]> git.proxmox.com Git - mirror_zfs.git/blob - module/zfs/spa.c
Don't allow attach to a raidz child vdev
[mirror_zfs.git] / module / zfs / spa.c
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or https://opensource.org/licenses/CDDL-1.0.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22 /*
23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright (c) 2011, 2020 by Delphix. All rights reserved.
25 * Copyright (c) 2018, Nexenta Systems, Inc. All rights reserved.
26 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
27 * Copyright 2013 Saso Kiselkov. All rights reserved.
28 * Copyright (c) 2014 Integros [integros.com]
29 * Copyright 2016 Toomas Soome <tsoome@me.com>
30 * Copyright (c) 2016 Actifio, Inc. All rights reserved.
31 * Copyright 2018 Joyent, Inc.
32 * Copyright (c) 2017, 2019, Datto Inc. All rights reserved.
33 * Copyright 2017 Joyent, Inc.
34 * Copyright (c) 2017, Intel Corporation.
35 * Copyright (c) 2021, Colm Buckley <colm@tuatha.org>
36 * Copyright (c) 2023 Hewlett Packard Enterprise Development LP.
37 */
38
39 /*
40 * SPA: Storage Pool Allocator
41 *
42 * This file contains all the routines used when modifying on-disk SPA state.
43 * This includes opening, importing, destroying, exporting a pool, and syncing a
44 * pool.
45 */
46
47 #include <sys/zfs_context.h>
48 #include <sys/fm/fs/zfs.h>
49 #include <sys/spa_impl.h>
50 #include <sys/zio.h>
51 #include <sys/zio_checksum.h>
52 #include <sys/dmu.h>
53 #include <sys/dmu_tx.h>
54 #include <sys/zap.h>
55 #include <sys/zil.h>
56 #include <sys/brt.h>
57 #include <sys/ddt.h>
58 #include <sys/vdev_impl.h>
59 #include <sys/vdev_removal.h>
60 #include <sys/vdev_indirect_mapping.h>
61 #include <sys/vdev_indirect_births.h>
62 #include <sys/vdev_initialize.h>
63 #include <sys/vdev_rebuild.h>
64 #include <sys/vdev_trim.h>
65 #include <sys/vdev_disk.h>
66 #include <sys/vdev_raidz.h>
67 #include <sys/vdev_draid.h>
68 #include <sys/metaslab.h>
69 #include <sys/metaslab_impl.h>
70 #include <sys/mmp.h>
71 #include <sys/uberblock_impl.h>
72 #include <sys/txg.h>
73 #include <sys/avl.h>
74 #include <sys/bpobj.h>
75 #include <sys/dmu_traverse.h>
76 #include <sys/dmu_objset.h>
77 #include <sys/unique.h>
78 #include <sys/dsl_pool.h>
79 #include <sys/dsl_dataset.h>
80 #include <sys/dsl_dir.h>
81 #include <sys/dsl_prop.h>
82 #include <sys/dsl_synctask.h>
83 #include <sys/fs/zfs.h>
84 #include <sys/arc.h>
85 #include <sys/callb.h>
86 #include <sys/systeminfo.h>
87 #include <sys/zfs_ioctl.h>
88 #include <sys/dsl_scan.h>
89 #include <sys/zfeature.h>
90 #include <sys/dsl_destroy.h>
91 #include <sys/zvol.h>
92
93 #ifdef _KERNEL
94 #include <sys/fm/protocol.h>
95 #include <sys/fm/util.h>
96 #include <sys/callb.h>
97 #include <sys/zone.h>
98 #include <sys/vmsystm.h>
99 #endif /* _KERNEL */
100
101 #include "zfs_prop.h"
102 #include "zfs_comutil.h"
103 #include <cityhash.h>
104
105 /*
106 * spa_thread() existed on Illumos as a parent thread for the various worker
107 * threads that actually run the pool, as a way to both reference the entire
108 * pool work as a single object, and to share properties like scheduling
109 * options. It has not yet been adapted to Linux or FreeBSD. This define is
110 * used to mark related parts of the code to make things easier for the reader,
111 * and to compile this code out. It can be removed when someone implements it,
112 * moves it to some Illumos-specific place, or removes it entirely.
113 */
114 #undef HAVE_SPA_THREAD
115
116 /*
117 * The "System Duty Cycle" scheduling class is an Illumos feature to help
118 * prevent CPU-intensive kernel threads from affecting latency on interactive
119 * threads. It doesn't exist on Linux or FreeBSD, so the supporting code is
120 * gated behind a define. On Illumos SDC depends on spa_thread(), but
121 * spa_thread() also has other uses, so this is a separate define.
122 */
123 #undef HAVE_SYSDC
124
125 /*
126 * The interval, in seconds, at which failed configuration cache file writes
127 * should be retried.
128 */
129 int zfs_ccw_retry_interval = 300;
130
131 typedef enum zti_modes {
132 ZTI_MODE_FIXED, /* value is # of threads (min 1) */
133 ZTI_MODE_SCALE, /* Taskqs scale with CPUs. */
134 ZTI_MODE_SYNC, /* sync thread assigned */
135 ZTI_MODE_NULL, /* don't create a taskq */
136 ZTI_NMODES
137 } zti_modes_t;
138
139 #define ZTI_P(n, q) { ZTI_MODE_FIXED, (n), (q) }
140 #define ZTI_PCT(n) { ZTI_MODE_ONLINE_PERCENT, (n), 1 }
141 #define ZTI_SCALE { ZTI_MODE_SCALE, 0, 1 }
142 #define ZTI_SYNC { ZTI_MODE_SYNC, 0, 1 }
143 #define ZTI_NULL { ZTI_MODE_NULL, 0, 0 }
144
145 #define ZTI_N(n) ZTI_P(n, 1)
146 #define ZTI_ONE ZTI_N(1)
147
148 typedef struct zio_taskq_info {
149 zti_modes_t zti_mode;
150 uint_t zti_value;
151 uint_t zti_count;
152 } zio_taskq_info_t;
153
154 static const char *const zio_taskq_types[ZIO_TASKQ_TYPES] = {
155 "iss", "iss_h", "int", "int_h"
156 };
157
158 /*
159 * This table defines the taskq settings for each ZFS I/O type. When
160 * initializing a pool, we use this table to create an appropriately sized
161 * taskq. Some operations are low volume and therefore have a small, static
162 * number of threads assigned to their taskqs using the ZTI_N(#) or ZTI_ONE
163 * macros. Other operations process a large amount of data; the ZTI_SCALE
164 * macro causes us to create a taskq oriented for throughput. Some operations
165 * are so high frequency and short-lived that the taskq itself can become a
166 * point of lock contention. The ZTI_P(#, #) macro indicates that we need an
167 * additional degree of parallelism specified by the number of threads per-
168 * taskq and the number of taskqs; when dispatching an event in this case, the
169 * particular taskq is chosen at random. ZTI_SCALE uses a number of taskqs
170 * that scales with the number of CPUs.
171 *
172 * The different taskq priorities are to handle the different contexts (issue
173 * and interrupt) and then to reserve threads for ZIO_PRIORITY_NOW I/Os that
174 * need to be handled with minimum delay.
175 */
176 static const zio_taskq_info_t zio_taskqs[ZIO_TYPES][ZIO_TASKQ_TYPES] = {
177 /* ISSUE ISSUE_HIGH INTR INTR_HIGH */
178 { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* NULL */
179 { ZTI_N(8), ZTI_NULL, ZTI_SCALE, ZTI_NULL }, /* READ */
180 { ZTI_SYNC, ZTI_N(5), ZTI_SCALE, ZTI_N(5) }, /* WRITE */
181 { ZTI_SCALE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* FREE */
182 { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* CLAIM */
183 { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* IOCTL */
184 { ZTI_N(4), ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* TRIM */
185 };
186
187 static void spa_sync_version(void *arg, dmu_tx_t *tx);
188 static void spa_sync_props(void *arg, dmu_tx_t *tx);
189 static boolean_t spa_has_active_shared_spare(spa_t *spa);
190 static int spa_load_impl(spa_t *spa, spa_import_type_t type,
191 const char **ereport);
192 static void spa_vdev_resilver_done(spa_t *spa);
193
194 /*
195 * Percentage of all CPUs that can be used by the metaslab preload taskq.
196 */
197 static uint_t metaslab_preload_pct = 50;
198
199 static uint_t zio_taskq_batch_pct = 80; /* 1 thread per cpu in pset */
200 static uint_t zio_taskq_batch_tpq; /* threads per taskq */
201
202 #ifdef HAVE_SYSDC
203 static const boolean_t zio_taskq_sysdc = B_TRUE; /* use SDC scheduling class */
204 static const uint_t zio_taskq_basedc = 80; /* base duty cycle */
205 #endif
206
207 #ifdef HAVE_SPA_THREAD
208 static const boolean_t spa_create_process = B_TRUE; /* no process => no sysdc */
209 #endif
210
211 static uint_t zio_taskq_wr_iss_ncpus = 0;
212
213 /*
214 * Report any spa_load_verify errors found, but do not fail spa_load.
215 * This is used by zdb to analyze non-idle pools.
216 */
217 boolean_t spa_load_verify_dryrun = B_FALSE;
218
219 /*
220 * Allow read spacemaps in case of readonly import (spa_mode == SPA_MODE_READ).
221 * This is used by zdb for spacemaps verification.
222 */
223 boolean_t spa_mode_readable_spacemaps = B_FALSE;
224
225 /*
226 * This (illegal) pool name is used when temporarily importing a spa_t in order
227 * to get the vdev stats associated with the imported devices.
228 */
229 #define TRYIMPORT_NAME "$import"
230
231 /*
232 * For debugging purposes: print out vdev tree during pool import.
233 */
234 static int spa_load_print_vdev_tree = B_FALSE;
235
236 /*
237 * A non-zero value for zfs_max_missing_tvds means that we allow importing
238 * pools with missing top-level vdevs. This is strictly intended for advanced
239 * pool recovery cases since missing data is almost inevitable. Pools with
240 * missing devices can only be imported read-only for safety reasons, and their
241 * fail-mode will be automatically set to "continue".
242 *
243 * With 1 missing vdev we should be able to import the pool and mount all
244 * datasets. User data that was not modified after the missing device has been
245 * added should be recoverable. This means that snapshots created prior to the
246 * addition of that device should be completely intact.
247 *
248 * With 2 missing vdevs, some datasets may fail to mount since there are
249 * dataset statistics that are stored as regular metadata. Some data might be
250 * recoverable if those vdevs were added recently.
251 *
252 * With 3 or more missing vdevs, the pool is severely damaged and MOS entries
253 * may be missing entirely. Chances of data recovery are very low. Note that
254 * there are also risks of performing an inadvertent rewind as we might be
255 * missing all the vdevs with the latest uberblocks.
256 */
257 uint64_t zfs_max_missing_tvds = 0;
258
259 /*
260 * The parameters below are similar to zfs_max_missing_tvds but are only
261 * intended for a preliminary open of the pool with an untrusted config which
262 * might be incomplete or out-dated.
263 *
264 * We are more tolerant for pools opened from a cachefile since we could have
265 * an out-dated cachefile where a device removal was not registered.
266 * We could have set the limit arbitrarily high but in the case where devices
267 * are really missing we would want to return the proper error codes; we chose
268 * SPA_DVAS_PER_BP - 1 so that some copies of the MOS would still be available
269 * and we get a chance to retrieve the trusted config.
270 */
271 uint64_t zfs_max_missing_tvds_cachefile = SPA_DVAS_PER_BP - 1;
272
273 /*
274 * In the case where config was assembled by scanning device paths (/dev/dsks
275 * by default) we are less tolerant since all the existing devices should have
276 * been detected and we want spa_load to return the right error codes.
277 */
278 uint64_t zfs_max_missing_tvds_scan = 0;
279
280 /*
281 * Debugging aid that pauses spa_sync() towards the end.
282 */
283 static const boolean_t zfs_pause_spa_sync = B_FALSE;
284
285 /*
286 * Variables to indicate the livelist condense zthr func should wait at certain
287 * points for the livelist to be removed - used to test condense/destroy races
288 */
289 static int zfs_livelist_condense_zthr_pause = 0;
290 static int zfs_livelist_condense_sync_pause = 0;
291
292 /*
293 * Variables to track whether or not condense cancellation has been
294 * triggered in testing.
295 */
296 static int zfs_livelist_condense_sync_cancel = 0;
297 static int zfs_livelist_condense_zthr_cancel = 0;
298
299 /*
300 * Variable to track whether or not extra ALLOC blkptrs were added to a
301 * livelist entry while it was being condensed (caused by the way we track
302 * remapped blkptrs in dbuf_remap_impl)
303 */
304 static int zfs_livelist_condense_new_alloc = 0;
305
306 /*
307 * ==========================================================================
308 * SPA properties routines
309 * ==========================================================================
310 */
311
312 /*
313 * Add a (source=src, propname=propval) list to an nvlist.
314 */
315 static void
316 spa_prop_add_list(nvlist_t *nvl, zpool_prop_t prop, const char *strval,
317 uint64_t intval, zprop_source_t src)
318 {
319 const char *propname = zpool_prop_to_name(prop);
320 nvlist_t *propval;
321
322 propval = fnvlist_alloc();
323 fnvlist_add_uint64(propval, ZPROP_SOURCE, src);
324
325 if (strval != NULL)
326 fnvlist_add_string(propval, ZPROP_VALUE, strval);
327 else
328 fnvlist_add_uint64(propval, ZPROP_VALUE, intval);
329
330 fnvlist_add_nvlist(nvl, propname, propval);
331 nvlist_free(propval);
332 }
333
334 /*
335 * Add a user property (source=src, propname=propval) to an nvlist.
336 */
337 static void
338 spa_prop_add_user(nvlist_t *nvl, const char *propname, char *strval,
339 zprop_source_t src)
340 {
341 nvlist_t *propval;
342
343 VERIFY(nvlist_alloc(&propval, NV_UNIQUE_NAME, KM_SLEEP) == 0);
344 VERIFY(nvlist_add_uint64(propval, ZPROP_SOURCE, src) == 0);
345 VERIFY(nvlist_add_string(propval, ZPROP_VALUE, strval) == 0);
346 VERIFY(nvlist_add_nvlist(nvl, propname, propval) == 0);
347 nvlist_free(propval);
348 }
349
350 /*
351 * Get property values from the spa configuration.
352 */
353 static void
354 spa_prop_get_config(spa_t *spa, nvlist_t **nvp)
355 {
356 vdev_t *rvd = spa->spa_root_vdev;
357 dsl_pool_t *pool = spa->spa_dsl_pool;
358 uint64_t size, alloc, cap, version;
359 const zprop_source_t src = ZPROP_SRC_NONE;
360 spa_config_dirent_t *dp;
361 metaslab_class_t *mc = spa_normal_class(spa);
362
363 ASSERT(MUTEX_HELD(&spa->spa_props_lock));
364
365 if (rvd != NULL) {
366 alloc = metaslab_class_get_alloc(mc);
367 alloc += metaslab_class_get_alloc(spa_special_class(spa));
368 alloc += metaslab_class_get_alloc(spa_dedup_class(spa));
369 alloc += metaslab_class_get_alloc(spa_embedded_log_class(spa));
370
371 size = metaslab_class_get_space(mc);
372 size += metaslab_class_get_space(spa_special_class(spa));
373 size += metaslab_class_get_space(spa_dedup_class(spa));
374 size += metaslab_class_get_space(spa_embedded_log_class(spa));
375
376 spa_prop_add_list(*nvp, ZPOOL_PROP_NAME, spa_name(spa), 0, src);
377 spa_prop_add_list(*nvp, ZPOOL_PROP_SIZE, NULL, size, src);
378 spa_prop_add_list(*nvp, ZPOOL_PROP_ALLOCATED, NULL, alloc, src);
379 spa_prop_add_list(*nvp, ZPOOL_PROP_FREE, NULL,
380 size - alloc, src);
381 spa_prop_add_list(*nvp, ZPOOL_PROP_CHECKPOINT, NULL,
382 spa->spa_checkpoint_info.sci_dspace, src);
383
384 spa_prop_add_list(*nvp, ZPOOL_PROP_FRAGMENTATION, NULL,
385 metaslab_class_fragmentation(mc), src);
386 spa_prop_add_list(*nvp, ZPOOL_PROP_EXPANDSZ, NULL,
387 metaslab_class_expandable_space(mc), src);
388 spa_prop_add_list(*nvp, ZPOOL_PROP_READONLY, NULL,
389 (spa_mode(spa) == SPA_MODE_READ), src);
390
391 cap = (size == 0) ? 0 : (alloc * 100 / size);
392 spa_prop_add_list(*nvp, ZPOOL_PROP_CAPACITY, NULL, cap, src);
393
394 spa_prop_add_list(*nvp, ZPOOL_PROP_DEDUPRATIO, NULL,
395 ddt_get_pool_dedup_ratio(spa), src);
396 spa_prop_add_list(*nvp, ZPOOL_PROP_BCLONEUSED, NULL,
397 brt_get_used(spa), src);
398 spa_prop_add_list(*nvp, ZPOOL_PROP_BCLONESAVED, NULL,
399 brt_get_saved(spa), src);
400 spa_prop_add_list(*nvp, ZPOOL_PROP_BCLONERATIO, NULL,
401 brt_get_ratio(spa), src);
402
403 spa_prop_add_list(*nvp, ZPOOL_PROP_HEALTH, NULL,
404 rvd->vdev_state, src);
405
406 version = spa_version(spa);
407 if (version == zpool_prop_default_numeric(ZPOOL_PROP_VERSION)) {
408 spa_prop_add_list(*nvp, ZPOOL_PROP_VERSION, NULL,
409 version, ZPROP_SRC_DEFAULT);
410 } else {
411 spa_prop_add_list(*nvp, ZPOOL_PROP_VERSION, NULL,
412 version, ZPROP_SRC_LOCAL);
413 }
414 spa_prop_add_list(*nvp, ZPOOL_PROP_LOAD_GUID,
415 NULL, spa_load_guid(spa), src);
416 }
417
418 if (pool != NULL) {
419 /*
420 * The $FREE directory was introduced in SPA_VERSION_DEADLISTS,
421 * when opening pools before this version freedir will be NULL.
422 */
423 if (pool->dp_free_dir != NULL) {
424 spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING, NULL,
425 dsl_dir_phys(pool->dp_free_dir)->dd_used_bytes,
426 src);
427 } else {
428 spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING,
429 NULL, 0, src);
430 }
431
432 if (pool->dp_leak_dir != NULL) {
433 spa_prop_add_list(*nvp, ZPOOL_PROP_LEAKED, NULL,
434 dsl_dir_phys(pool->dp_leak_dir)->dd_used_bytes,
435 src);
436 } else {
437 spa_prop_add_list(*nvp, ZPOOL_PROP_LEAKED,
438 NULL, 0, src);
439 }
440 }
441
442 spa_prop_add_list(*nvp, ZPOOL_PROP_GUID, NULL, spa_guid(spa), src);
443
444 if (spa->spa_comment != NULL) {
445 spa_prop_add_list(*nvp, ZPOOL_PROP_COMMENT, spa->spa_comment,
446 0, ZPROP_SRC_LOCAL);
447 }
448
449 if (spa->spa_compatibility != NULL) {
450 spa_prop_add_list(*nvp, ZPOOL_PROP_COMPATIBILITY,
451 spa->spa_compatibility, 0, ZPROP_SRC_LOCAL);
452 }
453
454 if (spa->spa_root != NULL)
455 spa_prop_add_list(*nvp, ZPOOL_PROP_ALTROOT, spa->spa_root,
456 0, ZPROP_SRC_LOCAL);
457
458 if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_BLOCKS)) {
459 spa_prop_add_list(*nvp, ZPOOL_PROP_MAXBLOCKSIZE, NULL,
460 MIN(zfs_max_recordsize, SPA_MAXBLOCKSIZE), ZPROP_SRC_NONE);
461 } else {
462 spa_prop_add_list(*nvp, ZPOOL_PROP_MAXBLOCKSIZE, NULL,
463 SPA_OLD_MAXBLOCKSIZE, ZPROP_SRC_NONE);
464 }
465
466 if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_DNODE)) {
467 spa_prop_add_list(*nvp, ZPOOL_PROP_MAXDNODESIZE, NULL,
468 DNODE_MAX_SIZE, ZPROP_SRC_NONE);
469 } else {
470 spa_prop_add_list(*nvp, ZPOOL_PROP_MAXDNODESIZE, NULL,
471 DNODE_MIN_SIZE, ZPROP_SRC_NONE);
472 }
473
474 if ((dp = list_head(&spa->spa_config_list)) != NULL) {
475 if (dp->scd_path == NULL) {
476 spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
477 "none", 0, ZPROP_SRC_LOCAL);
478 } else if (strcmp(dp->scd_path, spa_config_path) != 0) {
479 spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
480 dp->scd_path, 0, ZPROP_SRC_LOCAL);
481 }
482 }
483 }
484
485 /*
486 * Get zpool property values.
487 */
488 int
489 spa_prop_get(spa_t *spa, nvlist_t **nvp)
490 {
491 objset_t *mos = spa->spa_meta_objset;
492 zap_cursor_t zc;
493 zap_attribute_t za;
494 dsl_pool_t *dp;
495 int err;
496
497 err = nvlist_alloc(nvp, NV_UNIQUE_NAME, KM_SLEEP);
498 if (err)
499 return (err);
500
501 dp = spa_get_dsl(spa);
502 dsl_pool_config_enter(dp, FTAG);
503 mutex_enter(&spa->spa_props_lock);
504
505 /*
506 * Get properties from the spa config.
507 */
508 spa_prop_get_config(spa, nvp);
509
510 /* If no pool property object, no more prop to get. */
511 if (mos == NULL || spa->spa_pool_props_object == 0)
512 goto out;
513
514 /*
515 * Get properties from the MOS pool property object.
516 */
517 for (zap_cursor_init(&zc, mos, spa->spa_pool_props_object);
518 (err = zap_cursor_retrieve(&zc, &za)) == 0;
519 zap_cursor_advance(&zc)) {
520 uint64_t intval = 0;
521 char *strval = NULL;
522 zprop_source_t src = ZPROP_SRC_DEFAULT;
523 zpool_prop_t prop;
524
525 if ((prop = zpool_name_to_prop(za.za_name)) ==
526 ZPOOL_PROP_INVAL && !zfs_prop_user(za.za_name))
527 continue;
528
529 switch (za.za_integer_length) {
530 case 8:
531 /* integer property */
532 if (za.za_first_integer !=
533 zpool_prop_default_numeric(prop))
534 src = ZPROP_SRC_LOCAL;
535
536 if (prop == ZPOOL_PROP_BOOTFS) {
537 dsl_dataset_t *ds = NULL;
538
539 err = dsl_dataset_hold_obj(dp,
540 za.za_first_integer, FTAG, &ds);
541 if (err != 0)
542 break;
543
544 strval = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN,
545 KM_SLEEP);
546 dsl_dataset_name(ds, strval);
547 dsl_dataset_rele(ds, FTAG);
548 } else {
549 strval = NULL;
550 intval = za.za_first_integer;
551 }
552
553 spa_prop_add_list(*nvp, prop, strval, intval, src);
554
555 if (strval != NULL)
556 kmem_free(strval, ZFS_MAX_DATASET_NAME_LEN);
557
558 break;
559
560 case 1:
561 /* string property */
562 strval = kmem_alloc(za.za_num_integers, KM_SLEEP);
563 err = zap_lookup(mos, spa->spa_pool_props_object,
564 za.za_name, 1, za.za_num_integers, strval);
565 if (err) {
566 kmem_free(strval, za.za_num_integers);
567 break;
568 }
569 if (prop != ZPOOL_PROP_INVAL) {
570 spa_prop_add_list(*nvp, prop, strval, 0, src);
571 } else {
572 src = ZPROP_SRC_LOCAL;
573 spa_prop_add_user(*nvp, za.za_name, strval,
574 src);
575 }
576 kmem_free(strval, za.za_num_integers);
577 break;
578
579 default:
580 break;
581 }
582 }
583 zap_cursor_fini(&zc);
584 out:
585 mutex_exit(&spa->spa_props_lock);
586 dsl_pool_config_exit(dp, FTAG);
587 if (err && err != ENOENT) {
588 nvlist_free(*nvp);
589 *nvp = NULL;
590 return (err);
591 }
592
593 return (0);
594 }
595
596 /*
597 * Validate the given pool properties nvlist and modify the list
598 * for the property values to be set.
599 */
600 static int
601 spa_prop_validate(spa_t *spa, nvlist_t *props)
602 {
603 nvpair_t *elem;
604 int error = 0, reset_bootfs = 0;
605 uint64_t objnum = 0;
606 boolean_t has_feature = B_FALSE;
607
608 elem = NULL;
609 while ((elem = nvlist_next_nvpair(props, elem)) != NULL) {
610 uint64_t intval;
611 const char *strval, *slash, *check, *fname;
612 const char *propname = nvpair_name(elem);
613 zpool_prop_t prop = zpool_name_to_prop(propname);
614
615 switch (prop) {
616 case ZPOOL_PROP_INVAL:
617 /*
618 * Sanitize the input.
619 */
620 if (zfs_prop_user(propname)) {
621 if (strlen(propname) >= ZAP_MAXNAMELEN) {
622 error = SET_ERROR(ENAMETOOLONG);
623 break;
624 }
625
626 if (strlen(fnvpair_value_string(elem)) >=
627 ZAP_MAXVALUELEN) {
628 error = SET_ERROR(E2BIG);
629 break;
630 }
631 } else if (zpool_prop_feature(propname)) {
632 if (nvpair_type(elem) != DATA_TYPE_UINT64) {
633 error = SET_ERROR(EINVAL);
634 break;
635 }
636
637 if (nvpair_value_uint64(elem, &intval) != 0) {
638 error = SET_ERROR(EINVAL);
639 break;
640 }
641
642 if (intval != 0) {
643 error = SET_ERROR(EINVAL);
644 break;
645 }
646
647 fname = strchr(propname, '@') + 1;
648 if (zfeature_lookup_name(fname, NULL) != 0) {
649 error = SET_ERROR(EINVAL);
650 break;
651 }
652
653 has_feature = B_TRUE;
654 } else {
655 error = SET_ERROR(EINVAL);
656 break;
657 }
658 break;
659
660 case ZPOOL_PROP_VERSION:
661 error = nvpair_value_uint64(elem, &intval);
662 if (!error &&
663 (intval < spa_version(spa) ||
664 intval > SPA_VERSION_BEFORE_FEATURES ||
665 has_feature))
666 error = SET_ERROR(EINVAL);
667 break;
668
669 case ZPOOL_PROP_DELEGATION:
670 case ZPOOL_PROP_AUTOREPLACE:
671 case ZPOOL_PROP_LISTSNAPS:
672 case ZPOOL_PROP_AUTOEXPAND:
673 case ZPOOL_PROP_AUTOTRIM:
674 error = nvpair_value_uint64(elem, &intval);
675 if (!error && intval > 1)
676 error = SET_ERROR(EINVAL);
677 break;
678
679 case ZPOOL_PROP_MULTIHOST:
680 error = nvpair_value_uint64(elem, &intval);
681 if (!error && intval > 1)
682 error = SET_ERROR(EINVAL);
683
684 if (!error) {
685 uint32_t hostid = zone_get_hostid(NULL);
686 if (hostid)
687 spa->spa_hostid = hostid;
688 else
689 error = SET_ERROR(ENOTSUP);
690 }
691
692 break;
693
694 case ZPOOL_PROP_BOOTFS:
695 /*
696 * If the pool version is less than SPA_VERSION_BOOTFS,
697 * or the pool is still being created (version == 0),
698 * the bootfs property cannot be set.
699 */
700 if (spa_version(spa) < SPA_VERSION_BOOTFS) {
701 error = SET_ERROR(ENOTSUP);
702 break;
703 }
704
705 /*
706 * Make sure the vdev config is bootable
707 */
708 if (!vdev_is_bootable(spa->spa_root_vdev)) {
709 error = SET_ERROR(ENOTSUP);
710 break;
711 }
712
713 reset_bootfs = 1;
714
715 error = nvpair_value_string(elem, &strval);
716
717 if (!error) {
718 objset_t *os;
719
720 if (strval == NULL || strval[0] == '\0') {
721 objnum = zpool_prop_default_numeric(
722 ZPOOL_PROP_BOOTFS);
723 break;
724 }
725
726 error = dmu_objset_hold(strval, FTAG, &os);
727 if (error != 0)
728 break;
729
730 /* Must be ZPL. */
731 if (dmu_objset_type(os) != DMU_OST_ZFS) {
732 error = SET_ERROR(ENOTSUP);
733 } else {
734 objnum = dmu_objset_id(os);
735 }
736 dmu_objset_rele(os, FTAG);
737 }
738 break;
739
740 case ZPOOL_PROP_FAILUREMODE:
741 error = nvpair_value_uint64(elem, &intval);
742 if (!error && intval > ZIO_FAILURE_MODE_PANIC)
743 error = SET_ERROR(EINVAL);
744
745 /*
746 * This is a special case which only occurs when
747 * the pool has completely failed. This allows
748 * the user to change the in-core failmode property
749 * without syncing it out to disk (I/Os might
750 * currently be blocked). We do this by returning
751 * EIO to the caller (spa_prop_set) to trick it
752 * into thinking we encountered a property validation
753 * error.
754 */
755 if (!error && spa_suspended(spa)) {
756 spa->spa_failmode = intval;
757 error = SET_ERROR(EIO);
758 }
759 break;
760
761 case ZPOOL_PROP_CACHEFILE:
762 if ((error = nvpair_value_string(elem, &strval)) != 0)
763 break;
764
765 if (strval[0] == '\0')
766 break;
767
768 if (strcmp(strval, "none") == 0)
769 break;
770
771 if (strval[0] != '/') {
772 error = SET_ERROR(EINVAL);
773 break;
774 }
775
776 slash = strrchr(strval, '/');
777 ASSERT(slash != NULL);
778
779 if (slash[1] == '\0' || strcmp(slash, "/.") == 0 ||
780 strcmp(slash, "/..") == 0)
781 error = SET_ERROR(EINVAL);
782 break;
783
784 case ZPOOL_PROP_COMMENT:
785 if ((error = nvpair_value_string(elem, &strval)) != 0)
786 break;
787 for (check = strval; *check != '\0'; check++) {
788 if (!isprint(*check)) {
789 error = SET_ERROR(EINVAL);
790 break;
791 }
792 }
793 if (strlen(strval) > ZPROP_MAX_COMMENT)
794 error = SET_ERROR(E2BIG);
795 break;
796
797 default:
798 break;
799 }
800
801 if (error)
802 break;
803 }
804
805 (void) nvlist_remove_all(props,
806 zpool_prop_to_name(ZPOOL_PROP_DEDUPDITTO));
807
808 if (!error && reset_bootfs) {
809 error = nvlist_remove(props,
810 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), DATA_TYPE_STRING);
811
812 if (!error) {
813 error = nvlist_add_uint64(props,
814 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), objnum);
815 }
816 }
817
818 return (error);
819 }
820
821 void
822 spa_configfile_set(spa_t *spa, nvlist_t *nvp, boolean_t need_sync)
823 {
824 const char *cachefile;
825 spa_config_dirent_t *dp;
826
827 if (nvlist_lookup_string(nvp, zpool_prop_to_name(ZPOOL_PROP_CACHEFILE),
828 &cachefile) != 0)
829 return;
830
831 dp = kmem_alloc(sizeof (spa_config_dirent_t),
832 KM_SLEEP);
833
834 if (cachefile[0] == '\0')
835 dp->scd_path = spa_strdup(spa_config_path);
836 else if (strcmp(cachefile, "none") == 0)
837 dp->scd_path = NULL;
838 else
839 dp->scd_path = spa_strdup(cachefile);
840
841 list_insert_head(&spa->spa_config_list, dp);
842 if (need_sync)
843 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
844 }
845
846 int
847 spa_prop_set(spa_t *spa, nvlist_t *nvp)
848 {
849 int error;
850 nvpair_t *elem = NULL;
851 boolean_t need_sync = B_FALSE;
852
853 if ((error = spa_prop_validate(spa, nvp)) != 0)
854 return (error);
855
856 while ((elem = nvlist_next_nvpair(nvp, elem)) != NULL) {
857 zpool_prop_t prop = zpool_name_to_prop(nvpair_name(elem));
858
859 if (prop == ZPOOL_PROP_CACHEFILE ||
860 prop == ZPOOL_PROP_ALTROOT ||
861 prop == ZPOOL_PROP_READONLY)
862 continue;
863
864 if (prop == ZPOOL_PROP_INVAL &&
865 zfs_prop_user(nvpair_name(elem))) {
866 need_sync = B_TRUE;
867 break;
868 }
869
870 if (prop == ZPOOL_PROP_VERSION || prop == ZPOOL_PROP_INVAL) {
871 uint64_t ver = 0;
872
873 if (prop == ZPOOL_PROP_VERSION) {
874 VERIFY(nvpair_value_uint64(elem, &ver) == 0);
875 } else {
876 ASSERT(zpool_prop_feature(nvpair_name(elem)));
877 ver = SPA_VERSION_FEATURES;
878 need_sync = B_TRUE;
879 }
880
881 /* Save time if the version is already set. */
882 if (ver == spa_version(spa))
883 continue;
884
885 /*
886 * In addition to the pool directory object, we might
887 * create the pool properties object, the features for
888 * read object, the features for write object, or the
889 * feature descriptions object.
890 */
891 error = dsl_sync_task(spa->spa_name, NULL,
892 spa_sync_version, &ver,
893 6, ZFS_SPACE_CHECK_RESERVED);
894 if (error)
895 return (error);
896 continue;
897 }
898
899 need_sync = B_TRUE;
900 break;
901 }
902
903 if (need_sync) {
904 return (dsl_sync_task(spa->spa_name, NULL, spa_sync_props,
905 nvp, 6, ZFS_SPACE_CHECK_RESERVED));
906 }
907
908 return (0);
909 }
910
911 /*
912 * If the bootfs property value is dsobj, clear it.
913 */
914 void
915 spa_prop_clear_bootfs(spa_t *spa, uint64_t dsobj, dmu_tx_t *tx)
916 {
917 if (spa->spa_bootfs == dsobj && spa->spa_pool_props_object != 0) {
918 VERIFY(zap_remove(spa->spa_meta_objset,
919 spa->spa_pool_props_object,
920 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), tx) == 0);
921 spa->spa_bootfs = 0;
922 }
923 }
924
925 static int
926 spa_change_guid_check(void *arg, dmu_tx_t *tx)
927 {
928 uint64_t *newguid __maybe_unused = arg;
929 spa_t *spa = dmu_tx_pool(tx)->dp_spa;
930 vdev_t *rvd = spa->spa_root_vdev;
931 uint64_t vdev_state;
932
933 if (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) {
934 int error = (spa_has_checkpoint(spa)) ?
935 ZFS_ERR_CHECKPOINT_EXISTS : ZFS_ERR_DISCARDING_CHECKPOINT;
936 return (SET_ERROR(error));
937 }
938
939 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
940 vdev_state = rvd->vdev_state;
941 spa_config_exit(spa, SCL_STATE, FTAG);
942
943 if (vdev_state != VDEV_STATE_HEALTHY)
944 return (SET_ERROR(ENXIO));
945
946 ASSERT3U(spa_guid(spa), !=, *newguid);
947
948 return (0);
949 }
950
951 static void
952 spa_change_guid_sync(void *arg, dmu_tx_t *tx)
953 {
954 uint64_t *newguid = arg;
955 spa_t *spa = dmu_tx_pool(tx)->dp_spa;
956 uint64_t oldguid;
957 vdev_t *rvd = spa->spa_root_vdev;
958
959 oldguid = spa_guid(spa);
960
961 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
962 rvd->vdev_guid = *newguid;
963 rvd->vdev_guid_sum += (*newguid - oldguid);
964 vdev_config_dirty(rvd);
965 spa_config_exit(spa, SCL_STATE, FTAG);
966
967 spa_history_log_internal(spa, "guid change", tx, "old=%llu new=%llu",
968 (u_longlong_t)oldguid, (u_longlong_t)*newguid);
969 }
970
971 /*
972 * Change the GUID for the pool. This is done so that we can later
973 * re-import a pool built from a clone of our own vdevs. We will modify
974 * the root vdev's guid, our own pool guid, and then mark all of our
975 * vdevs dirty. Note that we must make sure that all our vdevs are
976 * online when we do this, or else any vdevs that weren't present
977 * would be orphaned from our pool. We are also going to issue a
978 * sysevent to update any watchers.
979 */
980 int
981 spa_change_guid(spa_t *spa)
982 {
983 int error;
984 uint64_t guid;
985
986 mutex_enter(&spa->spa_vdev_top_lock);
987 mutex_enter(&spa_namespace_lock);
988 guid = spa_generate_guid(NULL);
989
990 error = dsl_sync_task(spa->spa_name, spa_change_guid_check,
991 spa_change_guid_sync, &guid, 5, ZFS_SPACE_CHECK_RESERVED);
992
993 if (error == 0) {
994 /*
995 * Clear the kobj flag from all the vdevs to allow
996 * vdev_cache_process_kobj_evt() to post events to all the
997 * vdevs since GUID is updated.
998 */
999 vdev_clear_kobj_evt(spa->spa_root_vdev);
1000 for (int i = 0; i < spa->spa_l2cache.sav_count; i++)
1001 vdev_clear_kobj_evt(spa->spa_l2cache.sav_vdevs[i]);
1002
1003 spa_write_cachefile(spa, B_FALSE, B_TRUE, B_TRUE);
1004 spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_REGUID);
1005 }
1006
1007 mutex_exit(&spa_namespace_lock);
1008 mutex_exit(&spa->spa_vdev_top_lock);
1009
1010 return (error);
1011 }
1012
1013 /*
1014 * ==========================================================================
1015 * SPA state manipulation (open/create/destroy/import/export)
1016 * ==========================================================================
1017 */
1018
1019 static int
1020 spa_error_entry_compare(const void *a, const void *b)
1021 {
1022 const spa_error_entry_t *sa = (const spa_error_entry_t *)a;
1023 const spa_error_entry_t *sb = (const spa_error_entry_t *)b;
1024 int ret;
1025
1026 ret = memcmp(&sa->se_bookmark, &sb->se_bookmark,
1027 sizeof (zbookmark_phys_t));
1028
1029 return (TREE_ISIGN(ret));
1030 }
1031
1032 /*
1033 * Utility function which retrieves copies of the current logs and
1034 * re-initializes them in the process.
1035 */
1036 void
1037 spa_get_errlists(spa_t *spa, avl_tree_t *last, avl_tree_t *scrub)
1038 {
1039 ASSERT(MUTEX_HELD(&spa->spa_errlist_lock));
1040
1041 memcpy(last, &spa->spa_errlist_last, sizeof (avl_tree_t));
1042 memcpy(scrub, &spa->spa_errlist_scrub, sizeof (avl_tree_t));
1043
1044 avl_create(&spa->spa_errlist_scrub,
1045 spa_error_entry_compare, sizeof (spa_error_entry_t),
1046 offsetof(spa_error_entry_t, se_avl));
1047 avl_create(&spa->spa_errlist_last,
1048 spa_error_entry_compare, sizeof (spa_error_entry_t),
1049 offsetof(spa_error_entry_t, se_avl));
1050 }
1051
1052 static void
1053 spa_taskqs_init(spa_t *spa, zio_type_t t, zio_taskq_type_t q)
1054 {
1055 const zio_taskq_info_t *ztip = &zio_taskqs[t][q];
1056 enum zti_modes mode = ztip->zti_mode;
1057 uint_t value = ztip->zti_value;
1058 uint_t count = ztip->zti_count;
1059 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
1060 uint_t cpus, flags = TASKQ_DYNAMIC;
1061
1062 switch (mode) {
1063 case ZTI_MODE_FIXED:
1064 ASSERT3U(value, >, 0);
1065 break;
1066
1067 case ZTI_MODE_SYNC:
1068
1069 /*
1070 * Create one wr_iss taskq for every 'zio_taskq_wr_iss_ncpus',
1071 * not to exceed the number of spa allocators.
1072 */
1073 if (zio_taskq_wr_iss_ncpus == 0) {
1074 count = MAX(boot_ncpus / spa->spa_alloc_count, 1);
1075 } else {
1076 count = MAX(1,
1077 boot_ncpus / MAX(1, zio_taskq_wr_iss_ncpus));
1078 }
1079 count = MAX(count, (zio_taskq_batch_pct + 99) / 100);
1080 count = MIN(count, spa->spa_alloc_count);
1081
1082 /*
1083 * zio_taskq_batch_pct is unbounded and may exceed 100%, but no
1084 * single taskq may have more threads than 100% of online cpus.
1085 */
1086 value = (zio_taskq_batch_pct + count / 2) / count;
1087 value = MIN(value, 100);
1088 flags |= TASKQ_THREADS_CPU_PCT;
1089 break;
1090
1091 case ZTI_MODE_SCALE:
1092 flags |= TASKQ_THREADS_CPU_PCT;
1093 /*
1094 * We want more taskqs to reduce lock contention, but we want
1095 * less for better request ordering and CPU utilization.
1096 */
1097 cpus = MAX(1, boot_ncpus * zio_taskq_batch_pct / 100);
1098 if (zio_taskq_batch_tpq > 0) {
1099 count = MAX(1, (cpus + zio_taskq_batch_tpq / 2) /
1100 zio_taskq_batch_tpq);
1101 } else {
1102 /*
1103 * Prefer 6 threads per taskq, but no more taskqs
1104 * than threads in them on large systems. For 80%:
1105 *
1106 * taskq taskq total
1107 * cpus taskqs percent threads threads
1108 * ------- ------- ------- ------- -------
1109 * 1 1 80% 1 1
1110 * 2 1 80% 1 1
1111 * 4 1 80% 3 3
1112 * 8 2 40% 3 6
1113 * 16 3 27% 4 12
1114 * 32 5 16% 5 25
1115 * 64 7 11% 7 49
1116 * 128 10 8% 10 100
1117 * 256 14 6% 15 210
1118 */
1119 count = 1 + cpus / 6;
1120 while (count * count > cpus)
1121 count--;
1122 }
1123 /* Limit each taskq within 100% to not trigger assertion. */
1124 count = MAX(count, (zio_taskq_batch_pct + 99) / 100);
1125 value = (zio_taskq_batch_pct + count / 2) / count;
1126 break;
1127
1128 case ZTI_MODE_NULL:
1129 tqs->stqs_count = 0;
1130 tqs->stqs_taskq = NULL;
1131 return;
1132
1133 default:
1134 panic("unrecognized mode for %s_%s taskq (%u:%u) in "
1135 "spa_taskqs_init()",
1136 zio_type_name[t], zio_taskq_types[q], mode, value);
1137 break;
1138 }
1139
1140 ASSERT3U(count, >, 0);
1141 tqs->stqs_count = count;
1142 tqs->stqs_taskq = kmem_alloc(count * sizeof (taskq_t *), KM_SLEEP);
1143
1144 for (uint_t i = 0; i < count; i++) {
1145 taskq_t *tq;
1146 char name[32];
1147
1148 if (count > 1)
1149 (void) snprintf(name, sizeof (name), "%s_%s_%u",
1150 zio_type_name[t], zio_taskq_types[q], i);
1151 else
1152 (void) snprintf(name, sizeof (name), "%s_%s",
1153 zio_type_name[t], zio_taskq_types[q]);
1154
1155 #ifdef HAVE_SYSDC
1156 if (zio_taskq_sysdc && spa->spa_proc != &p0) {
1157 (void) zio_taskq_basedc;
1158 tq = taskq_create_sysdc(name, value, 50, INT_MAX,
1159 spa->spa_proc, zio_taskq_basedc, flags);
1160 } else {
1161 #endif
1162 pri_t pri = maxclsyspri;
1163 /*
1164 * The write issue taskq can be extremely CPU
1165 * intensive. Run it at slightly less important
1166 * priority than the other taskqs.
1167 *
1168 * Under Linux and FreeBSD this means incrementing
1169 * the priority value as opposed to platforms like
1170 * illumos where it should be decremented.
1171 *
1172 * On FreeBSD, if priorities divided by four (RQ_PPQ)
1173 * are equal then a difference between them is
1174 * insignificant.
1175 */
1176 if (t == ZIO_TYPE_WRITE && q == ZIO_TASKQ_ISSUE) {
1177 #if defined(__linux__)
1178 pri++;
1179 #elif defined(__FreeBSD__)
1180 pri += 4;
1181 #else
1182 #error "unknown OS"
1183 #endif
1184 }
1185 tq = taskq_create_proc(name, value, pri, 50,
1186 INT_MAX, spa->spa_proc, flags);
1187 #ifdef HAVE_SYSDC
1188 }
1189 #endif
1190
1191 tqs->stqs_taskq[i] = tq;
1192 }
1193 }
1194
1195 static void
1196 spa_taskqs_fini(spa_t *spa, zio_type_t t, zio_taskq_type_t q)
1197 {
1198 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
1199
1200 if (tqs->stqs_taskq == NULL) {
1201 ASSERT3U(tqs->stqs_count, ==, 0);
1202 return;
1203 }
1204
1205 for (uint_t i = 0; i < tqs->stqs_count; i++) {
1206 ASSERT3P(tqs->stqs_taskq[i], !=, NULL);
1207 taskq_destroy(tqs->stqs_taskq[i]);
1208 }
1209
1210 kmem_free(tqs->stqs_taskq, tqs->stqs_count * sizeof (taskq_t *));
1211 tqs->stqs_taskq = NULL;
1212 }
1213
1214 /*
1215 * Dispatch a task to the appropriate taskq for the ZFS I/O type and priority.
1216 * Note that a type may have multiple discrete taskqs to avoid lock contention
1217 * on the taskq itself.
1218 */
1219 static taskq_t *
1220 spa_taskq_dispatch_select(spa_t *spa, zio_type_t t, zio_taskq_type_t q,
1221 zio_t *zio)
1222 {
1223 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
1224 taskq_t *tq;
1225
1226 ASSERT3P(tqs->stqs_taskq, !=, NULL);
1227 ASSERT3U(tqs->stqs_count, !=, 0);
1228
1229 if ((t == ZIO_TYPE_WRITE) && (q == ZIO_TASKQ_ISSUE) &&
1230 (zio != NULL) && (zio->io_wr_iss_tq != NULL)) {
1231 /* dispatch to assigned write issue taskq */
1232 tq = zio->io_wr_iss_tq;
1233 return (tq);
1234 }
1235
1236 if (tqs->stqs_count == 1) {
1237 tq = tqs->stqs_taskq[0];
1238 } else {
1239 tq = tqs->stqs_taskq[((uint64_t)gethrtime()) % tqs->stqs_count];
1240 }
1241 return (tq);
1242 }
1243
1244 void
1245 spa_taskq_dispatch_ent(spa_t *spa, zio_type_t t, zio_taskq_type_t q,
1246 task_func_t *func, void *arg, uint_t flags, taskq_ent_t *ent,
1247 zio_t *zio)
1248 {
1249 taskq_t *tq = spa_taskq_dispatch_select(spa, t, q, zio);
1250 taskq_dispatch_ent(tq, func, arg, flags, ent);
1251 }
1252
1253 /*
1254 * Same as spa_taskq_dispatch_ent() but block on the task until completion.
1255 */
1256 void
1257 spa_taskq_dispatch_sync(spa_t *spa, zio_type_t t, zio_taskq_type_t q,
1258 task_func_t *func, void *arg, uint_t flags)
1259 {
1260 taskq_t *tq = spa_taskq_dispatch_select(spa, t, q, NULL);
1261 taskqid_t id = taskq_dispatch(tq, func, arg, flags);
1262 if (id)
1263 taskq_wait_id(tq, id);
1264 }
1265
1266 static void
1267 spa_create_zio_taskqs(spa_t *spa)
1268 {
1269 for (int t = 0; t < ZIO_TYPES; t++) {
1270 for (int q = 0; q < ZIO_TASKQ_TYPES; q++) {
1271 spa_taskqs_init(spa, t, q);
1272 }
1273 }
1274 }
1275
1276 #if defined(_KERNEL) && defined(HAVE_SPA_THREAD)
1277 static void
1278 spa_thread(void *arg)
1279 {
1280 psetid_t zio_taskq_psrset_bind = PS_NONE;
1281 callb_cpr_t cprinfo;
1282
1283 spa_t *spa = arg;
1284 user_t *pu = PTOU(curproc);
1285
1286 CALLB_CPR_INIT(&cprinfo, &spa->spa_proc_lock, callb_generic_cpr,
1287 spa->spa_name);
1288
1289 ASSERT(curproc != &p0);
1290 (void) snprintf(pu->u_psargs, sizeof (pu->u_psargs),
1291 "zpool-%s", spa->spa_name);
1292 (void) strlcpy(pu->u_comm, pu->u_psargs, sizeof (pu->u_comm));
1293
1294 /* bind this thread to the requested psrset */
1295 if (zio_taskq_psrset_bind != PS_NONE) {
1296 pool_lock();
1297 mutex_enter(&cpu_lock);
1298 mutex_enter(&pidlock);
1299 mutex_enter(&curproc->p_lock);
1300
1301 if (cpupart_bind_thread(curthread, zio_taskq_psrset_bind,
1302 0, NULL, NULL) == 0) {
1303 curthread->t_bind_pset = zio_taskq_psrset_bind;
1304 } else {
1305 cmn_err(CE_WARN,
1306 "Couldn't bind process for zfs pool \"%s\" to "
1307 "pset %d\n", spa->spa_name, zio_taskq_psrset_bind);
1308 }
1309
1310 mutex_exit(&curproc->p_lock);
1311 mutex_exit(&pidlock);
1312 mutex_exit(&cpu_lock);
1313 pool_unlock();
1314 }
1315
1316 #ifdef HAVE_SYSDC
1317 if (zio_taskq_sysdc) {
1318 sysdc_thread_enter(curthread, 100, 0);
1319 }
1320 #endif
1321
1322 spa->spa_proc = curproc;
1323 spa->spa_did = curthread->t_did;
1324
1325 spa_create_zio_taskqs(spa);
1326
1327 mutex_enter(&spa->spa_proc_lock);
1328 ASSERT(spa->spa_proc_state == SPA_PROC_CREATED);
1329
1330 spa->spa_proc_state = SPA_PROC_ACTIVE;
1331 cv_broadcast(&spa->spa_proc_cv);
1332
1333 CALLB_CPR_SAFE_BEGIN(&cprinfo);
1334 while (spa->spa_proc_state == SPA_PROC_ACTIVE)
1335 cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock);
1336 CALLB_CPR_SAFE_END(&cprinfo, &spa->spa_proc_lock);
1337
1338 ASSERT(spa->spa_proc_state == SPA_PROC_DEACTIVATE);
1339 spa->spa_proc_state = SPA_PROC_GONE;
1340 spa->spa_proc = &p0;
1341 cv_broadcast(&spa->spa_proc_cv);
1342 CALLB_CPR_EXIT(&cprinfo); /* drops spa_proc_lock */
1343
1344 mutex_enter(&curproc->p_lock);
1345 lwp_exit();
1346 }
1347 #endif
1348
1349 extern metaslab_ops_t *metaslab_allocator(spa_t *spa);
1350
1351 /*
1352 * Activate an uninitialized pool.
