]> git.proxmox.com Git - mirror_zfs.git/blob - module/zfs/spa.c
spa: make read/write queues configurable
[mirror_zfs.git] / module / zfs / spa.c
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or https://opensource.org/licenses/CDDL-1.0.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22 /*
23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright (c) 2011, 2020 by Delphix. All rights reserved.
25 * Copyright (c) 2018, Nexenta Systems, Inc. All rights reserved.
26 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
27 * Copyright 2013 Saso Kiselkov. All rights reserved.
28 * Copyright (c) 2014 Integros [integros.com]
29 * Copyright 2016 Toomas Soome <tsoome@me.com>
30 * Copyright (c) 2016 Actifio, Inc. All rights reserved.
31 * Copyright 2018 Joyent, Inc.
32 * Copyright (c) 2017, 2019, Datto Inc. All rights reserved.
33 * Copyright 2017 Joyent, Inc.
34 * Copyright (c) 2017, Intel Corporation.
35 * Copyright (c) 2021, Colm Buckley <colm@tuatha.org>
36 * Copyright (c) 2023 Hewlett Packard Enterprise Development LP.
37 */
38
39 /*
40 * SPA: Storage Pool Allocator
41 *
42 * This file contains all the routines used when modifying on-disk SPA state.
43 * This includes opening, importing, destroying, exporting a pool, and syncing a
44 * pool.
45 */
46
47 #include <sys/zfs_context.h>
48 #include <sys/fm/fs/zfs.h>
49 #include <sys/spa_impl.h>
50 #include <sys/zio.h>
51 #include <sys/zio_checksum.h>
52 #include <sys/dmu.h>
53 #include <sys/dmu_tx.h>
54 #include <sys/zap.h>
55 #include <sys/zil.h>
56 #include <sys/brt.h>
57 #include <sys/ddt.h>
58 #include <sys/vdev_impl.h>
59 #include <sys/vdev_removal.h>
60 #include <sys/vdev_indirect_mapping.h>
61 #include <sys/vdev_indirect_births.h>
62 #include <sys/vdev_initialize.h>
63 #include <sys/vdev_rebuild.h>
64 #include <sys/vdev_trim.h>
65 #include <sys/vdev_disk.h>
66 #include <sys/vdev_raidz.h>
67 #include <sys/vdev_draid.h>
68 #include <sys/metaslab.h>
69 #include <sys/metaslab_impl.h>
70 #include <sys/mmp.h>
71 #include <sys/uberblock_impl.h>
72 #include <sys/txg.h>
73 #include <sys/avl.h>
74 #include <sys/bpobj.h>
75 #include <sys/dmu_traverse.h>
76 #include <sys/dmu_objset.h>
77 #include <sys/unique.h>
78 #include <sys/dsl_pool.h>
79 #include <sys/dsl_dataset.h>
80 #include <sys/dsl_dir.h>
81 #include <sys/dsl_prop.h>
82 #include <sys/dsl_synctask.h>
83 #include <sys/fs/zfs.h>
84 #include <sys/arc.h>
85 #include <sys/callb.h>
86 #include <sys/systeminfo.h>
87 #include <sys/zfs_ioctl.h>
88 #include <sys/dsl_scan.h>
89 #include <sys/zfeature.h>
90 #include <sys/dsl_destroy.h>
91 #include <sys/zvol.h>
92
93 #ifdef _KERNEL
94 #include <sys/fm/protocol.h>
95 #include <sys/fm/util.h>
96 #include <sys/callb.h>
97 #include <sys/zone.h>
98 #include <sys/vmsystm.h>
99 #endif /* _KERNEL */
100
101 #include "zfs_prop.h"
102 #include "zfs_comutil.h"
103 #include <cityhash.h>
104
105 /*
106 * spa_thread() existed on Illumos as a parent thread for the various worker
107 * threads that actually run the pool, as a way to both reference the entire
108 * pool work as a single object, and to share properties like scheduling
109 * options. It has not yet been adapted to Linux or FreeBSD. This define is
110 * used to mark related parts of the code to make things easier for the reader,
111 * and to compile this code out. It can be removed when someone implements it,
112 * moves it to some Illumos-specific place, or removes it entirely.
