]> git.proxmox.com Git - mirror_zfs.git/blob - module/zfs/metaslab.c
OpenZFS 9738 - Fix third block copy allocations, broken at 9112.
[mirror_zfs.git] / module / zfs / metaslab.c
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2011, 2015 by Delphix. All rights reserved.
24 * Copyright (c) 2013 by Saso Kiselkov. All rights reserved.
25 */
26
27 #include <sys/zfs_context.h>
28 #include <sys/dmu.h>
29 #include <sys/dmu_tx.h>
30 #include <sys/space_map.h>
31 #include <sys/metaslab_impl.h>
32 #include <sys/vdev_impl.h>
33 #include <sys/zio.h>
34 #include <sys/spa_impl.h>
35 #include <sys/zfeature.h>
36 #include <sys/vdev_indirect_mapping.h>
37 #include <sys/zap.h>
38
39 #define WITH_DF_BLOCK_ALLOCATOR
40
41 #define GANG_ALLOCATION(flags) \
42 ((flags) & (METASLAB_GANG_CHILD | METASLAB_GANG_HEADER))
43
44 /*
45 * Metaslab granularity, in bytes. This is roughly similar to what would be
46 * referred to as the "stripe size" in traditional RAID arrays. In normal
47 * operation, we will try to write this amount of data to a top-level vdev
48 * before moving on to the next one.
49 */
50 unsigned long metaslab_aliquot = 512 << 10;
51
52 /*
53 * For testing, make some blocks above a certain size be gang blocks.
54 */
55 unsigned long metaslab_force_ganging = SPA_MAXBLOCKSIZE + 1;
56
57 /*
58 * Since we can touch multiple metaslabs (and their respective space maps)
59 * with each transaction group, we benefit from having a smaller space map
60 * block size since it allows us to issue more I/O operations scattered
61 * around the disk.
62 */
63 int zfs_metaslab_sm_blksz = (1 << 12);
64
65 /*
66 * The in-core space map representation is more compact than its on-disk form.
67 * The zfs_condense_pct determines how much more compact the in-core
68 * space map representation must be before we compact it on-disk.
69 * Values should be greater than or equal to 100.
70 */
71 int zfs_condense_pct = 200;
72
73 /*
74 * Condensing a metaslab is not guaranteed to actually reduce the amount of
75 * space used on disk. In particular, a space map uses data in increments of
76 * MAX(1 << ashift, space_map_blksz), so a metaslab might use the
77 * same number of blocks after condensing. Since the goal of condensing is to
78 * reduce the number of IOPs required to read the space map, we only want to
79 * condense when we can be sure we will reduce the number of blocks used by the
80 * space map. Unfortunately, we cannot precisely compute whether or not this is
81 * the case in metaslab_should_condense since we are holding ms_lock. Instead,
82 * we apply the following heuristic: do not condense a spacemap unless the
83 * uncondensed size consumes greater than zfs_metaslab_condense_block_threshold
84 * blocks.
85 */
86 int zfs_metaslab_condense_block_threshold = 4;
87
88 /*
89 * The zfs_mg_noalloc_threshold defines which metaslab groups should
90 * be eligible for allocation. The value is defined as a percentage of
91 * free space. Metaslab groups that have more free space than
92 * zfs_mg_noalloc_threshold are always eligible for allocations. Once
93 * a metaslab group's free space is less than or equal to the
94 * zfs_mg_noalloc_threshold the allocator will avoid allocating to that
95 * group unless all groups in the pool have reached zfs_mg_noalloc_threshold.
96 * Once all groups in the pool reach zfs_mg_noalloc_threshold then all
97 * groups are allowed to accept allocations. Gang blocks are always
98 * eligible to allocate on any metaslab group. The default value of 0 means
99 * no metaslab group will be excluded based on this criterion.
100 */
101 int zfs_mg_noalloc_threshold = 0;
102
103 /*
104 * Metaslab groups are considered eligible for allocations if their
105 * fragmenation metric (measured as a percentage) is less than or equal to
106 * zfs_mg_fragmentation_threshold. If a metaslab group exceeds this threshold
107 * then it will be skipped unless all metaslab groups within the metaslab
108 * class have also crossed this threshold.
109 */
110 int zfs_mg_fragmentation_threshold = 85;
111
112 /*
113 * Allow metaslabs to keep their active state as long as their fragmentation
114 * percentage is less than or equal to zfs_metaslab_fragmentation_threshold. An
115 * active metaslab that exceeds this threshold will no longer keep its active
116 * status allowing better metaslabs to be selected.
117 */
118 int zfs_metaslab_fragmentation_threshold = 70;
119
120 /*
121 * When set will load all metaslabs when pool is first opened.
122 */
123 int metaslab_debug_load = 0;
124
125 /*
126 * When set will prevent metaslabs from being unloaded.
127 */
128 int metaslab_debug_unload = 0;
129
130 /*
131 * Minimum size which forces the dynamic allocator to change
132 * it's allocation strategy. Once the space map cannot satisfy
133 * an allocation of this size then it switches to using more
134 * aggressive strategy (i.e search by size rather than offset).
135 */
136 uint64_t metaslab_df_alloc_threshold = SPA_OLD_MAXBLOCKSIZE;
137
138 /*
139 * The minimum free space, in percent, which must be available
140 * in a space map to continue allocations in a first-fit fashion.
141 * Once the space map's free space drops below this level we dynamically
142 * switch to using best-fit allocations.
143 */
144 int metaslab_df_free_pct = 4;
145
146 /*
147 * Percentage of all cpus that can be used by the metaslab taskq.
148 */
149 int metaslab_load_pct = 50;
150
151 /*
152 * Determines how many txgs a metaslab may remain loaded without having any
153 * allocations from it. As long as a metaslab continues to be used we will
154 * keep it loaded.
155 */
156 int metaslab_unload_delay = TXG_SIZE * 2;
157
158 /*
159 * Max number of metaslabs per group to preload.
160 */
161 int metaslab_preload_limit = SPA_DVAS_PER_BP;
162
163 /*
164 * Enable/disable preloading of metaslab.
165 */
166 int metaslab_preload_enabled = B_TRUE;
167
168 /*
169 * Enable/disable fragmentation weighting on metaslabs.
170 */
171 int metaslab_fragmentation_factor_enabled = B_TRUE;
172
173 /*
174 * Enable/disable lba weighting (i.e. outer tracks are given preference).
175 */
176 int metaslab_lba_weighting_enabled = B_TRUE;
177
178 /*
179 * Enable/disable metaslab group biasing.
180 */
181 int metaslab_bias_enabled = B_TRUE;
182
183
184 /*
185 * Enable/disable remapping of indirect DVAs to their concrete vdevs.
186 */
187 boolean_t zfs_remap_blkptr_enable = B_TRUE;
188
189 /*
190 * Enable/disable segment-based metaslab selection.
191 */
192 int zfs_metaslab_segment_weight_enabled = B_TRUE;
193
194 /*
195 * When using segment-based metaslab selection, we will continue
196 * allocating from the active metaslab until we have exhausted
197 * zfs_metaslab_switch_threshold of its buckets.
198 */
199 int zfs_metaslab_switch_threshold = 2;
200
201 /*
202 * Internal switch to enable/disable the metaslab allocation tracing
203 * facility.
204 */
205 #ifdef _METASLAB_TRACING
206 boolean_t metaslab_trace_enabled = B_TRUE;
207 #endif
208
209 /*
210 * Maximum entries that the metaslab allocation tracing facility will keep
211 * in a given list when running in non-debug mode. We limit the number
212 * of entries in non-debug mode to prevent us from using up too much memory.
213 * The limit should be sufficiently large that we don't expect any allocation
214 * to every exceed this value. In debug mode, the system will panic if this
215 * limit is ever reached allowing for further investigation.
216 */
217 #ifdef _METASLAB_TRACING
218 uint64_t metaslab_trace_max_entries = 5000;
219 #endif
220
221 static uint64_t metaslab_weight(metaslab_t *);
222 static void metaslab_set_fragmentation(metaslab_t *);
223 static void metaslab_free_impl(vdev_t *, uint64_t, uint64_t, boolean_t);
224 static void metaslab_check_free_impl(vdev_t *, uint64_t, uint64_t);
225
226 static void metaslab_passivate(metaslab_t *msp, uint64_t weight);
227 static uint64_t metaslab_weight_from_range_tree(metaslab_t *msp);
228 #ifdef _METASLAB_TRACING
229 kmem_cache_t *metaslab_alloc_trace_cache;
230 #endif
231
232 /*
233 * ==========================================================================
234 * Metaslab classes
235 * ==========================================================================
236 */
237 metaslab_class_t *
238 metaslab_class_create(spa_t *spa, metaslab_ops_t *ops)
239 {
240 metaslab_class_t *mc;
241
242 mc = kmem_zalloc(sizeof (metaslab_class_t), KM_SLEEP);
243
244 mc->mc_spa = spa;
245 mc->mc_rotor = NULL;
246 mc->mc_ops = ops;
247 mutex_init(&mc->mc_lock, NULL, MUTEX_DEFAULT, NULL);
248 mc->mc_alloc_slots = kmem_zalloc(spa->spa_alloc_count *
249 sizeof (refcount_t), KM_SLEEP);
250 mc->mc_alloc_max_slots = kmem_zalloc(spa->spa_alloc_count *
251 sizeof (uint64_t), KM_SLEEP);
252 for (int i = 0; i < spa->spa_alloc_count; i++)
253 refcount_create_tracked(&mc->mc_alloc_slots[i]);
254
255 return (mc);
256 }
257
258 void
259 metaslab_class_destroy(metaslab_class_t *mc)
260 {
261 ASSERT(mc->mc_rotor == NULL);
262 ASSERT(mc->mc_alloc == 0);
263 ASSERT(mc->mc_deferred == 0);
264 ASSERT(mc->mc_space == 0);
265 ASSERT(mc->mc_dspace == 0);
266
267 for (int i = 0; i < mc->mc_spa->spa_alloc_count; i++)
268 refcount_destroy(&mc->mc_alloc_slots[i]);
269 kmem_free(mc->mc_alloc_slots, mc->mc_spa->spa_alloc_count *
270 sizeof (refcount_t));
271 kmem_free(mc->mc_alloc_max_slots, mc->mc_spa->spa_alloc_count *
272 sizeof (uint64_t));
273 mutex_destroy(&mc->mc_lock);
274 kmem_free(mc, sizeof (metaslab_class_t));
275 }
276
277 int
278 metaslab_class_validate(metaslab_class_t *mc)
279 {
280 metaslab_group_t *mg;
281 vdev_t *vd;
282
283 /*
284 * Must hold one of the spa_config locks.
285 */
286 ASSERT(spa_config_held(mc->mc_spa, SCL_ALL, RW_READER) ||
287 spa_config_held(mc->mc_spa, SCL_ALL, RW_WRITER));
288
289 if ((mg = mc->mc_rotor) == NULL)
290 return (0);
291
292 do {
293 vd = mg->mg_vd;
294 ASSERT(vd->vdev_mg != NULL);
295 ASSERT3P(vd->vdev_top, ==, vd);
296 ASSERT3P(mg->mg_class, ==, mc);
297 ASSERT3P(vd->vdev_ops, !=, &vdev_hole_ops);
298 } while ((mg = mg->mg_next) != mc->mc_rotor);
299
300 return (0);
301 }
302
303 void
304 metaslab_class_space_update(metaslab_class_t *mc, int64_t alloc_delta,
305 int64_t defer_delta, int64_t space_delta, int64_t dspace_delta)
306 {
307 atomic_add_64(&mc->mc_alloc, alloc_delta);
308 atomic_add_64(&mc->mc_deferred, defer_delta);
309 atomic_add_64(&mc->mc_space, space_delta);
310 atomic_add_64(&mc->mc_dspace, dspace_delta);
311 }
312
313 uint64_t
314 metaslab_class_get_alloc(metaslab_class_t *mc)
315 {
316 return (mc->mc_alloc);
317 }
318
319 uint64_t
320 metaslab_class_get_deferred(metaslab_class_t *mc)
321 {
322 return (mc->mc_deferred);
323 }
324
325 uint64_t
326 metaslab_class_get_space(metaslab_class_t *mc)
327 {
328 return (mc->mc_space);
329 }
330
331 uint64_t
332 metaslab_class_get_dspace(metaslab_class_t *mc)
333 {
334 return (spa_deflate(mc->mc_spa) ? mc->mc_dspace : mc->mc_space);
335 }
336
337 void
338 metaslab_class_histogram_verify(metaslab_class_t *mc)
339 {
340 vdev_t *rvd = mc->mc_spa->spa_root_vdev;
341 uint64_t *mc_hist;
342 int i;
343
344 if ((zfs_flags & ZFS_DEBUG_HISTOGRAM_VERIFY) == 0)
345 return;
346
347 mc_hist = kmem_zalloc(sizeof (uint64_t) * RANGE_TREE_HISTOGRAM_SIZE,
348 KM_SLEEP);
349
350 for (int c = 0; c < rvd->vdev_children; c++) {
351 vdev_t *tvd = rvd->vdev_child[c];
352 metaslab_group_t *mg = tvd->vdev_mg;
353
354 /*
355 * Skip any holes, uninitialized top-levels, or
356 * vdevs that are not in this metalab class.
357 */
358 if (!vdev_is_concrete(tvd) || tvd->vdev_ms_shift == 0 ||
359 mg->mg_class != mc) {
360 continue;
361 }
362
363 for (i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i++)
364 mc_hist[i] += mg->mg_histogram[i];
365 }
366
367 for (i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i++)
368 VERIFY3U(mc_hist[i], ==, mc->mc_histogram[i]);
369
370 kmem_free(mc_hist, sizeof (uint64_t) * RANGE_TREE_HISTOGRAM_SIZE);
371 }
372
373 /*
374 * Calculate the metaslab class's fragmentation metric. The metric
375 * is weighted based on the space contribution of each metaslab group.
376 * The return value will be a number between 0 and 100 (inclusive), or
377 * ZFS_FRAG_INVALID if the metric has not been set. See comment above the
378 * zfs_frag_table for more information about the metric.
379 */
380 uint64_t
381 metaslab_class_fragmentation(metaslab_class_t *mc)
382 {
383 vdev_t *rvd = mc->mc_spa->spa_root_vdev;
384 uint64_t fragmentation = 0;
385
386 spa_config_enter(mc->mc_spa, SCL_VDEV, FTAG, RW_READER);
387
388 for (int c = 0; c < rvd->vdev_children; c++) {
389 vdev_t *tvd = rvd->vdev_child[c];
390 metaslab_group_t *mg = tvd->vdev_mg;
391
392 /*
393 * Skip any holes, uninitialized top-levels,
394 * or vdevs that are not in this metalab class.
395 */
396 if (!vdev_is_concrete(tvd) || tvd->vdev_ms_shift == 0 ||
397 mg->mg_class != mc) {
398 continue;
399 }
400
401 /*
402 * If a metaslab group does not contain a fragmentation
403 * metric then just bail out.
404 */
405 if (mg->mg_fragmentation == ZFS_FRAG_INVALID) {
406 spa_config_exit(mc->mc_spa, SCL_VDEV, FTAG);
407 return (ZFS_FRAG_INVALID);
408 }
409
410 /*
411 * Determine how much this metaslab_group is contributing
412 * to the overall pool fragmentation metric.
413 */
414 fragmentation += mg->mg_fragmentation *
415 metaslab_group_get_space(mg);
416 }
417 fragmentation /= metaslab_class_get_space(mc);
418
419 ASSERT3U(fragmentation, <=, 100);
420 spa_config_exit(mc->mc_spa, SCL_VDEV, FTAG);
421 return (fragmentation);
422 }
423
424 /*
425 * Calculate the amount of expandable space that is available in
426 * this metaslab class. If a device is expanded then its expandable
427 * space will be the amount of allocatable space that is currently not
428 * part of this metaslab class.
429 */
430 uint64_t
431 metaslab_class_expandable_space(metaslab_class_t *mc)
432 {
433 vdev_t *rvd = mc->mc_spa->spa_root_vdev;
434 uint64_t space = 0;
435
436 spa_config_enter(mc->mc_spa, SCL_VDEV, FTAG, RW_READER);
437 for (int c = 0; c < rvd->vdev_children; c++) {
438 vdev_t *tvd = rvd->vdev_child[c];
439 metaslab_group_t *mg = tvd->vdev_mg;
440
441 if (!vdev_is_concrete(tvd) || tvd->vdev_ms_shift == 0 ||
442 mg->mg_class != mc) {
443 continue;
444 }
445
446 /*
447 * Calculate if we have enough space to add additional
448 * metaslabs. We report the expandable space in terms
449 * of the metaslab size since that's the unit of expansion.
450 */
451 space += P2ALIGN(tvd->vdev_max_asize - tvd->vdev_asize,
452 1ULL << tvd->vdev_ms_shift);
453 }
454 spa_config_exit(mc->mc_spa, SCL_VDEV, FTAG);
455 return (space);
456 }
457
458 static int
459 metaslab_compare(const void *x1, const void *x2)
460 {
461 const metaslab_t *m1 = (const metaslab_t *)x1;
462 const metaslab_t *m2 = (const metaslab_t *)x2;
463
464 int sort1 = 0;
465 int sort2 = 0;
466 if (m1->ms_allocator != -1 && m1->ms_primary)
467 sort1 = 1;
468 else if (m1->ms_allocator != -1 && !m1->ms_primary)
469 sort1 = 2;
470 if (m2->ms_allocator != -1 && m2->ms_primary)
471 sort2 = 1;
472 else if (m2->ms_allocator != -1 && !m2->ms_primary)
473 sort2 = 2;
474
475 /*
476 * Sort inactive metaslabs first, then primaries, then secondaries. When
477 * selecting a metaslab to allocate from, an allocator first tries its
478 * primary, then secondary active metaslab. If it doesn't have active
479 * metaslabs, or can't allocate from them, it searches for an inactive
480 * metaslab to activate. If it can't find a suitable one, it will steal
481 * a primary or secondary metaslab from another allocator.
482 */
483 if (sort1 < sort2)
484 return (-1);
485 if (sort1 > sort2)
486 return (1);
487
488 int cmp = AVL_CMP(m2->ms_weight, m1->ms_weight);
489 if (likely(cmp))
490 return (cmp);
491
492 IMPLY(AVL_CMP(m1->ms_start, m2->ms_start) == 0, m1 == m2);
493
494 return (AVL_CMP(m1->ms_start, m2->ms_start));
495 }
496
497 /*
498 * Verify that the space accounting on disk matches the in-core range_trees.
499 */
500 void
501 metaslab_verify_space(metaslab_t *msp, uint64_t txg)
502 {
503 spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
504 uint64_t allocated = 0;
505 uint64_t sm_free_space, msp_free_space;
506
507 ASSERT(MUTEX_HELD(&msp->ms_lock));
508
509 if ((zfs_flags & ZFS_DEBUG_METASLAB_VERIFY) == 0)
510 return;
511
512 /*
513 * We can only verify the metaslab space when we're called
514 * from syncing context with a loaded metaslab that has an allocated
515 * space map. Calling this in non-syncing context does not
516 * provide a consistent view of the metaslab since we're performing
517 * allocations in the future.
518 */
519 if (txg != spa_syncing_txg(spa) || msp->ms_sm == NULL ||
520 !msp->ms_loaded)
521 return;
522
523 sm_free_space = msp->ms_size - space_map_allocated(msp->ms_sm) -
524 space_map_alloc_delta(msp->ms_sm);
525
526 /*
527 * Account for future allocations since we would have already
528 * deducted that space from the ms_freetree.
529 */
530 for (int t = 0; t < TXG_CONCURRENT_STATES; t++) {
531 allocated +=
532 range_tree_space(msp->ms_allocating[(txg + t) & TXG_MASK]);
533 }
534
535 msp_free_space = range_tree_space(msp->ms_allocatable) + allocated +
536 msp->ms_deferspace + range_tree_space(msp->ms_freed);
537
538 VERIFY3U(sm_free_space, ==, msp_free_space);
539 }
540
541 /*
542 * ==========================================================================
543 * Metaslab groups
544 * ==========================================================================
545 */
546 /*
547 * Update the allocatable flag and the metaslab group's capacity.
548 * The allocatable flag is set to true if the capacity is below
549 * the zfs_mg_noalloc_threshold or has a fragmentation value that is
550 * greater than zfs_mg_fragmentation_threshold. If a metaslab group
551 * transitions from allocatable to non-allocatable or vice versa then the
552 * metaslab group's class is updated to reflect the transition.
553 */
554 static void
555 metaslab_group_alloc_update(metaslab_group_t *mg)
556 {
557 vdev_t *vd = mg->mg_vd;
558 metaslab_class_t *mc = mg->mg_class;
559 vdev_stat_t *vs = &vd->vdev_stat;
560 boolean_t was_allocatable;
561 boolean_t was_initialized;
562
563 ASSERT(vd == vd->vdev_top);
564 ASSERT3U(spa_config_held(mc->mc_spa, SCL_ALLOC, RW_READER), ==,
565 SCL_ALLOC);
566
567 mutex_enter(&mg->mg_lock);
568 was_allocatable = mg->mg_allocatable;
569 was_initialized = mg->mg_initialized;
570
571 mg->mg_free_capacity = ((vs->vs_space - vs->vs_alloc) * 100) /
572 (vs->vs_space + 1);
573
574 mutex_enter(&mc->mc_lock);
575
576 /*
577 * If the metaslab group was just added then it won't
578 * have any space until we finish syncing out this txg.
579 * At that point we will consider it initialized and available
580 * for allocations. We also don't consider non-activated
581 * metaslab groups (e.g. vdevs that are in the middle of being removed)
582 * to be initialized, because they can't be used for allocation.