1353 */
1354 static void
1355 spa_activate(spa_t *spa, spa_mode_t mode)
1356 {
1357 metaslab_ops_t *msp = metaslab_allocator(spa);
1358 ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED);
1359
1360 spa->spa_state = POOL_STATE_ACTIVE;
1361 spa->spa_mode = mode;
1362 spa->spa_read_spacemaps = spa_mode_readable_spacemaps;
1363
1364 spa->spa_normal_class = metaslab_class_create(spa, msp);
1365 spa->spa_log_class = metaslab_class_create(spa, msp);
1366 spa->spa_embedded_log_class = metaslab_class_create(spa, msp);
1367 spa->spa_special_class = metaslab_class_create(spa, msp);
1368 spa->spa_dedup_class = metaslab_class_create(spa, msp);
1369
1370 /* Try to create a covering process */
1371 mutex_enter(&spa->spa_proc_lock);
1372 ASSERT(spa->spa_proc_state == SPA_PROC_NONE);
1373 ASSERT(spa->spa_proc == &p0);
1374 spa->spa_did = 0;
1375
1376 #ifdef HAVE_SPA_THREAD
1377 /* Only create a process if we're going to be around a while. */
1378 if (spa_create_process && strcmp(spa->spa_name, TRYIMPORT_NAME) != 0) {
1379 if (newproc(spa_thread, (caddr_t)spa, syscid, maxclsyspri,
1380 NULL, 0) == 0) {
1381 spa->spa_proc_state = SPA_PROC_CREATED;
1382 while (spa->spa_proc_state == SPA_PROC_CREATED) {
1383 cv_wait(&spa->spa_proc_cv,
1384 &spa->spa_proc_lock);
1385 }
1386 ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE);
1387 ASSERT(spa->spa_proc != &p0);
1388 ASSERT(spa->spa_did != 0);
1389 } else {
1390 #ifdef _KERNEL
1391 cmn_err(CE_WARN,
1392 "Couldn't create process for zfs pool \"%s\"\n",
1393 spa->spa_name);
1394 #endif
1395 }
1396 }
1397 #endif /* HAVE_SPA_THREAD */
1398 mutex_exit(&spa->spa_proc_lock);
1399
1400 /* If we didn't create a process, we need to create our taskqs. */
1401 if (spa->spa_proc == &p0) {
1402 spa_create_zio_taskqs(spa);
1403 }
1404
1405 for (size_t i = 0; i < TXG_SIZE; i++) {
1406 spa->spa_txg_zio[i] = zio_root(spa, NULL, NULL,
1407 ZIO_FLAG_CANFAIL);
1408 }
1409
1410 list_create(&spa->spa_config_dirty_list, sizeof (vdev_t),
1411 offsetof(vdev_t, vdev_config_dirty_node));
1412 list_create(&spa->spa_evicting_os_list, sizeof (objset_t),
1413 offsetof(objset_t, os_evicting_node));
1414 list_create(&spa->spa_state_dirty_list, sizeof (vdev_t),
1415 offsetof(vdev_t, vdev_state_dirty_node));
1416
1417 txg_list_create(&spa->spa_vdev_txg_list, spa,
1418 offsetof(struct vdev, vdev_txg_node));
1419
1420 avl_create(&spa->spa_errlist_scrub,
1421 spa_error_entry_compare, sizeof (spa_error_entry_t),
1422 offsetof(spa_error_entry_t, se_avl));
1423 avl_create(&spa->spa_errlist_last,
1424 spa_error_entry_compare, sizeof (spa_error_entry_t),
1425 offsetof(spa_error_entry_t, se_avl));
1426 avl_create(&spa->spa_errlist_healed,
1427 spa_error_entry_compare, sizeof (spa_error_entry_t),
1428 offsetof(spa_error_entry_t, se_avl));
1429
1430 spa_activate_os(spa);
1431
1432 spa_keystore_init(&spa->spa_keystore);
1433
1434 /*
1435 * This taskq is used to perform zvol-minor-related tasks
1436 * asynchronously. This has several advantages, including easy
1437 * resolution of various deadlocks.
1438 *
1439 * The taskq must be single threaded to ensure tasks are always
1440 * processed in the order in which they were dispatched.
1441 *
1442 * A taskq per pool allows one to keep the pools independent.
1443 * This way if one pool is suspended, it will not impact another.
1444 *
1445 * The preferred location to dispatch a zvol minor task is a sync
1446 * task. In this context, there is easy access to the spa_t and minimal
1447 * error handling is required because the sync task must succeed.
1448 */
1449 spa->spa_zvol_taskq = taskq_create("z_zvol", 1, defclsyspri,
1450 1, INT_MAX, 0);
1451
1452 /*
1453 * The taskq to preload metaslabs.
1454 */
1455 spa->spa_metaslab_taskq = taskq_create("z_metaslab",
1456 metaslab_preload_pct, maxclsyspri, 1, INT_MAX,
1457 TASKQ_DYNAMIC | TASKQ_THREADS_CPU_PCT);
1458
1459 /*
1460 * Taskq dedicated to prefetcher threads: this is used to prevent the
1461 * pool traverse code from monopolizing the global (and limited)
1462 * system_taskq by inappropriately scheduling long running tasks on it.
1463 */
1464 spa->spa_prefetch_taskq = taskq_create("z_prefetch", 100,
1465 defclsyspri, 1, INT_MAX, TASKQ_DYNAMIC | TASKQ_THREADS_CPU_PCT);
1466
1467 /*
1468 * The taskq to upgrade datasets in this pool. Currently used by
1469 * feature SPA_FEATURE_USEROBJ_ACCOUNTING/SPA_FEATURE_PROJECT_QUOTA.
1470 */
1471 spa->spa_upgrade_taskq = taskq_create("z_upgrade", 100,
1472 defclsyspri, 1, INT_MAX, TASKQ_DYNAMIC | TASKQ_THREADS_CPU_PCT);
1473 }
1474
1475 /*
1476 * Opposite of spa_activate().
1477 */
1478 static void
1479 spa_deactivate(spa_t *spa)
1480 {
1481 ASSERT(spa->spa_sync_on == B_FALSE);
1482 ASSERT(spa->spa_dsl_pool == NULL);
1483 ASSERT(spa->spa_root_vdev == NULL);
1484 ASSERT(spa->spa_async_zio_root == NULL);
1485 ASSERT(spa->spa_state != POOL_STATE_UNINITIALIZED);
1486
1487 spa_evicting_os_wait(spa);
1488
1489 if (spa->spa_zvol_taskq) {
1490 taskq_destroy(spa->spa_zvol_taskq);
1491 spa->spa_zvol_taskq = NULL;
1492 }
1493
1494 if (spa->spa_metaslab_taskq) {
1495 taskq_destroy(spa->spa_metaslab_taskq);
1496 spa->spa_metaslab_taskq = NULL;
1497 }
1498
1499 if (spa->spa_prefetch_taskq) {
1500 taskq_destroy(spa->spa_prefetch_taskq);
1501 spa->spa_prefetch_taskq = NULL;
1502 }
1503
1504 if (spa->spa_upgrade_taskq) {
1505 taskq_destroy(spa->spa_upgrade_taskq);
1506 spa->spa_upgrade_taskq = NULL;
1507 }
1508
1509 txg_list_destroy(&spa->spa_vdev_txg_list);
1510
1511 list_destroy(&spa->spa_config_dirty_list);
1512 list_destroy(&spa->spa_evicting_os_list);
1513 list_destroy(&spa->spa_state_dirty_list);
1514
1515 taskq_cancel_id(system_delay_taskq, spa->spa_deadman_tqid);
1516
1517 for (int t = 0; t < ZIO_TYPES; t++) {
1518 for (int q = 0; q < ZIO_TASKQ_TYPES; q++) {
1519 spa_taskqs_fini(spa, t, q);
1520 }
1521 }
1522
1523 for (size_t i = 0; i < TXG_SIZE; i++) {
1524 ASSERT3P(spa->spa_txg_zio[i], !=, NULL);
1525 VERIFY0(zio_wait(spa->spa_txg_zio[i]));
1526 spa->spa_txg_zio[i] = NULL;
1527 }
1528
1529 metaslab_class_destroy(spa->spa_normal_class);
1530 spa->spa_normal_class = NULL;
1531
1532 metaslab_class_destroy(spa->spa_log_class);
1533 spa->spa_log_class = NULL;
1534
1535 metaslab_class_destroy(spa->spa_embedded_log_class);
1536 spa->spa_embedded_log_class = NULL;
1537
1538 metaslab_class_destroy(spa->spa_special_class);
1539 spa->spa_special_class = NULL;
1540
1541 metaslab_class_destroy(spa->spa_dedup_class);
1542 spa->spa_dedup_class = NULL;
1543
1544 /*
1545 * If this was part of an import or the open otherwise failed, we may
1546 * still have errors left in the queues. Empty them just in case.
1547 */
1548 spa_errlog_drain(spa);
1549 avl_destroy(&spa->spa_errlist_scrub);
1550 avl_destroy(&spa->spa_errlist_last);
1551 avl_destroy(&spa->spa_errlist_healed);
1552
1553 spa_keystore_fini(&spa->spa_keystore);
1554
1555 spa->spa_state = POOL_STATE_UNINITIALIZED;
1556
1557 mutex_enter(&spa->spa_proc_lock);
1558 if (spa->spa_proc_state != SPA_PROC_NONE) {
1559 ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE);
1560 spa->spa_proc_state = SPA_PROC_DEACTIVATE;
1561 cv_broadcast(&spa->spa_proc_cv);
1562 while (spa->spa_proc_state == SPA_PROC_DEACTIVATE) {
1563 ASSERT(spa->spa_proc != &p0);
1564 cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock);
1565 }
1566 ASSERT(spa->spa_proc_state == SPA_PROC_GONE);
1567 spa->spa_proc_state = SPA_PROC_NONE;
1568 }
1569 ASSERT(spa->spa_proc == &p0);
1570 mutex_exit(&spa->spa_proc_lock);
1571
1572 /*
1573 * We want to make sure spa_thread() has actually exited the ZFS
1574 * module, so that the module can't be unloaded out from underneath
1575 * it.
1576 */
1577 if (spa->spa_did != 0) {
1578 thread_join(spa->spa_did);
1579 spa->spa_did = 0;
1580 }
1581
1582 spa_deactivate_os(spa);
1583
1584 }
1585
1586 /*
1587 * Verify a pool configuration, and construct the vdev tree appropriately. This
1588 * will create all the necessary vdevs in the appropriate layout, with each vdev
1589 * in the CLOSED state. This will prep the pool before open/creation/import.
1590 * All vdev validation is done by the vdev_alloc() routine.
1591 */
1592 int
1593 spa_config_parse(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent,
1594 uint_t id, int atype)
1595 {
1596 nvlist_t **child;
1597 uint_t children;
1598 int error;
1599
1600 if ((error = vdev_alloc(spa, vdp, nv, parent, id, atype)) != 0)
1601 return (error);
1602
1603 if ((*vdp)->vdev_ops->vdev_op_leaf)
1604 return (0);
1605
1606 error = nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
1607 &child, &children);
1608
1609 if (error == ENOENT)
1610 return (0);
1611
1612 if (error) {
1613 vdev_free(*vdp);
1614 *vdp = NULL;
1615 return (SET_ERROR(EINVAL));
1616 }
1617
1618 for (int c = 0; c < children; c++) {
1619 vdev_t *vd;
1620 if ((error = spa_config_parse(spa, &vd, child[c], *vdp, c,
1621 atype)) != 0) {
1622 vdev_free(*vdp);
1623 *vdp = NULL;
1624 return (error);
1625 }
1626 }
1627
1628 ASSERT(*vdp != NULL);
1629
1630 return (0);
1631 }
1632
1633 static boolean_t
1634 spa_should_flush_logs_on_unload(spa_t *spa)
1635 {
1636 if (!spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP))
1637 return (B_FALSE);
1638
1639 if (!spa_writeable(spa))
1640 return (B_FALSE);
1641
1642 if (!spa->spa_sync_on)
1643 return (B_FALSE);
1644
1645 if (spa_state(spa) != POOL_STATE_EXPORTED)
1646 return (B_FALSE);
1647
1648 if (zfs_keep_log_spacemaps_at_export)
1649 return (B_FALSE);
1650
1651 return (B_TRUE);
1652 }
1653
1654 /*
1655 * Opens a transaction that will set the flag that will instruct
1656 * spa_sync to attempt to flush all the metaslabs for that txg.
1657 */
1658 static void
1659 spa_unload_log_sm_flush_all(spa_t *spa)
1660 {
1661 dmu_tx_t *tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
1662 VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
1663
1664 ASSERT3U(spa->spa_log_flushall_txg, ==, 0);
1665 spa->spa_log_flushall_txg = dmu_tx_get_txg(tx);
1666
1667 dmu_tx_commit(tx);
1668 txg_wait_synced(spa_get_dsl(spa), spa->spa_log_flushall_txg);
1669 }
1670
1671 static void
1672 spa_unload_log_sm_metadata(spa_t *spa)
1673 {
1674 void *cookie = NULL;
1675 spa_log_sm_t *sls;
1676 log_summary_entry_t *e;
1677
1678 while ((sls = avl_destroy_nodes(&spa->spa_sm_logs_by_txg,
1679 &cookie)) != NULL) {
1680 VERIFY0(sls->sls_mscount);
1681 kmem_free(sls, sizeof (spa_log_sm_t));
1682 }
1683
1684 while ((e = list_remove_head(&spa->spa_log_summary)) != NULL) {
1685 VERIFY0(e->lse_mscount);
1686 kmem_free(e, sizeof (log_summary_entry_t));
1687 }
1688
1689 spa->spa_unflushed_stats.sus_nblocks = 0;
1690 spa->spa_unflushed_stats.sus_memused = 0;
1691 spa->spa_unflushed_stats.sus_blocklimit = 0;
1692 }
1693
1694 static void
1695 spa_destroy_aux_threads(spa_t *spa)
1696 {
1697 if (spa->spa_condense_zthr != NULL) {
1698 zthr_destroy(spa->spa_condense_zthr);
1699 spa->spa_condense_zthr = NULL;
1700 }
1701 if (spa->spa_checkpoint_discard_zthr != NULL) {
1702 zthr_destroy(spa->spa_checkpoint_discard_zthr);
1703 spa->spa_checkpoint_discard_zthr = NULL;
1704 }
1705 if (spa->spa_livelist_delete_zthr != NULL) {
1706 zthr_destroy(spa->spa_livelist_delete_zthr);
1707 spa->spa_livelist_delete_zthr = NULL;
1708 }
1709 if (spa->spa_livelist_condense_zthr != NULL) {
1710 zthr_destroy(spa->spa_livelist_condense_zthr);
1711 spa->spa_livelist_condense_zthr = NULL;
1712 }
1713 if (spa->spa_raidz_expand_zthr != NULL) {
1714 zthr_destroy(spa->spa_raidz_expand_zthr);
1715 spa->spa_raidz_expand_zthr = NULL;
1716 }
1717 }
1718
1719 /*
1720 * Opposite of spa_load().
1721 */
1722 static void
1723 spa_unload(spa_t *spa)
1724 {
1725 ASSERT(MUTEX_HELD(&spa_namespace_lock));
1726 ASSERT(spa_state(spa) != POOL_STATE_UNINITIALIZED);
1727
1728 spa_import_progress_remove(spa_guid(spa));
1729 spa_load_note(spa, "UNLOADING");
1730
1731 spa_wake_waiters(spa);
1732
1733 /*
1734 * If we have set the spa_final_txg, we have already performed the
1735 * tasks below in spa_export_common(). We should not redo it here since
1736 * we delay the final TXGs beyond what spa_final_txg is set at.
1737 */
1738 if (spa->spa_final_txg == UINT64_MAX) {
1739 /*
1740 * If the log space map feature is enabled and the pool is
1741 * getting exported (but not destroyed), we want to spend some
1742 * time flushing as many metaslabs as we can in an attempt to
1743 * destroy log space maps and save import time.
1744 */
1745 if (spa_should_flush_logs_on_unload(spa))
1746 spa_unload_log_sm_flush_all(spa);
1747
1748 /*
1749 * Stop async tasks.
1750 */
1751 spa_async_suspend(spa);
1752
1753 if (spa->spa_root_vdev) {
1754 vdev_t *root_vdev = spa->spa_root_vdev;
1755 vdev_initialize_stop_all(root_vdev,
1756 VDEV_INITIALIZE_ACTIVE);
1757 vdev_trim_stop_all(root_vdev, VDEV_TRIM_ACTIVE);
1758 vdev_autotrim_stop_all(spa);
1759 vdev_rebuild_stop_all(spa);
1760 }
1761 }
1762
1763 /*
1764 * Stop syncing.
1765 */
1766 if (spa->spa_sync_on) {
1767 txg_sync_stop(spa->spa_dsl_pool);
1768 spa->spa_sync_on = B_FALSE;
1769 }
1770
1771 /*
1772 * This ensures that there is no async metaslab prefetching
1773 * while we attempt to unload the spa.
1774 */
1775 taskq_wait(spa->spa_metaslab_taskq);
1776
1777 if (spa->spa_mmp.mmp_thread)
1778 mmp_thread_stop(spa);
1779
1780 /*
1781 * Wait for any outstanding async I/O to complete.
1782 */
1783 if (spa->spa_async_zio_root != NULL) {
1784 for (int i = 0; i < max_ncpus; i++)
1785 (void) zio_wait(spa->spa_async_zio_root[i]);
1786 kmem_free(spa->spa_async_zio_root, max_ncpus * sizeof (void *));
1787 spa->spa_async_zio_root = NULL;
1788 }
1789
1790 if (spa->spa_vdev_removal != NULL) {
1791 spa_vdev_removal_destroy(spa->spa_vdev_removal);
1792 spa->spa_vdev_removal = NULL;
1793 }
1794
1795 spa_destroy_aux_threads(spa);
1796
1797 spa_condense_fini(spa);
1798
1799 bpobj_close(&spa->spa_deferred_bpobj);
1800
1801 spa_config_enter(spa, SCL_ALL, spa, RW_WRITER);
1802
1803 /*
1804 * Close all vdevs.
1805 */
1806 if (spa->spa_root_vdev)
1807 vdev_free(spa->spa_root_vdev);
1808 ASSERT(spa->spa_root_vdev == NULL);
1809
1810 /*
1811 * Close the dsl pool.
1812 */
1813 if (spa->spa_dsl_pool) {
1814 dsl_pool_close(spa->spa_dsl_pool);
1815 spa->spa_dsl_pool = NULL;
1816 spa->spa_meta_objset = NULL;
1817 }
1818
1819 ddt_unload(spa);
1820 brt_unload(spa);
1821 spa_unload_log_sm_metadata(spa);
1822
1823 /*
1824 * Drop and purge level 2 cache
1825 */
1826 spa_l2cache_drop(spa);
1827
1828 if (spa->spa_spares.sav_vdevs) {
1829 for (int i = 0; i < spa->spa_spares.sav_count; i++)
1830 vdev_free(spa->spa_spares.sav_vdevs[i]);
1831 kmem_free(spa->spa_spares.sav_vdevs,
1832 spa->spa_spares.sav_count * sizeof (void *));
1833 spa->spa_spares.sav_vdevs = NULL;
1834 }
1835 if (spa->spa_spares.sav_config) {
1836 nvlist_free(spa->spa_spares.sav_config);
1837 spa->spa_spares.sav_config = NULL;
1838 }
1839 spa->spa_spares.sav_count = 0;
1840
1841 if (spa->spa_l2cache.sav_vdevs) {
1842 for (int i = 0; i < spa->spa_l2cache.sav_count; i++) {
1843 vdev_clear_stats(spa->spa_l2cache.sav_vdevs[i]);
1844 vdev_free(spa->spa_l2cache.sav_vdevs[i]);
1845 }
1846 kmem_free(spa->spa_l2cache.sav_vdevs,
1847 spa->spa_l2cache.sav_count * sizeof (void *));
1848 spa->spa_l2cache.sav_vdevs = NULL;
1849 }
1850 if (spa->spa_l2cache.sav_config) {
1851 nvlist_free(spa->spa_l2cache.sav_config);
1852 spa->spa_l2cache.sav_config = NULL;
1853 }
1854 spa->spa_l2cache.sav_count = 0;
1855
1856 spa->spa_async_suspended = 0;
1857
1858 spa->spa_indirect_vdevs_loaded = B_FALSE;
1859
1860 if (spa->spa_comment != NULL) {
1861 spa_strfree(spa->spa_comment);
1862 spa->spa_comment = NULL;
1863 }
1864 if (spa->spa_compatibility != NULL) {
1865 spa_strfree(spa->spa_compatibility);
1866 spa->spa_compatibility = NULL;
1867 }
1868
1869 spa->spa_raidz_expand = NULL;
1870
1871 spa_config_exit(spa, SCL_ALL, spa);
1872 }
1873
1874 /*
1875 * Load (or re-load) the current list of vdevs describing the active spares for
1876 * this pool. When this is called, we have some form of basic information in
1877 * 'spa_spares.sav_config'. We parse this into vdevs, try to open them, and
1878 * then re-generate a more complete list including status information.
1879 */
1880 void
1881 spa_load_spares(spa_t *spa)
1882 {
1883 nvlist_t **spares;
1884 uint_t nspares;
1885 int i;
1886 vdev_t *vd, *tvd;
1887
1888 #ifndef _KERNEL
1889 /*
1890 * zdb opens both the current state of the pool and the
1891 * checkpointed state (if present), with a different spa_t.
1892 *
1893 * As spare vdevs are shared among open pools, we skip loading
1894 * them when we load the checkpointed state of the pool.
1895 */
1896 if (!spa_writeable(spa))
1897 return;
1898 #endif
1899
1900 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1901
1902 /*
1903 * First, close and free any existing spare vdevs.
1904 */
1905 if (spa->spa_spares.sav_vdevs) {
1906 for (i = 0; i < spa->spa_spares.sav_count; i++) {
1907 vd = spa->spa_spares.sav_vdevs[i];
1908
1909 /* Undo the call to spa_activate() below */
1910 if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
1911 B_FALSE)) != NULL && tvd->vdev_isspare)
1912 spa_spare_remove(tvd);
1913 vdev_close(vd);
1914 vdev_free(vd);
1915 }
1916
1917 kmem_free(spa->spa_spares.sav_vdevs,
1918 spa->spa_spares.sav_count * sizeof (void *));
1919 }
1920
1921 if (spa->spa_spares.sav_config == NULL)
1922 nspares = 0;
1923 else
1924 VERIFY0(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
1925 ZPOOL_CONFIG_SPARES, &spares, &nspares));
1926
1927 spa->spa_spares.sav_count = (int)nspares;
1928 spa->spa_spares.sav_vdevs = NULL;
1929
1930 if (nspares == 0)
1931 return;
1932
1933 /*
1934 * Construct the array of vdevs, opening them to get status in the
1935 * process. For each spare, there is potentially two different vdev_t
1936 * structures associated with it: one in the list of spares (used only
1937 * for basic validation purposes) and one in the active vdev
1938 * configuration (if it's spared in). During this phase we open and
1939 * validate each vdev on the spare list. If the vdev also exists in the
1940 * active configuration, then we also mark this vdev as an active spare.
1941 */
1942 spa->spa_spares.sav_vdevs = kmem_zalloc(nspares * sizeof (void *),
1943 KM_SLEEP);
1944 for (i = 0; i < spa->spa_spares.sav_count; i++) {
1945 VERIFY(spa_config_parse(spa, &vd, spares[i], NULL, 0,
1946 VDEV_ALLOC_SPARE) == 0);
1947 ASSERT(vd != NULL);
1948
1949 spa->spa_spares.sav_vdevs[i] = vd;
1950
1951 if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
1952 B_FALSE)) != NULL) {
1953 if (!tvd->vdev_isspare)
1954 spa_spare_add(tvd);
1955
1956 /*
1957 * We only mark the spare active if we were successfully
1958 * able to load the vdev. Otherwise, importing a pool
1959 * with a bad active spare would result in strange
1960 * behavior, because multiple pool would think the spare
1961 * is actively in use.
1962 *
1963 * There is a vulnerability here to an equally bizarre
1964 * circumstance, where a dead active spare is later
1965 * brought back to life (onlined or otherwise). Given
1966 * the rarity of this scenario, and the extra complexity
1967 * it adds, we ignore the possibility.
1968 */
1969 if (!vdev_is_dead(tvd))
1970 spa_spare_activate(tvd);
1971 }
1972
1973 vd->vdev_top = vd;
1974 vd->vdev_aux = &spa->spa_spares;
1975
1976 if (vdev_open(vd) != 0)
1977 continue;
1978
1979 if (vdev_validate_aux(vd) == 0)
1980 spa_spare_add(vd);
1981 }
1982
1983 /*
1984 * Recompute the stashed list of spares, with status information
1985 * this time.
1986 */
1987 fnvlist_remove(spa->spa_spares.sav_config, ZPOOL_CONFIG_SPARES);
1988
1989 spares = kmem_alloc(spa->spa_spares.sav_count * sizeof (void *),
1990 KM_SLEEP);
1991 for (i = 0; i < spa->spa_spares.sav_count; i++)
1992 spares[i] = vdev_config_generate(spa,
1993 spa->spa_spares.sav_vdevs[i], B_TRUE, VDEV_CONFIG_SPARE);
1994 fnvlist_add_nvlist_array(spa->spa_spares.sav_config,
1995 ZPOOL_CONFIG_SPARES, (const nvlist_t * const *)spares,
1996 spa->spa_spares.sav_count);
1997 for (i = 0; i < spa->spa_spares.sav_count; i++)
1998 nvlist_free(spares[i]);
1999 kmem_free(spares, spa->spa_spares.sav_count * sizeof (void *));
2000 }
2001
2002 /*
2003 * Load (or re-load) the current list of vdevs describing the active l2cache for
2004 * this pool. When this is called, we have some form of basic information in
2005 * 'spa_l2cache.sav_config'. We parse this into vdevs, try to open them, and
2006 * then re-generate a more complete list including status information.
2007 * Devices which are already active have their details maintained, and are
2008 * not re-opened.
2009 */
2010 void
2011 spa_load_l2cache(spa_t *spa)
2012 {
2013 nvlist_t **l2cache = NULL;
2014 uint_t nl2cache;
2015 int i, j, oldnvdevs;
2016 uint64_t guid;
2017 vdev_t *vd, **oldvdevs, **newvdevs;
2018 spa_aux_vdev_t *sav = &spa->spa_l2cache;
2019
2020 #ifndef _KERNEL
2021 /*
2022 * zdb opens both the current state of the pool and the
2023 * checkpointed state (if present), with a different spa_t.
2024 *
2025 * As L2 caches are part of the ARC which is shared among open
2026 * pools, we skip loading them when we load the checkpointed
2027 * state of the pool.
2028 */
2029 if (!spa_writeable(spa))
2030 return;
2031 #endif
2032
2033 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
2034
2035 oldvdevs = sav->sav_vdevs;
2036 oldnvdevs = sav->sav_count;
2037 sav->sav_vdevs = NULL;
2038 sav->sav_count = 0;
2039
2040 if (sav->sav_config == NULL) {
2041 nl2cache = 0;
2042 newvdevs = NULL;
2043 goto out;
2044 }
2045
2046 VERIFY0(nvlist_lookup_nvlist_array(sav->sav_config,
2047 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache));
2048 newvdevs = kmem_alloc(nl2cache * sizeof (void *), KM_SLEEP);
2049
2050 /*
2051 * Process new nvlist of vdevs.
2052 */
2053 for (i = 0; i < nl2cache; i++) {
2054 guid = fnvlist_lookup_uint64(l2cache[i], ZPOOL_CONFIG_GUID);
2055
2056 newvdevs[i] = NULL;
2057 for (j = 0; j < oldnvdevs; j++) {
2058 vd = oldvdevs[j];
2059 if (vd != NULL && guid == vd->vdev_guid) {
2060 /*
2061 * Retain previous vdev for add/remove ops.
2062 */
2063 newvdevs[i] = vd;
2064 oldvdevs[j] = NULL;
2065 break;
2066 }
2067 }
2068
2069 if (newvdevs[i] == NULL) {
2070 /*
2071 * Create new vdev
2072 */
2073 VERIFY(spa_config_parse(spa, &vd, l2cache[i], NULL, 0,
2074 VDEV_ALLOC_L2CACHE) == 0);
2075 ASSERT(vd != NULL);
2076 newvdevs[i] = vd;
2077
2078 /*
2079 * Commit this vdev as an l2cache device,
2080 * even if it fails to open.
2081 */
2082 spa_l2cache_add(vd);
2083
2084 vd->vdev_top = vd;
2085 vd->vdev_aux = sav;
2086
2087 spa_l2cache_activate(vd);
2088
2089 if (vdev_open(vd) != 0)
2090 continue;
2091
2092 (void) vdev_validate_aux(vd);
2093
2094 if (!vdev_is_dead(vd))
2095 l2arc_add_vdev(spa, vd);
2096
2097 /*
2098 * Upon cache device addition to a pool or pool
2099 * creation with a cache device or if the header
2100 * of the device is invalid we issue an async
2101 * TRIM command for the whole device which will
2102 * execute if l2arc_trim_ahead > 0.
2103 */
2104 spa_async_request(spa, SPA_ASYNC_L2CACHE_TRIM);
2105 }
2106 }
2107
2108 sav->sav_vdevs = newvdevs;
2109 sav->sav_count = (int)nl2cache;
2110
2111 /*
2112 * Recompute the stashed list of l2cache devices, with status
2113 * information this time.
2114 */
2115 fnvlist_remove(sav->sav_config, ZPOOL_CONFIG_L2CACHE);
2116
2117 if (sav->sav_count > 0)
2118 l2cache = kmem_alloc(sav->sav_count * sizeof (void *),
2119 KM_SLEEP);
2120 for (i = 0; i < sav->sav_count; i++)
2121 l2cache[i] = vdev_config_generate(spa,
2122 sav->sav_vdevs[i], B_TRUE, VDEV_CONFIG_L2CACHE);
2123 fnvlist_add_nvlist_array(sav->sav_config, ZPOOL_CONFIG_L2CACHE,
2124 (const nvlist_t * const *)l2cache, sav->sav_count);
2125
2126 out:
2127 /*
2128 * Purge vdevs that were dropped
2129 */
2130 if (oldvdevs) {
2131 for (i = 0; i < oldnvdevs; i++) {
2132 uint64_t pool;
2133
2134 vd = oldvdevs[i];
2135 if (vd != NULL) {
2136 ASSERT(vd->vdev_isl2cache);
2137
2138 if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
2139 pool != 0ULL && l2arc_vdev_present(vd))
2140 l2arc_remove_vdev(vd);
2141 vdev_clear_stats(vd);
2142 vdev_free(vd);
2143 }
2144 }
2145
2146 kmem_free(oldvdevs, oldnvdevs * sizeof (void *));
2147 }
2148
2149 for (i = 0; i < sav->sav_count; i++)
2150 nvlist_free(l2cache[i]);
2151 if (sav->sav_count)
2152 kmem_free(l2cache, sav->sav_count * sizeof (void *));
2153 }
2154
2155 static int
2156 load_nvlist(spa_t *spa, uint64_t obj, nvlist_t **value)
2157 {
2158 dmu_buf_t *db;
2159 char *packed = NULL;
2160 size_t nvsize = 0;
2161 int error;
2162 *value = NULL;
2163
2164 error = dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db);
2165 if (error)
2166 return (error);
2167
2168 nvsize = *(uint64_t *)db->db_data;
2169 dmu_buf_rele(db, FTAG);
2170
2171 packed = vmem_alloc(nvsize, KM_SLEEP);
2172 error = dmu_read(spa->spa_meta_objset, obj, 0, nvsize, packed,
2173 DMU_READ_PREFETCH);
2174 if (error == 0)
2175 error = nvlist_unpack(packed, nvsize, value, 0);
2176 vmem_free(packed, nvsize);
2177
2178 return (error);
2179 }
2180
2181 /*
2182 * Concrete top-level vdevs that are not missing and are not logs. At every
2183 * spa_sync we write new uberblocks to at least SPA_SYNC_MIN_VDEVS core tvds.
2184 */
2185 static uint64_t
2186 spa_healthy_core_tvds(spa_t *spa)
2187 {
2188 vdev_t *rvd = spa->spa_root_vdev;
2189 uint64_t tvds = 0;
2190
2191 for (uint64_t i = 0; i < rvd->vdev_children; i++) {
2192 vdev_t *vd = rvd->vdev_child[i];
2193 if (vd->vdev_islog)
2194 continue;
2195 if (vdev_is_concrete(vd) && !vdev_is_dead(vd))
2196 tvds++;
2197 }
2198
2199 return (tvds);
2200 }
2201
2202 /*
2203 * Checks to see if the given vdev could not be opened, in which case we post a
2204 * sysevent to notify the autoreplace code that the device has been removed.
2205 */
2206 static void
2207 spa_check_removed(vdev_t *vd)
2208 {
2209 for (uint64_t c = 0; c < vd->vdev_children; c++)
2210 spa_check_removed(vd->vdev_child[c]);
2211
2212 if (vd->vdev_ops->vdev_op_leaf && vdev_is_dead(vd) &&
2213 vdev_is_concrete(vd)) {
2214 zfs_post_autoreplace(vd->vdev_spa, vd);
2215 spa_event_notify(vd->vdev_spa, vd, NULL, ESC_ZFS_VDEV_CHECK);
2216 }
2217 }
2218
2219 static int
2220 spa_check_for_missing_logs(spa_t *spa)
2221 {
2222 vdev_t *rvd = spa->spa_root_vdev;
2223
2224 /*
2225 * If we're doing a normal import, then build up any additional
2226 * diagnostic information about missing log devices.
2227 * We'll pass this up to the user for further processing.
2228 */
2229 if (!(spa->spa_import_flags & ZFS_IMPORT_MISSING_LOG)) {
2230 nvlist_t **child, *nv;
2231 uint64_t idx = 0;
2232
2233 child = kmem_alloc(rvd->vdev_children * sizeof (nvlist_t *),
2234 KM_SLEEP);
2235 nv = fnvlist_alloc();
2236
2237 for (uint64_t c = 0; c < rvd->vdev_children; c++) {
2238 vdev_t *tvd = rvd->vdev_child[c];
2239
2240 /*
2241 * We consider a device as missing only if it failed
2242 * to open (i.e. offline or faulted is not considered
2243 * as missing).
2244 */
2245 if (tvd->vdev_islog &&
2246 tvd->vdev_state == VDEV_STATE_CANT_OPEN) {
2247 child[idx++] = vdev_config_generate(spa, tvd,
2248 B_FALSE, VDEV_CONFIG_MISSING);
2249 }
2250 }
2251
2252 if (idx > 0) {
2253 fnvlist_add_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
2254 (const nvlist_t * const *)child, idx);
2255 fnvlist_add_nvlist(spa->spa_load_info,
2256 ZPOOL_CONFIG_MISSING_DEVICES, nv);
2257
2258 for (uint64_t i = 0; i < idx; i++)
2259 nvlist_free(child[i]);
2260 }
2261 nvlist_free(nv);
2262 kmem_free(child, rvd->vdev_children * sizeof (char **));
2263
2264 if (idx > 0) {
2265 spa_load_failed(spa, "some log devices are missing");
2266 vdev_dbgmsg_print_tree(rvd, 2);
2267 return (SET_ERROR(ENXIO));
2268 }
2269 } else {
2270 for (uint64_t c = 0; c < rvd->vdev_children; c++) {
2271 vdev_t *tvd = rvd->vdev_child[c];
2272
2273 if (tvd->vdev_islog &&
2274 tvd->vdev_state == VDEV_STATE_CANT_OPEN) {
2275 spa_set_log_state(spa, SPA_LOG_CLEAR);
2276 spa_load_note(spa, "some log devices are "
2277 "missing, ZIL is dropped.");
2278 vdev_dbgmsg_print_tree(rvd, 2);
2279 break;
2280 }
2281 }
2282 }
2283
2284 return (0);
2285 }
2286
2287 /*
2288 * Check for missing log devices
2289 */
2290 static boolean_t
2291 spa_check_logs(spa_t *spa)
2292 {
2293 boolean_t rv = B_FALSE;
2294 dsl_pool_t *dp = spa_get_dsl(spa);
2295
2296 switch (spa->spa_log_state) {
2297 default:
2298 break;
2299 case SPA_LOG_MISSING:
2300 /* need to recheck in case slog has been restored */
2301 case SPA_LOG_UNKNOWN:
2302 rv = (dmu_objset_find_dp(dp, dp->dp_root_dir_obj,
2303 zil_check_log_chain, NULL, DS_FIND_CHILDREN) != 0);
2304 if (rv)
2305 spa_set_log_state(spa, SPA_LOG_MISSING);
2306 break;
2307 }
2308 return (rv);
2309 }
2310
2311 /*
2312 * Passivate any log vdevs (note, does not apply to embedded log metaslabs).
2313 */
2314 static boolean_t
2315 spa_passivate_log(spa_t *spa)
2316 {
2317 vdev_t *rvd = spa->spa_root_vdev;
2318 boolean_t slog_found = B_FALSE;
2319
2320 ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER));
2321
2322 for (int c = 0; c < rvd->vdev_children; c++) {
2323 vdev_t *tvd = rvd->vdev_child[c];
2324
2325 if (tvd->vdev_islog) {
2326 ASSERT3P(tvd->vdev_log_mg, ==, NULL);
2327 metaslab_group_passivate(tvd->vdev_mg);
2328 slog_found = B_TRUE;
2329 }
2330 }
2331
2332 return (slog_found);
2333 }
2334
2335 /*
2336 * Activate any log vdevs (note, does not apply to embedded log metaslabs).
2337 */
2338 static void
2339 spa_activate_log(spa_t *spa)
2340 {
2341 vdev_t *rvd = spa->spa_root_vdev;
2342
2343 ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER));
2344
2345 for (int c = 0; c < rvd->vdev_children; c++) {
2346 vdev_t *tvd = rvd->vdev_child[c];
2347
2348 if (tvd->vdev_islog) {
2349 ASSERT3P(tvd->vdev_log_mg, ==, NULL);
2350 metaslab_group_activate(tvd->vdev_mg);
2351 }
2352 }
2353 }
2354
2355 int
2356 spa_reset_logs(spa_t *spa)
2357 {
2358 int error;
2359
2360 error = dmu_objset_find(spa_name(spa), zil_reset,
2361 NULL, DS_FIND_CHILDREN);
2362 if (error == 0) {
2363 /*
2364 * We successfully offlined the log device, sync out the
2365 * current txg so that the "stubby" block can be removed
2366 * by zil_sync().
2367 */
2368 txg_wait_synced(spa->spa_dsl_pool, 0);
2369 }
2370 return (error);
2371 }
2372
2373 static void
2374 spa_aux_check_removed(spa_aux_vdev_t *sav)
2375 {
2376 for (int i = 0; i < sav->sav_count; i++)
2377 spa_check_removed(sav->sav_vdevs[i]);
2378 }
2379
2380 void
2381 spa_claim_notify(zio_t *zio)
2382 {
2383 spa_t *spa = zio->io_spa;
2384
2385 if (zio->io_error)
2386 return;
2387
2388 mutex_enter(&spa->spa_props_lock); /* any mutex will do */
2389 if (spa->spa_claim_max_txg < zio->io_bp->blk_birth)
2390 spa->spa_claim_max_txg = zio->io_bp->blk_birth;
2391 mutex_exit(&spa->spa_props_lock);
2392 }
2393
2394 typedef struct spa_load_error {
2395 boolean_t sle_verify_data;
2396 uint64_t sle_meta_count;
2397 uint64_t sle_data_count;
2398 } spa_load_error_t;
2399
2400 static void
2401 spa_load_verify_done(zio_t *zio)
2402 {
2403 blkptr_t *bp = zio->io_bp;
2404 spa_load_error_t *sle = zio->io_private;
2405 dmu_object_type_t type = BP_GET_TYPE(bp);
2406 int error = zio->io_error;
2407 spa_t *spa = zio->io_spa;
2408
2409 abd_free(zio->io_abd);
2410 if (error) {
2411 if ((BP_GET_LEVEL(bp) != 0 || DMU_OT_IS_METADATA(type)) &&
2412 type != DMU_OT_INTENT_LOG)
2413 atomic_inc_64(&sle->sle_meta_count);
2414 else
2415 atomic_inc_64(&sle->sle_data_count);
2416 }
2417
2418 mutex_enter(&spa->spa_scrub_lock);
2419 spa->spa_load_verify_bytes -= BP_GET_PSIZE(bp);
2420 cv_broadcast(&spa->spa_scrub_io_cv);
2421 mutex_exit(&spa->spa_scrub_lock);
2422 }
2423
2424 /*
2425 * Maximum number of inflight bytes is the log2 fraction of the arc size.
2426 * By default, we set it to 1/16th of the arc.
2427 */
2428 static uint_t spa_load_verify_shift = 4;
2429 static int spa_load_verify_metadata = B_TRUE;
2430 static int spa_load_verify_data = B_TRUE;
2431
2432 static int
2433 spa_load_verify_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp,
2434 const zbookmark_phys_t *zb, const dnode_phys_t *dnp, void *arg)
2435 {
2436 zio_t *rio = arg;
2437 spa_load_error_t *sle = rio->io_private;
2438
2439 (void) zilog, (void) dnp;
2440
2441 /*
2442 * Note: normally this routine will not be called if
2443 * spa_load_verify_metadata is not set. However, it may be useful
2444 * to manually set the flag after the traversal has begun.
2445 */
2446 if (!spa_load_verify_metadata)
2447 return (0);
2448
2449 /*
2450 * Sanity check the block pointer in order to detect obvious damage
2451 * before using the contents in subsequent checks or in zio_read().
2452 * When damaged consider it to be a metadata error since we cannot
2453 * trust the BP_GET_TYPE and BP_GET_LEVEL values.
2454 */
2455 if (!zfs_blkptr_verify(spa, bp, BLK_CONFIG_NEEDED, BLK_VERIFY_LOG)) {
2456 atomic_inc_64(&sle->sle_meta_count);
2457 return (0);
2458 }
2459
2460 if (zb->zb_level == ZB_DNODE_LEVEL || BP_IS_HOLE(bp) ||
2461 BP_IS_EMBEDDED(bp) || BP_IS_REDACTED(bp))
2462 return (0);
2463
2464 if (!BP_IS_METADATA(bp) &&
2465 (!spa_load_verify_data || !sle->sle_verify_data))
2466 return (0);
2467
2468 uint64_t maxinflight_bytes =
2469 arc_target_bytes() >> spa_load_verify_shift;
2470 size_t size = BP_GET_PSIZE(bp);
2471
2472 mutex_enter(&spa->spa_scrub_lock);
2473 while (spa->spa_load_verify_bytes >= maxinflight_bytes)
2474 cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock);
2475 spa->spa_load_verify_bytes += size;
2476 mutex_exit(&spa->spa_scrub_lock);
2477
2478 zio_nowait(zio_read(rio, spa, bp, abd_alloc_for_io(size, B_FALSE), size,
2479 spa_load_verify_done, rio->io_private, ZIO_PRIORITY_SCRUB,
2480 ZIO_FLAG_SPECULATIVE | ZIO_FLAG_CANFAIL |
2481 ZIO_FLAG_SCRUB | ZIO_FLAG_RAW, zb));
2482 return (0);
2483 }
2484
2485 static int
2486 verify_dataset_name_len(dsl_pool_t *dp, dsl_dataset_t *ds, void *arg)
2487 {
2488 (void) dp, (void) arg;
2489
2490 if (dsl_dataset_namelen(ds) >= ZFS_MAX_DATASET_NAME_LEN)
2491 return (SET_ERROR(ENAMETOOLONG));
2492
2493 return (0);
2494 }
2495
2496 static int
2497 spa_load_verify(spa_t *spa)
2498 {
2499 zio_t *rio;
2500 spa_load_error_t sle = { 0 };
2501 zpool_load_policy_t policy;
2502 boolean_t verify_ok = B_FALSE;
2503 int error = 0;
2504
2505 zpool_get_load_policy(spa->spa_config, &policy);
2506
2507 if (policy.zlp_rewind & ZPOOL_NEVER_REWIND ||
2508 policy.zlp_maxmeta == UINT64_MAX)
2509 return (0);
2510
2511 dsl_pool_config_enter(spa->spa_dsl_pool, FTAG);
2512 error = dmu_objset_find_dp(spa->spa_dsl_pool,
2513 spa->spa_dsl_pool->dp_root_dir_obj, verify_dataset_name_len, NULL,
2514 DS_FIND_CHILDREN);
2515 dsl_pool_config_exit(spa->spa_dsl_pool, FTAG);
2516 if (error != 0)
2517 return (error);
2518
2519 /*
2520 * Verify data only if we are rewinding or error limit was set.
2521 * Otherwise nothing except dbgmsg care about it to waste time.
2522 */
2523 sle.sle_verify_data = (policy.zlp_rewind & ZPOOL_REWIND_MASK) ||
2524 (policy.zlp_maxdata < UINT64_MAX);
2525
2526 rio = zio_root(spa, NULL, &sle,
2527 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE);
2528
2529 if (spa_load_verify_metadata) {
2530 if (spa->spa_extreme_rewind) {
2531 spa_load_note(spa, "performing a complete scan of the "
2532 "pool since extreme rewind is on. This may take "
2533 "a very long time.\n (spa_load_verify_data=%u, "
2534 "spa_load_verify_metadata=%u)",
2535 spa_load_verify_data, spa_load_verify_metadata);
2536 }
2537
2538 error = traverse_pool(spa, spa->spa_verify_min_txg,
2539 TRAVERSE_PRE | TRAVERSE_PREFETCH_METADATA |
2540 TRAVERSE_NO_DECRYPT, spa_load_verify_cb, rio);
2541 }
2542
2543 (void) zio_wait(rio);
2544 ASSERT0(spa->spa_load_verify_bytes);
2545
2546 spa->spa_load_meta_errors = sle.sle_meta_count;
2547 spa->spa_load_data_errors = sle.sle_data_count;
2548
2549 if (sle.sle_meta_count != 0 || sle.sle_data_count != 0) {
2550 spa_load_note(spa, "spa_load_verify found %llu metadata errors "
2551 "and %llu data errors", (u_longlong_t)sle.sle_meta_count,
2552 (u_longlong_t)sle.sle_data_count);
2553 }
2554
2555 if (spa_load_verify_dryrun ||
2556 (!error && sle.sle_meta_count <= policy.zlp_maxmeta &&
2557 sle.sle_data_count <= policy.zlp_maxdata)) {
2558 int64_t loss = 0;
2559
2560 verify_ok = B_TRUE;
2561 spa->spa_load_txg = spa->spa_uberblock.ub_txg;
2562 spa->spa_load_txg_ts = spa->spa_uberblock.ub_timestamp;
2563
2564 loss = spa->spa_last_ubsync_txg_ts - spa->spa_load_txg_ts;
2565 fnvlist_add_uint64(spa->spa_load_info, ZPOOL_CONFIG_LOAD_TIME,
2566 spa->spa_load_txg_ts);
2567 fnvlist_add_int64(spa->spa_load_info, ZPOOL_CONFIG_REWIND_TIME,
2568 loss);
2569 fnvlist_add_uint64(spa->spa_load_info,
2570 ZPOOL_CONFIG_LOAD_META_ERRORS, sle.sle_meta_count);
2571 fnvlist_add_uint64(spa->spa_load_info,
2572 ZPOOL_CONFIG_LOAD_DATA_ERRORS, sle.sle_data_count);
2573 } else {
2574 spa->spa_load_max_txg = spa->spa_uberblock.ub_txg;
2575 }
2576
2577 if (spa_load_verify_dryrun)
2578 return (0);
2579
2580 if (error) {
2581 if (error != ENXIO && error != EIO)
2582 error = SET_ERROR(EIO);
2583 return (error);
2584 }
2585
2586 return (verify_ok ? 0 : EIO);
2587 }
2588
2589 /*
2590 * Find a value in the pool props object.
2591 */
2592 static void
2593 spa_prop_find(spa_t *spa, zpool_prop_t prop, uint64_t *val)
2594 {
2595 (void) zap_lookup(spa->spa_meta_objset, spa->spa_pool_props_object,
2596 zpool_prop_to_name(prop), sizeof (uint64_t), 1, val);
2597 }
2598
2599 /*
2600 * Find a value in the pool directory object.
2601 */
2602 static int
2603 spa_dir_prop(spa_t *spa, const char *name, uint64_t *val, boolean_t log_enoent)
2604 {
2605 int error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
2606 name, sizeof (uint64_t), 1, val);
2607
2608 if (error != 0 && (error != ENOENT || log_enoent)) {
2609 spa_load_failed(spa, "couldn't get '%s' value in MOS directory "
2610 "[error=%d]", name, error);
2611 }
2612
2613 return (error);
2614 }
2615
2616 static int
2617 spa_vdev_err(vdev_t *vdev, vdev_aux_t aux, int err)
2618 {
2619 vdev_set_state(vdev, B_TRUE, VDEV_STATE_CANT_OPEN, aux);
2620 return (SET_ERROR(err));
2621 }
2622
2623 boolean_t
2624 spa_livelist_delete_check(spa_t *spa)
2625 {
2626 return (spa->spa_livelists_to_delete != 0);
2627 }
2628
2629 static boolean_t
2630 spa_livelist_delete_cb_check(void *arg, zthr_t *z)
2631 {
2632 (void) z;
2633 spa_t *spa = arg;
2634 return (spa_livelist_delete_check(spa));
2635 }
2636
2637 static int
2638 delete_blkptr_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
2639 {
2640 spa_t *spa = arg;
2641 zio_free(spa, tx->tx_txg, bp);
2642 dsl_dir_diduse_space(tx->tx_pool->dp_free_dir, DD_USED_HEAD,
2643 -bp_get_dsize_sync(spa, bp),
2644 -BP_GET_PSIZE(bp), -BP_GET_UCSIZE(bp), tx);
2645 return (0);
2646 }
2647
2648 static int
2649 dsl_get_next_livelist_obj(objset_t *os, uint64_t zap_obj, uint64_t *llp)
2650 {
2651 int err;
2652 zap_cursor_t zc;
2653 zap_attribute_t za;
2654 zap_cursor_init(&zc, os, zap_obj);
2655 err = zap_cursor_retrieve(&zc, &za);
2656 zap_cursor_fini(&zc);
2657 if (err == 0)
2658 *llp = za.za_first_integer;
2659 return (err);
2660 }
2661
2662 /*
2663 * Components of livelist deletion that must be performed in syncing
2664 * context: freeing block pointers and updating the pool-wide data
2665 * structures to indicate how much work is left to do
2666 */
2667 typedef struct sublist_delete_arg {
2668 spa_t *spa;
2669 dsl_deadlist_t *ll;
2670 uint64_t key;
2671 bplist_t *to_free;
2672 } sublist_delete_arg_t;
2673
2674 static void
2675 sublist_delete_sync(void *arg, dmu_tx_t *tx)
2676 {
2677 sublist_delete_arg_t *sda = arg;
2678 spa_t *spa = sda->spa;
2679 dsl_deadlist_t *ll = sda->ll;
2680 uint64_t key = sda->key;
2681 bplist_t *to_free = sda->to_free;
2682
2683 bplist_iterate(to_free, delete_blkptr_cb, spa, tx);
2684 dsl_deadlist_remove_entry(ll, key, tx);
2685 }
2686
2687 typedef struct livelist_delete_arg {
2688 spa_t *spa;
2689 uint64_t ll_obj;
2690 uint64_t zap_obj;
2691 } livelist_delete_arg_t;
2692
2693 static void
2694 livelist_delete_sync(void *arg, dmu_tx_t *tx)
2695 {
2696 livelist_delete_arg_t *lda = arg;
2697 spa_t *spa = lda->spa;
2698 uint64_t ll_obj = lda->ll_obj;
2699 uint64_t zap_obj = lda->zap_obj;
2700 objset_t *mos = spa->spa_meta_objset;
2701 uint64_t count;
2702
2703 /* free the livelist and decrement the feature count */
2704 VERIFY0(zap_remove_int(mos, zap_obj, ll_obj, tx));
2705 dsl_deadlist_free(mos, ll_obj, tx);
2706 spa_feature_decr(spa, SPA_FEATURE_LIVELIST, tx);
2707 VERIFY0(zap_count(mos, zap_obj, &count));
2708 if (count == 0) {
2709 /* no more livelists to delete */
2710 VERIFY0(zap_remove(mos, DMU_POOL_DIRECTORY_OBJECT,
2711 DMU_POOL_DELETED_CLONES, tx));
2712 VERIFY0(zap_destroy(mos, zap_obj, tx));
2713 spa->spa_livelists_to_delete = 0;
2714 spa_notify_waiters(spa);
2715 }
2716 }
2717
2718 /*
2719 * Load in the value for the livelist to be removed and open it. Then,
2720 * load its first sublist and determine which block pointers should actually
2721 * be freed. Then, call a synctask which performs the actual frees and updates
2722 * the pool-wide livelist data.
