]> git.proxmox.com Git - mirror_zfs.git/blob - module/zfs/metaslab.c
Allocate disk space fairly in the presence of vdevs of unequal size.
[mirror_zfs.git] / module / zfs / metaslab.c
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2011, 2014 by Delphix. All rights reserved.
24 * Copyright (c) 2013 by Saso Kiselkov. All rights reserved.
25 */
26
27 #include <sys/zfs_context.h>
28 #include <sys/dmu.h>
29 #include <sys/dmu_tx.h>
30 #include <sys/space_map.h>
31 #include <sys/metaslab_impl.h>
32 #include <sys/vdev_impl.h>
33 #include <sys/zio.h>
34 #include <sys/spa_impl.h>
35 #include <sys/zfeature.h>
36
37 #define WITH_DF_BLOCK_ALLOCATOR
38
39 /*
40 * Allow allocations to switch to gang blocks quickly. We do this to
41 * avoid having to load lots of space_maps in a given txg. There are,
42 * however, some cases where we want to avoid "fast" ganging and instead
43 * we want to do an exhaustive search of all metaslabs on this device.
44 * Currently we don't allow any gang, slog, or dump device related allocations
45 * to "fast" gang.
46 */
47 #define CAN_FASTGANG(flags) \
48 (!((flags) & (METASLAB_GANG_CHILD | METASLAB_GANG_HEADER | \
49 METASLAB_GANG_AVOID)))
50
51 #define METASLAB_WEIGHT_PRIMARY (1ULL << 63)
52 #define METASLAB_WEIGHT_SECONDARY (1ULL << 62)
53 #define METASLAB_ACTIVE_MASK \
54 (METASLAB_WEIGHT_PRIMARY | METASLAB_WEIGHT_SECONDARY)
55
56 uint64_t metaslab_aliquot = 512ULL << 10;
57 uint64_t metaslab_gang_bang = SPA_MAXBLOCKSIZE + 1; /* force gang blocks */
58
59 /*
60 * The in-core space map representation is more compact than its on-disk form.
61 * The zfs_condense_pct determines how much more compact the in-core
62 * space_map representation must be before we compact it on-disk.
63 * Values should be greater than or equal to 100.
64 */
65 int zfs_condense_pct = 200;
66
67 /*
68 * Condensing a metaslab is not guaranteed to actually reduce the amount of
69 * space used on disk. In particular, a space map uses data in increments of
70 * MAX(1 << ashift, space_map_blksz), so a metaslab might use the
71 * same number of blocks after condensing. Since the goal of condensing is to
72 * reduce the number of IOPs required to read the space map, we only want to
73 * condense when we can be sure we will reduce the number of blocks used by the
74 * space map. Unfortunately, we cannot precisely compute whether or not this is
75 * the case in metaslab_should_condense since we are holding ms_lock. Instead,
76 * we apply the following heuristic: do not condense a spacemap unless the
77 * uncondensed size consumes greater than zfs_metaslab_condense_block_threshold
78 * blocks.
79 */
80 int zfs_metaslab_condense_block_threshold = 4;
81
82 /*
83 * The zfs_mg_noalloc_threshold defines which metaslab groups should
84 * be eligible for allocation. The value is defined as a percentage of
85 * free space. Metaslab groups that have more free space than
86 * zfs_mg_noalloc_threshold are always eligible for allocations. Once
87 * a metaslab group's free space is less than or equal to the
88 * zfs_mg_noalloc_threshold the allocator will avoid allocating to that
89 * group unless all groups in the pool have reached zfs_mg_noalloc_threshold.
90 * Once all groups in the pool reach zfs_mg_noalloc_threshold then all
91 * groups are allowed to accept allocations. Gang blocks are always
92 * eligible to allocate on any metaslab group. The default value of 0 means
93 * no metaslab group will be excluded based on this criterion.
94 */
95 int zfs_mg_noalloc_threshold = 0;
96
97 /*
98 * Metaslab groups are considered eligible for allocations if their
99 * fragmenation metric (measured as a percentage) is less than or equal to
100 * zfs_mg_fragmentation_threshold. If a metaslab group exceeds this threshold
101 * then it will be skipped unless all metaslab groups within the metaslab
102 * class have also crossed this threshold.
103 */
104 int zfs_mg_fragmentation_threshold = 85;
105
106 /*
107 * Allow metaslabs to keep their active state as long as their fragmentation
108 * percentage is less than or equal to zfs_metaslab_fragmentation_threshold. An
109 * active metaslab that exceeds this threshold will no longer keep its active
110 * status allowing better metaslabs to be selected.
111 */
112 int zfs_metaslab_fragmentation_threshold = 70;
113
114 /*
115 * When set will load all metaslabs when pool is first opened.
116 */
117 int metaslab_debug_load = 0;
118
119 /*
120 * When set will prevent metaslabs from being unloaded.
121 */
122 int metaslab_debug_unload = 0;
123
124 /*
125 * Minimum size which forces the dynamic allocator to change
126 * it's allocation strategy. Once the space map cannot satisfy
127 * an allocation of this size then it switches to using more
128 * aggressive strategy (i.e search by size rather than offset).
129 */
130 uint64_t metaslab_df_alloc_threshold = SPA_MAXBLOCKSIZE;
131
132 /*
133 * The minimum free space, in percent, which must be available
134 * in a space map to continue allocations in a first-fit fashion.
135 * Once the space_map's free space drops below this level we dynamically
136 * switch to using best-fit allocations.
137 */
138 int metaslab_df_free_pct = 4;
139
140 /*
141 * Percentage of all cpus that can be used by the metaslab taskq.
142 */
143 int metaslab_load_pct = 50;
144
145 /*
146 * Determines how many txgs a metaslab may remain loaded without having any
147 * allocations from it. As long as a metaslab continues to be used we will
148 * keep it loaded.
149 */
150 int metaslab_unload_delay = TXG_SIZE * 2;
151
152 /*
153 * Max number of metaslabs per group to preload.
154 */
155 int metaslab_preload_limit = SPA_DVAS_PER_BP;
156
157 /*
158 * Enable/disable preloading of metaslab.
159 */
160 int metaslab_preload_enabled = B_TRUE;
161
162 /*
163 * Enable/disable fragmentation weighting on metaslabs.
164 */
165 int metaslab_fragmentation_factor_enabled = B_TRUE;
166
167 /*
168 * Enable/disable lba weighting (i.e. outer tracks are given preference).
169 */
170 int metaslab_lba_weighting_enabled = B_TRUE;
171
172 /*
173 * Enable/disable metaslab group biasing.
174 */
175 int metaslab_bias_enabled = B_TRUE;
176
177 static uint64_t metaslab_fragmentation(metaslab_t *);
178
179 /*
180 * ==========================================================================
181 * Metaslab classes
182 * ==========================================================================
183 */
184 metaslab_class_t *
185 metaslab_class_create(spa_t *spa, metaslab_ops_t *ops)
186 {
187 metaslab_class_t *mc;
188
189 mc = kmem_zalloc(sizeof (metaslab_class_t), KM_SLEEP);
190
191 mc->mc_spa = spa;
192 mc->mc_rotor = NULL;
193 mc->mc_ops = ops;
194 mutex_init(&mc->mc_fastwrite_lock, NULL, MUTEX_DEFAULT, NULL);
195
196 return (mc);
197 }
198
199 void
200 metaslab_class_destroy(metaslab_class_t *mc)
201 {
202 ASSERT(mc->mc_rotor == NULL);
203 ASSERT(mc->mc_alloc == 0);
204 ASSERT(mc->mc_deferred == 0);
205 ASSERT(mc->mc_space == 0);
206 ASSERT(mc->mc_dspace == 0);
207
208 mutex_destroy(&mc->mc_fastwrite_lock);
209 kmem_free(mc, sizeof (metaslab_class_t));
210 }
211
212 int
213 metaslab_class_validate(metaslab_class_t *mc)
214 {
215 metaslab_group_t *mg;
216 vdev_t *vd;
217
218 /*
219 * Must hold one of the spa_config locks.
220 */
221 ASSERT(spa_config_held(mc->mc_spa, SCL_ALL, RW_READER) ||
222 spa_config_held(mc->mc_spa, SCL_ALL, RW_WRITER));
223
224 if ((mg = mc->mc_rotor) == NULL)
225 return (0);
226
227 do {
228 vd = mg->mg_vd;
229 ASSERT(vd->vdev_mg != NULL);
230 ASSERT3P(vd->vdev_top, ==, vd);
231 ASSERT3P(mg->mg_class, ==, mc);
232 ASSERT3P(vd->vdev_ops, !=, &vdev_hole_ops);
233 } while ((mg = mg->mg_next) != mc->mc_rotor);
234
235 return (0);
236 }
237
238 void
239 metaslab_class_space_update(metaslab_class_t *mc, int64_t alloc_delta,
240 int64_t defer_delta, int64_t space_delta, int64_t dspace_delta)
241 {
242 atomic_add_64(&mc->mc_alloc, alloc_delta);
243 atomic_add_64(&mc->mc_deferred, defer_delta);
244 atomic_add_64(&mc->mc_space, space_delta);
245 atomic_add_64(&mc->mc_dspace, dspace_delta);
246 }
247
248 uint64_t
249 metaslab_class_get_alloc(metaslab_class_t *mc)
250 {
251 return (mc->mc_alloc);
252 }
253
254 uint64_t
255 metaslab_class_get_deferred(metaslab_class_t *mc)
256 {
257 return (mc->mc_deferred);
258 }
259
260 uint64_t
261 metaslab_class_get_space(metaslab_class_t *mc)
262 {
263 return (mc->mc_space);
264 }
265
266 uint64_t
267 metaslab_class_get_dspace(metaslab_class_t *mc)
268 {
269 return (spa_deflate(mc->mc_spa) ? mc->mc_dspace : mc->mc_space);
270 }
271
272 void
273 metaslab_class_histogram_verify(metaslab_class_t *mc)
274 {
275 vdev_t *rvd = mc->mc_spa->spa_root_vdev;
276 uint64_t *mc_hist;
277 int i, c;
278
279 if ((zfs_flags & ZFS_DEBUG_HISTOGRAM_VERIFY) == 0)
280 return;
281
282 mc_hist = kmem_zalloc(sizeof (uint64_t) * RANGE_TREE_HISTOGRAM_SIZE,
283 KM_SLEEP);
284
285 for (c = 0; c < rvd->vdev_children; c++) {
286 vdev_t *tvd = rvd->vdev_child[c];
287 metaslab_group_t *mg = tvd->vdev_mg;
288
289 /*
290 * Skip any holes, uninitialized top-levels, or
291 * vdevs that are not in this metalab class.
292 */
293 if (tvd->vdev_ishole || tvd->vdev_ms_shift == 0 ||
294 mg->mg_class != mc) {
295 continue;
296 }
297
298 for (i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i++)
299 mc_hist[i] += mg->mg_histogram[i];
300 }
301
302 for (i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i++)
303 VERIFY3U(mc_hist[i], ==, mc->mc_histogram[i]);
304
305 kmem_free(mc_hist, sizeof (uint64_t) * RANGE_TREE_HISTOGRAM_SIZE);
306 }
307
308 /*
309 * Calculate the metaslab class's fragmentation metric. The metric
310 * is weighted based on the space contribution of each metaslab group.
311 * The return value will be a number between 0 and 100 (inclusive), or
312 * ZFS_FRAG_INVALID if the metric has not been set. See comment above the
313 * zfs_frag_table for more information about the metric.
314 */
315 uint64_t
316 metaslab_class_fragmentation(metaslab_class_t *mc)
317 {
318 vdev_t *rvd = mc->mc_spa->spa_root_vdev;
319 uint64_t fragmentation = 0;
320 int c;
321
322 spa_config_enter(mc->mc_spa, SCL_VDEV, FTAG, RW_READER);
323
324 for (c = 0; c < rvd->vdev_children; c++) {
325 vdev_t *tvd = rvd->vdev_child[c];
326 metaslab_group_t *mg = tvd->vdev_mg;
327
328 /*
329 * Skip any holes, uninitialized top-levels, or
330 * vdevs that are not in this metalab class.
331 */
332 if (tvd->vdev_ishole || tvd->vdev_ms_shift == 0 ||
333 mg->mg_class != mc) {
334 continue;
335 }
336
337 /*
338 * If a metaslab group does not contain a fragmentation
339 * metric then just bail out.
340 */
341 if (mg->mg_fragmentation == ZFS_FRAG_INVALID) {
342 spa_config_exit(mc->mc_spa, SCL_VDEV, FTAG);
343 return (ZFS_FRAG_INVALID);
344 }
345
346 /*
347 * Determine how much this metaslab_group is contributing
348 * to the overall pool fragmentation metric.
349 */
350 fragmentation += mg->mg_fragmentation *
351 metaslab_group_get_space(mg);
352 }
353 fragmentation /= metaslab_class_get_space(mc);
354
355 ASSERT3U(fragmentation, <=, 100);
356 spa_config_exit(mc->mc_spa, SCL_VDEV, FTAG);
357 return (fragmentation);
358 }
359
360 /*
361 * Calculate the amount of expandable space that is available in
362 * this metaslab class. If a device is expanded then its expandable
363 * space will be the amount of allocatable space that is currently not
364 * part of this metaslab class.