583 */
584 mg->mg_initialized = metaslab_group_initialized(mg);
585 if (!was_initialized && mg->mg_initialized) {
586 mc->mc_groups++;
587 } else if (was_initialized && !mg->mg_initialized) {
588 ASSERT3U(mc->mc_groups, >, 0);
589 mc->mc_groups--;
590 }
591 if (mg->mg_initialized)
592 mg->mg_no_free_space = B_FALSE;
593
594 /*
595 * A metaslab group is considered allocatable if it has plenty
596 * of free space or is not heavily fragmented. We only take
597 * fragmentation into account if the metaslab group has a valid
598 * fragmentation metric (i.e. a value between 0 and 100).
599 */
600 mg->mg_allocatable = (mg->mg_activation_count > 0 &&
601 mg->mg_free_capacity > zfs_mg_noalloc_threshold &&
602 (mg->mg_fragmentation == ZFS_FRAG_INVALID ||
603 mg->mg_fragmentation <= zfs_mg_fragmentation_threshold));
604
605 /*
606 * The mc_alloc_groups maintains a count of the number of
607 * groups in this metaslab class that are still above the
608 * zfs_mg_noalloc_threshold. This is used by the allocating
609 * threads to determine if they should avoid allocations to
610 * a given group. The allocator will avoid allocations to a group
611 * if that group has reached or is below the zfs_mg_noalloc_threshold
612 * and there are still other groups that are above the threshold.
613 * When a group transitions from allocatable to non-allocatable or
614 * vice versa we update the metaslab class to reflect that change.
615 * When the mc_alloc_groups value drops to 0 that means that all
616 * groups have reached the zfs_mg_noalloc_threshold making all groups
617 * eligible for allocations. This effectively means that all devices
618 * are balanced again.
619 */
620 if (was_allocatable && !mg->mg_allocatable)
621 mc->mc_alloc_groups--;
622 else if (!was_allocatable && mg->mg_allocatable)
623 mc->mc_alloc_groups++;
624 mutex_exit(&mc->mc_lock);
625
626 mutex_exit(&mg->mg_lock);
627 }
628
629 metaslab_group_t *
630 metaslab_group_create(metaslab_class_t *mc, vdev_t *vd, int allocators)
631 {
632 metaslab_group_t *mg;
633
634 mg = kmem_zalloc(sizeof (metaslab_group_t), KM_SLEEP);
635 mutex_init(&mg->mg_lock, NULL, MUTEX_DEFAULT, NULL);
636 mg->mg_primaries = kmem_zalloc(allocators * sizeof (metaslab_t *),
637 KM_SLEEP);
638 mg->mg_secondaries = kmem_zalloc(allocators * sizeof (metaslab_t *),
639 KM_SLEEP);
640 avl_create(&mg->mg_metaslab_tree, metaslab_compare,
641 sizeof (metaslab_t), offsetof(struct metaslab, ms_group_node));
642 mg->mg_vd = vd;
643 mg->mg_class = mc;
644 mg->mg_activation_count = 0;
645 mg->mg_initialized = B_FALSE;
646 mg->mg_no_free_space = B_TRUE;
647 mg->mg_allocators = allocators;
648
649 mg->mg_alloc_queue_depth = kmem_zalloc(allocators * sizeof (refcount_t),
650 KM_SLEEP);
651 mg->mg_cur_max_alloc_queue_depth = kmem_zalloc(allocators *
652 sizeof (uint64_t), KM_SLEEP);
653 for (int i = 0; i < allocators; i++) {
654 refcount_create_tracked(&mg->mg_alloc_queue_depth[i]);
655 mg->mg_cur_max_alloc_queue_depth[i] = 0;
656 }
657
658 mg->mg_taskq = taskq_create("metaslab_group_taskq", metaslab_load_pct,
659 maxclsyspri, 10, INT_MAX, TASKQ_THREADS_CPU_PCT | TASKQ_DYNAMIC);
660
661 return (mg);
662 }
663
664 void
665 metaslab_group_destroy(metaslab_group_t *mg)
666 {
667 ASSERT(mg->mg_prev == NULL);
668 ASSERT(mg->mg_next == NULL);
669 /*
670 * We may have gone below zero with the activation count
671 * either because we never activated in the first place or
672 * because we're done, and possibly removing the vdev.
673 */
674 ASSERT(mg->mg_activation_count <= 0);
675
676 taskq_destroy(mg->mg_taskq);
677 avl_destroy(&mg->mg_metaslab_tree);
678 kmem_free(mg->mg_primaries, mg->mg_allocators * sizeof (metaslab_t *));
679 kmem_free(mg->mg_secondaries, mg->mg_allocators *
680 sizeof (metaslab_t *));
681 mutex_destroy(&mg->mg_lock);
682
683 for (int i = 0; i < mg->mg_allocators; i++) {
684 refcount_destroy(&mg->mg_alloc_queue_depth[i]);
685 mg->mg_cur_max_alloc_queue_depth[i] = 0;
686 }
687 kmem_free(mg->mg_alloc_queue_depth, mg->mg_allocators *
688 sizeof (refcount_t));
689 kmem_free(mg->mg_cur_max_alloc_queue_depth, mg->mg_allocators *
690 sizeof (uint64_t));
691
692 kmem_free(mg, sizeof (metaslab_group_t));
693 }
694
695 void
696 metaslab_group_activate(metaslab_group_t *mg)
697 {
698 metaslab_class_t *mc = mg->mg_class;
699 metaslab_group_t *mgprev, *mgnext;
700
701 ASSERT3U(spa_config_held(mc->mc_spa, SCL_ALLOC, RW_WRITER), !=, 0);
702
703 ASSERT(mc->mc_rotor != mg);
704 ASSERT(mg->mg_prev == NULL);
705 ASSERT(mg->mg_next == NULL);
706 ASSERT(mg->mg_activation_count <= 0);
707
708 if (++mg->mg_activation_count <= 0)
709 return;
710
711 mg->mg_aliquot = metaslab_aliquot * MAX(1, mg->mg_vd->vdev_children);
712 metaslab_group_alloc_update(mg);
713
714 if ((mgprev = mc->mc_rotor) == NULL) {
715 mg->mg_prev = mg;
716 mg->mg_next = mg;
717 } else {
718 mgnext = mgprev->mg_next;
719 mg->mg_prev = mgprev;
720 mg->mg_next = mgnext;
721 mgprev->mg_next = mg;
722 mgnext->mg_prev = mg;
723 }
724 mc->mc_rotor = mg;
725 }
726
727 /*
728 * Passivate a metaslab group and remove it from the allocation rotor.
729 * Callers must hold both the SCL_ALLOC and SCL_ZIO lock prior to passivating
730 * a metaslab group. This function will momentarily drop spa_config_locks
731 * that are lower than the SCL_ALLOC lock (see comment below).
732 */
733 void
734 metaslab_group_passivate(metaslab_group_t *mg)
735 {
736 metaslab_class_t *mc = mg->mg_class;
737 spa_t *spa = mc->mc_spa;
738 metaslab_group_t *mgprev, *mgnext;
739 int locks = spa_config_held(spa, SCL_ALL, RW_WRITER);
740
741 ASSERT3U(spa_config_held(spa, SCL_ALLOC | SCL_ZIO, RW_WRITER), ==,
742 (SCL_ALLOC | SCL_ZIO));
743
744 if (--mg->mg_activation_count != 0) {
745 ASSERT(mc->mc_rotor != mg);
746 ASSERT(mg->mg_prev == NULL);
747 ASSERT(mg->mg_next == NULL);
748 ASSERT(mg->mg_activation_count < 0);
749 return;
750 }
751
752 /*
753 * The spa_config_lock is an array of rwlocks, ordered as
754 * follows (from highest to lowest):
755 * SCL_CONFIG > SCL_STATE > SCL_L2ARC > SCL_ALLOC >
756 * SCL_ZIO > SCL_FREE > SCL_VDEV
757 * (For more information about the spa_config_lock see spa_misc.c)
758 * The higher the lock, the broader its coverage. When we passivate
759 * a metaslab group, we must hold both the SCL_ALLOC and the SCL_ZIO
760 * config locks. However, the metaslab group's taskq might be trying
761 * to preload metaslabs so we must drop the SCL_ZIO lock and any
762 * lower locks to allow the I/O to complete. At a minimum,
763 * we continue to hold the SCL_ALLOC lock, which prevents any future
764 * allocations from taking place and any changes to the vdev tree.
765 */
766 spa_config_exit(spa, locks & ~(SCL_ZIO - 1), spa);
767 taskq_wait_outstanding(mg->mg_taskq, 0);
768 spa_config_enter(spa, locks & ~(SCL_ZIO - 1), spa, RW_WRITER);
769 metaslab_group_alloc_update(mg);
770 for (int i = 0; i < mg->mg_allocators; i++) {
771 metaslab_t *msp = mg->mg_primaries[i];
772 if (msp != NULL) {
773 mutex_enter(&msp->ms_lock);
774 metaslab_passivate(msp,
775 metaslab_weight_from_range_tree(msp));
776 mutex_exit(&msp->ms_lock);
777 }
778 msp = mg->mg_secondaries[i];
779 if (msp != NULL) {
780 mutex_enter(&msp->ms_lock);
781 metaslab_passivate(msp,
782 metaslab_weight_from_range_tree(msp));
783 mutex_exit(&msp->ms_lock);
784 }
785 }
786
787 mgprev = mg->mg_prev;
788 mgnext = mg->mg_next;
789
790 if (mg == mgnext) {
791 mc->mc_rotor = NULL;
792 } else {
793 mc->mc_rotor = mgnext;
794 mgprev->mg_next = mgnext;
795 mgnext->mg_prev = mgprev;
796 }
797
798 mg->mg_prev = NULL;
799 mg->mg_next = NULL;
800 }
801
802 boolean_t
803 metaslab_group_initialized(metaslab_group_t *mg)
804 {
805 vdev_t *vd = mg->mg_vd;
806 vdev_stat_t *vs = &vd->vdev_stat;
807
808 return (vs->vs_space != 0 && mg->mg_activation_count > 0);
809 }
810
811 uint64_t
812 metaslab_group_get_space(metaslab_group_t *mg)
813 {
814 return ((1ULL << mg->mg_vd->vdev_ms_shift) * mg->mg_vd->vdev_ms_count);
815 }
816
817 void
818 metaslab_group_histogram_verify(metaslab_group_t *mg)
819 {
820 uint64_t *mg_hist;
821 vdev_t *vd = mg->mg_vd;
822 uint64_t ashift = vd->vdev_ashift;
823 int i;
824
825 if ((zfs_flags & ZFS_DEBUG_HISTOGRAM_VERIFY) == 0)
826 return;
827
828 mg_hist = kmem_zalloc(sizeof (uint64_t) * RANGE_TREE_HISTOGRAM_SIZE,
829 KM_SLEEP);
830
831 ASSERT3U(RANGE_TREE_HISTOGRAM_SIZE, >=,
832 SPACE_MAP_HISTOGRAM_SIZE + ashift);
833
834 for (int m = 0; m < vd->vdev_ms_count; m++) {
835 metaslab_t *msp = vd->vdev_ms[m];
836
837 if (msp->ms_sm == NULL)
838 continue;
839
840 for (i = 0; i < SPACE_MAP_HISTOGRAM_SIZE; i++)
841 mg_hist[i + ashift] +=
842 msp->ms_sm->sm_phys->smp_histogram[i];
843 }
844
845 for (i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i ++)
846 VERIFY3U(mg_hist[i], ==, mg->mg_histogram[i]);
847
848 kmem_free(mg_hist, sizeof (uint64_t) * RANGE_TREE_HISTOGRAM_SIZE);
849 }
850
851 static void
852 metaslab_group_histogram_add(metaslab_group_t *mg, metaslab_t *msp)
853 {
854 metaslab_class_t *mc = mg->mg_class;
855 uint64_t ashift = mg->mg_vd->vdev_ashift;
856
857 ASSERT(MUTEX_HELD(&msp->ms_lock));
858 if (msp->ms_sm == NULL)
859 return;
860
861 mutex_enter(&mg->mg_lock);
862 for (int i = 0; i < SPACE_MAP_HISTOGRAM_SIZE; i++) {
863 mg->mg_histogram[i + ashift] +=
864 msp->ms_sm->sm_phys->smp_histogram[i];
865 mc->mc_histogram[i + ashift] +=
866 msp->ms_sm->sm_phys->smp_histogram[i];
867 }
868 mutex_exit(&mg->mg_lock);
869 }
870
871 void
872 metaslab_group_histogram_remove(metaslab_group_t *mg, metaslab_t *msp)
873 {
874 metaslab_class_t *mc = mg->mg_class;
875 uint64_t ashift = mg->mg_vd->vdev_ashift;
876
877 ASSERT(MUTEX_HELD(&msp->ms_lock));
878 if (msp->ms_sm == NULL)
879 return;
880
881 mutex_enter(&mg->mg_lock);
882 for (int i = 0; i < SPACE_MAP_HISTOGRAM_SIZE; i++) {
883 ASSERT3U(mg->mg_histogram[i + ashift], >=,
884 msp->ms_sm->sm_phys->smp_histogram[i]);
885 ASSERT3U(mc->mc_histogram[i + ashift], >=,
886 msp->ms_sm->sm_phys->smp_histogram[i]);
887
888 mg->mg_histogram[i + ashift] -=
889 msp->ms_sm->sm_phys->smp_histogram[i];
890 mc->mc_histogram[i + ashift] -=
891 msp->ms_sm->sm_phys->smp_histogram[i];
892 }
893 mutex_exit(&mg->mg_lock);
894 }
895
896 static void
897 metaslab_group_add(metaslab_group_t *mg, metaslab_t *msp)
898 {
899 ASSERT(msp->ms_group == NULL);
900 mutex_enter(&mg->mg_lock);
901 msp->ms_group = mg;
902 msp->ms_weight = 0;
903 avl_add(&mg->mg_metaslab_tree, msp);
904 mutex_exit(&mg->mg_lock);
905
906 mutex_enter(&msp->ms_lock);
907 metaslab_group_histogram_add(mg, msp);
908 mutex_exit(&msp->ms_lock);
909 }
910
911 static void
912 metaslab_group_remove(metaslab_group_t *mg, metaslab_t *msp)
913 {
914 mutex_enter(&msp->ms_lock);
915 metaslab_group_histogram_remove(mg, msp);
916 mutex_exit(&msp->ms_lock);
917
918 mutex_enter(&mg->mg_lock);
919 ASSERT(msp->ms_group == mg);
920 avl_remove(&mg->mg_metaslab_tree, msp);
921 msp->ms_group = NULL;
922 mutex_exit(&mg->mg_lock);
923 }
924
925 static void
926 metaslab_group_sort_impl(metaslab_group_t *mg, metaslab_t *msp, uint64_t weight)
927 {
928 ASSERT(MUTEX_HELD(&mg->mg_lock));
929 ASSERT(msp->ms_group == mg);
930 avl_remove(&mg->mg_metaslab_tree, msp);
931 msp->ms_weight = weight;
932 avl_add(&mg->mg_metaslab_tree, msp);
933
934 }
935
936 static void
937 metaslab_group_sort(metaslab_group_t *mg, metaslab_t *msp, uint64_t weight)
938 {
939 /*
940 * Although in principle the weight can be any value, in
941 * practice we do not use values in the range [1, 511].
942 */
943 ASSERT(weight >= SPA_MINBLOCKSIZE || weight == 0);
944 ASSERT(MUTEX_HELD(&msp->ms_lock));
945
946 mutex_enter(&mg->mg_lock);
947 metaslab_group_sort_impl(mg, msp, weight);
948 mutex_exit(&mg->mg_lock);
949 }
950
951 /*
952 * Calculate the fragmentation for a given metaslab group. We can use
953 * a simple average here since all metaslabs within the group must have
954 * the same size. The return value will be a value between 0 and 100
955 * (inclusive), or ZFS_FRAG_INVALID if less than half of the metaslab in this
956 * group have a fragmentation metric.
957 */
958 uint64_t
959 metaslab_group_fragmentation(metaslab_group_t *mg)
960 {
961 vdev_t *vd = mg->mg_vd;
962 uint64_t fragmentation = 0;
963 uint64_t valid_ms = 0;
964
965 for (int m = 0; m < vd->vdev_ms_count; m++) {
966 metaslab_t *msp = vd->vdev_ms[m];
967
968 if (msp->ms_fragmentation == ZFS_FRAG_INVALID)
969 continue;
970
971 valid_ms++;
972 fragmentation += msp->ms_fragmentation;
973 }
974
975 if (valid_ms <= vd->vdev_ms_count / 2)
976 return (ZFS_FRAG_INVALID);
977
978 fragmentation /= valid_ms;
979 ASSERT3U(fragmentation, <=, 100);
980 return (fragmentation);
981 }
982
983 /*
984 * Determine if a given metaslab group should skip allocations. A metaslab
985 * group should avoid allocations if its free capacity is less than the
986 * zfs_mg_noalloc_threshold or its fragmentation metric is greater than
987 * zfs_mg_fragmentation_threshold and there is at least one metaslab group
988 * that can still handle allocations. If the allocation throttle is enabled
989 * then we skip allocations to devices that have reached their maximum
990 * allocation queue depth unless the selected metaslab group is the only
991 * eligible group remaining.
992 */
993 static boolean_t
994 metaslab_group_allocatable(metaslab_group_t *mg, metaslab_group_t *rotor,
995 uint64_t psize, int allocator)
996 {
997 spa_t *spa = mg->mg_vd->vdev_spa;
998 metaslab_class_t *mc = mg->mg_class;
999
1000 /*
1001 * We can only consider skipping this metaslab group if it's
1002 * in the normal metaslab class and there are other metaslab
1003 * groups to select from. Otherwise, we always consider it eligible
1004 * for allocations.
1005 */
1006 if (mc != spa_normal_class(spa) || mc->mc_groups <= 1)
1007 return (B_TRUE);
1008
1009 /*
1010 * If the metaslab group's mg_allocatable flag is set (see comments
1011 * in metaslab_group_alloc_update() for more information) and
1012 * the allocation throttle is disabled then allow allocations to this
1013 * device. However, if the allocation throttle is enabled then
1014 * check if we have reached our allocation limit (mg_alloc_queue_depth)
1015 * to determine if we should allow allocations to this metaslab group.
1016 * If all metaslab groups are no longer considered allocatable
1017 * (mc_alloc_groups == 0) or we're trying to allocate the smallest
1018 * gang block size then we allow allocations on this metaslab group
1019 * regardless of the mg_allocatable or throttle settings.
1020 */
1021 if (mg->mg_allocatable) {
1022 metaslab_group_t *mgp;
1023 int64_t qdepth;
1024 uint64_t qmax = mg->mg_cur_max_alloc_queue_depth[allocator];
1025
1026 if (!mc->mc_alloc_throttle_enabled)
1027 return (B_TRUE);
1028
1029 /*
1030 * If this metaslab group does not have any free space, then
1031 * there is no point in looking further.
1032 */
1033 if (mg->mg_no_free_space)
1034 return (B_FALSE);
1035
1036 qdepth = refcount_count(&mg->mg_alloc_queue_depth[allocator]);
1037
1038 /*
1039 * If this metaslab group is below its qmax or it's
1040 * the only allocatable metasable group, then attempt
1041 * to allocate from it.
1042 */
1043 if (qdepth < qmax || mc->mc_alloc_groups == 1)
1044 return (B_TRUE);
1045 ASSERT3U(mc->mc_alloc_groups, >, 1);
1046
1047 /*
1048 * Since this metaslab group is at or over its qmax, we
1049 * need to determine if there are metaslab groups after this
1050 * one that might be able to handle this allocation. This is
1051 * racy since we can't hold the locks for all metaslab
1052 * groups at the same time when we make this check.
1053 */
1054 for (mgp = mg->mg_next; mgp != rotor; mgp = mgp->mg_next) {
1055 qmax = mgp->mg_cur_max_alloc_queue_depth[allocator];
1056
1057 qdepth = refcount_count(
1058 &mgp->mg_alloc_queue_depth[allocator]);
1059
1060 /*
1061 * If there is another metaslab group that
1062 * might be able to handle the allocation, then
1063 * we return false so that we skip this group.
1064 */
1065 if (qdepth < qmax && !mgp->mg_no_free_space)
1066 return (B_FALSE);
1067 }
1068
1069 /*
1070 * We didn't find another group to handle the allocation
1071 * so we can't skip this metaslab group even though
1072 * we are at or over our qmax.
1073 */
1074 return (B_TRUE);
1075
1076 } else if (mc->mc_alloc_groups == 0 || psize == SPA_MINBLOCKSIZE) {
1077 return (B_TRUE);
1078 }
1079 return (B_FALSE);
1080 }
1081
1082 /*
1083 * ==========================================================================
1084 * Range tree callbacks
1085 * ==========================================================================
1086 */
1087
1088 /*
1089 * Comparison function for the private size-ordered tree. Tree is sorted
1090 * by size, larger sizes at the end of the tree.
1091 */
1092 static int
1093 metaslab_rangesize_compare(const void *x1, const void *x2)
1094 {
1095 const range_seg_t *r1 = x1;
1096 const range_seg_t *r2 = x2;
1097 uint64_t rs_size1 = r1->rs_end - r1->rs_start;
1098 uint64_t rs_size2 = r2->rs_end - r2->rs_start;
1099
1100 int cmp = AVL_CMP(rs_size1, rs_size2);
1101 if (likely(cmp))
1102 return (cmp);
1103
1104 return (AVL_CMP(r1->rs_start, r2->rs_start));
1105 }
1106
1107 /*
1108 * ==========================================================================
1109 * Common allocator routines
1110 * ==========================================================================
1111 */
1112
1113 /*
1114 * Return the maximum contiguous segment within the metaslab.
