]> git.proxmox.com Git - mirror_zfs.git/blob - module/zfs/metaslab.c
Illumos 4976-4984 - metaslab improvements
[mirror_zfs.git] / module / zfs / metaslab.c
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2011, 2014 by Delphix. All rights reserved.
24 * Copyright (c) 2013 by Saso Kiselkov. All rights reserved.
25 */
26
27 #include <sys/zfs_context.h>
28 #include <sys/dmu.h>
29 #include <sys/dmu_tx.h>
30 #include <sys/space_map.h>
31 #include <sys/metaslab_impl.h>
32 #include <sys/vdev_impl.h>
33 #include <sys/zio.h>
34 #include <sys/spa_impl.h>
35 #include <sys/zfeature.h>
36
37 #define WITH_DF_BLOCK_ALLOCATOR
38
39 /*
40 * Allow allocations to switch to gang blocks quickly. We do this to
41 * avoid having to load lots of space_maps in a given txg. There are,
42 * however, some cases where we want to avoid "fast" ganging and instead
43 * we want to do an exhaustive search of all metaslabs on this device.
44 * Currently we don't allow any gang, slog, or dump device related allocations
45 * to "fast" gang.
46 */
47 #define CAN_FASTGANG(flags) \
48 (!((flags) & (METASLAB_GANG_CHILD | METASLAB_GANG_HEADER | \
49 METASLAB_GANG_AVOID)))
50
51 #define METASLAB_WEIGHT_PRIMARY (1ULL << 63)
52 #define METASLAB_WEIGHT_SECONDARY (1ULL << 62)
53 #define METASLAB_ACTIVE_MASK \
54 (METASLAB_WEIGHT_PRIMARY | METASLAB_WEIGHT_SECONDARY)
55
56 uint64_t metaslab_aliquot = 512ULL << 10;
57 uint64_t metaslab_gang_bang = SPA_MAXBLOCKSIZE + 1; /* force gang blocks */
58
59 /*
60 * The in-core space map representation is more compact than its on-disk form.
61 * The zfs_condense_pct determines how much more compact the in-core
62 * space_map representation must be before we compact it on-disk.
63 * Values should be greater than or equal to 100.
64 */
65 int zfs_condense_pct = 200;
66
67 /*
68 * The zfs_mg_noalloc_threshold defines which metaslab groups should
69 * be eligible for allocation. The value is defined as a percentage of
70 * free space. Metaslab groups that have more free space than
71 * zfs_mg_noalloc_threshold are always eligible for allocations. Once
72 * a metaslab group's free space is less than or equal to the
73 * zfs_mg_noalloc_threshold the allocator will avoid allocating to that
74 * group unless all groups in the pool have reached zfs_mg_noalloc_threshold.
75 * Once all groups in the pool reach zfs_mg_noalloc_threshold then all
76 * groups are allowed to accept allocations. Gang blocks are always
77 * eligible to allocate on any metaslab group. The default value of 0 means
78 * no metaslab group will be excluded based on this criterion.
79 */
80 int zfs_mg_noalloc_threshold = 0;
81
82 /*
83 * Metaslab groups are considered eligible for allocations if their
84 * fragmenation metric (measured as a percentage) is less than or equal to
85 * zfs_mg_fragmentation_threshold. If a metaslab group exceeds this threshold
86 * then it will be skipped unless all metaslab groups within the metaslab
87 * class have also crossed this threshold.
88 */
89 int zfs_mg_fragmentation_threshold = 85;
90
91 /*
92 * Allow metaslabs to keep their active state as long as their fragmentation
93 * percentage is less than or equal to zfs_metaslab_fragmentation_threshold. An
94 * active metaslab that exceeds this threshold will no longer keep its active
95 * status allowing better metaslabs to be selected.
96 */
97 int zfs_metaslab_fragmentation_threshold = 70;
98
99 /*
100 * When set will load all metaslabs when pool is first opened.
101 */
102 int metaslab_debug_load = 0;
103
104 /*
105 * When set will prevent metaslabs from being unloaded.
106 */
107 int metaslab_debug_unload = 0;
108
109 /*
110 * Minimum size which forces the dynamic allocator to change
111 * it's allocation strategy. Once the space map cannot satisfy
112 * an allocation of this size then it switches to using more
113 * aggressive strategy (i.e search by size rather than offset).
114 */
115 uint64_t metaslab_df_alloc_threshold = SPA_MAXBLOCKSIZE;
116
117 /*
118 * The minimum free space, in percent, which must be available
119 * in a space map to continue allocations in a first-fit fashion.
120 * Once the space_map's free space drops below this level we dynamically
121 * switch to using best-fit allocations.
122 */
123 int metaslab_df_free_pct = 4;
124
125 /*
126 * A metaslab is considered "free" if it contains a contiguous
127 * segment which is greater than metaslab_min_alloc_size.
128 */
129 uint64_t metaslab_min_alloc_size = DMU_MAX_ACCESS;
130
131 /*
132 * Percentage of all cpus that can be used by the metaslab taskq.
133 */
134 int metaslab_load_pct = 50;
135
136 /*
137 * Determines how many txgs a metaslab may remain loaded without having any
138 * allocations from it. As long as a metaslab continues to be used we will
139 * keep it loaded.
140 */
141 int metaslab_unload_delay = TXG_SIZE * 2;
142
143 /*
144 * Max number of metaslabs per group to preload.
145 */
146 int metaslab_preload_limit = SPA_DVAS_PER_BP;
147
148 /*
149 * Enable/disable preloading of metaslab.
150 */
151 int metaslab_preload_enabled = B_TRUE;
152
153 /*
154 * Enable/disable fragmentation weighting on metaslabs.
155 */
156 int metaslab_fragmentation_factor_enabled = B_TRUE;
157
158 /*
159 * Enable/disable lba weighting (i.e. outer tracks are given preference).
160 */
161 int metaslab_lba_weighting_enabled = B_TRUE;
162
163 /*
164 * Enable/disable metaslab group biasing.
165 */
166 int metaslab_bias_enabled = B_TRUE;
167
168 static uint64_t metaslab_fragmentation(metaslab_t *);
169
170 /*
171 * ==========================================================================
172 * Metaslab classes
173 * ==========================================================================
174 */
175 metaslab_class_t *
176 metaslab_class_create(spa_t *spa, metaslab_ops_t *ops)
177 {
178 metaslab_class_t *mc;
179
180 mc = kmem_zalloc(sizeof (metaslab_class_t), KM_PUSHPAGE);
181
182 mc->mc_spa = spa;
183 mc->mc_rotor = NULL;
184 mc->mc_ops = ops;
185 mutex_init(&mc->mc_fastwrite_lock, NULL, MUTEX_DEFAULT, NULL);
186
187 return (mc);
188 }
189
190 void
191 metaslab_class_destroy(metaslab_class_t *mc)
192 {
193 ASSERT(mc->mc_rotor == NULL);
194 ASSERT(mc->mc_alloc == 0);
195 ASSERT(mc->mc_deferred == 0);
196 ASSERT(mc->mc_space == 0);
197 ASSERT(mc->mc_dspace == 0);
198
199 mutex_destroy(&mc->mc_fastwrite_lock);
200 kmem_free(mc, sizeof (metaslab_class_t));
201 }
202
203 int
204 metaslab_class_validate(metaslab_class_t *mc)
205 {
206 metaslab_group_t *mg;
207 vdev_t *vd;
208
209 /*
210 * Must hold one of the spa_config locks.
211 */
212 ASSERT(spa_config_held(mc->mc_spa, SCL_ALL, RW_READER) ||
213 spa_config_held(mc->mc_spa, SCL_ALL, RW_WRITER));
214
215 if ((mg = mc->mc_rotor) == NULL)
216 return (0);
217
218 do {
219 vd = mg->mg_vd;
220 ASSERT(vd->vdev_mg != NULL);
221 ASSERT3P(vd->vdev_top, ==, vd);
222 ASSERT3P(mg->mg_class, ==, mc);
223 ASSERT3P(vd->vdev_ops, !=, &vdev_hole_ops);
224 } while ((mg = mg->mg_next) != mc->mc_rotor);
225
226 return (0);
227 }
228
229 void
230 metaslab_class_space_update(metaslab_class_t *mc, int64_t alloc_delta,
231 int64_t defer_delta, int64_t space_delta, int64_t dspace_delta)
232 {
233 atomic_add_64(&mc->mc_alloc, alloc_delta);
234 atomic_add_64(&mc->mc_deferred, defer_delta);
235 atomic_add_64(&mc->mc_space, space_delta);
236 atomic_add_64(&mc->mc_dspace, dspace_delta);
237 }
238
239 uint64_t
240 metaslab_class_get_alloc(metaslab_class_t *mc)
241 {
242 return (mc->mc_alloc);
243 }
244
245 uint64_t
246 metaslab_class_get_deferred(metaslab_class_t *mc)
247 {
248 return (mc->mc_deferred);
249 }
250
251 uint64_t
252 metaslab_class_get_space(metaslab_class_t *mc)
253 {
254 return (mc->mc_space);
255 }
256
257 uint64_t
258 metaslab_class_get_dspace(metaslab_class_t *mc)
259 {
260 return (spa_deflate(mc->mc_spa) ? mc->mc_dspace : mc->mc_space);
261 }
262
263 void
264 metaslab_class_histogram_verify(metaslab_class_t *mc)
265 {
266 vdev_t *rvd = mc->mc_spa->spa_root_vdev;
267 uint64_t *mc_hist;
268 int i, c;
269
270 if ((zfs_flags & ZFS_DEBUG_HISTOGRAM_VERIFY) == 0)
271 return;
272
273 mc_hist = kmem_zalloc(sizeof (uint64_t) * RANGE_TREE_HISTOGRAM_SIZE,
274 KM_PUSHPAGE);
275
276 for (c = 0; c < rvd->vdev_children; c++) {
277 vdev_t *tvd = rvd->vdev_child[c];
278 metaslab_group_t *mg = tvd->vdev_mg;
279
280 /*
281 * Skip any holes, uninitialized top-levels, or
282 * vdevs that are not in this metalab class.
283 */
284 if (tvd->vdev_ishole || tvd->vdev_ms_shift == 0 ||
285 mg->mg_class != mc) {
286 continue;
287 }
288
289 for (i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i++)
290 mc_hist[i] += mg->mg_histogram[i];
291 }
292
293 for (i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i++)
294 VERIFY3U(mc_hist[i], ==, mc->mc_histogram[i]);
295
296 kmem_free(mc_hist, sizeof (uint64_t) * RANGE_TREE_HISTOGRAM_SIZE);
297 }
298
299 /*
300 * Calculate the metaslab class's fragmentation metric. The metric
301 * is weighted based on the space contribution of each metaslab group.
302 * The return value will be a number between 0 and 100 (inclusive), or
303 * ZFS_FRAG_INVALID if the metric has not been set. See comment above the
304 * zfs_frag_table for more information about the metric.
305 */
306 uint64_t
307 metaslab_class_fragmentation(metaslab_class_t *mc)
308 {
309 vdev_t *rvd = mc->mc_spa->spa_root_vdev;
310 uint64_t fragmentation = 0;
311 int c;
312
313 spa_config_enter(mc->mc_spa, SCL_VDEV, FTAG, RW_READER);
314
315 for (c = 0; c < rvd->vdev_children; c++) {
316 vdev_t *tvd = rvd->vdev_child[c];
317 metaslab_group_t *mg = tvd->vdev_mg;
318
319 /*
320 * Skip any holes, uninitialized top-levels, or
321 * vdevs that are not in this metalab class.
322 */
323 if (tvd->vdev_ishole || tvd->vdev_ms_shift == 0 ||
324 mg->mg_class != mc) {
325 continue;
326 }
327
328 /*
329 * If a metaslab group does not contain a fragmentation
330 * metric then just bail out.
331 */
332 if (mg->mg_fragmentation == ZFS_FRAG_INVALID) {
333 spa_config_exit(mc->mc_spa, SCL_VDEV, FTAG);
334 return (ZFS_FRAG_INVALID);
335 }
336
337 /*
338 * Determine how much this metaslab_group is contributing
339 * to the overall pool fragmentation metric.
340 */
341 fragmentation += mg->mg_fragmentation *
342 metaslab_group_get_space(mg);
343 }
344 fragmentation /= metaslab_class_get_space(mc);
345
346 ASSERT3U(fragmentation, <=, 100);
347 spa_config_exit(mc->mc_spa, SCL_VDEV, FTAG);
348 return (fragmentation);
349 }
350
351 /*
352 * Calculate the amount of expandable space that is available in
353 * this metaslab class. If a device is expanded then its expandable
354 * space will be the amount of allocatable space that is currently not
355 * part of this metaslab class.