365 */
366 uint64_t
367 metaslab_class_expandable_space(metaslab_class_t *mc)
368 {
369 vdev_t *rvd = mc->mc_spa->spa_root_vdev;
370 uint64_t space = 0;
371 int c;
372
373 spa_config_enter(mc->mc_spa, SCL_VDEV, FTAG, RW_READER);
374 for (c = 0; c < rvd->vdev_children; c++) {
375 vdev_t *tvd = rvd->vdev_child[c];
376 metaslab_group_t *mg = tvd->vdev_mg;
377
378 if (tvd->vdev_ishole || tvd->vdev_ms_shift == 0 ||
379 mg->mg_class != mc) {
380 continue;
381 }
382
383 space += tvd->vdev_max_asize - tvd->vdev_asize;
384 }
385 spa_config_exit(mc->mc_spa, SCL_VDEV, FTAG);
386 return (space);
387 }
388
389 /*
390 * ==========================================================================
391 * Metaslab groups
392 * ==========================================================================
393 */
394 static int
395 metaslab_compare(const void *x1, const void *x2)
396 {
397 const metaslab_t *m1 = x1;
398 const metaslab_t *m2 = x2;
399
400 if (m1->ms_weight < m2->ms_weight)
401 return (1);
402 if (m1->ms_weight > m2->ms_weight)
403 return (-1);
404
405 /*
406 * If the weights are identical, use the offset to force uniqueness.
407 */
408 if (m1->ms_start < m2->ms_start)
409 return (-1);
410 if (m1->ms_start > m2->ms_start)
411 return (1);
412
413 ASSERT3P(m1, ==, m2);
414
415 return (0);
416 }
417
418 /*
419 * Update the allocatable flag and the metaslab group's capacity.
420 * The allocatable flag is set to true if the capacity is below
421 * the zfs_mg_noalloc_threshold. If a metaslab group transitions
422 * from allocatable to non-allocatable or vice versa then the metaslab
423 * group's class is updated to reflect the transition.
424 */
425 static void
426 metaslab_group_alloc_update(metaslab_group_t *mg)
427 {
428 vdev_t *vd = mg->mg_vd;
429 metaslab_class_t *mc = mg->mg_class;
430 vdev_stat_t *vs = &vd->vdev_stat;
431 boolean_t was_allocatable;
432
433 ASSERT(vd == vd->vdev_top);
434
435 mutex_enter(&mg->mg_lock);
436 was_allocatable = mg->mg_allocatable;
437
438 mg->mg_free_capacity = ((vs->vs_space - vs->vs_alloc) * 100) /
439 (vs->vs_space + 1);
440
441 /*
442 * A metaslab group is considered allocatable if it has plenty
443 * of free space or is not heavily fragmented. We only take
444 * fragmentation into account if the metaslab group has a valid
445 * fragmentation metric (i.e. a value between 0 and 100).
446 */
447 mg->mg_allocatable = (mg->mg_free_capacity > zfs_mg_noalloc_threshold &&
448 (mg->mg_fragmentation == ZFS_FRAG_INVALID ||
449 mg->mg_fragmentation <= zfs_mg_fragmentation_threshold));
450
451 /*
452 * The mc_alloc_groups maintains a count of the number of
453 * groups in this metaslab class that are still above the
454 * zfs_mg_noalloc_threshold. This is used by the allocating
455 * threads to determine if they should avoid allocations to
456 * a given group. The allocator will avoid allocations to a group
457 * if that group has reached or is below the zfs_mg_noalloc_threshold
458 * and there are still other groups that are above the threshold.
459 * When a group transitions from allocatable to non-allocatable or
460 * vice versa we update the metaslab class to reflect that change.
461 * When the mc_alloc_groups value drops to 0 that means that all
462 * groups have reached the zfs_mg_noalloc_threshold making all groups
463 * eligible for allocations. This effectively means that all devices
464 * are balanced again.
465 */
466 if (was_allocatable && !mg->mg_allocatable)
467 mc->mc_alloc_groups--;
468 else if (!was_allocatable && mg->mg_allocatable)
469 mc->mc_alloc_groups++;
470
471 mutex_exit(&mg->mg_lock);
472 }
473
474 metaslab_group_t *
475 metaslab_group_create(metaslab_class_t *mc, vdev_t *vd)
476 {
477 metaslab_group_t *mg;
478
479 mg = kmem_zalloc(sizeof (metaslab_group_t), KM_SLEEP);
480 mutex_init(&mg->mg_lock, NULL, MUTEX_DEFAULT, NULL);
481 avl_create(&mg->mg_metaslab_tree, metaslab_compare,
482 sizeof (metaslab_t), offsetof(struct metaslab, ms_group_node));
483 mg->mg_vd = vd;
484 mg->mg_class = mc;
485 mg->mg_activation_count = 0;
486
487 mg->mg_taskq = taskq_create("metaslab_group_taskq", metaslab_load_pct,
488 minclsyspri, 10, INT_MAX, TASKQ_THREADS_CPU_PCT);
489
490 return (mg);
491 }
492
493 void
494 metaslab_group_destroy(metaslab_group_t *mg)
495 {
496 ASSERT(mg->mg_prev == NULL);
497 ASSERT(mg->mg_next == NULL);
498 /*
499 * We may have gone below zero with the activation count
500 * either because we never activated in the first place or
501 * because we're done, and possibly removing the vdev.
502 */
503 ASSERT(mg->mg_activation_count <= 0);
504
505 taskq_destroy(mg->mg_taskq);
506 avl_destroy(&mg->mg_metaslab_tree);
507 mutex_destroy(&mg->mg_lock);
508 kmem_free(mg, sizeof (metaslab_group_t));
509 }
510
511 void
512 metaslab_group_activate(metaslab_group_t *mg)
513 {
514 metaslab_class_t *mc = mg->mg_class;
515 metaslab_group_t *mgprev, *mgnext;
516
517 ASSERT(spa_config_held(mc->mc_spa, SCL_ALLOC, RW_WRITER));
518
519 ASSERT(mc->mc_rotor != mg);
520 ASSERT(mg->mg_prev == NULL);
521 ASSERT(mg->mg_next == NULL);
522 ASSERT(mg->mg_activation_count <= 0);
523
524 if (++mg->mg_activation_count <= 0)
525 return;
526
527 mg->mg_aliquot = metaslab_aliquot * MAX(1, mg->mg_vd->vdev_children);
528 metaslab_group_alloc_update(mg);
529
530 if ((mgprev = mc->mc_rotor) == NULL) {
531 mg->mg_prev = mg;
532 mg->mg_next = mg;
533 } else {
534 mgnext = mgprev->mg_next;
535 mg->mg_prev = mgprev;
536 mg->mg_next = mgnext;
537 mgprev->mg_next = mg;
538 mgnext->mg_prev = mg;
539 }
540 mc->mc_rotor = mg;
541 }
542
543 void
544 metaslab_group_passivate(metaslab_group_t *mg)
545 {
546 metaslab_class_t *mc = mg->mg_class;
547 metaslab_group_t *mgprev, *mgnext;
548
549 ASSERT(spa_config_held(mc->mc_spa, SCL_ALLOC, RW_WRITER));
550
551 if (--mg->mg_activation_count != 0) {
552 ASSERT(mc->mc_rotor != mg);
553 ASSERT(mg->mg_prev == NULL);
554 ASSERT(mg->mg_next == NULL);
555 ASSERT(mg->mg_activation_count < 0);
556 return;
557 }
558
559 taskq_wait_outstanding(mg->mg_taskq, 0);
560 metaslab_group_alloc_update(mg);
561
562 mgprev = mg->mg_prev;
563 mgnext = mg->mg_next;
564
565 if (mg == mgnext) {
566 mc->mc_rotor = NULL;
567 } else {
568 mc->mc_rotor = mgnext;
569 mgprev->mg_next = mgnext;
570 mgnext->mg_prev = mgprev;
571 }
572
573 mg->mg_prev = NULL;
574 mg->mg_next = NULL;
575 }
576
577 uint64_t
578 metaslab_group_get_space(metaslab_group_t *mg)
579 {
580 return ((1ULL << mg->mg_vd->vdev_ms_shift) * mg->mg_vd->vdev_ms_count);
581 }
582
583 void
584 metaslab_group_histogram_verify(metaslab_group_t *mg)
585 {
586 uint64_t *mg_hist;
587 vdev_t *vd = mg->mg_vd;
588 uint64_t ashift = vd->vdev_ashift;
589 int i, m;
590
591 if ((zfs_flags & ZFS_DEBUG_HISTOGRAM_VERIFY) == 0)
592 return;
593
594 mg_hist = kmem_zalloc(sizeof (uint64_t) * RANGE_TREE_HISTOGRAM_SIZE,
595 KM_SLEEP);
596
597 ASSERT3U(RANGE_TREE_HISTOGRAM_SIZE, >=,
598 SPACE_MAP_HISTOGRAM_SIZE + ashift);
599
600 for (m = 0; m < vd->vdev_ms_count; m++) {
601 metaslab_t *msp = vd->vdev_ms[m];
602
603 if (msp->ms_sm == NULL)
604 continue;
605
606 for (i = 0; i < SPACE_MAP_HISTOGRAM_SIZE; i++)
607 mg_hist[i + ashift] +=
608 msp->ms_sm->sm_phys->smp_histogram[i];
609 }
610
611 for (i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i ++)
612 VERIFY3U(mg_hist[i], ==, mg->mg_histogram[i]);
613
614 kmem_free(mg_hist, sizeof (uint64_t) * RANGE_TREE_HISTOGRAM_SIZE);
615 }
616
617 static void
618 metaslab_group_histogram_add(metaslab_group_t *mg, metaslab_t *msp)
619 {
620 metaslab_class_t *mc = mg->mg_class;
621 uint64_t ashift = mg->mg_vd->vdev_ashift;
622 int i;
623
624 ASSERT(MUTEX_HELD(&msp->ms_lock));
625 if (msp->ms_sm == NULL)
626 return;
627
628 mutex_enter(&mg->mg_lock);
629 for (i = 0; i < SPACE_MAP_HISTOGRAM_SIZE; i++) {
630 mg->mg_histogram[i + ashift] +=
631 msp->ms_sm->sm_phys->smp_histogram[i];
632 mc->mc_histogram[i + ashift] +=
633 msp->ms_sm->sm_phys->smp_histogram[i];
634 }
635 mutex_exit(&mg->mg_lock);
636 }
637
638 void
639 metaslab_group_histogram_remove(metaslab_group_t *mg, metaslab_t *msp)
640 {
641 metaslab_class_t *mc = mg->mg_class;
642 uint64_t ashift = mg->mg_vd->vdev_ashift;
643 int i;
644
645 ASSERT(MUTEX_HELD(&msp->ms_lock));
646 if (msp->ms_sm == NULL)
647 return;
648
649 mutex_enter(&mg->mg_lock);
650 for (i = 0; i < SPACE_MAP_HISTOGRAM_SIZE; i++) {
651 ASSERT3U(mg->mg_histogram[i + ashift], >=,
652 msp->ms_sm->sm_phys->smp_histogram[i]);
653 ASSERT3U(mc->mc_histogram[i + ashift], >=,
654 msp->ms_sm->sm_phys->smp_histogram[i]);
655
656 mg->mg_histogram[i + ashift] -=
657 msp->ms_sm->sm_phys->smp_histogram[i];
658 mc->mc_histogram[i + ashift] -=
659 msp->ms_sm->sm_phys->smp_histogram[i];
660 }
661 mutex_exit(&mg->mg_lock);
662 }
663
664 static void
665 metaslab_group_add(metaslab_group_t *mg, metaslab_t *msp)
666 {
667 ASSERT(msp->ms_group == NULL);
668 mutex_enter(&mg->mg_lock);
669 msp->ms_group = mg;
670 msp->ms_weight = 0;
671 avl_add(&mg->mg_metaslab_tree, msp);
672 mutex_exit(&mg->mg_lock);
673
674 mutex_enter(&msp->ms_lock);
675 metaslab_group_histogram_add(mg, msp);
676 mutex_exit(&msp->ms_lock);
677 }
678
679 static void
680 metaslab_group_remove(metaslab_group_t *mg, metaslab_t *msp)
681 {
682 mutex_enter(&msp->ms_lock);
683 metaslab_group_histogram_remove(mg, msp);
684 mutex_exit(&msp->ms_lock);
685
686 mutex_enter(&mg->mg_lock);
687 ASSERT(msp->ms_group == mg);
688 avl_remove(&mg->mg_metaslab_tree, msp);
689 msp->ms_group = NULL;
690 mutex_exit(&mg->mg_lock);
691 }
692
693 static void
694 metaslab_group_sort(metaslab_group_t *mg, metaslab_t *msp, uint64_t weight)
695 {
696 /*
697 * Although in principle the weight can be any value, in
698 * practice we do not use values in the range [1, 511].
699 */
700 ASSERT(weight >= SPA_MINBLOCKSIZE || weight == 0);
701 ASSERT(MUTEX_HELD(&msp->ms_lock));
702
703 mutex_enter(&mg->mg_lock);
704 ASSERT(msp->ms_group == mg);
705 avl_remove(&mg->mg_metaslab_tree, msp);
706 msp->ms_weight = weight;
707 avl_add(&mg->mg_metaslab_tree, msp);
708 mutex_exit(&mg->mg_lock);
709 }
710
711 /*
712 * Calculate the fragmentation for a given metaslab group. We can use
713 * a simple average here since all metaslabs within the group must have
714 * the same size. The return value will be a value between 0 and 100
715 * (inclusive), or ZFS_FRAG_INVALID if less than half of the metaslab in this
716 * group have a fragmentation metric.