2723 */
2724 static void
2725 spa_livelist_delete_cb(void *arg, zthr_t *z)
2726 {
2727 spa_t *spa = arg;
2728 uint64_t ll_obj = 0, count;
2729 objset_t *mos = spa->spa_meta_objset;
2730 uint64_t zap_obj = spa->spa_livelists_to_delete;
2731 /*
2732 * Determine the next livelist to delete. This function should only
2733 * be called if there is at least one deleted clone.
2734 */
2735 VERIFY0(dsl_get_next_livelist_obj(mos, zap_obj, &ll_obj));
2736 VERIFY0(zap_count(mos, ll_obj, &count));
2737 if (count > 0) {
2738 dsl_deadlist_t *ll;
2739 dsl_deadlist_entry_t *dle;
2740 bplist_t to_free;
2741 ll = kmem_zalloc(sizeof (dsl_deadlist_t), KM_SLEEP);
2742 dsl_deadlist_open(ll, mos, ll_obj);
2743 dle = dsl_deadlist_first(ll);
2744 ASSERT3P(dle, !=, NULL);
2745 bplist_create(&to_free);
2746 int err = dsl_process_sub_livelist(&dle->dle_bpobj, &to_free,
2747 z, NULL);
2748 if (err == 0) {
2749 sublist_delete_arg_t sync_arg = {
2750 .spa = spa,
2751 .ll = ll,
2752 .key = dle->dle_mintxg,
2753 .to_free = &to_free
2754 };
2755 zfs_dbgmsg("deleting sublist (id %llu) from"
2756 " livelist %llu, %lld remaining",
2757 (u_longlong_t)dle->dle_bpobj.bpo_object,
2758 (u_longlong_t)ll_obj, (longlong_t)count - 1);
2759 VERIFY0(dsl_sync_task(spa_name(spa), NULL,
2760 sublist_delete_sync, &sync_arg, 0,
2761 ZFS_SPACE_CHECK_DESTROY));
2762 } else {
2763 VERIFY3U(err, ==, EINTR);
2764 }
2765 bplist_clear(&to_free);
2766 bplist_destroy(&to_free);
2767 dsl_deadlist_close(ll);
2768 kmem_free(ll, sizeof (dsl_deadlist_t));
2769 } else {
2770 livelist_delete_arg_t sync_arg = {
2771 .spa = spa,
2772 .ll_obj = ll_obj,
2773 .zap_obj = zap_obj
2774 };
2775 zfs_dbgmsg("deletion of livelist %llu completed",
2776 (u_longlong_t)ll_obj);
2777 VERIFY0(dsl_sync_task(spa_name(spa), NULL, livelist_delete_sync,
2778 &sync_arg, 0, ZFS_SPACE_CHECK_DESTROY));
2779 }
2780 }
2781
2782 static void
2783 spa_start_livelist_destroy_thread(spa_t *spa)
2784 {
2785 ASSERT3P(spa->spa_livelist_delete_zthr, ==, NULL);
2786 spa->spa_livelist_delete_zthr =
2787 zthr_create("z_livelist_destroy",
2788 spa_livelist_delete_cb_check, spa_livelist_delete_cb, spa,
2789 minclsyspri);
2790 }
2791
2792 typedef struct livelist_new_arg {
2793 bplist_t *allocs;
2794 bplist_t *frees;
2795 } livelist_new_arg_t;
2796
2797 static int
2798 livelist_track_new_cb(void *arg, const blkptr_t *bp, boolean_t bp_freed,
2799 dmu_tx_t *tx)
2800 {
2801 ASSERT(tx == NULL);
2802 livelist_new_arg_t *lna = arg;
2803 if (bp_freed) {
2804 bplist_append(lna->frees, bp);
2805 } else {
2806 bplist_append(lna->allocs, bp);
2807 zfs_livelist_condense_new_alloc++;
2808 }
2809 return (0);
2810 }
2811
2812 typedef struct livelist_condense_arg {
2813 spa_t *spa;
2814 bplist_t to_keep;
2815 uint64_t first_size;
2816 uint64_t next_size;
2817 } livelist_condense_arg_t;
2818
2819 static void
2820 spa_livelist_condense_sync(void *arg, dmu_tx_t *tx)
2821 {
2822 livelist_condense_arg_t *lca = arg;
2823 spa_t *spa = lca->spa;
2824 bplist_t new_frees;
2825 dsl_dataset_t *ds = spa->spa_to_condense.ds;
2826
2827 /* Have we been cancelled? */
2828 if (spa->spa_to_condense.cancelled) {
2829 zfs_livelist_condense_sync_cancel++;
2830 goto out;
2831 }
2832
2833 dsl_deadlist_entry_t *first = spa->spa_to_condense.first;
2834 dsl_deadlist_entry_t *next = spa->spa_to_condense.next;
2835 dsl_deadlist_t *ll = &ds->ds_dir->dd_livelist;
2836
2837 /*
2838 * It's possible that the livelist was changed while the zthr was
2839 * running. Therefore, we need to check for new blkptrs in the two
2840 * entries being condensed and continue to track them in the livelist.
2841 * Because of the way we handle remapped blkptrs (see dbuf_remap_impl),
2842 * it's possible that the newly added blkptrs are FREEs or ALLOCs so
2843 * we need to sort them into two different bplists.
2844 */
2845 uint64_t first_obj = first->dle_bpobj.bpo_object;
2846 uint64_t next_obj = next->dle_bpobj.bpo_object;
2847 uint64_t cur_first_size = first->dle_bpobj.bpo_phys->bpo_num_blkptrs;
2848 uint64_t cur_next_size = next->dle_bpobj.bpo_phys->bpo_num_blkptrs;
2849
2850 bplist_create(&new_frees);
2851 livelist_new_arg_t new_bps = {
2852 .allocs = &lca->to_keep,
2853 .frees = &new_frees,
2854 };
2855
2856 if (cur_first_size > lca->first_size) {
2857 VERIFY0(livelist_bpobj_iterate_from_nofree(&first->dle_bpobj,
2858 livelist_track_new_cb, &new_bps, lca->first_size));
2859 }
2860 if (cur_next_size > lca->next_size) {
2861 VERIFY0(livelist_bpobj_iterate_from_nofree(&next->dle_bpobj,
2862 livelist_track_new_cb, &new_bps, lca->next_size));
2863 }
2864
2865 dsl_deadlist_clear_entry(first, ll, tx);
2866 ASSERT(bpobj_is_empty(&first->dle_bpobj));
2867 dsl_deadlist_remove_entry(ll, next->dle_mintxg, tx);
2868
2869 bplist_iterate(&lca->to_keep, dsl_deadlist_insert_alloc_cb, ll, tx);
2870 bplist_iterate(&new_frees, dsl_deadlist_insert_free_cb, ll, tx);
2871 bplist_destroy(&new_frees);
2872
2873 char dsname[ZFS_MAX_DATASET_NAME_LEN];
2874 dsl_dataset_name(ds, dsname);
2875 zfs_dbgmsg("txg %llu condensing livelist of %s (id %llu), bpobj %llu "
2876 "(%llu blkptrs) and bpobj %llu (%llu blkptrs) -> bpobj %llu "
2877 "(%llu blkptrs)", (u_longlong_t)tx->tx_txg, dsname,
2878 (u_longlong_t)ds->ds_object, (u_longlong_t)first_obj,
2879 (u_longlong_t)cur_first_size, (u_longlong_t)next_obj,
2880 (u_longlong_t)cur_next_size,
2881 (u_longlong_t)first->dle_bpobj.bpo_object,
2882 (u_longlong_t)first->dle_bpobj.bpo_phys->bpo_num_blkptrs);
2883 out:
2884 dmu_buf_rele(ds->ds_dbuf, spa);
2885 spa->spa_to_condense.ds = NULL;
2886 bplist_clear(&lca->to_keep);
2887 bplist_destroy(&lca->to_keep);
2888 kmem_free(lca, sizeof (livelist_condense_arg_t));
2889 spa->spa_to_condense.syncing = B_FALSE;
2890 }
2891
2892 static void
2893 spa_livelist_condense_cb(void *arg, zthr_t *t)
2894 {
2895 while (zfs_livelist_condense_zthr_pause &&
2896 !(zthr_has_waiters(t) || zthr_iscancelled(t)))
2897 delay(1);
2898
2899 spa_t *spa = arg;
2900 dsl_deadlist_entry_t *first = spa->spa_to_condense.first;
2901 dsl_deadlist_entry_t *next = spa->spa_to_condense.next;
2902 uint64_t first_size, next_size;
2903
2904 livelist_condense_arg_t *lca =
2905 kmem_alloc(sizeof (livelist_condense_arg_t), KM_SLEEP);
2906 bplist_create(&lca->to_keep);
2907
2908 /*
2909 * Process the livelists (matching FREEs and ALLOCs) in open context
2910 * so we have minimal work in syncing context to condense.
2911 *
2912 * We save bpobj sizes (first_size and next_size) to use later in
2913 * syncing context to determine if entries were added to these sublists
2914 * while in open context. This is possible because the clone is still
2915 * active and open for normal writes and we want to make sure the new,
2916 * unprocessed blockpointers are inserted into the livelist normally.
2917 *
2918 * Note that dsl_process_sub_livelist() both stores the size number of
2919 * blockpointers and iterates over them while the bpobj's lock held, so
2920 * the sizes returned to us are consistent which what was actually
2921 * processed.
2922 */
2923 int err = dsl_process_sub_livelist(&first->dle_bpobj, &lca->to_keep, t,
2924 &first_size);
2925 if (err == 0)
2926 err = dsl_process_sub_livelist(&next->dle_bpobj, &lca->to_keep,
2927 t, &next_size);
2928
2929 if (err == 0) {
2930 while (zfs_livelist_condense_sync_pause &&
2931 !(zthr_has_waiters(t) || zthr_iscancelled(t)))
2932 delay(1);
2933
2934 dmu_tx_t *tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
2935 dmu_tx_mark_netfree(tx);
2936 dmu_tx_hold_space(tx, 1);
2937 err = dmu_tx_assign(tx, TXG_NOWAIT | TXG_NOTHROTTLE);
2938 if (err == 0) {
2939 /*
2940 * Prevent the condense zthr restarting before
2941 * the synctask completes.
2942 */
2943 spa->spa_to_condense.syncing = B_TRUE;
2944 lca->spa = spa;
2945 lca->first_size = first_size;
2946 lca->next_size = next_size;
2947 dsl_sync_task_nowait(spa_get_dsl(spa),
2948 spa_livelist_condense_sync, lca, tx);
2949 dmu_tx_commit(tx);
2950 return;
2951 }
2952 }
2953 /*
2954 * Condensing can not continue: either it was externally stopped or
2955 * we were unable to assign to a tx because the pool has run out of
2956 * space. In the second case, we'll just end up trying to condense
2957 * again in a later txg.
2958 */
2959 ASSERT(err != 0);
2960 bplist_clear(&lca->to_keep);
2961 bplist_destroy(&lca->to_keep);
2962 kmem_free(lca, sizeof (livelist_condense_arg_t));
2963 dmu_buf_rele(spa->spa_to_condense.ds->ds_dbuf, spa);
2964 spa->spa_to_condense.ds = NULL;
2965 if (err == EINTR)
2966 zfs_livelist_condense_zthr_cancel++;
2967 }
2968
2969 /*
2970 * Check that there is something to condense but that a condense is not
2971 * already in progress and that condensing has not been cancelled.
2972 */
2973 static boolean_t
2974 spa_livelist_condense_cb_check(void *arg, zthr_t *z)
2975 {
2976 (void) z;
2977 spa_t *spa = arg;
2978 if ((spa->spa_to_condense.ds != NULL) &&
2979 (spa->spa_to_condense.syncing == B_FALSE) &&
2980 (spa->spa_to_condense.cancelled == B_FALSE)) {
2981 return (B_TRUE);
2982 }
2983 return (B_FALSE);
2984 }
2985
2986 static void
2987 spa_start_livelist_condensing_thread(spa_t *spa)
2988 {
2989 spa->spa_to_condense.ds = NULL;
2990 spa->spa_to_condense.first = NULL;
2991 spa->spa_to_condense.next = NULL;
2992 spa->spa_to_condense.syncing = B_FALSE;
2993 spa->spa_to_condense.cancelled = B_FALSE;
2994
2995 ASSERT3P(spa->spa_livelist_condense_zthr, ==, NULL);
2996 spa->spa_livelist_condense_zthr =
2997 zthr_create("z_livelist_condense",
2998 spa_livelist_condense_cb_check,
2999 spa_livelist_condense_cb, spa, minclsyspri);
3000 }
3001
3002 static void
3003 spa_spawn_aux_threads(spa_t *spa)
3004 {
3005 ASSERT(spa_writeable(spa));
3006
3007 ASSERT(MUTEX_HELD(&spa_namespace_lock));
3008
3009 spa_start_raidz_expansion_thread(spa);
3010 spa_start_indirect_condensing_thread(spa);
3011 spa_start_livelist_destroy_thread(spa);
3012 spa_start_livelist_condensing_thread(spa);
3013
3014 ASSERT3P(spa->spa_checkpoint_discard_zthr, ==, NULL);
3015 spa->spa_checkpoint_discard_zthr =
3016 zthr_create("z_checkpoint_discard",
3017 spa_checkpoint_discard_thread_check,
3018 spa_checkpoint_discard_thread, spa, minclsyspri);
3019 }
3020
3021 /*
3022 * Fix up config after a partly-completed split. This is done with the
3023 * ZPOOL_CONFIG_SPLIT nvlist. Both the splitting pool and the split-off
3024 * pool have that entry in their config, but only the splitting one contains
3025 * a list of all the guids of the vdevs that are being split off.
3026 *
3027 * This function determines what to do with that list: either rejoin
3028 * all the disks to the pool, or complete the splitting process. To attempt
3029 * the rejoin, each disk that is offlined is marked online again, and
3030 * we do a reopen() call. If the vdev label for every disk that was
3031 * marked online indicates it was successfully split off (VDEV_AUX_SPLIT_POOL)
3032 * then we call vdev_split() on each disk, and complete the split.
3033 *
3034 * Otherwise we leave the config alone, with all the vdevs in place in
3035 * the original pool.
3036 */
3037 static void
3038 spa_try_repair(spa_t *spa, nvlist_t *config)
3039 {
3040 uint_t extracted;
3041 uint64_t *glist;
3042 uint_t i, gcount;
3043 nvlist_t *nvl;
3044 vdev_t **vd;
3045 boolean_t attempt_reopen;
3046
3047 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT, &nvl) != 0)
3048 return;
3049
3050 /* check that the config is complete */
3051 if (nvlist_lookup_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST,
3052 &glist, &gcount) != 0)
3053 return;
3054
3055 vd = kmem_zalloc(gcount * sizeof (vdev_t *), KM_SLEEP);
3056
3057 /* attempt to online all the vdevs & validate */
3058 attempt_reopen = B_TRUE;
3059 for (i = 0; i < gcount; i++) {
3060 if (glist[i] == 0) /* vdev is hole */
3061 continue;
3062
3063 vd[i] = spa_lookup_by_guid(spa, glist[i], B_FALSE);
3064 if (vd[i] == NULL) {
3065 /*
3066 * Don't bother attempting to reopen the disks;
3067 * just do the split.
3068 */
3069 attempt_reopen = B_FALSE;
3070 } else {
3071 /* attempt to re-online it */
3072 vd[i]->vdev_offline = B_FALSE;
3073 }
3074 }
3075
3076 if (attempt_reopen) {
3077 vdev_reopen(spa->spa_root_vdev);
3078
3079 /* check each device to see what state it's in */
3080 for (extracted = 0, i = 0; i < gcount; i++) {
3081 if (vd[i] != NULL &&
3082 vd[i]->vdev_stat.vs_aux != VDEV_AUX_SPLIT_POOL)
3083 break;
3084 ++extracted;
3085 }
3086 }
3087
3088 /*
3089 * If every disk has been moved to the new pool, or if we never
3090 * even attempted to look at them, then we split them off for
3091 * good.
3092 */
3093 if (!attempt_reopen || gcount == extracted) {
3094 for (i = 0; i < gcount; i++)
3095 if (vd[i] != NULL)
3096 vdev_split(vd[i]);
3097 vdev_reopen(spa->spa_root_vdev);
3098 }
3099
3100 kmem_free(vd, gcount * sizeof (vdev_t *));
3101 }
3102
3103 static int
3104 spa_load(spa_t *spa, spa_load_state_t state, spa_import_type_t type)
3105 {
3106 const char *ereport = FM_EREPORT_ZFS_POOL;
3107 int error;
3108
3109 spa->spa_load_state = state;
3110 (void) spa_import_progress_set_state(spa_guid(spa),
3111 spa_load_state(spa));
3112
3113 gethrestime(&spa->spa_loaded_ts);
3114 error = spa_load_impl(spa, type, &ereport);
3115
3116 /*
3117 * Don't count references from objsets that are already closed
3118 * and are making their way through the eviction process.
3119 */
3120 spa_evicting_os_wait(spa);
3121 spa->spa_minref = zfs_refcount_count(&spa->spa_refcount);
3122 if (error) {
3123 if (error != EEXIST) {
3124 spa->spa_loaded_ts.tv_sec = 0;
3125 spa->spa_loaded_ts.tv_nsec = 0;
3126 }
3127 if (error != EBADF) {
3128 (void) zfs_ereport_post(ereport, spa,
3129 NULL, NULL, NULL, 0);
3130 }
3131 }
3132 spa->spa_load_state = error ? SPA_LOAD_ERROR : SPA_LOAD_NONE;
3133 spa->spa_ena = 0;
3134
3135 (void) spa_import_progress_set_state(spa_guid(spa),
3136 spa_load_state(spa));
3137
3138 return (error);
3139 }
3140
3141 #ifdef ZFS_DEBUG
3142 /*
3143 * Count the number of per-vdev ZAPs associated with all of the vdevs in the
3144 * vdev tree rooted in the given vd, and ensure that each ZAP is present in the
3145 * spa's per-vdev ZAP list.
3146 */
3147 static uint64_t
3148 vdev_count_verify_zaps(vdev_t *vd)
3149 {
3150 spa_t *spa = vd->vdev_spa;
3151 uint64_t total = 0;
3152
3153 if (spa_feature_is_active(vd->vdev_spa, SPA_FEATURE_AVZ_V2) &&
3154 vd->vdev_root_zap != 0) {
3155 total++;
3156 ASSERT0(zap_lookup_int(spa->spa_meta_objset,
3157 spa->spa_all_vdev_zaps, vd->vdev_root_zap));
3158 }
3159 if (vd->vdev_top_zap != 0) {
3160 total++;
3161 ASSERT0(zap_lookup_int(spa->spa_meta_objset,
3162 spa->spa_all_vdev_zaps, vd->vdev_top_zap));
3163 }
3164 if (vd->vdev_leaf_zap != 0) {
3165 total++;
3166 ASSERT0(zap_lookup_int(spa->spa_meta_objset,
3167 spa->spa_all_vdev_zaps, vd->vdev_leaf_zap));
3168 }
3169
3170 for (uint64_t i = 0; i < vd->vdev_children; i++) {
3171 total += vdev_count_verify_zaps(vd->vdev_child[i]);
3172 }
3173
3174 return (total);
3175 }
3176 #else
3177 #define vdev_count_verify_zaps(vd) ((void) sizeof (vd), 0)
3178 #endif
3179
3180 /*
3181 * Determine whether the activity check is required.
3182 */
3183 static boolean_t
3184 spa_activity_check_required(spa_t *spa, uberblock_t *ub, nvlist_t *label,
3185 nvlist_t *config)
3186 {
3187 uint64_t state = 0;
3188 uint64_t hostid = 0;
3189 uint64_t tryconfig_txg = 0;
3190 uint64_t tryconfig_timestamp = 0;
3191 uint16_t tryconfig_mmp_seq = 0;
3192 nvlist_t *nvinfo;
3193
3194 if (nvlist_exists(config, ZPOOL_CONFIG_LOAD_INFO)) {
3195 nvinfo = fnvlist_lookup_nvlist(config, ZPOOL_CONFIG_LOAD_INFO);
3196 (void) nvlist_lookup_uint64(nvinfo, ZPOOL_CONFIG_MMP_TXG,
3197 &tryconfig_txg);
3198 (void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_TIMESTAMP,
3199 &tryconfig_timestamp);
3200 (void) nvlist_lookup_uint16(nvinfo, ZPOOL_CONFIG_MMP_SEQ,
3201 &tryconfig_mmp_seq);
3202 }
3203
3204 (void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_STATE, &state);
3205
3206 /*
3207 * Disable the MMP activity check - This is used by zdb which
3208 * is intended to be used on potentially active pools.
3209 */
3210 if (spa->spa_import_flags & ZFS_IMPORT_SKIP_MMP)
3211 return (B_FALSE);
3212
3213 /*
3214 * Skip the activity check when the MMP feature is disabled.
3215 */
3216 if (ub->ub_mmp_magic == MMP_MAGIC && ub->ub_mmp_delay == 0)
3217 return (B_FALSE);
3218
3219 /*
3220 * If the tryconfig_ values are nonzero, they are the results of an
3221 * earlier tryimport. If they all match the uberblock we just found,
3222 * then the pool has not changed and we return false so we do not test
3223 * a second time.
3224 */
3225 if (tryconfig_txg && tryconfig_txg == ub->ub_txg &&
3226 tryconfig_timestamp && tryconfig_timestamp == ub->ub_timestamp &&
3227 tryconfig_mmp_seq && tryconfig_mmp_seq ==
3228 (MMP_SEQ_VALID(ub) ? MMP_SEQ(ub) : 0))
3229 return (B_FALSE);
3230
3231 /*
3232 * Allow the activity check to be skipped when importing the pool
3233 * on the same host which last imported it. Since the hostid from
3234 * configuration may be stale use the one read from the label.
3235 */
3236 if (nvlist_exists(label, ZPOOL_CONFIG_HOSTID))
3237 hostid = fnvlist_lookup_uint64(label, ZPOOL_CONFIG_HOSTID);
3238
3239 if (hostid == spa_get_hostid(spa))
3240 return (B_FALSE);
3241
3242 /*
3243 * Skip the activity test when the pool was cleanly exported.
3244 */
3245 if (state != POOL_STATE_ACTIVE)
3246 return (B_FALSE);
3247
3248 return (B_TRUE);
3249 }
3250
3251 /*
3252 * Nanoseconds the activity check must watch for changes on-disk.
3253 */
3254 static uint64_t
3255 spa_activity_check_duration(spa_t *spa, uberblock_t *ub)
3256 {
3257 uint64_t import_intervals = MAX(zfs_multihost_import_intervals, 1);
3258 uint64_t multihost_interval = MSEC2NSEC(
3259 MMP_INTERVAL_OK(zfs_multihost_interval));
3260 uint64_t import_delay = MAX(NANOSEC, import_intervals *
3261 multihost_interval);
3262
3263 /*
3264 * Local tunables determine a minimum duration except for the case
3265 * where we know when the remote host will suspend the pool if MMP
3266 * writes do not land.
3267 *
3268 * See Big Theory comment at the top of mmp.c for the reasoning behind
3269 * these cases and times.
3270 */
3271
3272 ASSERT(MMP_IMPORT_SAFETY_FACTOR >= 100);
3273
3274 if (MMP_INTERVAL_VALID(ub) && MMP_FAIL_INT_VALID(ub) &&
3275 MMP_FAIL_INT(ub) > 0) {
3276
3277 /* MMP on remote host will suspend pool after failed writes */
3278 import_delay = MMP_FAIL_INT(ub) * MSEC2NSEC(MMP_INTERVAL(ub)) *
3279 MMP_IMPORT_SAFETY_FACTOR / 100;
3280
3281 zfs_dbgmsg("fail_intvals>0 import_delay=%llu ub_mmp "
3282 "mmp_fails=%llu ub_mmp mmp_interval=%llu "
3283 "import_intervals=%llu", (u_longlong_t)import_delay,
3284 (u_longlong_t)MMP_FAIL_INT(ub),
3285 (u_longlong_t)MMP_INTERVAL(ub),
3286 (u_longlong_t)import_intervals);
3287
3288 } else if (MMP_INTERVAL_VALID(ub) && MMP_FAIL_INT_VALID(ub) &&
3289 MMP_FAIL_INT(ub) == 0) {
3290
3291 /* MMP on remote host will never suspend pool */
3292 import_delay = MAX(import_delay, (MSEC2NSEC(MMP_INTERVAL(ub)) +
3293 ub->ub_mmp_delay) * import_intervals);
3294
3295 zfs_dbgmsg("fail_intvals=0 import_delay=%llu ub_mmp "
3296 "mmp_interval=%llu ub_mmp_delay=%llu "
3297 "import_intervals=%llu", (u_longlong_t)import_delay,
3298 (u_longlong_t)MMP_INTERVAL(ub),
3299 (u_longlong_t)ub->ub_mmp_delay,
3300 (u_longlong_t)import_intervals);
3301
3302 } else if (MMP_VALID(ub)) {
3303 /*
3304 * zfs-0.7 compatibility case
3305 */
3306
3307 import_delay = MAX(import_delay, (multihost_interval +
3308 ub->ub_mmp_delay) * import_intervals);
3309
3310 zfs_dbgmsg("import_delay=%llu ub_mmp_delay=%llu "
3311 "import_intervals=%llu leaves=%u",
3312 (u_longlong_t)import_delay,
3313 (u_longlong_t)ub->ub_mmp_delay,
3314 (u_longlong_t)import_intervals,
3315 vdev_count_leaves(spa));
3316 } else {
3317 /* Using local tunings is the only reasonable option */
3318 zfs_dbgmsg("pool last imported on non-MMP aware "
3319 "host using import_delay=%llu multihost_interval=%llu "
3320 "import_intervals=%llu", (u_longlong_t)import_delay,
3321 (u_longlong_t)multihost_interval,
3322 (u_longlong_t)import_intervals);
3323 }
3324
3325 return (import_delay);
3326 }
3327
3328 /*
3329 * Perform the import activity check. If the user canceled the import or
3330 * we detected activity then fail.
3331 */
3332 static int
3333 spa_activity_check(spa_t *spa, uberblock_t *ub, nvlist_t *config)
3334 {
3335 uint64_t txg = ub->ub_txg;
3336 uint64_t timestamp = ub->ub_timestamp;
3337 uint64_t mmp_config = ub->ub_mmp_config;
3338 uint16_t mmp_seq = MMP_SEQ_VALID(ub) ? MMP_SEQ(ub) : 0;
3339 uint64_t import_delay;
3340 hrtime_t import_expire;
3341 nvlist_t *mmp_label = NULL;
3342 vdev_t *rvd = spa->spa_root_vdev;
3343 kcondvar_t cv;
3344 kmutex_t mtx;
3345 int error = 0;
3346
3347 cv_init(&cv, NULL, CV_DEFAULT, NULL);
3348 mutex_init(&mtx, NULL, MUTEX_DEFAULT, NULL);
3349 mutex_enter(&mtx);
3350
3351 /*
3352 * If ZPOOL_CONFIG_MMP_TXG is present an activity check was performed
3353 * during the earlier tryimport. If the txg recorded there is 0 then
3354 * the pool is known to be active on another host.
3355 *
3356 * Otherwise, the pool might be in use on another host. Check for
3357 * changes in the uberblocks on disk if necessary.
3358 */
3359 if (nvlist_exists(config, ZPOOL_CONFIG_LOAD_INFO)) {
3360 nvlist_t *nvinfo = fnvlist_lookup_nvlist(config,
3361 ZPOOL_CONFIG_LOAD_INFO);
3362
3363 if (nvlist_exists(nvinfo, ZPOOL_CONFIG_MMP_TXG) &&
3364 fnvlist_lookup_uint64(nvinfo, ZPOOL_CONFIG_MMP_TXG) == 0) {
3365 vdev_uberblock_load(rvd, ub, &mmp_label);
3366 error = SET_ERROR(EREMOTEIO);
3367 goto out;
3368 }
3369 }
3370
3371 import_delay = spa_activity_check_duration(spa, ub);
3372
3373 /* Add a small random factor in case of simultaneous imports (0-25%) */
3374 import_delay += import_delay * random_in_range(250) / 1000;
3375
3376 import_expire = gethrtime() + import_delay;
3377
3378 while (gethrtime() < import_expire) {
3379 (void) spa_import_progress_set_mmp_check(spa_guid(spa),
3380 NSEC2SEC(import_expire - gethrtime()));
3381
3382 vdev_uberblock_load(rvd, ub, &mmp_label);
3383
3384 if (txg != ub->ub_txg || timestamp != ub->ub_timestamp ||
3385 mmp_seq != (MMP_SEQ_VALID(ub) ? MMP_SEQ(ub) : 0)) {
3386 zfs_dbgmsg("multihost activity detected "
3387 "txg %llu ub_txg %llu "
3388 "timestamp %llu ub_timestamp %llu "
3389 "mmp_config %#llx ub_mmp_config %#llx",
3390 (u_longlong_t)txg, (u_longlong_t)ub->ub_txg,
3391 (u_longlong_t)timestamp,
3392 (u_longlong_t)ub->ub_timestamp,
3393 (u_longlong_t)mmp_config,
3394 (u_longlong_t)ub->ub_mmp_config);
3395
3396 error = SET_ERROR(EREMOTEIO);
3397 break;
3398 }
3399
3400 if (mmp_label) {
3401 nvlist_free(mmp_label);
3402 mmp_label = NULL;
3403 }
3404
3405 error = cv_timedwait_sig(&cv, &mtx, ddi_get_lbolt() + hz);
3406 if (error != -1) {
3407 error = SET_ERROR(EINTR);
3408 break;
3409 }
3410 error = 0;
3411 }
3412
3413 out:
3414 mutex_exit(&mtx);
3415 mutex_destroy(&mtx);
3416 cv_destroy(&cv);
3417
3418 /*
3419 * If the pool is determined to be active store the status in the
3420 * spa->spa_load_info nvlist. If the remote hostname or hostid are
3421 * available from configuration read from disk store them as well.
3422 * This allows 'zpool import' to generate a more useful message.
3423 *
3424 * ZPOOL_CONFIG_MMP_STATE - observed pool status (mandatory)
3425 * ZPOOL_CONFIG_MMP_HOSTNAME - hostname from the active pool
3426 * ZPOOL_CONFIG_MMP_HOSTID - hostid from the active pool
3427 */
3428 if (error == EREMOTEIO) {
3429 const char *hostname = "<unknown>";
3430 uint64_t hostid = 0;
3431
3432 if (mmp_label) {
3433 if (nvlist_exists(mmp_label, ZPOOL_CONFIG_HOSTNAME)) {
3434 hostname = fnvlist_lookup_string(mmp_label,
3435 ZPOOL_CONFIG_HOSTNAME);
3436 fnvlist_add_string(spa->spa_load_info,
3437 ZPOOL_CONFIG_MMP_HOSTNAME, hostname);
3438 }
3439
3440 if (nvlist_exists(mmp_label, ZPOOL_CONFIG_HOSTID)) {
3441 hostid = fnvlist_lookup_uint64(mmp_label,
3442 ZPOOL_CONFIG_HOSTID);
3443 fnvlist_add_uint64(spa->spa_load_info,
3444 ZPOOL_CONFIG_MMP_HOSTID, hostid);
3445 }
3446 }
3447
3448 fnvlist_add_uint64(spa->spa_load_info,
3449 ZPOOL_CONFIG_MMP_STATE, MMP_STATE_ACTIVE);
3450 fnvlist_add_uint64(spa->spa_load_info,
3451 ZPOOL_CONFIG_MMP_TXG, 0);
3452
3453 error = spa_vdev_err(rvd, VDEV_AUX_ACTIVE, EREMOTEIO);
3454 }
3455
3456 if (mmp_label)
3457 nvlist_free(mmp_label);
3458
3459 return (error);
3460 }
3461
3462 static int
3463 spa_verify_host(spa_t *spa, nvlist_t *mos_config)
3464 {
3465 uint64_t hostid;
3466 const char *hostname;
3467 uint64_t myhostid = 0;
3468
3469 if (!spa_is_root(spa) && nvlist_lookup_uint64(mos_config,
3470 ZPOOL_CONFIG_HOSTID, &hostid) == 0) {
3471 hostname = fnvlist_lookup_string(mos_config,
3472 ZPOOL_CONFIG_HOSTNAME);
3473
3474 myhostid = zone_get_hostid(NULL);
3475
3476 if (hostid != 0 && myhostid != 0 && hostid != myhostid) {
3477 cmn_err(CE_WARN, "pool '%s' could not be "
3478 "loaded as it was last accessed by "
3479 "another system (host: %s hostid: 0x%llx). "
3480 "See: https://openzfs.github.io/openzfs-docs/msg/"
3481 "ZFS-8000-EY",
3482 spa_name(spa), hostname, (u_longlong_t)hostid);
3483 spa_load_failed(spa, "hostid verification failed: pool "
3484 "last accessed by host: %s (hostid: 0x%llx)",
3485 hostname, (u_longlong_t)hostid);
3486 return (SET_ERROR(EBADF));
3487 }
3488 }
3489
3490 return (0);
3491 }
3492
3493 static int
3494 spa_ld_parse_config(spa_t *spa, spa_import_type_t type)
3495 {
3496 int error = 0;
3497 nvlist_t *nvtree, *nvl, *config = spa->spa_config;
3498 int parse;
3499 vdev_t *rvd;
3500 uint64_t pool_guid;
3501 const char *comment;
3502 const char *compatibility;
3503
3504 /*
3505 * Versioning wasn't explicitly added to the label until later, so if
3506 * it's not present treat it as the initial version.
3507 */
3508 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VERSION,
3509 &spa->spa_ubsync.ub_version) != 0)
3510 spa->spa_ubsync.ub_version = SPA_VERSION_INITIAL;
3511
3512 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, &pool_guid)) {
3513 spa_load_failed(spa, "invalid config provided: '%s' missing",
3514 ZPOOL_CONFIG_POOL_GUID);
3515 return (SET_ERROR(EINVAL));
3516 }
3517
3518 /*
3519 * If we are doing an import, ensure that the pool is not already
3520 * imported by checking if its pool guid already exists in the
3521 * spa namespace.
3522 *
3523 * The only case that we allow an already imported pool to be
3524 * imported again, is when the pool is checkpointed and we want to
3525 * look at its checkpointed state from userland tools like zdb.
3526 */
3527 #ifdef _KERNEL
3528 if ((spa->spa_load_state == SPA_LOAD_IMPORT ||
3529 spa->spa_load_state == SPA_LOAD_TRYIMPORT) &&
3530 spa_guid_exists(pool_guid, 0)) {
3531 #else
3532 if ((spa->spa_load_state == SPA_LOAD_IMPORT ||
3533 spa->spa_load_state == SPA_LOAD_TRYIMPORT) &&
3534 spa_guid_exists(pool_guid, 0) &&
3535 !spa_importing_readonly_checkpoint(spa)) {
3536 #endif
3537 spa_load_failed(spa, "a pool with guid %llu is already open",
3538 (u_longlong_t)pool_guid);
3539 return (SET_ERROR(EEXIST));
3540 }
3541
3542 spa->spa_config_guid = pool_guid;
3543
3544 nvlist_free(spa->spa_load_info);
3545 spa->spa_load_info = fnvlist_alloc();
3546
3547 ASSERT(spa->spa_comment == NULL);
3548 if (nvlist_lookup_string(config, ZPOOL_CONFIG_COMMENT, &comment) == 0)
3549 spa->spa_comment = spa_strdup(comment);
3550
3551 ASSERT(spa->spa_compatibility == NULL);
3552 if (nvlist_lookup_string(config, ZPOOL_CONFIG_COMPATIBILITY,
3553 &compatibility) == 0)
3554 spa->spa_compatibility = spa_strdup(compatibility);
3555
3556 (void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG,
3557 &spa->spa_config_txg);
3558
3559 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT, &nvl) == 0)
3560 spa->spa_config_splitting = fnvlist_dup(nvl);
3561
3562 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvtree)) {
3563 spa_load_failed(spa, "invalid config provided: '%s' missing",
3564 ZPOOL_CONFIG_VDEV_TREE);
3565 return (SET_ERROR(EINVAL));
3566 }
3567
3568 /*
3569 * Create "The Godfather" zio to hold all async IOs
3570 */
3571 spa->spa_async_zio_root = kmem_alloc(max_ncpus * sizeof (void *),
3572 KM_SLEEP);
3573 for (int i = 0; i < max_ncpus; i++) {
3574 spa->spa_async_zio_root[i] = zio_root(spa, NULL, NULL,
3575 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
3576 ZIO_FLAG_GODFATHER);
3577 }
3578
3579 /*
3580 * Parse the configuration into a vdev tree. We explicitly set the
3581 * value that will be returned by spa_version() since parsing the
3582 * configuration requires knowing the version number.
3583 */
3584 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3585 parse = (type == SPA_IMPORT_EXISTING ?
3586 VDEV_ALLOC_LOAD : VDEV_ALLOC_SPLIT);
3587 error = spa_config_parse(spa, &rvd, nvtree, NULL, 0, parse);
3588 spa_config_exit(spa, SCL_ALL, FTAG);
3589
3590 if (error != 0) {
3591 spa_load_failed(spa, "unable to parse config [error=%d]",
3592 error);
3593 return (error);
3594 }
3595
3596 ASSERT(spa->spa_root_vdev == rvd);
3597 ASSERT3U(spa->spa_min_ashift, >=, SPA_MINBLOCKSHIFT);
3598 ASSERT3U(spa->spa_max_ashift, <=, SPA_MAXBLOCKSHIFT);
3599
3600 if (type != SPA_IMPORT_ASSEMBLE) {
3601 ASSERT(spa_guid(spa) == pool_guid);
3602 }
3603
3604 return (0);
3605 }
3606
3607 /*
3608 * Recursively open all vdevs in the vdev tree. This function is called twice:
3609 * first with the untrusted config, then with the trusted config.
3610 */
3611 static int
3612 spa_ld_open_vdevs(spa_t *spa)
3613 {
3614 int error = 0;
3615
3616 /*
3617 * spa_missing_tvds_allowed defines how many top-level vdevs can be
3618 * missing/unopenable for the root vdev to be still considered openable.
3619 */
3620 if (spa->spa_trust_config) {
3621 spa->spa_missing_tvds_allowed = zfs_max_missing_tvds;
3622 } else if (spa->spa_config_source == SPA_CONFIG_SRC_CACHEFILE) {
3623 spa->spa_missing_tvds_allowed = zfs_max_missing_tvds_cachefile;
3624 } else if (spa->spa_config_source == SPA_CONFIG_SRC_SCAN) {
3625 spa->spa_missing_tvds_allowed = zfs_max_missing_tvds_scan;
3626 } else {
3627 spa->spa_missing_tvds_allowed = 0;
3628 }
3629
3630 spa->spa_missing_tvds_allowed =
3631 MAX(zfs_max_missing_tvds, spa->spa_missing_tvds_allowed);
3632
3633 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3634 error = vdev_open(spa->spa_root_vdev);
3635 spa_config_exit(spa, SCL_ALL, FTAG);
3636
3637 if (spa->spa_missing_tvds != 0) {
3638 spa_load_note(spa, "vdev tree has %lld missing top-level "
3639 "vdevs.", (u_longlong_t)spa->spa_missing_tvds);
3640 if (spa->spa_trust_config && (spa->spa_mode & SPA_MODE_WRITE)) {
3641 /*
3642 * Although theoretically we could allow users to open
3643 * incomplete pools in RW mode, we'd need to add a lot
3644 * of extra logic (e.g. adjust pool space to account
3645 * for missing vdevs).
3646 * This limitation also prevents users from accidentally
3647 * opening the pool in RW mode during data recovery and
3648 * damaging it further.
3649 */
3650 spa_load_note(spa, "pools with missing top-level "
3651 "vdevs can only be opened in read-only mode.");
3652 error = SET_ERROR(ENXIO);
3653 } else {
3654 spa_load_note(spa, "current settings allow for maximum "
3655 "%lld missing top-level vdevs at this stage.",
3656 (u_longlong_t)spa->spa_missing_tvds_allowed);
3657 }
3658 }
3659 if (error != 0) {
3660 spa_load_failed(spa, "unable to open vdev tree [error=%d]",
3661 error);
3662 }
3663 if (spa->spa_missing_tvds != 0 || error != 0)
3664 vdev_dbgmsg_print_tree(spa->spa_root_vdev, 2);
3665
3666 return (error);
3667 }
3668
3669 /*
3670 * We need to validate the vdev labels against the configuration that
3671 * we have in hand. This function is called twice: first with an untrusted
3672 * config, then with a trusted config. The validation is more strict when the
3673 * config is trusted.
3674 */
3675 static int
3676 spa_ld_validate_vdevs(spa_t *spa)
3677 {
3678 int error = 0;
3679 vdev_t *rvd = spa->spa_root_vdev;
3680
3681 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3682 error = vdev_validate(rvd);
3683 spa_config_exit(spa, SCL_ALL, FTAG);
3684
3685 if (error != 0) {
3686 spa_load_failed(spa, "vdev_validate failed [error=%d]", error);
3687 return (error);
3688 }
3689
3690 if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN) {
3691 spa_load_failed(spa, "cannot open vdev tree after invalidating "
3692 "some vdevs");
3693 vdev_dbgmsg_print_tree(rvd, 2);
3694 return (SET_ERROR(ENXIO));
3695 }
3696
3697 return (0);
3698 }
3699
3700 static void
3701 spa_ld_select_uberblock_done(spa_t *spa, uberblock_t *ub)
3702 {
3703 spa->spa_state = POOL_STATE_ACTIVE;
3704 spa->spa_ubsync = spa->spa_uberblock;
3705 spa->spa_verify_min_txg = spa->spa_extreme_rewind ?
3706 TXG_INITIAL - 1 : spa_last_synced_txg(spa) - TXG_DEFER_SIZE - 1;
3707 spa->spa_first_txg = spa->spa_last_ubsync_txg ?
3708 spa->spa_last_ubsync_txg : spa_last_synced_txg(spa) + 1;
3709 spa->spa_claim_max_txg = spa->spa_first_txg;
3710 spa->spa_prev_software_version = ub->ub_software_version;
3711 }
3712
3713 static int
3714 spa_ld_select_uberblock(spa_t *spa, spa_import_type_t type)
3715 {
3716 vdev_t *rvd = spa->spa_root_vdev;
3717 nvlist_t *label;
3718 uberblock_t *ub = &spa->spa_uberblock;
3719 boolean_t activity_check = B_FALSE;
3720
3721 /*
3722 * If we are opening the checkpointed state of the pool by
3723 * rewinding to it, at this point we will have written the
3724 * checkpointed uberblock to the vdev labels, so searching
3725 * the labels will find the right uberblock. However, if
3726 * we are opening the checkpointed state read-only, we have
3727 * not modified the labels. Therefore, we must ignore the
3728 * labels and continue using the spa_uberblock that was set
3729 * by spa_ld_checkpoint_rewind.
3730 *
3731 * Note that it would be fine to ignore the labels when
3732 * rewinding (opening writeable) as well. However, if we
3733 * crash just after writing the labels, we will end up
3734 * searching the labels. Doing so in the common case means
3735 * that this code path gets exercised normally, rather than
3736 * just in the edge case.
3737 */
3738 if (ub->ub_checkpoint_txg != 0 &&
3739 spa_importing_readonly_checkpoint(spa)) {
3740 spa_ld_select_uberblock_done(spa, ub);
3741 return (0);
3742 }
3743
3744 /*
3745 * Find the best uberblock.
3746 */
3747 vdev_uberblock_load(rvd, ub, &label);
3748
3749 /*
3750 * If we weren't able to find a single valid uberblock, return failure.
3751 */
3752 if (ub->ub_txg == 0) {
3753 nvlist_free(label);
3754 spa_load_failed(spa, "no valid uberblock found");
3755 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, ENXIO));
3756 }
3757
3758 if (spa->spa_load_max_txg != UINT64_MAX) {
3759 (void) spa_import_progress_set_max_txg(spa_guid(spa),
3760 (u_longlong_t)spa->spa_load_max_txg);
3761 }
3762 spa_load_note(spa, "using uberblock with txg=%llu",
3763 (u_longlong_t)ub->ub_txg);
3764 if (ub->ub_raidz_reflow_info != 0) {
3765 spa_load_note(spa, "uberblock raidz_reflow_info: "
3766 "state=%u offset=%llu",
3767 (int)RRSS_GET_STATE(ub),
3768 (u_longlong_t)RRSS_GET_OFFSET(ub));
3769 }
3770
3771
3772 /*
3773 * For pools which have the multihost property on determine if the
3774 * pool is truly inactive and can be safely imported. Prevent
3775 * hosts which don't have a hostid set from importing the pool.
3776 */
3777 activity_check = spa_activity_check_required(spa, ub, label,
3778 spa->spa_config);
3779 if (activity_check) {
3780 if (ub->ub_mmp_magic == MMP_MAGIC && ub->ub_mmp_delay &&
3781 spa_get_hostid(spa) == 0) {
3782 nvlist_free(label);
3783 fnvlist_add_uint64(spa->spa_load_info,
3784 ZPOOL_CONFIG_MMP_STATE, MMP_STATE_NO_HOSTID);
3785 return (spa_vdev_err(rvd, VDEV_AUX_ACTIVE, EREMOTEIO));
3786 }
3787
3788 int error = spa_activity_check(spa, ub, spa->spa_config);
3789 if (error) {
3790 nvlist_free(label);
3791 return (error);
3792 }
3793
3794 fnvlist_add_uint64(spa->spa_load_info,
3795 ZPOOL_CONFIG_MMP_STATE, MMP_STATE_INACTIVE);
3796 fnvlist_add_uint64(spa->spa_load_info,
3797 ZPOOL_CONFIG_MMP_TXG, ub->ub_txg);
3798 fnvlist_add_uint16(spa->spa_load_info,
3799 ZPOOL_CONFIG_MMP_SEQ,
3800 (MMP_SEQ_VALID(ub) ? MMP_SEQ(ub) : 0));
3801 }
3802
3803 /*
3804 * If the pool has an unsupported version we can't open it.
3805 */
3806 if (!SPA_VERSION_IS_SUPPORTED(ub->ub_version)) {
3807 nvlist_free(label);
3808 spa_load_failed(spa, "version %llu is not supported",
3809 (u_longlong_t)ub->ub_version);
3810 return (spa_vdev_err(rvd, VDEV_AUX_VERSION_NEWER, ENOTSUP));
3811 }
3812
3813 if (ub->ub_version >= SPA_VERSION_FEATURES) {
3814 nvlist_t *features;
3815
3816 /*
3817 * If we weren't able to find what's necessary for reading the
3818 * MOS in the label, return failure.
3819 */
3820 if (label == NULL) {
3821 spa_load_failed(spa, "label config unavailable");
3822 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
3823 ENXIO));
3824 }
3825
3826 if (nvlist_lookup_nvlist(label, ZPOOL_CONFIG_FEATURES_FOR_READ,
3827 &features) != 0) {
3828 nvlist_free(label);
3829 spa_load_failed(spa, "invalid label: '%s' missing",
3830 ZPOOL_CONFIG_FEATURES_FOR_READ);
3831 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
3832 ENXIO));
3833 }
3834
3835 /*
3836 * Update our in-core representation with the definitive values
3837 * from the label.
3838 */
3839 nvlist_free(spa->spa_label_features);
3840 spa->spa_label_features = fnvlist_dup(features);
3841 }
3842
3843 nvlist_free(label);
3844
3845 /*
3846 * Look through entries in the label nvlist's features_for_read. If
3847 * there is a feature listed there which we don't understand then we
3848 * cannot open a pool.
3849 */
3850 if (ub->ub_version >= SPA_VERSION_FEATURES) {
3851 nvlist_t *unsup_feat;
3852
3853 unsup_feat = fnvlist_alloc();
3854
3855 for (nvpair_t *nvp = nvlist_next_nvpair(spa->spa_label_features,
3856 NULL); nvp != NULL;
3857 nvp = nvlist_next_nvpair(spa->spa_label_features, nvp)) {
3858 if (!zfeature_is_supported(nvpair_name(nvp))) {
3859 fnvlist_add_string(unsup_feat,
3860 nvpair_name(nvp), "");
3861 }
3862 }
3863
3864 if (!nvlist_empty(unsup_feat)) {
3865 fnvlist_add_nvlist(spa->spa_load_info,
3866 ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat);
3867 nvlist_free(unsup_feat);
3868 spa_load_failed(spa, "some features are unsupported");
3869 return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT,
3870 ENOTSUP));
3871 }
3872
3873 nvlist_free(unsup_feat);
3874 }
3875
3876 if (type != SPA_IMPORT_ASSEMBLE && spa->spa_config_splitting) {
3877 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3878 spa_try_repair(spa, spa->spa_config);
3879 spa_config_exit(spa, SCL_ALL, FTAG);
3880 nvlist_free(spa->spa_config_splitting);
3881 spa->spa_config_splitting = NULL;
3882 }
3883
3884 /*
3885 * Initialize internal SPA structures.
3886 */
3887 spa_ld_select_uberblock_done(spa, ub);
3888
3889 return (0);
3890 }
3891
3892 static int
3893 spa_ld_open_rootbp(spa_t *spa)
3894 {
3895 int error = 0;
3896 vdev_t *rvd = spa->spa_root_vdev;
3897
3898 error = dsl_pool_init(spa, spa->spa_first_txg, &spa->spa_dsl_pool);
3899 if (error != 0) {
3900 spa_load_failed(spa, "unable to open rootbp in dsl_pool_init "
3901 "[error=%d]", error);
3902 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3903 }
3904 spa->spa_meta_objset = spa->spa_dsl_pool->dp_meta_objset;
3905
3906 return (0);
3907 }
3908
3909 static int
3910 spa_ld_trusted_config(spa_t *spa, spa_import_type_t type,
3911 boolean_t reloading)
3912 {
3913 vdev_t *mrvd, *rvd = spa->spa_root_vdev;
3914 nvlist_t *nv, *mos_config, *policy;
3915 int error = 0, copy_error;
3916 uint64_t healthy_tvds, healthy_tvds_mos;
3917 uint64_t mos_config_txg;
3918
3919 if (spa_dir_prop(spa, DMU_POOL_CONFIG, &spa->spa_config_object, B_TRUE)
3920 != 0)
3921 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3922
3923 /*
3924 * If we're assembling a pool from a split, the config provided is
3925 * already trusted so there is nothing to do.
3926 */
3927 if (type == SPA_IMPORT_ASSEMBLE)
3928 return (0);
3929
3930 healthy_tvds = spa_healthy_core_tvds(spa);
3931
3932 if (load_nvlist(spa, spa->spa_config_object, &mos_config)
3933 != 0) {
3934 spa_load_failed(spa, "unable to retrieve MOS config");
3935 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3936 }
3937
3938 /*
3939 * If we are doing an open, pool owner wasn't verified yet, thus do
3940 * the verification here.
