev_t *vd;
2636
2637 ASSERT(!BP_IS_HOLE(bp));
2638 ASSERT(!BP_IS_EMBEDDED(bp));
2639 ASSERT(psize > 0);
2640
2641 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
2642
2643 for (d = 0; d < ndvas; d++) {
2644 if ((vd = vdev_lookup_top(spa, DVA_GET_VDEV(&dva[d]))) == NULL)
2645 continue;
2646 ASSERT3U(vd->vdev_pending_fastwrite, >=, psize);
2647 atomic_sub_64(&vd->vdev_pending_fastwrite, psize);
2648 }
2649
2650 spa_config_exit(spa, SCL_VDEV, FTAG);
2651 }
2652
2653 void
2654 metaslab_check_free(spa_t *spa, const blkptr_t *bp)
2655 {
2656 int i, j;
2657
2658 if ((zfs_flags & ZFS_DEBUG_ZIO_FREE) == 0)
2659 return;
2660
2661 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
2662 for (i = 0; i < BP_GET_NDVAS(bp); i++) {
2663 uint64_t vdev = DVA_GET_VDEV(&bp->blk_dva[i]);
2664 vdev_t *vd = vdev_lookup_top(spa, vdev);
2665 uint64_t offset = DVA_GET_OFFSET(&bp->blk_dva[i]);
2666 uint64_t size = DVA_GET_ASIZE(&bp->blk_dva[i]);
2667 metaslab_t *msp = vd->vdev_ms[offset >> vd->vdev_ms_shift];
2668
2669 if (msp->ms_loaded)
2670 range_tree_verify(msp->ms_tree, offset, size);
2671
2672 for (j = 0; j < TXG_SIZE; j++)
2673 range_tree_verify(msp->ms_freetree[j], offset, size);
2674 for (j = 0; j < TXG_DEFER_SIZE; j++)
2675 range_tree_verify(msp->ms_defertree[j], offset, size);
2676 }
2677 spa_config_exit(spa, SCL_VDEV, FTAG);
2678 }
2679
2680 #if defined(_KERNEL) && defined(HAVE_SPL)
2681 module_param(metaslab_debug_load, int, 0644);
2682 module_param(metaslab_debug_unload, int, 0644);
2683 module_param(metaslab_preload_enabled, int, 0644);
2684 module_param(zfs_mg_noalloc_threshold, int, 0644);
2685 module_param(zfs_mg_fragmentation_threshold, int, 0644);
2686 module_param(zfs_metaslab_fragmentation_threshold, int, 0644);
2687 module_param(metaslab_fragmentation_factor_enabled, int, 0644);
2688 module_param(metaslab_lba_weighting_enabled, int, 0644);
2689 module_param(metaslab_bias_enabled, int, 0644);
2690
2691 MODULE_PARM_DESC(metaslab_debug_load,
2692 "load all metaslabs when pool is first opened");
2693 MODULE_PARM_DESC(metaslab_debug_unload,
2694 "prevent metaslabs from being unloaded");
2695 MODULE_PARM_DESC(metaslab_preload_enabled,
2696 "preload potential metaslabs during reassessment");
2697
2698 MODULE_PARM_DESC(zfs_mg_noalloc_threshold,
2699 "percentage of free space for metaslab group to allow allocation");
2700 MODULE_PARM_DESC(zfs_mg_fragmentation_threshold,
2701 "fragmentation for metaslab group to allow allocation");
2702
2703 MODULE_PARM_DESC(zfs_metaslab_fragmentation_threshold,
2704 "fragmentation for metaslab to allow allocation");
2705 MODULE_PARM_DESC(metaslab_fragmentation_factor_enabled,
2706 "use the fragmentation metric to prefer less fragmented metaslabs");
2707 MODULE_PARM_DESC(metaslab_lba_weighting_enabled,
2708 "prefer metaslabs with lower LBAs");
2709 MODULE_PARM_DESC(metaslab_bias_enabled,
2710 "enable metaslab group biasing");
2711 #endif /* _KERNEL && HAVE_SPL */