356 */
357 uint64_t
358 metaslab_class_expandable_space(metaslab_class_t *mc)
359 {
360 vdev_t *rvd = mc->mc_spa->spa_root_vdev;
361 uint64_t space = 0;
362 int c;
363
364 spa_config_enter(mc->mc_spa, SCL_VDEV, FTAG, RW_READER);
365 for (c = 0; c < rvd->vdev_children; c++) {
366 vdev_t *tvd = rvd->vdev_child[c];
367 metaslab_group_t *mg = tvd->vdev_mg;
368
369 if (tvd->vdev_ishole || tvd->vdev_ms_shift == 0 ||
370 mg->mg_class != mc) {
371 continue;
372 }
373
374 space += tvd->vdev_max_asize - tvd->vdev_asize;
375 }
376 spa_config_exit(mc->mc_spa, SCL_VDEV, FTAG);
377 return (space);
378 }
379
380 /*
381 * ==========================================================================
382 * Metaslab groups
383 * ==========================================================================
384 */
385 static int
386 metaslab_compare(const void *x1, const void *x2)
387 {
388 const metaslab_t *m1 = x1;
389 const metaslab_t *m2 = x2;
390
391 if (m1->ms_weight < m2->ms_weight)
392 return (1);
393 if (m1->ms_weight > m2->ms_weight)
394 return (-1);
395
396 /*
397 * If the weights are identical, use the offset to force uniqueness.
398 */
399 if (m1->ms_start < m2->ms_start)
400 return (-1);
401 if (m1->ms_start > m2->ms_start)
402 return (1);
403
404 ASSERT3P(m1, ==, m2);
405
406 return (0);
407 }
408
409 /*
410 * Update the allocatable flag and the metaslab group's capacity.
411 * The allocatable flag is set to true if the capacity is below
412 * the zfs_mg_noalloc_threshold. If a metaslab group transitions
413 * from allocatable to non-allocatable or vice versa then the metaslab
414 * group's class is updated to reflect the transition.
415 */
416 static void
417 metaslab_group_alloc_update(metaslab_group_t *mg)
418 {
419 vdev_t *vd = mg->mg_vd;
420 metaslab_class_t *mc = mg->mg_class;
421 vdev_stat_t *vs = &vd->vdev_stat;
422 boolean_t was_allocatable;
423
424 ASSERT(vd == vd->vdev_top);
425
426 mutex_enter(&mg->mg_lock);
427 was_allocatable = mg->mg_allocatable;
428
429 mg->mg_free_capacity = ((vs->vs_space - vs->vs_alloc) * 100) /
430 (vs->vs_space + 1);
431
432 /*
433 * A metaslab group is considered allocatable if it has plenty
434 * of free space or is not heavily fragmented. We only take
435 * fragmentation into account if the metaslab group has a valid
436 * fragmentation metric (i.e. a value between 0 and 100).
437 */
438 mg->mg_allocatable = (mg->mg_free_capacity > zfs_mg_noalloc_threshold &&
439 (mg->mg_fragmentation == ZFS_FRAG_INVALID ||
440 mg->mg_fragmentation <= zfs_mg_fragmentation_threshold));
441
442 /*
443 * The mc_alloc_groups maintains a count of the number of
444 * groups in this metaslab class that are still above the
445 * zfs_mg_noalloc_threshold. This is used by the allocating
446 * threads to determine if they should avoid allocations to
447 * a given group. The allocator will avoid allocations to a group
448 * if that group has reached or is below the zfs_mg_noalloc_threshold
449 * and there are still other groups that are above the threshold.
450 * When a group transitions from allocatable to non-allocatable or
451 * vice versa we update the metaslab class to reflect that change.
452 * When the mc_alloc_groups value drops to 0 that means that all
453 * groups have reached the zfs_mg_noalloc_threshold making all groups
454 * eligible for allocations. This effectively means that all devices
455 * are balanced again.
456 */
457 if (was_allocatable && !mg->mg_allocatable)
458 mc->mc_alloc_groups--;
459 else if (!was_allocatable && mg->mg_allocatable)
460 mc->mc_alloc_groups++;
461
462 mutex_exit(&mg->mg_lock);
463 }
464
465 metaslab_group_t *
466 metaslab_group_create(metaslab_class_t *mc, vdev_t *vd)
467 {
468 metaslab_group_t *mg;
469
470 mg = kmem_zalloc(sizeof (metaslab_group_t), KM_PUSHPAGE);
471 mutex_init(&mg->mg_lock, NULL, MUTEX_DEFAULT, NULL);
472 avl_create(&mg->mg_metaslab_tree, metaslab_compare,
473 sizeof (metaslab_t), offsetof(struct metaslab, ms_group_node));
474 mg->mg_vd = vd;
475 mg->mg_class = mc;
476 mg->mg_activation_count = 0;
477
478 mg->mg_taskq = taskq_create("metaslab_group_taskq", metaslab_load_pct,
479 minclsyspri, 10, INT_MAX, TASKQ_THREADS_CPU_PCT);
480
481 return (mg);
482 }
483
484 void
485 metaslab_group_destroy(metaslab_group_t *mg)
486 {
487 ASSERT(mg->mg_prev == NULL);
488 ASSERT(mg->mg_next == NULL);
489 /*
490 * We may have gone below zero with the activation count
491 * either because we never activated in the first place or
492 * because we're done, and possibly removing the vdev.
493 */
494 ASSERT(mg->mg_activation_count <= 0);
495
496 taskq_destroy(mg->mg_taskq);
497 avl_destroy(&mg->mg_metaslab_tree);
498 mutex_destroy(&mg->mg_lock);
499 kmem_free(mg, sizeof (metaslab_group_t));
500 }
501
502 void
503 metaslab_group_activate(metaslab_group_t *mg)
504 {
505 metaslab_class_t *mc = mg->mg_class;
506 metaslab_group_t *mgprev, *mgnext;
507
508 ASSERT(spa_config_held(mc->mc_spa, SCL_ALLOC, RW_WRITER));
509
510 ASSERT(mc->mc_rotor != mg);
511 ASSERT(mg->mg_prev == NULL);
512 ASSERT(mg->mg_next == NULL);
513 ASSERT(mg->mg_activation_count <= 0);
514
515 if (++mg->mg_activation_count <= 0)
516 return;
517
518 mg->mg_aliquot = metaslab_aliquot * MAX(1, mg->mg_vd->vdev_children);
519 metaslab_group_alloc_update(mg);
520
521 if ((mgprev = mc->mc_rotor) == NULL) {
522 mg->mg_prev = mg;
523 mg->mg_next = mg;
524 } else {
525 mgnext = mgprev->mg_next;
526 mg->mg_prev = mgprev;
527 mg->mg_next = mgnext;
528 mgprev->mg_next = mg;
529 mgnext->mg_prev = mg;
530 }
531 mc->mc_rotor = mg;
532 }
533
534 void
535 metaslab_group_passivate(metaslab_group_t *mg)
536 {
537 metaslab_class_t *mc = mg->mg_class;
538 metaslab_group_t *mgprev, *mgnext;
539
540 ASSERT(spa_config_held(mc->mc_spa, SCL_ALLOC, RW_WRITER));
541
542 if (--mg->mg_activation_count != 0) {
543 ASSERT(mc->mc_rotor != mg);
544 ASSERT(mg->mg_prev == NULL);
545 ASSERT(mg->mg_next == NULL);
546 ASSERT(mg->mg_activation_count < 0);
547 return;
548 }
549
550 taskq_wait(mg->mg_taskq);
551 metaslab_group_alloc_update(mg);
552
553 mgprev = mg->mg_prev;
554 mgnext = mg->mg_next;
555
556 if (mg == mgnext) {
557 mc->mc_rotor = NULL;
558 } else {
559 mc->mc_rotor = mgnext;
560 mgprev->mg_next = mgnext;
561 mgnext->mg_prev = mgprev;
562 }
563
564 mg->mg_prev = NULL;
565 mg->mg_next = NULL;
566 }
567
568 uint64_t
569 metaslab_group_get_space(metaslab_group_t *mg)
570 {
571 return ((1ULL << mg->mg_vd->vdev_ms_shift) * mg->mg_vd->vdev_ms_count);
572 }
573
574 void
575 metaslab_group_histogram_verify(metaslab_group_t *mg)
576 {
577 uint64_t *mg_hist;
578 vdev_t *vd = mg->mg_vd;
579 uint64_t ashift = vd->vdev_ashift;
580 int i, m;
581
582 if ((zfs_flags & ZFS_DEBUG_HISTOGRAM_VERIFY) == 0)
583 return;
584
585 mg_hist = kmem_zalloc(sizeof (uint64_t) * RANGE_TREE_HISTOGRAM_SIZE,
586 KM_PUSHPAGE);
587
588 ASSERT3U(RANGE_TREE_HISTOGRAM_SIZE, >=,
589 SPACE_MAP_HISTOGRAM_SIZE + ashift);
590
591 for (m = 0; m < vd->vdev_ms_count; m++) {
592 metaslab_t *msp = vd->vdev_ms[m];
593
594 if (msp->ms_sm == NULL)
595 continue;
596
597 for (i = 0; i < SPACE_MAP_HISTOGRAM_SIZE; i++)
598 mg_hist[i + ashift] +=
599 msp->ms_sm->sm_phys->smp_histogram[i];
600 }
601
602 for (i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i ++)
603 VERIFY3U(mg_hist[i], ==, mg->mg_histogram[i]);
604
605 kmem_free(mg_hist, sizeof (uint64_t) * RANGE_TREE_HISTOGRAM_SIZE);
606 }
607
608 static void
609 metaslab_group_histogram_add(metaslab_group_t *mg, metaslab_t *msp)
610 {
611 metaslab_class_t *mc = mg->mg_class;
612 uint64_t ashift = mg->mg_vd->vdev_ashift;
613 int i;
614
615 ASSERT(MUTEX_HELD(&msp->ms_lock));
616 if (msp->ms_sm == NULL)
617 return;
618
619 mutex_enter(&mg->mg_lock);
620 for (i = 0; i < SPACE_MAP_HISTOGRAM_SIZE; i++) {
621 mg->mg_histogram[i + ashift] +=
622 msp->ms_sm->sm_phys->smp_histogram[i];
623 mc->mc_histogram[i + ashift] +=
624 msp->ms_sm->sm_phys->smp_histogram[i];
625 }
626 mutex_exit(&mg->mg_lock);
627 }
628
629 void
630 metaslab_group_histogram_remove(metaslab_group_t *mg, metaslab_t *msp)
631 {
632 metaslab_class_t *mc = mg->mg_class;
633 uint64_t ashift = mg->mg_vd->vdev_ashift;
634 int i;
635
636 ASSERT(MUTEX_HELD(&msp->ms_lock));
637 if (msp->ms_sm == NULL)
638 return;
639
640 mutex_enter(&mg->mg_lock);
641 for (i = 0; i < SPACE_MAP_HISTOGRAM_SIZE; i++) {
642 ASSERT3U(mg->mg_histogram[i + ashift], >=,
643 msp->ms_sm->sm_phys->smp_histogram[i]);
644 ASSERT3U(mc->mc_histogram[i + ashift], >=,
645 msp->ms_sm->sm_phys->smp_histogram[i]);
646
647 mg->mg_histogram[i + ashift] -=
648 msp->ms_sm->sm_phys->smp_histogram[i];
649 mc->mc_histogram[i + ashift] -=
650 msp->ms_sm->sm_phys->smp_histogram[i];
651 }
652 mutex_exit(&mg->mg_lock);
653 }
654
655 static void
656 metaslab_group_add(metaslab_group_t *mg, metaslab_t *msp)
657 {
658 ASSERT(msp->ms_group == NULL);
659 mutex_enter(&mg->mg_lock);
660 msp->ms_group = mg;
661 msp->ms_weight = 0;
662 avl_add(&mg->mg_metaslab_tree, msp);
663 mutex_exit(&mg->mg_lock);
664
665 mutex_enter(&msp->ms_lock);
666 metaslab_group_histogram_add(mg, msp);
667 mutex_exit(&msp->ms_lock);
668 }
669
670 static void
671 metaslab_group_remove(metaslab_group_t *mg, metaslab_t *msp)
672 {
673 mutex_enter(&msp->ms_lock);
674 metaslab_group_histogram_remove(mg, msp);
675 mutex_exit(&msp->ms_lock);
676
677 mutex_enter(&mg->mg_lock);
678 ASSERT(msp->ms_group == mg);
679 avl_remove(&mg->mg_metaslab_tree, msp);
680 msp->ms_group = NULL;
681 mutex_exit(&mg->mg_lock);
682 }
683
684 static void
685 metaslab_group_sort(metaslab_group_t *mg, metaslab_t *msp, uint64_t weight)
686 {
687 /*
688 * Although in principle the weight can be any value, in
689 * practice we do not use values in the range [1, 511].
690 */
691 ASSERT(weight >= SPA_MINBLOCKSIZE || weight == 0);
692 ASSERT(MUTEX_HELD(&msp->ms_lock));
693
694 mutex_enter(&mg->mg_lock);
695 ASSERT(msp->ms_group == mg);
696 avl_remove(&mg->mg_metaslab_tree, msp);
697 msp->ms_weight = weight;
698 avl_add(&mg->mg_metaslab_tree, msp);
699 mutex_exit(&mg->mg_lock);
700 }
701
702 /*
703 * Calculate the fragmentation for a given metaslab group. We can use
704 * a simple average here since all metaslabs within the group must have
705 * the same size. The return value will be a value between 0 and 100
706 * (inclusive), or ZFS_FRAG_INVALID if less than half of the metaslab in this
707 * group have a fragmentation metric.