3941 */
3942 if (spa->spa_load_state == SPA_LOAD_OPEN) {
3943 error = spa_verify_host(spa, mos_config);
3944 if (error != 0) {
3945 nvlist_free(mos_config);
3946 return (error);
3947 }
3948 }
3949
3950 nv = fnvlist_lookup_nvlist(mos_config, ZPOOL_CONFIG_VDEV_TREE);
3951
3952 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3953
3954 /*
3955 * Build a new vdev tree from the trusted config
3956 */
3957 error = spa_config_parse(spa, &mrvd, nv, NULL, 0, VDEV_ALLOC_LOAD);
3958 if (error != 0) {
3959 nvlist_free(mos_config);
3960 spa_config_exit(spa, SCL_ALL, FTAG);
3961 spa_load_failed(spa, "spa_config_parse failed [error=%d]",
3962 error);
3963 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, error));
3964 }
3965
3966 /*
3967 * Vdev paths in the MOS may be obsolete. If the untrusted config was
3968 * obtained by scanning /dev/dsk, then it will have the right vdev
3969 * paths. We update the trusted MOS config with this information.
3970 * We first try to copy the paths with vdev_copy_path_strict, which
3971 * succeeds only when both configs have exactly the same vdev tree.
3972 * If that fails, we fall back to a more flexible method that has a
3973 * best effort policy.
3974 */
3975 copy_error = vdev_copy_path_strict(rvd, mrvd);
3976 if (copy_error != 0 || spa_load_print_vdev_tree) {
3977 spa_load_note(spa, "provided vdev tree:");
3978 vdev_dbgmsg_print_tree(rvd, 2);
3979 spa_load_note(spa, "MOS vdev tree:");
3980 vdev_dbgmsg_print_tree(mrvd, 2);
3981 }
3982 if (copy_error != 0) {
3983 spa_load_note(spa, "vdev_copy_path_strict failed, falling "
3984 "back to vdev_copy_path_relaxed");
3985 vdev_copy_path_relaxed(rvd, mrvd);
3986 }
3987
3988 vdev_close(rvd);
3989 vdev_free(rvd);
3990 spa->spa_root_vdev = mrvd;
3991 rvd = mrvd;
3992 spa_config_exit(spa, SCL_ALL, FTAG);
3993
3994 /*
3995 * If 'zpool import' used a cached config, then the on-disk hostid and
3996 * hostname may be different to the cached config in ways that should
3997 * prevent import. Userspace can't discover this without a scan, but
3998 * we know, so we add these values to LOAD_INFO so the caller can know
3999 * the difference.
4000 *
4001 * Note that we have to do this before the config is regenerated,
4002 * because the new config will have the hostid and hostname for this
4003 * host, in readiness for import.
4004 */
4005 if (nvlist_exists(mos_config, ZPOOL_CONFIG_HOSTID))
4006 fnvlist_add_uint64(spa->spa_load_info, ZPOOL_CONFIG_HOSTID,
4007 fnvlist_lookup_uint64(mos_config, ZPOOL_CONFIG_HOSTID));
4008 if (nvlist_exists(mos_config, ZPOOL_CONFIG_HOSTNAME))
4009 fnvlist_add_string(spa->spa_load_info, ZPOOL_CONFIG_HOSTNAME,
4010 fnvlist_lookup_string(mos_config, ZPOOL_CONFIG_HOSTNAME));
4011
4012 /*
4013 * We will use spa_config if we decide to reload the spa or if spa_load
4014 * fails and we rewind. We must thus regenerate the config using the
4015 * MOS information with the updated paths. ZPOOL_LOAD_POLICY is used to
4016 * pass settings on how to load the pool and is not stored in the MOS.
4017 * We copy it over to our new, trusted config.
4018 */
4019 mos_config_txg = fnvlist_lookup_uint64(mos_config,
4020 ZPOOL_CONFIG_POOL_TXG);
4021 nvlist_free(mos_config);
4022 mos_config = spa_config_generate(spa, NULL, mos_config_txg, B_FALSE);
4023 if (nvlist_lookup_nvlist(spa->spa_config, ZPOOL_LOAD_POLICY,
4024 &policy) == 0)
4025 fnvlist_add_nvlist(mos_config, ZPOOL_LOAD_POLICY, policy);
4026 spa_config_set(spa, mos_config);
4027 spa->spa_config_source = SPA_CONFIG_SRC_MOS;
4028
4029 /*
4030 * Now that we got the config from the MOS, we should be more strict
4031 * in checking blkptrs and can make assumptions about the consistency
4032 * of the vdev tree. spa_trust_config must be set to true before opening
4033 * vdevs in order for them to be writeable.
4034 */
4035 spa->spa_trust_config = B_TRUE;
4036
4037 /*
4038 * Open and validate the new vdev tree
4039 */
4040 error = spa_ld_open_vdevs(spa);
4041 if (error != 0)
4042 return (error);
4043
4044 error = spa_ld_validate_vdevs(spa);
4045 if (error != 0)
4046 return (error);
4047
4048 if (copy_error != 0 || spa_load_print_vdev_tree) {
4049 spa_load_note(spa, "final vdev tree:");
4050 vdev_dbgmsg_print_tree(rvd, 2);
4051 }
4052
4053 if (spa->spa_load_state != SPA_LOAD_TRYIMPORT &&
4054 !spa->spa_extreme_rewind && zfs_max_missing_tvds == 0) {
4055 /*
4056 * Sanity check to make sure that we are indeed loading the
4057 * latest uberblock. If we missed SPA_SYNC_MIN_VDEVS tvds
4058 * in the config provided and they happened to be the only ones
4059 * to have the latest uberblock, we could involuntarily perform
4060 * an extreme rewind.
4061 */
4062 healthy_tvds_mos = spa_healthy_core_tvds(spa);
4063 if (healthy_tvds_mos - healthy_tvds >=
4064 SPA_SYNC_MIN_VDEVS) {
4065 spa_load_note(spa, "config provided misses too many "
4066 "top-level vdevs compared to MOS (%lld vs %lld). ",
4067 (u_longlong_t)healthy_tvds,
4068 (u_longlong_t)healthy_tvds_mos);
4069 spa_load_note(spa, "vdev tree:");
4070 vdev_dbgmsg_print_tree(rvd, 2);
4071 if (reloading) {
4072 spa_load_failed(spa, "config was already "
4073 "provided from MOS. Aborting.");
4074 return (spa_vdev_err(rvd,
4075 VDEV_AUX_CORRUPT_DATA, EIO));
4076 }
4077 spa_load_note(spa, "spa must be reloaded using MOS "
4078 "config");
4079 return (SET_ERROR(EAGAIN));
4080 }
4081 }
4082
4083 error = spa_check_for_missing_logs(spa);
4084 if (error != 0)
4085 return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM, ENXIO));
4086
4087 if (rvd->vdev_guid_sum != spa->spa_uberblock.ub_guid_sum) {
4088 spa_load_failed(spa, "uberblock guid sum doesn't match MOS "
4089 "guid sum (%llu != %llu)",
4090 (u_longlong_t)spa->spa_uberblock.ub_guid_sum,
4091 (u_longlong_t)rvd->vdev_guid_sum);
4092 return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM,
4093 ENXIO));
4094 }
4095
4096 return (0);
4097 }
4098
4099 static int
4100 spa_ld_open_indirect_vdev_metadata(spa_t *spa)
4101 {
4102 int error = 0;
4103 vdev_t *rvd = spa->spa_root_vdev;
4104
4105 /*
4106 * Everything that we read before spa_remove_init() must be stored
4107 * on concreted vdevs. Therefore we do this as early as possible.
4108 */
4109 error = spa_remove_init(spa);
4110 if (error != 0) {
4111 spa_load_failed(spa, "spa_remove_init failed [error=%d]",
4112 error);
4113 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4114 }
4115
4116 /*
4117 * Retrieve information needed to condense indirect vdev mappings.
4118 */
4119 error = spa_condense_init(spa);
4120 if (error != 0) {
4121 spa_load_failed(spa, "spa_condense_init failed [error=%d]",
4122 error);
4123 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, error));
4124 }
4125
4126 return (0);
4127 }
4128
4129 static int
4130 spa_ld_check_features(spa_t *spa, boolean_t *missing_feat_writep)
4131 {
4132 int error = 0;
4133 vdev_t *rvd = spa->spa_root_vdev;
4134
4135 if (spa_version(spa) >= SPA_VERSION_FEATURES) {
4136 boolean_t missing_feat_read = B_FALSE;
4137 nvlist_t *unsup_feat, *enabled_feat;
4138
4139 if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_READ,
4140 &spa->spa_feat_for_read_obj, B_TRUE) != 0) {
4141 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4142 }
4143
4144 if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_WRITE,
4145 &spa->spa_feat_for_write_obj, B_TRUE) != 0) {
4146 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4147 }
4148
4149 if (spa_dir_prop(spa, DMU_POOL_FEATURE_DESCRIPTIONS,
4150 &spa->spa_feat_desc_obj, B_TRUE) != 0) {
4151 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4152 }
4153
4154 enabled_feat = fnvlist_alloc();
4155 unsup_feat = fnvlist_alloc();
4156
4157 if (!spa_features_check(spa, B_FALSE,
4158 unsup_feat, enabled_feat))
4159 missing_feat_read = B_TRUE;
4160
4161 if (spa_writeable(spa) ||
4162 spa->spa_load_state == SPA_LOAD_TRYIMPORT) {
4163 if (!spa_features_check(spa, B_TRUE,
4164 unsup_feat, enabled_feat)) {
4165 *missing_feat_writep = B_TRUE;
4166 }
4167 }
4168
4169 fnvlist_add_nvlist(spa->spa_load_info,
4170 ZPOOL_CONFIG_ENABLED_FEAT, enabled_feat);
4171
4172 if (!nvlist_empty(unsup_feat)) {
4173 fnvlist_add_nvlist(spa->spa_load_info,
4174 ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat);
4175 }
4176
4177 fnvlist_free(enabled_feat);
4178 fnvlist_free(unsup_feat);
4179
4180 if (!missing_feat_read) {
4181 fnvlist_add_boolean(spa->spa_load_info,
4182 ZPOOL_CONFIG_CAN_RDONLY);
4183 }
4184
4185 /*
4186 * If the state is SPA_LOAD_TRYIMPORT, our objective is
4187 * twofold: to determine whether the pool is available for
4188 * import in read-write mode and (if it is not) whether the
4189 * pool is available for import in read-only mode. If the pool
4190 * is available for import in read-write mode, it is displayed
4191 * as available in userland; if it is not available for import
4192 * in read-only mode, it is displayed as unavailable in
4193 * userland. If the pool is available for import in read-only
4194 * mode but not read-write mode, it is displayed as unavailable
4195 * in userland with a special note that the pool is actually
4196 * available for open in read-only mode.
4197 *
4198 * As a result, if the state is SPA_LOAD_TRYIMPORT and we are
4199 * missing a feature for write, we must first determine whether
4200 * the pool can be opened read-only before returning to
4201 * userland in order to know whether to display the
4202 * abovementioned note.
4203 */
4204 if (missing_feat_read || (*missing_feat_writep &&
4205 spa_writeable(spa))) {
4206 spa_load_failed(spa, "pool uses unsupported features");
4207 return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT,
4208 ENOTSUP));
4209 }
4210
4211 /*
4212 * Load refcounts for ZFS features from disk into an in-memory
4213 * cache during SPA initialization.
4214 */
4215 for (spa_feature_t i = 0; i < SPA_FEATURES; i++) {
4216 uint64_t refcount;
4217
4218 error = feature_get_refcount_from_disk(spa,
4219 &spa_feature_table[i], &refcount);
4220 if (error == 0) {
4221 spa->spa_feat_refcount_cache[i] = refcount;
4222 } else if (error == ENOTSUP) {
4223 spa->spa_feat_refcount_cache[i] =
4224 SPA_FEATURE_DISABLED;
4225 } else {
4226 spa_load_failed(spa, "error getting refcount "
4227 "for feature %s [error=%d]",
4228 spa_feature_table[i].fi_guid, error);
4229 return (spa_vdev_err(rvd,
4230 VDEV_AUX_CORRUPT_DATA, EIO));
4231 }
4232 }
4233 }
4234
4235 if (spa_feature_is_active(spa, SPA_FEATURE_ENABLED_TXG)) {
4236 if (spa_dir_prop(spa, DMU_POOL_FEATURE_ENABLED_TXG,
4237 &spa->spa_feat_enabled_txg_obj, B_TRUE) != 0)
4238 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4239 }
4240
4241 /*
4242 * Encryption was added before bookmark_v2, even though bookmark_v2
4243 * is now a dependency. If this pool has encryption enabled without
4244 * bookmark_v2, trigger an errata message.
4245 */
4246 if (spa_feature_is_enabled(spa, SPA_FEATURE_ENCRYPTION) &&
4247 !spa_feature_is_enabled(spa, SPA_FEATURE_BOOKMARK_V2)) {
4248 spa->spa_errata = ZPOOL_ERRATA_ZOL_8308_ENCRYPTION;
4249 }
4250
4251 return (0);
4252 }
4253
4254 static int
4255 spa_ld_load_special_directories(spa_t *spa)
4256 {
4257 int error = 0;
4258 vdev_t *rvd = spa->spa_root_vdev;
4259
4260 spa->spa_is_initializing = B_TRUE;
4261 error = dsl_pool_open(spa->spa_dsl_pool);
4262 spa->spa_is_initializing = B_FALSE;
4263 if (error != 0) {
4264 spa_load_failed(spa, "dsl_pool_open failed [error=%d]", error);
4265 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4266 }
4267
4268 return (0);
4269 }
4270
4271 static int
4272 spa_ld_get_props(spa_t *spa)
4273 {
4274 int error = 0;
4275 uint64_t obj;
4276 vdev_t *rvd = spa->spa_root_vdev;
4277
4278 /* Grab the checksum salt from the MOS. */
4279 error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
4280 DMU_POOL_CHECKSUM_SALT, 1,
4281 sizeof (spa->spa_cksum_salt.zcs_bytes),
4282 spa->spa_cksum_salt.zcs_bytes);
4283 if (error == ENOENT) {
4284 /* Generate a new salt for subsequent use */
4285 (void) random_get_pseudo_bytes(spa->spa_cksum_salt.zcs_bytes,
4286 sizeof (spa->spa_cksum_salt.zcs_bytes));
4287 } else if (error != 0) {
4288 spa_load_failed(spa, "unable to retrieve checksum salt from "
4289 "MOS [error=%d]", error);
4290 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4291 }
4292
4293 if (spa_dir_prop(spa, DMU_POOL_SYNC_BPOBJ, &obj, B_TRUE) != 0)
4294 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4295 error = bpobj_open(&spa->spa_deferred_bpobj, spa->spa_meta_objset, obj);
4296 if (error != 0) {
4297 spa_load_failed(spa, "error opening deferred-frees bpobj "
4298 "[error=%d]", error);
4299 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4300 }
4301
4302 /*
4303 * Load the bit that tells us to use the new accounting function
4304 * (raid-z deflation). If we have an older pool, this will not
4305 * be present.
4306 */
4307 error = spa_dir_prop(spa, DMU_POOL_DEFLATE, &spa->spa_deflate, B_FALSE);
4308 if (error != 0 && error != ENOENT)
4309 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4310
4311 error = spa_dir_prop(spa, DMU_POOL_CREATION_VERSION,
4312 &spa->spa_creation_version, B_FALSE);
4313 if (error != 0 && error != ENOENT)
4314 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4315
4316 /*
4317 * Load the persistent error log. If we have an older pool, this will
4318 * not be present.
4319 */
4320 error = spa_dir_prop(spa, DMU_POOL_ERRLOG_LAST, &spa->spa_errlog_last,
4321 B_FALSE);
4322 if (error != 0 && error != ENOENT)
4323 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4324
4325 error = spa_dir_prop(spa, DMU_POOL_ERRLOG_SCRUB,
4326 &spa->spa_errlog_scrub, B_FALSE);
4327 if (error != 0 && error != ENOENT)
4328 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4329
4330 /*
4331 * Load the livelist deletion field. If a livelist is queued for
4332 * deletion, indicate that in the spa
4333 */
4334 error = spa_dir_prop(spa, DMU_POOL_DELETED_CLONES,
4335 &spa->spa_livelists_to_delete, B_FALSE);
4336 if (error != 0 && error != ENOENT)
4337 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4338
4339 /*
4340 * Load the history object. If we have an older pool, this
4341 * will not be present.
4342 */
4343 error = spa_dir_prop(spa, DMU_POOL_HISTORY, &spa->spa_history, B_FALSE);
4344 if (error != 0 && error != ENOENT)
4345 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4346
4347 /*
4348 * Load the per-vdev ZAP map. If we have an older pool, this will not
4349 * be present; in this case, defer its creation to a later time to
4350 * avoid dirtying the MOS this early / out of sync context. See
4351 * spa_sync_config_object.
4352 */
4353
4354 /* The sentinel is only available in the MOS config. */
4355 nvlist_t *mos_config;
4356 if (load_nvlist(spa, spa->spa_config_object, &mos_config) != 0) {
4357 spa_load_failed(spa, "unable to retrieve MOS config");
4358 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4359 }
4360
4361 error = spa_dir_prop(spa, DMU_POOL_VDEV_ZAP_MAP,
4362 &spa->spa_all_vdev_zaps, B_FALSE);
4363
4364 if (error == ENOENT) {
4365 VERIFY(!nvlist_exists(mos_config,
4366 ZPOOL_CONFIG_HAS_PER_VDEV_ZAPS));
4367 spa->spa_avz_action = AVZ_ACTION_INITIALIZE;
4368 ASSERT0(vdev_count_verify_zaps(spa->spa_root_vdev));
4369 } else if (error != 0) {
4370 nvlist_free(mos_config);
4371 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4372 } else if (!nvlist_exists(mos_config, ZPOOL_CONFIG_HAS_PER_VDEV_ZAPS)) {
4373 /*
4374 * An older version of ZFS overwrote the sentinel value, so
4375 * we have orphaned per-vdev ZAPs in the MOS. Defer their
4376 * destruction to later; see spa_sync_config_object.
4377 */
4378 spa->spa_avz_action = AVZ_ACTION_DESTROY;
4379 /*
4380 * We're assuming that no vdevs have had their ZAPs created
4381 * before this. Better be sure of it.
4382 */
4383 ASSERT0(vdev_count_verify_zaps(spa->spa_root_vdev));
4384 }
4385 nvlist_free(mos_config);
4386
4387 spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
4388
4389 error = spa_dir_prop(spa, DMU_POOL_PROPS, &spa->spa_pool_props_object,
4390 B_FALSE);
4391 if (error && error != ENOENT)
4392 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4393
4394 if (error == 0) {
4395 uint64_t autoreplace = 0;
4396
4397 spa_prop_find(spa, ZPOOL_PROP_BOOTFS, &spa->spa_bootfs);
4398 spa_prop_find(spa, ZPOOL_PROP_AUTOREPLACE, &autoreplace);
4399 spa_prop_find(spa, ZPOOL_PROP_DELEGATION, &spa->spa_delegation);
4400 spa_prop_find(spa, ZPOOL_PROP_FAILUREMODE, &spa->spa_failmode);
4401 spa_prop_find(spa, ZPOOL_PROP_AUTOEXPAND, &spa->spa_autoexpand);
4402 spa_prop_find(spa, ZPOOL_PROP_MULTIHOST, &spa->spa_multihost);
4403 spa_prop_find(spa, ZPOOL_PROP_AUTOTRIM, &spa->spa_autotrim);
4404 spa->spa_autoreplace = (autoreplace != 0);
4405 }
4406
4407 /*
4408 * If we are importing a pool with missing top-level vdevs,
4409 * we enforce that the pool doesn't panic or get suspended on
4410 * error since the likelihood of missing data is extremely high.
4411 */
4412 if (spa->spa_missing_tvds > 0 &&
4413 spa->spa_failmode != ZIO_FAILURE_MODE_CONTINUE &&
4414 spa->spa_load_state != SPA_LOAD_TRYIMPORT) {
4415 spa_load_note(spa, "forcing failmode to 'continue' "
4416 "as some top level vdevs are missing");
4417 spa->spa_failmode = ZIO_FAILURE_MODE_CONTINUE;
4418 }
4419
4420 return (0);
4421 }
4422
4423 static int
4424 spa_ld_open_aux_vdevs(spa_t *spa, spa_import_type_t type)
4425 {
4426 int error = 0;
4427 vdev_t *rvd = spa->spa_root_vdev;
4428
4429 /*
4430 * If we're assembling the pool from the split-off vdevs of
4431 * an existing pool, we don't want to attach the spares & cache
4432 * devices.
4433 */
4434
4435 /*
4436 * Load any hot spares for this pool.
4437 */
4438 error = spa_dir_prop(spa, DMU_POOL_SPARES, &spa->spa_spares.sav_object,
4439 B_FALSE);
4440 if (error != 0 && error != ENOENT)
4441 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4442 if (error == 0 && type != SPA_IMPORT_ASSEMBLE) {
4443 ASSERT(spa_version(spa) >= SPA_VERSION_SPARES);
4444 if (load_nvlist(spa, spa->spa_spares.sav_object,
4445 &spa->spa_spares.sav_config) != 0) {
4446 spa_load_failed(spa, "error loading spares nvlist");
4447 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4448 }
4449
4450 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4451 spa_load_spares(spa);
4452 spa_config_exit(spa, SCL_ALL, FTAG);
4453 } else if (error == 0) {
4454 spa->spa_spares.sav_sync = B_TRUE;
4455 }
4456
4457 /*
4458 * Load any level 2 ARC devices for this pool.
4459 */
4460 error = spa_dir_prop(spa, DMU_POOL_L2CACHE,
4461 &spa->spa_l2cache.sav_object, B_FALSE);
4462 if (error != 0 && error != ENOENT)
4463 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4464 if (error == 0 && type != SPA_IMPORT_ASSEMBLE) {
4465 ASSERT(spa_version(spa) >= SPA_VERSION_L2CACHE);
4466 if (load_nvlist(spa, spa->spa_l2cache.sav_object,
4467 &spa->spa_l2cache.sav_config) != 0) {
4468 spa_load_failed(spa, "error loading l2cache nvlist");
4469 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4470 }
4471
4472 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4473 spa_load_l2cache(spa);
4474 spa_config_exit(spa, SCL_ALL, FTAG);
4475 } else if (error == 0) {
4476 spa->spa_l2cache.sav_sync = B_TRUE;
4477 }
4478
4479 return (0);
4480 }
4481
4482 static int
4483 spa_ld_load_vdev_metadata(spa_t *spa)
4484 {
4485 int error = 0;
4486 vdev_t *rvd = spa->spa_root_vdev;
4487
4488 /*
4489 * If the 'multihost' property is set, then never allow a pool to
4490 * be imported when the system hostid is zero. The exception to
4491 * this rule is zdb which is always allowed to access pools.
4492 */
4493 if (spa_multihost(spa) && spa_get_hostid(spa) == 0 &&
4494 (spa->spa_import_flags & ZFS_IMPORT_SKIP_MMP) == 0) {
4495 fnvlist_add_uint64(spa->spa_load_info,
4496 ZPOOL_CONFIG_MMP_STATE, MMP_STATE_NO_HOSTID);
4497 return (spa_vdev_err(rvd, VDEV_AUX_ACTIVE, EREMOTEIO));
4498 }
4499
4500 /*
4501 * If the 'autoreplace' property is set, then post a resource notifying
4502 * the ZFS DE that it should not issue any faults for unopenable
4503 * devices. We also iterate over the vdevs, and post a sysevent for any
4504 * unopenable vdevs so that the normal autoreplace handler can take
4505 * over.
4506 */
4507 if (spa->spa_autoreplace && spa->spa_load_state != SPA_LOAD_TRYIMPORT) {
4508 spa_check_removed(spa->spa_root_vdev);
4509 /*
4510 * For the import case, this is done in spa_import(), because
4511 * at this point we're using the spare definitions from
4512 * the MOS config, not necessarily from the userland config.
4513 */
4514 if (spa->spa_load_state != SPA_LOAD_IMPORT) {
4515 spa_aux_check_removed(&spa->spa_spares);
4516 spa_aux_check_removed(&spa->spa_l2cache);
4517 }
4518 }
4519
4520 /*
4521 * Load the vdev metadata such as metaslabs, DTLs, spacemap object, etc.
4522 */
4523 error = vdev_load(rvd);
4524 if (error != 0) {
4525 spa_load_failed(spa, "vdev_load failed [error=%d]", error);
4526 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, error));
4527 }
4528
4529 error = spa_ld_log_spacemaps(spa);
4530 if (error != 0) {
4531 spa_load_failed(spa, "spa_ld_log_spacemaps failed [error=%d]",
4532 error);
4533 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, error));
4534 }
4535
4536 /*
4537 * Propagate the leaf DTLs we just loaded all the way up the vdev tree.
4538 */
4539 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4540 vdev_dtl_reassess(rvd, 0, 0, B_FALSE, B_FALSE);
4541 spa_config_exit(spa, SCL_ALL, FTAG);
4542
4543 return (0);
4544 }
4545
4546 static int
4547 spa_ld_load_dedup_tables(spa_t *spa)
4548 {
4549 int error = 0;
4550 vdev_t *rvd = spa->spa_root_vdev;
4551
4552 error = ddt_load(spa);
4553 if (error != 0) {
4554 spa_load_failed(spa, "ddt_load failed [error=%d]", error);
4555 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4556 }
4557
4558 return (0);
4559 }
4560
4561 static int
4562 spa_ld_load_brt(spa_t *spa)
4563 {
4564 int error = 0;
4565 vdev_t *rvd = spa->spa_root_vdev;
4566
4567 error = brt_load(spa);
4568 if (error != 0) {
4569 spa_load_failed(spa, "brt_load failed [error=%d]", error);
4570 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4571 }
4572
4573 return (0);
4574 }
4575
4576 static int
4577 spa_ld_verify_logs(spa_t *spa, spa_import_type_t type, const char **ereport)
4578 {
4579 vdev_t *rvd = spa->spa_root_vdev;
4580
4581 if (type != SPA_IMPORT_ASSEMBLE && spa_writeable(spa)) {
4582 boolean_t missing = spa_check_logs(spa);
4583 if (missing) {
4584 if (spa->spa_missing_tvds != 0) {
4585 spa_load_note(spa, "spa_check_logs failed "
4586 "so dropping the logs");
4587 } else {
4588 *ereport = FM_EREPORT_ZFS_LOG_REPLAY;
4589 spa_load_failed(spa, "spa_check_logs failed");
4590 return (spa_vdev_err(rvd, VDEV_AUX_BAD_LOG,
4591 ENXIO));
4592 }
4593 }
4594 }
4595
4596 return (0);
4597 }
4598
4599 static int
4600 spa_ld_verify_pool_data(spa_t *spa)
4601 {
4602 int error = 0;
4603 vdev_t *rvd = spa->spa_root_vdev;
4604
4605 /*
4606 * We've successfully opened the pool, verify that we're ready
4607 * to start pushing transactions.
4608 */
4609 if (spa->spa_load_state != SPA_LOAD_TRYIMPORT) {
4610 error = spa_load_verify(spa);
4611 if (error != 0) {
4612 spa_load_failed(spa, "spa_load_verify failed "
4613 "[error=%d]", error);
4614 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
4615 error));
4616 }
4617 }
4618
4619 return (0);
4620 }
4621
4622 static void
4623 spa_ld_claim_log_blocks(spa_t *spa)
4624 {
4625 dmu_tx_t *tx;
4626 dsl_pool_t *dp = spa_get_dsl(spa);
4627
4628 /*
4629 * Claim log blocks that haven't been committed yet.
4630 * This must all happen in a single txg.
4631 * Note: spa_claim_max_txg is updated by spa_claim_notify(),
4632 * invoked from zil_claim_log_block()'s i/o done callback.
4633 * Price of rollback is that we abandon the log.
4634 */
4635 spa->spa_claiming = B_TRUE;
4636
4637 tx = dmu_tx_create_assigned(dp, spa_first_txg(spa));
4638 (void) dmu_objset_find_dp(dp, dp->dp_root_dir_obj,
4639 zil_claim, tx, DS_FIND_CHILDREN);
4640 dmu_tx_commit(tx);
4641
4642 spa->spa_claiming = B_FALSE;
4643
4644 spa_set_log_state(spa, SPA_LOG_GOOD);
4645 }
4646
4647 static void
4648 spa_ld_check_for_config_update(spa_t *spa, uint64_t config_cache_txg,
4649 boolean_t update_config_cache)
4650 {
4651 vdev_t *rvd = spa->spa_root_vdev;
4652 int need_update = B_FALSE;
4653
4654 /*
4655 * If the config cache is stale, or we have uninitialized
4656 * metaslabs (see spa_vdev_add()), then update the config.
4657 *
4658 * If this is a verbatim import, trust the current
4659 * in-core spa_config and update the disk labels.
4660 */
4661 if (update_config_cache || config_cache_txg != spa->spa_config_txg ||
4662 spa->spa_load_state == SPA_LOAD_IMPORT ||
4663 spa->spa_load_state == SPA_LOAD_RECOVER ||
4664 (spa->spa_import_flags & ZFS_IMPORT_VERBATIM))
4665 need_update = B_TRUE;
4666
4667 for (int c = 0; c < rvd->vdev_children; c++)
4668 if (rvd->vdev_child[c]->vdev_ms_array == 0)
4669 need_update = B_TRUE;
4670
4671 /*
4672 * Update the config cache asynchronously in case we're the
4673 * root pool, in which case the config cache isn't writable yet.
4674 */
4675 if (need_update)
4676 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
4677 }
4678
4679 static void
4680 spa_ld_prepare_for_reload(spa_t *spa)
4681 {
4682 spa_mode_t mode = spa->spa_mode;
4683 int async_suspended = spa->spa_async_suspended;
4684
4685 spa_unload(spa);
4686 spa_deactivate(spa);
4687 spa_activate(spa, mode);
4688
4689 /*
4690 * We save the value of spa_async_suspended as it gets reset to 0 by
4691 * spa_unload(). We want to restore it back to the original value before
4692 * returning as we might be calling spa_async_resume() later.
4693 */
4694 spa->spa_async_suspended = async_suspended;
4695 }
4696
4697 static int
4698 spa_ld_read_checkpoint_txg(spa_t *spa)
4699 {
4700 uberblock_t checkpoint;
4701 int error = 0;
4702
4703 ASSERT0(spa->spa_checkpoint_txg);
4704 ASSERT(MUTEX_HELD(&spa_namespace_lock));
4705
4706 error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
4707 DMU_POOL_ZPOOL_CHECKPOINT, sizeof (uint64_t),
4708 sizeof (uberblock_t) / sizeof (uint64_t), &checkpoint);
4709
4710 if (error == ENOENT)
4711 return (0);
4712
4713 if (error != 0)
4714 return (error);
4715
4716 ASSERT3U(checkpoint.ub_txg, !=, 0);
4717 ASSERT3U(checkpoint.ub_checkpoint_txg, !=, 0);
4718 ASSERT3U(checkpoint.ub_timestamp, !=, 0);
4719 spa->spa_checkpoint_txg = checkpoint.ub_txg;
4720 spa->spa_checkpoint_info.sci_timestamp = checkpoint.ub_timestamp;
4721
4722 return (0);
4723 }
4724
4725 static int
4726 spa_ld_mos_init(spa_t *spa, spa_import_type_t type)
4727 {
4728 int error = 0;
4729
4730 ASSERT(MUTEX_HELD(&spa_namespace_lock));
4731 ASSERT(spa->spa_config_source != SPA_CONFIG_SRC_NONE);
4732
4733 /*
4734 * Never trust the config that is provided unless we are assembling
4735 * a pool following a split.
4736 * This means don't trust blkptrs and the vdev tree in general. This
4737 * also effectively puts the spa in read-only mode since
4738 * spa_writeable() checks for spa_trust_config to be true.
4739 * We will later load a trusted config from the MOS.
4740 */
4741 if (type != SPA_IMPORT_ASSEMBLE)
4742 spa->spa_trust_config = B_FALSE;
4743
4744 /*
4745 * Parse the config provided to create a vdev tree.
4746 */
4747 error = spa_ld_parse_config(spa, type);
4748 if (error != 0)
4749 return (error);
4750
4751 spa_import_progress_add(spa);
4752
4753 /*
4754 * Now that we have the vdev tree, try to open each vdev. This involves
4755 * opening the underlying physical device, retrieving its geometry and
4756 * probing the vdev with a dummy I/O. The state of each vdev will be set
4757 * based on the success of those operations. After this we'll be ready
4758 * to read from the vdevs.
4759 */
4760 error = spa_ld_open_vdevs(spa);
4761 if (error != 0)
4762 return (error);
4763
4764 /*
4765 * Read the label of each vdev and make sure that the GUIDs stored
4766 * there match the GUIDs in the config provided.
4767 * If we're assembling a new pool that's been split off from an
4768 * existing pool, the labels haven't yet been updated so we skip
4769 * validation for now.
4770 */
4771 if (type != SPA_IMPORT_ASSEMBLE) {
4772 error = spa_ld_validate_vdevs(spa);
4773 if (error != 0)
4774 return (error);
4775 }
4776
4777 /*
4778 * Read all vdev labels to find the best uberblock (i.e. latest,
4779 * unless spa_load_max_txg is set) and store it in spa_uberblock. We
4780 * get the list of features required to read blkptrs in the MOS from
4781 * the vdev label with the best uberblock and verify that our version
4782 * of zfs supports them all.
4783 */
4784 error = spa_ld_select_uberblock(spa, type);
4785 if (error != 0)
4786 return (error);
4787
4788 /*
4789 * Pass that uberblock to the dsl_pool layer which will open the root
4790 * blkptr. This blkptr points to the latest version of the MOS and will
4791 * allow us to read its contents.
4792 */
4793 error = spa_ld_open_rootbp(spa);
4794 if (error != 0)
4795 return (error);
4796
4797 return (0);
4798 }
4799
4800 static int
4801 spa_ld_checkpoint_rewind(spa_t *spa)
4802 {
4803 uberblock_t checkpoint;
4804 int error = 0;
4805
4806 ASSERT(MUTEX_HELD(&spa_namespace_lock));
4807 ASSERT(spa->spa_import_flags & ZFS_IMPORT_CHECKPOINT);
4808
4809 error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
4810 DMU_POOL_ZPOOL_CHECKPOINT, sizeof (uint64_t),
4811 sizeof (uberblock_t) / sizeof (uint64_t), &checkpoint);
4812
4813 if (error != 0) {
4814 spa_load_failed(spa, "unable to retrieve checkpointed "
4815 "uberblock from the MOS config [error=%d]", error);
4816
4817 if (error == ENOENT)
4818 error = ZFS_ERR_NO_CHECKPOINT;
4819
4820 return (error);
4821 }
4822
4823 ASSERT3U(checkpoint.ub_txg, <, spa->spa_uberblock.ub_txg);
4824 ASSERT3U(checkpoint.ub_txg, ==, checkpoint.ub_checkpoint_txg);
4825
4826 /*
4827 * We need to update the txg and timestamp of the checkpointed
4828 * uberblock to be higher than the latest one. This ensures that
4829 * the checkpointed uberblock is selected if we were to close and
4830 * reopen the pool right after we've written it in the vdev labels.
4831 * (also see block comment in vdev_uberblock_compare)
4832 */
4833 checkpoint.ub_txg = spa->spa_uberblock.ub_txg + 1;
4834 checkpoint.ub_timestamp = gethrestime_sec();
4835
4836 /*
4837 * Set current uberblock to be the checkpointed uberblock.
4838 */
4839 spa->spa_uberblock = checkpoint;
4840
4841 /*
4842 * If we are doing a normal rewind, then the pool is open for
4843 * writing and we sync the "updated" checkpointed uberblock to
4844 * disk. Once this is done, we've basically rewound the whole
4845 * pool and there is no way back.
4846 *
4847 * There are cases when we don't want to attempt and sync the
4848 * checkpointed uberblock to disk because we are opening a
4849 * pool as read-only. Specifically, verifying the checkpointed
4850 * state with zdb, and importing the checkpointed state to get
4851 * a "preview" of its content.
4852 */
4853 if (spa_writeable(spa)) {
4854 vdev_t *rvd = spa->spa_root_vdev;
4855
4856 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4857 vdev_t *svd[SPA_SYNC_MIN_VDEVS] = { NULL };
4858 int svdcount = 0;
4859 int children = rvd->vdev_children;
4860 int c0 = random_in_range(children);
4861
4862 for (int c = 0; c < children; c++) {
4863 vdev_t *vd = rvd->vdev_child[(c0 + c) % children];
4864
4865 /* Stop when revisiting the first vdev */
4866 if (c > 0 && svd[0] == vd)
4867 break;
4868
4869 if (vd->vdev_ms_array == 0 || vd->vdev_islog ||
4870 !vdev_is_concrete(vd))
4871 continue;
4872
4873 svd[svdcount++] = vd;
4874 if (svdcount == SPA_SYNC_MIN_VDEVS)
4875 break;
4876 }
4877 error = vdev_config_sync(svd, svdcount, spa->spa_first_txg);
4878 if (error == 0)
4879 spa->spa_last_synced_guid = rvd->vdev_guid;
4880 spa_config_exit(spa, SCL_ALL, FTAG);
4881
4882 if (error != 0) {
4883 spa_load_failed(spa, "failed to write checkpointed "
4884 "uberblock to the vdev labels [error=%d]", error);
4885 return (error);
4886 }
4887 }
4888
4889 return (0);
4890 }
4891
4892 static int
4893 spa_ld_mos_with_trusted_config(spa_t *spa, spa_import_type_t type,
4894 boolean_t *update_config_cache)
4895 {
4896 int error;
4897
4898 /*
4899 * Parse the config for pool, open and validate vdevs,
4900 * select an uberblock, and use that uberblock to open
4901 * the MOS.
4902 */
4903 error = spa_ld_mos_init(spa, type);
4904 if (error != 0)
4905 return (error);
4906
4907 /*
4908 * Retrieve the trusted config stored in the MOS and use it to create
4909 * a new, exact version of the vdev tree, then reopen all vdevs.
4910 */
4911 error = spa_ld_trusted_config(spa, type, B_FALSE);
4912 if (error == EAGAIN) {
4913 if (update_config_cache != NULL)
4914 *update_config_cache = B_TRUE;
4915
4916 /*
4917 * Redo the loading process with the trusted config if it is
4918 * too different from the untrusted config.
4919 */
4920 spa_ld_prepare_for_reload(spa);
4921 spa_load_note(spa, "RELOADING");
4922 error = spa_ld_mos_init(spa, type);
4923 if (error != 0)
4924 return (error);
4925
4926 error = spa_ld_trusted_config(spa, type, B_TRUE);
4927 if (error != 0)
4928 return (error);
4929
4930 } else if (error != 0) {
4931 return (error);
4932 }
4933
4934 return (0);
4935 }
4936
4937 /*
4938 * Load an existing storage pool, using the config provided. This config
4939 * describes which vdevs are part of the pool and is later validated against
4940 * partial configs present in each vdev's label and an entire copy of the
4941 * config stored in the MOS.
4942 */
4943 static int
4944 spa_load_impl(spa_t *spa, spa_import_type_t type, const char **ereport)
4945 {
4946 int error = 0;
4947 boolean_t missing_feat_write = B_FALSE;
4948 boolean_t checkpoint_rewind =
4949 (spa->spa_import_flags & ZFS_IMPORT_CHECKPOINT);
4950 boolean_t update_config_cache = B_FALSE;
4951
4952 ASSERT(MUTEX_HELD(&spa_namespace_lock));
4953 ASSERT(spa->spa_config_source != SPA_CONFIG_SRC_NONE);
4954
4955 spa_load_note(spa, "LOADING");
4956
4957 error = spa_ld_mos_with_trusted_config(spa, type, &update_config_cache);
4958 if (error != 0)
4959 return (error);
4960
4961 /*
4962 * If we are rewinding to the checkpoint then we need to repeat
4963 * everything we've done so far in this function but this time
4964 * selecting the checkpointed uberblock and using that to open
4965 * the MOS.
4966 */
4967 if (checkpoint_rewind) {
4968 /*
4969 * If we are rewinding to the checkpoint update config cache
4970 * anyway.
4971 */
4972 update_config_cache = B_TRUE;
4973
4974 /*
4975 * Extract the checkpointed uberblock from the current MOS
4976 * and use this as the pool's uberblock from now on. If the
4977 * pool is imported as writeable we also write the checkpoint
4978 * uberblock to the labels, making the rewind permanent.
4979 */
4980 error = spa_ld_checkpoint_rewind(spa);
4981 if (error != 0)
4982 return (error);
4983
4984 /*
4985 * Redo the loading process again with the
4986 * checkpointed uberblock.
4987 */
4988 spa_ld_prepare_for_reload(spa);
4989 spa_load_note(spa, "LOADING checkpointed uberblock");
4990 error = spa_ld_mos_with_trusted_config(spa, type, NULL);
4991 if (error != 0)
4992 return (error);
4993 }
4994
4995 /*
4996 * Retrieve the checkpoint txg if the pool has a checkpoint.
4997 */
4998 error = spa_ld_read_checkpoint_txg(spa);
4999 if (error != 0)
5000 return (error);
5001
5002 /*
5003 * Retrieve the mapping of indirect vdevs. Those vdevs were removed
5004 * from the pool and their contents were re-mapped to other vdevs. Note
5005 * that everything that we read before this step must have been
5006 * rewritten on concrete vdevs after the last device removal was
5007 * initiated. Otherwise we could be reading from indirect vdevs before
5008 * we have loaded their mappings.
5009 */
5010 error = spa_ld_open_indirect_vdev_metadata(spa);
5011 if (error != 0)
5012 return (error);
5013
5014 /*
5015 * Retrieve the full list of active features from the MOS and check if
5016 * they are all supported.
5017 */
5018 error = spa_ld_check_features(spa, &missing_feat_write);
5019 if (error != 0)
5020 return (error);
5021
5022 /*
5023 * Load several special directories from the MOS needed by the dsl_pool
5024 * layer.
5025 */
5026 error = spa_ld_load_special_directories(spa);
5027 if (error != 0)
5028 return (error);
5029
5030 /*
5031 * Retrieve pool properties from the MOS.
5032 */
5033 error = spa_ld_get_props(spa);
5034 if (error != 0)
5035 return (error);
5036
5037 /*
5038 * Retrieve the list of auxiliary devices - cache devices and spares -
5039 * and open them.
5040 */
5041 error = spa_ld_open_aux_vdevs(spa, type);
5042 if (error != 0)
5043 return (error);
5044
5045 /*
5046 * Load the metadata for all vdevs. Also check if unopenable devices
5047 * should be autoreplaced.
5048 */
5049 error = spa_ld_load_vdev_metadata(spa);
5050 if (error != 0)
5051 return (error);
5052
5053 error = spa_ld_load_dedup_tables(spa);
5054 if (error != 0)
5055 return (error);
5056
5057 error = spa_ld_load_brt(spa);
5058 if (error != 0)
5059 return (error);
5060
5061 /*
5062 * Verify the logs now to make sure we don't have any unexpected errors
5063 * when we claim log blocks later.
5064 */
5065 error = spa_ld_verify_logs(spa, type, ereport);
5066 if (error != 0)
5067 return (error);
5068
5069 if (missing_feat_write) {
5070 ASSERT(spa->spa_load_state == SPA_LOAD_TRYIMPORT);
5071
5072 /*
5073 * At this point, we know that we can open the pool in
5074 * read-only mode but not read-write mode. We now have enough
5075 * information and can return to userland.
5076 */
5077 return (spa_vdev_err(spa->spa_root_vdev, VDEV_AUX_UNSUP_FEAT,
5078 ENOTSUP));
5079 }
5080
5081 /*
5082 * Traverse the last txgs to make sure the pool was left off in a safe
5083 * state. When performing an extreme rewind, we verify the whole pool,
5084 * which can take a very long time.
5085 */
5086 error = spa_ld_verify_pool_data(spa);
5087 if (error != 0)
5088 return (error);
5089
5090 /*
5091 * Calculate the deflated space for the pool. This must be done before
5092 * we write anything to the pool because we'd need to update the space
5093 * accounting using the deflated sizes.
5094 */
5095 spa_update_dspace(spa);
5096
5097 /*
5098 * We have now retrieved all the information we needed to open the
5099 * pool. If we are importing the pool in read-write mode, a few
5100 * additional steps must be performed to finish the import.
5101 */
5102 if (spa_writeable(spa) && (spa->spa_load_state == SPA_LOAD_RECOVER ||
5103 spa->spa_load_max_txg == UINT64_MAX)) {
5104 uint64_t config_cache_txg = spa->spa_config_txg;
5105
5106 ASSERT(spa->spa_load_state != SPA_LOAD_TRYIMPORT);
5107
5108 /*
5109 * Before we do any zio_write's, complete the raidz expansion
5110 * scratch space copying, if necessary.
5111 */
5112 if (RRSS_GET_STATE(&spa->spa_uberblock) == RRSS_SCRATCH_VALID)
5113 vdev_raidz_reflow_copy_scratch(spa);
5114
5115 /*
5116 * In case of a checkpoint rewind, log the original txg
5117 * of the checkpointed uberblock.
5118 */
5119 if (checkpoint_rewind) {
5120 spa_history_log_internal(spa, "checkpoint rewind",
5121 NULL, "rewound state to txg=%llu",
5122 (u_longlong_t)spa->spa_uberblock.ub_checkpoint_txg);
5123 }
5124
5125 /*
5126 * Traverse the ZIL and claim all blocks.
5127 */
5128 spa_ld_claim_log_blocks(spa);
5129
5130 /*
5131 * Kick-off the syncing thread.
5132 */
5133 spa->spa_sync_on = B_TRUE;
5134 txg_sync_start(spa->spa_dsl_pool);
5135 mmp_thread_start(spa);
5136
5137 /*
5138 * Wait for all claims to sync. We sync up to the highest
5139 * claimed log block birth time so that claimed log blocks
5140 * don't appear to be from the future. spa_claim_max_txg
5141 * will have been set for us by ZIL traversal operations
5142 * performed above.
5143 */
5144 txg_wait_synced(spa->spa_dsl_pool, spa->spa_claim_max_txg);
5145
5146 /*
5147 * Check if we need to request an update of the config. On the
5148 * next sync, we would update the config stored in vdev labels
5149 * and the cachefile (by default /etc/zfs/zpool.cache).
5150 */
5151 spa_ld_check_for_config_update(spa, config_cache_txg,
5152 update_config_cache);
5153
5154 /*
5155 * Check if a rebuild was in progress and if so resume it.
5156 * Then check all DTLs to see if anything needs resilvering.
5157 * The resilver will be deferred if a rebuild was started.
5158 */
5159 if (vdev_rebuild_active(spa->spa_root_vdev)) {
5160 vdev_rebuild_restart(spa);
5161 } else if (!dsl_scan_resilvering(spa->spa_dsl_pool) &&
5162 vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL)) {
5163 spa_async_request(spa, SPA_ASYNC_RESILVER);
5164 }
5165
5166 /*
5167 * Log the fact that we booted up (so that we can detect if
5168 * we rebooted in the middle of an operation).
5169 */
5170 spa_history_log_version(spa, "open", NULL);
5171
5172 spa_restart_removal(spa);
5173 spa_spawn_aux_threads(spa);
5174
5175 /*
5176 * Delete any inconsistent datasets.
5177 *
5178 * Note:
5179 * Since we may be issuing deletes for clones here,
5180 * we make sure to do so after we've spawned all the
5181 * auxiliary threads above (from which the livelist
5182 * deletion zthr is part of).
5183 */
5184 (void) dmu_objset_find(spa_name(spa),
5185 dsl_destroy_inconsistent, NULL, DS_FIND_CHILDREN);
5186
5187 /*
5188 * Clean up any stale temporary dataset userrefs.
5189 */
5190 dsl_pool_clean_tmp_userrefs(spa->spa_dsl_pool);
5191
5192 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
5193 vdev_initialize_restart(spa->spa_root_vdev);
5194 vdev_trim_restart(spa->spa_root_vdev);
5195 vdev_autotrim_restart(spa);
5196 spa_config_exit(spa, SCL_CONFIG, FTAG);
5197 }
5198
5199 spa_import_progress_remove(spa_guid(spa));
5200 spa_async_request(spa, SPA_ASYNC_L2CACHE_REBUILD);
5201
5202 spa_load_note(spa, "LOADED");
5203
5204 return (0);
5205 }
5206
5207 static int
5208 spa_load_retry(spa_t *spa, spa_load_state_t state)
5209 {
5210 spa_mode_t mode = spa->spa_mode;
5211
5212 spa_unload(spa);
5213 spa_deactivate(spa);
5214
5215 spa->spa_load_max_txg = spa->spa_uberblock.ub_txg - 1;
5216
5217 spa_activate(spa, mode);
5218 spa_async_suspend(spa);
5219
5220 spa_load_note(spa, "spa_load_retry: rewind, max txg: %llu",
5221 (u_longlong_t)spa->spa_load_max_txg);
5222
5223 return (spa_load(spa, state, SPA_IMPORT_EXISTING));
5224 }
5225
5226 /*
5227 * If spa_load() fails this function will try loading prior txg's. If
5228 * 'state' is SPA_LOAD_RECOVER and one of these loads succeeds the pool
5229 * will be rewound to that txg. If 'state' is not SPA_LOAD_RECOVER this
5230 * function will not rewind the pool and will return the same error as
5231 * spa_load().
5232 */
5233 static int
5234 spa_load_best(spa_t *spa, spa_load_state_t state, uint64_t max_request,
5235 int rewind_flags)
5236 {
5237 nvlist_t *loadinfo = NULL;
5238 nvlist_t *config = NULL;
5239 int load_error, rewind_error;
5240 uint64_t safe_rewind_txg;
5241 uint64_t min_txg;
5242
5243 if (spa->spa_load_txg && state == SPA_LOAD_RECOVER) {
5244 spa->spa_load_max_txg = spa->spa_load_txg;
5245 spa_set_log_state(spa, SPA_LOG_CLEAR);
5246 } else {
5247 spa->spa_load_max_txg = max_request;
5248 if (max_request != UINT64_MAX)
5249 spa->spa_extreme_rewind = B_TRUE;
5250 }
5251
5252 load_error = rewind_error = spa_load(spa, state, SPA_IMPORT_EXISTING);
5253 if (load_error == 0)
5254 return (0);
5255 if (load_error == ZFS_ERR_NO_CHECKPOINT) {
5256 /*
5257 * When attempting checkpoint-rewind on a pool with no
5258 * checkpoint, we should not attempt to load uberblocks
5259 * from previous txgs when spa_load fails.
5260 */
5261 ASSERT(spa->spa_import_flags & ZFS_IMPORT_CHECKPOINT);
5262 spa_import_progress_remove(spa_guid(spa));
5263 return (load_error);
5264 }
5265
5266 if (spa->spa_root_vdev != NULL)
5267 config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
5268
5269 spa->spa_last_ubsync_txg = spa->spa_uberblock.ub_txg;
5270 spa->spa_last_ubsync_txg_ts = spa->spa_uberblock.ub_timestamp;
5271
5272 if (rewind_flags & ZPOOL_NEVER_REWIND) {
5273 nvlist_free(config);
5274 spa_import_progress_remove(spa_guid(spa));
5275 return (load_error);
5276 }
5277
5278 if (state == SPA_LOAD_RECOVER) {
5279 /* Price of rolling back is discarding txgs, including log */
5280 spa_set_log_state(spa, SPA_LOG_CLEAR);
5281 } else {
5282 /*
5283 * If we aren't rolling back save the load info from our first
5284 * import attempt so that we can restore it after attempting
5285 * to rewind.