1115 */
1116 uint64_t
1117 metaslab_block_maxsize(metaslab_t *msp)
1118 {
1119 avl_tree_t *t = &msp->ms_allocatable_by_size;
1120 range_seg_t *rs;
1121
1122 if (t == NULL || (rs = avl_last(t)) == NULL)
1123 return (0ULL);
1124
1125 return (rs->rs_end - rs->rs_start);
1126 }
1127
1128 static range_seg_t *
1129 metaslab_block_find(avl_tree_t *t, uint64_t start, uint64_t size)
1130 {
1131 range_seg_t *rs, rsearch;
1132 avl_index_t where;
1133
1134 rsearch.rs_start = start;
1135 rsearch.rs_end = start + size;
1136
1137 rs = avl_find(t, &rsearch, &where);
1138 if (rs == NULL) {
1139 rs = avl_nearest(t, where, AVL_AFTER);
1140 }
1141
1142 return (rs);
1143 }
1144
1145 #if defined(WITH_FF_BLOCK_ALLOCATOR) || \
1146 defined(WITH_DF_BLOCK_ALLOCATOR) || \
1147 defined(WITH_CF_BLOCK_ALLOCATOR)
1148 /*
1149 * This is a helper function that can be used by the allocator to find
1150 * a suitable block to allocate. This will search the specified AVL
1151 * tree looking for a block that matches the specified criteria.
1152 */
1153 static uint64_t
1154 metaslab_block_picker(avl_tree_t *t, uint64_t *cursor, uint64_t size,
1155 uint64_t align)
1156 {
1157 range_seg_t *rs = metaslab_block_find(t, *cursor, size);
1158
1159 while (rs != NULL) {
1160 uint64_t offset = P2ROUNDUP(rs->rs_start, align);
1161
1162 if (offset + size <= rs->rs_end) {
1163 *cursor = offset + size;
1164 return (offset);
1165 }
1166 rs = AVL_NEXT(t, rs);
1167 }
1168
1169 /*
1170 * If we know we've searched the whole map (*cursor == 0), give up.
1171 * Otherwise, reset the cursor to the beginning and try again.
1172 */
1173 if (*cursor == 0)
1174 return (-1ULL);
1175
1176 *cursor = 0;
1177 return (metaslab_block_picker(t, cursor, size, align));
1178 }
1179 #endif /* WITH_FF/DF/CF_BLOCK_ALLOCATOR */
1180
1181 #if defined(WITH_FF_BLOCK_ALLOCATOR)
1182 /*
1183 * ==========================================================================
1184 * The first-fit block allocator
1185 * ==========================================================================
1186 */
1187 static uint64_t
1188 metaslab_ff_alloc(metaslab_t *msp, uint64_t size)
1189 {
1190 /*
1191 * Find the largest power of 2 block size that evenly divides the
1192 * requested size. This is used to try to allocate blocks with similar
1193 * alignment from the same area of the metaslab (i.e. same cursor
1194 * bucket) but it does not guarantee that other allocations sizes
1195 * may exist in the same region.
1196 */
1197 uint64_t align = size & -size;
1198 uint64_t *cursor = &msp->ms_lbas[highbit64(align) - 1];
1199 avl_tree_t *t = &msp->ms_allocatable->rt_root;
1200
1201 return (metaslab_block_picker(t, cursor, size, align));
1202 }
1203
1204 static metaslab_ops_t metaslab_ff_ops = {
1205 metaslab_ff_alloc
1206 };
1207
1208 metaslab_ops_t *zfs_metaslab_ops = &metaslab_ff_ops;
1209 #endif /* WITH_FF_BLOCK_ALLOCATOR */
1210
1211 #if defined(WITH_DF_BLOCK_ALLOCATOR)
1212 /*
1213 * ==========================================================================
1214 * Dynamic block allocator -
1215 * Uses the first fit allocation scheme until space get low and then
1216 * adjusts to a best fit allocation method. Uses metaslab_df_alloc_threshold
1217 * and metaslab_df_free_pct to determine when to switch the allocation scheme.
1218 * ==========================================================================
1219 */
1220 static uint64_t
1221 metaslab_df_alloc(metaslab_t *msp, uint64_t size)
1222 {
1223 /*
1224 * Find the largest power of 2 block size that evenly divides the
1225 * requested size. This is used to try to allocate blocks with similar
1226 * alignment from the same area of the metaslab (i.e. same cursor
1227 * bucket) but it does not guarantee that other allocations sizes
1228 * may exist in the same region.
1229 */
1230 uint64_t align = size & -size;
1231 uint64_t *cursor = &msp->ms_lbas[highbit64(align) - 1];
1232 range_tree_t *rt = msp->ms_allocatable;
1233 avl_tree_t *t = &rt->rt_root;
1234 uint64_t max_size = metaslab_block_maxsize(msp);
1235 int free_pct = range_tree_space(rt) * 100 / msp->ms_size;
1236
1237 ASSERT(MUTEX_HELD(&msp->ms_lock));
1238 ASSERT3U(avl_numnodes(t), ==,
1239 avl_numnodes(&msp->ms_allocatable_by_size));
1240
1241 if (max_size < size)
1242 return (-1ULL);
1243
1244 /*
1245 * If we're running low on space switch to using the size
1246 * sorted AVL tree (best-fit).
1247 */
1248 if (max_size < metaslab_df_alloc_threshold ||
1249 free_pct < metaslab_df_free_pct) {
1250 t = &msp->ms_allocatable_by_size;
1251 *cursor = 0;
1252 }
1253
1254 return (metaslab_block_picker(t, cursor, size, 1ULL));
1255 }
1256
1257 static metaslab_ops_t metaslab_df_ops = {
1258 metaslab_df_alloc
1259 };
1260
1261 metaslab_ops_t *zfs_metaslab_ops = &metaslab_df_ops;
1262 #endif /* WITH_DF_BLOCK_ALLOCATOR */
1263
1264 #if defined(WITH_CF_BLOCK_ALLOCATOR)
1265 /*
1266 * ==========================================================================
1267 * Cursor fit block allocator -
1268 * Select the largest region in the metaslab, set the cursor to the beginning
1269 * of the range and the cursor_end to the end of the range. As allocations
1270 * are made advance the cursor. Continue allocating from the cursor until
1271 * the range is exhausted and then find a new range.
1272 * ==========================================================================
1273 */
1274 static uint64_t
1275 metaslab_cf_alloc(metaslab_t *msp, uint64_t size)
1276 {
1277 range_tree_t *rt = msp->ms_allocatable;
1278 avl_tree_t *t = &msp->ms_allocatable_by_size;
1279 uint64_t *cursor = &msp->ms_lbas[0];
1280 uint64_t *cursor_end = &msp->ms_lbas[1];
1281 uint64_t offset = 0;
1282
1283 ASSERT(MUTEX_HELD(&msp->ms_lock));
1284 ASSERT3U(avl_numnodes(t), ==, avl_numnodes(&rt->rt_root));
1285
1286 ASSERT3U(*cursor_end, >=, *cursor);
1287
1288 if ((*cursor + size) > *cursor_end) {
1289 range_seg_t *rs;
1290
1291 rs = avl_last(&msp->ms_allocatable_by_size);
1292 if (rs == NULL || (rs->rs_end - rs->rs_start) < size)
1293 return (-1ULL);
1294
1295 *cursor = rs->rs_start;
1296 *cursor_end = rs->rs_end;
1297 }
1298
1299 offset = *cursor;
1300 *cursor += size;
1301
1302 return (offset);
1303 }
1304
1305 static metaslab_ops_t metaslab_cf_ops = {
1306 metaslab_cf_alloc
1307 };
1308
1309 metaslab_ops_t *zfs_metaslab_ops = &metaslab_cf_ops;
1310 #endif /* WITH_CF_BLOCK_ALLOCATOR */
1311
1312 #if defined(WITH_NDF_BLOCK_ALLOCATOR)
1313 /*
1314 * ==========================================================================
1315 * New dynamic fit allocator -
1316 * Select a region that is large enough to allocate 2^metaslab_ndf_clump_shift
1317 * contiguous blocks. If no region is found then just use the largest segment
1318 * that remains.
1319 * ==========================================================================
1320 */
1321
1322 /*
1323 * Determines desired number of contiguous blocks (2^metaslab_ndf_clump_shift)
1324 * to request from the allocator.
1325 */
1326 uint64_t metaslab_ndf_clump_shift = 4;
1327
1328 static uint64_t
1329 metaslab_ndf_alloc(metaslab_t *msp, uint64_t size)
1330 {
1331 avl_tree_t *t = &msp->ms_allocatable->rt_root;
1332 avl_index_t where;
1333 range_seg_t *rs, rsearch;
1334 uint64_t hbit = highbit64(size);
1335 uint64_t *cursor = &msp->ms_lbas[hbit - 1];
1336 uint64_t max_size = metaslab_block_maxsize(msp);
1337
1338 ASSERT(MUTEX_HELD(&msp->ms_lock));
1339 ASSERT3U(avl_numnodes(t), ==,
1340 avl_numnodes(&msp->ms_allocatable_by_size));
1341
1342 if (max_size < size)
1343 return (-1ULL);
1344
1345 rsearch.rs_start = *cursor;
1346 rsearch.rs_end = *cursor + size;
1347
1348 rs = avl_find(t, &rsearch, &where);
1349 if (rs == NULL || (rs->rs_end - rs->rs_start) < size) {
1350 t = &msp->ms_allocatable_by_size;
1351
1352 rsearch.rs_start = 0;
1353 rsearch.rs_end = MIN(max_size,
1354 1ULL << (hbit + metaslab_ndf_clump_shift));
1355 rs = avl_find(t, &rsearch, &where);
1356 if (rs == NULL)
1357 rs = avl_nearest(t, where, AVL_AFTER);
1358 ASSERT(rs != NULL);
1359 }
1360
1361 if ((rs->rs_end - rs->rs_start) >= size) {
1362 *cursor = rs->rs_start + size;
1363 return (rs->rs_start);
1364 }
1365 return (-1ULL);
1366 }
1367
1368 static metaslab_ops_t metaslab_ndf_ops = {
1369 metaslab_ndf_alloc
1370 };
1371
1372 metaslab_ops_t *zfs_metaslab_ops = &metaslab_ndf_ops;
1373 #endif /* WITH_NDF_BLOCK_ALLOCATOR */
1374
1375
1376 /*
1377 * ==========================================================================
1378 * Metaslabs
1379 * ==========================================================================
1380 */
1381
1382 /*
1383 * Wait for any in-progress metaslab loads to complete.
1384 */
1385 void
1386 metaslab_load_wait(metaslab_t *msp)
1387 {
1388 ASSERT(MUTEX_HELD(&msp->ms_lock));
1389
1390 while (msp->ms_loading) {
1391 ASSERT(!msp->ms_loaded);
1392 cv_wait(&msp->ms_load_cv, &msp->ms_lock);
1393 }
1394 }
1395
1396 int
1397 metaslab_load(metaslab_t *msp)
1398 {
1399 int error = 0;
1400 boolean_t success = B_FALSE;
1401
1402 ASSERT(MUTEX_HELD(&msp->ms_lock));
1403 ASSERT(!msp->ms_loaded);
1404 ASSERT(!msp->ms_loading);
1405
1406 msp->ms_loading = B_TRUE;
1407 /*
1408 * Nobody else can manipulate a loading metaslab, so it's now safe
1409 * to drop the lock. This way we don't have to hold the lock while
1410 * reading the spacemap from disk.
1411 */
1412 mutex_exit(&msp->ms_lock);
1413
1414 /*
1415 * If the space map has not been allocated yet, then treat
1416 * all the space in the metaslab as free and add it to ms_allocatable.
1417 */
1418 if (msp->ms_sm != NULL) {
1419 error = space_map_load(msp->ms_sm, msp->ms_allocatable,
1420 SM_FREE);
1421 } else {
1422 range_tree_add(msp->ms_allocatable,
1423 msp->ms_start, msp->ms_size);
1424 }
1425
1426 success = (error == 0);
1427
1428 mutex_enter(&msp->ms_lock);
1429 msp->ms_loading = B_FALSE;
1430
1431 if (success) {
1432 ASSERT3P(msp->ms_group, !=, NULL);
1433 msp->ms_loaded = B_TRUE;
1434
1435 /*
1436 * If the metaslab already has a spacemap, then we need to
1437 * remove all segments from the defer tree; otherwise, the
1438 * metaslab is completely empty and we can skip this.
1439 */
1440 if (msp->ms_sm != NULL) {
1441 for (int t = 0; t < TXG_DEFER_SIZE; t++) {
1442 range_tree_walk(msp->ms_defer[t],
1443 range_tree_remove, msp->ms_allocatable);
1444 }
1445 }
1446 msp->ms_max_size = metaslab_block_maxsize(msp);
1447 }
1448 cv_broadcast(&msp->ms_load_cv);
1449 return (error);
1450 }
1451
1452 void
1453 metaslab_unload(metaslab_t *msp)
1454 {
1455 ASSERT(MUTEX_HELD(&msp->ms_lock));
1456 range_tree_vacate(msp->ms_allocatable, NULL, NULL);
1457 msp->ms_loaded = B_FALSE;
1458 msp->ms_weight &= ~METASLAB_ACTIVE_MASK;
1459 msp->ms_max_size = 0;
1460 }
1461
1462 int
1463 metaslab_init(metaslab_group_t *mg, uint64_t id, uint64_t object, uint64_t txg,
1464 metaslab_t **msp)
1465 {
1466 vdev_t *vd = mg->mg_vd;
1467 objset_t *mos = vd->vdev_spa->spa_meta_objset;
1468 metaslab_t *ms;
1469 int error;
1470
1471 ms = kmem_zalloc(sizeof (metaslab_t), KM_SLEEP);
1472 mutex_init(&ms->ms_lock, NULL, MUTEX_DEFAULT, NULL);
1473 mutex_init(&ms->ms_sync_lock, NULL, MUTEX_DEFAULT, NULL);
1474 cv_init(&ms->ms_load_cv, NULL, CV_DEFAULT, NULL);
1475 ms->ms_id = id;
1476 ms->ms_start = id << vd->vdev_ms_shift;
1477 ms->ms_size = 1ULL << vd->vdev_ms_shift;
1478 ms->ms_allocator = -1;
1479 ms->ms_new = B_TRUE;
1480
1481 /*
1482 * We only open space map objects that already exist. All others
1483 * will be opened when we finally allocate an object for it.
1484 */
1485 if (object != 0) {
1486 error = space_map_open(&ms->ms_sm, mos, object, ms->ms_start,
1487 ms->ms_size, vd->vdev_ashift);
1488
1489 if (error != 0) {
1490 kmem_free(ms, sizeof (metaslab_t));
1491 return (error);
1492 }
1493
1494 ASSERT(ms->ms_sm != NULL);
1495 }
1496
1497 /*
1498 * We create the main range tree here, but we don't create the
1499 * other range trees until metaslab_sync_done(). This serves
1500 * two purposes: it allows metaslab_sync_done() to detect the
1501 * addition of new space; and for debugging, it ensures that we'd
1502 * data fault on any attempt to use this metaslab before it's ready.
1503 */
1504 ms->ms_allocatable = range_tree_create_impl(&rt_avl_ops,
1505 &ms->ms_allocatable_by_size, metaslab_rangesize_compare, 0);
1506 metaslab_group_add(mg, ms);
1507
1508 metaslab_set_fragmentation(ms);
1509
1510 /*
1511 * If we're opening an existing pool (txg == 0) or creating
1512 * a new one (txg == TXG_INITIAL), all space is available now.
1513 * If we're adding space to an existing pool, the new space
1514 * does not become available until after this txg has synced.
1515 * The metaslab's weight will also be initialized when we sync
1516 * out this txg. This ensures that we don't attempt to allocate
1517 * from it before we have initialized it completely.
1518 */
1519 if (txg <= TXG_INITIAL)
1520 metaslab_sync_done(ms, 0);
1521
1522 /*
1523 * If metaslab_debug_load is set and we're initializing a metaslab
1524 * that has an allocated space map object then load the its space
1525 * map so that can verify frees.
1526 */
1527 if (metaslab_debug_load && ms->ms_sm != NULL) {
1528 mutex_enter(&ms->ms_lock);
1529 VERIFY0(metaslab_load(ms));
1530 mutex_exit(&ms->ms_lock);
1531 }
1532
1533 if (txg != 0) {
1534 vdev_dirty(vd, 0, NULL, txg);
1535 vdev_dirty(vd, VDD_METASLAB, ms, txg);
1536 }
1537
1538 *msp = ms;
1539
1540 return (0);
1541 }
1542
1543 void
1544 metaslab_fini(metaslab_t *msp)
1545 {
1546 metaslab_group_t *mg = msp->ms_group;
1547
1548 metaslab_group_remove(mg, msp);
1549
1550 mutex_enter(&msp->ms_lock);
1551 VERIFY(msp->ms_group == NULL);
1552 vdev_space_update(mg->mg_vd, -space_map_allocated(msp->ms_sm),
1553 0, -msp->ms_size);
1554 space_map_close(msp->ms_sm);
1555
1556 metaslab_unload(msp);
1557 range_tree_destroy(msp->ms_allocatable);
1558 range_tree_destroy(msp->ms_freeing);
1559 range_tree_destroy(msp->ms_freed);
1560
1561 for (int t = 0; t < TXG_SIZE; t++) {
1562 range_tree_destroy(msp->ms_allocating[t]);
1563 }
1564
1565 for (int t = 0; t < TXG_DEFER_SIZE; t++) {
1566 range_tree_destroy(msp->ms_defer[t]);
1567 }
1568 ASSERT0(msp->ms_deferspace);
1569
1570 range_tree_destroy(msp->ms_checkpointing);
1571
1572 mutex_exit(&msp->ms_lock);
1573 cv_destroy(&msp->ms_load_cv);
1574 mutex_destroy(&msp->ms_lock);
1575 mutex_destroy(&msp->ms_sync_lock);
1576 ASSERT3U(msp->ms_allocator, ==, -1);
1577
1578 kmem_free(msp, sizeof (metaslab_t));
1579 }
1580
1581 #define FRAGMENTATION_TABLE_SIZE 17
1582
1583 /*
1584 * This table defines a segment size based fragmentation metric that will
1585 * allow each metaslab to derive its own fragmentation value. This is done
1586 * by calculating the space in each bucket of the spacemap histogram and
1587 * multiplying that by the fragmetation metric in this table. Doing
1588 * this for all buckets and dividing it by the total amount of free
1589 * space in this metaslab (i.e. the total free space in all buckets) gives
1590 * us the fragmentation metric. This means that a high fragmentation metric
1591 * equates to most of the free space being comprised of small segments.
1592 * Conversely, if the metric is low, then most of the free space is in
1593 * large segments. A 10% change in fragmentation equates to approximately
1594 * double the number of segments.
1595 *
1596 * This table defines 0% fragmented space using 16MB segments. Testing has
1597 * shown that segments that are greater than or equal to 16MB do not suffer
1598 * from drastic performance problems. Using this value, we derive the rest
1599 * of the table. Since the fragmentation value is never stored on disk, it
1600 * is possible to change these calculations in the future.
1601 */
1602 int zfs_frag_table[FRAGMENTATION_TABLE_SIZE] = {
1603 100, /* 512B */
1604 100, /* 1K */
1605 98, /* 2K */
1606 95, /* 4K */
1607 90, /* 8K */
1608 80, /* 16K */
1609 70, /* 32K */
1610 60, /* 64K */
1611 50, /* 128K */
1612 40, /* 256K */
1613 30, /* 512K */
1614 20, /* 1M */
1615 15, /* 2M */
1616 10, /* 4M */
1617 5, /* 8M */
1618 0 /* 16M */
1619 };
1620
1621 /*
1622 * Calclate the metaslab's fragmentation metric. A return value
1623 * of ZFS_FRAG_INVALID means that the metaslab has not been upgraded and does
1624 * not support this metric. Otherwise, the return value should be in the
1625 * range [0, 100].
1626 */
1627 static void
1628 metaslab_set_fragmentation(metaslab_t *msp)
1629 {
1630 spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
1631 uint64_t fragmentation = 0;
1632 uint64_t total = 0;
1633 boolean_t feature_enabled = spa_feature_is_enabled(spa,
1634 SPA_FEATURE_SPACEMAP_HISTOGRAM);
1635
1636 if (!feature_enabled) {
1637 msp->ms_fragmentation = ZFS_FRAG_INVALID;
1638 return;
1639 }
1640
1641 /*
1642 * A null space map means that the entire metaslab is free
1643 * and thus is not fragmented.
1644 */
1645 if (msp->ms_sm == NULL) {
1646 msp->ms_fragmentation = 0;
1647 return;
1648 }
1649
1650 /*
1651 * If this metaslab's space map has not been upgraded, flag it
1652 * so that we upgrade next time we encounter it.
1653 */
1654 if (msp->ms_sm->sm_dbuf->db_size != sizeof (space_map_phys_t)) {
1655 uint64_t txg = spa_syncing_txg(spa);
1656 vdev_t *vd = msp->ms_group->mg_vd;
1657
1658 /*
1659 * If we've reached the final dirty txg, then we must
1660 * be shutting down the pool. We don't want to dirty
1661 * any data past this point so skip setting the condense
1662 * flag. We can retry this action the next time the pool
1663 * is imported.