708 */
709 uint64_t
710 metaslab_group_fragmentation(metaslab_group_t *mg)
711 {
712 vdev_t *vd = mg->mg_vd;
713 uint64_t fragmentation = 0;
714 uint64_t valid_ms = 0;
715 int m;
716
717 for (m = 0; m < vd->vdev_ms_count; m++) {
718 metaslab_t *msp = vd->vdev_ms[m];
719
720 if (msp->ms_fragmentation == ZFS_FRAG_INVALID)
721 continue;
722
723 valid_ms++;
724 fragmentation += msp->ms_fragmentation;
725 }
726
727 if (valid_ms <= vd->vdev_ms_count / 2)
728 return (ZFS_FRAG_INVALID);
729
730 fragmentation /= valid_ms;
731 ASSERT3U(fragmentation, <=, 100);
732 return (fragmentation);
733 }
734
735 /*
736 * Determine if a given metaslab group should skip allocations. A metaslab
737 * group should avoid allocations if its free capacity is less than the
738 * zfs_mg_noalloc_threshold or its fragmentation metric is greater than
739 * zfs_mg_fragmentation_threshold and there is at least one metaslab group
740 * that can still handle allocations.
741 */
742 static boolean_t
743 metaslab_group_allocatable(metaslab_group_t *mg)
744 {
745 vdev_t *vd = mg->mg_vd;
746 spa_t *spa = vd->vdev_spa;
747 metaslab_class_t *mc = mg->mg_class;
748
749 /*
750 * We use two key metrics to determine if a metaslab group is
751 * considered allocatable -- free space and fragmentation. If
752 * the free space is greater than the free space threshold and
753 * the fragmentation is less than the fragmentation threshold then
754 * consider the group allocatable. There are two case when we will
755 * not consider these key metrics. The first is if the group is
756 * associated with a slog device and the second is if all groups
757 * in this metaslab class have already been consider ineligible
758 * for allocations.
759 */
760 return ((mg->mg_free_capacity > zfs_mg_noalloc_threshold &&
761 (mg->mg_fragmentation == ZFS_FRAG_INVALID ||
762 mg->mg_fragmentation <= zfs_mg_fragmentation_threshold)) ||
763 mc != spa_normal_class(spa) || mc->mc_alloc_groups == 0);
764 }
765
766 /*
767 * ==========================================================================
768 * Range tree callbacks
769 * ==========================================================================
770 */
771
772 /*
773 * Comparison function for the private size-ordered tree. Tree is sorted
774 * by size, larger sizes at the end of the tree.
775 */
776 static int
777 metaslab_rangesize_compare(const void *x1, const void *x2)
778 {
779 const range_seg_t *r1 = x1;
780 const range_seg_t *r2 = x2;
781 uint64_t rs_size1 = r1->rs_end - r1->rs_start;
782 uint64_t rs_size2 = r2->rs_end - r2->rs_start;
783
784 if (rs_size1 < rs_size2)
785 return (-1);
786 if (rs_size1 > rs_size2)
787 return (1);
788
789 if (r1->rs_start < r2->rs_start)
790 return (-1);
791
792 if (r1->rs_start > r2->rs_start)
793 return (1);
794
795 return (0);
796 }
797
798 /*
799 * Create any block allocator specific components. The current allocators
800 * rely on using both a size-ordered range_tree_t and an array of uint64_t's.
801 */
802 static void
803 metaslab_rt_create(range_tree_t *rt, void *arg)
804 {
805 metaslab_t *msp = arg;
806
807 ASSERT3P(rt->rt_arg, ==, msp);
808 ASSERT(msp->ms_tree == NULL);
809
810 avl_create(&msp->ms_size_tree, metaslab_rangesize_compare,
811 sizeof (range_seg_t), offsetof(range_seg_t, rs_pp_node));
812 }
813
814 /*
815 * Destroy the block allocator specific components.
816 */
817 static void
818 metaslab_rt_destroy(range_tree_t *rt, void *arg)
819 {
820 metaslab_t *msp = arg;
821
822 ASSERT3P(rt->rt_arg, ==, msp);
823 ASSERT3P(msp->ms_tree, ==, rt);
824 ASSERT0(avl_numnodes(&msp->ms_size_tree));
825
826 avl_destroy(&msp->ms_size_tree);
827 }
828
829 static void
830 metaslab_rt_add(range_tree_t *rt, range_seg_t *rs, void *arg)
831 {
832 metaslab_t *msp = arg;
833
834 ASSERT3P(rt->rt_arg, ==, msp);
835 ASSERT3P(msp->ms_tree, ==, rt);
836 VERIFY(!msp->ms_condensing);
837 avl_add(&msp->ms_size_tree, rs);
838 }
839
840 static void
841 metaslab_rt_remove(range_tree_t *rt, range_seg_t *rs, void *arg)
842 {
843 metaslab_t *msp = arg;
844
845 ASSERT3P(rt->rt_arg, ==, msp);
846 ASSERT3P(msp->ms_tree, ==, rt);
847 VERIFY(!msp->ms_condensing);
848 avl_remove(&msp->ms_size_tree, rs);
849 }
850
851 static void
852 metaslab_rt_vacate(range_tree_t *rt, void *arg)
853 {
854 metaslab_t *msp = arg;
855
856 ASSERT3P(rt->rt_arg, ==, msp);
857 ASSERT3P(msp->ms_tree, ==, rt);
858
859 /*
860 * Normally one would walk the tree freeing nodes along the way.
861 * Since the nodes are shared with the range trees we can avoid
862 * walking all nodes and just reinitialize the avl tree. The nodes
863 * will be freed by the range tree, so we don't want to free them here.
864 */
865 avl_create(&msp->ms_size_tree, metaslab_rangesize_compare,
866 sizeof (range_seg_t), offsetof(range_seg_t, rs_pp_node));
867 }
868
869 static range_tree_ops_t metaslab_rt_ops = {
870 metaslab_rt_create,
871 metaslab_rt_destroy,
872 metaslab_rt_add,
873 metaslab_rt_remove,
874 metaslab_rt_vacate
875 };
876
877 /*
878 * ==========================================================================
879 * Metaslab block operations
880 * ==========================================================================
881 */
882
883 /*
884 * Return the maximum contiguous segment within the metaslab.
885 */
886 uint64_t
887 metaslab_block_maxsize(metaslab_t *msp)
888 {
889 avl_tree_t *t = &msp->ms_size_tree;
890 range_seg_t *rs;
891
892 if (t == NULL || (rs = avl_last(t)) == NULL)
893 return (0ULL);
894
895 return (rs->rs_end - rs->rs_start);
896 }
897
898 uint64_t
899 metaslab_block_alloc(metaslab_t *msp, uint64_t size)
900 {
901 uint64_t start;
902 range_tree_t *rt = msp->ms_tree;
903
904 VERIFY(!msp->ms_condensing);
905
906 start = msp->ms_ops->msop_alloc(msp, size);
907 if (start != -1ULL) {
908 vdev_t *vd = msp->ms_group->mg_vd;
909
910 VERIFY0(P2PHASE(start, 1ULL << vd->vdev_ashift));
911 VERIFY0(P2PHASE(size, 1ULL << vd->vdev_ashift));
912 VERIFY3U(range_tree_space(rt) - size, <=, msp->ms_size);
913 range_tree_remove(rt, start, size);
914 }
915 return (start);
916 }
917
918 /*
919 * ==========================================================================
920 * Common allocator routines
921 * ==========================================================================
922 */
923
924 #if defined(WITH_FF_BLOCK_ALLOCATOR) || \
925 defined(WITH_DF_BLOCK_ALLOCATOR) || \
926 defined(WITH_CF_BLOCK_ALLOCATOR)
927 /*
928 * This is a helper function that can be used by the allocator to find
929 * a suitable block to allocate. This will search the specified AVL
930 * tree looking for a block that matches the specified criteria.
931 */
932 static uint64_t
933 metaslab_block_picker(avl_tree_t *t, uint64_t *cursor, uint64_t size,
934 uint64_t align)
935 {
936 range_seg_t *rs, rsearch;
937 avl_index_t where;
938
939 rsearch.rs_start = *cursor;
940 rsearch.rs_end = *cursor + size;
941
942 rs = avl_find(t, &rsearch, &where);
943 if (rs == NULL)
944 rs = avl_nearest(t, where, AVL_AFTER);
945
946 while (rs != NULL) {
947 uint64_t offset = P2ROUNDUP(rs->rs_start, align);
948
949 if (offset + size <= rs->rs_end) {
950 *cursor = offset + size;
951 return (offset);
952 }
953 rs = AVL_NEXT(t, rs);
954 }
955
956 /*
957 * If we know we've searched the whole map (*cursor == 0), give up.
958 * Otherwise, reset the cursor to the beginning and try again.
959 */
960 if (*cursor == 0)
961 return (-1ULL);
962
963 *cursor = 0;
964 return (metaslab_block_picker(t, cursor, size, align));
965 }
966 #endif /* WITH_FF/DF/CF_BLOCK_ALLOCATOR */
967
968 #if defined(WITH_FF_BLOCK_ALLOCATOR)
969 /*
970 * ==========================================================================
971 * The first-fit block allocator
972 * ==========================================================================
973 */
974 static uint64_t
975 metaslab_ff_alloc(metaslab_t *msp, uint64_t size)
976 {
977 /*
978 * Find the largest power of 2 block size that evenly divides the
979 * requested size. This is used to try to allocate blocks with similar
980 * alignment from the same area of the metaslab (i.e. same cursor
981 * bucket) but it does not guarantee that other allocations sizes
982 * may exist in the same region.
983 */
984 uint64_t align = size & -size;
985 uint64_t *cursor = &msp->ms_lbas[highbit64(align) - 1];
986 avl_tree_t *t = &msp->ms_tree->rt_root;
987
988 return (metaslab_block_picker(t, cursor, size, align));
989 }
990
991 static metaslab_ops_t metaslab_ff_ops = {
992 metaslab_ff_alloc
993 };
994
995 metaslab_ops_t *zfs_metaslab_ops = &metaslab_ff_ops;
996 #endif /* WITH_FF_BLOCK_ALLOCATOR */
997
998 #if defined(WITH_DF_BLOCK_ALLOCATOR)
999 /*
1000 * ==========================================================================
1001 * Dynamic block allocator -
1002 * Uses the first fit allocation scheme until space get low and then
1003 * adjusts to a best fit allocation method. Uses metaslab_df_alloc_threshold
1004 * and metaslab_df_free_pct to determine when to switch the allocation scheme.
1005 * ==========================================================================
1006 */
1007 static uint64_t
1008 metaslab_df_alloc(metaslab_t *msp, uint64_t size)
1009 {
1010 /*
1011 * Find the largest power of 2 block size that evenly divides the
1012 * requested size. This is used to try to allocate blocks with similar
1013 * alignment from the same area of the metaslab (i.e. same cursor
1014 * bucket) but it does not guarantee that other allocations sizes
1015 * may exist in the same region.
1016 */
1017 uint64_t align = size & -size;
1018 uint64_t *cursor = &msp->ms_lbas[highbit64(align) - 1];
1019 range_tree_t *rt = msp->ms_tree;
1020 avl_tree_t *t = &rt->rt_root;
1021 uint64_t max_size = metaslab_block_maxsize(msp);
1022 int free_pct = range_tree_space(rt) * 100 / msp->ms_size;
1023
1024 ASSERT(MUTEX_HELD(&msp->ms_lock));
1025 ASSERT3U(avl_numnodes(t), ==, avl_numnodes(&msp->ms_size_tree));
1026
1027 if (max_size < size)
1028 return (-1ULL);
1029
1030 /*
1031 * If we're running low on space switch to using the size
1032 * sorted AVL tree (best-fit).
1033 */
1034 if (max_size < metaslab_df_alloc_threshold ||
1035 free_pct < metaslab_df_free_pct) {
1036 t = &msp->ms_size_tree;
1037 *cursor = 0;
1038 }
1039
1040 return (metaslab_block_picker(t, cursor, size, 1ULL));
1041 }
1042
1043 static metaslab_ops_t metaslab_df_ops = {
1044 metaslab_df_alloc
1045 };
1046
1047 metaslab_ops_t *zfs_metaslab_ops = &metaslab_df_ops;
1048 #endif /* WITH_DF_BLOCK_ALLOCATOR */
1049
1050 #if defined(WITH_CF_BLOCK_ALLOCATOR)
1051 /*
1052 * ==========================================================================
1053 * Cursor fit block allocator -
1054 * Select the largest region in the metaslab, set the cursor to the beginning
1055 * of the range and the cursor_end to the end of the range. As allocations
1056 * are made advance the cursor. Continue allocating from the cursor until
1057 * the range is exhausted and then find a new range.