5286 */
5287 loadinfo = spa->spa_load_info;
5288 spa->spa_load_info = fnvlist_alloc();
5289 }
5290
5291 spa->spa_load_max_txg = spa->spa_last_ubsync_txg;
5292 safe_rewind_txg = spa->spa_last_ubsync_txg - TXG_DEFER_SIZE;
5293 min_txg = (rewind_flags & ZPOOL_EXTREME_REWIND) ?
5294 TXG_INITIAL : safe_rewind_txg;
5295
5296 /*
5297 * Continue as long as we're finding errors, we're still within
5298 * the acceptable rewind range, and we're still finding uberblocks
5299 */
5300 while (rewind_error && spa->spa_uberblock.ub_txg >= min_txg &&
5301 spa->spa_uberblock.ub_txg <= spa->spa_load_max_txg) {
5302 if (spa->spa_load_max_txg < safe_rewind_txg)
5303 spa->spa_extreme_rewind = B_TRUE;
5304 rewind_error = spa_load_retry(spa, state);
5305 }
5306
5307 spa->spa_extreme_rewind = B_FALSE;
5308 spa->spa_load_max_txg = UINT64_MAX;
5309
5310 if (config && (rewind_error || state != SPA_LOAD_RECOVER))
5311 spa_config_set(spa, config);
5312 else
5313 nvlist_free(config);
5314
5315 if (state == SPA_LOAD_RECOVER) {
5316 ASSERT3P(loadinfo, ==, NULL);
5317 spa_import_progress_remove(spa_guid(spa));
5318 return (rewind_error);
5319 } else {
5320 /* Store the rewind info as part of the initial load info */
5321 fnvlist_add_nvlist(loadinfo, ZPOOL_CONFIG_REWIND_INFO,
5322 spa->spa_load_info);
5323
5324 /* Restore the initial load info */
5325 fnvlist_free(spa->spa_load_info);
5326 spa->spa_load_info = loadinfo;
5327
5328 spa_import_progress_remove(spa_guid(spa));
5329 return (load_error);
5330 }
5331 }
5332
5333 /*
5334 * Pool Open/Import
5335 *
5336 * The import case is identical to an open except that the configuration is sent
5337 * down from userland, instead of grabbed from the configuration cache. For the
5338 * case of an open, the pool configuration will exist in the
5339 * POOL_STATE_UNINITIALIZED state.
5340 *
5341 * The stats information (gen/count/ustats) is used to gather vdev statistics at
5342 * the same time open the pool, without having to keep around the spa_t in some
5343 * ambiguous state.
5344 */
5345 static int
5346 spa_open_common(const char *pool, spa_t **spapp, const void *tag,
5347 nvlist_t *nvpolicy, nvlist_t **config)
5348 {
5349 spa_t *spa;
5350 spa_load_state_t state = SPA_LOAD_OPEN;
5351 int error;
5352 int locked = B_FALSE;
5353 int firstopen = B_FALSE;
5354
5355 *spapp = NULL;
5356
5357 /*
5358 * As disgusting as this is, we need to support recursive calls to this
5359 * function because dsl_dir_open() is called during spa_load(), and ends
5360 * up calling spa_open() again. The real fix is to figure out how to
5361 * avoid dsl_dir_open() calling this in the first place.
5362 */
5363 if (MUTEX_NOT_HELD(&spa_namespace_lock)) {
5364 mutex_enter(&spa_namespace_lock);
5365 locked = B_TRUE;
5366 }
5367
5368 if ((spa = spa_lookup(pool)) == NULL) {
5369 if (locked)
5370 mutex_exit(&spa_namespace_lock);
5371 return (SET_ERROR(ENOENT));
5372 }
5373
5374 if (spa->spa_state == POOL_STATE_UNINITIALIZED) {
5375 zpool_load_policy_t policy;
5376
5377 firstopen = B_TRUE;
5378
5379 zpool_get_load_policy(nvpolicy ? nvpolicy : spa->spa_config,
5380 &policy);
5381 if (policy.zlp_rewind & ZPOOL_DO_REWIND)
5382 state = SPA_LOAD_RECOVER;
5383
5384 spa_activate(spa, spa_mode_global);
5385
5386 if (state != SPA_LOAD_RECOVER)
5387 spa->spa_last_ubsync_txg = spa->spa_load_txg = 0;
5388 spa->spa_config_source = SPA_CONFIG_SRC_CACHEFILE;
5389
5390 zfs_dbgmsg("spa_open_common: opening %s", pool);
5391 error = spa_load_best(spa, state, policy.zlp_txg,
5392 policy.zlp_rewind);
5393
5394 if (error == EBADF) {
5395 /*
5396 * If vdev_validate() returns failure (indicated by
5397 * EBADF), it indicates that one of the vdevs indicates
5398 * that the pool has been exported or destroyed. If
5399 * this is the case, the config cache is out of sync and
5400 * we should remove the pool from the namespace.
5401 */
5402 spa_unload(spa);
5403 spa_deactivate(spa);
5404 spa_write_cachefile(spa, B_TRUE, B_TRUE, B_FALSE);
5405 spa_remove(spa);
5406 if (locked)
5407 mutex_exit(&spa_namespace_lock);
5408 return (SET_ERROR(ENOENT));
5409 }
5410
5411 if (error) {
5412 /*
5413 * We can't open the pool, but we still have useful
5414 * information: the state of each vdev after the
5415 * attempted vdev_open(). Return this to the user.
5416 */
5417 if (config != NULL && spa->spa_config) {
5418 *config = fnvlist_dup(spa->spa_config);
5419 fnvlist_add_nvlist(*config,
5420 ZPOOL_CONFIG_LOAD_INFO,
5421 spa->spa_load_info);
5422 }
5423 spa_unload(spa);
5424 spa_deactivate(spa);
5425 spa->spa_last_open_failed = error;
5426 if (locked)
5427 mutex_exit(&spa_namespace_lock);
5428 *spapp = NULL;
5429 return (error);
5430 }
5431 }
5432
5433 spa_open_ref(spa, tag);
5434
5435 if (config != NULL)
5436 *config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
5437
5438 /*
5439 * If we've recovered the pool, pass back any information we
5440 * gathered while doing the load.
5441 */
5442 if (state == SPA_LOAD_RECOVER && config != NULL) {
5443 fnvlist_add_nvlist(*config, ZPOOL_CONFIG_LOAD_INFO,
5444 spa->spa_load_info);
5445 }
5446
5447 if (locked) {
5448 spa->spa_last_open_failed = 0;
5449 spa->spa_last_ubsync_txg = 0;
5450 spa->spa_load_txg = 0;
5451 mutex_exit(&spa_namespace_lock);
5452 }
5453
5454 if (firstopen)
5455 zvol_create_minors_recursive(spa_name(spa));
5456
5457 *spapp = spa;
5458
5459 return (0);
5460 }
5461
5462 int
5463 spa_open_rewind(const char *name, spa_t **spapp, const void *tag,
5464 nvlist_t *policy, nvlist_t **config)
5465 {
5466 return (spa_open_common(name, spapp, tag, policy, config));
5467 }
5468
5469 int
5470 spa_open(const char *name, spa_t **spapp, const void *tag)
5471 {
5472 return (spa_open_common(name, spapp, tag, NULL, NULL));
5473 }
5474
5475 /*
5476 * Lookup the given spa_t, incrementing the inject count in the process,
5477 * preventing it from being exported or destroyed.
5478 */
5479 spa_t *
5480 spa_inject_addref(char *name)
5481 {
5482 spa_t *spa;
5483
5484 mutex_enter(&spa_namespace_lock);
5485 if ((spa = spa_lookup(name)) == NULL) {
5486 mutex_exit(&spa_namespace_lock);
5487 return (NULL);
5488 }
5489 spa->spa_inject_ref++;
5490 mutex_exit(&spa_namespace_lock);
5491
5492 return (spa);
5493 }
5494
5495 void
5496 spa_inject_delref(spa_t *spa)
5497 {
5498 mutex_enter(&spa_namespace_lock);
5499 spa->spa_inject_ref--;
5500 mutex_exit(&spa_namespace_lock);
5501 }
5502
5503 /*
5504 * Add spares device information to the nvlist.
5505 */
5506 static void
5507 spa_add_spares(spa_t *spa, nvlist_t *config)
5508 {
5509 nvlist_t **spares;
5510 uint_t i, nspares;
5511 nvlist_t *nvroot;
5512 uint64_t guid;
5513 vdev_stat_t *vs;
5514 uint_t vsc;
5515 uint64_t pool;
5516
5517 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
5518
5519 if (spa->spa_spares.sav_count == 0)
5520 return;
5521
5522 nvroot = fnvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE);
5523 VERIFY0(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
5524 ZPOOL_CONFIG_SPARES, &spares, &nspares));
5525 if (nspares != 0) {
5526 fnvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
5527 (const nvlist_t * const *)spares, nspares);
5528 VERIFY0(nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
5529 &spares, &nspares));
5530
5531 /*
5532 * Go through and find any spares which have since been
5533 * repurposed as an active spare. If this is the case, update
5534 * their status appropriately.
5535 */
5536 for (i = 0; i < nspares; i++) {
5537 guid = fnvlist_lookup_uint64(spares[i],
5538 ZPOOL_CONFIG_GUID);
5539 VERIFY0(nvlist_lookup_uint64_array(spares[i],
5540 ZPOOL_CONFIG_VDEV_STATS, (uint64_t **)&vs, &vsc));
5541 if (spa_spare_exists(guid, &pool, NULL) &&
5542 pool != 0ULL) {
5543 vs->vs_state = VDEV_STATE_CANT_OPEN;
5544 vs->vs_aux = VDEV_AUX_SPARED;
5545 } else {
5546 vs->vs_state =
5547 spa->spa_spares.sav_vdevs[i]->vdev_state;
5548 }
5549 }
5550 }
5551 }
5552
5553 /*
5554 * Add l2cache device information to the nvlist, including vdev stats.
5555 */
5556 static void
5557 spa_add_l2cache(spa_t *spa, nvlist_t *config)
5558 {
5559 nvlist_t **l2cache;
5560 uint_t i, j, nl2cache;
5561 nvlist_t *nvroot;
5562 uint64_t guid;
5563 vdev_t *vd;
5564 vdev_stat_t *vs;
5565 uint_t vsc;
5566
5567 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
5568
5569 if (spa->spa_l2cache.sav_count == 0)
5570 return;
5571
5572 nvroot = fnvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE);
5573 VERIFY0(nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config,
5574 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache));
5575 if (nl2cache != 0) {
5576 fnvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
5577 (const nvlist_t * const *)l2cache, nl2cache);
5578 VERIFY0(nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
5579 &l2cache, &nl2cache));
5580
5581 /*
5582 * Update level 2 cache device stats.
5583 */
5584
5585 for (i = 0; i < nl2cache; i++) {
5586 guid = fnvlist_lookup_uint64(l2cache[i],
5587 ZPOOL_CONFIG_GUID);
5588
5589 vd = NULL;
5590 for (j = 0; j < spa->spa_l2cache.sav_count; j++) {
5591 if (guid ==
5592 spa->spa_l2cache.sav_vdevs[j]->vdev_guid) {
5593 vd = spa->spa_l2cache.sav_vdevs[j];
5594 break;
5595 }
5596 }
5597 ASSERT(vd != NULL);
5598
5599 VERIFY0(nvlist_lookup_uint64_array(l2cache[i],
5600 ZPOOL_CONFIG_VDEV_STATS, (uint64_t **)&vs, &vsc));
5601 vdev_get_stats(vd, vs);
5602 vdev_config_generate_stats(vd, l2cache[i]);
5603
5604 }
5605 }
5606 }
5607
5608 static void
5609 spa_feature_stats_from_disk(spa_t *spa, nvlist_t *features)
5610 {
5611 zap_cursor_t zc;
5612 zap_attribute_t za;
5613
5614 if (spa->spa_feat_for_read_obj != 0) {
5615 for (zap_cursor_init(&zc, spa->spa_meta_objset,
5616 spa->spa_feat_for_read_obj);
5617 zap_cursor_retrieve(&zc, &za) == 0;
5618 zap_cursor_advance(&zc)) {
5619 ASSERT(za.za_integer_length == sizeof (uint64_t) &&
5620 za.za_num_integers == 1);
5621 VERIFY0(nvlist_add_uint64(features, za.za_name,
5622 za.za_first_integer));
5623 }
5624 zap_cursor_fini(&zc);
5625 }
5626
5627 if (spa->spa_feat_for_write_obj != 0) {
5628 for (zap_cursor_init(&zc, spa->spa_meta_objset,
5629 spa->spa_feat_for_write_obj);
5630 zap_cursor_retrieve(&zc, &za) == 0;
5631 zap_cursor_advance(&zc)) {
5632 ASSERT(za.za_integer_length == sizeof (uint64_t) &&
5633 za.za_num_integers == 1);
5634 VERIFY0(nvlist_add_uint64(features, za.za_name,
5635 za.za_first_integer));
5636 }
5637 zap_cursor_fini(&zc);
5638 }
5639 }
5640
5641 static void
5642 spa_feature_stats_from_cache(spa_t *spa, nvlist_t *features)
5643 {
5644 int i;
5645
5646 for (i = 0; i < SPA_FEATURES; i++) {
5647 zfeature_info_t feature = spa_feature_table[i];
5648 uint64_t refcount;
5649
5650 if (feature_get_refcount(spa, &feature, &refcount) != 0)
5651 continue;
5652
5653 VERIFY0(nvlist_add_uint64(features, feature.fi_guid, refcount));
5654 }
5655 }
5656
5657 /*
5658 * Store a list of pool features and their reference counts in the
5659 * config.
5660 *
5661 * The first time this is called on a spa, allocate a new nvlist, fetch
5662 * the pool features and reference counts from disk, then save the list
5663 * in the spa. In subsequent calls on the same spa use the saved nvlist
5664 * and refresh its values from the cached reference counts. This
5665 * ensures we don't block here on I/O on a suspended pool so 'zpool
5666 * clear' can resume the pool.
5667 */
5668 static void
5669 spa_add_feature_stats(spa_t *spa, nvlist_t *config)
5670 {
5671 nvlist_t *features;
5672
5673 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
5674
5675 mutex_enter(&spa->spa_feat_stats_lock);
5676 features = spa->spa_feat_stats;
5677
5678 if (features != NULL) {
5679 spa_feature_stats_from_cache(spa, features);
5680 } else {
5681 VERIFY0(nvlist_alloc(&features, NV_UNIQUE_NAME, KM_SLEEP));
5682 spa->spa_feat_stats = features;
5683 spa_feature_stats_from_disk(spa, features);
5684 }
5685
5686 VERIFY0(nvlist_add_nvlist(config, ZPOOL_CONFIG_FEATURE_STATS,
5687 features));
5688
5689 mutex_exit(&spa->spa_feat_stats_lock);
5690 }
5691
5692 int
5693 spa_get_stats(const char *name, nvlist_t **config,
5694 char *altroot, size_t buflen)
5695 {
5696 int error;
5697 spa_t *spa;
5698
5699 *config = NULL;
5700 error = spa_open_common(name, &spa, FTAG, NULL, config);
5701
5702 if (spa != NULL) {
5703 /*
5704 * This still leaves a window of inconsistency where the spares
5705 * or l2cache devices could change and the config would be
5706 * self-inconsistent.
5707 */
5708 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
5709
5710 if (*config != NULL) {
5711 uint64_t loadtimes[2];
5712
5713 loadtimes[0] = spa->spa_loaded_ts.tv_sec;
5714 loadtimes[1] = spa->spa_loaded_ts.tv_nsec;
5715 fnvlist_add_uint64_array(*config,
5716 ZPOOL_CONFIG_LOADED_TIME, loadtimes, 2);
5717
5718 fnvlist_add_uint64(*config,
5719 ZPOOL_CONFIG_ERRCOUNT,
5720 spa_approx_errlog_size(spa));
5721
5722 if (spa_suspended(spa)) {
5723 fnvlist_add_uint64(*config,
5724 ZPOOL_CONFIG_SUSPENDED,
5725 spa->spa_failmode);
5726 fnvlist_add_uint64(*config,
5727 ZPOOL_CONFIG_SUSPENDED_REASON,
5728 spa->spa_suspended);
5729 }
5730
5731 spa_add_spares(spa, *config);
5732 spa_add_l2cache(spa, *config);
5733 spa_add_feature_stats(spa, *config);
5734 }
5735 }
5736
5737 /*
5738 * We want to get the alternate root even for faulted pools, so we cheat
5739 * and call spa_lookup() directly.
5740 */
5741 if (altroot) {
5742 if (spa == NULL) {
5743 mutex_enter(&spa_namespace_lock);
5744 spa = spa_lookup(name);
5745 if (spa)
5746 spa_altroot(spa, altroot, buflen);
5747 else
5748 altroot[0] = '\0';
5749 spa = NULL;
5750 mutex_exit(&spa_namespace_lock);
5751 } else {
5752 spa_altroot(spa, altroot, buflen);
5753 }
5754 }
5755
5756 if (spa != NULL) {
5757 spa_config_exit(spa, SCL_CONFIG, FTAG);
5758 spa_close(spa, FTAG);
5759 }
5760
5761 return (error);
5762 }
5763
5764 /*
5765 * Validate that the auxiliary device array is well formed. We must have an
5766 * array of nvlists, each which describes a valid leaf vdev. If this is an
5767 * import (mode is VDEV_ALLOC_SPARE), then we allow corrupted spares to be
5768 * specified, as long as they are well-formed.
5769 */
5770 static int
5771 spa_validate_aux_devs(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode,
5772 spa_aux_vdev_t *sav, const char *config, uint64_t version,
5773 vdev_labeltype_t label)
5774 {
5775 nvlist_t **dev;
5776 uint_t i, ndev;
5777 vdev_t *vd;
5778 int error;
5779
5780 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
5781
5782 /*
5783 * It's acceptable to have no devs specified.
5784 */
5785 if (nvlist_lookup_nvlist_array(nvroot, config, &dev, &ndev) != 0)
5786 return (0);
5787
5788 if (ndev == 0)
5789 return (SET_ERROR(EINVAL));
5790
5791 /*
5792 * Make sure the pool is formatted with a version that supports this
5793 * device type.
5794 */
5795 if (spa_version(spa) < version)
5796 return (SET_ERROR(ENOTSUP));
5797
5798 /*
5799 * Set the pending device list so we correctly handle device in-use
5800 * checking.
5801 */
5802 sav->sav_pending = dev;
5803 sav->sav_npending = ndev;
5804
5805 for (i = 0; i < ndev; i++) {
5806 if ((error = spa_config_parse(spa, &vd, dev[i], NULL, 0,
5807 mode)) != 0)
5808 goto out;
5809
5810 if (!vd->vdev_ops->vdev_op_leaf) {
5811 vdev_free(vd);
5812 error = SET_ERROR(EINVAL);
5813 goto out;
5814 }
5815
5816 vd->vdev_top = vd;
5817
5818 if ((error = vdev_open(vd)) == 0 &&
5819 (error = vdev_label_init(vd, crtxg, label)) == 0) {
5820 fnvlist_add_uint64(dev[i], ZPOOL_CONFIG_GUID,
5821 vd->vdev_guid);
5822 }
5823
5824 vdev_free(vd);
5825
5826 if (error &&
5827 (mode != VDEV_ALLOC_SPARE && mode != VDEV_ALLOC_L2CACHE))
5828 goto out;
5829 else
5830 error = 0;
5831 }
5832
5833 out:
5834 sav->sav_pending = NULL;
5835 sav->sav_npending = 0;
5836 return (error);
5837 }
5838
5839 static int
5840 spa_validate_aux(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode)
5841 {
5842 int error;
5843
5844 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
5845
5846 if ((error = spa_validate_aux_devs(spa, nvroot, crtxg, mode,
5847 &spa->spa_spares, ZPOOL_CONFIG_SPARES, SPA_VERSION_SPARES,
5848 VDEV_LABEL_SPARE)) != 0) {
5849 return (error);
5850 }
5851
5852 return (spa_validate_aux_devs(spa, nvroot, crtxg, mode,
5853 &spa->spa_l2cache, ZPOOL_CONFIG_L2CACHE, SPA_VERSION_L2CACHE,
5854 VDEV_LABEL_L2CACHE));
5855 }
5856
5857 static void
5858 spa_set_aux_vdevs(spa_aux_vdev_t *sav, nvlist_t **devs, int ndevs,
5859 const char *config)
5860 {
5861 int i;
5862
5863 if (sav->sav_config != NULL) {
5864 nvlist_t **olddevs;
5865 uint_t oldndevs;
5866 nvlist_t **newdevs;
5867
5868 /*
5869 * Generate new dev list by concatenating with the
5870 * current dev list.
5871 */
5872 VERIFY0(nvlist_lookup_nvlist_array(sav->sav_config, config,
5873 &olddevs, &oldndevs));
5874
5875 newdevs = kmem_alloc(sizeof (void *) *
5876 (ndevs + oldndevs), KM_SLEEP);
5877 for (i = 0; i < oldndevs; i++)
5878 newdevs[i] = fnvlist_dup(olddevs[i]);
5879 for (i = 0; i < ndevs; i++)
5880 newdevs[i + oldndevs] = fnvlist_dup(devs[i]);
5881
5882 fnvlist_remove(sav->sav_config, config);
5883
5884 fnvlist_add_nvlist_array(sav->sav_config, config,
5885 (const nvlist_t * const *)newdevs, ndevs + oldndevs);
5886 for (i = 0; i < oldndevs + ndevs; i++)
5887 nvlist_free(newdevs[i]);
5888 kmem_free(newdevs, (oldndevs + ndevs) * sizeof (void *));
5889 } else {
5890 /*
5891 * Generate a new dev list.
5892 */
5893 sav->sav_config = fnvlist_alloc();
5894 fnvlist_add_nvlist_array(sav->sav_config, config,
5895 (const nvlist_t * const *)devs, ndevs);
5896 }
5897 }
5898
5899 /*
5900 * Stop and drop level 2 ARC devices
5901 */
5902 void
5903 spa_l2cache_drop(spa_t *spa)
5904 {
5905 vdev_t *vd;
5906 int i;
5907 spa_aux_vdev_t *sav = &spa->spa_l2cache;
5908
5909 for (i = 0; i < sav->sav_count; i++) {
5910 uint64_t pool;
5911
5912 vd = sav->sav_vdevs[i];
5913 ASSERT(vd != NULL);
5914
5915 if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
5916 pool != 0ULL && l2arc_vdev_present(vd))
5917 l2arc_remove_vdev(vd);
5918 }
5919 }
5920
5921 /*
5922 * Verify encryption parameters for spa creation. If we are encrypting, we must
5923 * have the encryption feature flag enabled.
5924 */
5925 static int
5926 spa_create_check_encryption_params(dsl_crypto_params_t *dcp,
5927 boolean_t has_encryption)
5928 {
5929 if (dcp->cp_crypt != ZIO_CRYPT_OFF &&
5930 dcp->cp_crypt != ZIO_CRYPT_INHERIT &&
5931 !has_encryption)
5932 return (SET_ERROR(ENOTSUP));
5933
5934 return (dmu_objset_create_crypt_check(NULL, dcp, NULL));
5935 }
5936
5937 /*
5938 * Pool Creation
5939 */
5940 int
5941 spa_create(const char *pool, nvlist_t *nvroot, nvlist_t *props,
5942 nvlist_t *zplprops, dsl_crypto_params_t *dcp)
5943 {
5944 spa_t *spa;
5945 const char *altroot = NULL;
5946 vdev_t *rvd;
5947 dsl_pool_t *dp;
5948 dmu_tx_t *tx;
5949 int error = 0;
5950 uint64_t txg = TXG_INITIAL;
5951 nvlist_t **spares, **l2cache;
5952 uint_t nspares, nl2cache;
5953 uint64_t version, obj, ndraid = 0;
5954 boolean_t has_features;
5955 boolean_t has_encryption;
5956 boolean_t has_allocclass;
5957 spa_feature_t feat;
5958 const char *feat_name;
5959 const char *poolname;
5960 nvlist_t *nvl;
5961
5962 if (props == NULL ||
5963 nvlist_lookup_string(props, "tname", &poolname) != 0)
5964 poolname = (char *)pool;
5965
5966 /*
5967 * If this pool already exists, return failure.
5968 */
5969 mutex_enter(&spa_namespace_lock);
5970 if (spa_lookup(poolname) != NULL) {
5971 mutex_exit(&spa_namespace_lock);
5972 return (SET_ERROR(EEXIST));
5973 }
5974
5975 /*
5976 * Allocate a new spa_t structure.
5977 */
5978 nvl = fnvlist_alloc();
5979 fnvlist_add_string(nvl, ZPOOL_CONFIG_POOL_NAME, pool);
5980 (void) nvlist_lookup_string(props,
5981 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
5982 spa = spa_add(poolname, nvl, altroot);
5983 fnvlist_free(nvl);
5984 spa_activate(spa, spa_mode_global);
5985
5986 if (props && (error = spa_prop_validate(spa, props))) {
5987 spa_deactivate(spa);
5988 spa_remove(spa);
5989 mutex_exit(&spa_namespace_lock);
5990 return (error);
5991 }
5992
5993 /*
5994 * Temporary pool names should never be written to disk.
5995 */
5996 if (poolname != pool)
5997 spa->spa_import_flags |= ZFS_IMPORT_TEMP_NAME;
5998
5999 has_features = B_FALSE;
6000 has_encryption = B_FALSE;
6001 has_allocclass = B_FALSE;
6002 for (nvpair_t *elem = nvlist_next_nvpair(props, NULL);
6003 elem != NULL; elem = nvlist_next_nvpair(props, elem)) {
6004 if (zpool_prop_feature(nvpair_name(elem))) {
6005 has_features = B_TRUE;
6006
6007 feat_name = strchr(nvpair_name(elem), '@') + 1;
6008 VERIFY0(zfeature_lookup_name(feat_name, &feat));
6009 if (feat == SPA_FEATURE_ENCRYPTION)
6010 has_encryption = B_TRUE;
6011 if (feat == SPA_FEATURE_ALLOCATION_CLASSES)
6012 has_allocclass = B_TRUE;
6013 }
6014 }
6015
6016 /* verify encryption params, if they were provided */
6017 if (dcp != NULL) {
6018 error = spa_create_check_encryption_params(dcp, has_encryption);
6019 if (error != 0) {
6020 spa_deactivate(spa);
6021 spa_remove(spa);
6022 mutex_exit(&spa_namespace_lock);
6023 return (error);
6024 }
6025 }
6026 if (!has_allocclass && zfs_special_devs(nvroot, NULL)) {
6027 spa_deactivate(spa);
6028 spa_remove(spa);
6029 mutex_exit(&spa_namespace_lock);
6030 return (ENOTSUP);
6031 }
6032
6033 if (has_features || nvlist_lookup_uint64(props,
6034 zpool_prop_to_name(ZPOOL_PROP_VERSION), &version) != 0) {
6035 version = SPA_VERSION;
6036 }
6037 ASSERT(SPA_VERSION_IS_SUPPORTED(version));
6038
6039 spa->spa_first_txg = txg;
6040 spa->spa_uberblock.ub_txg = txg - 1;
6041 spa->spa_uberblock.ub_version = version;
6042 spa->spa_ubsync = spa->spa_uberblock;
6043 spa->spa_load_state = SPA_LOAD_CREATE;
6044 spa->spa_removing_phys.sr_state = DSS_NONE;
6045 spa->spa_removing_phys.sr_removing_vdev = -1;
6046 spa->spa_removing_phys.sr_prev_indirect_vdev = -1;
6047 spa->spa_indirect_vdevs_loaded = B_TRUE;
6048
6049 /*
6050 * Create "The Godfather" zio to hold all async IOs
6051 */
6052 spa->spa_async_zio_root = kmem_alloc(max_ncpus * sizeof (void *),
6053 KM_SLEEP);
6054 for (int i = 0; i < max_ncpus; i++) {
6055 spa->spa_async_zio_root[i] = zio_root(spa, NULL, NULL,
6056 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
6057 ZIO_FLAG_GODFATHER);
6058 }
6059
6060 /*
6061 * Create the root vdev.
6062 */
6063 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
6064
6065 error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, VDEV_ALLOC_ADD);
6066
6067 ASSERT(error != 0 || rvd != NULL);
6068 ASSERT(error != 0 || spa->spa_root_vdev == rvd);
6069
6070 if (error == 0 && !zfs_allocatable_devs(nvroot))
6071 error = SET_ERROR(EINVAL);
6072
6073 if (error == 0 &&
6074 (error = vdev_create(rvd, txg, B_FALSE)) == 0 &&
6075 (error = vdev_draid_spare_create(nvroot, rvd, &ndraid, 0)) == 0 &&
6076 (error = spa_validate_aux(spa, nvroot, txg, VDEV_ALLOC_ADD)) == 0) {
6077 /*
6078 * instantiate the metaslab groups (this will dirty the vdevs)
6079 * we can no longer error exit past this point
6080 */
6081 for (int c = 0; error == 0 && c < rvd->vdev_children; c++) {
6082 vdev_t *vd = rvd->vdev_child[c];
6083
6084 vdev_metaslab_set_size(vd);
6085 vdev_expand(vd, txg);
6086 }
6087 }
6088
6089 spa_config_exit(spa, SCL_ALL, FTAG);
6090
6091 if (error != 0) {
6092 spa_unload(spa);
6093 spa_deactivate(spa);
6094 spa_remove(spa);
6095 mutex_exit(&spa_namespace_lock);
6096 return (error);
6097 }
6098
6099 /*
6100 * Get the list of spares, if specified.
6101 */
6102 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
6103 &spares, &nspares) == 0) {
6104 spa->spa_spares.sav_config = fnvlist_alloc();
6105 fnvlist_add_nvlist_array(spa->spa_spares.sav_config,
6106 ZPOOL_CONFIG_SPARES, (const nvlist_t * const *)spares,
6107 nspares);
6108 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
6109 spa_load_spares(spa);
6110 spa_config_exit(spa, SCL_ALL, FTAG);
6111 spa->spa_spares.sav_sync = B_TRUE;
6112 }
6113
6114 /*
6115 * Get the list of level 2 cache devices, if specified.
6116 */
6117 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
6118 &l2cache, &nl2cache) == 0) {
6119 VERIFY0(nvlist_alloc(&spa->spa_l2cache.sav_config,
6120 NV_UNIQUE_NAME, KM_SLEEP));
6121 fnvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
6122 ZPOOL_CONFIG_L2CACHE, (const nvlist_t * const *)l2cache,
6123 nl2cache);
6124 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
6125 spa_load_l2cache(spa);
6126 spa_config_exit(spa, SCL_ALL, FTAG);
6127 spa->spa_l2cache.sav_sync = B_TRUE;
6128 }
6129
6130 spa->spa_is_initializing = B_TRUE;
6131 spa->spa_dsl_pool = dp = dsl_pool_create(spa, zplprops, dcp, txg);
6132 spa->spa_is_initializing = B_FALSE;
6133
6134 /*
6135 * Create DDTs (dedup tables).
6136 */
6137 ddt_create(spa);
6138 /*
6139 * Create BRT table and BRT table object.
6140 */
6141 brt_create(spa);
6142
6143 spa_update_dspace(spa);
6144
6145 tx = dmu_tx_create_assigned(dp, txg);
6146
6147 /*
6148 * Create the pool's history object.
6149 */
6150 if (version >= SPA_VERSION_ZPOOL_HISTORY && !spa->spa_history)
6151 spa_history_create_obj(spa, tx);
6152
6153 spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_CREATE);
6154 spa_history_log_version(spa, "create", tx);
6155
6156 /*
6157 * Create the pool config object.
6158 */
6159 spa->spa_config_object = dmu_object_alloc(spa->spa_meta_objset,
6160 DMU_OT_PACKED_NVLIST, SPA_CONFIG_BLOCKSIZE,
6161 DMU_OT_PACKED_NVLIST_SIZE, sizeof (uint64_t), tx);
6162
6163 if (zap_add(spa->spa_meta_objset,
6164 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CONFIG,
6165 sizeof (uint64_t), 1, &spa->spa_config_object, tx) != 0) {
6166 cmn_err(CE_PANIC, "failed to add pool config");
6167 }
6168
6169 if (zap_add(spa->spa_meta_objset,
6170 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CREATION_VERSION,
6171 sizeof (uint64_t), 1, &version, tx) != 0) {
6172 cmn_err(CE_PANIC, "failed to add pool version");
6173 }
6174
6175 /* Newly created pools with the right version are always deflated. */
6176 if (version >= SPA_VERSION_RAIDZ_DEFLATE) {
6177 spa->spa_deflate = TRUE;
6178 if (zap_add(spa->spa_meta_objset,
6179 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
6180 sizeof (uint64_t), 1, &spa->spa_deflate, tx) != 0) {
6181 cmn_err(CE_PANIC, "failed to add deflate");
6182 }
6183 }
6184
6185 /*
6186 * Create the deferred-free bpobj. Turn off compression
6187 * because sync-to-convergence takes longer if the blocksize
6188 * keeps changing.
6189 */
6190 obj = bpobj_alloc(spa->spa_meta_objset, 1 << 14, tx);
6191 dmu_object_set_compress(spa->spa_meta_objset, obj,
6192 ZIO_COMPRESS_OFF, tx);
6193 if (zap_add(spa->spa_meta_objset,
6194 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SYNC_BPOBJ,
6195 sizeof (uint64_t), 1, &obj, tx) != 0) {
6196 cmn_err(CE_PANIC, "failed to add bpobj");
6197 }
6198 VERIFY3U(0, ==, bpobj_open(&spa->spa_deferred_bpobj,
6199 spa->spa_meta_objset, obj));
6200
6201 /*
6202 * Generate some random noise for salted checksums to operate on.
6203 */
6204 (void) random_get_pseudo_bytes(spa->spa_cksum_salt.zcs_bytes,
6205 sizeof (spa->spa_cksum_salt.zcs_bytes));
6206
6207 /*
6208 * Set pool properties.
6209 */
6210 spa->spa_bootfs = zpool_prop_default_numeric(ZPOOL_PROP_BOOTFS);
6211 spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
6212 spa->spa_failmode = zpool_prop_default_numeric(ZPOOL_PROP_FAILUREMODE);
6213 spa->spa_autoexpand = zpool_prop_default_numeric(ZPOOL_PROP_AUTOEXPAND);
6214 spa->spa_multihost = zpool_prop_default_numeric(ZPOOL_PROP_MULTIHOST);
6215 spa->spa_autotrim = zpool_prop_default_numeric(ZPOOL_PROP_AUTOTRIM);
6216
6217 if (props != NULL) {
6218 spa_configfile_set(spa, props, B_FALSE);
6219 spa_sync_props(props, tx);
6220 }
6221
6222 for (int i = 0; i < ndraid; i++)
6223 spa_feature_incr(spa, SPA_FEATURE_DRAID, tx);
6224
6225 dmu_tx_commit(tx);
6226
6227 spa->spa_sync_on = B_TRUE;
6228 txg_sync_start(dp);
6229 mmp_thread_start(spa);
6230 txg_wait_synced(dp, txg);
6231
6232 spa_spawn_aux_threads(spa);
6233
6234 spa_write_cachefile(spa, B_FALSE, B_TRUE, B_TRUE);
6235
6236 /*
6237 * Don't count references from objsets that are already closed
6238 * and are making their way through the eviction process.
6239 */
6240 spa_evicting_os_wait(spa);
6241 spa->spa_minref = zfs_refcount_count(&spa->spa_refcount);
6242 spa->spa_load_state = SPA_LOAD_NONE;
6243
6244 spa_import_os(spa);
6245
6246 mutex_exit(&spa_namespace_lock);
6247
6248 return (0);
6249 }
6250
6251 /*
6252 * Import a non-root pool into the system.
6253 */
6254 int
6255 spa_import(char *pool, nvlist_t *config, nvlist_t *props, uint64_t flags)
6256 {
6257 spa_t *spa;
6258 const char *altroot = NULL;
6259 spa_load_state_t state = SPA_LOAD_IMPORT;
6260 zpool_load_policy_t policy;
6261 spa_mode_t mode = spa_mode_global;
6262 uint64_t readonly = B_FALSE;
6263 int error;
6264 nvlist_t *nvroot;
6265 nvlist_t **spares, **l2cache;
6266 uint_t nspares, nl2cache;
6267
6268 /*
6269 * If a pool with this name exists, return failure.
6270 */
6271 mutex_enter(&spa_namespace_lock);
6272 if (spa_lookup(pool) != NULL) {
6273 mutex_exit(&spa_namespace_lock);
6274 return (SET_ERROR(EEXIST));
6275 }
6276
6277 /*
6278 * Create and initialize the spa structure.
6279 */
6280 (void) nvlist_lookup_string(props,
6281 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
6282 (void) nvlist_lookup_uint64(props,
6283 zpool_prop_to_name(ZPOOL_PROP_READONLY), &readonly);
6284 if (readonly)
6285 mode = SPA_MODE_READ;
6286 spa = spa_add(pool, config, altroot);
6287 spa->spa_import_flags = flags;
6288
6289 /*
6290 * Verbatim import - Take a pool and insert it into the namespace
6291 * as if it had been loaded at boot.
6292 */
6293 if (spa->spa_import_flags & ZFS_IMPORT_VERBATIM) {
6294 if (props != NULL)
6295 spa_configfile_set(spa, props, B_FALSE);
6296
6297 spa_write_cachefile(spa, B_FALSE, B_TRUE, B_FALSE);
6298 spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_IMPORT);
6299 zfs_dbgmsg("spa_import: verbatim import of %s", pool);
6300 mutex_exit(&spa_namespace_lock);
6301 return (0);
6302 }
6303
6304 spa_activate(spa, mode);
6305
6306 /*
6307 * Don't start async tasks until we know everything is healthy.
6308 */
6309 spa_async_suspend(spa);
6310
6311 zpool_get_load_policy(config, &policy);
6312 if (policy.zlp_rewind & ZPOOL_DO_REWIND)
6313 state = SPA_LOAD_RECOVER;
6314
6315 spa->spa_config_source = SPA_CONFIG_SRC_TRYIMPORT;
6316
6317 if (state != SPA_LOAD_RECOVER) {
6318 spa->spa_last_ubsync_txg = spa->spa_load_txg = 0;
6319 zfs_dbgmsg("spa_import: importing %s", pool);
6320 } else {
6321 zfs_dbgmsg("spa_import: importing %s, max_txg=%lld "
6322 "(RECOVERY MODE)", pool, (longlong_t)policy.zlp_txg);
6323 }
6324 error = spa_load_best(spa, state, policy.zlp_txg, policy.zlp_rewind);
6325
6326 /*
6327 * Propagate anything learned while loading the pool and pass it
6328 * back to caller (i.e. rewind info, missing devices, etc).
6329 */
6330 fnvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO, spa->spa_load_info);
6331
6332 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
6333 /*
6334 * Toss any existing sparelist, as it doesn't have any validity
6335 * anymore, and conflicts with spa_has_spare().
6336 */
6337 if (spa->spa_spares.sav_config) {
6338 nvlist_free(spa->spa_spares.sav_config);
6339 spa->spa_spares.sav_config = NULL;
6340 spa_load_spares(spa);
6341 }
6342 if (spa->spa_l2cache.sav_config) {
6343 nvlist_free(spa->spa_l2cache.sav_config);
6344 spa->spa_l2cache.sav_config = NULL;
6345 spa_load_l2cache(spa);
6346 }
6347
6348 nvroot = fnvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE);
6349 spa_config_exit(spa, SCL_ALL, FTAG);
6350
6351 if (props != NULL)
6352 spa_configfile_set(spa, props, B_FALSE);
6353
6354 if (error != 0 || (props && spa_writeable(spa) &&
6355 (error = spa_prop_set(spa, props)))) {
6356 spa_unload(spa);
6357 spa_deactivate(spa);
6358 spa_remove(spa);
6359 mutex_exit(&spa_namespace_lock);
6360 return (error);
6361 }
6362
6363 spa_async_resume(spa);
6364
6365 /*
6366 * Override any spares and level 2 cache devices as specified by
6367 * the user, as these may have correct device names/devids, etc.
6368 */
6369 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
6370 &spares, &nspares) == 0) {
6371 if (spa->spa_spares.sav_config)
6372 fnvlist_remove(spa->spa_spares.sav_config,
6373 ZPOOL_CONFIG_SPARES);
6374 else
6375 spa->spa_spares.sav_config = fnvlist_alloc();
6376 fnvlist_add_nvlist_array(spa->spa_spares.sav_config,
6377 ZPOOL_CONFIG_SPARES, (const nvlist_t * const *)spares,
6378 nspares);
6379 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
6380 spa_load_spares(spa);
6381 spa_config_exit(spa, SCL_ALL, FTAG);
6382 spa->spa_spares.sav_sync = B_TRUE;
6383 }
6384 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
6385 &l2cache, &nl2cache) == 0) {
6386 if (spa->spa_l2cache.sav_config)
6387 fnvlist_remove(spa->spa_l2cache.sav_config,
6388 ZPOOL_CONFIG_L2CACHE);
6389 else
6390 spa->spa_l2cache.sav_config = fnvlist_alloc();
6391 fnvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
6392 ZPOOL_CONFIG_L2CACHE, (const nvlist_t * const *)l2cache,
6393 nl2cache);
6394 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
6395 spa_load_l2cache(spa);
6396 spa_config_exit(spa, SCL_ALL, FTAG);
6397 spa->spa_l2cache.sav_sync = B_TRUE;
6398 }
6399
6400 /*
6401 * Check for any removed devices.
6402 */
6403 if (spa->spa_autoreplace) {
6404 spa_aux_check_removed(&spa->spa_spares);
6405 spa_aux_check_removed(&spa->spa_l2cache);
6406 }
6407
6408 if (spa_writeable(spa)) {
6409 /*
6410 * Update the config cache to include the newly-imported pool.
6411 */
6412 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
6413 }
6414
6415 /*
6416 * It's possible that the pool was expanded while it was exported.
6417 * We kick off an async task to handle this for us.
6418 */
6419 spa_async_request(spa, SPA_ASYNC_AUTOEXPAND);
6420
6421 spa_history_log_version(spa, "import", NULL);
6422
6423 spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_IMPORT);
6424
6425 mutex_exit(&spa_namespace_lock);
6426
6427 zvol_create_minors_recursive(pool);
6428
6429 spa_import_os(spa);
6430
6431 return (0);
6432 }
6433
6434 nvlist_t *
6435 spa_tryimport(nvlist_t *tryconfig)
6436 {
6437 nvlist_t *config = NULL;
6438 const char *poolname, *cachefile;
6439 spa_t *spa;
6440 uint64_t state;
6441 int error;
6442 zpool_load_policy_t policy;
6443
6444 if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_POOL_NAME, &poolname))
6445 return (NULL);
6446
6447 if (nvlist_lookup_uint64(tryconfig, ZPOOL_CONFIG_POOL_STATE, &state))
6448 return (NULL);
6449
6450 /*
6451 * Create and initialize the spa structure.
6452 */
6453 mutex_enter(&spa_namespace_lock);
6454 spa = spa_add(TRYIMPORT_NAME, tryconfig, NULL);
6455 spa_activate(spa, SPA_MODE_READ);
6456
6457 /*
6458 * Rewind pool if a max txg was provided.
6459 */
6460 zpool_get_load_policy(spa->spa_config, &policy);
6461 if (policy.zlp_txg != UINT64_MAX) {
6462 spa->spa_load_max_txg = policy.zlp_txg;
6463 spa->spa_extreme_rewind = B_TRUE;
6464 zfs_dbgmsg("spa_tryimport: importing %s, max_txg=%lld",
6465 poolname, (longlong_t)policy.zlp_txg);
6466 } else {
6467 zfs_dbgmsg("spa_tryimport: importing %s", poolname);
6468 }
6469
6470 if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_CACHEFILE, &cachefile)
6471 == 0) {
6472 zfs_dbgmsg("spa_tryimport: using cachefile '%s'", cachefile);
6473 spa->spa_config_source = SPA_CONFIG_SRC_CACHEFILE;
6474 } else {
6475 spa->spa_config_source = SPA_CONFIG_SRC_SCAN;
6476 }
6477
6478 /*
6479 * spa_import() relies on a pool config fetched by spa_try_import()
6480 * for spare/cache devices. Import flags are not passed to
6481 * spa_tryimport(), which makes it return early due to a missing log
6482 * device and missing retrieving the cache device and spare eventually.
6483 * Passing ZFS_IMPORT_MISSING_LOG to spa_tryimport() makes it fetch
6484 * the correct configuration regardless of the missing log device.
6485 */
6486 spa->spa_import_flags |= ZFS_IMPORT_MISSING_LOG;
6487
6488 error = spa_load(spa, SPA_LOAD_TRYIMPORT, SPA_IMPORT_EXISTING);
6489
6490 /*
6491 * If 'tryconfig' was at least parsable, return the current config.
6492 */
6493 if (spa->spa_root_vdev != NULL) {
6494 config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
6495 fnvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME, poolname);
6496 fnvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE, state);
6497 fnvlist_add_uint64(config, ZPOOL_CONFIG_TIMESTAMP,
6498 spa->spa_uberblock.ub_timestamp);
6499 fnvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO,
6500 spa->spa_load_info);
6501 fnvlist_add_uint64(config, ZPOOL_CONFIG_ERRATA,
6502 spa->spa_errata);
6503
6504 /*
6505 * If the bootfs property exists on this pool then we
6506 * copy it out so that external consumers can tell which
6507 * pools are bootable.
6508 */
6509 if ((!error || error == EEXIST) && spa->spa_bootfs) {
6510 char *tmpname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
6511
6512 /*
6513 * We have to play games with the name since the
6514 * pool was opened as TRYIMPORT_NAME.
6515 */
6516 if (dsl_dsobj_to_dsname(spa_name(spa),
6517 spa->spa_bootfs, tmpname) == 0) {
6518 char *cp;
6519 char *dsname;
6520
6521 dsname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
6522
6523 cp = strchr(tmpname, '/');
6524 if (cp == NULL) {
6525 (void) strlcpy(dsname, tmpname,
6526 MAXPATHLEN);
6527 } else {
6528 (void) snprintf(dsname, MAXPATHLEN,
6529 "%s/%s", poolname, ++cp);
6530 }
6531 fnvlist_add_string(config, ZPOOL_CONFIG_BOOTFS,
6532 dsname);
6533 kmem_free(dsname, MAXPATHLEN);
6534 }
6535 kmem_free(tmpname, MAXPATHLEN);
6536 }
6537
6538 /*
6539 * Add the list of hot spares and level 2 cache devices.
6540 */
6541 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
6542 spa_add_spares(spa, config);
6543 spa_add_l2cache(spa, config);
6544 spa_config_exit(spa, SCL_CONFIG, FTAG);
6545 }
6546
6547 spa_unload(spa);
6548 spa_deactivate(spa);
6549 spa_remove(spa);
6550 mutex_exit(&spa_namespace_lock);
6551
6552 return (config);
6553 }
6554
6555 /*
6556 * Pool export/destroy
6557 *
6558 * The act of destroying or exporting a pool is very simple. We make sure there
6559 * is no more pending I/O and any references to the pool are gone. Then, we
6560 * update the pool state and sync all the labels to disk, removing the
6561 * configuration from the cache afterwards. If the 'hardforce' flag is set, then
6562 * we don't sync the labels or remove the configuration cache.
6563 */
6564 static int
6565 spa_export_common(const char *pool, int new_state, nvlist_t **oldconfig,
6566 boolean_t force, boolean_t hardforce)
6567 {
6568 int error;
6569 spa_t *spa;
6570
6571 if (oldconfig)
6572 *oldconfig = NULL;
6573
6574 if (!(spa_mode_global & SPA_MODE_WRITE))
6575 return (SET_ERROR(EROFS));
6576
6577 mutex_enter(&spa_namespace_lock);
6578 if ((spa = spa_lookup(pool)) == NULL) {
6579 mutex_exit(&spa_namespace_lock);
6580 return (SET_ERROR(ENOENT));
6581 }
6582
6583 if (spa->spa_is_exporting) {
6584 /* the pool is being exported by another thread */
6585 mutex_exit(&spa_namespace_lock);
6586 return (SET_ERROR(ZFS_ERR_EXPORT_IN_PROGRESS));
6587 }
6588 spa->spa_is_exporting = B_TRUE;
6589
6590 /*
6591 * Put a hold on the pool, drop the namespace lock, stop async tasks,
6592 * reacquire the namespace lock, and see if we can export.
6593 */
6594 spa_open_ref(spa, FTAG);
6595 mutex_exit(&spa_namespace_lock);
6596 spa_async_suspend(spa);
6597 if (spa->spa_zvol_taskq) {
6598 zvol_remove_minors(spa, spa_name(spa), B_TRUE);
6599 taskq_wait(spa->spa_zvol_taskq);
6600 }
6601 mutex_enter(&spa_namespace_lock);
6602 spa_close(spa, FTAG);
6603
6604 if (spa->spa_state == POOL_STATE_UNINITIALIZED)
6605 goto export_spa;
6606 /*
6607 * The pool will be in core if it's openable, in which case we can
6608 * modify its state. Objsets may be open only because they're dirty,
6609 * so we have to force it to sync before checking spa_refcnt.
6610 */
6611 if (spa->spa_sync_on) {
6612 txg_wait_synced(spa->spa_dsl_pool, 0);
6613 spa_evicting_os_wait(spa);
6614 }
6615
6616 /*
6617 * A pool cannot be exported or destroyed if there are active
6618 * references. If we are resetting a pool, allow references by
6619 * fault injection handlers.
6620 */
6621 if (!spa_refcount_zero(spa) || (spa->spa_inject_ref != 0)) {
6622 error = SET_ERROR(EBUSY);
6623 goto fail;
6624 }
6625
6626 if (spa->spa_sync_on) {
6627 vdev_t *rvd = spa->spa_root_vdev;
6628 /*
6629 * A pool cannot be exported if it has an active shared spare.
6630 * This is to prevent other pools stealing the active spare
6631 * from an exported pool. At user's own will, such pool can
6632 * be forcedly exported.
6633 */
6634 if (!force && new_state == POOL_STATE_EXPORTED &&
6635 spa_has_active_shared_spare(spa)) {
6636 error = SET_ERROR(EXDEV);
6637 goto fail;
6638 }
6639
6640 /*
6641 * We're about to export or destroy this pool. Make sure
6642 * we stop all initialization and trim activity here before
6643 * we set the spa_final_txg. This will ensure that all
6644 * dirty data resulting from the initialization is
6645 * committed to disk before we unload the pool.
6646 */
6647 vdev_initialize_stop_all(rvd, VDEV_INITIALIZE_ACTIVE);
6648 vdev_trim_stop_all(rvd, VDEV_TRIM_ACTIVE);
6649 vdev_autotrim_stop_all(spa);
6650 vdev_rebuild_stop_all(spa);
6651
6652 /*
6653 * We want this to be reflected on every label,
6654 * so mark them all dirty. spa_unload() will do the
6655 * final sync that pushes these changes out.
6656 */
6657 if (new_state != POOL_STATE_UNINITIALIZED && !hardforce) {
6658 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
6659 spa->spa_state = new_state;
6660 vdev_config_dirty(rvd);
6661 spa_config_exit(spa, SCL_ALL, FTAG);
6662 }
6663
6664 /*
6665 * If the log space map feature is enabled and the pool is
6666 * getting exported (but not destroyed), we want to spend some
6667 * time flushing as many metaslabs as we can in an attempt to
6668 * destroy log space maps and save import time. This has to be
6669 * done before we set the spa_final_txg, otherwise
6670 * spa_sync() -> spa_flush_metaslabs() may dirty the final TXGs.
6671 * spa_should_flush_logs_on_unload() should be called after
6672 * spa_state has been set to the new_state.