1664 */
1665 if (spa_writeable(spa) && txg < spa_final_dirty_txg(spa)) {
1666 msp->ms_condense_wanted = B_TRUE;
1667 vdev_dirty(vd, VDD_METASLAB, msp, txg + 1);
1668 zfs_dbgmsg("txg %llu, requesting force condense: "
1669 "ms_id %llu, vdev_id %llu", txg, msp->ms_id,
1670 vd->vdev_id);
1671 }
1672 msp->ms_fragmentation = ZFS_FRAG_INVALID;
1673 return;
1674 }
1675
1676 for (int i = 0; i < SPACE_MAP_HISTOGRAM_SIZE; i++) {
1677 uint64_t space = 0;
1678 uint8_t shift = msp->ms_sm->sm_shift;
1679
1680 int idx = MIN(shift - SPA_MINBLOCKSHIFT + i,
1681 FRAGMENTATION_TABLE_SIZE - 1);
1682
1683 if (msp->ms_sm->sm_phys->smp_histogram[i] == 0)
1684 continue;
1685
1686 space = msp->ms_sm->sm_phys->smp_histogram[i] << (i + shift);
1687 total += space;
1688
1689 ASSERT3U(idx, <, FRAGMENTATION_TABLE_SIZE);
1690 fragmentation += space * zfs_frag_table[idx];
1691 }
1692
1693 if (total > 0)
1694 fragmentation /= total;
1695 ASSERT3U(fragmentation, <=, 100);
1696
1697 msp->ms_fragmentation = fragmentation;
1698 }
1699
1700 /*
1701 * Compute a weight -- a selection preference value -- for the given metaslab.
1702 * This is based on the amount of free space, the level of fragmentation,
1703 * the LBA range, and whether the metaslab is loaded.
1704 */
1705 static uint64_t
1706 metaslab_space_weight(metaslab_t *msp)
1707 {
1708 metaslab_group_t *mg = msp->ms_group;
1709 vdev_t *vd = mg->mg_vd;
1710 uint64_t weight, space;
1711
1712 ASSERT(MUTEX_HELD(&msp->ms_lock));
1713 ASSERT(!vd->vdev_removing);
1714
1715 /*
1716 * The baseline weight is the metaslab's free space.
1717 */
1718 space = msp->ms_size - space_map_allocated(msp->ms_sm);
1719
1720 if (metaslab_fragmentation_factor_enabled &&
1721 msp->ms_fragmentation != ZFS_FRAG_INVALID) {
1722 /*
1723 * Use the fragmentation information to inversely scale
1724 * down the baseline weight. We need to ensure that we
1725 * don't exclude this metaslab completely when it's 100%
1726 * fragmented. To avoid this we reduce the fragmented value
1727 * by 1.
1728 */
1729 space = (space * (100 - (msp->ms_fragmentation - 1))) / 100;
1730
1731 /*
1732 * If space < SPA_MINBLOCKSIZE, then we will not allocate from
1733 * this metaslab again. The fragmentation metric may have
1734 * decreased the space to something smaller than
1735 * SPA_MINBLOCKSIZE, so reset the space to SPA_MINBLOCKSIZE
1736 * so that we can consume any remaining space.
1737 */
1738 if (space > 0 && space < SPA_MINBLOCKSIZE)
1739 space = SPA_MINBLOCKSIZE;
1740 }
1741 weight = space;
1742
1743 /*
1744 * Modern disks have uniform bit density and constant angular velocity.
1745 * Therefore, the outer recording zones are faster (higher bandwidth)
1746 * than the inner zones by the ratio of outer to inner track diameter,
1747 * which is typically around 2:1. We account for this by assigning
1748 * higher weight to lower metaslabs (multiplier ranging from 2x to 1x).
1749 * In effect, this means that we'll select the metaslab with the most
1750 * free bandwidth rather than simply the one with the most free space.
1751 */
1752 if (!vd->vdev_nonrot && metaslab_lba_weighting_enabled) {
1753 weight = 2 * weight - (msp->ms_id * weight) / vd->vdev_ms_count;
1754 ASSERT(weight >= space && weight <= 2 * space);
1755 }
1756
1757 /*
1758 * If this metaslab is one we're actively using, adjust its
1759 * weight to make it preferable to any inactive metaslab so
1760 * we'll polish it off. If the fragmentation on this metaslab
1761 * has exceed our threshold, then don't mark it active.
1762 */
1763 if (msp->ms_loaded && msp->ms_fragmentation != ZFS_FRAG_INVALID &&
1764 msp->ms_fragmentation <= zfs_metaslab_fragmentation_threshold) {
1765 weight |= (msp->ms_weight & METASLAB_ACTIVE_MASK);
1766 }
1767
1768 WEIGHT_SET_SPACEBASED(weight);
1769 return (weight);
1770 }
1771
1772 /*
1773 * Return the weight of the specified metaslab, according to the segment-based
1774 * weighting algorithm. The metaslab must be loaded. This function can
1775 * be called within a sync pass since it relies only on the metaslab's
1776 * range tree which is always accurate when the metaslab is loaded.
1777 */
1778 static uint64_t
1779 metaslab_weight_from_range_tree(metaslab_t *msp)
1780 {
1781 uint64_t weight = 0;
1782 uint32_t segments = 0;
1783
1784 ASSERT(msp->ms_loaded);
1785
1786 for (int i = RANGE_TREE_HISTOGRAM_SIZE - 1; i >= SPA_MINBLOCKSHIFT;
1787 i--) {
1788 uint8_t shift = msp->ms_group->mg_vd->vdev_ashift;
1789 int max_idx = SPACE_MAP_HISTOGRAM_SIZE + shift - 1;
1790
1791 segments <<= 1;
1792 segments += msp->ms_allocatable->rt_histogram[i];
1793
1794 /*
1795 * The range tree provides more precision than the space map
1796 * and must be downgraded so that all values fit within the
1797 * space map's histogram. This allows us to compare loaded
1798 * vs. unloaded metaslabs to determine which metaslab is
1799 * considered "best".
1800 */
1801 if (i > max_idx)
1802 continue;
1803
1804 if (segments != 0) {
1805 WEIGHT_SET_COUNT(weight, segments);
1806 WEIGHT_SET_INDEX(weight, i);
1807 WEIGHT_SET_ACTIVE(weight, 0);
1808 break;
1809 }
1810 }
1811 return (weight);
1812 }
1813
1814 /*
1815 * Calculate the weight based on the on-disk histogram. This should only
1816 * be called after a sync pass has completely finished since the on-disk
1817 * information is updated in metaslab_sync().
1818 */
1819 static uint64_t
1820 metaslab_weight_from_spacemap(metaslab_t *msp)
1821 {
1822 uint64_t weight = 0;
1823
1824 for (int i = SPACE_MAP_HISTOGRAM_SIZE - 1; i >= 0; i--) {
1825 if (msp->ms_sm->sm_phys->smp_histogram[i] != 0) {
1826 WEIGHT_SET_COUNT(weight,
1827 msp->ms_sm->sm_phys->smp_histogram[i]);
1828 WEIGHT_SET_INDEX(weight, i +
1829 msp->ms_sm->sm_shift);
1830 WEIGHT_SET_ACTIVE(weight, 0);
1831 break;
1832 }
1833 }
1834 return (weight);
1835 }
1836
1837 /*
1838 * Compute a segment-based weight for the specified metaslab. The weight
1839 * is determined by highest bucket in the histogram. The information
1840 * for the highest bucket is encoded into the weight value.
1841 */
1842 static uint64_t
1843 metaslab_segment_weight(metaslab_t *msp)
1844 {
1845 metaslab_group_t *mg = msp->ms_group;
1846 uint64_t weight = 0;
1847 uint8_t shift = mg->mg_vd->vdev_ashift;
1848
1849 ASSERT(MUTEX_HELD(&msp->ms_lock));
1850
1851 /*
1852 * The metaslab is completely free.
1853 */
1854 if (space_map_allocated(msp->ms_sm) == 0) {
1855 int idx = highbit64(msp->ms_size) - 1;
1856 int max_idx = SPACE_MAP_HISTOGRAM_SIZE + shift - 1;
1857
1858 if (idx < max_idx) {
1859 WEIGHT_SET_COUNT(weight, 1ULL);
1860 WEIGHT_SET_INDEX(weight, idx);
1861 } else {
1862 WEIGHT_SET_COUNT(weight, 1ULL << (idx - max_idx));
1863 WEIGHT_SET_INDEX(weight, max_idx);
1864 }
1865 WEIGHT_SET_ACTIVE(weight, 0);
1866 ASSERT(!WEIGHT_IS_SPACEBASED(weight));
1867
1868 return (weight);
1869 }
1870
1871 ASSERT3U(msp->ms_sm->sm_dbuf->db_size, ==, sizeof (space_map_phys_t));
1872
1873 /*
1874 * If the metaslab is fully allocated then just make the weight 0.
1875 */
1876 if (space_map_allocated(msp->ms_sm) == msp->ms_size)
1877 return (0);
1878 /*
1879 * If the metaslab is already loaded, then use the range tree to
1880 * determine the weight. Otherwise, we rely on the space map information
1881 * to generate the weight.
1882 */
1883 if (msp->ms_loaded) {
1884 weight = metaslab_weight_from_range_tree(msp);
1885 } else {
1886 weight = metaslab_weight_from_spacemap(msp);
1887 }
1888
1889 /*
1890 * If the metaslab was active the last time we calculated its weight
1891 * then keep it active. We want to consume the entire region that
1892 * is associated with this weight.
1893 */
1894 if (msp->ms_activation_weight != 0 && weight != 0)
1895 WEIGHT_SET_ACTIVE(weight, WEIGHT_GET_ACTIVE(msp->ms_weight));
1896 return (weight);
1897 }
1898
1899 /*
1900 * Determine if we should attempt to allocate from this metaslab. If the
1901 * metaslab has a maximum size then we can quickly determine if the desired
1902 * allocation size can be satisfied. Otherwise, if we're using segment-based
1903 * weighting then we can determine the maximum allocation that this metaslab
1904 * can accommodate based on the index encoded in the weight. If we're using
1905 * space-based weights then rely on the entire weight (excluding the weight
1906 * type bit).
1907 */
1908 boolean_t
1909 metaslab_should_allocate(metaslab_t *msp, uint64_t asize)
1910 {
1911 boolean_t should_allocate;
1912
1913 if (msp->ms_max_size != 0)
1914 return (msp->ms_max_size >= asize);
1915
1916 if (!WEIGHT_IS_SPACEBASED(msp->ms_weight)) {
1917 /*
1918 * The metaslab segment weight indicates segments in the
1919 * range [2^i, 2^(i+1)), where i is the index in the weight.
1920 * Since the asize might be in the middle of the range, we
1921 * should attempt the allocation if asize < 2^(i+1).
1922 */
1923 should_allocate = (asize <
1924 1ULL << (WEIGHT_GET_INDEX(msp->ms_weight) + 1));
1925 } else {
1926 should_allocate = (asize <=
1927 (msp->ms_weight & ~METASLAB_WEIGHT_TYPE));
1928 }
1929 return (should_allocate);
1930 }
1931 static uint64_t
1932 metaslab_weight(metaslab_t *msp)
1933 {
1934 vdev_t *vd = msp->ms_group->mg_vd;
1935 spa_t *spa = vd->vdev_spa;
1936 uint64_t weight;
1937
1938 ASSERT(MUTEX_HELD(&msp->ms_lock));
1939
1940 /*
1941 * If this vdev is in the process of being removed, there is nothing
1942 * for us to do here.
1943 */
1944 if (vd->vdev_removing)
1945 return (0);
1946
1947 metaslab_set_fragmentation(msp);
1948
1949 /*
1950 * Update the maximum size if the metaslab is loaded. This will
1951 * ensure that we get an accurate maximum size if newly freed space
1952 * has been added back into the free tree.
1953 */
1954 if (msp->ms_loaded)
1955 msp->ms_max_size = metaslab_block_maxsize(msp);
1956
1957 /*
1958 * Segment-based weighting requires space map histogram support.
1959 */
1960 if (zfs_metaslab_segment_weight_enabled &&
1961 spa_feature_is_enabled(spa, SPA_FEATURE_SPACEMAP_HISTOGRAM) &&
1962 (msp->ms_sm == NULL || msp->ms_sm->sm_dbuf->db_size ==
1963 sizeof (space_map_phys_t))) {
1964 weight = metaslab_segment_weight(msp);
1965 } else {
1966 weight = metaslab_space_weight(msp);
1967 }
1968 return (weight);
1969 }
1970
1971 static int
1972 metaslab_activate_allocator(metaslab_group_t *mg, metaslab_t *msp,
1973 int allocator, uint64_t activation_weight)
1974 {
1975 /*
1976 * If we're activating for the claim code, we don't want to actually
1977 * set the metaslab up for a specific allocator.
1978 */
1979 if (activation_weight == METASLAB_WEIGHT_CLAIM)
1980 return (0);
1981 metaslab_t **arr = (activation_weight == METASLAB_WEIGHT_PRIMARY ?
1982 mg->mg_primaries : mg->mg_secondaries);
1983
1984 ASSERT(MUTEX_HELD(&msp->ms_lock));
1985 mutex_enter(&mg->mg_lock);
1986 if (arr[allocator] != NULL) {
1987 mutex_exit(&mg->mg_lock);
1988 return (EEXIST);
1989 }
1990
1991 arr[allocator] = msp;
1992 ASSERT3S(msp->ms_allocator, ==, -1);
1993 msp->ms_allocator = allocator;
1994 msp->ms_primary = (activation_weight == METASLAB_WEIGHT_PRIMARY);
1995 mutex_exit(&mg->mg_lock);
1996
1997 return (0);
1998 }
1999
2000 static int
2001 metaslab_activate(metaslab_t *msp, int allocator, uint64_t activation_weight)
2002 {
2003 ASSERT(MUTEX_HELD(&msp->ms_lock));
2004
2005 if ((msp->ms_weight & METASLAB_ACTIVE_MASK) == 0) {
2006 int error = 0;
2007 metaslab_load_wait(msp);
2008 if (!msp->ms_loaded) {
2009 if ((error = metaslab_load(msp)) != 0) {
2010 metaslab_group_sort(msp->ms_group, msp, 0);
2011 return (error);
2012 }
2013 }
2014 if ((msp->ms_weight & METASLAB_ACTIVE_MASK) != 0) {
2015 /*
2016 * The metaslab was activated for another allocator
2017 * while we were waiting, we should reselect.
2018 */
2019 return (EBUSY);
2020 }
2021 if ((error = metaslab_activate_allocator(msp->ms_group, msp,
2022 allocator, activation_weight)) != 0) {
2023 return (error);
2024 }
2025
2026 msp->ms_activation_weight = msp->ms_weight;
2027 metaslab_group_sort(msp->ms_group, msp,
2028 msp->ms_weight | activation_weight);
2029 }
2030 ASSERT(msp->ms_loaded);
2031 ASSERT(msp->ms_weight & METASLAB_ACTIVE_MASK);
2032
2033 return (0);
2034 }
2035
2036 static void
2037 metaslab_passivate_allocator(metaslab_group_t *mg, metaslab_t *msp,
2038 uint64_t weight)
2039 {
2040 ASSERT(MUTEX_HELD(&msp->ms_lock));
2041 if (msp->ms_weight & METASLAB_WEIGHT_CLAIM) {
2042 metaslab_group_sort(mg, msp, weight);
2043 return;
2044 }
2045
2046 mutex_enter(&mg->mg_lock);
2047 ASSERT3P(msp->ms_group, ==, mg);
2048 if (msp->ms_primary) {
2049 ASSERT3U(0, <=, msp->ms_allocator);
2050 ASSERT3U(msp->ms_allocator, <, mg->mg_allocators);
2051 ASSERT3P(mg->mg_primaries[msp->ms_allocator], ==, msp);
2052 ASSERT(msp->ms_weight & METASLAB_WEIGHT_PRIMARY);
2053 mg->mg_primaries[msp->ms_allocator] = NULL;
2054 } else {
2055 ASSERT(msp->ms_weight & METASLAB_WEIGHT_SECONDARY);
2056 ASSERT3P(mg->mg_secondaries[msp->ms_allocator], ==, msp);
2057 mg->mg_secondaries[msp->ms_allocator] = NULL;
2058 }
2059 msp->ms_allocator = -1;
2060 metaslab_group_sort_impl(mg, msp, weight);
2061 mutex_exit(&mg->mg_lock);
2062 }
2063
2064 static void
2065 metaslab_passivate(metaslab_t *msp, uint64_t weight)
2066 {
2067 ASSERTV(uint64_t size = weight & ~METASLAB_WEIGHT_TYPE);
2068
2069 /*
2070 * If size < SPA_MINBLOCKSIZE, then we will not allocate from
2071 * this metaslab again. In that case, it had better be empty,
2072 * or we would be leaving space on the table.
2073 */
2074 ASSERT(!WEIGHT_IS_SPACEBASED(msp->ms_weight) ||
2075 size >= SPA_MINBLOCKSIZE ||
2076 range_tree_space(msp->ms_allocatable) == 0);
2077 ASSERT0(weight & METASLAB_ACTIVE_MASK);
2078
2079 msp->ms_activation_weight = 0;
2080 metaslab_passivate_allocator(msp->ms_group, msp, weight);
2081 ASSERT((msp->ms_weight & METASLAB_ACTIVE_MASK) == 0);
2082 }
2083
2084 /*
2085 * Segment-based metaslabs are activated once and remain active until
2086 * we either fail an allocation attempt (similar to space-based metaslabs)
2087 * or have exhausted the free space in zfs_metaslab_switch_threshold
2088 * buckets since the metaslab was activated. This function checks to see
2089 * if we've exhaused the zfs_metaslab_switch_threshold buckets in the
2090 * metaslab and passivates it proactively. This will allow us to select a
2091 * metaslab with a larger contiguous region, if any, remaining within this
2092 * metaslab group. If we're in sync pass > 1, then we continue using this
2093 * metaslab so that we don't dirty more block and cause more sync passes.
2094 */
2095 void
2096 metaslab_segment_may_passivate(metaslab_t *msp)
2097 {
2098 spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
2099
2100 if (WEIGHT_IS_SPACEBASED(msp->ms_weight) || spa_sync_pass(spa) > 1)
2101 return;
2102
2103 /*
2104 * Since we are in the middle of a sync pass, the most accurate
2105 * information that is accessible to us is the in-core range tree
2106 * histogram; calculate the new weight based on that information.
2107 */
2108 uint64_t weight = metaslab_weight_from_range_tree(msp);
2109 int activation_idx = WEIGHT_GET_INDEX(msp->ms_activation_weight);
2110 int current_idx = WEIGHT_GET_INDEX(weight);
2111
2112 if (current_idx <= activation_idx - zfs_metaslab_switch_threshold)
2113 metaslab_passivate(msp, weight);
2114 }
2115
2116 static void
2117 metaslab_preload(void *arg)
2118 {
2119 metaslab_t *msp = arg;
2120 spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
2121 fstrans_cookie_t cookie = spl_fstrans_mark();
2122
2123 ASSERT(!MUTEX_HELD(&msp->ms_group->mg_lock));
2124
2125 mutex_enter(&msp->ms_lock);
2126 metaslab_load_wait(msp);
2127 if (!msp->ms_loaded)
2128 (void) metaslab_load(msp);
2129 msp->ms_selected_txg = spa_syncing_txg(spa);
2130 mutex_exit(&msp->ms_lock);
2131 spl_fstrans_unmark(cookie);
2132 }
2133
2134 static void
2135 metaslab_group_preload(metaslab_group_t *mg)
2136 {
2137 spa_t *spa = mg->mg_vd->vdev_spa;
2138 metaslab_t *msp;
2139 avl_tree_t *t = &mg->mg_metaslab_tree;
2140 int m = 0;
2141
2142 if (spa_shutting_down(spa) || !metaslab_preload_enabled) {
2143 taskq_wait_outstanding(mg->mg_taskq, 0);
2144 return;
2145 }
2146
2147 mutex_enter(&mg->mg_lock);
2148
2149 /*
2150 * Load the next potential metaslabs
2151 */
2152 for (msp = avl_first(t); msp != NULL; msp = AVL_NEXT(t, msp)) {
2153 ASSERT3P(msp->ms_group, ==, mg);
2154
2155 /*
2156 * We preload only the maximum number of metaslabs specified
2157 * by metaslab_preload_limit. If a metaslab is being forced
2158 * to condense then we preload it too. This will ensure
2159 * that force condensing happens in the next txg.
2160 */
2161 if (++m > metaslab_preload_limit && !msp->ms_condense_wanted) {
2162 continue;
2163 }
2164
2165 VERIFY(taskq_dispatch(mg->mg_taskq, metaslab_preload,
2166 msp, TQ_SLEEP) != TASKQID_INVALID);
2167 }
2168 mutex_exit(&mg->mg_lock);
2169 }
2170
2171 /*
2172 * Determine if the space map's on-disk footprint is past our tolerance
2173 * for inefficiency. We would like to use the following criteria to make
2174 * our decision:
2175 *
2176 * 1. The size of the space map object should not dramatically increase as a
2177 * result of writing out the free space range tree.
2178 *
2179 * 2. The minimal on-disk space map representation is zfs_condense_pct/100
2180 * times the size than the free space range tree representation
2181 * (i.e. zfs_condense_pct = 110 and in-core = 1MB, minimal = 1.1MB).
2182 *
2183 * 3. The on-disk size of the space map should actually decrease.
2184 *
2185 * Unfortunately, we cannot compute the on-disk size of the space map in this
2186 * context because we cannot accurately compute the effects of compression, etc.
2187 * Instead, we apply the heuristic described in the block comment for
2188 * zfs_metaslab_condense_block_threshold - we only condense if the space used
2189 * is greater than a threshold number of blocks.
2190 */
2191 static boolean_t
2192 metaslab_should_condense(metaslab_t *msp)
2193 {
2194 space_map_t *sm = msp->ms_sm;
2195 vdev_t *vd = msp->ms_group->mg_vd;
2196 uint64_t vdev_blocksize = 1 << vd->vdev_ashift;
2197 uint64_t current_txg = spa_syncing_txg(vd->vdev_spa);
2198
2199 ASSERT(MUTEX_HELD(&msp->ms_lock));
2200 ASSERT(msp->ms_loaded);
2201
2202 /*
2203 * Allocations and frees in early passes are generally more space
2204 * efficient (in terms of blocks described in space map entries)
2205 * than the ones in later passes (e.g. we don't compress after
2206 * sync pass 5) and condensing a metaslab multiple times in a txg
2207 * could degrade performance.