717 */
718 uint64_t
719 metaslab_group_fragmentation(metaslab_group_t *mg)
720 {
721 vdev_t *vd = mg->mg_vd;
722 uint64_t fragmentation = 0;
723 uint64_t valid_ms = 0;
724 int m;
725
726 for (m = 0; m < vd->vdev_ms_count; m++) {
727 metaslab_t *msp = vd->vdev_ms[m];
728
729 if (msp->ms_fragmentation == ZFS_FRAG_INVALID)
730 continue;
731
732 valid_ms++;
733 fragmentation += msp->ms_fragmentation;
734 }
735
736 if (valid_ms <= vd->vdev_ms_count / 2)
737 return (ZFS_FRAG_INVALID);
738
739 fragmentation /= valid_ms;
740 ASSERT3U(fragmentation, <=, 100);
741 return (fragmentation);
742 }
743
744 /*
745 * Determine if a given metaslab group should skip allocations. A metaslab
746 * group should avoid allocations if its free capacity is less than the
747 * zfs_mg_noalloc_threshold or its fragmentation metric is greater than
748 * zfs_mg_fragmentation_threshold and there is at least one metaslab group
749 * that can still handle allocations.
750 */
751 static boolean_t
752 metaslab_group_allocatable(metaslab_group_t *mg)
753 {
754 vdev_t *vd = mg->mg_vd;
755 spa_t *spa = vd->vdev_spa;
756 metaslab_class_t *mc = mg->mg_class;
757
758 /*
759 * We use two key metrics to determine if a metaslab group is
760 * considered allocatable -- free space and fragmentation. If
761 * the free space is greater than the free space threshold and
762 * the fragmentation is less than the fragmentation threshold then
763 * consider the group allocatable. There are two case when we will
764 * not consider these key metrics. The first is if the group is
765 * associated with a slog device and the second is if all groups
766 * in this metaslab class have already been consider ineligible
767 * for allocations.
768 */
769 return ((mg->mg_free_capacity > zfs_mg_noalloc_threshold &&
770 (mg->mg_fragmentation == ZFS_FRAG_INVALID ||
771 mg->mg_fragmentation <= zfs_mg_fragmentation_threshold)) ||
772 mc != spa_normal_class(spa) || mc->mc_alloc_groups == 0);
773 }
774
775 /*
776 * ==========================================================================
777 * Range tree callbacks
778 * ==========================================================================
779 */
780
781 /*
782 * Comparison function for the private size-ordered tree. Tree is sorted
783 * by size, larger sizes at the end of the tree.
784 */
785 static int
786 metaslab_rangesize_compare(const void *x1, const void *x2)
787 {
788 const range_seg_t *r1 = x1;
789 const range_seg_t *r2 = x2;
790 uint64_t rs_size1 = r1->rs_end - r1->rs_start;
791 uint64_t rs_size2 = r2->rs_end - r2->rs_start;
792
793 if (rs_size1 < rs_size2)
794 return (-1);
795 if (rs_size1 > rs_size2)
796 return (1);
797
798 if (r1->rs_start < r2->rs_start)
799 return (-1);
800
801 if (r1->rs_start > r2->rs_start)
802 return (1);
803
804 return (0);
805 }
806
807 /*
808 * Create any block allocator specific components. The current allocators
809 * rely on using both a size-ordered range_tree_t and an array of uint64_t's.
810 */
811 static void
812 metaslab_rt_create(range_tree_t *rt, void *arg)
813 {
814 metaslab_t *msp = arg;
815
816 ASSERT3P(rt->rt_arg, ==, msp);
817 ASSERT(msp->ms_tree == NULL);
818
819 avl_create(&msp->ms_size_tree, metaslab_rangesize_compare,
820 sizeof (range_seg_t), offsetof(range_seg_t, rs_pp_node));
821 }
822
823 /*
824 * Destroy the block allocator specific components.
825 */
826 static void
827 metaslab_rt_destroy(range_tree_t *rt, void *arg)
828 {
829 metaslab_t *msp = arg;
830
831 ASSERT3P(rt->rt_arg, ==, msp);
832 ASSERT3P(msp->ms_tree, ==, rt);
833 ASSERT0(avl_numnodes(&msp->ms_size_tree));
834
835 avl_destroy(&msp->ms_size_tree);
836 }
837
838 static void
839 metaslab_rt_add(range_tree_t *rt, range_seg_t *rs, void *arg)
840 {
841 metaslab_t *msp = arg;
842
843 ASSERT3P(rt->rt_arg, ==, msp);
844 ASSERT3P(msp->ms_tree, ==, rt);
845 VERIFY(!msp->ms_condensing);
846 avl_add(&msp->ms_size_tree, rs);
847 }
848
849 static void
850 metaslab_rt_remove(range_tree_t *rt, range_seg_t *rs, void *arg)
851 {
852 metaslab_t *msp = arg;
853
854 ASSERT3P(rt->rt_arg, ==, msp);
855 ASSERT3P(msp->ms_tree, ==, rt);
856 VERIFY(!msp->ms_condensing);
857 avl_remove(&msp->ms_size_tree, rs);
858 }
859
860 static void
861 metaslab_rt_vacate(range_tree_t *rt, void *arg)
862 {
863 metaslab_t *msp = arg;
864
865 ASSERT3P(rt->rt_arg, ==, msp);
866 ASSERT3P(msp->ms_tree, ==, rt);
867
868 /*
869 * Normally one would walk the tree freeing nodes along the way.
870 * Since the nodes are shared with the range trees we can avoid
871 * walking all nodes and just reinitialize the avl tree. The nodes
872 * will be freed by the range tree, so we don't want to free them here.
873 */
874 avl_create(&msp->ms_size_tree, metaslab_rangesize_compare,
875 sizeof (range_seg_t), offsetof(range_seg_t, rs_pp_node));
876 }
877
878 static range_tree_ops_t metaslab_rt_ops = {
879 metaslab_rt_create,
880 metaslab_rt_destroy,
881 metaslab_rt_add,
882 metaslab_rt_remove,
883 metaslab_rt_vacate
884 };
885
886 /*
887 * ==========================================================================
888 * Metaslab block operations
889 * ==========================================================================
890 */
891
892 /*
893 * Return the maximum contiguous segment within the metaslab.
894 */
895 uint64_t
896 metaslab_block_maxsize(metaslab_t *msp)
897 {
898 avl_tree_t *t = &msp->ms_size_tree;
899 range_seg_t *rs;
900
901 if (t == NULL || (rs = avl_last(t)) == NULL)
902 return (0ULL);
903
904 return (rs->rs_end - rs->rs_start);
905 }
906
907 uint64_t
908 metaslab_block_alloc(metaslab_t *msp, uint64_t size)
909 {
910 uint64_t start;
911 range_tree_t *rt = msp->ms_tree;
912
913 VERIFY(!msp->ms_condensing);
914
915 start = msp->ms_ops->msop_alloc(msp, size);
916 if (start != -1ULL) {
917 vdev_t *vd = msp->ms_group->mg_vd;
918
919 VERIFY0(P2PHASE(start, 1ULL << vd->vdev_ashift));
920 VERIFY0(P2PHASE(size, 1ULL << vd->vdev_ashift));
921 VERIFY3U(range_tree_space(rt) - size, <=, msp->ms_size);
922 range_tree_remove(rt, start, size);
923 }
924 return (start);
925 }
926
927 /*
928 * ==========================================================================
929 * Common allocator routines
930 * ==========================================================================
931 */
932
933 #if defined(WITH_FF_BLOCK_ALLOCATOR) || \
934 defined(WITH_DF_BLOCK_ALLOCATOR) || \
935 defined(WITH_CF_BLOCK_ALLOCATOR)
936 /*
937 * This is a helper function that can be used by the allocator to find
938 * a suitable block to allocate. This will search the specified AVL
939 * tree looking for a block that matches the specified criteria.
940 */
941 static uint64_t
942 metaslab_block_picker(avl_tree_t *t, uint64_t *cursor, uint64_t size,
943 uint64_t align)
944 {
945 range_seg_t *rs, rsearch;
946 avl_index_t where;
947
948 rsearch.rs_start = *cursor;
949 rsearch.rs_end = *cursor + size;
950
951 rs = avl_find(t, &rsearch, &where);
952 if (rs == NULL)
953 rs = avl_nearest(t, where, AVL_AFTER);
954
955 while (rs != NULL) {
956 uint64_t offset = P2ROUNDUP(rs->rs_start, align);
957
958 if (offset + size <= rs->rs_end) {
959 *cursor = offset + size;
960 return (offset);
961 }
962 rs = AVL_NEXT(t, rs);
963 }
964
965 /*
966 * If we know we've searched the whole map (*cursor == 0), give up.
967 * Otherwise, reset the cursor to the beginning and try again.
968 */
969 if (*cursor == 0)
970 return (-1ULL);
971
972 *cursor = 0;
973 return (metaslab_block_picker(t, cursor, size, align));
974 }
975 #endif /* WITH_FF/DF/CF_BLOCK_ALLOCATOR */
976
977 #if defined(WITH_FF_BLOCK_ALLOCATOR)
978 /*
979 * ==========================================================================
980 * The first-fit block allocator
981 * ==========================================================================
982 */
983 static uint64_t
984 metaslab_ff_alloc(metaslab_t *msp, uint64_t size)
985 {
986 /*
987 * Find the largest power of 2 block size that evenly divides the
988 * requested size. This is used to try to allocate blocks with similar
989 * alignment from the same area of the metaslab (i.e. same cursor
990 * bucket) but it does not guarantee that other allocations sizes
991 * may exist in the same region.
992 */
993 uint64_t align = size & -size;
994 uint64_t *cursor = &msp->ms_lbas[highbit64(align) - 1];
995 avl_tree_t *t = &msp->ms_tree->rt_root;
996
997 return (metaslab_block_picker(t, cursor, size, align));
998 }
999
1000 static metaslab_ops_t metaslab_ff_ops = {
1001 metaslab_ff_alloc
1002 };
1003
1004 metaslab_ops_t *zfs_metaslab_ops = &metaslab_ff_ops;
1005 #endif /* WITH_FF_BLOCK_ALLOCATOR */
1006
1007 #if defined(WITH_DF_BLOCK_ALLOCATOR)
1008 /*
1009 * ==========================================================================
1010 * Dynamic block allocator -
1011 * Uses the first fit allocation scheme until space get low and then
1012 * adjusts to a best fit allocation method. Uses metaslab_df_alloc_threshold
1013 * and metaslab_df_free_pct to determine when to switch the allocation scheme.
1014 * ==========================================================================
1015 */
1016 static uint64_t
1017 metaslab_df_alloc(metaslab_t *msp, uint64_t size)
1018 {
1019 /*
1020 * Find the largest power of 2 block size that evenly divides the
1021 * requested size. This is used to try to allocate blocks with similar
1022 * alignment from the same area of the metaslab (i.e. same cursor
1023 * bucket) but it does not guarantee that other allocations sizes
1024 * may exist in the same region.
1025 */
1026 uint64_t align = size & -size;
1027 uint64_t *cursor = &msp->ms_lbas[highbit64(align) - 1];
1028 range_tree_t *rt = msp->ms_tree;
1029 avl_tree_t *t = &rt->rt_root;
1030 uint64_t max_size = metaslab_block_maxsize(msp);
1031 int free_pct = range_tree_space(rt) * 100 / msp->ms_size;
1032
1033 ASSERT(MUTEX_HELD(&msp->ms_lock));
1034 ASSERT3U(avl_numnodes(t), ==, avl_numnodes(&msp->ms_size_tree));
1035
1036 if (max_size < size)
1037 return (-1ULL);
1038
1039 /*
1040 * If we're running low on space switch to using the size
1041 * sorted AVL tree (best-fit).
1042 */
1043 if (max_size < metaslab_df_alloc_threshold ||
1044 free_pct < metaslab_df_free_pct) {
1045 t = &msp->ms_size_tree;
1046 *cursor = 0;
1047 }
1048
1049 return (metaslab_block_picker(t, cursor, size, 1ULL));
1050 }
1051
1052 static metaslab_ops_t metaslab_df_ops = {
1053 metaslab_df_alloc
1054 };
1055
1056 metaslab_ops_t *zfs_metaslab_ops = &metaslab_df_ops;
1057 #endif /* WITH_DF_BLOCK_ALLOCATOR */
1058
1059 #if defined(WITH_CF_BLOCK_ALLOCATOR)
1060 /*
1061 * ==========================================================================
1062 * Cursor fit block allocator -
1063 * Select the largest region in the metaslab, set the cursor to the beginning
1064 * of the range and the cursor_end to the end of the range. As allocations
1065 * are made advance the cursor. Continue allocating from the cursor until
1066 * the range is exhausted and then find a new range.
1067 * ==========================================================================
1068 */
1069 static uint64_t
1070 metaslab_cf_alloc(metaslab_t *msp, uint64_t size)
1071 {
1072 range_tree_t *rt = msp->ms_tree;
1073 avl_tree_t *t = &msp->ms_size_tree;
1074 uint64_t *cursor = &msp->ms_lbas[0];
1075 uint64_t *cursor_end = &msp->ms_lbas[1];
1076 uint64_t offset = 0;
1077
1078 ASSERT(MUTEX_HELD(&msp->ms_lock));
1079 ASSERT3U(avl_numnodes(t), ==, avl_numnodes(&rt->rt_root));
1080
1081 ASSERT3U(*cursor_end, >=, *cursor);
1082
1083 if ((*cursor + size) > *cursor_end) {
1084 range_seg_t *rs;
1085
1086 rs = avl_last(&msp->ms_size_tree);
1087 if (rs == NULL || (rs->rs_end - rs->rs_start) < size)
1088 return (-1ULL);
1089
1090 *cursor = rs->rs_start;
1091 *cursor_end = rs->rs_end;
1092 }
1093
1094 offset = *cursor;
1095 *cursor += size;
1096
1097 return (offset);
1098 }
1099
1100 static metaslab_ops_t metaslab_cf_ops = {
1101 metaslab_cf_alloc
1102 };
1103
1104 metaslab_ops_t *zfs_metaslab_ops = &metaslab_cf_ops;
1105 #endif /* WITH_CF_BLOCK_ALLOCATOR */
1106
1107 #if defined(WITH_NDF_BLOCK_ALLOCATOR)
1108 /*
1109 * ==========================================================================
1110 * New dynamic fit allocator -
1111 * Select a region that is large enough to allocate 2^metaslab_ndf_clump_shift
1112 * contiguous blocks. If no region is found then just use the largest segment
1113 * that remains.