6673 */
6674 if (spa_should_flush_logs_on_unload(spa))
6675 spa_unload_log_sm_flush_all(spa);
6676
6677 if (new_state != POOL_STATE_UNINITIALIZED && !hardforce) {
6678 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
6679 spa->spa_final_txg = spa_last_synced_txg(spa) +
6680 TXG_DEFER_SIZE + 1;
6681 spa_config_exit(spa, SCL_ALL, FTAG);
6682 }
6683 }
6684
6685 export_spa:
6686 spa_export_os(spa);
6687
6688 if (new_state == POOL_STATE_DESTROYED)
6689 spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_DESTROY);
6690 else if (new_state == POOL_STATE_EXPORTED)
6691 spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_EXPORT);
6692
6693 if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
6694 spa_unload(spa);
6695 spa_deactivate(spa);
6696 }
6697
6698 if (oldconfig && spa->spa_config)
6699 *oldconfig = fnvlist_dup(spa->spa_config);
6700
6701 if (new_state != POOL_STATE_UNINITIALIZED) {
6702 if (!hardforce)
6703 spa_write_cachefile(spa, B_TRUE, B_TRUE, B_FALSE);
6704 spa_remove(spa);
6705 } else {
6706 /*
6707 * If spa_remove() is not called for this spa_t and
6708 * there is any possibility that it can be reused,
6709 * we make sure to reset the exporting flag.
6710 */
6711 spa->spa_is_exporting = B_FALSE;
6712 }
6713
6714 mutex_exit(&spa_namespace_lock);
6715 return (0);
6716
6717 fail:
6718 spa->spa_is_exporting = B_FALSE;
6719 spa_async_resume(spa);
6720 mutex_exit(&spa_namespace_lock);
6721 return (error);
6722 }
6723
6724 /*
6725 * Destroy a storage pool.
6726 */
6727 int
6728 spa_destroy(const char *pool)
6729 {
6730 return (spa_export_common(pool, POOL_STATE_DESTROYED, NULL,
6731 B_FALSE, B_FALSE));
6732 }
6733
6734 /*
6735 * Export a storage pool.
6736 */
6737 int
6738 spa_export(const char *pool, nvlist_t **oldconfig, boolean_t force,
6739 boolean_t hardforce)
6740 {
6741 return (spa_export_common(pool, POOL_STATE_EXPORTED, oldconfig,
6742 force, hardforce));
6743 }
6744
6745 /*
6746 * Similar to spa_export(), this unloads the spa_t without actually removing it
6747 * from the namespace in any way.
6748 */
6749 int
6750 spa_reset(const char *pool)
6751 {
6752 return (spa_export_common(pool, POOL_STATE_UNINITIALIZED, NULL,
6753 B_FALSE, B_FALSE));
6754 }
6755
6756 /*
6757 * ==========================================================================
6758 * Device manipulation
6759 * ==========================================================================
6760 */
6761
6762 /*
6763 * This is called as a synctask to increment the draid feature flag
6764 */
6765 static void
6766 spa_draid_feature_incr(void *arg, dmu_tx_t *tx)
6767 {
6768 spa_t *spa = dmu_tx_pool(tx)->dp_spa;
6769 int draid = (int)(uintptr_t)arg;
6770
6771 for (int c = 0; c < draid; c++)
6772 spa_feature_incr(spa, SPA_FEATURE_DRAID, tx);
6773 }
6774
6775 /*
6776 * Add a device to a storage pool.
6777 */
6778 int
6779 spa_vdev_add(spa_t *spa, nvlist_t *nvroot)
6780 {
6781 uint64_t txg, ndraid = 0;
6782 int error;
6783 vdev_t *rvd = spa->spa_root_vdev;
6784 vdev_t *vd, *tvd;
6785 nvlist_t **spares, **l2cache;
6786 uint_t nspares, nl2cache;
6787
6788 ASSERT(spa_writeable(spa));
6789
6790 txg = spa_vdev_enter(spa);
6791
6792 if ((error = spa_config_parse(spa, &vd, nvroot, NULL, 0,
6793 VDEV_ALLOC_ADD)) != 0)
6794 return (spa_vdev_exit(spa, NULL, txg, error));
6795
6796 spa->spa_pending_vdev = vd; /* spa_vdev_exit() will clear this */
6797
6798 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, &spares,
6799 &nspares) != 0)
6800 nspares = 0;
6801
6802 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, &l2cache,
6803 &nl2cache) != 0)
6804 nl2cache = 0;
6805
6806 if (vd->vdev_children == 0 && nspares == 0 && nl2cache == 0)
6807 return (spa_vdev_exit(spa, vd, txg, EINVAL));
6808
6809 if (vd->vdev_children != 0 &&
6810 (error = vdev_create(vd, txg, B_FALSE)) != 0) {
6811 return (spa_vdev_exit(spa, vd, txg, error));
6812 }
6813
6814 /*
6815 * The virtual dRAID spares must be added after vdev tree is created
6816 * and the vdev guids are generated. The guid of their associated
6817 * dRAID is stored in the config and used when opening the spare.
6818 */
6819 if ((error = vdev_draid_spare_create(nvroot, vd, &ndraid,
6820 rvd->vdev_children)) == 0) {
6821 if (ndraid > 0 && nvlist_lookup_nvlist_array(nvroot,
6822 ZPOOL_CONFIG_SPARES, &spares, &nspares) != 0)
6823 nspares = 0;
6824 } else {
6825 return (spa_vdev_exit(spa, vd, txg, error));
6826 }
6827
6828 /*
6829 * We must validate the spares and l2cache devices after checking the
6830 * children. Otherwise, vdev_inuse() will blindly overwrite the spare.
6831 */
6832 if ((error = spa_validate_aux(spa, nvroot, txg, VDEV_ALLOC_ADD)) != 0)
6833 return (spa_vdev_exit(spa, vd, txg, error));
6834
6835 /*
6836 * If we are in the middle of a device removal, we can only add
6837 * devices which match the existing devices in the pool.
6838 * If we are in the middle of a removal, or have some indirect
6839 * vdevs, we can not add raidz or dRAID top levels.
6840 */
6841 if (spa->spa_vdev_removal != NULL ||
6842 spa->spa_removing_phys.sr_prev_indirect_vdev != -1) {
6843 for (int c = 0; c < vd->vdev_children; c++) {
6844 tvd = vd->vdev_child[c];
6845 if (spa->spa_vdev_removal != NULL &&
6846 tvd->vdev_ashift != spa->spa_max_ashift) {
6847 return (spa_vdev_exit(spa, vd, txg, EINVAL));
6848 }
6849 /* Fail if top level vdev is raidz or a dRAID */
6850 if (vdev_get_nparity(tvd) != 0)
6851 return (spa_vdev_exit(spa, vd, txg, EINVAL));
6852
6853 /*
6854 * Need the top level mirror to be
6855 * a mirror of leaf vdevs only
6856 */
6857 if (tvd->vdev_ops == &vdev_mirror_ops) {
6858 for (uint64_t cid = 0;
6859 cid < tvd->vdev_children; cid++) {
6860 vdev_t *cvd = tvd->vdev_child[cid];
6861 if (!cvd->vdev_ops->vdev_op_leaf) {
6862 return (spa_vdev_exit(spa, vd,
6863 txg, EINVAL));
6864 }
6865 }
6866 }
6867 }
6868 }
6869
6870 for (int c = 0; c < vd->vdev_children; c++) {
6871 tvd = vd->vdev_child[c];
6872 vdev_remove_child(vd, tvd);
6873 tvd->vdev_id = rvd->vdev_children;
6874 vdev_add_child(rvd, tvd);
6875 vdev_config_dirty(tvd);
6876 }
6877
6878 if (nspares != 0) {
6879 spa_set_aux_vdevs(&spa->spa_spares, spares, nspares,
6880 ZPOOL_CONFIG_SPARES);
6881 spa_load_spares(spa);
6882 spa->spa_spares.sav_sync = B_TRUE;
6883 }
6884
6885 if (nl2cache != 0) {
6886 spa_set_aux_vdevs(&spa->spa_l2cache, l2cache, nl2cache,
6887 ZPOOL_CONFIG_L2CACHE);
6888 spa_load_l2cache(spa);
6889 spa->spa_l2cache.sav_sync = B_TRUE;
6890 }
6891
6892 /*
6893 * We can't increment a feature while holding spa_vdev so we
6894 * have to do it in a synctask.
6895 */
6896 if (ndraid != 0) {
6897 dmu_tx_t *tx;
6898
6899 tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
6900 dsl_sync_task_nowait(spa->spa_dsl_pool, spa_draid_feature_incr,
6901 (void *)(uintptr_t)ndraid, tx);
6902 dmu_tx_commit(tx);
6903 }
6904
6905 /*
6906 * We have to be careful when adding new vdevs to an existing pool.
6907 * If other threads start allocating from these vdevs before we
6908 * sync the config cache, and we lose power, then upon reboot we may
6909 * fail to open the pool because there are DVAs that the config cache
6910 * can't translate. Therefore, we first add the vdevs without
6911 * initializing metaslabs; sync the config cache (via spa_vdev_exit());
6912 * and then let spa_config_update() initialize the new metaslabs.
6913 *
6914 * spa_load() checks for added-but-not-initialized vdevs, so that
6915 * if we lose power at any point in this sequence, the remaining
6916 * steps will be completed the next time we load the pool.
6917 */
6918 (void) spa_vdev_exit(spa, vd, txg, 0);
6919
6920 mutex_enter(&spa_namespace_lock);
6921 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
6922 spa_event_notify(spa, NULL, NULL, ESC_ZFS_VDEV_ADD);
6923 mutex_exit(&spa_namespace_lock);
6924
6925 return (0);
6926 }
6927
6928 /*
6929 * Attach a device to a vdev specified by its guid. The vdev type can be
6930 * a mirror, a raidz, or a leaf device that is also a top-level (e.g. a
6931 * single device). When the vdev is a single device, a mirror vdev will be
6932 * automatically inserted.
6933 *
6934 * If 'replacing' is specified, the new device is intended to replace the
6935 * existing device; in this case the two devices are made into their own
6936 * mirror using the 'replacing' vdev, which is functionally identical to
6937 * the mirror vdev (it actually reuses all the same ops) but has a few
6938 * extra rules: you can't attach to it after it's been created, and upon
6939 * completion of resilvering, the first disk (the one being replaced)
6940 * is automatically detached.
6941 *
6942 * If 'rebuild' is specified, then sequential reconstruction (a.ka. rebuild)
6943 * should be performed instead of traditional healing reconstruction. From
6944 * an administrators perspective these are both resilver operations.
6945 */
6946 int
6947 spa_vdev_attach(spa_t *spa, uint64_t guid, nvlist_t *nvroot, int replacing,
6948 int rebuild)
6949 {
6950 uint64_t txg, dtl_max_txg;
6951 vdev_t *rvd = spa->spa_root_vdev;
6952 vdev_t *oldvd, *newvd, *newrootvd, *pvd, *tvd;
6953 vdev_ops_t *pvops;
6954 char *oldvdpath, *newvdpath;
6955 int newvd_isspare = B_FALSE;
6956 int error;
6957
6958 ASSERT(spa_writeable(spa));
6959
6960 txg = spa_vdev_enter(spa);
6961
6962 oldvd = spa_lookup_by_guid(spa, guid, B_FALSE);
6963
6964 ASSERT(MUTEX_HELD(&spa_namespace_lock));
6965 if (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) {
6966 error = (spa_has_checkpoint(spa)) ?
6967 ZFS_ERR_CHECKPOINT_EXISTS : ZFS_ERR_DISCARDING_CHECKPOINT;
6968 return (spa_vdev_exit(spa, NULL, txg, error));
6969 }
6970
6971 if (rebuild) {
6972 if (!spa_feature_is_enabled(spa, SPA_FEATURE_DEVICE_REBUILD))
6973 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
6974
6975 if (dsl_scan_resilvering(spa_get_dsl(spa)) ||
6976 dsl_scan_resilver_scheduled(spa_get_dsl(spa))) {
6977 return (spa_vdev_exit(spa, NULL, txg,
6978 ZFS_ERR_RESILVER_IN_PROGRESS));
6979 }
6980 } else {
6981 if (vdev_rebuild_active(rvd))
6982 return (spa_vdev_exit(spa, NULL, txg,
6983 ZFS_ERR_REBUILD_IN_PROGRESS));
6984 }
6985
6986 if (spa->spa_vdev_removal != NULL) {
6987 return (spa_vdev_exit(spa, NULL, txg,
6988 ZFS_ERR_DEVRM_IN_PROGRESS));
6989 }
6990
6991 if (oldvd == NULL)
6992 return (spa_vdev_exit(spa, NULL, txg, ENODEV));
6993
6994 boolean_t raidz = oldvd->vdev_ops == &vdev_raidz_ops;
6995
6996 if (raidz) {
6997 if (!spa_feature_is_enabled(spa, SPA_FEATURE_RAIDZ_EXPANSION))
6998 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
6999
7000 /*
7001 * Can't expand a raidz while prior expand is in progress.
7002 */
7003 if (spa->spa_raidz_expand != NULL) {
7004 return (spa_vdev_exit(spa, NULL, txg,
7005 ZFS_ERR_RAIDZ_EXPAND_IN_PROGRESS));
7006 }
7007 } else if (!oldvd->vdev_ops->vdev_op_leaf) {
7008 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
7009 }
7010
7011 if (raidz)
7012 pvd = oldvd;
7013 else
7014 pvd = oldvd->vdev_parent;
7015
7016 if (spa_config_parse(spa, &newrootvd, nvroot, NULL, 0,
7017 VDEV_ALLOC_ATTACH) != 0)
7018 return (spa_vdev_exit(spa, NULL, txg, EINVAL));
7019
7020 if (newrootvd->vdev_children != 1)
7021 return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
7022
7023 newvd = newrootvd->vdev_child[0];
7024
7025 if (!newvd->vdev_ops->vdev_op_leaf)
7026 return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
7027
7028 if ((error = vdev_create(newrootvd, txg, replacing)) != 0)
7029 return (spa_vdev_exit(spa, newrootvd, txg, error));
7030
7031 /*
7032 * log, dedup and special vdevs should not be replaced by spares.
7033 */
7034 if ((oldvd->vdev_top->vdev_alloc_bias != VDEV_BIAS_NONE ||
7035 oldvd->vdev_top->vdev_islog) && newvd->vdev_isspare) {
7036 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
7037 }
7038
7039 /*
7040 * A dRAID spare can only replace a child of its parent dRAID vdev.
7041 */
7042 if (newvd->vdev_ops == &vdev_draid_spare_ops &&
7043 oldvd->vdev_top != vdev_draid_spare_get_parent(newvd)) {
7044 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
7045 }
7046
7047 if (rebuild) {
7048 /*
7049 * For rebuilds, the top vdev must support reconstruction
7050 * using only space maps. This means the only allowable
7051 * vdevs types are the root vdev, a mirror, or dRAID.
7052 */
7053 tvd = pvd;
7054 if (pvd->vdev_top != NULL)
7055 tvd = pvd->vdev_top;
7056
7057 if (tvd->vdev_ops != &vdev_mirror_ops &&
7058 tvd->vdev_ops != &vdev_root_ops &&
7059 tvd->vdev_ops != &vdev_draid_ops) {
7060 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
7061 }
7062 }
7063
7064 if (!replacing) {
7065 /*
7066 * For attach, the only allowable parent is a mirror or
7067 * the root vdev. A raidz vdev can be attached to, but
7068 * you cannot attach to a raidz child.
7069 */
7070 if (pvd->vdev_ops != &vdev_mirror_ops &&
7071 pvd->vdev_ops != &vdev_root_ops &&
7072 !raidz)
7073 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
7074
7075 pvops = &vdev_mirror_ops;
7076 } else {
7077 /*
7078 * Active hot spares can only be replaced by inactive hot
7079 * spares.
7080 */
7081 if (pvd->vdev_ops == &vdev_spare_ops &&
7082 oldvd->vdev_isspare &&
7083 !spa_has_spare(spa, newvd->vdev_guid))
7084 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
7085
7086 /*
7087 * If the source is a hot spare, and the parent isn't already a
7088 * spare, then we want to create a new hot spare. Otherwise, we
7089 * want to create a replacing vdev. The user is not allowed to
7090 * attach to a spared vdev child unless the 'isspare' state is
7091 * the same (spare replaces spare, non-spare replaces
7092 * non-spare).
7093 */
7094 if (pvd->vdev_ops == &vdev_replacing_ops &&
7095 spa_version(spa) < SPA_VERSION_MULTI_REPLACE) {
7096 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
7097 } else if (pvd->vdev_ops == &vdev_spare_ops &&
7098 newvd->vdev_isspare != oldvd->vdev_isspare) {
7099 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
7100 }
7101
7102 if (newvd->vdev_isspare)
7103 pvops = &vdev_spare_ops;
7104 else
7105 pvops = &vdev_replacing_ops;
7106 }
7107
7108 /*
7109 * Make sure the new device is big enough.
7110 */
7111 vdev_t *min_vdev = raidz ? oldvd->vdev_child[0] : oldvd;
7112 if (newvd->vdev_asize < vdev_get_min_asize(min_vdev))
7113 return (spa_vdev_exit(spa, newrootvd, txg, EOVERFLOW));
7114
7115 /*
7116 * The new device cannot have a higher alignment requirement
7117 * than the top-level vdev.
7118 */
7119 if (newvd->vdev_ashift > oldvd->vdev_top->vdev_ashift)
7120 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
7121
7122 /*
7123 * RAIDZ-expansion-specific checks.
7124 */
7125 if (raidz) {
7126 if (vdev_raidz_attach_check(newvd) != 0)
7127 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
7128
7129 /*
7130 * Fail early if a child is not healthy or being replaced
7131 */
7132 for (int i = 0; i < oldvd->vdev_children; i++) {
7133 if (vdev_is_dead(oldvd->vdev_child[i]) ||
7134 !oldvd->vdev_child[i]->vdev_ops->vdev_op_leaf) {
7135 return (spa_vdev_exit(spa, newrootvd, txg,
7136 ENXIO));
7137 }
7138 /* Also fail if reserved boot area is in-use */
7139 if (vdev_check_boot_reserve(spa, oldvd->vdev_child[i])
7140 != 0) {
7141 return (spa_vdev_exit(spa, newrootvd, txg,
7142 EADDRINUSE));
7143 }
7144 }
7145 }
7146
7147 if (raidz) {
7148 /*
7149 * Note: oldvdpath is freed by spa_strfree(), but
7150 * kmem_asprintf() is freed by kmem_strfree(), so we have to
7151 * move it to a spa_strdup-ed string.
7152 */
7153 char *tmp = kmem_asprintf("raidz%u-%u",
7154 (uint_t)vdev_get_nparity(oldvd), (uint_t)oldvd->vdev_id);
7155 oldvdpath = spa_strdup(tmp);
7156 kmem_strfree(tmp);
7157 } else {
7158 oldvdpath = spa_strdup(oldvd->vdev_path);
7159 }
7160 newvdpath = spa_strdup(newvd->vdev_path);
7161
7162 /*
7163 * If this is an in-place replacement, update oldvd's path and devid
7164 * to make it distinguishable from newvd, and unopenable from now on.
7165 */
7166 if (strcmp(oldvdpath, newvdpath) == 0) {
7167 spa_strfree(oldvd->vdev_path);
7168 oldvd->vdev_path = kmem_alloc(strlen(newvdpath) + 5,
7169 KM_SLEEP);
7170 (void) sprintf(oldvd->vdev_path, "%s/old",
7171 newvdpath);
7172 if (oldvd->vdev_devid != NULL) {
7173 spa_strfree(oldvd->vdev_devid);
7174 oldvd->vdev_devid = NULL;
7175 }
7176 spa_strfree(oldvdpath);
7177 oldvdpath = spa_strdup(oldvd->vdev_path);
7178 }
7179
7180 /*
7181 * If the parent is not a mirror, or if we're replacing, insert the new
7182 * mirror/replacing/spare vdev above oldvd.
7183 */
7184 if (!raidz && pvd->vdev_ops != pvops) {
7185 pvd = vdev_add_parent(oldvd, pvops);
7186 ASSERT(pvd->vdev_ops == pvops);
7187 ASSERT(oldvd->vdev_parent == pvd);
7188 }
7189
7190 ASSERT(pvd->vdev_top->vdev_parent == rvd);
7191
7192 /*
7193 * Extract the new device from its root and add it to pvd.
7194 */
7195 vdev_remove_child(newrootvd, newvd);
7196 newvd->vdev_id = pvd->vdev_children;
7197 newvd->vdev_crtxg = oldvd->vdev_crtxg;
7198 vdev_add_child(pvd, newvd);
7199
7200 /*
7201 * Reevaluate the parent vdev state.
7202 */
7203 vdev_propagate_state(pvd);
7204
7205 tvd = newvd->vdev_top;
7206 ASSERT(pvd->vdev_top == tvd);
7207 ASSERT(tvd->vdev_parent == rvd);
7208
7209 vdev_config_dirty(tvd);
7210
7211 /*
7212 * Set newvd's DTL to [TXG_INITIAL, dtl_max_txg) so that we account
7213 * for any dmu_sync-ed blocks. It will propagate upward when
7214 * spa_vdev_exit() calls vdev_dtl_reassess().
7215 */
7216 dtl_max_txg = txg + TXG_CONCURRENT_STATES;
7217
7218 if (raidz) {
7219 /*
7220 * Wait for the youngest allocations and frees to sync,
7221 * and then wait for the deferral of those frees to finish.
7222 */
7223 spa_vdev_config_exit(spa, NULL,
7224 txg + TXG_CONCURRENT_STATES + TXG_DEFER_SIZE, 0, FTAG);
7225
7226 vdev_initialize_stop_all(tvd, VDEV_INITIALIZE_ACTIVE);
7227 vdev_trim_stop_all(tvd, VDEV_TRIM_ACTIVE);
7228 vdev_autotrim_stop_wait(tvd);
7229
7230 dtl_max_txg = spa_vdev_config_enter(spa);
7231
7232 tvd->vdev_rz_expanding = B_TRUE;
7233
7234 vdev_dirty_leaves(tvd, VDD_DTL, dtl_max_txg);
7235 vdev_config_dirty(tvd);
7236
7237 dmu_tx_t *tx = dmu_tx_create_assigned(spa->spa_dsl_pool,
7238 dtl_max_txg);
7239 dsl_sync_task_nowait(spa->spa_dsl_pool, vdev_raidz_attach_sync,
7240 newvd, tx);
7241 dmu_tx_commit(tx);
7242 } else {
7243 vdev_dtl_dirty(newvd, DTL_MISSING, TXG_INITIAL,
7244 dtl_max_txg - TXG_INITIAL);
7245
7246 if (newvd->vdev_isspare) {
7247 spa_spare_activate(newvd);
7248 spa_event_notify(spa, newvd, NULL, ESC_ZFS_VDEV_SPARE);
7249 }
7250
7251 newvd_isspare = newvd->vdev_isspare;
7252
7253 /*
7254 * Mark newvd's DTL dirty in this txg.
7255 */
7256 vdev_dirty(tvd, VDD_DTL, newvd, txg);
7257
7258 /*
7259 * Schedule the resilver or rebuild to restart in the future.
7260 * We do this to ensure that dmu_sync-ed blocks have been
7261 * stitched into the respective datasets.
7262 */
7263 if (rebuild) {
7264 newvd->vdev_rebuild_txg = txg;
7265
7266 vdev_rebuild(tvd);
7267 } else {
7268 newvd->vdev_resilver_txg = txg;
7269
7270 if (dsl_scan_resilvering(spa_get_dsl(spa)) &&
7271 spa_feature_is_enabled(spa,
7272 SPA_FEATURE_RESILVER_DEFER)) {
7273 vdev_defer_resilver(newvd);
7274 } else {
7275 dsl_scan_restart_resilver(spa->spa_dsl_pool,
7276 dtl_max_txg);
7277 }
7278 }
7279 }
7280
7281 if (spa->spa_bootfs)
7282 spa_event_notify(spa, newvd, NULL, ESC_ZFS_BOOTFS_VDEV_ATTACH);
7283
7284 spa_event_notify(spa, newvd, NULL, ESC_ZFS_VDEV_ATTACH);
7285
7286 /*
7287 * Commit the config
7288 */
7289 (void) spa_vdev_exit(spa, newrootvd, dtl_max_txg, 0);
7290
7291 spa_history_log_internal(spa, "vdev attach", NULL,
7292 "%s vdev=%s %s vdev=%s",
7293 replacing && newvd_isspare ? "spare in" :
7294 replacing ? "replace" : "attach", newvdpath,
7295 replacing ? "for" : "to", oldvdpath);
7296
7297 spa_strfree(oldvdpath);
7298 spa_strfree(newvdpath);
7299
7300 return (0);
7301 }
7302
7303 /*
7304 * Detach a device from a mirror or replacing vdev.
7305 *
7306 * If 'replace_done' is specified, only detach if the parent
7307 * is a replacing or a spare vdev.
7308 */
7309 int
7310 spa_vdev_detach(spa_t *spa, uint64_t guid, uint64_t pguid, int replace_done)
7311 {
7312 uint64_t txg;
7313 int error;
7314 vdev_t *rvd __maybe_unused = spa->spa_root_vdev;
7315 vdev_t *vd, *pvd, *cvd, *tvd;
7316 boolean_t unspare = B_FALSE;
7317 uint64_t unspare_guid = 0;
7318 char *vdpath;
7319
7320 ASSERT(spa_writeable(spa));
7321
7322 txg = spa_vdev_detach_enter(spa, guid);
7323
7324 vd = spa_lookup_by_guid(spa, guid, B_FALSE);
7325
7326 /*
7327 * Besides being called directly from the userland through the
7328 * ioctl interface, spa_vdev_detach() can be potentially called
7329 * at the end of spa_vdev_resilver_done().
7330 *
7331 * In the regular case, when we have a checkpoint this shouldn't
7332 * happen as we never empty the DTLs of a vdev during the scrub
7333 * [see comment in dsl_scan_done()]. Thus spa_vdev_resilvering_done()
7334 * should never get here when we have a checkpoint.
7335 *
7336 * That said, even in a case when we checkpoint the pool exactly
7337 * as spa_vdev_resilver_done() calls this function everything
7338 * should be fine as the resilver will return right away.
7339 */
7340 ASSERT(MUTEX_HELD(&spa_namespace_lock));
7341 if (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) {
7342 error = (spa_has_checkpoint(spa)) ?
7343 ZFS_ERR_CHECKPOINT_EXISTS : ZFS_ERR_DISCARDING_CHECKPOINT;
7344 return (spa_vdev_exit(spa, NULL, txg, error));
7345 }
7346
7347 if (vd == NULL)
7348 return (spa_vdev_exit(spa, NULL, txg, ENODEV));
7349
7350 if (!vd->vdev_ops->vdev_op_leaf)
7351 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
7352
7353 pvd = vd->vdev_parent;
7354
7355 /*
7356 * If the parent/child relationship is not as expected, don't do it.
7357 * Consider M(A,R(B,C)) -- that is, a mirror of A with a replacing
7358 * vdev that's replacing B with C. The user's intent in replacing
7359 * is to go from M(A,B) to M(A,C). If the user decides to cancel
7360 * the replace by detaching C, the expected behavior is to end up
7361 * M(A,B). But suppose that right after deciding to detach C,
7362 * the replacement of B completes. We would have M(A,C), and then
7363 * ask to detach C, which would leave us with just A -- not what
7364 * the user wanted. To prevent this, we make sure that the
7365 * parent/child relationship hasn't changed -- in this example,
7366 * that C's parent is still the replacing vdev R.
7367 */
7368 if (pvd->vdev_guid != pguid && pguid != 0)
7369 return (spa_vdev_exit(spa, NULL, txg, EBUSY));
7370
7371 /*
7372 * Only 'replacing' or 'spare' vdevs can be replaced.
7373 */
7374 if (replace_done && pvd->vdev_ops != &vdev_replacing_ops &&
7375 pvd->vdev_ops != &vdev_spare_ops)
7376 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
7377
7378 ASSERT(pvd->vdev_ops != &vdev_spare_ops ||
7379 spa_version(spa) >= SPA_VERSION_SPARES);
7380
7381 /*
7382 * Only mirror, replacing, and spare vdevs support detach.
7383 */
7384 if (pvd->vdev_ops != &vdev_replacing_ops &&
7385 pvd->vdev_ops != &vdev_mirror_ops &&
7386 pvd->vdev_ops != &vdev_spare_ops)
7387 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
7388
7389 /*
7390 * If this device has the only valid copy of some data,
7391 * we cannot safely detach it.
7392 */
7393 if (vdev_dtl_required(vd))
7394 return (spa_vdev_exit(spa, NULL, txg, EBUSY));
7395
7396 ASSERT(pvd->vdev_children >= 2);
7397
7398 /*
7399 * If we are detaching the second disk from a replacing vdev, then
7400 * check to see if we changed the original vdev's path to have "/old"
7401 * at the end in spa_vdev_attach(). If so, undo that change now.
7402 */
7403 if (pvd->vdev_ops == &vdev_replacing_ops && vd->vdev_id > 0 &&
7404 vd->vdev_path != NULL) {
7405 size_t len = strlen(vd->vdev_path);
7406
7407 for (int c = 0; c < pvd->vdev_children; c++) {
7408 cvd = pvd->vdev_child[c];
7409
7410 if (cvd == vd || cvd->vdev_path == NULL)
7411 continue;
7412
7413 if (strncmp(cvd->vdev_path, vd->vdev_path, len) == 0 &&
7414 strcmp(cvd->vdev_path + len, "/old") == 0) {
7415 spa_strfree(cvd->vdev_path);
7416 cvd->vdev_path = spa_strdup(vd->vdev_path);
7417 break;
7418 }
7419 }
7420 }
7421
7422 /*
7423 * If we are detaching the original disk from a normal spare, then it
7424 * implies that the spare should become a real disk, and be removed
7425 * from the active spare list for the pool. dRAID spares on the
7426 * other hand are coupled to the pool and thus should never be removed
7427 * from the spares list.
7428 */
7429 if (pvd->vdev_ops == &vdev_spare_ops && vd->vdev_id == 0) {
7430 vdev_t *last_cvd = pvd->vdev_child[pvd->vdev_children - 1];
7431
7432 if (last_cvd->vdev_isspare &&
7433 last_cvd->vdev_ops != &vdev_draid_spare_ops) {
7434 unspare = B_TRUE;
7435 }
7436 }
7437
7438 /*
7439 * Erase the disk labels so the disk can be used for other things.
7440 * This must be done after all other error cases are handled,
7441 * but before we disembowel vd (so we can still do I/O to it).
7442 * But if we can't do it, don't treat the error as fatal --
7443 * it may be that the unwritability of the disk is the reason
7444 * it's being detached!
7445 */
7446 (void) vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
7447
7448 /*
7449 * Remove vd from its parent and compact the parent's children.
7450 */
7451 vdev_remove_child(pvd, vd);
7452 vdev_compact_children(pvd);
7453
7454 /*
7455 * Remember one of the remaining children so we can get tvd below.
7456 */
7457 cvd = pvd->vdev_child[pvd->vdev_children - 1];
7458
7459 /*
7460 * If we need to remove the remaining child from the list of hot spares,
7461 * do it now, marking the vdev as no longer a spare in the process.
7462 * We must do this before vdev_remove_parent(), because that can
7463 * change the GUID if it creates a new toplevel GUID. For a similar
7464 * reason, we must remove the spare now, in the same txg as the detach;
7465 * otherwise someone could attach a new sibling, change the GUID, and
7466 * the subsequent attempt to spa_vdev_remove(unspare_guid) would fail.
7467 */
7468 if (unspare) {
7469 ASSERT(cvd->vdev_isspare);
7470 spa_spare_remove(cvd);
7471 unspare_guid = cvd->vdev_guid;
7472 (void) spa_vdev_remove(spa, unspare_guid, B_TRUE);
7473 cvd->vdev_unspare = B_TRUE;
7474 }
7475
7476 /*
7477 * If the parent mirror/replacing vdev only has one child,
7478 * the parent is no longer needed. Remove it from the tree.
7479 */
7480 if (pvd->vdev_children == 1) {
7481 if (pvd->vdev_ops == &vdev_spare_ops)
7482 cvd->vdev_unspare = B_FALSE;
7483 vdev_remove_parent(cvd);
7484 }
7485
7486 /*
7487 * We don't set tvd until now because the parent we just removed
7488 * may have been the previous top-level vdev.
7489 */
7490 tvd = cvd->vdev_top;
7491 ASSERT(tvd->vdev_parent == rvd);
7492
7493 /*
7494 * Reevaluate the parent vdev state.
7495 */
7496 vdev_propagate_state(cvd);
7497
7498 /*
7499 * If the 'autoexpand' property is set on the pool then automatically
7500 * try to expand the size of the pool. For example if the device we
7501 * just detached was smaller than the others, it may be possible to
7502 * add metaslabs (i.e. grow the pool). We need to reopen the vdev
7503 * first so that we can obtain the updated sizes of the leaf vdevs.
7504 */
7505 if (spa->spa_autoexpand) {
7506 vdev_reopen(tvd);
7507 vdev_expand(tvd, txg);
7508 }
7509
7510 vdev_config_dirty(tvd);
7511
7512 /*
7513 * Mark vd's DTL as dirty in this txg. vdev_dtl_sync() will see that
7514 * vd->vdev_detached is set and free vd's DTL object in syncing context.
7515 * But first make sure we're not on any *other* txg's DTL list, to
7516 * prevent vd from being accessed after it's freed.
7517 */
7518 vdpath = spa_strdup(vd->vdev_path ? vd->vdev_path : "none");
7519 for (int t = 0; t < TXG_SIZE; t++)
7520 (void) txg_list_remove_this(&tvd->vdev_dtl_list, vd, t);
7521 vd->vdev_detached = B_TRUE;
7522 vdev_dirty(tvd, VDD_DTL, vd, txg);
7523
7524 spa_event_notify(spa, vd, NULL, ESC_ZFS_VDEV_REMOVE);
7525 spa_notify_waiters(spa);
7526
7527 /* hang on to the spa before we release the lock */
7528 spa_open_ref(spa, FTAG);
7529
7530 error = spa_vdev_exit(spa, vd, txg, 0);
7531
7532 spa_history_log_internal(spa, "detach", NULL,
7533 "vdev=%s", vdpath);
7534 spa_strfree(vdpath);
7535
7536 /*
7537 * If this was the removal of the original device in a hot spare vdev,
7538 * then we want to go through and remove the device from the hot spare
7539 * list of every other pool.
7540 */
7541 if (unspare) {
7542 spa_t *altspa = NULL;
7543
7544 mutex_enter(&spa_namespace_lock);
7545 while ((altspa = spa_next(altspa)) != NULL) {
7546 if (altspa->spa_state != POOL_STATE_ACTIVE ||
7547 altspa == spa)
7548 continue;
7549
7550 spa_open_ref(altspa, FTAG);
7551 mutex_exit(&spa_namespace_lock);
7552 (void) spa_vdev_remove(altspa, unspare_guid, B_TRUE);
7553 mutex_enter(&spa_namespace_lock);
7554 spa_close(altspa, FTAG);
7555 }
7556 mutex_exit(&spa_namespace_lock);
7557
7558 /* search the rest of the vdevs for spares to remove */
7559 spa_vdev_resilver_done(spa);
7560 }
7561
7562 /* all done with the spa; OK to release */
7563 mutex_enter(&spa_namespace_lock);
7564 spa_close(spa, FTAG);
7565 mutex_exit(&spa_namespace_lock);
7566
7567 return (error);
7568 }
7569
7570 static int
7571 spa_vdev_initialize_impl(spa_t *spa, uint64_t guid, uint64_t cmd_type,
7572 list_t *vd_list)
7573 {
7574 ASSERT(MUTEX_HELD(&spa_namespace_lock));
7575
7576 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
7577
7578 /* Look up vdev and ensure it's a leaf. */
7579 vdev_t *vd = spa_lookup_by_guid(spa, guid, B_FALSE);
7580 if (vd == NULL || vd->vdev_detached) {
7581 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
7582 return (SET_ERROR(ENODEV));
7583 } else if (!vd->vdev_ops->vdev_op_leaf || !vdev_is_concrete(vd)) {
7584 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
7585 return (SET_ERROR(EINVAL));
7586 } else if (!vdev_writeable(vd)) {
7587 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
7588 return (SET_ERROR(EROFS));
7589 }
7590 mutex_enter(&vd->vdev_initialize_lock);
7591 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
7592
7593 /*
7594 * When we activate an initialize action we check to see
7595 * if the vdev_initialize_thread is NULL. We do this instead
7596 * of using the vdev_initialize_state since there might be
7597 * a previous initialization process which has completed but
7598 * the thread is not exited.
7599 */
7600 if (cmd_type == POOL_INITIALIZE_START &&
7601 (vd->vdev_initialize_thread != NULL ||
7602 vd->vdev_top->vdev_removing || vd->vdev_top->vdev_rz_expanding)) {
7603 mutex_exit(&vd->vdev_initialize_lock);
7604 return (SET_ERROR(EBUSY));
7605 } else if (cmd_type == POOL_INITIALIZE_CANCEL &&
7606 (vd->vdev_initialize_state != VDEV_INITIALIZE_ACTIVE &&
7607 vd->vdev_initialize_state != VDEV_INITIALIZE_SUSPENDED)) {
7608 mutex_exit(&vd->vdev_initialize_lock);
7609 return (SET_ERROR(ESRCH));
7610 } else if (cmd_type == POOL_INITIALIZE_SUSPEND &&
7611 vd->vdev_initialize_state != VDEV_INITIALIZE_ACTIVE) {
7612 mutex_exit(&vd->vdev_initialize_lock);
7613 return (SET_ERROR(ESRCH));
7614 } else if (cmd_type == POOL_INITIALIZE_UNINIT &&
7615 vd->vdev_initialize_thread != NULL) {
7616 mutex_exit(&vd->vdev_initialize_lock);
7617 return (SET_ERROR(EBUSY));
7618 }
7619
7620 switch (cmd_type) {
7621 case POOL_INITIALIZE_START:
7622 vdev_initialize(vd);
7623 break;
7624 case POOL_INITIALIZE_CANCEL:
7625 vdev_initialize_stop(vd, VDEV_INITIALIZE_CANCELED, vd_list);
7626 break;
7627 case POOL_INITIALIZE_SUSPEND:
7628 vdev_initialize_stop(vd, VDEV_INITIALIZE_SUSPENDED, vd_list);
7629 break;
7630 case POOL_INITIALIZE_UNINIT:
7631 vdev_uninitialize(vd);
7632 break;
7633 default:
7634 panic("invalid cmd_type %llu", (unsigned long long)cmd_type);
7635 }
7636 mutex_exit(&vd->vdev_initialize_lock);
7637
7638 return (0);
7639 }
7640
7641 int
7642 spa_vdev_initialize(spa_t *spa, nvlist_t *nv, uint64_t cmd_type,
7643 nvlist_t *vdev_errlist)
7644 {
7645 int total_errors = 0;
7646 list_t vd_list;
7647
7648 list_create(&vd_list, sizeof (vdev_t),
7649 offsetof(vdev_t, vdev_initialize_node));
7650
7651 /*
7652 * We hold the namespace lock through the whole function
7653 * to prevent any changes to the pool while we're starting or
7654 * stopping initialization. The config and state locks are held so that
7655 * we can properly assess the vdev state before we commit to
7656 * the initializing operation.
7657 */
7658 mutex_enter(&spa_namespace_lock);
7659
7660 for (nvpair_t *pair = nvlist_next_nvpair(nv, NULL);
7661 pair != NULL; pair = nvlist_next_nvpair(nv, pair)) {
7662 uint64_t vdev_guid = fnvpair_value_uint64(pair);
7663
7664 int error = spa_vdev_initialize_impl(spa, vdev_guid, cmd_type,
7665 &vd_list);
7666 if (error != 0) {
7667 char guid_as_str[MAXNAMELEN];
7668
7669 (void) snprintf(guid_as_str, sizeof (guid_as_str),
7670 "%llu", (unsigned long long)vdev_guid);
7671 fnvlist_add_int64(vdev_errlist, guid_as_str, error);
7672 total_errors++;
7673 }
7674 }
7675
7676 /* Wait for all initialize threads to stop. */
7677 vdev_initialize_stop_wait(spa, &vd_list);
7678
7679 /* Sync out the initializing state */
7680 txg_wait_synced(spa->spa_dsl_pool, 0);
7681 mutex_exit(&spa_namespace_lock);
7682
7683 list_destroy(&vd_list);
7684
7685 return (total_errors);
7686 }
7687
7688 static int
7689 spa_vdev_trim_impl(spa_t *spa, uint64_t guid, uint64_t cmd_type,
7690 uint64_t rate, boolean_t partial, boolean_t secure, list_t *vd_list)
7691 {
7692 ASSERT(MUTEX_HELD(&spa_namespace_lock));
7693
7694 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
7695
7696 /* Look up vdev and ensure it's a leaf. */
7697 vdev_t *vd = spa_lookup_by_guid(spa, guid, B_FALSE);
7698 if (vd == NULL || vd->vdev_detached) {
7699 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
7700 return (SET_ERROR(ENODEV));
7701 } else if (!vd->vdev_ops->vdev_op_leaf || !vdev_is_concrete(vd)) {
7702 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
7703 return (SET_ERROR(EINVAL));
7704 } else if (!vdev_writeable(vd)) {
7705 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
7706 return (SET_ERROR(EROFS));
7707 } else if (!vd->vdev_has_trim) {
7708 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
7709 return (SET_ERROR(EOPNOTSUPP));
7710 } else if (secure && !vd->vdev_has_securetrim) {
7711 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
7712 return (SET_ERROR(EOPNOTSUPP));
7713 }
7714 mutex_enter(&vd->vdev_trim_lock);
7715 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
7716
7717 /*
7718 * When we activate a TRIM action we check to see if the
7719 * vdev_trim_thread is NULL. We do this instead of using the
7720 * vdev_trim_state since there might be a previous TRIM process
7721 * which has completed but the thread is not exited.
7722 */
7723 if (cmd_type == POOL_TRIM_START &&
7724 (vd->vdev_trim_thread != NULL || vd->vdev_top->vdev_removing ||
7725 vd->vdev_top->vdev_rz_expanding)) {
7726 mutex_exit(&vd->vdev_trim_lock);
7727 return (SET_ERROR(EBUSY));
7728 } else if (cmd_type == POOL_TRIM_CANCEL &&
7729 (vd->vdev_trim_state != VDEV_TRIM_ACTIVE &&
7730 vd->vdev_trim_state != VDEV_TRIM_SUSPENDED)) {
7731 mutex_exit(&vd->vdev_trim_lock);
7732 return (SET_ERROR(ESRCH));
7733 } else if (cmd_type == POOL_TRIM_SUSPEND &&
7734 vd->vdev_trim_state != VDEV_TRIM_ACTIVE) {
7735 mutex_exit(&vd->vdev_trim_lock);
7736 return (SET_ERROR(ESRCH));
7737 }
7738
7739 switch (cmd_type) {
7740 case POOL_TRIM_START:
7741 vdev_trim(vd, rate, partial, secure);
7742 break;
7743 case POOL_TRIM_CANCEL:
7744 vdev_trim_stop(vd, VDEV_TRIM_CANCELED, vd_list);
7745 break;
7746 case POOL_TRIM_SUSPEND:
7747 vdev_trim_stop(vd, VDEV_TRIM_SUSPENDED, vd_list);
7748 break;
7749 default:
7750 panic("invalid cmd_type %llu", (unsigned long long)cmd_type);
7751 }
7752 mutex_exit(&vd->vdev_trim_lock);
7753
7754 return (0);
7755 }
7756
7757 /*
7758 * Initiates a manual TRIM for the requested vdevs. This kicks off individual
7759 * TRIM threads for each child vdev. These threads pass over all of the free
7760 * space in the vdev's metaslabs and issues TRIM commands for that space.
7761 */
7762 int
7763 spa_vdev_trim(spa_t *spa, nvlist_t *nv, uint64_t cmd_type, uint64_t rate,
7764 boolean_t partial, boolean_t secure, nvlist_t *vdev_errlist)
7765 {
7766 int total_errors = 0;
7767 list_t vd_list;
7768
7769 list_create(&vd_list, sizeof (vdev_t),
7770 offsetof(vdev_t, vdev_trim_node));
7771
7772 /*
7773 * We hold the namespace lock through the whole function
7774 * to prevent any changes to the pool while we're starting or
7775 * stopping TRIM. The config and state locks are held so that
7776 * we can properly assess the vdev state before we commit to
7777 * the TRIM operation.
7778 */
7779 mutex_enter(&spa_namespace_lock);
7780
7781 for (nvpair_t *pair = nvlist_next_nvpair(nv, NULL);
7782 pair != NULL; pair = nvlist_next_nvpair(nv, pair)) {
7783 uint64_t vdev_guid = fnvpair_value_uint64(pair);
7784
7785 int error = spa_vdev_trim_impl(spa, vdev_guid, cmd_type,
7786 rate, partial, secure, &vd_list);
7787 if (error != 0) {
7788 char guid_as_str[MAXNAMELEN];
7789
7790 (void) snprintf(guid_as_str, sizeof (guid_as_str),
7791 "%llu", (unsigned long long)vdev_guid);
7792 fnvlist_add_int64(vdev_errlist, guid_as_str, error);
7793 total_errors++;
7794 }
7795 }
7796
7797 /* Wait for all TRIM threads to stop. */
7798 vdev_trim_stop_wait(spa, &vd_list);
7799
7800 /* Sync out the TRIM state */
7801 txg_wait_synced(spa->spa_dsl_pool, 0);
7802 mutex_exit(&spa_namespace_lock);
7803
7804 list_destroy(&vd_list);
7805
7806 return (total_errors);
7807 }
7808
7809 /*
7810 * Split a set of devices from their mirrors, and create a new pool from them.
7811 */
7812 int
7813 spa_vdev_split_mirror(spa_t *spa, const char *newname, nvlist_t *config,
7814 nvlist_t *props, boolean_t exp)
7815 {
7816 int error = 0;
7817 uint64_t txg, *glist;
7818 spa_t *newspa;
7819 uint_t c, children, lastlog;
7820 nvlist_t **child, *nvl, *tmp;
7821 dmu_tx_t *tx;
7822 const char *altroot = NULL;
7823 vdev_t *rvd, **vml = NULL; /* vdev modify list */
7824 boolean_t activate_slog;
7825
7826 ASSERT(spa_writeable(spa));
7827
7828 txg = spa_vdev_enter(spa);
7829
7830 ASSERT(MUTEX_HELD(&spa_namespace_lock));
7831 if (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) {
7832 error = (spa_has_checkpoint(spa)) ?
7833 ZFS_ERR_CHECKPOINT_EXISTS : ZFS_ERR_DISCARDING_CHECKPOINT;
7834 return (spa_vdev_exit(spa, NULL, txg, error));
7835 }
7836
7837 /* clear the log and flush everything up to now */
7838 activate_slog = spa_passivate_log(spa);
7839 (void) spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
7840 error = spa_reset_logs(spa);
7841 txg = spa_vdev_config_enter(spa);
7842
7843 if (activate_slog)
7844 spa_activate_log(spa);
7845
7846 if (error != 0)
7847 return (spa_vdev_exit(spa, NULL, txg, error));
7848
7849 /* check new spa name before going any further */
7850 if (spa_lookup(newname) != NULL)
7851 return (spa_vdev_exit(spa, NULL, txg, EEXIST));
7852
7853 /*
7854 * scan through all the children to ensure they're all mirrors
7855 */
7856 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvl) != 0 ||
7857 nvlist_lookup_nvlist_array(nvl, ZPOOL_CONFIG_CHILDREN, &child,
7858 &children) != 0)
7859 return (spa_vdev_exit(spa, NULL, txg, EINVAL));
7860
7861 /* first, check to ensure we've got the right child count */
7862 rvd = spa->spa_root_vdev;
7863 lastlog = 0;
7864 for (c = 0; c < rvd->vdev_children; c++) {
7865 vdev_t *vd = rvd->vdev_child[c];
7866
7867 /* don't count the holes & logs as children */
7868 if (vd->vdev_islog || (vd->vdev_ops != &vdev_indirect_ops &&
7869 !vdev_is_concrete(vd))) {
7870 if (lastlog == 0)
7871 lastlog = c;
7872 continue;
7873 }
7874
7875 lastlog = 0;
7876 }
7877 if (children != (lastlog != 0 ? lastlog : rvd->vdev_children))
7878 return (spa_vdev_exit(spa, NULL, txg, EINVAL));
7879
7880 /* next, ensure no spare or cache devices are part of the split */
7881 if (nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_SPARES, &tmp) == 0 ||
7882 nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_L2CACHE, &tmp) == 0)
7883 return (spa_vdev_exit(spa, NULL, txg, EINVAL));
7884
7885 vml = kmem_zalloc(children * sizeof (vdev_t *), KM_SLEEP);
7886 glist = kmem_zalloc(children * sizeof (uint64_t), KM_SLEEP);
7887
7888 /* then, loop over each vdev and validate it */
7889 for (c = 0; c < children; c++) {
7890 uint64_t is_hole = 0;
7891
7892 (void) nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_IS_HOLE,
7893 &is_hole);
7894
7895 if (is_hole != 0) {
7896 if (spa->spa_root_vdev->vdev_child[c]->vdev_ishole ||
7897 spa->spa_root_vdev->vdev_child[c]->vdev_islog) {
7898 continue;
7899 } else {
7900 error = SET_ERROR(EINVAL);
7901 break;
7902 }
7903 }
7904
7905 /* deal with indirect vdevs */
7906 if (spa->spa_root_vdev->vdev_child[c]->vdev_ops ==
7907 &vdev_indirect_ops)
7908 continue;
7909
7910 /* which disk is going to be split? */
7911 if (nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_GUID,
7912 &glist[c]) != 0) {
7913 error = SET_ERROR(EINVAL);
7914 break;
7915 }
7916
7917 /* look it up in the spa */
7918 vml[c] = spa_lookup_by_guid(spa, glist[c], B_FALSE);
7919 if (vml[c] == NULL) {
7920 error = SET_ERROR(ENODEV);
7921 break;
7922 }
7923
7924 /* make sure there's nothing stopping the split */
7925 if (vml[c]->vdev_parent->vdev_ops != &vdev_mirror_ops ||
7926 vml[c]->vdev_islog ||
7927 !vdev_is_concrete(vml[c]) ||
7928 vml[c]->vdev_isspare ||
7929 vml[c]->vdev_isl2cache ||
7930 !vdev_writeable(vml[c]) ||
7931 vml[c]->vdev_children != 0 ||
7932 vml[c]->vdev_state != VDEV_STATE_HEALTHY ||
7933 c != spa->spa_root_vdev->vdev_child[c]->vdev_id) {
7934 error = SET_ERROR(EINVAL);
7935 break;
7936 }
7937
7938 if (vdev_dtl_required(vml[c]) ||
7939 vdev_resilver_needed(vml[c], NULL, NULL)) {
7940 error = SET_ERROR(EBUSY);
7941 break;
7942 }
7943
7944 /* we need certain info from the top level */
7945 fnvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_ARRAY,
7946 vml[c]->vdev_top->vdev_ms_array);
7947 fnvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_SHIFT,
7948 vml[c]->vdev_top->vdev_ms_shift);
7949 fnvlist_add_uint64(child[c], ZPOOL_CONFIG_ASIZE,
7950 vml[c]->vdev_top->vdev_asize);
7951 fnvlist_add_uint64(child[c], ZPOOL_CONFIG_ASHIFT,
7952 vml[c]->vdev_top->vdev_ashift);
7953
7954 /* transfer per-vdev ZAPs */
7955 ASSERT3U(vml[c]->vdev_leaf_zap, !=, 0);
7956 VERIFY0(nvlist_add_uint64(child[c],
7957 ZPOOL_CONFIG_VDEV_LEAF_ZAP, vml[c]->vdev_leaf_zap));
7958
7959 ASSERT3U(vml[c]->vdev_top->vdev_top_zap, !=, 0);
7960 VERIFY0(nvlist_add_uint64(child[c],
7961 ZPOOL_CONFIG_VDEV_TOP_ZAP,
7962 vml[c]->vdev_parent->vdev_top_zap));
7963 }
7964
7965 if (error != 0) {
7966 kmem_free(vml, children * sizeof (vdev_t *));
7967 kmem_free(glist, children * sizeof (uint64_t));
7968 return (spa_vdev_exit(spa, NULL, txg, error));
7969 }
7970
7971 /* stop writers from using the disks */
7972 for (c = 0; c < children; c++) {
7973 if (vml[c] != NULL)
7974 vml[c]->vdev_offline = B_TRUE;
7975 }
7976 vdev_reopen(spa->spa_root_vdev);
7977
7978 /*
7979 * Temporarily record the splitting vdevs in the spa config. This
7980 * will disappear once the config is regenerated.