1058 * ==========================================================================
1059 */
1060 static uint64_t
1061 metaslab_cf_alloc(metaslab_t *msp, uint64_t size)
1062 {
1063 range_tree_t *rt = msp->ms_tree;
1064 avl_tree_t *t = &msp->ms_size_tree;
1065 uint64_t *cursor = &msp->ms_lbas[0];
1066 uint64_t *cursor_end = &msp->ms_lbas[1];
1067 uint64_t offset = 0;
1068
1069 ASSERT(MUTEX_HELD(&msp->ms_lock));
1070 ASSERT3U(avl_numnodes(t), ==, avl_numnodes(&rt->rt_root));
1071
1072 ASSERT3U(*cursor_end, >=, *cursor);
1073
1074 if ((*cursor + size) > *cursor_end) {
1075 range_seg_t *rs;
1076
1077 rs = avl_last(&msp->ms_size_tree);
1078 if (rs == NULL || (rs->rs_end - rs->rs_start) < size)
1079 return (-1ULL);
1080
1081 *cursor = rs->rs_start;
1082 *cursor_end = rs->rs_end;
1083 }
1084
1085 offset = *cursor;
1086 *cursor += size;
1087
1088 return (offset);
1089 }
1090
1091 static metaslab_ops_t metaslab_cf_ops = {
1092 metaslab_cf_alloc
1093 };
1094
1095 metaslab_ops_t *zfs_metaslab_ops = &metaslab_cf_ops;
1096 #endif /* WITH_CF_BLOCK_ALLOCATOR */
1097
1098 #if defined(WITH_NDF_BLOCK_ALLOCATOR)
1099 /*
1100 * ==========================================================================
1101 * New dynamic fit allocator -
1102 * Select a region that is large enough to allocate 2^metaslab_ndf_clump_shift
1103 * contiguous blocks. If no region is found then just use the largest segment
1104 * that remains.
1105 * ==========================================================================
1106 */
1107
1108 /*
1109 * Determines desired number of contiguous blocks (2^metaslab_ndf_clump_shift)
1110 * to request from the allocator.
1111 */
1112 uint64_t metaslab_ndf_clump_shift = 4;
1113
1114 static uint64_t
1115 metaslab_ndf_alloc(metaslab_t *msp, uint64_t size)
1116 {
1117 avl_tree_t *t = &msp->ms_tree->rt_root;
1118 avl_index_t where;
1119 range_seg_t *rs, rsearch;
1120 uint64_t hbit = highbit64(size);
1121 uint64_t *cursor = &msp->ms_lbas[hbit - 1];
1122 uint64_t max_size = metaslab_block_maxsize(msp);
1123
1124 ASSERT(MUTEX_HELD(&msp->ms_lock));
1125 ASSERT3U(avl_numnodes(t), ==, avl_numnodes(&msp->ms_size_tree));
1126
1127 if (max_size < size)
1128 return (-1ULL);
1129
1130 rsearch.rs_start = *cursor;
1131 rsearch.rs_end = *cursor + size;
1132
1133 rs = avl_find(t, &rsearch, &where);
1134 if (rs == NULL || (rs->rs_end - rs->rs_start) < size) {
1135 t = &msp->ms_size_tree;
1136
1137 rsearch.rs_start = 0;
1138 rsearch.rs_end = MIN(max_size,
1139 1ULL << (hbit + metaslab_ndf_clump_shift));
1140 rs = avl_find(t, &rsearch, &where);
1141 if (rs == NULL)
1142 rs = avl_nearest(t, where, AVL_AFTER);
1143 ASSERT(rs != NULL);
1144 }
1145
1146 if ((rs->rs_end - rs->rs_start) >= size) {
1147 *cursor = rs->rs_start + size;
1148 return (rs->rs_start);
1149 }
1150 return (-1ULL);
1151 }
1152
1153 static metaslab_ops_t metaslab_ndf_ops = {
1154 metaslab_ndf_alloc
1155 };
1156
1157 metaslab_ops_t *zfs_metaslab_ops = &metaslab_ndf_ops;
1158 #endif /* WITH_NDF_BLOCK_ALLOCATOR */
1159
1160
1161 /*
1162 * ==========================================================================
1163 * Metaslabs
1164 * ==========================================================================
1165 */
1166
1167 /*
1168 * Wait for any in-progress metaslab loads to complete.
1169 */
1170 void
1171 metaslab_load_wait(metaslab_t *msp)
1172 {
1173 ASSERT(MUTEX_HELD(&msp->ms_lock));
1174
1175 while (msp->ms_loading) {
1176 ASSERT(!msp->ms_loaded);
1177 cv_wait(&msp->ms_load_cv, &msp->ms_lock);
1178 }
1179 }
1180
1181 int
1182 metaslab_load(metaslab_t *msp)
1183 {
1184 int error = 0;
1185 int t;
1186
1187 ASSERT(MUTEX_HELD(&msp->ms_lock));
1188 ASSERT(!msp->ms_loaded);
1189 ASSERT(!msp->ms_loading);
1190
1191 msp->ms_loading = B_TRUE;
1192
1193 /*
1194 * If the space map has not been allocated yet, then treat
1195 * all the space in the metaslab as free and add it to the
1196 * ms_tree.
1197 */
1198 if (msp->ms_sm != NULL)
1199 error = space_map_load(msp->ms_sm, msp->ms_tree, SM_FREE);
1200 else
1201 range_tree_add(msp->ms_tree, msp->ms_start, msp->ms_size);
1202
1203 msp->ms_loaded = (error == 0);
1204 msp->ms_loading = B_FALSE;
1205
1206 if (msp->ms_loaded) {
1207 for (t = 0; t < TXG_DEFER_SIZE; t++) {
1208 range_tree_walk(msp->ms_defertree[t],
1209 range_tree_remove, msp->ms_tree);
1210 }
1211 }
1212 cv_broadcast(&msp->ms_load_cv);
1213 return (error);
1214 }
1215
1216 void
1217 metaslab_unload(metaslab_t *msp)
1218 {
1219 ASSERT(MUTEX_HELD(&msp->ms_lock));
1220 range_tree_vacate(msp->ms_tree, NULL, NULL);
1221 msp->ms_loaded = B_FALSE;
1222 msp->ms_weight &= ~METASLAB_ACTIVE_MASK;
1223 }
1224
1225 metaslab_t *
1226 metaslab_init(metaslab_group_t *mg, uint64_t id, uint64_t object, uint64_t txg)
1227 {
1228 vdev_t *vd = mg->mg_vd;
1229 objset_t *mos = vd->vdev_spa->spa_meta_objset;
1230 metaslab_t *msp;
1231
1232 msp = kmem_zalloc(sizeof (metaslab_t), KM_PUSHPAGE);
1233 mutex_init(&msp->ms_lock, NULL, MUTEX_DEFAULT, NULL);
1234 cv_init(&msp->ms_load_cv, NULL, CV_DEFAULT, NULL);
1235 msp->ms_id = id;
1236 msp->ms_start = id << vd->vdev_ms_shift;
1237 msp->ms_size = 1ULL << vd->vdev_ms_shift;
1238
1239 /*
1240 * We only open space map objects that already exist. All others
1241 * will be opened when we finally allocate an object for it.
1242 */
1243 if (object != 0) {
1244 VERIFY0(space_map_open(&msp->ms_sm, mos, object, msp->ms_start,
1245 msp->ms_size, vd->vdev_ashift, &msp->ms_lock));
1246 ASSERT(msp->ms_sm != NULL);
1247 }
1248
1249 /*
1250 * We create the main range tree here, but we don't create the
1251 * alloctree and freetree until metaslab_sync_done(). This serves
1252 * two purposes: it allows metaslab_sync_done() to detect the
1253 * addition of new space; and for debugging, it ensures that we'd
1254 * data fault on any attempt to use this metaslab before it's ready.
1255 */
1256 msp->ms_tree = range_tree_create(&metaslab_rt_ops, msp, &msp->ms_lock);
1257 metaslab_group_add(mg, msp);
1258
1259 msp->ms_fragmentation = metaslab_fragmentation(msp);
1260 msp->ms_ops = mg->mg_class->mc_ops;
1261
1262 /*
1263 * If we're opening an existing pool (txg == 0) or creating
1264 * a new one (txg == TXG_INITIAL), all space is available now.
1265 * If we're adding space to an existing pool, the new space
1266 * does not become available until after this txg has synced.
1267 */
1268 if (txg <= TXG_INITIAL)
1269 metaslab_sync_done(msp, 0);
1270
1271 /*
1272 * If metaslab_debug_load is set and we're initializing a metaslab
1273 * that has an allocated space_map object then load the its space
1274 * map so that can verify frees.
1275 */
1276 if (metaslab_debug_load && msp->ms_sm != NULL) {
1277 mutex_enter(&msp->ms_lock);
1278 VERIFY0(metaslab_load(msp));
1279 mutex_exit(&msp->ms_lock);
1280 }
1281
1282 if (txg != 0) {
1283 vdev_dirty(vd, 0, NULL, txg);
1284 vdev_dirty(vd, VDD_METASLAB, msp, txg);
1285 }
1286
1287 return (msp);
1288 }
1289
1290 void
1291 metaslab_fini(metaslab_t *msp)
1292 {
1293 int t;
1294
1295 metaslab_group_t *mg = msp->ms_group;
1296
1297 metaslab_group_remove(mg, msp);
1298
1299 mutex_enter(&msp->ms_lock);
1300
1301 VERIFY(msp->ms_group == NULL);
1302 vdev_space_update(mg->mg_vd, -space_map_allocated(msp->ms_sm),
1303 0, -msp->ms_size);
1304 space_map_close(msp->ms_sm);
1305
1306 metaslab_unload(msp);
1307 range_tree_destroy(msp->ms_tree);
1308
1309 for (t = 0; t < TXG_SIZE; t++) {
1310 range_tree_destroy(msp->ms_alloctree[t]);
1311 range_tree_destroy(msp->ms_freetree[t]);
1312 }
1313
1314 for (t = 0; t < TXG_DEFER_SIZE; t++) {
1315 range_tree_destroy(msp->ms_defertree[t]);
1316 }
1317
1318 ASSERT0(msp->ms_deferspace);
1319
1320 mutex_exit(&msp->ms_lock);
1321 cv_destroy(&msp->ms_load_cv);
1322 mutex_destroy(&msp->ms_lock);
1323
1324 kmem_free(msp, sizeof (metaslab_t));
1325 }
1326
1327 #define FRAGMENTATION_TABLE_SIZE 17
1328
1329 /*
1330 * This table defines a segment size based fragmentation metric that will
1331 * allow each metaslab to derive its own fragmentation value. This is done
1332 * by calculating the space in each bucket of the spacemap histogram and
1333 * multiplying that by the fragmetation metric in this table. Doing
1334 * this for all buckets and dividing it by the total amount of free
1335 * space in this metaslab (i.e. the total free space in all buckets) gives
1336 * us the fragmentation metric. This means that a high fragmentation metric
1337 * equates to most of the free space being comprised of small segments.
1338 * Conversely, if the metric is low, then most of the free space is in
1339 * large segments. A 10% change in fragmentation equates to approximately
1340 * double the number of segments.
1341 *
1342 * This table defines 0% fragmented space using 16MB segments. Testing has
1343 * shown that segments that are greater than or equal to 16MB do not suffer
1344 * from drastic performance problems. Using this value, we derive the rest
1345 * of the table. Since the fragmentation value is never stored on disk, it
1346 * is possible to change these calculations in the future.
1347 */
1348 int zfs_frag_table[FRAGMENTATION_TABLE_SIZE] = {
1349 100, /* 512B */
1350 100, /* 1K */
1351 98, /* 2K */
1352 95, /* 4K */
1353 90, /* 8K */
1354 80, /* 16K */
1355 70, /* 32K */
1356 60, /* 64K */
1357 50, /* 128K */
1358 40, /* 256K */
1359 30, /* 512K */
1360 20, /* 1M */
1361 15, /* 2M */
1362 10, /* 4M */
1363 5, /* 8M */
1364 0 /* 16M */
1365 };
1366
1367 /*
1368 * Calclate the metaslab's fragmentation metric. A return value
1369 * of ZFS_FRAG_INVALID means that the metaslab has not been upgraded and does
1370 * not support this metric. Otherwise, the return value should be in the
1371 * range [0, 100].
1372 */
1373 static uint64_t
1374 metaslab_fragmentation(metaslab_t *msp)
1375 {
1376 spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
1377 uint64_t fragmentation = 0;
1378 uint64_t total = 0;
1379 boolean_t feature_enabled = spa_feature_is_enabled(spa,
1380 SPA_FEATURE_SPACEMAP_HISTOGRAM);
1381 int i;
1382
1383 if (!feature_enabled)
1384 return (ZFS_FRAG_INVALID);
1385
1386 /*
1387 * A null space map means that the entire metaslab is free
1388 * and thus is not fragmented.
1389 */
1390 if (msp->ms_sm == NULL)
1391 return (0);
1392
1393 /*
1394 * If this metaslab's space_map has not been upgraded, flag it
1395 * so that we upgrade next time we encounter it.