1114 * ==========================================================================
1115 */
1116
1117 /*
1118 * Determines desired number of contiguous blocks (2^metaslab_ndf_clump_shift)
1119 * to request from the allocator.
1120 */
1121 uint64_t metaslab_ndf_clump_shift = 4;
1122
1123 static uint64_t
1124 metaslab_ndf_alloc(metaslab_t *msp, uint64_t size)
1125 {
1126 avl_tree_t *t = &msp->ms_tree->rt_root;
1127 avl_index_t where;
1128 range_seg_t *rs, rsearch;
1129 uint64_t hbit = highbit64(size);
1130 uint64_t *cursor = &msp->ms_lbas[hbit - 1];
1131 uint64_t max_size = metaslab_block_maxsize(msp);
1132
1133 ASSERT(MUTEX_HELD(&msp->ms_lock));
1134 ASSERT3U(avl_numnodes(t), ==, avl_numnodes(&msp->ms_size_tree));
1135
1136 if (max_size < size)
1137 return (-1ULL);
1138
1139 rsearch.rs_start = *cursor;
1140 rsearch.rs_end = *cursor + size;
1141
1142 rs = avl_find(t, &rsearch, &where);
1143 if (rs == NULL || (rs->rs_end - rs->rs_start) < size) {
1144 t = &msp->ms_size_tree;
1145
1146 rsearch.rs_start = 0;
1147 rsearch.rs_end = MIN(max_size,
1148 1ULL << (hbit + metaslab_ndf_clump_shift));
1149 rs = avl_find(t, &rsearch, &where);
1150 if (rs == NULL)
1151 rs = avl_nearest(t, where, AVL_AFTER);
1152 ASSERT(rs != NULL);
1153 }
1154
1155 if ((rs->rs_end - rs->rs_start) >= size) {
1156 *cursor = rs->rs_start + size;
1157 return (rs->rs_start);
1158 }
1159 return (-1ULL);
1160 }
1161
1162 static metaslab_ops_t metaslab_ndf_ops = {
1163 metaslab_ndf_alloc
1164 };
1165
1166 metaslab_ops_t *zfs_metaslab_ops = &metaslab_ndf_ops;
1167 #endif /* WITH_NDF_BLOCK_ALLOCATOR */
1168
1169
1170 /*
1171 * ==========================================================================
1172 * Metaslabs
1173 * ==========================================================================
1174 */
1175
1176 /*
1177 * Wait for any in-progress metaslab loads to complete.
1178 */
1179 void
1180 metaslab_load_wait(metaslab_t *msp)
1181 {
1182 ASSERT(MUTEX_HELD(&msp->ms_lock));
1183
1184 while (msp->ms_loading) {
1185 ASSERT(!msp->ms_loaded);
1186 cv_wait(&msp->ms_load_cv, &msp->ms_lock);
1187 }
1188 }
1189
1190 int
1191 metaslab_load(metaslab_t *msp)
1192 {
1193 int error = 0;
1194 int t;
1195
1196 ASSERT(MUTEX_HELD(&msp->ms_lock));
1197 ASSERT(!msp->ms_loaded);
1198 ASSERT(!msp->ms_loading);
1199
1200 msp->ms_loading = B_TRUE;
1201
1202 /*
1203 * If the space map has not been allocated yet, then treat
1204 * all the space in the metaslab as free and add it to the
1205 * ms_tree.
1206 */
1207 if (msp->ms_sm != NULL)
1208 error = space_map_load(msp->ms_sm, msp->ms_tree, SM_FREE);
1209 else
1210 range_tree_add(msp->ms_tree, msp->ms_start, msp->ms_size);
1211
1212 msp->ms_loaded = (error == 0);
1213 msp->ms_loading = B_FALSE;
1214
1215 if (msp->ms_loaded) {
1216 for (t = 0; t < TXG_DEFER_SIZE; t++) {
1217 range_tree_walk(msp->ms_defertree[t],
1218 range_tree_remove, msp->ms_tree);
1219 }
1220 }
1221 cv_broadcast(&msp->ms_load_cv);
1222 return (error);
1223 }
1224
1225 void
1226 metaslab_unload(metaslab_t *msp)
1227 {
1228 ASSERT(MUTEX_HELD(&msp->ms_lock));
1229 range_tree_vacate(msp->ms_tree, NULL, NULL);
1230 msp->ms_loaded = B_FALSE;
1231 msp->ms_weight &= ~METASLAB_ACTIVE_MASK;
1232 }
1233
1234 int
1235 metaslab_init(metaslab_group_t *mg, uint64_t id, uint64_t object, uint64_t txg,
1236 metaslab_t **msp)
1237 {
1238 vdev_t *vd = mg->mg_vd;
1239 objset_t *mos = vd->vdev_spa->spa_meta_objset;
1240 metaslab_t *ms;
1241 int error;
1242
1243 ms = kmem_zalloc(sizeof (metaslab_t), KM_SLEEP);
1244 mutex_init(&ms->ms_lock, NULL, MUTEX_DEFAULT, NULL);
1245 cv_init(&ms->ms_load_cv, NULL, CV_DEFAULT, NULL);
1246 ms->ms_id = id;
1247 ms->ms_start = id << vd->vdev_ms_shift;
1248 ms->ms_size = 1ULL << vd->vdev_ms_shift;
1249
1250 /*
1251 * We only open space map objects that already exist. All others
1252 * will be opened when we finally allocate an object for it.
1253 */
1254 if (object != 0) {
1255 error = space_map_open(&ms->ms_sm, mos, object, ms->ms_start,
1256 ms->ms_size, vd->vdev_ashift, &ms->ms_lock);
1257
1258 if (error != 0) {
1259 kmem_free(ms, sizeof (metaslab_t));
1260 return (error);
1261 }
1262
1263 ASSERT(ms->ms_sm != NULL);
1264 }
1265
1266 /*
1267 * We create the main range tree here, but we don't create the
1268 * alloctree and freetree until metaslab_sync_done(). This serves
1269 * two purposes: it allows metaslab_sync_done() to detect the
1270 * addition of new space; and for debugging, it ensures that we'd
1271 * data fault on any attempt to use this metaslab before it's ready.
1272 */
1273 ms->ms_tree = range_tree_create(&metaslab_rt_ops, ms, &ms->ms_lock);
1274 metaslab_group_add(mg, ms);
1275
1276 ms->ms_fragmentation = metaslab_fragmentation(ms);
1277 ms->ms_ops = mg->mg_class->mc_ops;
1278
1279 /*
1280 * If we're opening an existing pool (txg == 0) or creating
1281 * a new one (txg == TXG_INITIAL), all space is available now.
1282 * If we're adding space to an existing pool, the new space
1283 * does not become available until after this txg has synced.
1284 */
1285 if (txg <= TXG_INITIAL)
1286 metaslab_sync_done(ms, 0);
1287
1288 /*
1289 * If metaslab_debug_load is set and we're initializing a metaslab
1290 * that has an allocated space_map object then load the its space
1291 * map so that can verify frees.
1292 */
1293 if (metaslab_debug_load && ms->ms_sm != NULL) {
1294 mutex_enter(&ms->ms_lock);
1295 VERIFY0(metaslab_load(ms));
1296 mutex_exit(&ms->ms_lock);
1297 }
1298
1299 if (txg != 0) {
1300 vdev_dirty(vd, 0, NULL, txg);
1301 vdev_dirty(vd, VDD_METASLAB, ms, txg);
1302 }
1303
1304 *msp = ms;
1305
1306 return (0);
1307 }
1308
1309 void
1310 metaslab_fini(metaslab_t *msp)
1311 {
1312 int t;
1313
1314 metaslab_group_t *mg = msp->ms_group;
1315
1316 metaslab_group_remove(mg, msp);
1317
1318 mutex_enter(&msp->ms_lock);
1319
1320 VERIFY(msp->ms_group == NULL);
1321 vdev_space_update(mg->mg_vd, -space_map_allocated(msp->ms_sm),
1322 0, -msp->ms_size);
1323 space_map_close(msp->ms_sm);
1324
1325 metaslab_unload(msp);
1326 range_tree_destroy(msp->ms_tree);
1327
1328 for (t = 0; t < TXG_SIZE; t++) {
1329 range_tree_destroy(msp->ms_alloctree[t]);
1330 range_tree_destroy(msp->ms_freetree[t]);
1331 }
1332
1333 for (t = 0; t < TXG_DEFER_SIZE; t++) {
1334 range_tree_destroy(msp->ms_defertree[t]);
1335 }
1336
1337 ASSERT0(msp->ms_deferspace);
1338
1339 mutex_exit(&msp->ms_lock);
1340 cv_destroy(&msp->ms_load_cv);
1341 mutex_destroy(&msp->ms_lock);
1342
1343 kmem_free(msp, sizeof (metaslab_t));
1344 }
1345
1346 #define FRAGMENTATION_TABLE_SIZE 17
1347
1348 /*
1349 * This table defines a segment size based fragmentation metric that will
1350 * allow each metaslab to derive its own fragmentation value. This is done
1351 * by calculating the space in each bucket of the spacemap histogram and
1352 * multiplying that by the fragmetation metric in this table. Doing
1353 * this for all buckets and dividing it by the total amount of free
1354 * space in this metaslab (i.e. the total free space in all buckets) gives
1355 * us the fragmentation metric. This means that a high fragmentation metric
1356 * equates to most of the free space being comprised of small segments.
1357 * Conversely, if the metric is low, then most of the free space is in
1358 * large segments. A 10% change in fragmentation equates to approximately
1359 * double the number of segments.
1360 *
1361 * This table defines 0% fragmented space using 16MB segments. Testing has
1362 * shown that segments that are greater than or equal to 16MB do not suffer
1363 * from drastic performance problems. Using this value, we derive the rest
1364 * of the table. Since the fragmentation value is never stored on disk, it
1365 * is possible to change these calculations in the future.
1366 */
1367 int zfs_frag_table[FRAGMENTATION_TABLE_SIZE] = {
1368 100, /* 512B */
1369 100, /* 1K */
1370 98, /* 2K */
1371 95, /* 4K */
1372 90, /* 8K */
1373 80, /* 16K */
1374 70, /* 32K */
1375 60, /* 64K */
1376 50, /* 128K */
1377 40, /* 256K */
1378 30, /* 512K */
1379 20, /* 1M */
1380 15, /* 2M */
1381 10, /* 4M */
1382 5, /* 8M */
1383 0 /* 16M */
1384 };
1385
1386 /*
1387 * Calclate the metaslab's fragmentation metric. A return value
1388 * of ZFS_FRAG_INVALID means that the metaslab has not been upgraded and does
1389 * not support this metric. Otherwise, the return value should be in the
1390 * range [0, 100].
1391 */
1392 static uint64_t
1393 metaslab_fragmentation(metaslab_t *msp)
1394 {
1395 spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
1396 uint64_t fragmentation = 0;
1397 uint64_t total = 0;
1398 boolean_t feature_enabled = spa_feature_is_enabled(spa,
1399 SPA_FEATURE_SPACEMAP_HISTOGRAM);
1400 int i;
1401
1402 if (!feature_enabled)
1403 return (ZFS_FRAG_INVALID);
1404
1405 /*
1406 * A null space map means that the entire metaslab is free
1407 * and thus is not fragmented.
1408 */
1409 if (msp->ms_sm == NULL)
1410 return (0);
1411
1412 /*
1413 * If this metaslab's space_map has not been upgraded, flag it
1414 * so that we upgrade next time we encounter it.
1415 */
1416 if (msp->ms_sm->sm_dbuf->db_size != sizeof (space_map_phys_t)) {
1417 vdev_t *vd = msp->ms_group->mg_vd;
1418
1419 if (spa_writeable(vd->vdev_spa)) {
1420 uint64_t txg = spa_syncing_txg(spa);
1421
1422 msp->ms_condense_wanted = B_TRUE;
1423 vdev_dirty(vd, VDD_METASLAB, msp, txg + 1);
1424 spa_dbgmsg(spa, "txg %llu, requesting force condense: "
1425 "msp %p, vd %p", txg, msp, vd);
1426 }
1427 return (ZFS_FRAG_INVALID);
1428 }
1429
1430 for (i = 0; i < SPACE_MAP_HISTOGRAM_SIZE; i++) {
1431 uint64_t space = 0;
1432 uint8_t shift = msp->ms_sm->sm_shift;
1433 int idx = MIN(shift - SPA_MINBLOCKSHIFT + i,
1434 FRAGMENTATION_TABLE_SIZE - 1);
1435
1436 if (msp->ms_sm->sm_phys->smp_histogram[i] == 0)
1437 continue;
1438
1439 space = msp->ms_sm->sm_phys->smp_histogram[i] << (i + shift);
1440 total += space;
1441
1442 ASSERT3U(idx, <, FRAGMENTATION_TABLE_SIZE);
1443 fragmentation += space * zfs_frag_table[idx];
1444 }
1445
1446 if (total > 0)
1447 fragmentation /= total;
1448 ASSERT3U(fragmentation, <=, 100);
1449 return (fragmentation);
1450 }
1451
1452 /*
1453 * Compute a weight -- a selection preference value -- for the given metaslab.