2208 *
2209 * Thus we prefer condensing each metaslab at most once every txg at
2210 * the earliest sync pass possible. If a metaslab is eligible for
2211 * condensing again after being considered for condensing within the
2212 * same txg, it will hopefully be dirty in the next txg where it will
2213 * be condensed at an earlier pass.
2214 */
2215 if (msp->ms_condense_checked_txg == current_txg)
2216 return (B_FALSE);
2217 msp->ms_condense_checked_txg = current_txg;
2218
2219 /*
2220 * We always condense metaslabs that are empty and metaslabs for
2221 * which a condense request has been made.
2222 */
2223 if (avl_is_empty(&msp->ms_allocatable_by_size) ||
2224 msp->ms_condense_wanted)
2225 return (B_TRUE);
2226
2227 uint64_t object_size = space_map_length(msp->ms_sm);
2228 uint64_t optimal_size = space_map_estimate_optimal_size(sm,
2229 msp->ms_allocatable, SM_NO_VDEVID);
2230
2231 dmu_object_info_t doi;
2232 dmu_object_info_from_db(sm->sm_dbuf, &doi);
2233 uint64_t record_size = MAX(doi.doi_data_block_size, vdev_blocksize);
2234
2235 return (object_size >= (optimal_size * zfs_condense_pct / 100) &&
2236 object_size > zfs_metaslab_condense_block_threshold * record_size);
2237 }
2238
2239 /*
2240 * Condense the on-disk space map representation to its minimized form.
2241 * The minimized form consists of a small number of allocations followed by
2242 * the entries of the free range tree.
2243 */
2244 static void
2245 metaslab_condense(metaslab_t *msp, uint64_t txg, dmu_tx_t *tx)
2246 {
2247 range_tree_t *condense_tree;
2248 space_map_t *sm = msp->ms_sm;
2249
2250 ASSERT(MUTEX_HELD(&msp->ms_lock));
2251 ASSERT(msp->ms_loaded);
2252
2253
2254 zfs_dbgmsg("condensing: txg %llu, msp[%llu] %p, vdev id %llu, "
2255 "spa %s, smp size %llu, segments %lu, forcing condense=%s", txg,
2256 msp->ms_id, msp, msp->ms_group->mg_vd->vdev_id,
2257 msp->ms_group->mg_vd->vdev_spa->spa_name,
2258 space_map_length(msp->ms_sm),
2259 avl_numnodes(&msp->ms_allocatable->rt_root),
2260 msp->ms_condense_wanted ? "TRUE" : "FALSE");
2261
2262 msp->ms_condense_wanted = B_FALSE;
2263
2264 /*
2265 * Create an range tree that is 100% allocated. We remove segments
2266 * that have been freed in this txg, any deferred frees that exist,
2267 * and any allocation in the future. Removing segments should be
2268 * a relatively inexpensive operation since we expect these trees to
2269 * have a small number of nodes.
2270 */
2271 condense_tree = range_tree_create(NULL, NULL);
2272 range_tree_add(condense_tree, msp->ms_start, msp->ms_size);
2273
2274 range_tree_walk(msp->ms_freeing, range_tree_remove, condense_tree);
2275 range_tree_walk(msp->ms_freed, range_tree_remove, condense_tree);
2276
2277 for (int t = 0; t < TXG_DEFER_SIZE; t++) {
2278 range_tree_walk(msp->ms_defer[t],
2279 range_tree_remove, condense_tree);
2280 }
2281
2282 for (int t = 1; t < TXG_CONCURRENT_STATES; t++) {
2283 range_tree_walk(msp->ms_allocating[(txg + t) & TXG_MASK],
2284 range_tree_remove, condense_tree);
2285 }
2286
2287 /*
2288 * We're about to drop the metaslab's lock thus allowing
2289 * other consumers to change it's content. Set the
2290 * metaslab's ms_condensing flag to ensure that
2291 * allocations on this metaslab do not occur while we're
2292 * in the middle of committing it to disk. This is only critical
2293 * for ms_allocatable as all other range trees use per txg
2294 * views of their content.
2295 */
2296 msp->ms_condensing = B_TRUE;
2297
2298 mutex_exit(&msp->ms_lock);
2299 space_map_truncate(sm, zfs_metaslab_sm_blksz, tx);
2300
2301 /*
2302 * While we would ideally like to create a space map representation
2303 * that consists only of allocation records, doing so can be
2304 * prohibitively expensive because the in-core free tree can be
2305 * large, and therefore computationally expensive to subtract
2306 * from the condense_tree. Instead we sync out two trees, a cheap
2307 * allocation only tree followed by the in-core free tree. While not
2308 * optimal, this is typically close to optimal, and much cheaper to
2309 * compute.
2310 */
2311 space_map_write(sm, condense_tree, SM_ALLOC, SM_NO_VDEVID, tx);
2312 range_tree_vacate(condense_tree, NULL, NULL);
2313 range_tree_destroy(condense_tree);
2314
2315 space_map_write(sm, msp->ms_allocatable, SM_FREE, SM_NO_VDEVID, tx);
2316 mutex_enter(&msp->ms_lock);
2317 msp->ms_condensing = B_FALSE;
2318 }
2319
2320 /*
2321 * Write a metaslab to disk in the context of the specified transaction group.
2322 */
2323 void
2324 metaslab_sync(metaslab_t *msp, uint64_t txg)
2325 {
2326 metaslab_group_t *mg = msp->ms_group;
2327 vdev_t *vd = mg->mg_vd;
2328 spa_t *spa = vd->vdev_spa;
2329 objset_t *mos = spa_meta_objset(spa);
2330 range_tree_t *alloctree = msp->ms_allocating[txg & TXG_MASK];
2331 dmu_tx_t *tx;
2332 uint64_t object = space_map_object(msp->ms_sm);
2333
2334 ASSERT(!vd->vdev_ishole);
2335
2336 /*
2337 * This metaslab has just been added so there's no work to do now.
2338 */
2339 if (msp->ms_freeing == NULL) {
2340 ASSERT3P(alloctree, ==, NULL);
2341 return;
2342 }
2343
2344 ASSERT3P(alloctree, !=, NULL);
2345 ASSERT3P(msp->ms_freeing, !=, NULL);
2346 ASSERT3P(msp->ms_freed, !=, NULL);
2347 ASSERT3P(msp->ms_checkpointing, !=, NULL);
2348
2349 /*
2350 * Normally, we don't want to process a metaslab if there are no
2351 * allocations or frees to perform. However, if the metaslab is being
2352 * forced to condense and it's loaded, we need to let it through.
2353 */
2354 if (range_tree_is_empty(alloctree) &&
2355 range_tree_is_empty(msp->ms_freeing) &&
2356 range_tree_is_empty(msp->ms_checkpointing) &&
2357 !(msp->ms_loaded && msp->ms_condense_wanted))
2358 return;
2359
2360
2361 VERIFY(txg <= spa_final_dirty_txg(spa));
2362
2363 /*
2364 * The only state that can actually be changing concurrently with
2365 * metaslab_sync() is the metaslab's ms_allocatable. No other
2366 * thread can be modifying this txg's alloc, freeing,
2367 * freed, or space_map_phys_t. We drop ms_lock whenever we
2368 * could call into the DMU, because the DMU can call down to us
2369 * (e.g. via zio_free()) at any time.
2370 *
2371 * The spa_vdev_remove_thread() can be reading metaslab state
2372 * concurrently, and it is locked out by the ms_sync_lock. Note
2373 * that the ms_lock is insufficient for this, because it is dropped
2374 * by space_map_write().
2375 */
2376 tx = dmu_tx_create_assigned(spa_get_dsl(spa), txg);
2377
2378 if (msp->ms_sm == NULL) {
2379 uint64_t new_object;
2380
2381 new_object = space_map_alloc(mos, zfs_metaslab_sm_blksz, tx);
2382 VERIFY3U(new_object, !=, 0);
2383
2384 VERIFY0(space_map_open(&msp->ms_sm, mos, new_object,
2385 msp->ms_start, msp->ms_size, vd->vdev_ashift));
2386 ASSERT(msp->ms_sm != NULL);
2387 }
2388
2389 if (!range_tree_is_empty(msp->ms_checkpointing) &&
2390 vd->vdev_checkpoint_sm == NULL) {
2391 ASSERT(spa_has_checkpoint(spa));
2392
2393 uint64_t new_object = space_map_alloc(mos,
2394 vdev_standard_sm_blksz, tx);
2395 VERIFY3U(new_object, !=, 0);
2396
2397 VERIFY0(space_map_open(&vd->vdev_checkpoint_sm,
2398 mos, new_object, 0, vd->vdev_asize, vd->vdev_ashift));
2399 ASSERT3P(vd->vdev_checkpoint_sm, !=, NULL);
2400
2401 /*
2402 * We save the space map object as an entry in vdev_top_zap
2403 * so it can be retrieved when the pool is reopened after an
2404 * export or through zdb.
2405 */
2406 VERIFY0(zap_add(vd->vdev_spa->spa_meta_objset,
2407 vd->vdev_top_zap, VDEV_TOP_ZAP_POOL_CHECKPOINT_SM,
2408 sizeof (new_object), 1, &new_object, tx));
2409 }
2410
2411 mutex_enter(&msp->ms_sync_lock);
2412 mutex_enter(&msp->ms_lock);
2413
2414 /*
2415 * Note: metaslab_condense() clears the space map's histogram.
2416 * Therefore we must verify and remove this histogram before
2417 * condensing.
2418 */
2419 metaslab_group_histogram_verify(mg);
2420 metaslab_class_histogram_verify(mg->mg_class);
2421 metaslab_group_histogram_remove(mg, msp);
2422
2423 if (msp->ms_loaded && metaslab_should_condense(msp)) {
2424 metaslab_condense(msp, txg, tx);
2425 } else {
2426 mutex_exit(&msp->ms_lock);
2427 space_map_write(msp->ms_sm, alloctree, SM_ALLOC,
2428 SM_NO_VDEVID, tx);
2429 space_map_write(msp->ms_sm, msp->ms_freeing, SM_FREE,
2430 SM_NO_VDEVID, tx);
2431 mutex_enter(&msp->ms_lock);
2432 }
2433
2434 if (!range_tree_is_empty(msp->ms_checkpointing)) {
2435 ASSERT(spa_has_checkpoint(spa));
2436 ASSERT3P(vd->vdev_checkpoint_sm, !=, NULL);
2437
2438 /*
2439 * Since we are doing writes to disk and the ms_checkpointing
2440 * tree won't be changing during that time, we drop the
2441 * ms_lock while writing to the checkpoint space map.
2442 */
2443 mutex_exit(&msp->ms_lock);
2444 space_map_write(vd->vdev_checkpoint_sm,
2445 msp->ms_checkpointing, SM_FREE, SM_NO_VDEVID, tx);
2446 mutex_enter(&msp->ms_lock);
2447 space_map_update(vd->vdev_checkpoint_sm);
2448
2449 spa->spa_checkpoint_info.sci_dspace +=
2450 range_tree_space(msp->ms_checkpointing);
2451 vd->vdev_stat.vs_checkpoint_space +=
2452 range_tree_space(msp->ms_checkpointing);
2453 ASSERT3U(vd->vdev_stat.vs_checkpoint_space, ==,
2454 -vd->vdev_checkpoint_sm->sm_alloc);
2455
2456 range_tree_vacate(msp->ms_checkpointing, NULL, NULL);
2457 }
2458
2459 if (msp->ms_loaded) {
2460 /*
2461 * When the space map is loaded, we have an accurate
2462 * histogram in the range tree. This gives us an opportunity
2463 * to bring the space map's histogram up-to-date so we clear
2464 * it first before updating it.
2465 */
2466 space_map_histogram_clear(msp->ms_sm);
2467 space_map_histogram_add(msp->ms_sm, msp->ms_allocatable, tx);
2468
2469 /*
2470 * Since we've cleared the histogram we need to add back
2471 * any free space that has already been processed, plus
2472 * any deferred space. This allows the on-disk histogram
2473 * to accurately reflect all free space even if some space
2474 * is not yet available for allocation (i.e. deferred).
2475 */
2476 space_map_histogram_add(msp->ms_sm, msp->ms_freed, tx);
2477
2478 /*
2479 * Add back any deferred free space that has not been
2480 * added back into the in-core free tree yet. This will
2481 * ensure that we don't end up with a space map histogram
2482 * that is completely empty unless the metaslab is fully
2483 * allocated.
2484 */
2485 for (int t = 0; t < TXG_DEFER_SIZE; t++) {
2486 space_map_histogram_add(msp->ms_sm,
2487 msp->ms_defer[t], tx);
2488 }
2489 }
2490
2491 /*
2492 * Always add the free space from this sync pass to the space
2493 * map histogram. We want to make sure that the on-disk histogram
2494 * accounts for all free space. If the space map is not loaded,
2495 * then we will lose some accuracy but will correct it the next
2496 * time we load the space map.
2497 */
2498 space_map_histogram_add(msp->ms_sm, msp->ms_freeing, tx);
2499
2500 metaslab_group_histogram_add(mg, msp);
2501 metaslab_group_histogram_verify(mg);
2502 metaslab_class_histogram_verify(mg->mg_class);
2503
2504 /*
2505 * For sync pass 1, we avoid traversing this txg's free range tree
2506 * and instead will just swap the pointers for freeing and
2507 * freed. We can safely do this since the freed_tree is
2508 * guaranteed to be empty on the initial pass.
2509 */
2510 if (spa_sync_pass(spa) == 1) {
2511 range_tree_swap(&msp->ms_freeing, &msp->ms_freed);
2512 } else {
2513 range_tree_vacate(msp->ms_freeing,
2514 range_tree_add, msp->ms_freed);
2515 }
2516 range_tree_vacate(alloctree, NULL, NULL);
2517
2518 ASSERT0(range_tree_space(msp->ms_allocating[txg & TXG_MASK]));
2519 ASSERT0(range_tree_space(msp->ms_allocating[TXG_CLEAN(txg)
2520 & TXG_MASK]));
2521 ASSERT0(range_tree_space(msp->ms_freeing));
2522 ASSERT0(range_tree_space(msp->ms_checkpointing));
2523
2524 mutex_exit(&msp->ms_lock);
2525
2526 if (object != space_map_object(msp->ms_sm)) {
2527 object = space_map_object(msp->ms_sm);
2528 dmu_write(mos, vd->vdev_ms_array, sizeof (uint64_t) *
2529 msp->ms_id, sizeof (uint64_t), &object, tx);
2530 }
2531 mutex_exit(&msp->ms_sync_lock);
2532 dmu_tx_commit(tx);
2533 }
2534
2535 /*
2536 * Called after a transaction group has completely synced to mark
2537 * all of the metaslab's free space as usable.
2538 */
2539 void
2540 metaslab_sync_done(metaslab_t *msp, uint64_t txg)
2541 {
2542 metaslab_group_t *mg = msp->ms_group;
2543 vdev_t *vd = mg->mg_vd;
2544 spa_t *spa = vd->vdev_spa;
2545 range_tree_t **defer_tree;
2546 int64_t alloc_delta, defer_delta;
2547 boolean_t defer_allowed = B_TRUE;
2548
2549 ASSERT(!vd->vdev_ishole);
2550
2551 mutex_enter(&msp->ms_lock);
2552
2553 /*
2554 * If this metaslab is just becoming available, initialize its
2555 * range trees and add its capacity to the vdev.
2556 */
2557 if (msp->ms_freed == NULL) {
2558 for (int t = 0; t < TXG_SIZE; t++) {
2559 ASSERT(msp->ms_allocating[t] == NULL);
2560
2561 msp->ms_allocating[t] = range_tree_create(NULL, NULL);
2562 }
2563
2564 ASSERT3P(msp->ms_freeing, ==, NULL);
2565 msp->ms_freeing = range_tree_create(NULL, NULL);
2566
2567 ASSERT3P(msp->ms_freed, ==, NULL);
2568 msp->ms_freed = range_tree_create(NULL, NULL);
2569
2570 for (int t = 0; t < TXG_DEFER_SIZE; t++) {
2571 ASSERT(msp->ms_defer[t] == NULL);
2572
2573 msp->ms_defer[t] = range_tree_create(NULL, NULL);
2574 }
2575
2576 ASSERT3P(msp->ms_checkpointing, ==, NULL);
2577 msp->ms_checkpointing = range_tree_create(NULL, NULL);
2578
2579 vdev_space_update(vd, 0, 0, msp->ms_size);
2580 }
2581 ASSERT0(range_tree_space(msp->ms_freeing));
2582 ASSERT0(range_tree_space(msp->ms_checkpointing));
2583
2584 defer_tree = &msp->ms_defer[txg % TXG_DEFER_SIZE];
2585
2586 uint64_t free_space = metaslab_class_get_space(spa_normal_class(spa)) -
2587 metaslab_class_get_alloc(spa_normal_class(spa));
2588 if (free_space <= spa_get_slop_space(spa) || vd->vdev_removing) {
2589 defer_allowed = B_FALSE;
2590 }
2591
2592 defer_delta = 0;
2593 alloc_delta = space_map_alloc_delta(msp->ms_sm);
2594 if (defer_allowed) {
2595 defer_delta = range_tree_space(msp->ms_freed) -
2596 range_tree_space(*defer_tree);
2597 } else {
2598 defer_delta -= range_tree_space(*defer_tree);
2599 }
2600
2601 vdev_space_update(vd, alloc_delta + defer_delta, defer_delta, 0);
2602
2603 /*
2604 * If there's a metaslab_load() in progress, wait for it to complete
2605 * so that we have a consistent view of the in-core space map.
2606 */
2607 metaslab_load_wait(msp);
2608
2609 /*
2610 * Move the frees from the defer_tree back to the free
2611 * range tree (if it's loaded). Swap the freed_tree and
2612 * the defer_tree -- this is safe to do because we've
2613 * just emptied out the defer_tree.
2614 */
2615 range_tree_vacate(*defer_tree,
2616 msp->ms_loaded ? range_tree_add : NULL, msp->ms_allocatable);
2617 if (defer_allowed) {
2618 range_tree_swap(&msp->ms_freed, defer_tree);
2619 } else {
2620 range_tree_vacate(msp->ms_freed,
2621 msp->ms_loaded ? range_tree_add : NULL,
2622 msp->ms_allocatable);
2623 }
2624 space_map_update(msp->ms_sm);
2625
2626 msp->ms_deferspace += defer_delta;
2627 ASSERT3S(msp->ms_deferspace, >=, 0);
2628 ASSERT3S(msp->ms_deferspace, <=, msp->ms_size);
2629 if (msp->ms_deferspace != 0) {
2630 /*
2631 * Keep syncing this metaslab until all deferred frees
2632 * are back in circulation.
2633 */
2634 vdev_dirty(vd, VDD_METASLAB, msp, txg + 1);
2635 }
2636
2637 if (msp->ms_new) {
2638 msp->ms_new = B_FALSE;
2639 mutex_enter(&mg->mg_lock);
2640 mg->mg_ms_ready++;
2641 mutex_exit(&mg->mg_lock);
2642 }
2643 /*
2644 * Calculate the new weights before unloading any metaslabs.
2645 * This will give us the most accurate weighting.
2646 */
2647 metaslab_group_sort(mg, msp, metaslab_weight(msp) |
2648 (msp->ms_weight & METASLAB_ACTIVE_MASK));
2649
2650 /*
2651 * If the metaslab is loaded and we've not tried to load or allocate
2652 * from it in 'metaslab_unload_delay' txgs, then unload it.
2653 */
2654 if (msp->ms_loaded &&
2655 msp->ms_selected_txg + metaslab_unload_delay < txg) {
2656
2657 for (int t = 1; t < TXG_CONCURRENT_STATES; t++) {
2658 VERIFY0(range_tree_space(
2659 msp->ms_allocating[(txg + t) & TXG_MASK]));
2660 }
2661 if (msp->ms_allocator != -1) {
2662 metaslab_passivate(msp, msp->ms_weight &
2663 ~METASLAB_ACTIVE_MASK);
2664 }
2665
2666 if (!metaslab_debug_unload)
2667 metaslab_unload(msp);
2668 }
2669
2670 ASSERT0(range_tree_space(msp->ms_allocating[txg & TXG_MASK]));
2671 ASSERT0(range_tree_space(msp->ms_freeing));
2672 ASSERT0(range_tree_space(msp->ms_freed));
2673 ASSERT0(range_tree_space(msp->ms_checkpointing));
2674
2675 mutex_exit(&msp->ms_lock);
2676 }
2677
2678 void
2679 metaslab_sync_reassess(metaslab_group_t *mg)
2680 {
2681 spa_t *spa = mg->mg_class->mc_spa;
2682
2683 spa_config_enter(spa, SCL_ALLOC, FTAG, RW_READER);
2684 metaslab_group_alloc_update(mg);
2685 mg->mg_fragmentation = metaslab_group_fragmentation(mg);
2686
2687 /*
2688 * Preload the next potential metaslabs but only on active
2689 * metaslab groups. We can get into a state where the metaslab
2690 * is no longer active since we dirty metaslabs as we remove a
2691 * a device, thus potentially making the metaslab group eligible
2692 * for preloading.