7981 */
7982 nvl = fnvlist_alloc();
7983 fnvlist_add_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST, glist, children);
7984 kmem_free(glist, children * sizeof (uint64_t));
7985
7986 mutex_enter(&spa->spa_props_lock);
7987 fnvlist_add_nvlist(spa->spa_config, ZPOOL_CONFIG_SPLIT, nvl);
7988 mutex_exit(&spa->spa_props_lock);
7989 spa->spa_config_splitting = nvl;
7990 vdev_config_dirty(spa->spa_root_vdev);
7991
7992 /* configure and create the new pool */
7993 fnvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME, newname);
7994 fnvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
7995 exp ? POOL_STATE_EXPORTED : POOL_STATE_ACTIVE);
7996 fnvlist_add_uint64(config, ZPOOL_CONFIG_VERSION, spa_version(spa));
7997 fnvlist_add_uint64(config, ZPOOL_CONFIG_POOL_TXG, spa->spa_config_txg);
7998 fnvlist_add_uint64(config, ZPOOL_CONFIG_POOL_GUID,
7999 spa_generate_guid(NULL));
8000 VERIFY0(nvlist_add_boolean(config, ZPOOL_CONFIG_HAS_PER_VDEV_ZAPS));
8001 (void) nvlist_lookup_string(props,
8002 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
8003
8004 /* add the new pool to the namespace */
8005 newspa = spa_add(newname, config, altroot);
8006 newspa->spa_avz_action = AVZ_ACTION_REBUILD;
8007 newspa->spa_config_txg = spa->spa_config_txg;
8008 spa_set_log_state(newspa, SPA_LOG_CLEAR);
8009
8010 /* release the spa config lock, retaining the namespace lock */
8011 spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
8012
8013 if (zio_injection_enabled)
8014 zio_handle_panic_injection(spa, FTAG, 1);
8015
8016 spa_activate(newspa, spa_mode_global);
8017 spa_async_suspend(newspa);
8018
8019 /*
8020 * Temporarily stop the initializing and TRIM activity. We set the
8021 * state to ACTIVE so that we know to resume initializing or TRIM
8022 * once the split has completed.
8023 */
8024 list_t vd_initialize_list;
8025 list_create(&vd_initialize_list, sizeof (vdev_t),
8026 offsetof(vdev_t, vdev_initialize_node));
8027
8028 list_t vd_trim_list;
8029 list_create(&vd_trim_list, sizeof (vdev_t),
8030 offsetof(vdev_t, vdev_trim_node));
8031
8032 for (c = 0; c < children; c++) {
8033 if (vml[c] != NULL && vml[c]->vdev_ops != &vdev_indirect_ops) {
8034 mutex_enter(&vml[c]->vdev_initialize_lock);
8035 vdev_initialize_stop(vml[c],
8036 VDEV_INITIALIZE_ACTIVE, &vd_initialize_list);
8037 mutex_exit(&vml[c]->vdev_initialize_lock);
8038
8039 mutex_enter(&vml[c]->vdev_trim_lock);
8040 vdev_trim_stop(vml[c], VDEV_TRIM_ACTIVE, &vd_trim_list);
8041 mutex_exit(&vml[c]->vdev_trim_lock);
8042 }
8043 }
8044
8045 vdev_initialize_stop_wait(spa, &vd_initialize_list);
8046 vdev_trim_stop_wait(spa, &vd_trim_list);
8047
8048 list_destroy(&vd_initialize_list);
8049 list_destroy(&vd_trim_list);
8050
8051 newspa->spa_config_source = SPA_CONFIG_SRC_SPLIT;
8052 newspa->spa_is_splitting = B_TRUE;
8053
8054 /* create the new pool from the disks of the original pool */
8055 error = spa_load(newspa, SPA_LOAD_IMPORT, SPA_IMPORT_ASSEMBLE);
8056 if (error)
8057 goto out;
8058
8059 /* if that worked, generate a real config for the new pool */
8060 if (newspa->spa_root_vdev != NULL) {
8061 newspa->spa_config_splitting = fnvlist_alloc();
8062 fnvlist_add_uint64(newspa->spa_config_splitting,
8063 ZPOOL_CONFIG_SPLIT_GUID, spa_guid(spa));
8064 spa_config_set(newspa, spa_config_generate(newspa, NULL, -1ULL,
8065 B_TRUE));
8066 }
8067
8068 /* set the props */
8069 if (props != NULL) {
8070 spa_configfile_set(newspa, props, B_FALSE);
8071 error = spa_prop_set(newspa, props);
8072 if (error)
8073 goto out;
8074 }
8075
8076 /* flush everything */
8077 txg = spa_vdev_config_enter(newspa);
8078 vdev_config_dirty(newspa->spa_root_vdev);
8079 (void) spa_vdev_config_exit(newspa, NULL, txg, 0, FTAG);
8080
8081 if (zio_injection_enabled)
8082 zio_handle_panic_injection(spa, FTAG, 2);
8083
8084 spa_async_resume(newspa);
8085
8086 /* finally, update the original pool's config */
8087 txg = spa_vdev_config_enter(spa);
8088 tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
8089 error = dmu_tx_assign(tx, TXG_WAIT);
8090 if (error != 0)
8091 dmu_tx_abort(tx);
8092 for (c = 0; c < children; c++) {
8093 if (vml[c] != NULL && vml[c]->vdev_ops != &vdev_indirect_ops) {
8094 vdev_t *tvd = vml[c]->vdev_top;
8095
8096 /*
8097 * Need to be sure the detachable VDEV is not
8098 * on any *other* txg's DTL list to prevent it
8099 * from being accessed after it's freed.
8100 */
8101 for (int t = 0; t < TXG_SIZE; t++) {
8102 (void) txg_list_remove_this(
8103 &tvd->vdev_dtl_list, vml[c], t);
8104 }
8105
8106 vdev_split(vml[c]);
8107 if (error == 0)
8108 spa_history_log_internal(spa, "detach", tx,
8109 "vdev=%s", vml[c]->vdev_path);
8110
8111 vdev_free(vml[c]);
8112 }
8113 }
8114 spa->spa_avz_action = AVZ_ACTION_REBUILD;
8115 vdev_config_dirty(spa->spa_root_vdev);
8116 spa->spa_config_splitting = NULL;
8117 nvlist_free(nvl);
8118 if (error == 0)
8119 dmu_tx_commit(tx);
8120 (void) spa_vdev_exit(spa, NULL, txg, 0);
8121
8122 if (zio_injection_enabled)
8123 zio_handle_panic_injection(spa, FTAG, 3);
8124
8125 /* split is complete; log a history record */
8126 spa_history_log_internal(newspa, "split", NULL,
8127 "from pool %s", spa_name(spa));
8128
8129 newspa->spa_is_splitting = B_FALSE;
8130 kmem_free(vml, children * sizeof (vdev_t *));
8131
8132 /* if we're not going to mount the filesystems in userland, export */
8133 if (exp)
8134 error = spa_export_common(newname, POOL_STATE_EXPORTED, NULL,
8135 B_FALSE, B_FALSE);
8136
8137 return (error);
8138
8139 out:
8140 spa_unload(newspa);
8141 spa_deactivate(newspa);
8142 spa_remove(newspa);
8143
8144 txg = spa_vdev_config_enter(spa);
8145
8146 /* re-online all offlined disks */
8147 for (c = 0; c < children; c++) {
8148 if (vml[c] != NULL)
8149 vml[c]->vdev_offline = B_FALSE;
8150 }
8151
8152 /* restart initializing or trimming disks as necessary */
8153 spa_async_request(spa, SPA_ASYNC_INITIALIZE_RESTART);
8154 spa_async_request(spa, SPA_ASYNC_TRIM_RESTART);
8155 spa_async_request(spa, SPA_ASYNC_AUTOTRIM_RESTART);
8156
8157 vdev_reopen(spa->spa_root_vdev);
8158
8159 nvlist_free(spa->spa_config_splitting);
8160 spa->spa_config_splitting = NULL;
8161 (void) spa_vdev_exit(spa, NULL, txg, error);
8162
8163 kmem_free(vml, children * sizeof (vdev_t *));
8164 return (error);
8165 }
8166
8167 /*
8168 * Find any device that's done replacing, or a vdev marked 'unspare' that's
8169 * currently spared, so we can detach it.
8170 */
8171 static vdev_t *
8172 spa_vdev_resilver_done_hunt(vdev_t *vd)
8173 {
8174 vdev_t *newvd, *oldvd;
8175
8176 for (int c = 0; c < vd->vdev_children; c++) {
8177 oldvd = spa_vdev_resilver_done_hunt(vd->vdev_child[c]);
8178 if (oldvd != NULL)
8179 return (oldvd);
8180 }
8181
8182 /*
8183 * Check for a completed replacement. We always consider the first
8184 * vdev in the list to be the oldest vdev, and the last one to be
8185 * the newest (see spa_vdev_attach() for how that works). In
8186 * the case where the newest vdev is faulted, we will not automatically
8187 * remove it after a resilver completes. This is OK as it will require
8188 * user intervention to determine which disk the admin wishes to keep.
8189 */
8190 if (vd->vdev_ops == &vdev_replacing_ops) {
8191 ASSERT(vd->vdev_children > 1);
8192
8193 newvd = vd->vdev_child[vd->vdev_children - 1];
8194 oldvd = vd->vdev_child[0];
8195
8196 if (vdev_dtl_empty(newvd, DTL_MISSING) &&
8197 vdev_dtl_empty(newvd, DTL_OUTAGE) &&
8198 !vdev_dtl_required(oldvd))
8199 return (oldvd);
8200 }
8201
8202 /*
8203 * Check for a completed resilver with the 'unspare' flag set.
8204 * Also potentially update faulted state.
8205 */
8206 if (vd->vdev_ops == &vdev_spare_ops) {
8207 vdev_t *first = vd->vdev_child[0];
8208 vdev_t *last = vd->vdev_child[vd->vdev_children - 1];
8209
8210 if (last->vdev_unspare) {
8211 oldvd = first;
8212 newvd = last;
8213 } else if (first->vdev_unspare) {
8214 oldvd = last;
8215 newvd = first;
8216 } else {
8217 oldvd = NULL;
8218 }
8219
8220 if (oldvd != NULL &&
8221 vdev_dtl_empty(newvd, DTL_MISSING) &&
8222 vdev_dtl_empty(newvd, DTL_OUTAGE) &&
8223 !vdev_dtl_required(oldvd))
8224 return (oldvd);
8225
8226 vdev_propagate_state(vd);
8227
8228 /*
8229 * If there are more than two spares attached to a disk,
8230 * and those spares are not required, then we want to
8231 * attempt to free them up now so that they can be used
8232 * by other pools. Once we're back down to a single
8233 * disk+spare, we stop removing them.
8234 */
8235 if (vd->vdev_children > 2) {
8236 newvd = vd->vdev_child[1];
8237
8238 if (newvd->vdev_isspare && last->vdev_isspare &&
8239 vdev_dtl_empty(last, DTL_MISSING) &&
8240 vdev_dtl_empty(last, DTL_OUTAGE) &&
8241 !vdev_dtl_required(newvd))
8242 return (newvd);
8243 }
8244 }
8245
8246 return (NULL);
8247 }
8248
8249 static void
8250 spa_vdev_resilver_done(spa_t *spa)
8251 {
8252 vdev_t *vd, *pvd, *ppvd;
8253 uint64_t guid, sguid, pguid, ppguid;
8254
8255 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
8256
8257 while ((vd = spa_vdev_resilver_done_hunt(spa->spa_root_vdev)) != NULL) {
8258 pvd = vd->vdev_parent;
8259 ppvd = pvd->vdev_parent;
8260 guid = vd->vdev_guid;
8261 pguid = pvd->vdev_guid;
8262 ppguid = ppvd->vdev_guid;
8263 sguid = 0;
8264 /*
8265 * If we have just finished replacing a hot spared device, then
8266 * we need to detach the parent's first child (the original hot
8267 * spare) as well.
8268 */
8269 if (ppvd->vdev_ops == &vdev_spare_ops && pvd->vdev_id == 0 &&
8270 ppvd->vdev_children == 2) {
8271 ASSERT(pvd->vdev_ops == &vdev_replacing_ops);
8272 sguid = ppvd->vdev_child[1]->vdev_guid;
8273 }
8274 ASSERT(vd->vdev_resilver_txg == 0 || !vdev_dtl_required(vd));
8275
8276 spa_config_exit(spa, SCL_ALL, FTAG);
8277 if (spa_vdev_detach(spa, guid, pguid, B_TRUE) != 0)
8278 return;
8279 if (sguid && spa_vdev_detach(spa, sguid, ppguid, B_TRUE) != 0)
8280 return;
8281 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
8282 }
8283
8284 spa_config_exit(spa, SCL_ALL, FTAG);
8285
8286 /*
8287 * If a detach was not performed above replace waiters will not have
8288 * been notified. In which case we must do so now.
8289 */
8290 spa_notify_waiters(spa);
8291 }
8292
8293 /*
8294 * Update the stored path or FRU for this vdev.
8295 */
8296 static int
8297 spa_vdev_set_common(spa_t *spa, uint64_t guid, const char *value,
8298 boolean_t ispath)
8299 {
8300 vdev_t *vd;
8301 boolean_t sync = B_FALSE;
8302
8303 ASSERT(spa_writeable(spa));
8304
8305 spa_vdev_state_enter(spa, SCL_ALL);
8306
8307 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
8308 return (spa_vdev_state_exit(spa, NULL, ENOENT));
8309
8310 if (!vd->vdev_ops->vdev_op_leaf)
8311 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
8312
8313 if (ispath) {
8314 if (strcmp(value, vd->vdev_path) != 0) {
8315 spa_strfree(vd->vdev_path);
8316 vd->vdev_path = spa_strdup(value);
8317 sync = B_TRUE;
8318 }
8319 } else {
8320 if (vd->vdev_fru == NULL) {
8321 vd->vdev_fru = spa_strdup(value);
8322 sync = B_TRUE;
8323 } else if (strcmp(value, vd->vdev_fru) != 0) {
8324 spa_strfree(vd->vdev_fru);
8325 vd->vdev_fru = spa_strdup(value);
8326 sync = B_TRUE;
8327 }
8328 }
8329
8330 return (spa_vdev_state_exit(spa, sync ? vd : NULL, 0));
8331 }
8332
8333 int
8334 spa_vdev_setpath(spa_t *spa, uint64_t guid, const char *newpath)
8335 {
8336 return (spa_vdev_set_common(spa, guid, newpath, B_TRUE));
8337 }
8338
8339 int
8340 spa_vdev_setfru(spa_t *spa, uint64_t guid, const char *newfru)
8341 {
8342 return (spa_vdev_set_common(spa, guid, newfru, B_FALSE));
8343 }
8344
8345 /*
8346 * ==========================================================================
8347 * SPA Scanning
8348 * ==========================================================================
8349 */
8350 int
8351 spa_scrub_pause_resume(spa_t *spa, pool_scrub_cmd_t cmd)
8352 {
8353 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
8354
8355 if (dsl_scan_resilvering(spa->spa_dsl_pool))
8356 return (SET_ERROR(EBUSY));
8357
8358 return (dsl_scrub_set_pause_resume(spa->spa_dsl_pool, cmd));
8359 }
8360
8361 int
8362 spa_scan_stop(spa_t *spa)
8363 {
8364 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
8365 if (dsl_scan_resilvering(spa->spa_dsl_pool))
8366 return (SET_ERROR(EBUSY));
8367
8368 return (dsl_scan_cancel(spa->spa_dsl_pool));
8369 }
8370
8371 int
8372 spa_scan(spa_t *spa, pool_scan_func_t func)
8373 {
8374 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
8375
8376 if (func >= POOL_SCAN_FUNCS || func == POOL_SCAN_NONE)
8377 return (SET_ERROR(ENOTSUP));
8378
8379 if (func == POOL_SCAN_RESILVER &&
8380 !spa_feature_is_enabled(spa, SPA_FEATURE_RESILVER_DEFER))
8381 return (SET_ERROR(ENOTSUP));
8382
8383 /*
8384 * If a resilver was requested, but there is no DTL on a
8385 * writeable leaf device, we have nothing to do.
8386 */
8387 if (func == POOL_SCAN_RESILVER &&
8388 !vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL)) {
8389 spa_async_request(spa, SPA_ASYNC_RESILVER_DONE);
8390 return (0);
8391 }
8392
8393 if (func == POOL_SCAN_ERRORSCRUB &&
8394 !spa_feature_is_enabled(spa, SPA_FEATURE_HEAD_ERRLOG))
8395 return (SET_ERROR(ENOTSUP));
8396
8397 return (dsl_scan(spa->spa_dsl_pool, func));
8398 }
8399
8400 /*
8401 * ==========================================================================
8402 * SPA async task processing
8403 * ==========================================================================
8404 */
8405
8406 static void
8407 spa_async_remove(spa_t *spa, vdev_t *vd)
8408 {
8409 if (vd->vdev_remove_wanted) {
8410 vd->vdev_remove_wanted = B_FALSE;
8411 vd->vdev_delayed_close = B_FALSE;
8412 vdev_set_state(vd, B_FALSE, VDEV_STATE_REMOVED, VDEV_AUX_NONE);
8413
8414 /*
8415 * We want to clear the stats, but we don't want to do a full
8416 * vdev_clear() as that will cause us to throw away
8417 * degraded/faulted state as well as attempt to reopen the
8418 * device, all of which is a waste.
8419 */
8420 vd->vdev_stat.vs_read_errors = 0;
8421 vd->vdev_stat.vs_write_errors = 0;
8422 vd->vdev_stat.vs_checksum_errors = 0;
8423
8424 vdev_state_dirty(vd->vdev_top);
8425
8426 /* Tell userspace that the vdev is gone. */
8427 zfs_post_remove(spa, vd);
8428 }
8429
8430 for (int c = 0; c < vd->vdev_children; c++)
8431 spa_async_remove(spa, vd->vdev_child[c]);
8432 }
8433
8434 static void
8435 spa_async_probe(spa_t *spa, vdev_t *vd)
8436 {
8437 if (vd->vdev_probe_wanted) {
8438 vd->vdev_probe_wanted = B_FALSE;
8439 vdev_reopen(vd); /* vdev_open() does the actual probe */
8440 }
8441
8442 for (int c = 0; c < vd->vdev_children; c++)
8443 spa_async_probe(spa, vd->vdev_child[c]);
8444 }
8445
8446 static void
8447 spa_async_autoexpand(spa_t *spa, vdev_t *vd)
8448 {
8449 if (!spa->spa_autoexpand)
8450 return;
8451
8452 for (int c = 0; c < vd->vdev_children; c++) {
8453 vdev_t *cvd = vd->vdev_child[c];
8454 spa_async_autoexpand(spa, cvd);
8455 }
8456
8457 if (!vd->vdev_ops->vdev_op_leaf || vd->vdev_physpath == NULL)
8458 return;
8459
8460 spa_event_notify(vd->vdev_spa, vd, NULL, ESC_ZFS_VDEV_AUTOEXPAND);
8461 }
8462
8463 static __attribute__((noreturn)) void
8464 spa_async_thread(void *arg)
8465 {
8466 spa_t *spa = (spa_t *)arg;
8467 dsl_pool_t *dp = spa->spa_dsl_pool;
8468 int tasks;
8469
8470 ASSERT(spa->spa_sync_on);
8471
8472 mutex_enter(&spa->spa_async_lock);
8473 tasks = spa->spa_async_tasks;
8474 spa->spa_async_tasks = 0;
8475 mutex_exit(&spa->spa_async_lock);
8476
8477 /*
8478 * See if the config needs to be updated.
8479 */
8480 if (tasks & SPA_ASYNC_CONFIG_UPDATE) {
8481 uint64_t old_space, new_space;
8482
8483 mutex_enter(&spa_namespace_lock);
8484 old_space = metaslab_class_get_space(spa_normal_class(spa));
8485 old_space += metaslab_class_get_space(spa_special_class(spa));
8486 old_space += metaslab_class_get_space(spa_dedup_class(spa));
8487 old_space += metaslab_class_get_space(
8488 spa_embedded_log_class(spa));
8489
8490 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
8491
8492 new_space = metaslab_class_get_space(spa_normal_class(spa));
8493 new_space += metaslab_class_get_space(spa_special_class(spa));
8494 new_space += metaslab_class_get_space(spa_dedup_class(spa));
8495 new_space += metaslab_class_get_space(
8496 spa_embedded_log_class(spa));
8497 mutex_exit(&spa_namespace_lock);
8498
8499 /*
8500 * If the pool grew as a result of the config update,
8501 * then log an internal history event.
8502 */
8503 if (new_space != old_space) {
8504 spa_history_log_internal(spa, "vdev online", NULL,
8505 "pool '%s' size: %llu(+%llu)",
8506 spa_name(spa), (u_longlong_t)new_space,
8507 (u_longlong_t)(new_space - old_space));
8508 }
8509 }
8510
8511 /*
8512 * See if any devices need to be marked REMOVED.
8513 */
8514 if (tasks & SPA_ASYNC_REMOVE) {
8515 spa_vdev_state_enter(spa, SCL_NONE);
8516 spa_async_remove(spa, spa->spa_root_vdev);
8517 for (int i = 0; i < spa->spa_l2cache.sav_count; i++)
8518 spa_async_remove(spa, spa->spa_l2cache.sav_vdevs[i]);
8519 for (int i = 0; i < spa->spa_spares.sav_count; i++)
8520 spa_async_remove(spa, spa->spa_spares.sav_vdevs[i]);
8521 (void) spa_vdev_state_exit(spa, NULL, 0);
8522 }
8523
8524 if ((tasks & SPA_ASYNC_AUTOEXPAND) && !spa_suspended(spa)) {
8525 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
8526 spa_async_autoexpand(spa, spa->spa_root_vdev);
8527 spa_config_exit(spa, SCL_CONFIG, FTAG);
8528 }
8529
8530 /*
8531 * See if any devices need to be probed.
8532 */
8533 if (tasks & SPA_ASYNC_PROBE) {
8534 spa_vdev_state_enter(spa, SCL_NONE);
8535 spa_async_probe(spa, spa->spa_root_vdev);
8536 (void) spa_vdev_state_exit(spa, NULL, 0);
8537 }
8538
8539 /*
8540 * If any devices are done replacing, detach them.
8541 */
8542 if (tasks & SPA_ASYNC_RESILVER_DONE ||
8543 tasks & SPA_ASYNC_REBUILD_DONE ||
8544 tasks & SPA_ASYNC_DETACH_SPARE) {
8545 spa_vdev_resilver_done(spa);
8546 }
8547
8548 /*
8549 * Kick off a resilver.
8550 */
8551 if (tasks & SPA_ASYNC_RESILVER &&
8552 !vdev_rebuild_active(spa->spa_root_vdev) &&
8553 (!dsl_scan_resilvering(dp) ||
8554 !spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_RESILVER_DEFER)))
8555 dsl_scan_restart_resilver(dp, 0);
8556
8557 if (tasks & SPA_ASYNC_INITIALIZE_RESTART) {
8558 mutex_enter(&spa_namespace_lock);
8559 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
8560 vdev_initialize_restart(spa->spa_root_vdev);
8561 spa_config_exit(spa, SCL_CONFIG, FTAG);
8562 mutex_exit(&spa_namespace_lock);
8563 }
8564
8565 if (tasks & SPA_ASYNC_TRIM_RESTART) {
8566 mutex_enter(&spa_namespace_lock);
8567 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
8568 vdev_trim_restart(spa->spa_root_vdev);
8569 spa_config_exit(spa, SCL_CONFIG, FTAG);
8570 mutex_exit(&spa_namespace_lock);
8571 }
8572
8573 if (tasks & SPA_ASYNC_AUTOTRIM_RESTART) {
8574 mutex_enter(&spa_namespace_lock);
8575 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
8576 vdev_autotrim_restart(spa);
8577 spa_config_exit(spa, SCL_CONFIG, FTAG);
8578 mutex_exit(&spa_namespace_lock);
8579 }
8580
8581 /*
8582 * Kick off L2 cache whole device TRIM.
8583 */
8584 if (tasks & SPA_ASYNC_L2CACHE_TRIM) {
8585 mutex_enter(&spa_namespace_lock);
8586 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
8587 vdev_trim_l2arc(spa);
8588 spa_config_exit(spa, SCL_CONFIG, FTAG);
8589 mutex_exit(&spa_namespace_lock);
8590 }
8591
8592 /*
8593 * Kick off L2 cache rebuilding.
8594 */
8595 if (tasks & SPA_ASYNC_L2CACHE_REBUILD) {
8596 mutex_enter(&spa_namespace_lock);
8597 spa_config_enter(spa, SCL_L2ARC, FTAG, RW_READER);
8598 l2arc_spa_rebuild_start(spa);
8599 spa_config_exit(spa, SCL_L2ARC, FTAG);
8600 mutex_exit(&spa_namespace_lock);
8601 }
8602
8603 /*
8604 * Let the world know that we're done.
8605 */
8606 mutex_enter(&spa->spa_async_lock);
8607 spa->spa_async_thread = NULL;
8608 cv_broadcast(&spa->spa_async_cv);
8609 mutex_exit(&spa->spa_async_lock);
8610 thread_exit();
8611 }
8612
8613 void
8614 spa_async_suspend(spa_t *spa)
8615 {
8616 mutex_enter(&spa->spa_async_lock);
8617 spa->spa_async_suspended++;
8618 while (spa->spa_async_thread != NULL)
8619 cv_wait(&spa->spa_async_cv, &spa->spa_async_lock);
8620 mutex_exit(&spa->spa_async_lock);
8621
8622 spa_vdev_remove_suspend(spa);
8623
8624 zthr_t *condense_thread = spa->spa_condense_zthr;
8625 if (condense_thread != NULL)
8626 zthr_cancel(condense_thread);
8627
8628 zthr_t *raidz_expand_thread = spa->spa_raidz_expand_zthr;
8629 if (raidz_expand_thread != NULL)
8630 zthr_cancel(raidz_expand_thread);
8631
8632 zthr_t *discard_thread = spa->spa_checkpoint_discard_zthr;
8633 if (discard_thread != NULL)
8634 zthr_cancel(discard_thread);
8635
8636 zthr_t *ll_delete_thread = spa->spa_livelist_delete_zthr;
8637 if (ll_delete_thread != NULL)
8638 zthr_cancel(ll_delete_thread);
8639
8640 zthr_t *ll_condense_thread = spa->spa_livelist_condense_zthr;
8641 if (ll_condense_thread != NULL)
8642 zthr_cancel(ll_condense_thread);
8643 }
8644
8645 void
8646 spa_async_resume(spa_t *spa)
8647 {
8648 mutex_enter(&spa->spa_async_lock);
8649 ASSERT(spa->spa_async_suspended != 0);
8650 spa->spa_async_suspended--;
8651 mutex_exit(&spa->spa_async_lock);
8652 spa_restart_removal(spa);
8653
8654 zthr_t *condense_thread = spa->spa_condense_zthr;
8655 if (condense_thread != NULL)
8656 zthr_resume(condense_thread);
8657
8658 zthr_t *raidz_expand_thread = spa->spa_raidz_expand_zthr;
8659 if (raidz_expand_thread != NULL)
8660 zthr_resume(raidz_expand_thread);
8661
8662 zthr_t *discard_thread = spa->spa_checkpoint_discard_zthr;
8663 if (discard_thread != NULL)
8664 zthr_resume(discard_thread);
8665
8666 zthr_t *ll_delete_thread = spa->spa_livelist_delete_zthr;
8667 if (ll_delete_thread != NULL)
8668 zthr_resume(ll_delete_thread);
8669
8670 zthr_t *ll_condense_thread = spa->spa_livelist_condense_zthr;
8671 if (ll_condense_thread != NULL)
8672 zthr_resume(ll_condense_thread);
8673 }
8674
8675 static boolean_t
8676 spa_async_tasks_pending(spa_t *spa)
8677 {
8678 uint_t non_config_tasks;
8679 uint_t config_task;
8680 boolean_t config_task_suspended;
8681
8682 non_config_tasks = spa->spa_async_tasks & ~SPA_ASYNC_CONFIG_UPDATE;
8683 config_task = spa->spa_async_tasks & SPA_ASYNC_CONFIG_UPDATE;
8684 if (spa->spa_ccw_fail_time == 0) {
8685 config_task_suspended = B_FALSE;
8686 } else {
8687 config_task_suspended =
8688 (gethrtime() - spa->spa_ccw_fail_time) <
8689 ((hrtime_t)zfs_ccw_retry_interval * NANOSEC);
8690 }
8691
8692 return (non_config_tasks || (config_task && !config_task_suspended));
8693 }
8694
8695 static void
8696 spa_async_dispatch(spa_t *spa)
8697 {
8698 mutex_enter(&spa->spa_async_lock);
8699 if (spa_async_tasks_pending(spa) &&
8700 !spa->spa_async_suspended &&
8701 spa->spa_async_thread == NULL)
8702 spa->spa_async_thread = thread_create(NULL, 0,
8703 spa_async_thread, spa, 0, &p0, TS_RUN, maxclsyspri);
8704 mutex_exit(&spa->spa_async_lock);
8705 }
8706
8707 void
8708 spa_async_request(spa_t *spa, int task)
8709 {
8710 zfs_dbgmsg("spa=%s async request task=%u", spa->spa_name, task);
8711 mutex_enter(&spa->spa_async_lock);
8712 spa->spa_async_tasks |= task;
8713 mutex_exit(&spa->spa_async_lock);
8714 }
8715
8716 int
8717 spa_async_tasks(spa_t *spa)
8718 {
8719 return (spa->spa_async_tasks);
8720 }
8721
8722 /*
8723 * ==========================================================================
8724 * SPA syncing routines
8725 * ==========================================================================
8726 */
8727
8728
8729 static int
8730 bpobj_enqueue_cb(void *arg, const blkptr_t *bp, boolean_t bp_freed,
8731 dmu_tx_t *tx)
8732 {
8733 bpobj_t *bpo = arg;
8734 bpobj_enqueue(bpo, bp, bp_freed, tx);
8735 return (0);
8736 }
8737
8738 int
8739 bpobj_enqueue_alloc_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
8740 {
8741 return (bpobj_enqueue_cb(arg, bp, B_FALSE, tx));
8742 }
8743
8744 int
8745 bpobj_enqueue_free_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
8746 {
8747 return (bpobj_enqueue_cb(arg, bp, B_TRUE, tx));
8748 }
8749
8750 static int
8751 spa_free_sync_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
8752 {
8753 zio_t *pio = arg;
8754
8755 zio_nowait(zio_free_sync(pio, pio->io_spa, dmu_tx_get_txg(tx), bp,
8756 pio->io_flags));
8757 return (0);
8758 }
8759
8760 static int
8761 bpobj_spa_free_sync_cb(void *arg, const blkptr_t *bp, boolean_t bp_freed,
8762 dmu_tx_t *tx)
8763 {
8764 ASSERT(!bp_freed);
8765 return (spa_free_sync_cb(arg, bp, tx));
8766 }
8767
8768 /*
8769 * Note: this simple function is not inlined to make it easier to dtrace the
8770 * amount of time spent syncing frees.
8771 */
8772 static void
8773 spa_sync_frees(spa_t *spa, bplist_t *bpl, dmu_tx_t *tx)
8774 {
8775 zio_t *zio = zio_root(spa, NULL, NULL, 0);
8776 bplist_iterate(bpl, spa_free_sync_cb, zio, tx);
8777 VERIFY(zio_wait(zio) == 0);
8778 }
8779
8780 /*
8781 * Note: this simple function is not inlined to make it easier to dtrace the
8782 * amount of time spent syncing deferred frees.
8783 */
8784 static void
8785 spa_sync_deferred_frees(spa_t *spa, dmu_tx_t *tx)
8786 {
8787 if (spa_sync_pass(spa) != 1)
8788 return;
8789
8790 /*
8791 * Note:
8792 * If the log space map feature is active, we stop deferring
8793 * frees to the next TXG and therefore running this function
8794 * would be considered a no-op as spa_deferred_bpobj should
8795 * not have any entries.
8796 *
8797 * That said we run this function anyway (instead of returning
8798 * immediately) for the edge-case scenario where we just
8799 * activated the log space map feature in this TXG but we have
8800 * deferred frees from the previous TXG.
8801 */
8802 zio_t *zio = zio_root(spa, NULL, NULL, 0);
8803 VERIFY3U(bpobj_iterate(&spa->spa_deferred_bpobj,
8804 bpobj_spa_free_sync_cb, zio, tx), ==, 0);
8805 VERIFY0(zio_wait(zio));
8806 }
8807
8808 static void
8809 spa_sync_nvlist(spa_t *spa, uint64_t obj, nvlist_t *nv, dmu_tx_t *tx)
8810 {
8811 char *packed = NULL;
8812 size_t bufsize;
8813 size_t nvsize = 0;
8814 dmu_buf_t *db;
8815
8816 VERIFY(nvlist_size(nv, &nvsize, NV_ENCODE_XDR) == 0);
8817
8818 /*
8819 * Write full (SPA_CONFIG_BLOCKSIZE) blocks of configuration
8820 * information. This avoids the dmu_buf_will_dirty() path and
8821 * saves us a pre-read to get data we don't actually care about.
8822 */
8823 bufsize = P2ROUNDUP((uint64_t)nvsize, SPA_CONFIG_BLOCKSIZE);
8824 packed = vmem_alloc(bufsize, KM_SLEEP);
8825
8826 VERIFY(nvlist_pack(nv, &packed, &nvsize, NV_ENCODE_XDR,
8827 KM_SLEEP) == 0);
8828 memset(packed + nvsize, 0, bufsize - nvsize);
8829
8830 dmu_write(spa->spa_meta_objset, obj, 0, bufsize, packed, tx);
8831
8832 vmem_free(packed, bufsize);
8833
8834 VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db));
8835 dmu_buf_will_dirty(db, tx);
8836 *(uint64_t *)db->db_data = nvsize;
8837 dmu_buf_rele(db, FTAG);
8838 }
8839
8840 static void
8841 spa_sync_aux_dev(spa_t *spa, spa_aux_vdev_t *sav, dmu_tx_t *tx,
8842 const char *config, const char *entry)
8843 {
8844 nvlist_t *nvroot;
8845 nvlist_t **list;
8846 int i;
8847
8848 if (!sav->sav_sync)
8849 return;
8850
8851 /*
8852 * Update the MOS nvlist describing the list of available devices.
8853 * spa_validate_aux() will have already made sure this nvlist is
8854 * valid and the vdevs are labeled appropriately.
8855 */
8856 if (sav->sav_object == 0) {
8857 sav->sav_object = dmu_object_alloc(spa->spa_meta_objset,
8858 DMU_OT_PACKED_NVLIST, 1 << 14, DMU_OT_PACKED_NVLIST_SIZE,
8859 sizeof (uint64_t), tx);
8860 VERIFY(zap_update(spa->spa_meta_objset,
8861 DMU_POOL_DIRECTORY_OBJECT, entry, sizeof (uint64_t), 1,
8862 &sav->sav_object, tx) == 0);
8863 }
8864
8865 nvroot = fnvlist_alloc();
8866 if (sav->sav_count == 0) {
8867 fnvlist_add_nvlist_array(nvroot, config,
8868 (const nvlist_t * const *)NULL, 0);
8869 } else {
8870 list = kmem_alloc(sav->sav_count*sizeof (void *), KM_SLEEP);
8871 for (i = 0; i < sav->sav_count; i++)
8872 list[i] = vdev_config_generate(spa, sav->sav_vdevs[i],
8873 B_FALSE, VDEV_CONFIG_L2CACHE);
8874 fnvlist_add_nvlist_array(nvroot, config,
8875 (const nvlist_t * const *)list, sav->sav_count);
8876 for (i = 0; i < sav->sav_count; i++)
8877 nvlist_free(list[i]);
8878 kmem_free(list, sav->sav_count * sizeof (void *));
8879 }
8880
8881 spa_sync_nvlist(spa, sav->sav_object, nvroot, tx);
8882 nvlist_free(nvroot);
8883
8884 sav->sav_sync = B_FALSE;
8885 }
8886
8887 /*
8888 * Rebuild spa's all-vdev ZAP from the vdev ZAPs indicated in each vdev_t.
8889 * The all-vdev ZAP must be empty.
8890 */
8891 static void
8892 spa_avz_build(vdev_t *vd, uint64_t avz, dmu_tx_t *tx)
8893 {
8894 spa_t *spa = vd->vdev_spa;
8895
8896 if (vd->vdev_root_zap != 0 &&
8897 spa_feature_is_active(spa, SPA_FEATURE_AVZ_V2)) {
8898 VERIFY0(zap_add_int(spa->spa_meta_objset, avz,
8899 vd->vdev_root_zap, tx));
8900 }
8901 if (vd->vdev_top_zap != 0) {
8902 VERIFY0(zap_add_int(spa->spa_meta_objset, avz,
8903 vd->vdev_top_zap, tx));
8904 }
8905 if (vd->vdev_leaf_zap != 0) {
8906 VERIFY0(zap_add_int(spa->spa_meta_objset, avz,
8907 vd->vdev_leaf_zap, tx));
8908 }
8909 for (uint64_t i = 0; i < vd->vdev_children; i++) {
8910 spa_avz_build(vd->vdev_child[i], avz, tx);
8911 }
8912 }
8913
8914 static void
8915 spa_sync_config_object(spa_t *spa, dmu_tx_t *tx)
8916 {
8917 nvlist_t *config;
8918
8919 /*
8920 * If the pool is being imported from a pre-per-vdev-ZAP version of ZFS,
8921 * its config may not be dirty but we still need to build per-vdev ZAPs.
8922 * Similarly, if the pool is being assembled (e.g. after a split), we
8923 * need to rebuild the AVZ although the config may not be dirty.
8924 */
8925 if (list_is_empty(&spa->spa_config_dirty_list) &&
8926 spa->spa_avz_action == AVZ_ACTION_NONE)
8927 return;
8928
8929 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
8930
8931 ASSERT(spa->spa_avz_action == AVZ_ACTION_NONE ||
8932 spa->spa_avz_action == AVZ_ACTION_INITIALIZE ||
8933 spa->spa_all_vdev_zaps != 0);
8934
8935 if (spa->spa_avz_action == AVZ_ACTION_REBUILD) {
8936 /* Make and build the new AVZ */
8937 uint64_t new_avz = zap_create(spa->spa_meta_objset,
8938 DMU_OTN_ZAP_METADATA, DMU_OT_NONE, 0, tx);
8939 spa_avz_build(spa->spa_root_vdev, new_avz, tx);
8940
8941 /* Diff old AVZ with new one */
8942 zap_cursor_t zc;
8943 zap_attribute_t za;
8944
8945 for (zap_cursor_init(&zc, spa->spa_meta_objset,
8946 spa->spa_all_vdev_zaps);
8947 zap_cursor_retrieve(&zc, &za) == 0;
8948 zap_cursor_advance(&zc)) {
8949 uint64_t vdzap = za.za_first_integer;
8950 if (zap_lookup_int(spa->spa_meta_objset, new_avz,
8951 vdzap) == ENOENT) {
8952 /*
8953 * ZAP is listed in old AVZ but not in new one;
8954 * destroy it
8955 */
8956 VERIFY0(zap_destroy(spa->spa_meta_objset, vdzap,
8957 tx));
8958 }
8959 }
8960
8961 zap_cursor_fini(&zc);
8962
8963 /* Destroy the old AVZ */
8964 VERIFY0(zap_destroy(spa->spa_meta_objset,
8965 spa->spa_all_vdev_zaps, tx));
8966
8967 /* Replace the old AVZ in the dir obj with the new one */
8968 VERIFY0(zap_update(spa->spa_meta_objset,
8969 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_VDEV_ZAP_MAP,
8970 sizeof (new_avz), 1, &new_avz, tx));
8971
8972 spa->spa_all_vdev_zaps = new_avz;
8973 } else if (spa->spa_avz_action == AVZ_ACTION_DESTROY) {
8974 zap_cursor_t zc;
8975 zap_attribute_t za;
8976
8977 /* Walk through the AVZ and destroy all listed ZAPs */
8978 for (zap_cursor_init(&zc, spa->spa_meta_objset,
8979 spa->spa_all_vdev_zaps);
8980 zap_cursor_retrieve(&zc, &za) == 0;
8981 zap_cursor_advance(&zc)) {
8982 uint64_t zap = za.za_first_integer;
8983 VERIFY0(zap_destroy(spa->spa_meta_objset, zap, tx));
8984 }
8985
8986 zap_cursor_fini(&zc);
8987
8988 /* Destroy and unlink the AVZ itself */
8989 VERIFY0(zap_destroy(spa->spa_meta_objset,
8990 spa->spa_all_vdev_zaps, tx));
8991 VERIFY0(zap_remove(spa->spa_meta_objset,
8992 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_VDEV_ZAP_MAP, tx));
8993 spa->spa_all_vdev_zaps = 0;
8994 }
8995
8996 if (spa->spa_all_vdev_zaps == 0) {
8997 spa->spa_all_vdev_zaps = zap_create_link(spa->spa_meta_objset,
8998 DMU_OTN_ZAP_METADATA, DMU_POOL_DIRECTORY_OBJECT,
8999 DMU_POOL_VDEV_ZAP_MAP, tx);
9000 }
9001 spa->spa_avz_action = AVZ_ACTION_NONE;
9002
9003 /* Create ZAPs for vdevs that don't have them. */
9004 vdev_construct_zaps(spa->spa_root_vdev, tx);
9005
9006 config = spa_config_generate(spa, spa->spa_root_vdev,
9007 dmu_tx_get_txg(tx), B_FALSE);
9008
9009 /*
9010 * If we're upgrading the spa version then make sure that
9011 * the config object gets updated with the correct version.
9012 */
9013 if (spa->spa_ubsync.ub_version < spa->spa_uberblock.ub_version)
9014 fnvlist_add_uint64(config, ZPOOL_CONFIG_VERSION,
9015 spa->spa_uberblock.ub_version);
9016
9017 spa_config_exit(spa, SCL_STATE, FTAG);
9018
9019 nvlist_free(spa->spa_config_syncing);
9020 spa->spa_config_syncing = config;
9021
9022 spa_sync_nvlist(spa, spa->spa_config_object, config, tx);
9023 }
9024
9025 static void
9026 spa_sync_version(void *arg, dmu_tx_t *tx)
9027 {
9028 uint64_t *versionp = arg;
9029 uint64_t version = *versionp;
9030 spa_t *spa = dmu_tx_pool(tx)->dp_spa;
9031
9032 /*
9033 * Setting the version is special cased when first creating the pool.
9034 */
9035 ASSERT(tx->tx_txg != TXG_INITIAL);
9036
9037 ASSERT(SPA_VERSION_IS_SUPPORTED(version));
9038 ASSERT(version >= spa_version(spa));
9039
9040 spa->spa_uberblock.ub_version = version;
9041 vdev_config_dirty(spa->spa_root_vdev);
9042 spa_history_log_internal(spa, "set", tx, "version=%lld",
9043 (longlong_t)version);
9044 }
9045
9046 /*
9047 * Set zpool properties.
9048 */
9049 static void
9050 spa_sync_props(void *arg, dmu_tx_t *tx)
9051 {
9052 nvlist_t *nvp = arg;
9053 spa_t *spa = dmu_tx_pool(tx)->dp_spa;
9054 objset_t *mos = spa->spa_meta_objset;
9055 nvpair_t *elem = NULL;
9056
9057 mutex_enter(&spa->spa_props_lock);
9058
9059 while ((elem = nvlist_next_nvpair(nvp, elem))) {
9060 uint64_t intval;
9061 const char *strval, *fname;
9062 zpool_prop_t prop;
9063 const char *propname;
9064 const char *elemname = nvpair_name(elem);
9065 zprop_type_t proptype;
9066 spa_feature_t fid;
9067
9068 switch (prop = zpool_name_to_prop(elemname)) {
9069 case ZPOOL_PROP_VERSION:
9070 intval = fnvpair_value_uint64(elem);
9071 /*
9072 * The version is synced separately before other
9073 * properties and should be correct by now.
9074 */
9075 ASSERT3U(spa_version(spa), >=, intval);
9076 break;
9077
9078 case ZPOOL_PROP_ALTROOT:
9079 /*
9080 * 'altroot' is a non-persistent property. It should
9081 * have been set temporarily at creation or import time.
9082 */
9083 ASSERT(spa->spa_root != NULL);
9084 break;
9085
9086 case ZPOOL_PROP_READONLY:
9087 case ZPOOL_PROP_CACHEFILE:
9088 /*
9089 * 'readonly' and 'cachefile' are also non-persistent
9090 * properties.
9091 */
9092 break;
9093 case ZPOOL_PROP_COMMENT:
9094 strval = fnvpair_value_string(elem);
9095 if (spa->spa_comment != NULL)
9096 spa_strfree(spa->spa_comment);
9097 spa->spa_comment = spa_strdup(strval);
9098 /*
9099 * We need to dirty the configuration on all the vdevs
9100 * so that their labels get updated. We also need to
9101 * update the cache file to keep it in sync with the
9102 * MOS version. It's unnecessary to do this for pool
9103 * creation since the vdev's configuration has already
9104 * been dirtied.
9105 */
9106 if (tx->tx_txg != TXG_INITIAL) {
9107 vdev_config_dirty(spa->spa_root_vdev);
9108 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
9109 }
9110 spa_history_log_internal(spa, "set", tx,
9111 "%s=%s", elemname, strval);
9112 break;
9113 case ZPOOL_PROP_COMPATIBILITY:
9114 strval = fnvpair_value_string(elem);
9115 if (spa->spa_compatibility != NULL)
9116 spa_strfree(spa->spa_compatibility);
9117 spa->spa_compatibility = spa_strdup(strval);
9118 /*
9119 * Dirty the configuration on vdevs as above.
9120 */
9121 if (tx->tx_txg != TXG_INITIAL) {
9122 vdev_config_dirty(spa->spa_root_vdev);
9123 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
9124 }
9125
9126 spa_history_log_internal(spa, "set", tx,
9127 "%s=%s", nvpair_name(elem), strval);
9128 break;
9129
9130 case ZPOOL_PROP_INVAL:
9131 if (zpool_prop_feature(elemname)) {
9132 fname = strchr(elemname, '@') + 1;
9133 VERIFY0(zfeature_lookup_name(fname, &fid));
9134
9135 spa_feature_enable(spa, fid, tx);
9136 spa_history_log_internal(spa, "set", tx,
9137 "%s=enabled", elemname);
9138 break;
9139 } else if (!zfs_prop_user(elemname)) {
9140 ASSERT(zpool_prop_feature(elemname));
9141 break;
9142 }
9143 zfs_fallthrough;
9144 default:
9145 /*
9146 * Set pool property values in the poolprops mos object.
9147 */
9148 if (spa->spa_pool_props_object == 0) {
9149 spa->spa_pool_props_object =
9150 zap_create_link(mos, DMU_OT_POOL_PROPS,
9151 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_PROPS,
9152 tx);
9153 }
9154
9155 /* normalize the property name */
9156 if (prop == ZPOOL_PROP_INVAL) {
9157 propname = elemname;
9158 proptype = PROP_TYPE_STRING;
9159 } else {
9160 propname = zpool_prop_to_name(prop);
9161 proptype = zpool_prop_get_type(prop);
9162 }
9163
9164 if (nvpair_type(elem) == DATA_TYPE_STRING) {
9165 ASSERT(proptype == PROP_TYPE_STRING);
9166 strval = fnvpair_value_string(elem);
9167 VERIFY0(zap_update(mos,
9168 spa->spa_pool_props_object, propname,
9169 1, strlen(strval) + 1, strval, tx));
9170 spa_history_log_internal(spa, "set", tx,
9171 "%s=%s", elemname, strval);
9172 } else if (nvpair_type(elem) == DATA_TYPE_UINT64) {
9173 intval = fnvpair_value_uint64(elem);
9174
9175 if (proptype == PROP_TYPE_INDEX) {
9176 const char *unused;
9177 VERIFY0(zpool_prop_index_to_string(
9178 prop, intval, &unused));
9179 }
9180 VERIFY0(zap_update(mos,
9181 spa->spa_pool_props_object, propname,
9182 8, 1, &intval, tx));
9183 spa_history_log_internal(spa, "set", tx,
9184 "%s=%lld", elemname,
9185 (longlong_t)intval);
9186
9187 switch (prop) {
9188 case ZPOOL_PROP_DELEGATION:
9189 spa->spa_delegation = intval;
9190 break;
9191 case ZPOOL_PROP_BOOTFS:
9192 spa->spa_bootfs = intval;
9193 break;
9194 case ZPOOL_PROP_FAILUREMODE:
9195 spa->spa_failmode = intval;
9196 break;
9197 case ZPOOL_PROP_AUTOTRIM:
9198 spa->spa_autotrim = intval;
9199 spa_async_request(spa,
9200 SPA_ASYNC_AUTOTRIM_RESTART);
9201 break;
9202 case ZPOOL_PROP_AUTOEXPAND:
9203 spa->spa_autoexpand = intval;
9204 if (tx->tx_txg != TXG_INITIAL)
9205 spa_async_request(spa,
9206 SPA_ASYNC_AUTOEXPAND);
9207 break;
9208 case ZPOOL_PROP_MULTIHOST:
9209 spa->spa_multihost = intval;
9210 break;
9211 default:
9212 break;
9213 }
9214 } else {
9215 ASSERT(0); /* not allowed */
9216 }
9217 }
9218
9219 }
9220
9221 mutex_exit(&spa->spa_props_lock);
9222 }
9223
9224 /*
9225 * Perform one-time upgrade on-disk changes. spa_version() does not
9226 * reflect the new version this txg, so there must be no changes this
9227 * txg to anything that the upgrade code depends on after it executes.
9228 * Therefore this must be called after dsl_pool_sync() does the sync
9229 * tasks.