1454 * This is based on the amount of free space, the level of fragmentation,
1455 * the LBA range, and whether the metaslab is loaded.
1456 */
1457 static uint64_t
1458 metaslab_weight(metaslab_t *msp)
1459 {
1460 metaslab_group_t *mg = msp->ms_group;
1461 vdev_t *vd = mg->mg_vd;
1462 uint64_t weight, space;
1463
1464 ASSERT(MUTEX_HELD(&msp->ms_lock));
1465
1466 /*
1467 * This vdev is in the process of being removed so there is nothing
1468 * for us to do here.
1469 */
1470 if (vd->vdev_removing) {
1471 ASSERT0(space_map_allocated(msp->ms_sm));
1472 ASSERT0(vd->vdev_ms_shift);
1473 return (0);
1474 }
1475
1476 /*
1477 * The baseline weight is the metaslab's free space.
1478 */
1479 space = msp->ms_size - space_map_allocated(msp->ms_sm);
1480
1481 msp->ms_fragmentation = metaslab_fragmentation(msp);
1482 if (metaslab_fragmentation_factor_enabled &&
1483 msp->ms_fragmentation != ZFS_FRAG_INVALID) {
1484 /*
1485 * Use the fragmentation information to inversely scale
1486 * down the baseline weight. We need to ensure that we
1487 * don't exclude this metaslab completely when it's 100%
1488 * fragmented. To avoid this we reduce the fragmented value
1489 * by 1.
1490 */
1491 space = (space * (100 - (msp->ms_fragmentation - 1))) / 100;
1492
1493 /*
1494 * If space < SPA_MINBLOCKSIZE, then we will not allocate from
1495 * this metaslab again. The fragmentation metric may have
1496 * decreased the space to something smaller than
1497 * SPA_MINBLOCKSIZE, so reset the space to SPA_MINBLOCKSIZE
1498 * so that we can consume any remaining space.
1499 */
1500 if (space > 0 && space < SPA_MINBLOCKSIZE)
1501 space = SPA_MINBLOCKSIZE;
1502 }
1503 weight = space;
1504
1505 /*
1506 * Modern disks have uniform bit density and constant angular velocity.
1507 * Therefore, the outer recording zones are faster (higher bandwidth)
1508 * than the inner zones by the ratio of outer to inner track diameter,
1509 * which is typically around 2:1. We account for this by assigning
1510 * higher weight to lower metaslabs (multiplier ranging from 2x to 1x).
1511 * In effect, this means that we'll select the metaslab with the most
1512 * free bandwidth rather than simply the one with the most free space.
1513 */
1514 if (metaslab_lba_weighting_enabled) {
1515 weight = 2 * weight - (msp->ms_id * weight) / vd->vdev_ms_count;
1516 ASSERT(weight >= space && weight <= 2 * space);
1517 }
1518
1519 /*
1520 * If this metaslab is one we're actively using, adjust its
1521 * weight to make it preferable to any inactive metaslab so
1522 * we'll polish it off. If the fragmentation on this metaslab
1523 * has exceed our threshold, then don't mark it active.
1524 */
1525 if (msp->ms_loaded && msp->ms_fragmentation != ZFS_FRAG_INVALID &&
1526 msp->ms_fragmentation <= zfs_metaslab_fragmentation_threshold) {
1527 weight |= (msp->ms_weight & METASLAB_ACTIVE_MASK);
1528 }
1529
1530 return (weight);
1531 }
1532
1533 static int
1534 metaslab_activate(metaslab_t *msp, uint64_t activation_weight)
1535 {
1536 ASSERT(MUTEX_HELD(&msp->ms_lock));
1537
1538 if ((msp->ms_weight & METASLAB_ACTIVE_MASK) == 0) {
1539 metaslab_load_wait(msp);
1540 if (!msp->ms_loaded) {
1541 int error = metaslab_load(msp);
1542 if (error) {
1543 metaslab_group_sort(msp->ms_group, msp, 0);
1544 return (error);
1545 }
1546 }
1547
1548 metaslab_group_sort(msp->ms_group, msp,
1549 msp->ms_weight | activation_weight);
1550 }
1551 ASSERT(msp->ms_loaded);
1552 ASSERT(msp->ms_weight & METASLAB_ACTIVE_MASK);
1553
1554 return (0);
1555 }
1556
1557 static void
1558 metaslab_passivate(metaslab_t *msp, uint64_t size)
1559 {
1560 /*
1561 * If size < SPA_MINBLOCKSIZE, then we will not allocate from
1562 * this metaslab again. In that case, it had better be empty,
1563 * or we would be leaving space on the table.
1564 */
1565 ASSERT(size >= SPA_MINBLOCKSIZE || range_tree_space(msp->ms_tree) == 0);
1566 metaslab_group_sort(msp->ms_group, msp, MIN(msp->ms_weight, size));
1567 ASSERT((msp->ms_weight & METASLAB_ACTIVE_MASK) == 0);
1568 }
1569
1570 static void
1571 metaslab_preload(void *arg)
1572 {
1573 metaslab_t *msp = arg;
1574 spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
1575
1576 ASSERT(!MUTEX_HELD(&msp->ms_group->mg_lock));
1577
1578 mutex_enter(&msp->ms_lock);
1579 metaslab_load_wait(msp);
1580 if (!msp->ms_loaded)
1581 (void) metaslab_load(msp);
1582
1583 /*
1584 * Set the ms_access_txg value so that we don't unload it right away.
1585 */
1586 msp->ms_access_txg = spa_syncing_txg(spa) + metaslab_unload_delay + 1;
1587 mutex_exit(&msp->ms_lock);
1588 }
1589
1590 static void
1591 metaslab_group_preload(metaslab_group_t *mg)
1592 {
1593 spa_t *spa = mg->mg_vd->vdev_spa;
1594 metaslab_t *msp;
1595 avl_tree_t *t = &mg->mg_metaslab_tree;
1596 int m = 0;
1597
1598 if (spa_shutting_down(spa) || !metaslab_preload_enabled) {
1599 taskq_wait_outstanding(mg->mg_taskq, 0);
1600 return;
1601 }
1602
1603 mutex_enter(&mg->mg_lock);
1604 /*
1605 * Load the next potential metaslabs
1606 */
1607 msp = avl_first(t);
1608 while (msp != NULL) {
1609 metaslab_t *msp_next = AVL_NEXT(t, msp);
1610
1611 /*
1612 * We preload only the maximum number of metaslabs specified
1613 * by metaslab_preload_limit. If a metaslab is being forced
1614 * to condense then we preload it too. This will ensure
1615 * that force condensing happens in the next txg.
1616 */
1617 if (++m > metaslab_preload_limit && !msp->ms_condense_wanted) {
1618 msp = msp_next;
1619 continue;
1620 }
1621
1622 /*
1623 * We must drop the metaslab group lock here to preserve
1624 * lock ordering with the ms_lock (when grabbing both
1625 * the mg_lock and the ms_lock, the ms_lock must be taken
1626 * first). As a result, it is possible that the ordering
1627 * of the metaslabs within the avl tree may change before
1628 * we reacquire the lock. The metaslab cannot be removed from
1629 * the tree while we're in syncing context so it is safe to
1630 * drop the mg_lock here. If the metaslabs are reordered
1631 * nothing will break -- we just may end up loading a
1632 * less than optimal one.
1633 */
1634 mutex_exit(&mg->mg_lock);
1635 VERIFY(taskq_dispatch(mg->mg_taskq, metaslab_preload,
1636 msp, TQ_SLEEP) != 0);
1637 mutex_enter(&mg->mg_lock);
1638 msp = msp_next;
1639 }
1640 mutex_exit(&mg->mg_lock);
1641 }
1642
1643 /*
1644 * Determine if the space map's on-disk footprint is past our tolerance
1645 * for inefficiency. We would like to use the following criteria to make
1646 * our decision:
1647 *
1648 * 1. The size of the space map object should not dramatically increase as a
1649 * result of writing out the free space range tree.
1650 *
1651 * 2. The minimal on-disk space map representation is zfs_condense_pct/100
1652 * times the size than the free space range tree representation
1653 * (i.e. zfs_condense_pct = 110 and in-core = 1MB, minimal = 1.1.MB).
1654 *
1655 * 3. The on-disk size of the space map should actually decrease.
1656 *
1657 * Checking the first condition is tricky since we don't want to walk
1658 * the entire AVL tree calculating the estimated on-disk size. Instead we
1659 * use the size-ordered range tree in the metaslab and calculate the
1660 * size required to write out the largest segment in our free tree. If the
1661 * size required to represent that segment on disk is larger than the space
1662 * map object then we avoid condensing this map.
1663 *
1664 * To determine the second criterion we use a best-case estimate and assume
1665 * each segment can be represented on-disk as a single 64-bit entry. We refer
1666 * to this best-case estimate as the space map's minimal form.
1667 *
1668 * Unfortunately, we cannot compute the on-disk size of the space map in this
1669 * context because we cannot accurately compute the effects of compression, etc.
1670 * Instead, we apply the heuristic described in the block comment for
1671 * zfs_metaslab_condense_block_threshold - we only condense if the space used
1672 * is greater than a threshold number of blocks.
1673 */
1674 static boolean_t
1675 metaslab_should_condense(metaslab_t *msp)
1676 {
1677 space_map_t *sm = msp->ms_sm;
1678 range_seg_t *rs;
1679 uint64_t size, entries, segsz, object_size, optimal_size, record_size;
1680 dmu_object_info_t doi;
1681 uint64_t vdev_blocksize = 1 << msp->ms_group->mg_vd->vdev_ashift;
1682
1683 ASSERT(MUTEX_HELD(&msp->ms_lock));
1684 ASSERT(msp->ms_loaded);
1685
1686 /*
1687 * Use the ms_size_tree range tree, which is ordered by size, to
1688 * obtain the largest segment in the free tree. We always condense
1689 * metaslabs that are empty and metaslabs for which a condense
1690 * request has been made.
1691 */
1692 rs = avl_last(&msp->ms_size_tree);
1693 if (rs == NULL || msp->ms_condense_wanted)
1694 return (B_TRUE);
1695
1696 /*
1697 * Calculate the number of 64-bit entries this segment would
1698 * require when written to disk. If this single segment would be
1699 * larger on-disk than the entire current on-disk structure, then
1700 * clearly condensing will increase the on-disk structure size.
1701 */
1702 size = (rs->rs_end - rs->rs_start) >> sm->sm_shift;
1703 entries = size / (MIN(size, SM_RUN_MAX));
1704 segsz = entries * sizeof (uint64_t);
1705
1706 optimal_size = sizeof (uint64_t) * avl_numnodes(&msp->ms_tree->rt_root);
1707 object_size = space_map_length(msp->ms_sm);
1708
1709 dmu_object_info_from_db(sm->sm_dbuf, &doi);
1710 record_size = MAX(doi.doi_data_block_size, vdev_blocksize);
1711
1712 return (segsz <= object_size &&
1713 object_size >= (optimal_size * zfs_condense_pct / 100) &&
1714 object_size > zfs_metaslab_condense_block_threshold * record_size);
1715 }
1716
1717 /*
1718 * Condense the on-disk space map representation to its minimized form.
1719 * The minimized form consists of a small number of allocations followed by
1720 * the entries of the free range tree.
1721 */
1722 static void
1723 metaslab_condense(metaslab_t *msp, uint64_t txg, dmu_tx_t *tx)
1724 {
1725 spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
1726 range_tree_t *freetree = msp->ms_freetree[txg & TXG_MASK];
1727 range_tree_t *condense_tree;
1728 space_map_t *sm = msp->ms_sm;
1729 int t;
1730
1731 ASSERT(MUTEX_HELD(&msp->ms_lock));
1732 ASSERT3U(spa_sync_pass(spa), ==, 1);
1733 ASSERT(msp->ms_loaded);
1734
1735
1736 spa_dbgmsg(spa, "condensing: txg %llu, msp[%llu] %p, "
1737 "smp size %llu, segments %lu, forcing condense=%s", txg,
1738 msp->ms_id, msp, space_map_length(msp->ms_sm),
1739 avl_numnodes(&msp->ms_tree->rt_root),
1740 msp->ms_condense_wanted ? "TRUE" : "FALSE");
1741
1742 msp->ms_condense_wanted = B_FALSE;
1743
1744 /*
1745 * Create an range tree that is 100% allocated. We remove segments
1746 * that have been freed in this txg, any deferred frees that exist,
1747 * and any allocation in the future. Removing segments should be
1748 * a relatively inexpensive operation since we expect these trees to
1749 * have a small number of nodes.
1750 */
1751 condense_tree = range_tree_create(NULL, NULL, &msp->ms_lock);
1752 range_tree_add(condense_tree, msp->ms_start, msp->ms_size);
1753
1754 /*
1755 * Remove what's been freed in this txg from the condense_tree.
1756 * Since we're in sync_pass 1, we know that all the frees from
1757 * this txg are in the freetree.