1396 */
1397 if (msp->ms_sm->sm_dbuf->db_size != sizeof (space_map_phys_t)) {
1398 uint64_t txg = spa_syncing_txg(spa);
1399 vdev_t *vd = msp->ms_group->mg_vd;
1400
1401 msp->ms_condense_wanted = B_TRUE;
1402 vdev_dirty(vd, VDD_METASLAB, msp, txg + 1);
1403 spa_dbgmsg(spa, "txg %llu, requesting force condense: "
1404 "msp %p, vd %p", txg, msp, vd);
1405 return (ZFS_FRAG_INVALID);
1406 }
1407
1408 for (i = 0; i < SPACE_MAP_HISTOGRAM_SIZE; i++) {
1409 uint64_t space = 0;
1410 uint8_t shift = msp->ms_sm->sm_shift;
1411 int idx = MIN(shift - SPA_MINBLOCKSHIFT + i,
1412 FRAGMENTATION_TABLE_SIZE - 1);
1413
1414 if (msp->ms_sm->sm_phys->smp_histogram[i] == 0)
1415 continue;
1416
1417 space = msp->ms_sm->sm_phys->smp_histogram[i] << (i + shift);
1418 total += space;
1419
1420 ASSERT3U(idx, <, FRAGMENTATION_TABLE_SIZE);
1421 fragmentation += space * zfs_frag_table[idx];
1422 }
1423
1424 if (total > 0)
1425 fragmentation /= total;
1426 ASSERT3U(fragmentation, <=, 100);
1427 return (fragmentation);
1428 }
1429
1430 /*
1431 * Compute a weight -- a selection preference value -- for the given metaslab.
1432 * This is based on the amount of free space, the level of fragmentation,
1433 * the LBA range, and whether the metaslab is loaded.
1434 */
1435 static uint64_t
1436 metaslab_weight(metaslab_t *msp)
1437 {
1438 metaslab_group_t *mg = msp->ms_group;
1439 vdev_t *vd = mg->mg_vd;
1440 uint64_t weight, space;
1441
1442 ASSERT(MUTEX_HELD(&msp->ms_lock));
1443
1444 /*
1445 * This vdev is in the process of being removed so there is nothing
1446 * for us to do here.
1447 */
1448 if (vd->vdev_removing) {
1449 ASSERT0(space_map_allocated(msp->ms_sm));
1450 ASSERT0(vd->vdev_ms_shift);
1451 return (0);
1452 }
1453
1454 /*
1455 * The baseline weight is the metaslab's free space.
1456 */
1457 space = msp->ms_size - space_map_allocated(msp->ms_sm);
1458
1459 msp->ms_fragmentation = metaslab_fragmentation(msp);
1460 if (metaslab_fragmentation_factor_enabled &&
1461 msp->ms_fragmentation != ZFS_FRAG_INVALID) {
1462 /*
1463 * Use the fragmentation information to inversely scale
1464 * down the baseline weight. We need to ensure that we
1465 * don't exclude this metaslab completely when it's 100%
1466 * fragmented. To avoid this we reduce the fragmented value
1467 * by 1.
1468 */
1469 space = (space * (100 - (msp->ms_fragmentation - 1))) / 100;
1470
1471 /*
1472 * If space < SPA_MINBLOCKSIZE, then we will not allocate from
1473 * this metaslab again. The fragmentation metric may have
1474 * decreased the space to something smaller than
1475 * SPA_MINBLOCKSIZE, so reset the space to SPA_MINBLOCKSIZE
1476 * so that we can consume any remaining space.
1477 */
1478 if (space > 0 && space < SPA_MINBLOCKSIZE)
1479 space = SPA_MINBLOCKSIZE;
1480 }
1481 weight = space;
1482
1483 /*
1484 * Modern disks have uniform bit density and constant angular velocity.
1485 * Therefore, the outer recording zones are faster (higher bandwidth)
1486 * than the inner zones by the ratio of outer to inner track diameter,
1487 * which is typically around 2:1. We account for this by assigning
1488 * higher weight to lower metaslabs (multiplier ranging from 2x to 1x).
1489 * In effect, this means that we'll select the metaslab with the most
1490 * free bandwidth rather than simply the one with the most free space.
1491 */
1492 if (metaslab_lba_weighting_enabled) {
1493 weight = 2 * weight - (msp->ms_id * weight) / vd->vdev_ms_count;
1494 ASSERT(weight >= space && weight <= 2 * space);
1495 }
1496
1497 /*
1498 * If this metaslab is one we're actively using, adjust its
1499 * weight to make it preferable to any inactive metaslab so
1500 * we'll polish it off. If the fragmentation on this metaslab
1501 * has exceed our threshold, then don't mark it active.
1502 */
1503 if (msp->ms_loaded && msp->ms_fragmentation != ZFS_FRAG_INVALID &&
1504 msp->ms_fragmentation <= zfs_metaslab_fragmentation_threshold) {
1505 weight |= (msp->ms_weight & METASLAB_ACTIVE_MASK);
1506 }
1507
1508 return (weight);
1509 }
1510
1511 static int
1512 metaslab_activate(metaslab_t *msp, uint64_t activation_weight)
1513 {
1514 ASSERT(MUTEX_HELD(&msp->ms_lock));
1515
1516 if ((msp->ms_weight & METASLAB_ACTIVE_MASK) == 0) {
1517 metaslab_load_wait(msp);
1518 if (!msp->ms_loaded) {
1519 int error = metaslab_load(msp);
1520 if (error) {
1521 metaslab_group_sort(msp->ms_group, msp, 0);
1522 return (error);
1523 }
1524 }
1525
1526 metaslab_group_sort(msp->ms_group, msp,
1527 msp->ms_weight | activation_weight);
1528 }
1529 ASSERT(msp->ms_loaded);
1530 ASSERT(msp->ms_weight & METASLAB_ACTIVE_MASK);
1531
1532 return (0);
1533 }
1534
1535 static void
1536 metaslab_passivate(metaslab_t *msp, uint64_t size)
1537 {
1538 /*
1539 * If size < SPA_MINBLOCKSIZE, then we will not allocate from
1540 * this metaslab again. In that case, it had better be empty,
1541 * or we would be leaving space on the table.
1542 */
1543 ASSERT(size >= SPA_MINBLOCKSIZE || range_tree_space(msp->ms_tree) == 0);
1544 metaslab_group_sort(msp->ms_group, msp, MIN(msp->ms_weight, size));
1545 ASSERT((msp->ms_weight & METASLAB_ACTIVE_MASK) == 0);
1546 }
1547
1548 static void
1549 metaslab_preload(void *arg)
1550 {
1551 metaslab_t *msp = arg;
1552 spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
1553
1554 ASSERT(!MUTEX_HELD(&msp->ms_group->mg_lock));
1555
1556 mutex_enter(&msp->ms_lock);
1557 metaslab_load_wait(msp);
1558 if (!msp->ms_loaded)
1559 (void) metaslab_load(msp);
1560
1561 /*
1562 * Set the ms_access_txg value so that we don't unload it right away.
1563 */
1564 msp->ms_access_txg = spa_syncing_txg(spa) + metaslab_unload_delay + 1;
1565 mutex_exit(&msp->ms_lock);
1566 }
1567
1568 static void
1569 metaslab_group_preload(metaslab_group_t *mg)
1570 {
1571 spa_t *spa = mg->mg_vd->vdev_spa;
1572 metaslab_t *msp;
1573 avl_tree_t *t = &mg->mg_metaslab_tree;
1574 int m = 0;
1575
1576 if (spa_shutting_down(spa) || !metaslab_preload_enabled) {
1577 taskq_wait(mg->mg_taskq);
1578 return;
1579 }
1580
1581 mutex_enter(&mg->mg_lock);
1582 /*
1583 * Load the next potential metaslabs
1584 */
1585 msp = avl_first(t);
1586 while (msp != NULL) {
1587 metaslab_t *msp_next = AVL_NEXT(t, msp);
1588
1589 /*
1590 * We preload only the maximum number of metaslabs specified
1591 * by metaslab_preload_limit. If a metaslab is being forced
1592 * to condense then we preload it too. This will ensure
1593 * that force condensing happens in the next txg.
1594 */
1595 if (++m > metaslab_preload_limit && !msp->ms_condense_wanted) {
1596 msp = msp_next;
1597 continue;
1598 }
1599
1600 /*
1601 * We must drop the metaslab group lock here to preserve
1602 * lock ordering with the ms_lock (when grabbing both
1603 * the mg_lock and the ms_lock, the ms_lock must be taken
1604 * first). As a result, it is possible that the ordering
1605 * of the metaslabs within the avl tree may change before
1606 * we reacquire the lock. The metaslab cannot be removed from
1607 * the tree while we're in syncing context so it is safe to
1608 * drop the mg_lock here. If the metaslabs are reordered
1609 * nothing will break -- we just may end up loading a
1610 * less than optimal one.
1611 */
1612 mutex_exit(&mg->mg_lock);
1613 VERIFY(taskq_dispatch(mg->mg_taskq, metaslab_preload,
1614 msp, TQ_PUSHPAGE) != 0);
1615 mutex_enter(&mg->mg_lock);
1616 msp = msp_next;
1617 }
1618 mutex_exit(&mg->mg_lock);
1619 }
1620
1621 /*
1622 * Determine if the space map's on-disk footprint is past our tolerance
1623 * for inefficiency. We would like to use the following criteria to make
1624 * our decision:
1625 *
1626 * 1. The size of the space map object should not dramatically increase as a
1627 * result of writing out the free space range tree.
1628 *
1629 * 2. The minimal on-disk space map representation is zfs_condense_pct/100
1630 * times the size than the free space range tree representation
1631 * (i.e. zfs_condense_pct = 110 and in-core = 1MB, minimal = 1.1.MB).
1632 *
1633 * Checking the first condition is tricky since we don't want to walk
1634 * the entire AVL tree calculating the estimated on-disk size. Instead we
1635 * use the size-ordered range tree in the metaslab and calculate the
1636 * size required to write out the largest segment in our free tree. If the
1637 * size required to represent that segment on disk is larger than the space
1638 * map object then we avoid condensing this map.
1639 *
1640 * To determine the second criterion we use a best-case estimate and assume
1641 * each segment can be represented on-disk as a single 64-bit entry. We refer
1642 * to this best-case estimate as the space map's minimal form.
1643 */
1644 static boolean_t
1645 metaslab_should_condense(metaslab_t *msp)
1646 {
1647 space_map_t *sm = msp->ms_sm;
1648 range_seg_t *rs;
1649 uint64_t size, entries, segsz;
1650
1651 ASSERT(MUTEX_HELD(&msp->ms_lock));
1652 ASSERT(msp->ms_loaded);
1653
1654 /*
1655 * Use the ms_size_tree range tree, which is ordered by size, to
1656 * obtain the largest segment in the free tree. We always condense
1657 * metaslabs that are empty and metaslabs for which a condense
1658 * request has been made.
1659 */
1660 rs = avl_last(&msp->ms_size_tree);
1661 if (rs == NULL || msp->ms_condense_wanted)
1662 return (B_TRUE);
1663
1664 /*
1665 * Calculate the number of 64-bit entries this segment would
1666 * require when written to disk. If this single segment would be
1667 * larger on-disk than the entire current on-disk structure, then
1668 * clearly condensing will increase the on-disk structure size.
1669 */
1670 size = (rs->rs_end - rs->rs_start) >> sm->sm_shift;
1671 entries = size / (MIN(size, SM_RUN_MAX));
1672 segsz = entries * sizeof (uint64_t);
1673
1674 return (segsz <= space_map_length(msp->ms_sm) &&
1675 space_map_length(msp->ms_sm) >= (zfs_condense_pct *
1676 sizeof (uint64_t) * avl_numnodes(&msp->ms_tree->rt_root)) / 100);
1677 }
1678
1679 /*
1680 * Condense the on-disk space map representation to its minimized form.
1681 * The minimized form consists of a small number of allocations followed by
1682 * the entries of the free range tree.
1683 */
1684 static void
1685 metaslab_condense(metaslab_t *msp, uint64_t txg, dmu_tx_t *tx)
1686 {
1687 spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
1688 range_tree_t *freetree = msp->ms_freetree[txg & TXG_MASK];
1689 range_tree_t *condense_tree;
1690 space_map_t *sm = msp->ms_sm;
1691 int t;
1692
1693 ASSERT(MUTEX_HELD(&msp->ms_lock));
1694 ASSERT3U(spa_sync_pass(spa), ==, 1);
1695 ASSERT(msp->ms_loaded);
1696
1697
1698 spa_dbgmsg(spa, "condensing: txg %llu, msp[%llu] %p, "
1699 "smp size %llu, segments %lu, forcing condense=%s", txg,
1700 msp->ms_id, msp, space_map_length(msp->ms_sm),
1701 avl_numnodes(&msp->ms_tree->rt_root),
1702 msp->ms_condense_wanted ? "TRUE" : "FALSE");
1703
1704 msp->ms_condense_wanted = B_FALSE;
1705
1706 /*
1707 * Create an range tree that is 100% allocated. We remove segments
1708 * that have been freed in this txg, any deferred frees that exist,
1709 * and any allocation in the future. Removing segments should be
1710 * a relatively inexpensive operation since we expect these trees to
1711 * have a small number of nodes.
1712 */
1713 condense_tree = range_tree_create(NULL, NULL, &msp->ms_lock);
1714 range_tree_add(condense_tree, msp->ms_start, msp->ms_size);
1715
1716 /*
1717 * Remove what's been freed in this txg from the condense_tree.
1718 * Since we're in sync_pass 1, we know that all the frees from
1719 * this txg are in the freetree.