9230 */
9231 static void
9232 spa_sync_upgrades(spa_t *spa, dmu_tx_t *tx)
9233 {
9234 if (spa_sync_pass(spa) != 1)
9235 return;
9236
9237 dsl_pool_t *dp = spa->spa_dsl_pool;
9238 rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG);
9239
9240 if (spa->spa_ubsync.ub_version < SPA_VERSION_ORIGIN &&
9241 spa->spa_uberblock.ub_version >= SPA_VERSION_ORIGIN) {
9242 dsl_pool_create_origin(dp, tx);
9243
9244 /* Keeping the origin open increases spa_minref */
9245 spa->spa_minref += 3;
9246 }
9247
9248 if (spa->spa_ubsync.ub_version < SPA_VERSION_NEXT_CLONES &&
9249 spa->spa_uberblock.ub_version >= SPA_VERSION_NEXT_CLONES) {
9250 dsl_pool_upgrade_clones(dp, tx);
9251 }
9252
9253 if (spa->spa_ubsync.ub_version < SPA_VERSION_DIR_CLONES &&
9254 spa->spa_uberblock.ub_version >= SPA_VERSION_DIR_CLONES) {
9255 dsl_pool_upgrade_dir_clones(dp, tx);
9256
9257 /* Keeping the freedir open increases spa_minref */
9258 spa->spa_minref += 3;
9259 }
9260
9261 if (spa->spa_ubsync.ub_version < SPA_VERSION_FEATURES &&
9262 spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) {
9263 spa_feature_create_zap_objects(spa, tx);
9264 }
9265
9266 /*
9267 * LZ4_COMPRESS feature's behaviour was changed to activate_on_enable
9268 * when possibility to use lz4 compression for metadata was added
9269 * Old pools that have this feature enabled must be upgraded to have
9270 * this feature active
9271 */
9272 if (spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) {
9273 boolean_t lz4_en = spa_feature_is_enabled(spa,
9274 SPA_FEATURE_LZ4_COMPRESS);
9275 boolean_t lz4_ac = spa_feature_is_active(spa,
9276 SPA_FEATURE_LZ4_COMPRESS);
9277
9278 if (lz4_en && !lz4_ac)
9279 spa_feature_incr(spa, SPA_FEATURE_LZ4_COMPRESS, tx);
9280 }
9281
9282 /*
9283 * If we haven't written the salt, do so now. Note that the
9284 * feature may not be activated yet, but that's fine since
9285 * the presence of this ZAP entry is backwards compatible.
9286 */
9287 if (zap_contains(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
9288 DMU_POOL_CHECKSUM_SALT) == ENOENT) {
9289 VERIFY0(zap_add(spa->spa_meta_objset,
9290 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CHECKSUM_SALT, 1,
9291 sizeof (spa->spa_cksum_salt.zcs_bytes),
9292 spa->spa_cksum_salt.zcs_bytes, tx));
9293 }
9294
9295 rrw_exit(&dp->dp_config_rwlock, FTAG);
9296 }
9297
9298 static void
9299 vdev_indirect_state_sync_verify(vdev_t *vd)
9300 {
9301 vdev_indirect_mapping_t *vim __maybe_unused = vd->vdev_indirect_mapping;
9302 vdev_indirect_births_t *vib __maybe_unused = vd->vdev_indirect_births;
9303
9304 if (vd->vdev_ops == &vdev_indirect_ops) {
9305 ASSERT(vim != NULL);
9306 ASSERT(vib != NULL);
9307 }
9308
9309 uint64_t obsolete_sm_object = 0;
9310 ASSERT0(vdev_obsolete_sm_object(vd, &obsolete_sm_object));
9311 if (obsolete_sm_object != 0) {
9312 ASSERT(vd->vdev_obsolete_sm != NULL);
9313 ASSERT(vd->vdev_removing ||
9314 vd->vdev_ops == &vdev_indirect_ops);
9315 ASSERT(vdev_indirect_mapping_num_entries(vim) > 0);
9316 ASSERT(vdev_indirect_mapping_bytes_mapped(vim) > 0);
9317 ASSERT3U(obsolete_sm_object, ==,
9318 space_map_object(vd->vdev_obsolete_sm));
9319 ASSERT3U(vdev_indirect_mapping_bytes_mapped(vim), >=,
9320 space_map_allocated(vd->vdev_obsolete_sm));
9321 }
9322 ASSERT(vd->vdev_obsolete_segments != NULL);
9323
9324 /*
9325 * Since frees / remaps to an indirect vdev can only
9326 * happen in syncing context, the obsolete segments
9327 * tree must be empty when we start syncing.
9328 */
9329 ASSERT0(range_tree_space(vd->vdev_obsolete_segments));
9330 }
9331
9332 /*
9333 * Set the top-level vdev's max queue depth. Evaluate each top-level's
9334 * async write queue depth in case it changed. The max queue depth will
9335 * not change in the middle of syncing out this txg.
9336 */
9337 static void
9338 spa_sync_adjust_vdev_max_queue_depth(spa_t *spa)
9339 {
9340 ASSERT(spa_writeable(spa));
9341
9342 vdev_t *rvd = spa->spa_root_vdev;
9343 uint32_t max_queue_depth = zfs_vdev_async_write_max_active *
9344 zfs_vdev_queue_depth_pct / 100;
9345 metaslab_class_t *normal = spa_normal_class(spa);
9346 metaslab_class_t *special = spa_special_class(spa);
9347 metaslab_class_t *dedup = spa_dedup_class(spa);
9348
9349 uint64_t slots_per_allocator = 0;
9350 for (int c = 0; c < rvd->vdev_children; c++) {
9351 vdev_t *tvd = rvd->vdev_child[c];
9352
9353 metaslab_group_t *mg = tvd->vdev_mg;
9354 if (mg == NULL || !metaslab_group_initialized(mg))
9355 continue;
9356
9357 metaslab_class_t *mc = mg->mg_class;
9358 if (mc != normal && mc != special && mc != dedup)
9359 continue;
9360
9361 /*
9362 * It is safe to do a lock-free check here because only async
9363 * allocations look at mg_max_alloc_queue_depth, and async
9364 * allocations all happen from spa_sync().
9365 */
9366 for (int i = 0; i < mg->mg_allocators; i++) {
9367 ASSERT0(zfs_refcount_count(
9368 &(mg->mg_allocator[i].mga_alloc_queue_depth)));
9369 }
9370 mg->mg_max_alloc_queue_depth = max_queue_depth;
9371
9372 for (int i = 0; i < mg->mg_allocators; i++) {
9373 mg->mg_allocator[i].mga_cur_max_alloc_queue_depth =
9374 zfs_vdev_def_queue_depth;
9375 }
9376 slots_per_allocator += zfs_vdev_def_queue_depth;
9377 }
9378
9379 for (int i = 0; i < spa->spa_alloc_count; i++) {
9380 ASSERT0(zfs_refcount_count(&normal->mc_allocator[i].
9381 mca_alloc_slots));
9382 ASSERT0(zfs_refcount_count(&special->mc_allocator[i].
9383 mca_alloc_slots));
9384 ASSERT0(zfs_refcount_count(&dedup->mc_allocator[i].
9385 mca_alloc_slots));
9386 normal->mc_allocator[i].mca_alloc_max_slots =
9387 slots_per_allocator;
9388 special->mc_allocator[i].mca_alloc_max_slots =
9389 slots_per_allocator;
9390 dedup->mc_allocator[i].mca_alloc_max_slots =
9391 slots_per_allocator;
9392 }
9393 normal->mc_alloc_throttle_enabled = zio_dva_throttle_enabled;
9394 special->mc_alloc_throttle_enabled = zio_dva_throttle_enabled;
9395 dedup->mc_alloc_throttle_enabled = zio_dva_throttle_enabled;
9396 }
9397
9398 static void
9399 spa_sync_condense_indirect(spa_t *spa, dmu_tx_t *tx)
9400 {
9401 ASSERT(spa_writeable(spa));
9402
9403 vdev_t *rvd = spa->spa_root_vdev;
9404 for (int c = 0; c < rvd->vdev_children; c++) {
9405 vdev_t *vd = rvd->vdev_child[c];
9406 vdev_indirect_state_sync_verify(vd);
9407
9408 if (vdev_indirect_should_condense(vd)) {
9409 spa_condense_indirect_start_sync(vd, tx);
9410 break;
9411 }
9412 }
9413 }
9414
9415 static void
9416 spa_sync_iterate_to_convergence(spa_t *spa, dmu_tx_t *tx)
9417 {
9418 objset_t *mos = spa->spa_meta_objset;
9419 dsl_pool_t *dp = spa->spa_dsl_pool;
9420 uint64_t txg = tx->tx_txg;
9421 bplist_t *free_bpl = &spa->spa_free_bplist[txg & TXG_MASK];
9422
9423 do {
9424 int pass = ++spa->spa_sync_pass;
9425
9426 spa_sync_config_object(spa, tx);
9427 spa_sync_aux_dev(spa, &spa->spa_spares, tx,
9428 ZPOOL_CONFIG_SPARES, DMU_POOL_SPARES);
9429 spa_sync_aux_dev(spa, &spa->spa_l2cache, tx,
9430 ZPOOL_CONFIG_L2CACHE, DMU_POOL_L2CACHE);
9431 spa_errlog_sync(spa, txg);
9432 dsl_pool_sync(dp, txg);
9433
9434 if (pass < zfs_sync_pass_deferred_free ||
9435 spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP)) {
9436 /*
9437 * If the log space map feature is active we don't
9438 * care about deferred frees and the deferred bpobj
9439 * as the log space map should effectively have the
9440 * same results (i.e. appending only to one object).
9441 */
9442 spa_sync_frees(spa, free_bpl, tx);
9443 } else {
9444 /*
9445 * We can not defer frees in pass 1, because
9446 * we sync the deferred frees later in pass 1.
9447 */
9448 ASSERT3U(pass, >, 1);
9449 bplist_iterate(free_bpl, bpobj_enqueue_alloc_cb,
9450 &spa->spa_deferred_bpobj, tx);
9451 }
9452
9453 brt_sync(spa, txg);
9454 ddt_sync(spa, txg);
9455 dsl_scan_sync(dp, tx);
9456 dsl_errorscrub_sync(dp, tx);
9457 svr_sync(spa, tx);
9458 spa_sync_upgrades(spa, tx);
9459
9460 spa_flush_metaslabs(spa, tx);
9461
9462 vdev_t *vd = NULL;
9463 while ((vd = txg_list_remove(&spa->spa_vdev_txg_list, txg))
9464 != NULL)
9465 vdev_sync(vd, txg);
9466
9467 if (pass == 1) {
9468 /*
9469 * dsl_pool_sync() -> dp_sync_tasks may have dirtied
9470 * the config. If that happens, this txg should not
9471 * be a no-op. So we must sync the config to the MOS
9472 * before checking for no-op.
9473 *
9474 * Note that when the config is dirty, it will
9475 * be written to the MOS (i.e. the MOS will be
9476 * dirtied) every time we call spa_sync_config_object()
9477 * in this txg. Therefore we can't call this after
9478 * dsl_pool_sync() every pass, because it would
9479 * prevent us from converging, since we'd dirty
9480 * the MOS every pass.
9481 *
9482 * Sync tasks can only be processed in pass 1, so
9483 * there's no need to do this in later passes.
9484 */
9485 spa_sync_config_object(spa, tx);
9486 }
9487
9488 /*
9489 * Note: We need to check if the MOS is dirty because we could
9490 * have marked the MOS dirty without updating the uberblock
9491 * (e.g. if we have sync tasks but no dirty user data). We need
9492 * to check the uberblock's rootbp because it is updated if we
9493 * have synced out dirty data (though in this case the MOS will
9494 * most likely also be dirty due to second order effects, we
9495 * don't want to rely on that here).
9496 */
9497 if (pass == 1 &&
9498 spa->spa_uberblock.ub_rootbp.blk_birth < txg &&
9499 !dmu_objset_is_dirty(mos, txg)) {
9500 /*
9501 * Nothing changed on the first pass, therefore this
9502 * TXG is a no-op. Avoid syncing deferred frees, so
9503 * that we can keep this TXG as a no-op.
9504 */
9505 ASSERT(txg_list_empty(&dp->dp_dirty_datasets, txg));
9506 ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg));
9507 ASSERT(txg_list_empty(&dp->dp_sync_tasks, txg));
9508 ASSERT(txg_list_empty(&dp->dp_early_sync_tasks, txg));
9509 break;
9510 }
9511
9512 spa_sync_deferred_frees(spa, tx);
9513 } while (dmu_objset_is_dirty(mos, txg));
9514 }
9515
9516 /*
9517 * Rewrite the vdev configuration (which includes the uberblock) to
9518 * commit the transaction group.
9519 *
9520 * If there are no dirty vdevs, we sync the uberblock to a few random
9521 * top-level vdevs that are known to be visible in the config cache
9522 * (see spa_vdev_add() for a complete description). If there *are* dirty
9523 * vdevs, sync the uberblock to all vdevs.
9524 */
9525 static void
9526 spa_sync_rewrite_vdev_config(spa_t *spa, dmu_tx_t *tx)
9527 {
9528 vdev_t *rvd = spa->spa_root_vdev;
9529 uint64_t txg = tx->tx_txg;
9530
9531 for (;;) {
9532 int error = 0;
9533
9534 /*
9535 * We hold SCL_STATE to prevent vdev open/close/etc.
9536 * while we're attempting to write the vdev labels.
9537 */
9538 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
9539
9540 if (list_is_empty(&spa->spa_config_dirty_list)) {
9541 vdev_t *svd[SPA_SYNC_MIN_VDEVS] = { NULL };
9542 int svdcount = 0;
9543 int children = rvd->vdev_children;
9544 int c0 = random_in_range(children);
9545
9546 for (int c = 0; c < children; c++) {
9547 vdev_t *vd =
9548 rvd->vdev_child[(c0 + c) % children];
9549
9550 /* Stop when revisiting the first vdev */
9551 if (c > 0 && svd[0] == vd)
9552 break;
9553
9554 if (vd->vdev_ms_array == 0 ||
9555 vd->vdev_islog ||
9556 !vdev_is_concrete(vd))
9557 continue;
9558
9559 svd[svdcount++] = vd;
9560 if (svdcount == SPA_SYNC_MIN_VDEVS)
9561 break;
9562 }
9563 error = vdev_config_sync(svd, svdcount, txg);
9564 } else {
9565 error = vdev_config_sync(rvd->vdev_child,
9566 rvd->vdev_children, txg);
9567 }
9568
9569 if (error == 0)
9570 spa->spa_last_synced_guid = rvd->vdev_guid;
9571
9572 spa_config_exit(spa, SCL_STATE, FTAG);
9573
9574 if (error == 0)
9575 break;
9576 zio_suspend(spa, NULL, ZIO_SUSPEND_IOERR);
9577 zio_resume_wait(spa);
9578 }
9579 }
9580
9581 /*
9582 * Sync the specified transaction group. New blocks may be dirtied as
9583 * part of the process, so we iterate until it converges.
9584 */
9585 void
9586 spa_sync(spa_t *spa, uint64_t txg)
9587 {
9588 vdev_t *vd = NULL;
9589
9590 VERIFY(spa_writeable(spa));
9591
9592 /*
9593 * Wait for i/os issued in open context that need to complete
9594 * before this txg syncs.
9595 */
9596 (void) zio_wait(spa->spa_txg_zio[txg & TXG_MASK]);
9597 spa->spa_txg_zio[txg & TXG_MASK] = zio_root(spa, NULL, NULL,
9598 ZIO_FLAG_CANFAIL);
9599
9600 /*
9601 * Now that there can be no more cloning in this transaction group,
9602 * but we are still before issuing frees, we can process pending BRT
9603 * updates.
9604 */
9605 brt_pending_apply(spa, txg);
9606
9607 /*
9608 * Lock out configuration changes.
9609 */
9610 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
9611
9612 spa->spa_syncing_txg = txg;
9613 spa->spa_sync_pass = 0;
9614
9615 for (int i = 0; i < spa->spa_alloc_count; i++) {
9616 mutex_enter(&spa->spa_allocs[i].spaa_lock);
9617 VERIFY0(avl_numnodes(&spa->spa_allocs[i].spaa_tree));
9618 mutex_exit(&spa->spa_allocs[i].spaa_lock);
9619 }
9620
9621 /*
9622 * If there are any pending vdev state changes, convert them
9623 * into config changes that go out with this transaction group.
9624 */
9625 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
9626 while ((vd = list_head(&spa->spa_state_dirty_list)) != NULL) {
9627 /* Avoid holding the write lock unless actually necessary */
9628 if (vd->vdev_aux == NULL) {
9629 vdev_state_clean(vd);
9630 vdev_config_dirty(vd);
9631 continue;
9632 }
9633 /*
9634 * We need the write lock here because, for aux vdevs,
9635 * calling vdev_config_dirty() modifies sav_config.
9636 * This is ugly and will become unnecessary when we
9637 * eliminate the aux vdev wart by integrating all vdevs
9638 * into the root vdev tree.
9639 */
9640 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
9641 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_WRITER);
9642 while ((vd = list_head(&spa->spa_state_dirty_list)) != NULL) {
9643 vdev_state_clean(vd);
9644 vdev_config_dirty(vd);
9645 }
9646 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
9647 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
9648 }
9649 spa_config_exit(spa, SCL_STATE, FTAG);
9650
9651 dsl_pool_t *dp = spa->spa_dsl_pool;
9652 dmu_tx_t *tx = dmu_tx_create_assigned(dp, txg);
9653
9654 spa->spa_sync_starttime = gethrtime();
9655 taskq_cancel_id(system_delay_taskq, spa->spa_deadman_tqid);
9656 spa->spa_deadman_tqid = taskq_dispatch_delay(system_delay_taskq,
9657 spa_deadman, spa, TQ_SLEEP, ddi_get_lbolt() +
9658 NSEC_TO_TICK(spa->spa_deadman_synctime));
9659
9660 /*
9661 * If we are upgrading to SPA_VERSION_RAIDZ_DEFLATE this txg,
9662 * set spa_deflate if we have no raid-z vdevs.
9663 */
9664 if (spa->spa_ubsync.ub_version < SPA_VERSION_RAIDZ_DEFLATE &&
9665 spa->spa_uberblock.ub_version >= SPA_VERSION_RAIDZ_DEFLATE) {
9666 vdev_t *rvd = spa->spa_root_vdev;
9667
9668 int i;
9669 for (i = 0; i < rvd->vdev_children; i++) {
9670 vd = rvd->vdev_child[i];
9671 if (vd->vdev_deflate_ratio != SPA_MINBLOCKSIZE)
9672 break;
9673 }
9674 if (i == rvd->vdev_children) {
9675 spa->spa_deflate = TRUE;
9676 VERIFY0(zap_add(spa->spa_meta_objset,
9677 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
9678 sizeof (uint64_t), 1, &spa->spa_deflate, tx));
9679 }
9680 }
9681
9682 spa_sync_adjust_vdev_max_queue_depth(spa);
9683
9684 spa_sync_condense_indirect(spa, tx);
9685
9686 spa_sync_iterate_to_convergence(spa, tx);
9687
9688 #ifdef ZFS_DEBUG
9689 if (!list_is_empty(&spa->spa_config_dirty_list)) {
9690 /*
9691 * Make sure that the number of ZAPs for all the vdevs matches
9692 * the number of ZAPs in the per-vdev ZAP list. This only gets
9693 * called if the config is dirty; otherwise there may be
9694 * outstanding AVZ operations that weren't completed in
9695 * spa_sync_config_object.
9696 */
9697 uint64_t all_vdev_zap_entry_count;
9698 ASSERT0(zap_count(spa->spa_meta_objset,
9699 spa->spa_all_vdev_zaps, &all_vdev_zap_entry_count));
9700 ASSERT3U(vdev_count_verify_zaps(spa->spa_root_vdev), ==,
9701 all_vdev_zap_entry_count);
9702 }
9703 #endif
9704
9705 if (spa->spa_vdev_removal != NULL) {
9706 ASSERT0(spa->spa_vdev_removal->svr_bytes_done[txg & TXG_MASK]);
9707 }
9708
9709 spa_sync_rewrite_vdev_config(spa, tx);
9710 dmu_tx_commit(tx);
9711
9712 taskq_cancel_id(system_delay_taskq, spa->spa_deadman_tqid);
9713 spa->spa_deadman_tqid = 0;
9714
9715 /*
9716 * Clear the dirty config list.
9717 */
9718 while ((vd = list_head(&spa->spa_config_dirty_list)) != NULL)
9719 vdev_config_clean(vd);
9720
9721 /*
9722 * Now that the new config has synced transactionally,
9723 * let it become visible to the config cache.
9724 */
9725 if (spa->spa_config_syncing != NULL) {
9726 spa_config_set(spa, spa->spa_config_syncing);
9727 spa->spa_config_txg = txg;
9728 spa->spa_config_syncing = NULL;
9729 }
9730
9731 dsl_pool_sync_done(dp, txg);
9732
9733 for (int i = 0; i < spa->spa_alloc_count; i++) {
9734 mutex_enter(&spa->spa_allocs[i].spaa_lock);
9735 VERIFY0(avl_numnodes(&spa->spa_allocs[i].spaa_tree));
9736 mutex_exit(&spa->spa_allocs[i].spaa_lock);
9737 }
9738
9739 /*
9740 * Update usable space statistics.
9741 */
9742 while ((vd = txg_list_remove(&spa->spa_vdev_txg_list, TXG_CLEAN(txg)))
9743 != NULL)
9744 vdev_sync_done(vd, txg);
9745
9746 metaslab_class_evict_old(spa->spa_normal_class, txg);
9747 metaslab_class_evict_old(spa->spa_log_class, txg);
9748
9749 spa_sync_close_syncing_log_sm(spa);
9750
9751 spa_update_dspace(spa);
9752
9753 if (spa_get_autotrim(spa) == SPA_AUTOTRIM_ON)
9754 vdev_autotrim_kick(spa);
9755
9756 /*
9757 * It had better be the case that we didn't dirty anything
9758 * since vdev_config_sync().
9759 */
9760 ASSERT(txg_list_empty(&dp->dp_dirty_datasets, txg));
9761 ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg));
9762 ASSERT(txg_list_empty(&spa->spa_vdev_txg_list, txg));
9763
9764 while (zfs_pause_spa_sync)
9765 delay(1);
9766
9767 spa->spa_sync_pass = 0;
9768
9769 /*
9770 * Update the last synced uberblock here. We want to do this at
9771 * the end of spa_sync() so that consumers of spa_last_synced_txg()
9772 * will be guaranteed that all the processing associated with
9773 * that txg has been completed.
9774 */
9775 spa->spa_ubsync = spa->spa_uberblock;
9776 spa_config_exit(spa, SCL_CONFIG, FTAG);
9777
9778 spa_handle_ignored_writes(spa);
9779
9780 /*
9781 * If any async tasks have been requested, kick them off.
9782 */
9783 spa_async_dispatch(spa);
9784 }
9785
9786 /*
9787 * Sync all pools. We don't want to hold the namespace lock across these
9788 * operations, so we take a reference on the spa_t and drop the lock during the
9789 * sync.
9790 */
9791 void
9792 spa_sync_allpools(void)
9793 {
9794 spa_t *spa = NULL;
9795 mutex_enter(&spa_namespace_lock);
9796 while ((spa = spa_next(spa)) != NULL) {
9797 if (spa_state(spa) != POOL_STATE_ACTIVE ||
9798 !spa_writeable(spa) || spa_suspended(spa))
9799 continue;
9800 spa_open_ref(spa, FTAG);
9801 mutex_exit(&spa_namespace_lock);
9802 txg_wait_synced(spa_get_dsl(spa), 0);
9803 mutex_enter(&spa_namespace_lock);
9804 spa_close(spa, FTAG);
9805 }
9806 mutex_exit(&spa_namespace_lock);
9807 }
9808
9809 taskq_t *
9810 spa_sync_tq_create(spa_t *spa, const char *name)
9811 {
9812 kthread_t **kthreads;
9813
9814 ASSERT(spa->spa_sync_tq == NULL);
9815 ASSERT3S(spa->spa_alloc_count, <=, boot_ncpus);
9816
9817 /*
9818 * - do not allow more allocators than cpus.
9819 * - there may be more cpus than allocators.
9820 * - do not allow more sync taskq threads than allocators or cpus.
9821 */
9822 int nthreads = spa->spa_alloc_count;
9823 spa->spa_syncthreads = kmem_zalloc(sizeof (spa_syncthread_info_t) *
9824 nthreads, KM_SLEEP);
9825
9826 spa->spa_sync_tq = taskq_create_synced(name, nthreads, minclsyspri,
9827 nthreads, INT_MAX, TASKQ_PREPOPULATE, &kthreads);
9828 VERIFY(spa->spa_sync_tq != NULL);
9829 VERIFY(kthreads != NULL);
9830
9831 spa_taskqs_t *tqs =
9832 &spa->spa_zio_taskq[ZIO_TYPE_WRITE][ZIO_TASKQ_ISSUE];
9833
9834 spa_syncthread_info_t *ti = spa->spa_syncthreads;
9835 for (int i = 0, w = 0; i < nthreads; i++, w++, ti++) {
9836 ti->sti_thread = kthreads[i];
9837 if (w == tqs->stqs_count) {
9838 w = 0;
9839 }
9840 ti->sti_wr_iss_tq = tqs->stqs_taskq[w];
9841 }
9842
9843 kmem_free(kthreads, sizeof (*kthreads) * nthreads);
9844 return (spa->spa_sync_tq);
9845 }
9846
9847 void
9848 spa_sync_tq_destroy(spa_t *spa)
9849 {
9850 ASSERT(spa->spa_sync_tq != NULL);
9851
9852 taskq_wait(spa->spa_sync_tq);
9853 taskq_destroy(spa->spa_sync_tq);
9854 kmem_free(spa->spa_syncthreads,
9855 sizeof (spa_syncthread_info_t) * spa->spa_alloc_count);
9856 spa->spa_sync_tq = NULL;
9857 }
9858
9859 void
9860 spa_select_allocator(zio_t *zio)
9861 {
9862 zbookmark_phys_t *bm = &zio->io_bookmark;
9863 spa_t *spa = zio->io_spa;
9864
9865 ASSERT(zio->io_type == ZIO_TYPE_WRITE);
9866
9867 /*
9868 * A gang block (for example) may have inherited its parent's
9869 * allocator, in which case there is nothing further to do here.
9870 */
9871 if (ZIO_HAS_ALLOCATOR(zio))
9872 return;
9873
9874 ASSERT(spa != NULL);
9875 ASSERT(bm != NULL);
9876
9877 /*
9878 * First try to use an allocator assigned to the syncthread, and set
9879 * the corresponding write issue taskq for the allocator.
9880 * Note, we must have an open pool to do this.
9881 */
9882 if (spa->spa_sync_tq != NULL) {
9883 spa_syncthread_info_t *ti = spa->spa_syncthreads;
9884 for (int i = 0; i < spa->spa_alloc_count; i++, ti++) {
9885 if (ti->sti_thread == curthread) {
9886 zio->io_allocator = i;
9887 zio->io_wr_iss_tq = ti->sti_wr_iss_tq;
9888 return;
9889 }
9890 }
9891 }
9892
9893 /*
9894 * We want to try to use as many allocators as possible to help improve
9895 * performance, but we also want logically adjacent IOs to be physically
9896 * adjacent to improve sequential read performance. We chunk each object
9897 * into 2^20 block regions, and then hash based on the objset, object,
9898 * level, and region to accomplish both of these goals.
9899 */
9900 uint64_t hv = cityhash4(bm->zb_objset, bm->zb_object, bm->zb_level,
9901 bm->zb_blkid >> 20);
9902
9903 zio->io_allocator = (uint_t)hv % spa->spa_alloc_count;
9904 zio->io_wr_iss_tq = NULL;
9905 }
9906
9907 /*
9908 * ==========================================================================
9909 * Miscellaneous routines
9910 * ==========================================================================
9911 */
9912
9913 /*
9914 * Remove all pools in the system.
9915 */
9916 void
9917 spa_evict_all(void)
9918 {
9919 spa_t *spa;
9920
9921 /*
9922 * Remove all cached state. All pools should be closed now,
9923 * so every spa in the AVL tree should be unreferenced.
9924 */
9925 mutex_enter(&spa_namespace_lock);
9926 while ((spa = spa_next(NULL)) != NULL) {
9927 /*
9928 * Stop async tasks. The async thread may need to detach
9929 * a device that's been replaced, which requires grabbing
9930 * spa_namespace_lock, so we must drop it here.
9931 */
9932 spa_open_ref(spa, FTAG);
9933 mutex_exit(&spa_namespace_lock);
9934 spa_async_suspend(spa);
9935 mutex_enter(&spa_namespace_lock);
9936 spa_close(spa, FTAG);
9937
9938 if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
9939 spa_unload(spa);
9940 spa_deactivate(spa);
9941 }
9942 spa_remove(spa);
9943 }
9944 mutex_exit(&spa_namespace_lock);
9945 }
9946
9947 vdev_t *
9948 spa_lookup_by_guid(spa_t *spa, uint64_t guid, boolean_t aux)
9949 {
9950 vdev_t *vd;
9951 int i;
9952
9953 if ((vd = vdev_lookup_by_guid(spa->spa_root_vdev, guid)) != NULL)
9954 return (vd);
9955
9956 if (aux) {
9957 for (i = 0; i < spa->spa_l2cache.sav_count; i++) {
9958 vd = spa->spa_l2cache.sav_vdevs[i];
9959 if (vd->vdev_guid == guid)
9960 return (vd);
9961 }
9962
9963 for (i = 0; i < spa->spa_spares.sav_count; i++) {
9964 vd = spa->spa_spares.sav_vdevs[i];
9965 if (vd->vdev_guid == guid)
9966 return (vd);
9967 }
9968 }
9969
9970 return (NULL);
9971 }
9972
9973 void
9974 spa_upgrade(spa_t *spa, uint64_t version)
9975 {
9976 ASSERT(spa_writeable(spa));
9977
9978 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
9979
9980 /*
9981 * This should only be called for a non-faulted pool, and since a
9982 * future version would result in an unopenable pool, this shouldn't be
9983 * possible.
9984 */
9985 ASSERT(SPA_VERSION_IS_SUPPORTED(spa->spa_uberblock.ub_version));
9986 ASSERT3U(version, >=, spa->spa_uberblock.ub_version);
9987
9988 spa->spa_uberblock.ub_version = version;
9989 vdev_config_dirty(spa->spa_root_vdev);
9990
9991 spa_config_exit(spa, SCL_ALL, FTAG);
9992
9993 txg_wait_synced(spa_get_dsl(spa), 0);
9994 }
9995
9996 static boolean_t
9997 spa_has_aux_vdev(spa_t *spa, uint64_t guid, spa_aux_vdev_t *sav)
9998 {
9999 (void) spa;
10000 int i;
10001 uint64_t vdev_guid;
10002
10003 for (i = 0; i < sav->sav_count; i++)
10004 if (sav->sav_vdevs[i]->vdev_guid == guid)
10005 return (B_TRUE);
10006
10007 for (i = 0; i < sav->sav_npending; i++) {
10008 if (nvlist_lookup_uint64(sav->sav_pending[i], ZPOOL_CONFIG_GUID,
10009 &vdev_guid) == 0 && vdev_guid == guid)
10010 return (B_TRUE);
10011 }
10012
10013 return (B_FALSE);
10014 }
10015
10016 boolean_t
10017 spa_has_l2cache(spa_t *spa, uint64_t guid)
10018 {
10019 return (spa_has_aux_vdev(spa, guid, &spa->spa_l2cache));
10020 }
10021
10022 boolean_t
10023 spa_has_spare(spa_t *spa, uint64_t guid)
10024 {
10025 return (spa_has_aux_vdev(spa, guid, &spa->spa_spares));
10026 }
10027
10028 /*
10029 * Check if a pool has an active shared spare device.
10030 * Note: reference count of an active spare is 2, as a spare and as a replace
10031 */
10032 static boolean_t
10033 spa_has_active_shared_spare(spa_t *spa)
10034 {
10035 int i, refcnt;
10036 uint64_t pool;
10037 spa_aux_vdev_t *sav = &spa->spa_spares;
10038
10039 for (i = 0; i < sav->sav_count; i++) {
10040 if (spa_spare_exists(sav->sav_vdevs[i]->vdev_guid, &pool,
10041 &refcnt) && pool != 0ULL && pool == spa_guid(spa) &&
10042 refcnt > 2)
10043 return (B_TRUE);
10044 }
10045
10046 return (B_FALSE);
10047 }
10048
10049 uint64_t
10050 spa_total_metaslabs(spa_t *spa)
10051 {
10052 vdev_t *rvd = spa->spa_root_vdev;
10053
10054 uint64_t m = 0;
10055 for (uint64_t c = 0; c < rvd->vdev_children; c++) {
10056 vdev_t *vd = rvd->vdev_child[c];
10057 if (!vdev_is_concrete(vd))
10058 continue;
10059 m += vd->vdev_ms_count;
10060 }
10061 return (m);
10062 }
10063
10064 /*
10065 * Notify any waiting threads that some activity has switched from being in-
10066 * progress to not-in-progress so that the thread can wake up and determine
10067 * whether it is finished waiting.
10068 */
10069 void
10070 spa_notify_waiters(spa_t *spa)
10071 {
10072 /*
10073 * Acquiring spa_activities_lock here prevents the cv_broadcast from
10074 * happening between the waiting thread's check and cv_wait.
10075 */
10076 mutex_enter(&spa->spa_activities_lock);
10077 cv_broadcast(&spa->spa_activities_cv);
10078 mutex_exit(&spa->spa_activities_lock);
10079 }
10080
10081 /*
10082 * Notify any waiting threads that the pool is exporting, and then block until
10083 * they are finished using the spa_t.
10084 */
10085 void
10086 spa_wake_waiters(spa_t *spa)
10087 {
10088 mutex_enter(&spa->spa_activities_lock);
10089 spa->spa_waiters_cancel = B_TRUE;
10090 cv_broadcast(&spa->spa_activities_cv);
10091 while (spa->spa_waiters != 0)
10092 cv_wait(&spa->spa_waiters_cv, &spa->spa_activities_lock);
10093 spa->spa_waiters_cancel = B_FALSE;
10094 mutex_exit(&spa->spa_activities_lock);
10095 }
10096
10097 /* Whether the vdev or any of its descendants are being initialized/trimmed. */
10098 static boolean_t
10099 spa_vdev_activity_in_progress_impl(vdev_t *vd, zpool_wait_activity_t activity)
10100 {
10101 spa_t *spa = vd->vdev_spa;
10102
10103 ASSERT(spa_config_held(spa, SCL_CONFIG | SCL_STATE, RW_READER));
10104 ASSERT(MUTEX_HELD(&spa->spa_activities_lock));
10105 ASSERT(activity == ZPOOL_WAIT_INITIALIZE ||
10106 activity == ZPOOL_WAIT_TRIM);
10107
10108 kmutex_t *lock = activity == ZPOOL_WAIT_INITIALIZE ?
10109 &vd->vdev_initialize_lock : &vd->vdev_trim_lock;
10110
10111 mutex_exit(&spa->spa_activities_lock);
10112 mutex_enter(lock);
10113 mutex_enter(&spa->spa_activities_lock);
10114
10115 boolean_t in_progress = (activity == ZPOOL_WAIT_INITIALIZE) ?
10116 (vd->vdev_initialize_state == VDEV_INITIALIZE_ACTIVE) :
10117 (vd->vdev_trim_state == VDEV_TRIM_ACTIVE);
10118 mutex_exit(lock);
10119
10120 if (in_progress)
10121 return (B_TRUE);
10122
10123 for (int i = 0; i < vd->vdev_children; i++) {
10124 if (spa_vdev_activity_in_progress_impl(vd->vdev_child[i],
10125 activity))
10126 return (B_TRUE);
10127 }
10128
10129 return (B_FALSE);
10130 }
10131
10132 /*
10133 * If use_guid is true, this checks whether the vdev specified by guid is
10134 * being initialized/trimmed. Otherwise, it checks whether any vdev in the pool
10135 * is being initialized/trimmed. The caller must hold the config lock and
10136 * spa_activities_lock.
10137 */
10138 static int
10139 spa_vdev_activity_in_progress(spa_t *spa, boolean_t use_guid, uint64_t guid,
10140 zpool_wait_activity_t activity, boolean_t *in_progress)
10141 {
10142 mutex_exit(&spa->spa_activities_lock);
10143 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
10144 mutex_enter(&spa->spa_activities_lock);
10145
10146 vdev_t *vd;
10147 if (use_guid) {
10148 vd = spa_lookup_by_guid(spa, guid, B_FALSE);
10149 if (vd == NULL || !vd->vdev_ops->vdev_op_leaf) {
10150 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
10151 return (EINVAL);
10152 }
10153 } else {
10154 vd = spa->spa_root_vdev;
10155 }
10156
10157 *in_progress = spa_vdev_activity_in_progress_impl(vd, activity);
10158
10159 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
10160 return (0);
10161 }
10162
10163 /*
10164 * Locking for waiting threads
10165 * ---------------------------
10166 *
10167 * Waiting threads need a way to check whether a given activity is in progress,
10168 * and then, if it is, wait for it to complete. Each activity will have some
10169 * in-memory representation of the relevant on-disk state which can be used to
10170 * determine whether or not the activity is in progress. The in-memory state and
10171 * the locking used to protect it will be different for each activity, and may
10172 * not be suitable for use with a cvar (e.g., some state is protected by the
10173 * config lock). To allow waiting threads to wait without any races, another
10174 * lock, spa_activities_lock, is used.
10175 *
10176 * When the state is checked, both the activity-specific lock (if there is one)
10177 * and spa_activities_lock are held. In some cases, the activity-specific lock
10178 * is acquired explicitly (e.g. the config lock). In others, the locking is
10179 * internal to some check (e.g. bpobj_is_empty). After checking, the waiting
10180 * thread releases the activity-specific lock and, if the activity is in
10181 * progress, then cv_waits using spa_activities_lock.
10182 *
10183 * The waiting thread is woken when another thread, one completing some
10184 * activity, updates the state of the activity and then calls
10185 * spa_notify_waiters, which will cv_broadcast. This 'completing' thread only
10186 * needs to hold its activity-specific lock when updating the state, and this
10187 * lock can (but doesn't have to) be dropped before calling spa_notify_waiters.
10188 *
10189 * Because spa_notify_waiters acquires spa_activities_lock before broadcasting,
10190 * and because it is held when the waiting thread checks the state of the
10191 * activity, it can never be the case that the completing thread both updates
10192 * the activity state and cv_broadcasts in between the waiting thread's check
10193 * and cv_wait. Thus, a waiting thread can never miss a wakeup.
10194 *
10195 * In order to prevent deadlock, when the waiting thread does its check, in some
10196 * cases it will temporarily drop spa_activities_lock in order to acquire the
10197 * activity-specific lock. The order in which spa_activities_lock and the
10198 * activity specific lock are acquired in the waiting thread is determined by
10199 * the order in which they are acquired in the completing thread; if the
10200 * completing thread calls spa_notify_waiters with the activity-specific lock
10201 * held, then the waiting thread must also acquire the activity-specific lock
10202 * first.
10203 */
10204
10205 static int
10206 spa_activity_in_progress(spa_t *spa, zpool_wait_activity_t activity,
10207 boolean_t use_tag, uint64_t tag, boolean_t *in_progress)
10208 {
10209 int error = 0;
10210
10211 ASSERT(MUTEX_HELD(&spa->spa_activities_lock));
10212
10213 switch (activity) {
10214 case ZPOOL_WAIT_CKPT_DISCARD:
10215 *in_progress =
10216 (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT) &&
10217 zap_contains(spa_meta_objset(spa),
10218 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_ZPOOL_CHECKPOINT) ==
10219 ENOENT);
10220 break;
10221 case ZPOOL_WAIT_FREE:
10222 *in_progress = ((spa_version(spa) >= SPA_VERSION_DEADLISTS &&
10223 !bpobj_is_empty(&spa->spa_dsl_pool->dp_free_bpobj)) ||
10224 spa_feature_is_active(spa, SPA_FEATURE_ASYNC_DESTROY) ||
10225 spa_livelist_delete_check(spa));
10226 break;
10227 case ZPOOL_WAIT_INITIALIZE:
10228 case ZPOOL_WAIT_TRIM:
10229 error = spa_vdev_activity_in_progress(spa, use_tag, tag,
10230 activity, in_progress);
10231 break;
10232 case ZPOOL_WAIT_REPLACE:
10233 mutex_exit(&spa->spa_activities_lock);
10234 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
10235 mutex_enter(&spa->spa_activities_lock);
10236
10237 *in_progress = vdev_replace_in_progress(spa->spa_root_vdev);
10238 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
10239 break;
10240 case ZPOOL_WAIT_REMOVE:
10241 *in_progress = (spa->spa_removing_phys.sr_state ==
10242 DSS_SCANNING);
10243 break;
10244 case ZPOOL_WAIT_RESILVER:
10245 *in_progress = vdev_rebuild_active(spa->spa_root_vdev);
10246 if (*in_progress)
10247 break;
10248 zfs_fallthrough;
10249 case ZPOOL_WAIT_SCRUB:
10250 {
10251 boolean_t scanning, paused, is_scrub;
10252 dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan;
10253
10254 is_scrub = (scn->scn_phys.scn_func == POOL_SCAN_SCRUB);
10255 scanning = (scn->scn_phys.scn_state == DSS_SCANNING);
10256 paused = dsl_scan_is_paused_scrub(scn);
10257 *in_progress = (scanning && !paused &&
10258 is_scrub == (activity == ZPOOL_WAIT_SCRUB));
10259 break;
10260 }
10261 case ZPOOL_WAIT_RAIDZ_EXPAND:
10262 {
10263 vdev_raidz_expand_t *vre = spa->spa_raidz_expand;
10264 *in_progress = (vre != NULL && vre->vre_state == DSS_SCANNING);
10265 break;
10266 }
10267 default:
10268 panic("unrecognized value for activity %d", activity);
10269 }
10270
10271 return (error);
10272 }
10273
10274 static int
10275 spa_wait_common(const char *pool, zpool_wait_activity_t activity,
10276 boolean_t use_tag, uint64_t tag, boolean_t *waited)
10277 {
10278 /*
10279 * The tag is used to distinguish between instances of an activity.
10280 * 'initialize' and 'trim' are the only activities that we use this for.
10281 * The other activities can only have a single instance in progress in a
10282 * pool at one time, making the tag unnecessary.
10283 *
10284 * There can be multiple devices being replaced at once, but since they
10285 * all finish once resilvering finishes, we don't bother keeping track
10286 * of them individually, we just wait for them all to finish.
10287 */
10288 if (use_tag && activity != ZPOOL_WAIT_INITIALIZE &&
10289 activity != ZPOOL_WAIT_TRIM)
10290 return (EINVAL);
10291
10292 if (activity < 0 || activity >= ZPOOL_WAIT_NUM_ACTIVITIES)
10293 return (EINVAL);
10294
10295 spa_t *spa;
10296 int error = spa_open(pool, &spa, FTAG);
10297 if (error != 0)
10298 return (error);
10299
10300 /*
10301 * Increment the spa's waiter count so that we can call spa_close and
10302 * still ensure that the spa_t doesn't get freed before this thread is
10303 * finished with it when the pool is exported. We want to call spa_close
10304 * before we start waiting because otherwise the additional ref would
10305 * prevent the pool from being exported or destroyed throughout the
10306 * potentially long wait.
10307 */
10308 mutex_enter(&spa->spa_activities_lock);
10309 spa->spa_waiters++;
10310 spa_close(spa, FTAG);
10311
10312 *waited = B_FALSE;
10313 for (;;) {
10314 boolean_t in_progress;
10315 error = spa_activity_in_progress(spa, activity, use_tag, tag,
10316 &in_progress);
10317
10318 if (error || !in_progress || spa->spa_waiters_cancel)
10319 break;
10320
10321 *waited = B_TRUE;
10322
10323 if (cv_wait_sig(&spa->spa_activities_cv,
10324 &spa->spa_activities_lock) == 0) {
10325 error = EINTR;
10326 break;
10327 }
10328 }
10329
10330 spa->spa_waiters--;
10331 cv_signal(&spa->spa_waiters_cv);
10332 mutex_exit(&spa->spa_activities_lock);
10333
10334 return (error);
10335 }
10336
10337 /*
10338 * Wait for a particular instance of the specified activity to complete, where
10339 * the instance is identified by 'tag'
10340 */
10341 int
10342 spa_wait_tag(const char *pool, zpool_wait_activity_t activity, uint64_t tag,
10343 boolean_t *waited)
10344 {
10345 return (spa_wait_common(pool, activity, B_TRUE, tag, waited));
10346 }
10347
10348 /*
10349 * Wait for all instances of the specified activity complete
10350 */
10351 int
10352 spa_wait(const char *pool, zpool_wait_activity_t activity, boolean_t *waited)
10353 {
10354
10355 return (spa_wait_common(pool, activity, B_FALSE, 0, waited));
10356 }
10357
10358 sysevent_t *
10359 spa_event_create(spa_t *spa, vdev_t *vd, nvlist_t *hist_nvl, const char *name)
10360 {
10361 sysevent_t *ev = NULL;
10362 #ifdef _KERNEL
10363 nvlist_t *resource;
10364
10365 resource = zfs_event_create(spa, vd, FM_SYSEVENT_CLASS, name, hist_nvl);
10366 if (resource) {
10367 ev = kmem_alloc(sizeof (sysevent_t), KM_SLEEP);
10368 ev->resource = resource;
10369 }
10370 #else
10371 (void) spa, (void) vd, (void) hist_nvl, (void) name;
10372 #endif
10373 return (ev);
10374 }
10375
10376 void
10377 spa_event_post(sysevent_t *ev)
10378 {
10379 #ifdef _KERNEL
10380 if (ev) {
10381 zfs_zevent_post(ev->resource, NULL, zfs_zevent_post_cb);
10382 kmem_free(ev, sizeof (*ev));
10383 }
10384 #else
10385 (void) ev;
10386 #endif
10387 }
10388
10389 /*
10390 * Post a zevent corresponding to the given sysevent. The 'name' must be one
10391 * of the event definitions in sys/sysevent/eventdefs.h. The payload will be
10392 * filled in from the spa and (optionally) the vdev. This doesn't do anything
10393 * in the userland libzpool, as we don't want consumers to misinterpret ztest
10394 * or zdb as real changes.
10395 */
10396 void
10397 spa_event_notify(spa_t *spa, vdev_t *vd, nvlist_t *hist_nvl, const char *name)
10398 {
10399 spa_event_post(spa_event_create(spa, vd, hist_nvl, name));
10400 }
10401
10402 /* state manipulation functions */
10403 EXPORT_SYMBOL(spa_open);
10404 EXPORT_SYMBOL(spa_open_rewind);
10405 EXPORT_SYMBOL(spa_get_stats);
10406 EXPORT_SYMBOL(spa_create);
10407 EXPORT_SYMBOL(spa_import);
10408 EXPORT_SYMBOL(spa_tryimport);
10409 EXPORT_SYMBOL(spa_destroy);
10410 EXPORT_SYMBOL(spa_export);
10411 EXPORT_SYMBOL(spa_reset);
10412 EXPORT_SYMBOL(spa_async_request);
10413 EXPORT_SYMBOL(spa_async_suspend);
10414 EXPORT_SYMBOL(spa_async_resume);
10415 EXPORT_SYMBOL(spa_inject_addref);
10416 EXPORT_SYMBOL(spa_inject_delref);
10417 EXPORT_SYMBOL(spa_scan_stat_init);
10418 EXPORT_SYMBOL(spa_scan_get_stats);
10419
10420 /* device manipulation */
10421 EXPORT_SYMBOL(spa_vdev_add);
10422 EXPORT_SYMBOL(spa_vdev_attach);
10423 EXPORT_SYMBOL(spa_vdev_detach);
10424 EXPORT_SYMBOL(spa_vdev_setpath);
10425 EXPORT_SYMBOL(spa_vdev_setfru);
10426 EXPORT_SYMBOL(spa_vdev_split_mirror);
10427
10428 /* spare statech is global across all pools) */
10429 EXPORT_SYMBOL(spa_spare_add);
10430 EXPORT_SYMBOL(spa_spare_remove);
10431 EXPORT_SYMBOL(spa_spare_exists);
10432 EXPORT_SYMBOL(spa_spare_activate);
10433
10434 /* L2ARC statech is global across all pools) */
10435 EXPORT_SYMBOL(spa_l2cache_add);
10436 EXPORT_SYMBOL(spa_l2cache_remove);
10437 EXPORT_SYMBOL(spa_l2cache_exists);
10438 EXPORT_SYMBOL(spa_l2cache_activate);
10439 EXPORT_SYMBOL(spa_l2cache_drop);
10440
10441 /* scanning */
10442 EXPORT_SYMBOL(spa_scan);
10443 EXPORT_SYMBOL(spa_scan_stop);
10444
10445 /* spa syncing */
10446 EXPORT_SYMBOL(spa_sync); /* only for DMU use */
10447 EXPORT_SYMBOL(spa_sync_allpools);
10448
10449 /* properties */
10450 EXPORT_SYMBOL(spa_prop_set);
10451 EXPORT_SYMBOL(spa_prop_get);
10452 EXPORT_SYMBOL(spa_prop_clear_bootfs);
10453
10454 /* asynchronous event notification */
10455 EXPORT_SYMBOL(spa_event_notify);
10456
10457 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, preload_pct, UINT, ZMOD_RW,
10458 "Percentage of CPUs to run a metaslab preload taskq");
10459
10460 /* BEGIN CSTYLED */
10461 ZFS_MODULE_PARAM(zfs_spa, spa_, load_verify_shift, UINT, ZMOD_RW,
10462 "log2 fraction of arc that can be used by inflight I/Os when "
10463 "verifying pool during import");
10464 /* END CSTYLED */
10465
10466 ZFS_MODULE_PARAM(zfs_spa, spa_, load_verify_metadata, INT, ZMOD_RW,
10467 "Set to traverse metadata on pool import");
10468
10469 ZFS_MODULE_PARAM(zfs_spa, spa_, load_verify_data, INT, ZMOD_RW,
10470 "Set to traverse data on pool import");
10471
10472 ZFS_MODULE_PARAM(zfs_spa, spa_, load_print_vdev_tree, INT, ZMOD_RW,
10473 "Print vdev tree to zfs_dbgmsg during pool import");
10474
10475 ZFS_MODULE_PARAM(zfs_zio, zio_, taskq_batch_pct, UINT, ZMOD_RD,
10476 "Percentage of CPUs to run an IO worker thread");
10477
10478 ZFS_MODULE_PARAM(zfs_zio, zio_, taskq_batch_tpq, UINT, ZMOD_RD,
10479 "Number of threads per IO worker taskqueue");
10480
10481 /* BEGIN CSTYLED */
10482 ZFS_MODULE_PARAM(zfs, zfs_, max_missing_tvds, U64, ZMOD_RW,
10483 "Allow importing pool with up to this number of missing top-level "
10484 "vdevs (in read-only mode)");
10485 /* END CSTYLED */
10486
10487 ZFS_MODULE_PARAM(zfs_livelist_condense, zfs_livelist_condense_, zthr_pause, INT,
10488 ZMOD_RW, "Set the livelist condense zthr to pause");
10489
10490 ZFS_MODULE_PARAM(zfs_livelist_condense, zfs_livelist_condense_, sync_pause, INT,
10491 ZMOD_RW, "Set the livelist condense synctask to pause");
10492
10493 /* BEGIN CSTYLED */
10494 ZFS_MODULE_PARAM(zfs_livelist_condense, zfs_livelist_condense_, sync_cancel,
10495 INT, ZMOD_RW,
10496 "Whether livelist condensing was canceled in the synctask");
10497
10498 ZFS_MODULE_PARAM(zfs_livelist_condense, zfs_livelist_condense_, zthr_cancel,
10499 INT, ZMOD_RW,
10500 "Whether livelist condensing was canceled in the zthr function");
10501
10502 ZFS_MODULE_PARAM(zfs_livelist_condense, zfs_livelist_condense_, new_alloc, INT,
10503 ZMOD_RW,
10504 "Whether extra ALLOC blkptrs were added to a livelist entry while it "
10505 "was being condensed");
10506 /* END CSTYLED */
10507
10508 ZFS_MODULE_PARAM(zfs_zio, zio_, taskq_wr_iss_ncpus, UINT, ZMOD_RW,
10509 "Number of CPUs to run write issue taskqs");