1758 */
1759 range_tree_walk(freetree, range_tree_remove, condense_tree);
1760
1761 for (t = 0; t < TXG_DEFER_SIZE; t++) {
1762 range_tree_walk(msp->ms_defertree[t],
1763 range_tree_remove, condense_tree);
1764 }
1765
1766 for (t = 1; t < TXG_CONCURRENT_STATES; t++) {
1767 range_tree_walk(msp->ms_alloctree[(txg + t) & TXG_MASK],
1768 range_tree_remove, condense_tree);
1769 }
1770
1771 /*
1772 * We're about to drop the metaslab's lock thus allowing
1773 * other consumers to change it's content. Set the
1774 * metaslab's ms_condensing flag to ensure that
1775 * allocations on this metaslab do not occur while we're
1776 * in the middle of committing it to disk. This is only critical
1777 * for the ms_tree as all other range trees use per txg
1778 * views of their content.
1779 */
1780 msp->ms_condensing = B_TRUE;
1781
1782 mutex_exit(&msp->ms_lock);
1783 space_map_truncate(sm, tx);
1784 mutex_enter(&msp->ms_lock);
1785
1786 /*
1787 * While we would ideally like to create a space_map representation
1788 * that consists only of allocation records, doing so can be
1789 * prohibitively expensive because the in-core free tree can be
1790 * large, and therefore computationally expensive to subtract
1791 * from the condense_tree. Instead we sync out two trees, a cheap
1792 * allocation only tree followed by the in-core free tree. While not
1793 * optimal, this is typically close to optimal, and much cheaper to
1794 * compute.
1795 */
1796 space_map_write(sm, condense_tree, SM_ALLOC, tx);
1797 range_tree_vacate(condense_tree, NULL, NULL);
1798 range_tree_destroy(condense_tree);
1799
1800 space_map_write(sm, msp->ms_tree, SM_FREE, tx);
1801 msp->ms_condensing = B_FALSE;
1802 }
1803
1804 /*
1805 * Write a metaslab to disk in the context of the specified transaction group.
1806 */
1807 void
1808 metaslab_sync(metaslab_t *msp, uint64_t txg)
1809 {
1810 metaslab_group_t *mg = msp->ms_group;
1811 vdev_t *vd = mg->mg_vd;
1812 spa_t *spa = vd->vdev_spa;
1813 objset_t *mos = spa_meta_objset(spa);
1814 range_tree_t *alloctree = msp->ms_alloctree[txg & TXG_MASK];
1815 range_tree_t **freetree = &msp->ms_freetree[txg & TXG_MASK];
1816 range_tree_t **freed_tree =
1817 &msp->ms_freetree[TXG_CLEAN(txg) & TXG_MASK];
1818 dmu_tx_t *tx;
1819 uint64_t object = space_map_object(msp->ms_sm);
1820
1821 ASSERT(!vd->vdev_ishole);
1822
1823 /*
1824 * This metaslab has just been added so there's no work to do now.
1825 */
1826 if (*freetree == NULL) {
1827 ASSERT3P(alloctree, ==, NULL);
1828 return;
1829 }
1830
1831 ASSERT3P(alloctree, !=, NULL);
1832 ASSERT3P(*freetree, !=, NULL);
1833 ASSERT3P(*freed_tree, !=, NULL);
1834
1835 /*
1836 * Normally, we don't want to process a metaslab if there
1837 * are no allocations or frees to perform. However, if the metaslab
1838 * is being forced to condense we need to let it through.
1839 */
1840 if (range_tree_space(alloctree) == 0 &&
1841 range_tree_space(*freetree) == 0 &&
1842 !msp->ms_condense_wanted)
1843 return;
1844
1845 /*
1846 * The only state that can actually be changing concurrently with
1847 * metaslab_sync() is the metaslab's ms_tree. No other thread can
1848 * be modifying this txg's alloctree, freetree, freed_tree, or
1849 * space_map_phys_t. Therefore, we only hold ms_lock to satify
1850 * space_map ASSERTs. We drop it whenever we call into the DMU,
1851 * because the DMU can call down to us (e.g. via zio_free()) at
1852 * any time.
1853 */
1854
1855 tx = dmu_tx_create_assigned(spa_get_dsl(spa), txg);
1856
1857 if (msp->ms_sm == NULL) {
1858 uint64_t new_object;
1859
1860 new_object = space_map_alloc(mos, tx);
1861 VERIFY3U(new_object, !=, 0);
1862
1863 VERIFY0(space_map_open(&msp->ms_sm, mos, new_object,
1864 msp->ms_start, msp->ms_size, vd->vdev_ashift,
1865 &msp->ms_lock));
1866 ASSERT(msp->ms_sm != NULL);
1867 }
1868
1869 mutex_enter(&msp->ms_lock);
1870
1871 /*
1872 * Note: metaslab_condense() clears the space_map's histogram.
1873 * Therefore we muse verify and remove this histogram before
1874 * condensing.
1875 */
1876 metaslab_group_histogram_verify(mg);
1877 metaslab_class_histogram_verify(mg->mg_class);
1878 metaslab_group_histogram_remove(mg, msp);
1879
1880 if (msp->ms_loaded && spa_sync_pass(spa) == 1 &&
1881 metaslab_should_condense(msp)) {
1882 metaslab_condense(msp, txg, tx);
1883 } else {
1884 space_map_write(msp->ms_sm, alloctree, SM_ALLOC, tx);
1885 space_map_write(msp->ms_sm, *freetree, SM_FREE, tx);
1886 }
1887
1888 if (msp->ms_loaded) {
1889 /*
1890 * When the space map is loaded, we have an accruate
1891 * histogram in the range tree. This gives us an opportunity
1892 * to bring the space map's histogram up-to-date so we clear
1893 * it first before updating it.
1894 */
1895 space_map_histogram_clear(msp->ms_sm);
1896 space_map_histogram_add(msp->ms_sm, msp->ms_tree, tx);
1897 } else {
1898 /*
1899 * Since the space map is not loaded we simply update the
1900 * exisiting histogram with what was freed in this txg. This
1901 * means that the on-disk histogram may not have an accurate
1902 * view of the free space but it's close enough to allow
1903 * us to make allocation decisions.
1904 */
1905 space_map_histogram_add(msp->ms_sm, *freetree, tx);
1906 }
1907 metaslab_group_histogram_add(mg, msp);
1908 metaslab_group_histogram_verify(mg);
1909 metaslab_class_histogram_verify(mg->mg_class);
1910
1911 /*
1912 * For sync pass 1, we avoid traversing this txg's free range tree
1913 * and instead will just swap the pointers for freetree and
1914 * freed_tree. We can safely do this since the freed_tree is
1915 * guaranteed to be empty on the initial pass.
1916 */
1917 if (spa_sync_pass(spa) == 1) {
1918 range_tree_swap(freetree, freed_tree);
1919 } else {
1920 range_tree_vacate(*freetree, range_tree_add, *freed_tree);
1921 }
1922 range_tree_vacate(alloctree, NULL, NULL);
1923
1924 ASSERT0(range_tree_space(msp->ms_alloctree[txg & TXG_MASK]));
1925 ASSERT0(range_tree_space(msp->ms_freetree[txg & TXG_MASK]));
1926
1927 mutex_exit(&msp->ms_lock);
1928
1929 if (object != space_map_object(msp->ms_sm)) {
1930 object = space_map_object(msp->ms_sm);
1931 dmu_write(mos, vd->vdev_ms_array, sizeof (uint64_t) *
1932 msp->ms_id, sizeof (uint64_t), &object, tx);
1933 }
1934 dmu_tx_commit(tx);
1935 }
1936
1937 /*
1938 * Called after a transaction group has completely synced to mark
1939 * all of the metaslab's free space as usable.
1940 */
1941 void
1942 metaslab_sync_done(metaslab_t *msp, uint64_t txg)
1943 {
1944 metaslab_group_t *mg = msp->ms_group;
1945 vdev_t *vd = mg->mg_vd;
1946 range_tree_t **freed_tree;
1947 range_tree_t **defer_tree;
1948 int64_t alloc_delta, defer_delta;
1949 int t;
1950
1951 ASSERT(!vd->vdev_ishole);
1952
1953 mutex_enter(&msp->ms_lock);
1954
1955 /*
1956 * If this metaslab is just becoming available, initialize its
1957 * alloctrees, freetrees, and defertree and add its capacity to
1958 * the vdev.
1959 */
1960 if (msp->ms_freetree[TXG_CLEAN(txg) & TXG_MASK] == NULL) {
1961 for (t = 0; t < TXG_SIZE; t++) {
1962 ASSERT(msp->ms_alloctree[t] == NULL);
1963 ASSERT(msp->ms_freetree[t] == NULL);
1964
1965 msp->ms_alloctree[t] = range_tree_create(NULL, msp,
1966 &msp->ms_lock);
1967 msp->ms_freetree[t] = range_tree_create(NULL, msp,
1968 &msp->ms_lock);
1969 }
1970
1971 for (t = 0; t < TXG_DEFER_SIZE; t++) {
1972 ASSERT(msp->ms_defertree[t] == NULL);
1973
1974 msp->ms_defertree[t] = range_tree_create(NULL, msp,
1975 &msp->ms_lock);
1976 }
1977
1978 vdev_space_update(vd, 0, 0, msp->ms_size);
1979 }
1980
1981 freed_tree = &msp->ms_freetree[TXG_CLEAN(txg) & TXG_MASK];
1982 defer_tree = &msp->ms_defertree[txg % TXG_DEFER_SIZE];
1983
1984 alloc_delta = space_map_alloc_delta(msp->ms_sm);
1985 defer_delta = range_tree_space(*freed_tree) -
1986 range_tree_space(*defer_tree);
1987
1988 vdev_space_update(vd, alloc_delta + defer_delta, defer_delta, 0);
1989
1990 ASSERT0(range_tree_space(msp->ms_alloctree[txg & TXG_MASK]));
1991 ASSERT0(range_tree_space(msp->ms_freetree[txg & TXG_MASK]));
1992
1993 /*
1994 * If there's a metaslab_load() in progress, wait for it to complete
1995 * so that we have a consistent view of the in-core space map.
1996 */
1997 metaslab_load_wait(msp);
1998
1999 /*
2000 * Move the frees from the defer_tree back to the free
2001 * range tree (if it's loaded). Swap the freed_tree and the
2002 * defer_tree -- this is safe to do because we've just emptied out
2003 * the defer_tree.
2004 */
2005 range_tree_vacate(*defer_tree,
2006 msp->ms_loaded ? range_tree_add : NULL, msp->ms_tree);
2007 range_tree_swap(freed_tree, defer_tree);
2008
2009 space_map_update(msp->ms_sm);
2010
2011 msp->ms_deferspace += defer_delta;
2012 ASSERT3S(msp->ms_deferspace, >=, 0);
2013 ASSERT3S(msp->ms_deferspace, <=, msp->ms_size);
2014 if (msp->ms_deferspace != 0) {
2015 /*
2016 * Keep syncing this metaslab until all deferred frees
2017 * are back in circulation.
2018 */
2019 vdev_dirty(vd, VDD_METASLAB, msp, txg + 1);
2020 }
2021
2022 if (msp->ms_loaded && msp->ms_access_txg < txg) {
2023 for (t = 1; t < TXG_CONCURRENT_STATES; t++) {
2024 VERIFY0(range_tree_space(
2025 msp->ms_alloctree[(txg + t) & TXG_MASK]));
2026 }
2027
2028 if (!metaslab_debug_unload)
2029 metaslab_unload(msp);
2030 }
2031
2032 metaslab_group_sort(mg, msp, metaslab_weight(msp));
2033 mutex_exit(&msp->ms_lock);
2034 }
2035
2036 void
2037 metaslab_sync_reassess(metaslab_group_t *mg)
2038 {
2039 metaslab_group_alloc_update(mg);
2040 mg->mg_fragmentation = metaslab_group_fragmentation(mg);
2041
2042 /*
2043 * Preload the next potential metaslabs
2044 */
2045 metaslab_group_preload(mg);
2046 }
2047
2048 static uint64_t
2049 metaslab_distance(metaslab_t *msp, dva_t *dva)
2050 {
2051 uint64_t ms_shift = msp->ms_group->mg_vd->vdev_ms_shift;
2052 uint64_t offset = DVA_GET_OFFSET(dva) >> ms_shift;
2053 uint64_t start = msp->ms_id;
2054
2055 if (msp->ms_group->mg_vd->vdev_id != DVA_GET_VDEV(dva))
2056 return (1ULL << 63);
2057
2058 if (offset < start)
2059 return ((start - offset) << ms_shift);
2060 if (offset > start)
2061 return ((offset - start) << ms_shift);
2062 return (0);
2063 }
2064
2065 static uint64_t
2066 metaslab_group_alloc(metaslab_group_t *mg, uint64_t psize, uint64_t asize,
2067 uint64_t txg, uint64_t min_distance, dva_t *dva, int d)
2068 {
2069 spa_t *spa = mg->mg_vd->vdev_spa;
2070 metaslab_t *msp = NULL;
2071 uint64_t offset = -1ULL;
2072 avl_tree_t *t = &mg->mg_metaslab_tree;
2073 uint64_t activation_weight;
2074 uint64_t target_distance;
2075 int i;
2076
2077 activation_weight = METASLAB_WEIGHT_PRIMARY;
2078 for (i = 0; i < d; i++) {
2079 if (DVA_GET_VDEV(&dva[i]) == mg->mg_vd->vdev_id) {
2080 activation_weight = METASLAB_WEIGHT_SECONDARY;
2081 break;
2082 }
2083 }
2084
2085 for (;;) {
2086 boolean_t was_active;
2087
2088 mutex_enter(&mg->mg_lock);
2089 for (msp = avl_first(t); msp; msp = AVL_NEXT(t, msp)) {
2090 if (msp->ms_weight < asize) {
2091 spa_dbgmsg(spa, "%s: failed to meet weight "
2092 "requirement: vdev %llu, txg %llu, mg %p, "
2093 "msp %p, psize %llu, asize %llu, "
2094 "weight %llu", spa_name(spa),
2095 mg->mg_vd->vdev_id, txg,
2096 mg, msp, psize, asize, msp->ms_weight);
2097 mutex_exit(&mg->mg_lock);
2098 return (-1ULL);
2099 }
2100
2101 /*
2102 * If the selected metaslab is condensing, skip it.