1720 */
1721 range_tree_walk(freetree, range_tree_remove, condense_tree);
1722
1723 for (t = 0; t < TXG_DEFER_SIZE; t++) {
1724 range_tree_walk(msp->ms_defertree[t],
1725 range_tree_remove, condense_tree);
1726 }
1727
1728 for (t = 1; t < TXG_CONCURRENT_STATES; t++) {
1729 range_tree_walk(msp->ms_alloctree[(txg + t) & TXG_MASK],
1730 range_tree_remove, condense_tree);
1731 }
1732
1733 /*
1734 * We're about to drop the metaslab's lock thus allowing
1735 * other consumers to change it's content. Set the
1736 * metaslab's ms_condensing flag to ensure that
1737 * allocations on this metaslab do not occur while we're
1738 * in the middle of committing it to disk. This is only critical
1739 * for the ms_tree as all other range trees use per txg
1740 * views of their content.
1741 */
1742 msp->ms_condensing = B_TRUE;
1743
1744 mutex_exit(&msp->ms_lock);
1745 space_map_truncate(sm, tx);
1746 mutex_enter(&msp->ms_lock);
1747
1748 /*
1749 * While we would ideally like to create a space_map representation
1750 * that consists only of allocation records, doing so can be
1751 * prohibitively expensive because the in-core free tree can be
1752 * large, and therefore computationally expensive to subtract
1753 * from the condense_tree. Instead we sync out two trees, a cheap
1754 * allocation only tree followed by the in-core free tree. While not
1755 * optimal, this is typically close to optimal, and much cheaper to
1756 * compute.
1757 */
1758 space_map_write(sm, condense_tree, SM_ALLOC, tx);
1759 range_tree_vacate(condense_tree, NULL, NULL);
1760 range_tree_destroy(condense_tree);
1761
1762 space_map_write(sm, msp->ms_tree, SM_FREE, tx);
1763 msp->ms_condensing = B_FALSE;
1764 }
1765
1766 /*
1767 * Write a metaslab to disk in the context of the specified transaction group.
1768 */
1769 void
1770 metaslab_sync(metaslab_t *msp, uint64_t txg)
1771 {
1772 metaslab_group_t *mg = msp->ms_group;
1773 vdev_t *vd = mg->mg_vd;
1774 spa_t *spa = vd->vdev_spa;
1775 objset_t *mos = spa_meta_objset(spa);
1776 range_tree_t *alloctree = msp->ms_alloctree[txg & TXG_MASK];
1777 range_tree_t **freetree = &msp->ms_freetree[txg & TXG_MASK];
1778 range_tree_t **freed_tree =
1779 &msp->ms_freetree[TXG_CLEAN(txg) & TXG_MASK];
1780 dmu_tx_t *tx;
1781 uint64_t object = space_map_object(msp->ms_sm);
1782
1783 ASSERT(!vd->vdev_ishole);
1784
1785 /*
1786 * This metaslab has just been added so there's no work to do now.
1787 */
1788 if (*freetree == NULL) {
1789 ASSERT3P(alloctree, ==, NULL);
1790 return;
1791 }
1792
1793 ASSERT3P(alloctree, !=, NULL);
1794 ASSERT3P(*freetree, !=, NULL);
1795 ASSERT3P(*freed_tree, !=, NULL);
1796
1797 /*
1798 * Normally, we don't want to process a metaslab if there
1799 * are no allocations or frees to perform. However, if the metaslab
1800 * is being forced to condense we need to let it through.
1801 */
1802 if (range_tree_space(alloctree) == 0 &&
1803 range_tree_space(*freetree) == 0 &&
1804 !msp->ms_condense_wanted)
1805 return;
1806
1807 /*
1808 * The only state that can actually be changing concurrently with
1809 * metaslab_sync() is the metaslab's ms_tree. No other thread can
1810 * be modifying this txg's alloctree, freetree, freed_tree, or
1811 * space_map_phys_t. Therefore, we only hold ms_lock to satify
1812 * space_map ASSERTs. We drop it whenever we call into the DMU,
1813 * because the DMU can call down to us (e.g. via zio_free()) at
1814 * any time.
1815 */
1816
1817 tx = dmu_tx_create_assigned(spa_get_dsl(spa), txg);
1818
1819 if (msp->ms_sm == NULL) {
1820 uint64_t new_object;
1821
1822 new_object = space_map_alloc(mos, tx);
1823 VERIFY3U(new_object, !=, 0);
1824
1825 VERIFY0(space_map_open(&msp->ms_sm, mos, new_object,
1826 msp->ms_start, msp->ms_size, vd->vdev_ashift,
1827 &msp->ms_lock));
1828 ASSERT(msp->ms_sm != NULL);
1829 }
1830
1831 mutex_enter(&msp->ms_lock);
1832
1833 if (msp->ms_loaded && spa_sync_pass(spa) == 1 &&
1834 metaslab_should_condense(msp)) {
1835 metaslab_condense(msp, txg, tx);
1836 } else {
1837 space_map_write(msp->ms_sm, alloctree, SM_ALLOC, tx);
1838 space_map_write(msp->ms_sm, *freetree, SM_FREE, tx);
1839 }
1840
1841 metaslab_group_histogram_verify(mg);
1842 metaslab_class_histogram_verify(mg->mg_class);
1843 metaslab_group_histogram_remove(mg, msp);
1844 if (msp->ms_loaded) {
1845 /*
1846 * When the space map is loaded, we have an accruate
1847 * histogram in the range tree. This gives us an opportunity
1848 * to bring the space map's histogram up-to-date so we clear
1849 * it first before updating it.
1850 */
1851 space_map_histogram_clear(msp->ms_sm);
1852 space_map_histogram_add(msp->ms_sm, msp->ms_tree, tx);
1853 } else {
1854 /*
1855 * Since the space map is not loaded we simply update the
1856 * exisiting histogram with what was freed in this txg. This
1857 * means that the on-disk histogram may not have an accurate
1858 * view of the free space but it's close enough to allow
1859 * us to make allocation decisions.
1860 */
1861 space_map_histogram_add(msp->ms_sm, *freetree, tx);
1862 }
1863 metaslab_group_histogram_add(mg, msp);
1864 metaslab_group_histogram_verify(mg);
1865 metaslab_class_histogram_verify(mg->mg_class);
1866
1867 /*
1868 * For sync pass 1, we avoid traversing this txg's free range tree
1869 * and instead will just swap the pointers for freetree and
1870 * freed_tree. We can safely do this since the freed_tree is
1871 * guaranteed to be empty on the initial pass.
1872 */
1873 if (spa_sync_pass(spa) == 1) {
1874 range_tree_swap(freetree, freed_tree);
1875 } else {
1876 range_tree_vacate(*freetree, range_tree_add, *freed_tree);
1877 }
1878 range_tree_vacate(alloctree, NULL, NULL);
1879
1880 ASSERT0(range_tree_space(msp->ms_alloctree[txg & TXG_MASK]));
1881 ASSERT0(range_tree_space(msp->ms_freetree[txg & TXG_MASK]));
1882
1883 mutex_exit(&msp->ms_lock);
1884
1885 if (object != space_map_object(msp->ms_sm)) {
1886 object = space_map_object(msp->ms_sm);
1887 dmu_write(mos, vd->vdev_ms_array, sizeof (uint64_t) *
1888 msp->ms_id, sizeof (uint64_t), &object, tx);
1889 }
1890 dmu_tx_commit(tx);
1891 }
1892
1893 /*
1894 * Called after a transaction group has completely synced to mark
1895 * all of the metaslab's free space as usable.
1896 */
1897 void
1898 metaslab_sync_done(metaslab_t *msp, uint64_t txg)
1899 {
1900 metaslab_group_t *mg = msp->ms_group;
1901 vdev_t *vd = mg->mg_vd;
1902 range_tree_t **freed_tree;
1903 range_tree_t **defer_tree;
1904 int64_t alloc_delta, defer_delta;
1905 int t;
1906
1907 ASSERT(!vd->vdev_ishole);
1908
1909 mutex_enter(&msp->ms_lock);
1910
1911 /*
1912 * If this metaslab is just becoming available, initialize its
1913 * alloctrees, freetrees, and defertree and add its capacity to
1914 * the vdev.
1915 */
1916 if (msp->ms_freetree[TXG_CLEAN(txg) & TXG_MASK] == NULL) {
1917 for (t = 0; t < TXG_SIZE; t++) {
1918 ASSERT(msp->ms_alloctree[t] == NULL);
1919 ASSERT(msp->ms_freetree[t] == NULL);
1920
1921 msp->ms_alloctree[t] = range_tree_create(NULL, msp,
1922 &msp->ms_lock);
1923 msp->ms_freetree[t] = range_tree_create(NULL, msp,
1924 &msp->ms_lock);
1925 }
1926
1927 for (t = 0; t < TXG_DEFER_SIZE; t++) {
1928 ASSERT(msp->ms_defertree[t] == NULL);
1929
1930 msp->ms_defertree[t] = range_tree_create(NULL, msp,
1931 &msp->ms_lock);
1932 }
1933
1934 vdev_space_update(vd, 0, 0, msp->ms_size);
1935 }
1936
1937 freed_tree = &msp->ms_freetree[TXG_CLEAN(txg) & TXG_MASK];
1938 defer_tree = &msp->ms_defertree[txg % TXG_DEFER_SIZE];
1939
1940 alloc_delta = space_map_alloc_delta(msp->ms_sm);
1941 defer_delta = range_tree_space(*freed_tree) -
1942 range_tree_space(*defer_tree);
1943
1944 vdev_space_update(vd, alloc_delta + defer_delta, defer_delta, 0);
1945
1946 ASSERT0(range_tree_space(msp->ms_alloctree[txg & TXG_MASK]));
1947 ASSERT0(range_tree_space(msp->ms_freetree[txg & TXG_MASK]));
1948
1949 /*
1950 * If there's a metaslab_load() in progress, wait for it to complete
1951 * so that we have a consistent view of the in-core space map.
1952 */
1953 metaslab_load_wait(msp);
1954
1955 /*
1956 * Move the frees from the defer_tree back to the free
1957 * range tree (if it's loaded). Swap the freed_tree and the
1958 * defer_tree -- this is safe to do because we've just emptied out
1959 * the defer_tree.
1960 */
1961 range_tree_vacate(*defer_tree,
1962 msp->ms_loaded ? range_tree_add : NULL, msp->ms_tree);
1963 range_tree_swap(freed_tree, defer_tree);
1964
1965 space_map_update(msp->ms_sm);
1966
1967 msp->ms_deferspace += defer_delta;
1968 ASSERT3S(msp->ms_deferspace, >=, 0);
1969 ASSERT3S(msp->ms_deferspace, <=, msp->ms_size);
1970 if (msp->ms_deferspace != 0) {
1971 /*
1972 * Keep syncing this metaslab until all deferred frees
1973 * are back in circulation.
1974 */
1975 vdev_dirty(vd, VDD_METASLAB, msp, txg + 1);
1976 }
1977
1978 if (msp->ms_loaded && msp->ms_access_txg < txg) {
1979 for (t = 1; t < TXG_CONCURRENT_STATES; t++) {
1980 VERIFY0(range_tree_space(
1981 msp->ms_alloctree[(txg + t) & TXG_MASK]));
1982 }
1983
1984 if (!metaslab_debug_unload)
1985 metaslab_unload(msp);
1986 }
1987
1988 metaslab_group_sort(mg, msp, metaslab_weight(msp));
1989 mutex_exit(&msp->ms_lock);
1990 }
1991
1992 void
1993 metaslab_sync_reassess(metaslab_group_t *mg)
1994 {
1995 metaslab_group_alloc_update(mg);
1996 mg->mg_fragmentation = metaslab_group_fragmentation(mg);
1997
1998 /*
1999 * Preload the next potential metaslabs
2000 */
2001 metaslab_group_preload(mg);
2002 }
2003
2004 static uint64_t
2005 metaslab_distance(metaslab_t *msp, dva_t *dva)
2006 {
2007 uint64_t ms_shift = msp->ms_group->mg_vd->vdev_ms_shift;
2008 uint64_t offset = DVA_GET_OFFSET(dva) >> ms_shift;
2009 uint64_t start = msp->ms_id;
2010
2011 if (msp->ms_group->mg_vd->vdev_id != DVA_GET_VDEV(dva))
2012 return (1ULL << 63);
2013
2014 if (offset < start)
2015 return ((start - offset) << ms_shift);
2016 if (offset > start)
2017 return ((offset - start) << ms_shift);
2018 return (0);
2019 }
2020
2021 static uint64_t
2022 metaslab_group_alloc(metaslab_group_t *mg, uint64_t psize, uint64_t asize,
2023 uint64_t txg, uint64_t min_distance, dva_t *dva, int d)
2024 {
2025 spa_t *spa = mg->mg_vd->vdev_spa;
2026 metaslab_t *msp = NULL;
2027 uint64_t offset = -1ULL;
2028 avl_tree_t *t = &mg->mg_metaslab_tree;
2029 uint64_t activation_weight;
2030 uint64_t target_distance;
2031 int i;
2032
2033 activation_weight = METASLAB_WEIGHT_PRIMARY;
2034 for (i = 0; i < d; i++) {
2035 if (DVA_GET_VDEV(&dva[i]) == mg->mg_vd->vdev_id) {
2036 activation_weight = METASLAB_WEIGHT_SECONDARY;
2037 break;
2038 }
2039 }
2040
2041 for (;;) {
2042 boolean_t was_active;
2043
2044 mutex_enter(&mg->mg_lock);
2045 for (msp = avl_first(t); msp; msp = AVL_NEXT(t, msp)) {
2046 if (msp->ms_weight < asize) {
2047 spa_dbgmsg(spa, "%s: failed to meet weight "
2048 "requirement: vdev %llu, txg %llu, mg %p, "
2049 "msp %p, psize %llu, asize %llu, "
2050 "weight %llu", spa_name(spa),
2051 mg->mg_vd->vdev_id, txg,
2052 mg, msp, psize, asize, msp->ms_weight);
2053 mutex_exit(&mg->mg_lock);
2054 return (-1ULL);
2055 }
2056
2057 /*
2058 * If the selected metaslab is condensing, skip it.