2693 */
2694 if (mg->mg_activation_count > 0) {
2695 metaslab_group_preload(mg);
2696 }
2697 spa_config_exit(spa, SCL_ALLOC, FTAG);
2698 }
2699
2700 static uint64_t
2701 metaslab_distance(metaslab_t *msp, dva_t *dva)
2702 {
2703 uint64_t ms_shift = msp->ms_group->mg_vd->vdev_ms_shift;
2704 uint64_t offset = DVA_GET_OFFSET(dva) >> ms_shift;
2705 uint64_t start = msp->ms_id;
2706
2707 if (msp->ms_group->mg_vd->vdev_id != DVA_GET_VDEV(dva))
2708 return (1ULL << 63);
2709
2710 if (offset < start)
2711 return ((start - offset) << ms_shift);
2712 if (offset > start)
2713 return ((offset - start) << ms_shift);
2714 return (0);
2715 }
2716
2717 /*
2718 * ==========================================================================
2719 * Metaslab allocation tracing facility
2720 * ==========================================================================
2721 */
2722 #ifdef _METASLAB_TRACING
2723 kstat_t *metaslab_trace_ksp;
2724 kstat_named_t metaslab_trace_over_limit;
2725
2726 void
2727 metaslab_alloc_trace_init(void)
2728 {
2729 ASSERT(metaslab_alloc_trace_cache == NULL);
2730 metaslab_alloc_trace_cache = kmem_cache_create(
2731 "metaslab_alloc_trace_cache", sizeof (metaslab_alloc_trace_t),
2732 0, NULL, NULL, NULL, NULL, NULL, 0);
2733 metaslab_trace_ksp = kstat_create("zfs", 0, "metaslab_trace_stats",
2734 "misc", KSTAT_TYPE_NAMED, 1, KSTAT_FLAG_VIRTUAL);
2735 if (metaslab_trace_ksp != NULL) {
2736 metaslab_trace_ksp->ks_data = &metaslab_trace_over_limit;
2737 kstat_named_init(&metaslab_trace_over_limit,
2738 "metaslab_trace_over_limit", KSTAT_DATA_UINT64);
2739 kstat_install(metaslab_trace_ksp);
2740 }
2741 }
2742
2743 void
2744 metaslab_alloc_trace_fini(void)
2745 {
2746 if (metaslab_trace_ksp != NULL) {
2747 kstat_delete(metaslab_trace_ksp);
2748 metaslab_trace_ksp = NULL;
2749 }
2750 kmem_cache_destroy(metaslab_alloc_trace_cache);
2751 metaslab_alloc_trace_cache = NULL;
2752 }
2753
2754 /*
2755 * Add an allocation trace element to the allocation tracing list.
2756 */
2757 static void
2758 metaslab_trace_add(zio_alloc_list_t *zal, metaslab_group_t *mg,
2759 metaslab_t *msp, uint64_t psize, uint32_t dva_id, uint64_t offset,
2760 int allocator)
2761 {
2762 metaslab_alloc_trace_t *mat;
2763
2764 if (!metaslab_trace_enabled)
2765 return;
2766
2767 /*
2768 * When the tracing list reaches its maximum we remove
2769 * the second element in the list before adding a new one.
2770 * By removing the second element we preserve the original
2771 * entry as a clue to what allocations steps have already been
2772 * performed.
2773 */
2774 if (zal->zal_size == metaslab_trace_max_entries) {
2775 metaslab_alloc_trace_t *mat_next;
2776 #ifdef DEBUG
2777 panic("too many entries in allocation list");
2778 #endif
2779 atomic_inc_64(&metaslab_trace_over_limit.value.ui64);
2780 zal->zal_size--;
2781 mat_next = list_next(&zal->zal_list, list_head(&zal->zal_list));
2782 list_remove(&zal->zal_list, mat_next);
2783 kmem_cache_free(metaslab_alloc_trace_cache, mat_next);
2784 }
2785
2786 mat = kmem_cache_alloc(metaslab_alloc_trace_cache, KM_SLEEP);
2787 list_link_init(&mat->mat_list_node);
2788 mat->mat_mg = mg;
2789 mat->mat_msp = msp;
2790 mat->mat_size = psize;
2791 mat->mat_dva_id = dva_id;
2792 mat->mat_offset = offset;
2793 mat->mat_weight = 0;
2794 mat->mat_allocator = allocator;
2795
2796 if (msp != NULL)
2797 mat->mat_weight = msp->ms_weight;
2798
2799 /*
2800 * The list is part of the zio so locking is not required. Only
2801 * a single thread will perform allocations for a given zio.
2802 */
2803 list_insert_tail(&zal->zal_list, mat);
2804 zal->zal_size++;
2805
2806 ASSERT3U(zal->zal_size, <=, metaslab_trace_max_entries);
2807 }
2808
2809 void
2810 metaslab_trace_init(zio_alloc_list_t *zal)
2811 {
2812 list_create(&zal->zal_list, sizeof (metaslab_alloc_trace_t),
2813 offsetof(metaslab_alloc_trace_t, mat_list_node));
2814 zal->zal_size = 0;
2815 }
2816
2817 void
2818 metaslab_trace_fini(zio_alloc_list_t *zal)
2819 {
2820 metaslab_alloc_trace_t *mat;
2821
2822 while ((mat = list_remove_head(&zal->zal_list)) != NULL)
2823 kmem_cache_free(metaslab_alloc_trace_cache, mat);
2824 list_destroy(&zal->zal_list);
2825 zal->zal_size = 0;
2826 }
2827 #else
2828
2829 #define metaslab_trace_add(zal, mg, msp, psize, id, off, alloc)
2830
2831 void
2832 metaslab_alloc_trace_init(void)
2833 {
2834 }
2835
2836 void
2837 metaslab_alloc_trace_fini(void)
2838 {
2839 }
2840
2841 void
2842 metaslab_trace_init(zio_alloc_list_t *zal)
2843 {
2844 }
2845
2846 void
2847 metaslab_trace_fini(zio_alloc_list_t *zal)
2848 {
2849 }
2850
2851 #endif /* _METASLAB_TRACING */
2852
2853 /*
2854 * ==========================================================================
2855 * Metaslab block operations
2856 * ==========================================================================
2857 */
2858
2859 static void
2860 metaslab_group_alloc_increment(spa_t *spa, uint64_t vdev, void *tag, int flags,
2861 int allocator)
2862 {
2863 if (!(flags & METASLAB_ASYNC_ALLOC) ||
2864 (flags & METASLAB_DONT_THROTTLE))
2865 return;
2866
2867 metaslab_group_t *mg = vdev_lookup_top(spa, vdev)->vdev_mg;
2868 if (!mg->mg_class->mc_alloc_throttle_enabled)
2869 return;
2870
2871 (void) refcount_add(&mg->mg_alloc_queue_depth[allocator], tag);
2872 }
2873
2874 static void
2875 metaslab_group_increment_qdepth(metaslab_group_t *mg, int allocator)
2876 {
2877 uint64_t max = mg->mg_max_alloc_queue_depth;
2878 uint64_t cur = mg->mg_cur_max_alloc_queue_depth[allocator];
2879 while (cur < max) {
2880 if (atomic_cas_64(&mg->mg_cur_max_alloc_queue_depth[allocator],
2881 cur, cur + 1) == cur) {
2882 atomic_inc_64(
2883 &mg->mg_class->mc_alloc_max_slots[allocator]);
2884 return;
2885 }
2886 cur = mg->mg_cur_max_alloc_queue_depth[allocator];
2887 }
2888 }
2889
2890 void
2891 metaslab_group_alloc_decrement(spa_t *spa, uint64_t vdev, void *tag, int flags,
2892 int allocator, boolean_t io_complete)
2893 {
2894 if (!(flags & METASLAB_ASYNC_ALLOC) ||
2895 (flags & METASLAB_DONT_THROTTLE))
2896 return;
2897
2898 metaslab_group_t *mg = vdev_lookup_top(spa, vdev)->vdev_mg;
2899 if (!mg->mg_class->mc_alloc_throttle_enabled)
2900 return;
2901
2902 (void) refcount_remove(&mg->mg_alloc_queue_depth[allocator], tag);
2903 if (io_complete)
2904 metaslab_group_increment_qdepth(mg, allocator);
2905 }
2906
2907 void
2908 metaslab_group_alloc_verify(spa_t *spa, const blkptr_t *bp, void *tag,
2909 int allocator)
2910 {
2911 #ifdef ZFS_DEBUG
2912 const dva_t *dva = bp->blk_dva;
2913 int ndvas = BP_GET_NDVAS(bp);
2914
2915 for (int d = 0; d < ndvas; d++) {
2916 uint64_t vdev = DVA_GET_VDEV(&dva[d]);
2917 metaslab_group_t *mg = vdev_lookup_top(spa, vdev)->vdev_mg;
2918 VERIFY(refcount_not_held(&mg->mg_alloc_queue_depth[allocator],
2919 tag));
2920 }
2921 #endif
2922 }
2923
2924 static uint64_t
2925 metaslab_block_alloc(metaslab_t *msp, uint64_t size, uint64_t txg)
2926 {
2927 uint64_t start;
2928 range_tree_t *rt = msp->ms_allocatable;
2929 metaslab_class_t *mc = msp->ms_group->mg_class;
2930
2931 VERIFY(!msp->ms_condensing);
2932
2933 start = mc->mc_ops->msop_alloc(msp, size);
2934 if (start != -1ULL) {
2935 metaslab_group_t *mg = msp->ms_group;
2936 vdev_t *vd = mg->mg_vd;
2937
2938 VERIFY0(P2PHASE(start, 1ULL << vd->vdev_ashift));
2939 VERIFY0(P2PHASE(size, 1ULL << vd->vdev_ashift));
2940 VERIFY3U(range_tree_space(rt) - size, <=, msp->ms_size);
2941 range_tree_remove(rt, start, size);
2942
2943 if (range_tree_is_empty(msp->ms_allocating[txg & TXG_MASK]))
2944 vdev_dirty(mg->mg_vd, VDD_METASLAB, msp, txg);
2945
2946 range_tree_add(msp->ms_allocating[txg & TXG_MASK], start, size);
2947
2948 /* Track the last successful allocation */
2949 msp->ms_alloc_txg = txg;
2950 metaslab_verify_space(msp, txg);
2951 }
2952
2953 /*
2954 * Now that we've attempted the allocation we need to update the
2955 * metaslab's maximum block size since it may have changed.
2956 */
2957 msp->ms_max_size = metaslab_block_maxsize(msp);
2958 return (start);
2959 }
2960
2961 /*
2962 * Find the metaslab with the highest weight that is less than what we've
2963 * already tried. In the common case, this means that we will examine each
2964 * metaslab at most once. Note that concurrent callers could reorder metaslabs
2965 * by activation/passivation once we have dropped the mg_lock. If a metaslab is
2966 * activated by another thread, and we fail to allocate from the metaslab we
2967 * have selected, we may not try the newly-activated metaslab, and instead
2968 * activate another metaslab. This is not optimal, but generally does not cause
2969 * any problems (a possible exception being if every metaslab is completely full
2970 * except for the the newly-activated metaslab which we fail to examine).
2971 */
2972 static metaslab_t *
2973 find_valid_metaslab(metaslab_group_t *mg, uint64_t activation_weight,
2974 dva_t *dva, int d, uint64_t min_distance, uint64_t asize, int allocator,
2975 zio_alloc_list_t *zal, metaslab_t *search, boolean_t *was_active)
2976 {
2977 avl_index_t idx;
2978 avl_tree_t *t = &mg->mg_metaslab_tree;
2979 metaslab_t *msp = avl_find(t, search, &idx);
2980 if (msp == NULL)
2981 msp = avl_nearest(t, idx, AVL_AFTER);
2982
2983 for (; msp != NULL; msp = AVL_NEXT(t, msp)) {
2984 int i;
2985 if (!metaslab_should_allocate(msp, asize)) {
2986 metaslab_trace_add(zal, mg, msp, asize, d,
2987 TRACE_TOO_SMALL, allocator);
2988 continue;
2989 }
2990
2991 /*
2992 * If the selected metaslab is condensing, skip it.
2993 */
2994 if (msp->ms_condensing)
2995 continue;
2996
2997 *was_active = msp->ms_allocator != -1;
2998 /*
2999 * If we're activating as primary, this is our first allocation
3000 * from this disk, so we don't need to check how close we are.
3001 * If the metaslab under consideration was already active,
3002 * we're getting desperate enough to steal another allocator's
3003 * metaslab, so we still don't care about distances.
3004 */
3005 if (activation_weight == METASLAB_WEIGHT_PRIMARY || *was_active)
3006 break;
3007
3008 uint64_t target_distance = min_distance
3009 + (space_map_allocated(msp->ms_sm) != 0 ? 0 :
3010 min_distance >> 1);
3011
3012 for (i = 0; i < d; i++) {
3013 if (metaslab_distance(msp, &dva[i]) < target_distance)
3014 break;
3015 }
3016 if (i == d)
3017 break;
3018 }
3019
3020 if (msp != NULL) {
3021 search->ms_weight = msp->ms_weight;
3022 search->ms_start = msp->ms_start + 1;
3023 search->ms_allocator = msp->ms_allocator;
3024 search->ms_primary = msp->ms_primary;
3025 }
3026 return (msp);
3027 }
3028
3029 /* ARGSUSED */
3030 static uint64_t
3031 metaslab_group_alloc_normal(metaslab_group_t *mg, zio_alloc_list_t *zal,
3032 uint64_t asize, uint64_t txg, uint64_t min_distance, dva_t *dva, int d,
3033 int allocator)
3034 {
3035 metaslab_t *msp = NULL;
3036 uint64_t offset = -1ULL;
3037 uint64_t activation_weight;
3038
3039 activation_weight = METASLAB_WEIGHT_PRIMARY;
3040 for (int i = 0; i < d; i++) {
3041 if (activation_weight == METASLAB_WEIGHT_PRIMARY &&
3042 DVA_GET_VDEV(&dva[i]) == mg->mg_vd->vdev_id) {
3043 activation_weight = METASLAB_WEIGHT_SECONDARY;
3044 } else if (activation_weight == METASLAB_WEIGHT_SECONDARY &&
3045 DVA_GET_VDEV(&dva[i]) == mg->mg_vd->vdev_id) {
3046 activation_weight = METASLAB_WEIGHT_CLAIM;
3047 break;
3048 }
3049 }
3050
3051 /*
3052 * If we don't have enough metaslabs active to fill the entire array, we
3053 * just use the 0th slot.
3054 */
3055 if (mg->mg_ms_ready < mg->mg_allocators * 3)
3056 allocator = 0;
3057
3058 ASSERT3U(mg->mg_vd->vdev_ms_count, >=, 2);
3059
3060 metaslab_t *search = kmem_alloc(sizeof (*search), KM_SLEEP);
3061 search->ms_weight = UINT64_MAX;
3062 search->ms_start = 0;
3063 /*
3064 * At the end of the metaslab tree are the already-active metaslabs,
3065 * first the primaries, then the secondaries. When we resume searching
3066 * through the tree, we need to consider ms_allocator and ms_primary so
3067 * we start in the location right after where we left off, and don't
3068 * accidentally loop forever considering the same metaslabs.
3069 */
3070 search->ms_allocator = -1;
3071 search->ms_primary = B_TRUE;
3072 for (;;) {
3073 boolean_t was_active = B_FALSE;
3074
3075 mutex_enter(&mg->mg_lock);
3076
3077 if (activation_weight == METASLAB_WEIGHT_PRIMARY &&
3078 mg->mg_primaries[allocator] != NULL) {
3079 msp = mg->mg_primaries[allocator];
3080 was_active = B_TRUE;
3081 } else if (activation_weight == METASLAB_WEIGHT_SECONDARY &&
3082 mg->mg_secondaries[allocator] != NULL) {
3083 msp = mg->mg_secondaries[allocator];
3084 was_active = B_TRUE;
3085 } else {
3086 msp = find_valid_metaslab(mg, activation_weight, dva, d,
3087 min_distance, asize, allocator, zal, search,
3088 &was_active);
3089 }
3090
3091 mutex_exit(&mg->mg_lock);
3092 if (msp == NULL) {
3093 kmem_free(search, sizeof (*search));
3094 return (-1ULL);
3095 }
3096
3097 mutex_enter(&msp->ms_lock);
3098 /*
3099 * Ensure that the metaslab we have selected is still
3100 * capable of handling our request. It's possible that
3101 * another thread may have changed the weight while we
3102 * were blocked on the metaslab lock. We check the
3103 * active status first to see if we need to reselect
3104 * a new metaslab.
3105 */
3106 if (was_active && !(msp->ms_weight & METASLAB_ACTIVE_MASK)) {
3107 mutex_exit(&msp->ms_lock);
3108 continue;
3109 }
3110
3111 /*
3112 * If the metaslab is freshly activated for an allocator that
3113 * isn't the one we're allocating from, or if it's a primary and
3114 * we're seeking a secondary (or vice versa), we go back and
3115 * select a new metaslab.
3116 */
3117 if (!was_active && (msp->ms_weight & METASLAB_ACTIVE_MASK) &&
3118 (msp->ms_allocator != -1) &&
3119 (msp->ms_allocator != allocator || ((activation_weight ==
3120 METASLAB_WEIGHT_PRIMARY) != msp->ms_primary))) {
3121 mutex_exit(&msp->ms_lock);
3122 continue;
3123 }
3124
3125 if (msp->ms_weight & METASLAB_WEIGHT_CLAIM &&
3126 activation_weight != METASLAB_WEIGHT_CLAIM) {
3127 metaslab_passivate(msp, msp->ms_weight &
3128 ~METASLAB_WEIGHT_CLAIM);
3129 mutex_exit(&msp->ms_lock);
3130 continue;
3131 }
3132
3133 if (metaslab_activate(msp, allocator, activation_weight) != 0) {
3134 mutex_exit(&msp->ms_lock);
3135 continue;
3136 }
3137
3138 msp->ms_selected_txg = txg;
3139
3140 /*
3141 * Now that we have the lock, recheck to see if we should
3142 * continue to use this metaslab for this allocation. The
3143 * the metaslab is now loaded so metaslab_should_allocate() can
3144 * accurately determine if the allocation attempt should
3145 * proceed.
3146 */
3147 if (!metaslab_should_allocate(msp, asize)) {
3148 /* Passivate this metaslab and select a new one. */
3149 metaslab_trace_add(zal, mg, msp, asize, d,
3150 TRACE_TOO_SMALL, allocator);
3151 goto next;
3152 }
3153
3154
3155 /*
3156 * If this metaslab is currently condensing then pick again as
3157 * we can't manipulate this metaslab until it's committed
3158 * to disk.
3159 */
3160 if (msp->ms_condensing) {
3161 metaslab_trace_add(zal, mg, msp, asize, d,
3162 TRACE_CONDENSING, allocator);
3163 metaslab_passivate(msp, msp->ms_weight &
3164 ~METASLAB_ACTIVE_MASK);
3165 mutex_exit(&msp->ms_lock);
3166 continue;
3167 }
3168
3169 offset = metaslab_block_alloc(msp, asize, txg);
3170 metaslab_trace_add(zal, mg, msp, asize, d, offset, allocator);
3171
3172 if (offset != -1ULL) {
3173 /* Proactively passivate the metaslab, if needed */
3174 metaslab_segment_may_passivate(msp);
3175 break;
3176 }
3177 next:
3178 ASSERT(msp->ms_loaded);
3179
3180 /*
3181 * We were unable to allocate from this metaslab so determine
3182 * a new weight for this metaslab. Now that we have loaded
3183 * the metaslab we can provide a better hint to the metaslab
3184 * selector.
3185 *
3186 * For space-based metaslabs, we use the maximum block size.
3187 * This information is only available when the metaslab
3188 * is loaded and is more accurate than the generic free
3189 * space weight that was calculated by metaslab_weight().
3190 * This information allows us to quickly compare the maximum
3191 * available allocation in the metaslab to the allocation
3192 * size being requested.
3193 *
3194 * For segment-based metaslabs, determine the new weight
3195 * based on the highest bucket in the range tree. We
3196 * explicitly use the loaded segment weight (i.e. the range
3197 * tree histogram) since it contains the space that is
3198 * currently available for allocation and is accurate
3199 * even within a sync pass.
3200 */
3201 if (WEIGHT_IS_SPACEBASED(msp->ms_weight)) {
3202 uint64_t weight = metaslab_block_maxsize(msp);
3203 WEIGHT_SET_SPACEBASED(weight);
3204 metaslab_passivate(msp, weight);
3205 } else {
3206 metaslab_passivate(msp,
3207 metaslab_weight_from_range_tree(msp));
3208 }
3209
3210 /*
3211 * We have just failed an allocation attempt, check
3212 * that metaslab_should_allocate() agrees. Otherwise,
3213 * we may end up in an infinite loop retrying the same
3214 * metaslab.
3215 */
3216 ASSERT(!metaslab_should_allocate(msp, asize));
3217 mutex_exit(&msp->ms_lock);
3218 }
3219 mutex_exit(&msp->ms_lock);
3220 kmem_free(search, sizeof (*search));
3221 return (offset);
3222 }
3223
3224 static uint64_t
3225 metaslab_group_alloc(metaslab_group_t *mg, zio_alloc_list_t *zal,
3226 uint64_t asize, uint64_t txg, uint64_t min_distance, dva_t *dva, int d,
3227 int allocator)
3228 {
3229 uint64_t offset;
3230 ASSERT(mg->mg_initialized);
3231
3232 offset = metaslab_group_alloc_normal(mg, zal, asize, txg,
3233 min_distance, dva, d, allocator);
3234
3235 mutex_enter(&mg->mg_lock);
3236 if (offset == -1ULL) {
3237 mg->mg_failed_allocations++;
3238 metaslab_trace_add(zal, mg, NULL, asize, d,
3239 TRACE_GROUP_FAILURE, allocator);
3240 if (asize == SPA_GANGBLOCKSIZE) {
3241 /*
3242 * This metaslab group was unable to allocate
3243 * the minimum gang block size so it must be out of
3244 * space. We must notify the allocation throttle
3245 * to start skipping allocation attempts to this
3246 * metaslab group until more space becomes available.
3247 * Note: this failure cannot be caused by the
3248 * allocation throttle since the allocation throttle
3249 * is only responsible for skipping devices and
3250 * not failing block allocations.