2103 */
2104 if (msp->ms_condensing)
2105 continue;
2106
2107 was_active = msp->ms_weight & METASLAB_ACTIVE_MASK;
2108 if (activation_weight == METASLAB_WEIGHT_PRIMARY)
2109 break;
2110
2111 target_distance = min_distance +
2112 (space_map_allocated(msp->ms_sm) != 0 ? 0 :
2113 min_distance >> 1);
2114
2115 for (i = 0; i < d; i++)
2116 if (metaslab_distance(msp, &dva[i]) <
2117 target_distance)
2118 break;
2119 if (i == d)
2120 break;
2121 }
2122 mutex_exit(&mg->mg_lock);
2123 if (msp == NULL)
2124 return (-1ULL);
2125
2126 mutex_enter(&msp->ms_lock);
2127
2128 /*
2129 * Ensure that the metaslab we have selected is still
2130 * capable of handling our request. It's possible that
2131 * another thread may have changed the weight while we
2132 * were blocked on the metaslab lock.
2133 */
2134 if (msp->ms_weight < asize || (was_active &&
2135 !(msp->ms_weight & METASLAB_ACTIVE_MASK) &&
2136 activation_weight == METASLAB_WEIGHT_PRIMARY)) {
2137 mutex_exit(&msp->ms_lock);
2138 continue;
2139 }
2140
2141 if ((msp->ms_weight & METASLAB_WEIGHT_SECONDARY) &&
2142 activation_weight == METASLAB_WEIGHT_PRIMARY) {
2143 metaslab_passivate(msp,
2144 msp->ms_weight & ~METASLAB_ACTIVE_MASK);
2145 mutex_exit(&msp->ms_lock);
2146 continue;
2147 }
2148
2149 if (metaslab_activate(msp, activation_weight) != 0) {
2150 mutex_exit(&msp->ms_lock);
2151 continue;
2152 }
2153
2154 /*
2155 * If this metaslab is currently condensing then pick again as
2156 * we can't manipulate this metaslab until it's committed
2157 * to disk.
2158 */
2159 if (msp->ms_condensing) {
2160 mutex_exit(&msp->ms_lock);
2161 continue;
2162 }
2163
2164 if ((offset = metaslab_block_alloc(msp, asize)) != -1ULL)
2165 break;
2166
2167 metaslab_passivate(msp, metaslab_block_maxsize(msp));
2168 mutex_exit(&msp->ms_lock);
2169 }
2170
2171 if (range_tree_space(msp->ms_alloctree[txg & TXG_MASK]) == 0)
2172 vdev_dirty(mg->mg_vd, VDD_METASLAB, msp, txg);
2173
2174 range_tree_add(msp->ms_alloctree[txg & TXG_MASK], offset, asize);
2175 msp->ms_access_txg = txg + metaslab_unload_delay;
2176
2177 mutex_exit(&msp->ms_lock);
2178
2179 return (offset);
2180 }
2181
2182 /*
2183 * Allocate a block for the specified i/o.
2184 */
2185 static int
2186 metaslab_alloc_dva(spa_t *spa, metaslab_class_t *mc, uint64_t psize,
2187 dva_t *dva, int d, dva_t *hintdva, uint64_t txg, int flags)
2188 {
2189 metaslab_group_t *mg, *fast_mg, *rotor;
2190 vdev_t *vd;
2191 int dshift = 3;
2192 int all_zero;
2193 int zio_lock = B_FALSE;
2194 boolean_t allocatable;
2195 uint64_t offset = -1ULL;
2196 uint64_t asize;
2197 uint64_t distance;
2198
2199 ASSERT(!DVA_IS_VALID(&dva[d]));
2200
2201 /*
2202 * For testing, make some blocks above a certain size be gang blocks.
2203 */
2204 if (psize >= metaslab_gang_bang && (ddi_get_lbolt() & 3) == 0)
2205 return (SET_ERROR(ENOSPC));
2206
2207 if (flags & METASLAB_FASTWRITE)
2208 mutex_enter(&mc->mc_fastwrite_lock);
2209
2210 /*
2211 * Start at the rotor and loop through all mgs until we find something.
2212 * Note that there's no locking on mc_rotor or mc_aliquot because
2213 * nothing actually breaks if we miss a few updates -- we just won't
2214 * allocate quite as evenly. It all balances out over time.
2215 *
2216 * If we are doing ditto or log blocks, try to spread them across
2217 * consecutive vdevs. If we're forced to reuse a vdev before we've
2218 * allocated all of our ditto blocks, then try and spread them out on
2219 * that vdev as much as possible. If it turns out to not be possible,
2220 * gradually lower our standards until anything becomes acceptable.
2221 * Also, allocating on consecutive vdevs (as opposed to random vdevs)
2222 * gives us hope of containing our fault domains to something we're
2223 * able to reason about. Otherwise, any two top-level vdev failures
2224 * will guarantee the loss of data. With consecutive allocation,
2225 * only two adjacent top-level vdev failures will result in data loss.
2226 *
2227 * If we are doing gang blocks (hintdva is non-NULL), try to keep
2228 * ourselves on the same vdev as our gang block header. That
2229 * way, we can hope for locality in vdev_cache, plus it makes our
2230 * fault domains something tractable.
2231 */
2232 if (hintdva) {
2233 vd = vdev_lookup_top(spa, DVA_GET_VDEV(&hintdva[d]));
2234
2235 /*
2236 * It's possible the vdev we're using as the hint no
2237 * longer exists (i.e. removed). Consult the rotor when
2238 * all else fails.
2239 */
2240 if (vd != NULL) {
2241 mg = vd->vdev_mg;
2242
2243 if (flags & METASLAB_HINTBP_AVOID &&
2244 mg->mg_next != NULL)
2245 mg = mg->mg_next;
2246 } else {
2247 mg = mc->mc_rotor;
2248 }
2249 } else if (d != 0) {
2250 vd = vdev_lookup_top(spa, DVA_GET_VDEV(&dva[d - 1]));
2251 mg = vd->vdev_mg->mg_next;
2252 } else if (flags & METASLAB_FASTWRITE) {
2253 mg = fast_mg = mc->mc_rotor;
2254
2255 do {
2256 if (fast_mg->mg_vd->vdev_pending_fastwrite <
2257 mg->mg_vd->vdev_pending_fastwrite)
2258 mg = fast_mg;
2259 } while ((fast_mg = fast_mg->mg_next) != mc->mc_rotor);
2260
2261 } else {
2262 mg = mc->mc_rotor;
2263 }
2264
2265 /*
2266 * If the hint put us into the wrong metaslab class, or into a
2267 * metaslab group that has been passivated, just follow the rotor.
2268 */
2269 if (mg->mg_class != mc || mg->mg_activation_count <= 0)
2270 mg = mc->mc_rotor;
2271
2272 rotor = mg;
2273 top:
2274 all_zero = B_TRUE;
2275 do {
2276 ASSERT(mg->mg_activation_count == 1);
2277
2278 vd = mg->mg_vd;
2279
2280 /*
2281 * Don't allocate from faulted devices.
2282 */
2283 if (zio_lock) {
2284 spa_config_enter(spa, SCL_ZIO, FTAG, RW_READER);
2285 allocatable = vdev_allocatable(vd);
2286 spa_config_exit(spa, SCL_ZIO, FTAG);
2287 } else {
2288 allocatable = vdev_allocatable(vd);
2289 }
2290
2291 /*
2292 * Determine if the selected metaslab group is eligible
2293 * for allocations. If we're ganging or have requested
2294 * an allocation for the smallest gang block size
2295 * then we don't want to avoid allocating to the this
2296 * metaslab group. If we're in this condition we should
2297 * try to allocate from any device possible so that we
2298 * don't inadvertently return ENOSPC and suspend the pool
2299 * even though space is still available.
2300 */
2301 if (allocatable && CAN_FASTGANG(flags) &&
2302 psize > SPA_GANGBLOCKSIZE)
2303 allocatable = metaslab_group_allocatable(mg);
2304
2305 if (!allocatable)
2306 goto next;
2307
2308 /*
2309 * Avoid writing single-copy data to a failing vdev
2310 * unless the user instructs us that it is okay.
2311 */
2312 if ((vd->vdev_stat.vs_write_errors > 0 ||
2313 vd->vdev_state < VDEV_STATE_HEALTHY) &&
2314 d == 0 && dshift == 3 && vd->vdev_children == 0) {
2315 all_zero = B_FALSE;
2316 goto next;
2317 }
2318
2319 ASSERT(mg->mg_class == mc);
2320
2321 distance = vd->vdev_asize >> dshift;
2322 if (distance <= (1ULL << vd->vdev_ms_shift))
2323 distance = 0;
2324 else
2325 all_zero = B_FALSE;
2326
2327 asize = vdev_psize_to_asize(vd, psize);
2328 ASSERT(P2PHASE(asize, 1ULL << vd->vdev_ashift) == 0);
2329
2330 offset = metaslab_group_alloc(mg, psize, asize, txg, distance,
2331 dva, d);
2332 if (offset != -1ULL) {
2333 /*
2334 * If we've just selected this metaslab group,
2335 * figure out whether the corresponding vdev is
2336 * over- or under-used relative to the pool,
2337 * and set an allocation bias to even it out.
2338 *
2339 * Bias is also used to compensate for unequally
2340 * sized vdevs so that space is allocated fairly.
2341 */
2342 if (mc->mc_aliquot == 0 && metaslab_bias_enabled) {
2343 vdev_stat_t *vs = &vd->vdev_stat;
2344 int64_t vs_free = vs->vs_space - vs->vs_alloc;
2345 int64_t mc_free = mc->mc_space - mc->mc_alloc;
2346 int64_t ratio;
2347
2348 /*
2349 * Calculate how much more or less we should
2350 * try to allocate from this device during
2351 * this iteration around the rotor.
2352 *
2353 * This basically introduces a zero-centered
2354 * bias towards the devices with the most
2355 * free space, while compensating for vdev
2356 * size differences.
2357 *
2358 * Examples:
2359 * vdev V1 = 16M/128M
2360 * vdev V2 = 16M/128M
2361 * ratio(V1) = 100% ratio(V2) = 100%
2362 *
2363 * vdev V1 = 16M/128M
2364 * vdev V2 = 64M/128M
2365 * ratio(V1) = 127% ratio(V2) = 72%
2366 *
2367 * vdev V1 = 16M/128M
2368 * vdev V2 = 64M/512M
2369 * ratio(V1) = 40% ratio(V2) = 160%
2370 */
2371 ratio = (vs_free * mc->mc_alloc_groups * 100) /
2372 (mc_free + 1);
2373 mg->mg_bias = ((ratio - 100) *
2374 (int64_t)mg->mg_aliquot) / 100;
2375 } else if (!metaslab_bias_enabled) {
2376 mg->mg_bias = 0;
2377 }
2378
2379 if ((flags & METASLAB_FASTWRITE) ||
2380 atomic_add_64_nv(&mc->mc_aliquot, asize) >=
2381 mg->mg_aliquot + mg->mg_bias) {
2382 mc->mc_rotor = mg->mg_next;
2383 mc->mc_aliquot = 0;
2384 }
2385
2386 DVA_SET_VDEV(&dva[d], vd->vdev_id);
2387 DVA_SET_OFFSET(&dva[d], offset);
2388 DVA_SET_GANG(&dva[d], !!(flags & METASLAB_GANG_HEADER));
2389 DVA_SET_ASIZE(&dva[d], asize);
2390
2391 if (flags & METASLAB_FASTWRITE) {
2392 atomic_add_64(&vd->vdev_pending_fastwrite,
2393 psize);
2394 mutex_exit(&mc->mc_fastwrite_lock);
2395 }
2396
2397 return (0);
2398 }
2399 next:
2400 mc->mc_rotor = mg->mg_next;
2401 mc->mc_aliquot = 0;
2402 } while ((mg = mg->mg_next) != rotor);
2403
2404 if (!all_zero) {
2405 dshift++;
2406 ASSERT(dshift < 64);
2407 goto top;
2408 }
2409
2410 if (!allocatable && !zio_lock) {
2411 dshift = 3;
2412 zio_lock = B_TRUE;
2413 goto top;
2414 }
2415
2416 bzero(&dva[d], sizeof (dva_t));
2417
2418 if (flags & METASLAB_FASTWRITE)
2419 mutex_exit(&mc->mc_fastwrite_lock);
2420
2421 return (SET_ERROR(ENOSPC));
2422 }
2423
2424 /*
2425 * Free the block represented by DVA in the context of the specified
2426 * transaction group.