2059 */
2060 if (msp->ms_condensing)
2061 continue;
2062
2063 was_active = msp->ms_weight & METASLAB_ACTIVE_MASK;
2064 if (activation_weight == METASLAB_WEIGHT_PRIMARY)
2065 break;
2066
2067 target_distance = min_distance +
2068 (space_map_allocated(msp->ms_sm) != 0 ? 0 :
2069 min_distance >> 1);
2070
2071 for (i = 0; i < d; i++)
2072 if (metaslab_distance(msp, &dva[i]) <
2073 target_distance)
2074 break;
2075 if (i == d)
2076 break;
2077 }
2078 mutex_exit(&mg->mg_lock);
2079 if (msp == NULL)
2080 return (-1ULL);
2081
2082 mutex_enter(&msp->ms_lock);
2083
2084 /*
2085 * Ensure that the metaslab we have selected is still
2086 * capable of handling our request. It's possible that
2087 * another thread may have changed the weight while we
2088 * were blocked on the metaslab lock.
2089 */
2090 if (msp->ms_weight < asize || (was_active &&
2091 !(msp->ms_weight & METASLAB_ACTIVE_MASK) &&
2092 activation_weight == METASLAB_WEIGHT_PRIMARY)) {
2093 mutex_exit(&msp->ms_lock);
2094 continue;
2095 }
2096
2097 if ((msp->ms_weight & METASLAB_WEIGHT_SECONDARY) &&
2098 activation_weight == METASLAB_WEIGHT_PRIMARY) {
2099 metaslab_passivate(msp,
2100 msp->ms_weight & ~METASLAB_ACTIVE_MASK);
2101 mutex_exit(&msp->ms_lock);
2102 continue;
2103 }
2104
2105 if (metaslab_activate(msp, activation_weight) != 0) {
2106 mutex_exit(&msp->ms_lock);
2107 continue;
2108 }
2109
2110 /*
2111 * If this metaslab is currently condensing then pick again as
2112 * we can't manipulate this metaslab until it's committed
2113 * to disk.
2114 */
2115 if (msp->ms_condensing) {
2116 mutex_exit(&msp->ms_lock);
2117 continue;
2118 }
2119
2120 if ((offset = metaslab_block_alloc(msp, asize)) != -1ULL)
2121 break;
2122
2123 metaslab_passivate(msp, metaslab_block_maxsize(msp));
2124 mutex_exit(&msp->ms_lock);
2125 }
2126
2127 if (range_tree_space(msp->ms_alloctree[txg & TXG_MASK]) == 0)
2128 vdev_dirty(mg->mg_vd, VDD_METASLAB, msp, txg);
2129
2130 range_tree_add(msp->ms_alloctree[txg & TXG_MASK], offset, asize);
2131 msp->ms_access_txg = txg + metaslab_unload_delay;
2132
2133 mutex_exit(&msp->ms_lock);
2134
2135 return (offset);
2136 }
2137
2138 /*
2139 * Allocate a block for the specified i/o.
2140 */
2141 static int
2142 metaslab_alloc_dva(spa_t *spa, metaslab_class_t *mc, uint64_t psize,
2143 dva_t *dva, int d, dva_t *hintdva, uint64_t txg, int flags)
2144 {
2145 metaslab_group_t *mg, *fast_mg, *rotor;
2146 vdev_t *vd;
2147 int dshift = 3;
2148 int all_zero;
2149 int zio_lock = B_FALSE;
2150 boolean_t allocatable;
2151 uint64_t offset = -1ULL;
2152 uint64_t asize;
2153 uint64_t distance;
2154
2155 ASSERT(!DVA_IS_VALID(&dva[d]));
2156
2157 /*
2158 * For testing, make some blocks above a certain size be gang blocks.
2159 */
2160 if (psize >= metaslab_gang_bang && (ddi_get_lbolt() & 3) == 0)
2161 return (SET_ERROR(ENOSPC));
2162
2163 if (flags & METASLAB_FASTWRITE)
2164 mutex_enter(&mc->mc_fastwrite_lock);
2165
2166 /*
2167 * Start at the rotor and loop through all mgs until we find something.
2168 * Note that there's no locking on mc_rotor or mc_aliquot because
2169 * nothing actually breaks if we miss a few updates -- we just won't
2170 * allocate quite as evenly. It all balances out over time.
2171 *
2172 * If we are doing ditto or log blocks, try to spread them across
2173 * consecutive vdevs. If we're forced to reuse a vdev before we've
2174 * allocated all of our ditto blocks, then try and spread them out on
2175 * that vdev as much as possible. If it turns out to not be possible,
2176 * gradually lower our standards until anything becomes acceptable.
2177 * Also, allocating on consecutive vdevs (as opposed to random vdevs)
2178 * gives us hope of containing our fault domains to something we're
2179 * able to reason about. Otherwise, any two top-level vdev failures
2180 * will guarantee the loss of data. With consecutive allocation,
2181 * only two adjacent top-level vdev failures will result in data loss.
2182 *
2183 * If we are doing gang blocks (hintdva is non-NULL), try to keep
2184 * ourselves on the same vdev as our gang block header. That
2185 * way, we can hope for locality in vdev_cache, plus it makes our
2186 * fault domains something tractable.
2187 */
2188 if (hintdva) {
2189 vd = vdev_lookup_top(spa, DVA_GET_VDEV(&hintdva[d]));
2190
2191 /*
2192 * It's possible the vdev we're using as the hint no
2193 * longer exists (i.e. removed). Consult the rotor when
2194 * all else fails.
2195 */
2196 if (vd != NULL) {
2197 mg = vd->vdev_mg;
2198
2199 if (flags & METASLAB_HINTBP_AVOID &&
2200 mg->mg_next != NULL)
2201 mg = mg->mg_next;
2202 } else {
2203 mg = mc->mc_rotor;
2204 }
2205 } else if (d != 0) {
2206 vd = vdev_lookup_top(spa, DVA_GET_VDEV(&dva[d - 1]));
2207 mg = vd->vdev_mg->mg_next;
2208 } else if (flags & METASLAB_FASTWRITE) {
2209 mg = fast_mg = mc->mc_rotor;
2210
2211 do {
2212 if (fast_mg->mg_vd->vdev_pending_fastwrite <
2213 mg->mg_vd->vdev_pending_fastwrite)
2214 mg = fast_mg;
2215 } while ((fast_mg = fast_mg->mg_next) != mc->mc_rotor);
2216
2217 } else {
2218 mg = mc->mc_rotor;
2219 }
2220
2221 /*
2222 * If the hint put us into the wrong metaslab class, or into a
2223 * metaslab group that has been passivated, just follow the rotor.
2224 */
2225 if (mg->mg_class != mc || mg->mg_activation_count <= 0)
2226 mg = mc->mc_rotor;
2227
2228 rotor = mg;
2229 top:
2230 all_zero = B_TRUE;
2231 do {
2232 ASSERT(mg->mg_activation_count == 1);
2233
2234 vd = mg->mg_vd;
2235
2236 /*
2237 * Don't allocate from faulted devices.
2238 */
2239 if (zio_lock) {
2240 spa_config_enter(spa, SCL_ZIO, FTAG, RW_READER);
2241 allocatable = vdev_allocatable(vd);
2242 spa_config_exit(spa, SCL_ZIO, FTAG);
2243 } else {
2244 allocatable = vdev_allocatable(vd);
2245 }
2246
2247 /*
2248 * Determine if the selected metaslab group is eligible
2249 * for allocations. If we're ganging or have requested
2250 * an allocation for the smallest gang block size
2251 * then we don't want to avoid allocating to the this
2252 * metaslab group. If we're in this condition we should
2253 * try to allocate from any device possible so that we
2254 * don't inadvertently return ENOSPC and suspend the pool
2255 * even though space is still available.
2256 */
2257 if (allocatable && CAN_FASTGANG(flags) &&
2258 psize > SPA_GANGBLOCKSIZE)
2259 allocatable = metaslab_group_allocatable(mg);
2260
2261 if (!allocatable)
2262 goto next;
2263
2264 /*
2265 * Avoid writing single-copy data to a failing vdev
2266 * unless the user instructs us that it is okay.
2267 */
2268 if ((vd->vdev_stat.vs_write_errors > 0 ||
2269 vd->vdev_state < VDEV_STATE_HEALTHY) &&
2270 d == 0 && dshift == 3 && vd->vdev_children == 0) {
2271 all_zero = B_FALSE;
2272 goto next;
2273 }
2274
2275 ASSERT(mg->mg_class == mc);
2276
2277 distance = vd->vdev_asize >> dshift;
2278 if (distance <= (1ULL << vd->vdev_ms_shift))
2279 distance = 0;
2280 else
2281 all_zero = B_FALSE;
2282
2283 asize = vdev_psize_to_asize(vd, psize);
2284 ASSERT(P2PHASE(asize, 1ULL << vd->vdev_ashift) == 0);
2285
2286 offset = metaslab_group_alloc(mg, psize, asize, txg, distance,
2287 dva, d);
2288 if (offset != -1ULL) {
2289 /*
2290 * If we've just selected this metaslab group,
2291 * figure out whether the corresponding vdev is
2292 * over- or under-used relative to the pool,
2293 * and set an allocation bias to even it out.
2294 */
2295 if (mc->mc_aliquot == 0 && metaslab_bias_enabled) {
2296 vdev_stat_t *vs = &vd->vdev_stat;
2297 int64_t vu, cu;
2298
2299 vu = (vs->vs_alloc * 100) / (vs->vs_space + 1);
2300 cu = (mc->mc_alloc * 100) / (mc->mc_space + 1);
2301
2302 /*
2303 * Calculate how much more or less we should
2304 * try to allocate from this device during
2305 * this iteration around the rotor.
2306 * For example, if a device is 80% full
2307 * and the pool is 20% full then we should
2308 * reduce allocations by 60% on this device.
2309 *
2310 * mg_bias = (20 - 80) * 512K / 100 = -307K
2311 *
2312 * This reduces allocations by 307K for this
2313 * iteration.
2314 */
2315 mg->mg_bias = ((cu - vu) *
2316 (int64_t)mg->mg_aliquot) / 100;
2317 } else if (!metaslab_bias_enabled) {
2318 mg->mg_bias = 0;
2319 }
2320
2321 if ((flags & METASLAB_FASTWRITE) ||
2322 atomic_add_64_nv(&mc->mc_aliquot, asize) >=
2323 mg->mg_aliquot + mg->mg_bias) {
2324 mc->mc_rotor = mg->mg_next;
2325 mc->mc_aliquot = 0;
2326 }
2327
2328 DVA_SET_VDEV(&dva[d], vd->vdev_id);
2329 DVA_SET_OFFSET(&dva[d], offset);
2330 DVA_SET_GANG(&dva[d], !!(flags & METASLAB_GANG_HEADER));
2331 DVA_SET_ASIZE(&dva[d], asize);
2332
2333 if (flags & METASLAB_FASTWRITE) {
2334 atomic_add_64(&vd->vdev_pending_fastwrite,
2335 psize);
2336 mutex_exit(&mc->mc_fastwrite_lock);
2337 }
2338
2339 return (0);
2340 }
2341 next:
2342 mc->mc_rotor = mg->mg_next;
2343 mc->mc_aliquot = 0;
2344 } while ((mg = mg->mg_next) != rotor);
2345
2346 if (!all_zero) {
2347 dshift++;
2348 ASSERT(dshift < 64);
2349 goto top;
2350 }
2351
2352 if (!allocatable && !zio_lock) {
2353 dshift = 3;
2354 zio_lock = B_TRUE;
2355 goto top;
2356 }
2357
2358 bzero(&dva[d], sizeof (dva_t));
2359
2360 if (flags & METASLAB_FASTWRITE)
2361 mutex_exit(&mc->mc_fastwrite_lock);
2362
2363 return (SET_ERROR(ENOSPC));
2364 }
2365
2366 /*
2367 * Free the block represented by DVA in the context of the specified
2368 * transaction group.