3251 */
3252 mg->mg_no_free_space = B_TRUE;
3253 }
3254 }
3255 mg->mg_allocations++;
3256 mutex_exit(&mg->mg_lock);
3257 return (offset);
3258 }
3259
3260 /*
3261 * If we have to write a ditto block (i.e. more than one DVA for a given BP)
3262 * on the same vdev as an existing DVA of this BP, then try to allocate it
3263 * at least (vdev_asize / (2 ^ ditto_same_vdev_distance_shift)) away from the
3264 * existing DVAs.
3265 */
3266 int ditto_same_vdev_distance_shift = 3;
3267
3268 /*
3269 * Allocate a block for the specified i/o.
3270 */
3271 int
3272 metaslab_alloc_dva(spa_t *spa, metaslab_class_t *mc, uint64_t psize,
3273 dva_t *dva, int d, dva_t *hintdva, uint64_t txg, int flags,
3274 zio_alloc_list_t *zal, int allocator)
3275 {
3276 metaslab_group_t *mg, *fast_mg, *rotor;
3277 vdev_t *vd;
3278 boolean_t try_hard = B_FALSE;
3279
3280 ASSERT(!DVA_IS_VALID(&dva[d]));
3281
3282 /*
3283 * For testing, make some blocks above a certain size be gang blocks.
3284 */
3285 if (psize >= metaslab_force_ganging && (ddi_get_lbolt() & 3) == 0) {
3286 metaslab_trace_add(zal, NULL, NULL, psize, d, TRACE_FORCE_GANG,
3287 allocator);
3288 return (SET_ERROR(ENOSPC));
3289 }
3290
3291 /*
3292 * Start at the rotor and loop through all mgs until we find something.
3293 * Note that there's no locking on mc_rotor or mc_aliquot because
3294 * nothing actually breaks if we miss a few updates -- we just won't
3295 * allocate quite as evenly. It all balances out over time.
3296 *
3297 * If we are doing ditto or log blocks, try to spread them across
3298 * consecutive vdevs. If we're forced to reuse a vdev before we've
3299 * allocated all of our ditto blocks, then try and spread them out on
3300 * that vdev as much as possible. If it turns out to not be possible,
3301 * gradually lower our standards until anything becomes acceptable.
3302 * Also, allocating on consecutive vdevs (as opposed to random vdevs)
3303 * gives us hope of containing our fault domains to something we're
3304 * able to reason about. Otherwise, any two top-level vdev failures
3305 * will guarantee the loss of data. With consecutive allocation,
3306 * only two adjacent top-level vdev failures will result in data loss.
3307 *
3308 * If we are doing gang blocks (hintdva is non-NULL), try to keep
3309 * ourselves on the same vdev as our gang block header. That
3310 * way, we can hope for locality in vdev_cache, plus it makes our
3311 * fault domains something tractable.
3312 */
3313 if (hintdva) {
3314 vd = vdev_lookup_top(spa, DVA_GET_VDEV(&hintdva[d]));
3315
3316 /*
3317 * It's possible the vdev we're using as the hint no
3318 * longer exists or its mg has been closed (e.g. by
3319 * device removal). Consult the rotor when
3320 * all else fails.
3321 */
3322 if (vd != NULL && vd->vdev_mg != NULL) {
3323 mg = vd->vdev_mg;
3324
3325 if (flags & METASLAB_HINTBP_AVOID &&
3326 mg->mg_next != NULL)
3327 mg = mg->mg_next;
3328 } else {
3329 mg = mc->mc_rotor;
3330 }
3331 } else if (d != 0) {
3332 vd = vdev_lookup_top(spa, DVA_GET_VDEV(&dva[d - 1]));
3333 mg = vd->vdev_mg->mg_next;
3334 } else if (flags & METASLAB_FASTWRITE) {
3335 mg = fast_mg = mc->mc_rotor;
3336
3337 do {
3338 if (fast_mg->mg_vd->vdev_pending_fastwrite <
3339 mg->mg_vd->vdev_pending_fastwrite)
3340 mg = fast_mg;
3341 } while ((fast_mg = fast_mg->mg_next) != mc->mc_rotor);
3342
3343 } else {
3344 mg = mc->mc_rotor;
3345 }
3346
3347 /*
3348 * If the hint put us into the wrong metaslab class, or into a
3349 * metaslab group that has been passivated, just follow the rotor.
3350 */
3351 if (mg->mg_class != mc || mg->mg_activation_count <= 0)
3352 mg = mc->mc_rotor;
3353
3354 rotor = mg;
3355 top:
3356 do {
3357 boolean_t allocatable;
3358
3359 ASSERT(mg->mg_activation_count == 1);
3360 vd = mg->mg_vd;
3361
3362 /*
3363 * Don't allocate from faulted devices.
3364 */
3365 if (try_hard) {
3366 spa_config_enter(spa, SCL_ZIO, FTAG, RW_READER);
3367 allocatable = vdev_allocatable(vd);
3368 spa_config_exit(spa, SCL_ZIO, FTAG);
3369 } else {
3370 allocatable = vdev_allocatable(vd);
3371 }
3372
3373 /*
3374 * Determine if the selected metaslab group is eligible
3375 * for allocations. If we're ganging then don't allow
3376 * this metaslab group to skip allocations since that would
3377 * inadvertently return ENOSPC and suspend the pool
3378 * even though space is still available.
3379 */
3380 if (allocatable && !GANG_ALLOCATION(flags) && !try_hard) {
3381 allocatable = metaslab_group_allocatable(mg, rotor,
3382 psize, allocator);
3383 }
3384
3385 if (!allocatable) {
3386 metaslab_trace_add(zal, mg, NULL, psize, d,
3387 TRACE_NOT_ALLOCATABLE, allocator);
3388 goto next;
3389 }
3390
3391 ASSERT(mg->mg_initialized);
3392
3393 /*
3394 * Avoid writing single-copy data to a failing,
3395 * non-redundant vdev, unless we've already tried all
3396 * other vdevs.
3397 */
3398 if ((vd->vdev_stat.vs_write_errors > 0 ||
3399 vd->vdev_state < VDEV_STATE_HEALTHY) &&
3400 d == 0 && !try_hard && vd->vdev_children == 0) {
3401 metaslab_trace_add(zal, mg, NULL, psize, d,
3402 TRACE_VDEV_ERROR, allocator);
3403 goto next;
3404 }
3405
3406 ASSERT(mg->mg_class == mc);
3407
3408 /*
3409 * If we don't need to try hard, then require that the
3410 * block be 1/8th of the device away from any other DVAs
3411 * in this BP. If we are trying hard, allow any offset
3412 * to be used (distance=0).
3413 */
3414 uint64_t distance = 0;
3415 if (!try_hard) {
3416 distance = vd->vdev_asize >>
3417 ditto_same_vdev_distance_shift;
3418 if (distance <= (1ULL << vd->vdev_ms_shift))
3419 distance = 0;
3420 }
3421
3422 uint64_t asize = vdev_psize_to_asize(vd, psize);
3423 ASSERT(P2PHASE(asize, 1ULL << vd->vdev_ashift) == 0);
3424
3425 uint64_t offset = metaslab_group_alloc(mg, zal, asize, txg,
3426 distance, dva, d, allocator);
3427
3428 if (offset != -1ULL) {
3429 /*
3430 * If we've just selected this metaslab group,
3431 * figure out whether the corresponding vdev is
3432 * over- or under-used relative to the pool,
3433 * and set an allocation bias to even it out.
3434 *
3435 * Bias is also used to compensate for unequally
3436 * sized vdevs so that space is allocated fairly.
3437 */
3438 if (mc->mc_aliquot == 0 && metaslab_bias_enabled) {
3439 vdev_stat_t *vs = &vd->vdev_stat;
3440 int64_t vs_free = vs->vs_space - vs->vs_alloc;
3441 int64_t mc_free = mc->mc_space - mc->mc_alloc;
3442 int64_t ratio;
3443
3444 /*
3445 * Calculate how much more or less we should
3446 * try to allocate from this device during
3447 * this iteration around the rotor.
3448 *
3449 * This basically introduces a zero-centered
3450 * bias towards the devices with the most
3451 * free space, while compensating for vdev
3452 * size differences.
3453 *
3454 * Examples:
3455 * vdev V1 = 16M/128M
3456 * vdev V2 = 16M/128M
3457 * ratio(V1) = 100% ratio(V2) = 100%
3458 *
3459 * vdev V1 = 16M/128M
3460 * vdev V2 = 64M/128M
3461 * ratio(V1) = 127% ratio(V2) = 72%
3462 *
3463 * vdev V1 = 16M/128M
3464 * vdev V2 = 64M/512M
3465 * ratio(V1) = 40% ratio(V2) = 160%
3466 */
3467 ratio = (vs_free * mc->mc_alloc_groups * 100) /
3468 (mc_free + 1);
3469 mg->mg_bias = ((ratio - 100) *
3470 (int64_t)mg->mg_aliquot) / 100;
3471 } else if (!metaslab_bias_enabled) {
3472 mg->mg_bias = 0;
3473 }
3474
3475 if ((flags & METASLAB_FASTWRITE) ||
3476 atomic_add_64_nv(&mc->mc_aliquot, asize) >=
3477 mg->mg_aliquot + mg->mg_bias) {
3478 mc->mc_rotor = mg->mg_next;
3479 mc->mc_aliquot = 0;
3480 }
3481
3482 DVA_SET_VDEV(&dva[d], vd->vdev_id);
3483 DVA_SET_OFFSET(&dva[d], offset);
3484 DVA_SET_GANG(&dva[d],
3485 ((flags & METASLAB_GANG_HEADER) ? 1 : 0));
3486 DVA_SET_ASIZE(&dva[d], asize);
3487
3488 if (flags & METASLAB_FASTWRITE) {
3489 atomic_add_64(&vd->vdev_pending_fastwrite,
3490 psize);
3491 }
3492
3493 return (0);
3494 }
3495 next:
3496 mc->mc_rotor = mg->mg_next;
3497 mc->mc_aliquot = 0;
3498 } while ((mg = mg->mg_next) != rotor);
3499
3500 /*
3501 * If we haven't tried hard, do so now.
3502 */
3503 if (!try_hard) {
3504 try_hard = B_TRUE;
3505 goto top;
3506 }
3507
3508 bzero(&dva[d], sizeof (dva_t));
3509
3510 metaslab_trace_add(zal, rotor, NULL, psize, d, TRACE_ENOSPC, allocator);
3511 return (SET_ERROR(ENOSPC));
3512 }
3513
3514 void
3515 metaslab_free_concrete(vdev_t *vd, uint64_t offset, uint64_t asize,
3516 boolean_t checkpoint)
3517 {
3518 metaslab_t *msp;
3519 spa_t *spa = vd->vdev_spa;
3520
3521 ASSERT(vdev_is_concrete(vd));
3522 ASSERT3U(spa_config_held(spa, SCL_ALL, RW_READER), !=, 0);
3523 ASSERT3U(offset >> vd->vdev_ms_shift, <, vd->vdev_ms_count);
3524
3525 msp = vd->vdev_ms[offset >> vd->vdev_ms_shift];
3526
3527 VERIFY(!msp->ms_condensing);
3528 VERIFY3U(offset, >=, msp->ms_start);
3529 VERIFY3U(offset + asize, <=, msp->ms_start + msp->ms_size);
3530 VERIFY0(P2PHASE(offset, 1ULL << vd->vdev_ashift));
3531 VERIFY0(P2PHASE(asize, 1ULL << vd->vdev_ashift));
3532
3533 metaslab_check_free_impl(vd, offset, asize);
3534
3535 mutex_enter(&msp->ms_lock);
3536 if (range_tree_is_empty(msp->ms_freeing) &&
3537 range_tree_is_empty(msp->ms_checkpointing)) {
3538 vdev_dirty(vd, VDD_METASLAB, msp, spa_syncing_txg(spa));
3539 }
3540
3541 if (checkpoint) {
3542 ASSERT(spa_has_checkpoint(spa));
3543 range_tree_add(msp->ms_checkpointing, offset, asize);
3544 } else {
3545 range_tree_add(msp->ms_freeing, offset, asize);
3546 }
3547 mutex_exit(&msp->ms_lock);
3548 }
3549
3550 /* ARGSUSED */
3551 void
3552 metaslab_free_impl_cb(uint64_t inner_offset, vdev_t *vd, uint64_t offset,
3553 uint64_t size, void *arg)
3554 {
3555 boolean_t *checkpoint = arg;
3556
3557 ASSERT3P(checkpoint, !=, NULL);
3558
3559 if (vd->vdev_ops->vdev_op_remap != NULL)
3560 vdev_indirect_mark_obsolete(vd, offset, size);
3561 else
3562 metaslab_free_impl(vd, offset, size, *checkpoint);
3563 }
3564
3565 static void
3566 metaslab_free_impl(vdev_t *vd, uint64_t offset, uint64_t size,
3567 boolean_t checkpoint)
3568 {
3569 spa_t *spa = vd->vdev_spa;
3570
3571 ASSERT3U(spa_config_held(spa, SCL_ALL, RW_READER), !=, 0);
3572
3573 if (spa_syncing_txg(spa) > spa_freeze_txg(spa))
3574 return;
3575
3576 if (spa->spa_vdev_removal != NULL &&
3577 spa->spa_vdev_removal->svr_vdev_id == vd->vdev_id &&
3578 vdev_is_concrete(vd)) {
3579 /*
3580 * Note: we check if the vdev is concrete because when
3581 * we complete the removal, we first change the vdev to be
3582 * an indirect vdev (in open context), and then (in syncing
3583 * context) clear spa_vdev_removal.
3584 */
3585 free_from_removing_vdev(vd, offset, size);
3586 } else if (vd->vdev_ops->vdev_op_remap != NULL) {
3587 vdev_indirect_mark_obsolete(vd, offset, size);
3588 vd->vdev_ops->vdev_op_remap(vd, offset, size,
3589 metaslab_free_impl_cb, &checkpoint);
3590 } else {
3591 metaslab_free_concrete(vd, offset, size, checkpoint);
3592 }
3593 }
3594
3595 typedef struct remap_blkptr_cb_arg {
3596 blkptr_t *rbca_bp;
3597 spa_remap_cb_t rbca_cb;
3598 vdev_t *rbca_remap_vd;
3599 uint64_t rbca_remap_offset;
3600 void *rbca_cb_arg;
3601 } remap_blkptr_cb_arg_t;
3602
3603 void
3604 remap_blkptr_cb(uint64_t inner_offset, vdev_t *vd, uint64_t offset,
3605 uint64_t size, void *arg)
3606 {
3607 remap_blkptr_cb_arg_t *rbca = arg;
3608 blkptr_t *bp = rbca->rbca_bp;
3609
3610 /* We can not remap split blocks. */
3611 if (size != DVA_GET_ASIZE(&bp->blk_dva[0]))
3612 return;
3613 ASSERT0(inner_offset);
3614
3615 if (rbca->rbca_cb != NULL) {
3616 /*
3617 * At this point we know that we are not handling split
3618 * blocks and we invoke the callback on the previous
3619 * vdev which must be indirect.
3620 */
3621 ASSERT3P(rbca->rbca_remap_vd->vdev_ops, ==, &vdev_indirect_ops);
3622
3623 rbca->rbca_cb(rbca->rbca_remap_vd->vdev_id,
3624 rbca->rbca_remap_offset, size, rbca->rbca_cb_arg);
3625
3626 /* set up remap_blkptr_cb_arg for the next call */
3627 rbca->rbca_remap_vd = vd;
3628 rbca->rbca_remap_offset = offset;
3629 }
3630
3631 /*
3632 * The phys birth time is that of dva[0]. This ensures that we know
3633 * when each dva was written, so that resilver can determine which
3634 * blocks need to be scrubbed (i.e. those written during the time
3635 * the vdev was offline). It also ensures that the key used in
3636 * the ARC hash table is unique (i.e. dva[0] + phys_birth). If
3637 * we didn't change the phys_birth, a lookup in the ARC for a
3638 * remapped BP could find the data that was previously stored at
3639 * this vdev + offset.
3640 */
3641 vdev_t *oldvd = vdev_lookup_top(vd->vdev_spa,
3642 DVA_GET_VDEV(&bp->blk_dva[0]));
3643 vdev_indirect_births_t *vib = oldvd->vdev_indirect_births;
3644 bp->blk_phys_birth = vdev_indirect_births_physbirth(vib,
3645 DVA_GET_OFFSET(&bp->blk_dva[0]), DVA_GET_ASIZE(&bp->blk_dva[0]));
3646
3647 DVA_SET_VDEV(&bp->blk_dva[0], vd->vdev_id);
3648 DVA_SET_OFFSET(&bp->blk_dva[0], offset);
3649 }
3650
3651 /*
3652 * If the block pointer contains any indirect DVAs, modify them to refer to
3653 * concrete DVAs. Note that this will sometimes not be possible, leaving
3654 * the indirect DVA in place. This happens if the indirect DVA spans multiple
3655 * segments in the mapping (i.e. it is a "split block").
3656 *
3657 * If the BP was remapped, calls the callback on the original dva (note the
3658 * callback can be called multiple times if the original indirect DVA refers
3659 * to another indirect DVA, etc).
3660 *
3661 * Returns TRUE if the BP was remapped.
3662 */
3663 boolean_t
3664 spa_remap_blkptr(spa_t *spa, blkptr_t *bp, spa_remap_cb_t callback, void *arg)
3665 {
3666 remap_blkptr_cb_arg_t rbca;
3667
3668 if (!zfs_remap_blkptr_enable)
3669 return (B_FALSE);
3670
3671 if (!spa_feature_is_enabled(spa, SPA_FEATURE_OBSOLETE_COUNTS))
3672 return (B_FALSE);
3673
3674 /*
3675 * Dedup BP's can not be remapped, because ddt_phys_select() depends
3676 * on DVA[0] being the same in the BP as in the DDT (dedup table).
3677 */
3678 if (BP_GET_DEDUP(bp))
3679 return (B_FALSE);
3680
3681 /*
3682 * Gang blocks can not be remapped, because
3683 * zio_checksum_gang_verifier() depends on the DVA[0] that's in
3684 * the BP used to read the gang block header (GBH) being the same
3685 * as the DVA[0] that we allocated for the GBH.
3686 */
3687 if (BP_IS_GANG(bp))
3688 return (B_FALSE);
3689
3690 /*
3691 * Embedded BP's have no DVA to remap.
3692 */
3693 if (BP_GET_NDVAS(bp) < 1)
3694 return (B_FALSE);
3695
3696 /*
3697 * Note: we only remap dva[0]. If we remapped other dvas, we
3698 * would no longer know what their phys birth txg is.
3699 */
3700 dva_t *dva = &bp->blk_dva[0];
3701
3702 uint64_t offset = DVA_GET_OFFSET(dva);
3703 uint64_t size = DVA_GET_ASIZE(dva);
3704 vdev_t *vd = vdev_lookup_top(spa, DVA_GET_VDEV(dva));
3705
3706 if (vd->vdev_ops->vdev_op_remap == NULL)
3707 return (B_FALSE);
3708
3709 rbca.rbca_bp = bp;
3710 rbca.rbca_cb = callback;
3711 rbca.rbca_remap_vd = vd;
3712 rbca.rbca_remap_offset = offset;
3713 rbca.rbca_cb_arg = arg;
3714
3715 /*
3716 * remap_blkptr_cb() will be called in order for each level of
3717 * indirection, until a concrete vdev is reached or a split block is
3718 * encountered. old_vd and old_offset are updated within the callback
3719 * as we go from the one indirect vdev to the next one (either concrete
3720 * or indirect again) in that order.
3721 */
3722 vd->vdev_ops->vdev_op_remap(vd, offset, size, remap_blkptr_cb, &rbca);
3723
3724 /* Check if the DVA wasn't remapped because it is a split block */
3725 if (DVA_GET_VDEV(&rbca.rbca_bp->blk_dva[0]) == vd->vdev_id)
3726 return (B_FALSE);
3727
3728 return (B_TRUE);
3729 }
3730
3731 /*
3732 * Undo the allocation of a DVA which happened in the given transaction group.
3733 */
3734 void
3735 metaslab_unalloc_dva(spa_t *spa, const dva_t *dva, uint64_t txg)
3736 {
3737 metaslab_t *msp;
3738 vdev_t *vd;
3739 uint64_t vdev = DVA_GET_VDEV(dva);
3740 uint64_t offset = DVA_GET_OFFSET(dva);
3741 uint64_t size = DVA_GET_ASIZE(dva);
3742
3743 ASSERT(DVA_IS_VALID(dva));
3744 ASSERT3U(spa_config_held(spa, SCL_ALL, RW_READER), !=, 0);
3745
3746 if (txg > spa_freeze_txg(spa))
3747 return;
3748
3749 if ((vd = vdev_lookup_top(spa, vdev)) == NULL || !DVA_IS_VALID(dva) ||
3750 (offset >> vd->vdev_ms_shift) >= vd->vdev_ms_count) {
3751 zfs_panic_recover("metaslab_free_dva(): bad DVA %llu:%llu:%llu",
3752 (u_longlong_t)vdev, (u_longlong_t)offset,
3753 (u_longlong_t)size);
3754 return;
3755 }
3756
3757 ASSERT(!vd->vdev_removing);
3758 ASSERT(vdev_is_concrete(vd));
3759 ASSERT0(vd->vdev_indirect_config.vic_mapping_object);
3760 ASSERT3P(vd->vdev_indirect_mapping, ==, NULL);
3761
3762 if (DVA_GET_GANG(dva))
3763 size = vdev_psize_to_asize(vd, SPA_GANGBLOCKSIZE);
3764
3765 msp = vd->vdev_ms[offset >> vd->vdev_ms_shift];
3766
3767 mutex_enter(&msp->ms_lock);
3768 range_tree_remove(msp->ms_allocating[txg & TXG_MASK],
3769 offset, size);
3770
3771 VERIFY(!msp->ms_condensing);
3772 VERIFY3U(offset, >=, msp->ms_start);
3773 VERIFY3U(offset + size, <=, msp->ms_start + msp->ms_size);
3774 VERIFY3U(range_tree_space(msp->ms_allocatable) + size, <=,
3775 msp->ms_size);
3776 VERIFY0(P2PHASE(offset, 1ULL << vd->vdev_ashift));
3777 VERIFY0(P2PHASE(size, 1ULL << vd->vdev_ashift));
3778 range_tree_add(msp->ms_allocatable, offset, size);
3779 mutex_exit(&msp->ms_lock);
3780 }
3781
3782 /*
3783 * Free the block represented by the given DVA.