2427 */
2428 static void
2429 metaslab_free_dva(spa_t *spa, const dva_t *dva, uint64_t txg, boolean_t now)
2430 {
2431 uint64_t vdev = DVA_GET_VDEV(dva);
2432 uint64_t offset = DVA_GET_OFFSET(dva);
2433 uint64_t size = DVA_GET_ASIZE(dva);
2434 vdev_t *vd;
2435 metaslab_t *msp;
2436
2437 if (txg > spa_freeze_txg(spa))
2438 return;
2439
2440 if ((vd = vdev_lookup_top(spa, vdev)) == NULL || !DVA_IS_VALID(dva) ||
2441 (offset >> vd->vdev_ms_shift) >= vd->vdev_ms_count) {
2442 zfs_panic_recover("metaslab_free_dva(): bad DVA %llu:%llu:%llu",
2443 (u_longlong_t)vdev, (u_longlong_t)offset,
2444 (u_longlong_t)size);
2445 return;
2446 }
2447
2448 msp = vd->vdev_ms[offset >> vd->vdev_ms_shift];
2449
2450 if (DVA_GET_GANG(dva))
2451 size = vdev_psize_to_asize(vd, SPA_GANGBLOCKSIZE);
2452
2453 mutex_enter(&msp->ms_lock);
2454
2455 if (now) {
2456 range_tree_remove(msp->ms_alloctree[txg & TXG_MASK],
2457 offset, size);
2458
2459 VERIFY(!msp->ms_condensing);
2460 VERIFY3U(offset, >=, msp->ms_start);
2461 VERIFY3U(offset + size, <=, msp->ms_start + msp->ms_size);
2462 VERIFY3U(range_tree_space(msp->ms_tree) + size, <=,
2463 msp->ms_size);
2464 VERIFY0(P2PHASE(offset, 1ULL << vd->vdev_ashift));
2465 VERIFY0(P2PHASE(size, 1ULL << vd->vdev_ashift));
2466 range_tree_add(msp->ms_tree, offset, size);
2467 } else {
2468 if (range_tree_space(msp->ms_freetree[txg & TXG_MASK]) == 0)
2469 vdev_dirty(vd, VDD_METASLAB, msp, txg);
2470 range_tree_add(msp->ms_freetree[txg & TXG_MASK],
2471 offset, size);
2472 }
2473
2474 mutex_exit(&msp->ms_lock);
2475 }
2476
2477 /*
2478 * Intent log support: upon opening the pool after a crash, notify the SPA
2479 * of blocks that the intent log has allocated for immediate write, but
2480 * which are still considered free by the SPA because the last transaction
2481 * group didn't commit yet.
2482 */
2483 static int
2484 metaslab_claim_dva(spa_t *spa, const dva_t *dva, uint64_t txg)
2485 {
2486 uint64_t vdev = DVA_GET_VDEV(dva);
2487 uint64_t offset = DVA_GET_OFFSET(dva);
2488 uint64_t size = DVA_GET_ASIZE(dva);
2489 vdev_t *vd;
2490 metaslab_t *msp;
2491 int error = 0;
2492
2493 ASSERT(DVA_IS_VALID(dva));
2494
2495 if ((vd = vdev_lookup_top(spa, vdev)) == NULL ||
2496 (offset >> vd->vdev_ms_shift) >= vd->vdev_ms_count)
2497 return (SET_ERROR(ENXIO));
2498
2499 msp = vd->vdev_ms[offset >> vd->vdev_ms_shift];
2500
2501 if (DVA_GET_GANG(dva))
2502 size = vdev_psize_to_asize(vd, SPA_GANGBLOCKSIZE);
2503
2504 mutex_enter(&msp->ms_lock);
2505
2506 if ((txg != 0 && spa_writeable(spa)) || !msp->ms_loaded)
2507 error = metaslab_activate(msp, METASLAB_WEIGHT_SECONDARY);
2508
2509 if (error == 0 && !range_tree_contains(msp->ms_tree, offset, size))
2510 error = SET_ERROR(ENOENT);
2511
2512 if (error || txg == 0) { /* txg == 0 indicates dry run */
2513 mutex_exit(&msp->ms_lock);
2514 return (error);
2515 }
2516
2517 VERIFY(!msp->ms_condensing);
2518 VERIFY0(P2PHASE(offset, 1ULL << vd->vdev_ashift));
2519 VERIFY0(P2PHASE(size, 1ULL << vd->vdev_ashift));
2520 VERIFY3U(range_tree_space(msp->ms_tree) - size, <=, msp->ms_size);
2521 range_tree_remove(msp->ms_tree, offset, size);
2522
2523 if (spa_writeable(spa)) { /* don't dirty if we're zdb(1M) */
2524 if (range_tree_space(msp->ms_alloctree[txg & TXG_MASK]) == 0)
2525 vdev_dirty(vd, VDD_METASLAB, msp, txg);
2526 range_tree_add(msp->ms_alloctree[txg & TXG_MASK], offset, size);
2527 }
2528
2529 mutex_exit(&msp->ms_lock);
2530
2531 return (0);
2532 }
2533
2534 int
2535 metaslab_alloc(spa_t *spa, metaslab_class_t *mc, uint64_t psize, blkptr_t *bp,
2536 int ndvas, uint64_t txg, blkptr_t *hintbp, int flags)
2537 {
2538 dva_t *dva = bp->blk_dva;
2539 dva_t *hintdva = hintbp->blk_dva;
2540 int d, error = 0;
2541
2542 ASSERT(bp->blk_birth == 0);
2543 ASSERT(BP_PHYSICAL_BIRTH(bp) == 0);
2544
2545 spa_config_enter(spa, SCL_ALLOC, FTAG, RW_READER);
2546
2547 if (mc->mc_rotor == NULL) { /* no vdevs in this class */
2548 spa_config_exit(spa, SCL_ALLOC, FTAG);
2549 return (SET_ERROR(ENOSPC));
2550 }
2551
2552 ASSERT(ndvas > 0 && ndvas <= spa_max_replication(spa));
2553 ASSERT(BP_GET_NDVAS(bp) == 0);
2554 ASSERT(hintbp == NULL || ndvas <= BP_GET_NDVAS(hintbp));
2555
2556 for (d = 0; d < ndvas; d++) {
2557 error = metaslab_alloc_dva(spa, mc, psize, dva, d, hintdva,
2558 txg, flags);
2559 if (error != 0) {
2560 for (d--; d >= 0; d--) {
2561 metaslab_free_dva(spa, &dva[d], txg, B_TRUE);
2562 bzero(&dva[d], sizeof (dva_t));
2563 }
2564 spa_config_exit(spa, SCL_ALLOC, FTAG);
2565 return (error);
2566 }
2567 }
2568 ASSERT(error == 0);
2569 ASSERT(BP_GET_NDVAS(bp) == ndvas);
2570
2571 spa_config_exit(spa, SCL_ALLOC, FTAG);
2572
2573 BP_SET_BIRTH(bp, txg, txg);
2574
2575 return (0);
2576 }
2577
2578 void
2579 metaslab_free(spa_t *spa, const blkptr_t *bp, uint64_t txg, boolean_t now)
2580 {
2581 const dva_t *dva = bp->blk_dva;
2582 int d, ndvas = BP_GET_NDVAS(bp);
2583
2584 ASSERT(!BP_IS_HOLE(bp));
2585 ASSERT(!now || bp->blk_birth >= spa_syncing_txg(spa));
2586
2587 spa_config_enter(spa, SCL_FREE, FTAG, RW_READER);
2588
2589 for (d = 0; d < ndvas; d++)
2590 metaslab_free_dva(spa, &dva[d], txg, now);
2591
2592 spa_config_exit(spa, SCL_FREE, FTAG);
2593 }
2594
2595 int
2596 metaslab_claim(spa_t *spa, const blkptr_t *bp, uint64_t txg)
2597 {
2598 const dva_t *dva = bp->blk_dva;
2599 int ndvas = BP_GET_NDVAS(bp);
2600 int d, error = 0;
2601
2602 ASSERT(!BP_IS_HOLE(bp));
2603
2604 if (txg != 0) {
2605 /*
2606 * First do a dry run to make sure all DVAs are claimable,
2607 * so we don't have to unwind from partial failures below.
2608 */
2609 if ((error = metaslab_claim(spa, bp, 0)) != 0)
2610 return (error);
2611 }
2612
2613 spa_config_enter(spa, SCL_ALLOC, FTAG, RW_READER);
2614
2615 for (d = 0; d < ndvas; d++)
2616 if ((error = metaslab_claim_dva(spa, &dva[d], txg)) != 0)
2617 break;
2618
2619 spa_config_exit(spa, SCL_ALLOC, FTAG);
2620
2621 ASSERT(error == 0 || txg == 0);
2622
2623 return (error);
2624 }
2625
2626 void
2627 metaslab_fastwrite_mark(spa_t *spa, const blkptr_t *bp)
2628 {
2629 const dva_t *dva = bp->blk_dva;
2630 int ndvas = BP_GET_NDVAS(bp);
2631 uint64_t psize = BP_GET_PSIZE(bp);
2632 int d;
2633 vdev_t *vd;
2634
2635 ASSERT(!BP_IS_HOLE(bp));
2636 ASSERT(!BP_IS_EMBEDDED(bp));
2637 ASSERT(psize > 0);
2638
2639 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
2640
2641 for (d = 0; d < ndvas; d++) {
2642 if ((vd = vdev_lookup_top(spa, DVA_GET_VDEV(&dva[d]))) == NULL)
2643 continue;
2644 atomic_add_64(&vd->vdev_pending_fastwrite, psize);
2645 }
2646
2647 spa_config_exit(spa, SCL_VDEV, FTAG);
2648 }
2649
2650 void
2651 metaslab_fastwrite_unmark(spa_t *spa, const blkptr_t *bp)
2652 {
2653 const dva_t *dva = bp->blk_dva;
2654 int ndvas = BP_GET_NDVAS(bp);
2655 uint64_t psize = BP_GET_PSIZE(bp);
2656 int d;
2657 vdev_t *vd;
2658
2659 ASSERT(!BP_IS_HOLE(bp));
2660 ASSERT(!BP_IS_EMBEDDED(bp));
2661 ASSERT(psize > 0);
2662
2663 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
2664
2665 for (d = 0; d < ndvas; d++) {
2666 if ((vd = vdev_lookup_top(spa, DVA_GET_VDEV(&dva[d]))) == NULL)
2667 continue;
2668 ASSERT3U(vd->vdev_pending_fastwrite, >=, psize);
2669 atomic_sub_64(&vd->vdev_pending_fastwrite, psize);
2670 }
2671
2672 spa_config_exit(spa, SCL_VDEV, FTAG);
2673 }
2674
2675 void
2676 metaslab_check_free(spa_t *spa, const blkptr_t *bp)
2677 {
2678 int i, j;
2679
2680 if ((zfs_flags & ZFS_DEBUG_ZIO_FREE) == 0)
2681 return;
2682
2683 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
2684 for (i = 0; i < BP_GET_NDVAS(bp); i++) {
2685 uint64_t vdev = DVA_GET_VDEV(&bp->blk_dva[i]);
2686 vdev_t *vd = vdev_lookup_top(spa, vdev);
2687 uint64_t offset = DVA_GET_OFFSET(&bp->blk_dva[i]);
2688 uint64_t size = DVA_GET_ASIZE(&bp->blk_dva[i]);
2689 metaslab_t *msp = vd->vdev_ms[offset >> vd->vdev_ms_shift];
2690
2691 if (msp->ms_loaded)
2692 range_tree_verify(msp->ms_tree, offset, size);
2693
2694 for (j = 0; j < TXG_SIZE; j++)
2695 range_tree_verify(msp->ms_freetree[j], offset, size);
2696 for (j = 0; j < TXG_DEFER_SIZE; j++)
2697 range_tree_verify(msp->ms_defertree[j], offset, size);
2698 }
2699 spa_config_exit(spa, SCL_VDEV, FTAG);
2700 }
2701
2702 #if defined(_KERNEL) && defined(HAVE_SPL)
2703 module_param(metaslab_debug_load, int, 0644);
2704 module_param(metaslab_debug_unload, int, 0644);
2705 module_param(metaslab_preload_enabled, int, 0644);
2706 module_param(zfs_mg_noalloc_threshold, int, 0644);
2707 module_param(zfs_mg_fragmentation_threshold, int, 0644);
2708 module_param(zfs_metaslab_fragmentation_threshold, int, 0644);
2709 module_param(metaslab_fragmentation_factor_enabled, int, 0644);
2710 module_param(metaslab_lba_weighting_enabled, int, 0644);
2711 module_param(metaslab_bias_enabled, int, 0644);
2712
2713 MODULE_PARM_DESC(metaslab_debug_load,
2714 "load all metaslabs when pool is first opened");
2715 MODULE_PARM_DESC(metaslab_debug_unload,
2716 "prevent metaslabs from being unloaded");
2717 MODULE_PARM_DESC(metaslab_preload_enabled,
2718 "preload potential metaslabs during reassessment");
2719
2720 MODULE_PARM_DESC(zfs_mg_noalloc_threshold,
2721 "percentage of free space for metaslab group to allow allocation");
2722 MODULE_PARM_DESC(zfs_mg_fragmentation_threshold,
2723 "fragmentation for metaslab group to allow allocation");
2724
2725 MODULE_PARM_DESC(zfs_metaslab_fragmentation_threshold,
2726 "fragmentation for metaslab to allow allocation");
2727 MODULE_PARM_DESC(metaslab_fragmentation_factor_enabled,
2728 "use the fragmentation metric to prefer less fragmented metaslabs");
2729 MODULE_PARM_DESC(metaslab_lba_weighting_enabled,
2730 "prefer metaslabs with lower LBAs");
2731 MODULE_PARM_DESC(metaslab_bias_enabled,
2732 "enable metaslab group biasing");
2733 #endif /* _KERNEL && HAVE_SPL */