2369 */
2370 static void
2371 metaslab_free_dva(spa_t *spa, const dva_t *dva, uint64_t txg, boolean_t now)
2372 {
2373 uint64_t vdev = DVA_GET_VDEV(dva);
2374 uint64_t offset = DVA_GET_OFFSET(dva);
2375 uint64_t size = DVA_GET_ASIZE(dva);
2376 vdev_t *vd;
2377 metaslab_t *msp;
2378
2379 ASSERT(DVA_IS_VALID(dva));
2380
2381 if (txg > spa_freeze_txg(spa))
2382 return;
2383
2384 if ((vd = vdev_lookup_top(spa, vdev)) == NULL ||
2385 (offset >> vd->vdev_ms_shift) >= vd->vdev_ms_count) {
2386 cmn_err(CE_WARN, "metaslab_free_dva(): bad DVA %llu:%llu",
2387 (u_longlong_t)vdev, (u_longlong_t)offset);
2388 ASSERT(0);
2389 return;
2390 }
2391
2392 msp = vd->vdev_ms[offset >> vd->vdev_ms_shift];
2393
2394 if (DVA_GET_GANG(dva))
2395 size = vdev_psize_to_asize(vd, SPA_GANGBLOCKSIZE);
2396
2397 mutex_enter(&msp->ms_lock);
2398
2399 if (now) {
2400 range_tree_remove(msp->ms_alloctree[txg & TXG_MASK],
2401 offset, size);
2402
2403 VERIFY(!msp->ms_condensing);
2404 VERIFY3U(offset, >=, msp->ms_start);
2405 VERIFY3U(offset + size, <=, msp->ms_start + msp->ms_size);
2406 VERIFY3U(range_tree_space(msp->ms_tree) + size, <=,
2407 msp->ms_size);
2408 VERIFY0(P2PHASE(offset, 1ULL << vd->vdev_ashift));
2409 VERIFY0(P2PHASE(size, 1ULL << vd->vdev_ashift));
2410 range_tree_add(msp->ms_tree, offset, size);
2411 } else {
2412 if (range_tree_space(msp->ms_freetree[txg & TXG_MASK]) == 0)
2413 vdev_dirty(vd, VDD_METASLAB, msp, txg);
2414 range_tree_add(msp->ms_freetree[txg & TXG_MASK],
2415 offset, size);
2416 }
2417
2418 mutex_exit(&msp->ms_lock);
2419 }
2420
2421 /*
2422 * Intent log support: upon opening the pool after a crash, notify the SPA
2423 * of blocks that the intent log has allocated for immediate write, but
2424 * which are still considered free by the SPA because the last transaction
2425 * group didn't commit yet.
2426 */
2427 static int
2428 metaslab_claim_dva(spa_t *spa, const dva_t *dva, uint64_t txg)
2429 {
2430 uint64_t vdev = DVA_GET_VDEV(dva);
2431 uint64_t offset = DVA_GET_OFFSET(dva);
2432 uint64_t size = DVA_GET_ASIZE(dva);
2433 vdev_t *vd;
2434 metaslab_t *msp;
2435 int error = 0;
2436
2437 ASSERT(DVA_IS_VALID(dva));
2438
2439 if ((vd = vdev_lookup_top(spa, vdev)) == NULL ||
2440 (offset >> vd->vdev_ms_shift) >= vd->vdev_ms_count)
2441 return (SET_ERROR(ENXIO));
2442
2443 msp = vd->vdev_ms[offset >> vd->vdev_ms_shift];
2444
2445 if (DVA_GET_GANG(dva))
2446 size = vdev_psize_to_asize(vd, SPA_GANGBLOCKSIZE);
2447
2448 mutex_enter(&msp->ms_lock);
2449
2450 if ((txg != 0 && spa_writeable(spa)) || !msp->ms_loaded)
2451 error = metaslab_activate(msp, METASLAB_WEIGHT_SECONDARY);
2452
2453 if (error == 0 && !range_tree_contains(msp->ms_tree, offset, size))
2454 error = SET_ERROR(ENOENT);
2455
2456 if (error || txg == 0) { /* txg == 0 indicates dry run */
2457 mutex_exit(&msp->ms_lock);
2458 return (error);
2459 }
2460
2461 VERIFY(!msp->ms_condensing);
2462 VERIFY0(P2PHASE(offset, 1ULL << vd->vdev_ashift));
2463 VERIFY0(P2PHASE(size, 1ULL << vd->vdev_ashift));
2464 VERIFY3U(range_tree_space(msp->ms_tree) - size, <=, msp->ms_size);
2465 range_tree_remove(msp->ms_tree, offset, size);
2466
2467 if (spa_writeable(spa)) { /* don't dirty if we're zdb(1M) */
2468 if (range_tree_space(msp->ms_alloctree[txg & TXG_MASK]) == 0)
2469 vdev_dirty(vd, VDD_METASLAB, msp, txg);
2470 range_tree_add(msp->ms_alloctree[txg & TXG_MASK], offset, size);
2471 }
2472
2473 mutex_exit(&msp->ms_lock);
2474
2475 return (0);
2476 }
2477
2478 int
2479 metaslab_alloc(spa_t *spa, metaslab_class_t *mc, uint64_t psize, blkptr_t *bp,
2480 int ndvas, uint64_t txg, blkptr_t *hintbp, int flags)
2481 {
2482 dva_t *dva = bp->blk_dva;
2483 dva_t *hintdva = hintbp->blk_dva;
2484 int d, error = 0;
2485
2486 ASSERT(bp->blk_birth == 0);
2487 ASSERT(BP_PHYSICAL_BIRTH(bp) == 0);
2488
2489 spa_config_enter(spa, SCL_ALLOC, FTAG, RW_READER);
2490
2491 if (mc->mc_rotor == NULL) { /* no vdevs in this class */
2492 spa_config_exit(spa, SCL_ALLOC, FTAG);
2493 return (SET_ERROR(ENOSPC));
2494 }
2495
2496 ASSERT(ndvas > 0 && ndvas <= spa_max_replication(spa));
2497 ASSERT(BP_GET_NDVAS(bp) == 0);
2498 ASSERT(hintbp == NULL || ndvas <= BP_GET_NDVAS(hintbp));
2499
2500 for (d = 0; d < ndvas; d++) {
2501 error = metaslab_alloc_dva(spa, mc, psize, dva, d, hintdva,
2502 txg, flags);
2503 if (error != 0) {
2504 for (d--; d >= 0; d--) {
2505 metaslab_free_dva(spa, &dva[d], txg, B_TRUE);
2506 bzero(&dva[d], sizeof (dva_t));
2507 }
2508 spa_config_exit(spa, SCL_ALLOC, FTAG);
2509 return (error);
2510 }
2511 }
2512 ASSERT(error == 0);
2513 ASSERT(BP_GET_NDVAS(bp) == ndvas);
2514
2515 spa_config_exit(spa, SCL_ALLOC, FTAG);
2516
2517 BP_SET_BIRTH(bp, txg, txg);
2518
2519 return (0);
2520 }
2521
2522 void
2523 metaslab_free(spa_t *spa, const blkptr_t *bp, uint64_t txg, boolean_t now)
2524 {
2525 const dva_t *dva = bp->blk_dva;
2526 int d, ndvas = BP_GET_NDVAS(bp);
2527
2528 ASSERT(!BP_IS_HOLE(bp));
2529 ASSERT(!now || bp->blk_birth >= spa_syncing_txg(spa));
2530
2531 spa_config_enter(spa, SCL_FREE, FTAG, RW_READER);
2532
2533 for (d = 0; d < ndvas; d++)
2534 metaslab_free_dva(spa, &dva[d], txg, now);
2535
2536 spa_config_exit(spa, SCL_FREE, FTAG);
2537 }
2538
2539 int
2540 metaslab_claim(spa_t *spa, const blkptr_t *bp, uint64_t txg)
2541 {
2542 const dva_t *dva = bp->blk_dva;
2543 int ndvas = BP_GET_NDVAS(bp);
2544 int d, error = 0;
2545
2546 ASSERT(!BP_IS_HOLE(bp));
2547
2548 if (txg != 0) {
2549 /*
2550 * First do a dry run to make sure all DVAs are claimable,
2551 * so we don't have to unwind from partial failures below.
2552 */
2553 if ((error = metaslab_claim(spa, bp, 0)) != 0)
2554 return (error);
2555 }
2556
2557 spa_config_enter(spa, SCL_ALLOC, FTAG, RW_READER);
2558
2559 for (d = 0; d < ndvas; d++)
2560 if ((error = metaslab_claim_dva(spa, &dva[d], txg)) != 0)
2561 break;
2562
2563 spa_config_exit(spa, SCL_ALLOC, FTAG);
2564
2565 ASSERT(error == 0 || txg == 0);
2566
2567 return (error);
2568 }
2569
2570 void
2571 metaslab_fastwrite_mark(spa_t *spa, const blkptr_t *bp)
2572 {
2573 const dva_t *dva = bp->blk_dva;
2574 int ndvas = BP_GET_NDVAS(bp);
2575 uint64_t psize = BP_GET_PSIZE(bp);
2576 int d;
2577 vdev_t *vd;
2578
2579 ASSERT(!BP_IS_HOLE(bp));
2580 ASSERT(!BP_IS_EMBEDDED(bp));
2581 ASSERT(psize > 0);
2582
2583 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
2584
2585 for (d = 0; d < ndvas; d++) {
2586 if ((vd = vdev_lookup_top(spa, DVA_GET_VDEV(&dva[d]))) == NULL)
2587 continue;
2588 atomic_add_64(&vd->vdev_pending_fastwrite, psize);
2589 }
2590
2591 spa_config_exit(spa, SCL_VDEV, FTAG);
2592 }
2593
2594 void
2595 metaslab_fastwrite_unmark(spa_t *spa, const blkptr_t *bp)
2596 {
2597 const dva_t *dva = bp->blk_dva;
2598 int ndvas = BP_GET_NDVAS(bp);
2599 uint64_t psize = BP_GET_PSIZE(bp);
2600 int d;
2601 vdev_t *vd;
2602
2603 ASSERT(!BP_IS_HOLE(bp));
2604 ASSERT(!BP_IS_EMBEDDED(bp));
2605 ASSERT(psize > 0);
2606
2607 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
2608
2609 for (d = 0; d < ndvas; d++) {
2610 if ((vd = vdev_lookup_top(spa, DVA_GET_VDEV(&dva[d]))) == NULL)
2611 continue;
2612 ASSERT3U(vd->vdev_pending_fastwrite, >=, psize);
2613 atomic_sub_64(&vd->vdev_pending_fastwrite, psize);
2614 }
2615
2616 spa_config_exit(spa, SCL_VDEV, FTAG);
2617 }
2618
2619 void
2620 metaslab_check_free(spa_t *spa, const blkptr_t *bp)
2621 {
2622 int i, j;
2623
2624 if ((zfs_flags & ZFS_DEBUG_ZIO_FREE) == 0)
2625 return;
2626
2627 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
2628 for (i = 0; i < BP_GET_NDVAS(bp); i++) {
2629 uint64_t vdev = DVA_GET_VDEV(&bp->blk_dva[i]);
2630 vdev_t *vd = vdev_lookup_top(spa, vdev);
2631 uint64_t offset = DVA_GET_OFFSET(&bp->blk_dva[i]);
2632 uint64_t size = DVA_GET_ASIZE(&bp->blk_dva[i]);
2633 metaslab_t *msp = vd->vdev_ms[offset >> vd->vdev_ms_shift];
2634
2635 if (msp->ms_loaded)
2636 range_tree_verify(msp->ms_tree, offset, size);
2637
2638 for (j = 0; j < TXG_SIZE; j++)
2639 range_tree_verify(msp->ms_freetree[j], offset, size);
2640 for (j = 0; j < TXG_DEFER_SIZE; j++)
2641 range_tree_verify(msp->ms_defertree[j], offset, size);
2642 }
2643 spa_config_exit(spa, SCL_VDEV, FTAG);
2644 }
2645
2646 #if defined(_KERNEL) && defined(HAVE_SPL)
2647 module_param(metaslab_debug_load, int, 0644);
2648 module_param(metaslab_debug_unload, int, 0644);
2649 module_param(metaslab_preload_enabled, int, 0644);
2650 module_param(zfs_mg_noalloc_threshold, int, 0644);
2651 module_param(zfs_mg_fragmentation_threshold, int, 0644);
2652 module_param(zfs_metaslab_fragmentation_threshold, int, 0644);
2653 module_param(metaslab_fragmentation_factor_enabled, int, 0644);
2654 module_param(metaslab_lba_weighting_enabled, int, 0644);
2655 module_param(metaslab_bias_enabled, int, 0644);
2656
2657 MODULE_PARM_DESC(metaslab_debug_load,
2658 "load all metaslabs when pool is first opened");
2659 MODULE_PARM_DESC(metaslab_debug_unload,
2660 "prevent metaslabs from being unloaded");
2661 MODULE_PARM_DESC(metaslab_preload_enabled,
2662 "preload potential metaslabs during reassessment");
2663
2664 MODULE_PARM_DESC(zfs_mg_noalloc_threshold,
2665 "percentage of free space for metaslab group to allow allocation");
2666 MODULE_PARM_DESC(zfs_mg_fragmentation_threshold,
2667 "fragmentation for metaslab group to allow allocation");
2668
2669 MODULE_PARM_DESC(zfs_metaslab_fragmentation_threshold,
2670 "fragmentation for metaslab to allow allocation");
2671 MODULE_PARM_DESC(metaslab_fragmentation_factor_enabled,
2672 "use the fragmentation metric to prefer less fragmented metaslabs");
2673 MODULE_PARM_DESC(metaslab_lba_weighting_enabled,
2674 "prefer metaslabs with lower LBAs");
2675 MODULE_PARM_DESC(metaslab_bias_enabled,
2676 "enable metaslab group biasing");
2677 #endif /* _KERNEL && HAVE_SPL */