3784 */
3785 void
3786 metaslab_free_dva(spa_t *spa, const dva_t *dva, boolean_t checkpoint)
3787 {
3788 uint64_t vdev = DVA_GET_VDEV(dva);
3789 uint64_t offset = DVA_GET_OFFSET(dva);
3790 uint64_t size = DVA_GET_ASIZE(dva);
3791 vdev_t *vd = vdev_lookup_top(spa, vdev);
3792
3793 ASSERT(DVA_IS_VALID(dva));
3794 ASSERT3U(spa_config_held(spa, SCL_ALL, RW_READER), !=, 0);
3795
3796 if (DVA_GET_GANG(dva)) {
3797 size = vdev_psize_to_asize(vd, SPA_GANGBLOCKSIZE);
3798 }
3799
3800 metaslab_free_impl(vd, offset, size, checkpoint);
3801 }
3802
3803 /*
3804 * Reserve some allocation slots. The reservation system must be called
3805 * before we call into the allocator. If there aren't any available slots
3806 * then the I/O will be throttled until an I/O completes and its slots are
3807 * freed up. The function returns true if it was successful in placing
3808 * the reservation.
3809 */
3810 boolean_t
3811 metaslab_class_throttle_reserve(metaslab_class_t *mc, int slots, int allocator,
3812 zio_t *zio, int flags)
3813 {
3814 uint64_t available_slots = 0;
3815 boolean_t slot_reserved = B_FALSE;
3816 uint64_t max = mc->mc_alloc_max_slots[allocator];
3817
3818 ASSERT(mc->mc_alloc_throttle_enabled);
3819 mutex_enter(&mc->mc_lock);
3820
3821 uint64_t reserved_slots =
3822 refcount_count(&mc->mc_alloc_slots[allocator]);
3823 if (reserved_slots < max)
3824 available_slots = max - reserved_slots;
3825
3826 if (slots <= available_slots || GANG_ALLOCATION(flags)) {
3827 /*
3828 * We reserve the slots individually so that we can unreserve
3829 * them individually when an I/O completes.
3830 */
3831 for (int d = 0; d < slots; d++) {
3832 reserved_slots =
3833 refcount_add(&mc->mc_alloc_slots[allocator],
3834 zio);
3835 }
3836 zio->io_flags |= ZIO_FLAG_IO_ALLOCATING;
3837 slot_reserved = B_TRUE;
3838 }
3839
3840 mutex_exit(&mc->mc_lock);
3841 return (slot_reserved);
3842 }
3843
3844 void
3845 metaslab_class_throttle_unreserve(metaslab_class_t *mc, int slots,
3846 int allocator, zio_t *zio)
3847 {
3848 ASSERT(mc->mc_alloc_throttle_enabled);
3849 mutex_enter(&mc->mc_lock);
3850 for (int d = 0; d < slots; d++) {
3851 (void) refcount_remove(&mc->mc_alloc_slots[allocator],
3852 zio);
3853 }
3854 mutex_exit(&mc->mc_lock);
3855 }
3856
3857 static int
3858 metaslab_claim_concrete(vdev_t *vd, uint64_t offset, uint64_t size,
3859 uint64_t txg)
3860 {
3861 metaslab_t *msp;
3862 spa_t *spa = vd->vdev_spa;
3863 int error = 0;
3864
3865 if (offset >> vd->vdev_ms_shift >= vd->vdev_ms_count)
3866 return (ENXIO);
3867
3868 ASSERT3P(vd->vdev_ms, !=, NULL);
3869 msp = vd->vdev_ms[offset >> vd->vdev_ms_shift];
3870
3871 mutex_enter(&msp->ms_lock);
3872
3873 if ((txg != 0 && spa_writeable(spa)) || !msp->ms_loaded)
3874 error = metaslab_activate(msp, 0, METASLAB_WEIGHT_CLAIM);
3875
3876 if (error == 0 &&
3877 !range_tree_contains(msp->ms_allocatable, offset, size))
3878 error = SET_ERROR(ENOENT);
3879
3880 if (error || txg == 0) { /* txg == 0 indicates dry run */
3881 mutex_exit(&msp->ms_lock);
3882 return (error);
3883 }
3884
3885 VERIFY(!msp->ms_condensing);
3886 VERIFY0(P2PHASE(offset, 1ULL << vd->vdev_ashift));
3887 VERIFY0(P2PHASE(size, 1ULL << vd->vdev_ashift));
3888 VERIFY3U(range_tree_space(msp->ms_allocatable) - size, <=,
3889 msp->ms_size);
3890 range_tree_remove(msp->ms_allocatable, offset, size);
3891
3892 if (spa_writeable(spa)) { /* don't dirty if we're zdb(1M) */
3893 if (range_tree_is_empty(msp->ms_allocating[txg & TXG_MASK]))
3894 vdev_dirty(vd, VDD_METASLAB, msp, txg);
3895 range_tree_add(msp->ms_allocating[txg & TXG_MASK],
3896 offset, size);
3897 }
3898
3899 mutex_exit(&msp->ms_lock);
3900
3901 return (0);
3902 }
3903
3904 typedef struct metaslab_claim_cb_arg_t {
3905 uint64_t mcca_txg;
3906 int mcca_error;
3907 } metaslab_claim_cb_arg_t;
3908
3909 /* ARGSUSED */
3910 static void
3911 metaslab_claim_impl_cb(uint64_t inner_offset, vdev_t *vd, uint64_t offset,
3912 uint64_t size, void *arg)
3913 {
3914 metaslab_claim_cb_arg_t *mcca_arg = arg;
3915
3916 if (mcca_arg->mcca_error == 0) {
3917 mcca_arg->mcca_error = metaslab_claim_concrete(vd, offset,
3918 size, mcca_arg->mcca_txg);
3919 }
3920 }
3921
3922 int
3923 metaslab_claim_impl(vdev_t *vd, uint64_t offset, uint64_t size, uint64_t txg)
3924 {
3925 if (vd->vdev_ops->vdev_op_remap != NULL) {
3926 metaslab_claim_cb_arg_t arg;
3927
3928 /*
3929 * Only zdb(1M) can claim on indirect vdevs. This is used
3930 * to detect leaks of mapped space (that are not accounted
3931 * for in the obsolete counts, spacemap, or bpobj).
3932 */
3933 ASSERT(!spa_writeable(vd->vdev_spa));
3934 arg.mcca_error = 0;
3935 arg.mcca_txg = txg;
3936
3937 vd->vdev_ops->vdev_op_remap(vd, offset, size,
3938 metaslab_claim_impl_cb, &arg);
3939
3940 if (arg.mcca_error == 0) {
3941 arg.mcca_error = metaslab_claim_concrete(vd,
3942 offset, size, txg);
3943 }
3944 return (arg.mcca_error);
3945 } else {
3946 return (metaslab_claim_concrete(vd, offset, size, txg));
3947 }
3948 }
3949
3950 /*
3951 * Intent log support: upon opening the pool after a crash, notify the SPA
3952 * of blocks that the intent log has allocated for immediate write, but
3953 * which are still considered free by the SPA because the last transaction
3954 * group didn't commit yet.
3955 */
3956 static int
3957 metaslab_claim_dva(spa_t *spa, const dva_t *dva, uint64_t txg)
3958 {
3959 uint64_t vdev = DVA_GET_VDEV(dva);
3960 uint64_t offset = DVA_GET_OFFSET(dva);
3961 uint64_t size = DVA_GET_ASIZE(dva);
3962 vdev_t *vd;
3963
3964 if ((vd = vdev_lookup_top(spa, vdev)) == NULL) {
3965 return (SET_ERROR(ENXIO));
3966 }
3967
3968 ASSERT(DVA_IS_VALID(dva));
3969
3970 if (DVA_GET_GANG(dva))
3971 size = vdev_psize_to_asize(vd, SPA_GANGBLOCKSIZE);
3972
3973 return (metaslab_claim_impl(vd, offset, size, txg));
3974 }
3975
3976 int
3977 metaslab_alloc(spa_t *spa, metaslab_class_t *mc, uint64_t psize, blkptr_t *bp,
3978 int ndvas, uint64_t txg, blkptr_t *hintbp, int flags,
3979 zio_alloc_list_t *zal, zio_t *zio, int allocator)
3980 {
3981 dva_t *dva = bp->blk_dva;
3982 dva_t *hintdva = hintbp->blk_dva;
3983 int error = 0;
3984
3985 ASSERT(bp->blk_birth == 0);
3986 ASSERT(BP_PHYSICAL_BIRTH(bp) == 0);
3987
3988 spa_config_enter(spa, SCL_ALLOC, FTAG, RW_READER);
3989
3990 if (mc->mc_rotor == NULL) { /* no vdevs in this class */
3991 spa_config_exit(spa, SCL_ALLOC, FTAG);
3992 return (SET_ERROR(ENOSPC));
3993 }
3994
3995 ASSERT(ndvas > 0 && ndvas <= spa_max_replication(spa));
3996 ASSERT(BP_GET_NDVAS(bp) == 0);
3997 ASSERT(hintbp == NULL || ndvas <= BP_GET_NDVAS(hintbp));
3998 ASSERT3P(zal, !=, NULL);
3999
4000 for (int d = 0; d < ndvas; d++) {
4001 error = metaslab_alloc_dva(spa, mc, psize, dva, d, hintdva,
4002 txg, flags, zal, allocator);
4003 if (error != 0) {
4004 for (d--; d >= 0; d--) {
4005 metaslab_unalloc_dva(spa, &dva[d], txg);
4006 metaslab_group_alloc_decrement(spa,
4007 DVA_GET_VDEV(&dva[d]), zio, flags,
4008 allocator, B_FALSE);
4009 bzero(&dva[d], sizeof (dva_t));
4010 }
4011 spa_config_exit(spa, SCL_ALLOC, FTAG);
4012 return (error);
4013 } else {
4014 /*
4015 * Update the metaslab group's queue depth
4016 * based on the newly allocated dva.
4017 */
4018 metaslab_group_alloc_increment(spa,
4019 DVA_GET_VDEV(&dva[d]), zio, flags, allocator);
4020 }
4021
4022 }
4023 ASSERT(error == 0);
4024 ASSERT(BP_GET_NDVAS(bp) == ndvas);
4025
4026 spa_config_exit(spa, SCL_ALLOC, FTAG);
4027
4028 BP_SET_BIRTH(bp, txg, 0);
4029
4030 return (0);
4031 }
4032
4033 void
4034 metaslab_free(spa_t *spa, const blkptr_t *bp, uint64_t txg, boolean_t now)
4035 {
4036 const dva_t *dva = bp->blk_dva;
4037 int ndvas = BP_GET_NDVAS(bp);
4038
4039 ASSERT(!BP_IS_HOLE(bp));
4040 ASSERT(!now || bp->blk_birth >= spa_syncing_txg(spa));
4041
4042 /*
4043 * If we have a checkpoint for the pool we need to make sure that
4044 * the blocks that we free that are part of the checkpoint won't be
4045 * reused until the checkpoint is discarded or we revert to it.
4046 *
4047 * The checkpoint flag is passed down the metaslab_free code path
4048 * and is set whenever we want to add a block to the checkpoint's
4049 * accounting. That is, we "checkpoint" blocks that existed at the
4050 * time the checkpoint was created and are therefore referenced by
4051 * the checkpointed uberblock.
4052 *
4053 * Note that, we don't checkpoint any blocks if the current
4054 * syncing txg <= spa_checkpoint_txg. We want these frees to sync
4055 * normally as they will be referenced by the checkpointed uberblock.
4056 */
4057 boolean_t checkpoint = B_FALSE;
4058 if (bp->blk_birth <= spa->spa_checkpoint_txg &&
4059 spa_syncing_txg(spa) > spa->spa_checkpoint_txg) {
4060 /*
4061 * At this point, if the block is part of the checkpoint
4062 * there is no way it was created in the current txg.
4063 */
4064 ASSERT(!now);
4065 ASSERT3U(spa_syncing_txg(spa), ==, txg);
4066 checkpoint = B_TRUE;
4067 }
4068
4069 spa_config_enter(spa, SCL_FREE, FTAG, RW_READER);
4070
4071 for (int d = 0; d < ndvas; d++) {
4072 if (now) {
4073 metaslab_unalloc_dva(spa, &dva[d], txg);
4074 } else {
4075 ASSERT3U(txg, ==, spa_syncing_txg(spa));
4076 metaslab_free_dva(spa, &dva[d], checkpoint);
4077 }
4078 }
4079
4080 spa_config_exit(spa, SCL_FREE, FTAG);
4081 }
4082
4083 int
4084 metaslab_claim(spa_t *spa, const blkptr_t *bp, uint64_t txg)
4085 {
4086 const dva_t *dva = bp->blk_dva;
4087 int ndvas = BP_GET_NDVAS(bp);
4088 int error = 0;
4089
4090 ASSERT(!BP_IS_HOLE(bp));
4091
4092 if (txg != 0) {
4093 /*
4094 * First do a dry run to make sure all DVAs are claimable,
4095 * so we don't have to unwind from partial failures below.
4096 */
4097 if ((error = metaslab_claim(spa, bp, 0)) != 0)
4098 return (error);
4099 }
4100
4101 spa_config_enter(spa, SCL_ALLOC, FTAG, RW_READER);
4102
4103 for (int d = 0; d < ndvas; d++)
4104 if ((error = metaslab_claim_dva(spa, &dva[d], txg)) != 0)
4105 break;
4106
4107 spa_config_exit(spa, SCL_ALLOC, FTAG);
4108
4109 ASSERT(error == 0 || txg == 0);
4110
4111 return (error);
4112 }
4113
4114 void
4115 metaslab_fastwrite_mark(spa_t *spa, const blkptr_t *bp)
4116 {
4117 const dva_t *dva = bp->blk_dva;
4118 int ndvas = BP_GET_NDVAS(bp);
4119 uint64_t psize = BP_GET_PSIZE(bp);
4120 int d;
4121 vdev_t *vd;
4122
4123 ASSERT(!BP_IS_HOLE(bp));
4124 ASSERT(!BP_IS_EMBEDDED(bp));
4125 ASSERT(psize > 0);
4126
4127 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
4128
4129 for (d = 0; d < ndvas; d++) {
4130 if ((vd = vdev_lookup_top(spa, DVA_GET_VDEV(&dva[d]))) == NULL)
4131 continue;
4132 atomic_add_64(&vd->vdev_pending_fastwrite, psize);
4133 }
4134
4135 spa_config_exit(spa, SCL_VDEV, FTAG);
4136 }
4137
4138 void
4139 metaslab_fastwrite_unmark(spa_t *spa, const blkptr_t *bp)
4140 {
4141 const dva_t *dva = bp->blk_dva;
4142 int ndvas = BP_GET_NDVAS(bp);
4143 uint64_t psize = BP_GET_PSIZE(bp);
4144 int d;
4145 vdev_t *vd;
4146
4147 ASSERT(!BP_IS_HOLE(bp));
4148 ASSERT(!BP_IS_EMBEDDED(bp));
4149 ASSERT(psize > 0);
4150
4151 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
4152
4153 for (d = 0; d < ndvas; d++) {
4154 if ((vd = vdev_lookup_top(spa, DVA_GET_VDEV(&dva[d]))) == NULL)
4155 continue;
4156 ASSERT3U(vd->vdev_pending_fastwrite, >=, psize);
4157 atomic_sub_64(&vd->vdev_pending_fastwrite, psize);
4158 }
4159
4160 spa_config_exit(spa, SCL_VDEV, FTAG);
4161 }
4162
4163 /* ARGSUSED */
4164 static void
4165 metaslab_check_free_impl_cb(uint64_t inner, vdev_t *vd, uint64_t offset,
4166 uint64_t size, void *arg)
4167 {
4168 if (vd->vdev_ops == &vdev_indirect_ops)
4169 return;
4170
4171 metaslab_check_free_impl(vd, offset, size);
4172 }
4173
4174 static void
4175 metaslab_check_free_impl(vdev_t *vd, uint64_t offset, uint64_t size)
4176 {
4177 metaslab_t *msp;
4178 ASSERTV(spa_t *spa = vd->vdev_spa);
4179
4180 if ((zfs_flags & ZFS_DEBUG_ZIO_FREE) == 0)
4181 return;
4182
4183 if (vd->vdev_ops->vdev_op_remap != NULL) {
4184 vd->vdev_ops->vdev_op_remap(vd, offset, size,
4185 metaslab_check_free_impl_cb, NULL);
4186 return;
4187 }
4188
4189 ASSERT(vdev_is_concrete(vd));
4190 ASSERT3U(offset >> vd->vdev_ms_shift, <, vd->vdev_ms_count);
4191 ASSERT3U(spa_config_held(spa, SCL_ALL, RW_READER), !=, 0);
4192
4193 msp = vd->vdev_ms[offset >> vd->vdev_ms_shift];
4194
4195 mutex_enter(&msp->ms_lock);
4196 if (msp->ms_loaded)
4197 range_tree_verify(msp->ms_allocatable, offset, size);
4198
4199 range_tree_verify(msp->ms_freeing, offset, size);
4200 range_tree_verify(msp->ms_checkpointing, offset, size);
4201 range_tree_verify(msp->ms_freed, offset, size);
4202 for (int j = 0; j < TXG_DEFER_SIZE; j++)
4203 range_tree_verify(msp->ms_defer[j], offset, size);
4204 mutex_exit(&msp->ms_lock);
4205 }
4206
4207 void
4208 metaslab_check_free(spa_t *spa, const blkptr_t *bp)
4209 {
4210 if ((zfs_flags & ZFS_DEBUG_ZIO_FREE) == 0)
4211 return;
4212
4213 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
4214 for (int i = 0; i < BP_GET_NDVAS(bp); i++) {
4215 uint64_t vdev = DVA_GET_VDEV(&bp->blk_dva[i]);
4216 vdev_t *vd = vdev_lookup_top(spa, vdev);
4217 uint64_t offset = DVA_GET_OFFSET(&bp->blk_dva[i]);
4218 uint64_t size = DVA_GET_ASIZE(&bp->blk_dva[i]);
4219
4220 if (DVA_GET_GANG(&bp->blk_dva[i]))
4221 size = vdev_psize_to_asize(vd, SPA_GANGBLOCKSIZE);
4222
4223 ASSERT3P(vd, !=, NULL);
4224
4225 metaslab_check_free_impl(vd, offset, size);
4226 }
4227 spa_config_exit(spa, SCL_VDEV, FTAG);
4228 }
4229
4230 #if defined(_KERNEL)
4231 /* CSTYLED */
4232 module_param(metaslab_aliquot, ulong, 0644);
4233 MODULE_PARM_DESC(metaslab_aliquot,
4234 "allocation granularity (a.k.a. stripe size)");
4235
4236 module_param(metaslab_debug_load, int, 0644);
4237 MODULE_PARM_DESC(metaslab_debug_load,
4238 "load all metaslabs when pool is first opened");
4239
4240 module_param(metaslab_debug_unload, int, 0644);
4241 MODULE_PARM_DESC(metaslab_debug_unload,
4242 "prevent metaslabs from being unloaded");
4243
4244 module_param(metaslab_preload_enabled, int, 0644);
4245 MODULE_PARM_DESC(metaslab_preload_enabled,
4246 "preload potential metaslabs during reassessment");
4247
4248 module_param(zfs_mg_noalloc_threshold, int, 0644);
4249 MODULE_PARM_DESC(zfs_mg_noalloc_threshold,
4250 "percentage of free space for metaslab group to allow allocation");
4251
4252 module_param(zfs_mg_fragmentation_threshold, int, 0644);
4253 MODULE_PARM_DESC(zfs_mg_fragmentation_threshold,
4254 "fragmentation for metaslab group to allow allocation");
4255
4256 module_param(zfs_metaslab_fragmentation_threshold, int, 0644);
4257 MODULE_PARM_DESC(zfs_metaslab_fragmentation_threshold,
4258 "fragmentation for metaslab to allow allocation");
4259
4260 module_param(metaslab_fragmentation_factor_enabled, int, 0644);
4261 MODULE_PARM_DESC(metaslab_fragmentation_factor_enabled,
4262 "use the fragmentation metric to prefer less fragmented metaslabs");
4263
4264 module_param(metaslab_lba_weighting_enabled, int, 0644);
4265 MODULE_PARM_DESC(metaslab_lba_weighting_enabled,
4266 "prefer metaslabs with lower LBAs");
4267
4268 module_param(metaslab_bias_enabled, int, 0644);
4269 MODULE_PARM_DESC(metaslab_bias_enabled,
4270 "enable metaslab group biasing");
4271
4272 module_param(zfs_metaslab_segment_weight_enabled, int, 0644);
4273 MODULE_PARM_DESC(zfs_metaslab_segment_weight_enabled,
4274 "enable segment-based metaslab selection");
4275
4276 module_param(zfs_metaslab_switch_threshold, int, 0644);
4277 MODULE_PARM_DESC(zfs_metaslab_switch_threshold,
4278 "segment-based metaslab selection maximum buckets before switching");
4279
4280 /* CSTYLED */
4281 module_param(metaslab_force_ganging, ulong, 0644);
4282 MODULE_PARM_DESC(metaslab_force_ganging,
4283 "blocks larger than this size are forced to be gang blocks");
4284 #endif