113 */
114 #undef HAVE_SPA_THREAD
115
116 /*
117 * The "System Duty Cycle" scheduling class is an Illumos feature to help
118 * prevent CPU-intensive kernel threads from affecting latency on interactive
119 * threads. It doesn't exist on Linux or FreeBSD, so the supporting code is
120 * gated behind a define. On Illumos SDC depends on spa_thread(), but
121 * spa_thread() also has other uses, so this is a separate define.
122 */
123 #undef HAVE_SYSDC
124
125 /*
126 * The interval, in seconds, at which failed configuration cache file writes
127 * should be retried.
128 */
129 int zfs_ccw_retry_interval = 300;
130
131 typedef enum zti_modes {
132 ZTI_MODE_FIXED, /* value is # of threads (min 1) */
133 ZTI_MODE_SCALE, /* Taskqs scale with CPUs. */
134 ZTI_MODE_SYNC, /* sync thread assigned */
135 ZTI_MODE_NULL, /* don't create a taskq */
136 ZTI_NMODES
137 } zti_modes_t;
138
139 #define ZTI_P(n, q) { ZTI_MODE_FIXED, (n), (q) }
140 #define ZTI_PCT(n) { ZTI_MODE_ONLINE_PERCENT, (n), 1 }
141 #define ZTI_SCALE { ZTI_MODE_SCALE, 0, 1 }
142 #define ZTI_SYNC { ZTI_MODE_SYNC, 0, 1 }
143 #define ZTI_NULL { ZTI_MODE_NULL, 0, 0 }
144
145 #define ZTI_N(n) ZTI_P(n, 1)
146 #define ZTI_ONE ZTI_N(1)
147
148 typedef struct zio_taskq_info {
149 zti_modes_t zti_mode;
150 uint_t zti_value;
151 uint_t zti_count;
152 } zio_taskq_info_t;
153
154 static const char *const zio_taskq_types[ZIO_TASKQ_TYPES] = {
155 "iss", "iss_h", "int", "int_h"
156 };
157
158 /*
159 * This table defines the taskq settings for each ZFS I/O type. When
160 * initializing a pool, we use this table to create an appropriately sized
161 * taskq. Some operations are low volume and therefore have a small, static
162 * number of threads assigned to their taskqs using the ZTI_N(#) or ZTI_ONE
163 * macros. Other operations process a large amount of data; the ZTI_SCALE
164 * macro causes us to create a taskq oriented for throughput. Some operations
165 * are so high frequency and short-lived that the taskq itself can become a
166 * point of lock contention. The ZTI_P(#, #) macro indicates that we need an
167 * additional degree of parallelism specified by the number of threads per-
168 * taskq and the number of taskqs; when dispatching an event in this case, the
169 * particular taskq is chosen at random. ZTI_SCALE uses a number of taskqs
170 * that scales with the number of CPUs.
171 *
172 * The different taskq priorities are to handle the different contexts (issue
173 * and interrupt) and then to reserve threads for ZIO_PRIORITY_NOW I/Os that
174 * need to be handled with minimum delay.
175 */
176 static zio_taskq_info_t zio_taskqs[ZIO_TYPES][ZIO_TASKQ_TYPES] = {
177 /* ISSUE ISSUE_HIGH INTR INTR_HIGH */
178 { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* NULL */
179 { ZTI_N(8), ZTI_NULL, ZTI_SCALE, ZTI_NULL }, /* READ */
180 { ZTI_SYNC, ZTI_N(5), ZTI_SCALE, ZTI_N(5) }, /* WRITE */
181 { ZTI_SCALE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* FREE */
182 { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* CLAIM */
183 { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* IOCTL */
184 { ZTI_N(4), ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* TRIM */
185 };
186
187 static void spa_sync_version(void *arg, dmu_tx_t *tx);
188 static void spa_sync_props(void *arg, dmu_tx_t *tx);
189 static boolean_t spa_has_active_shared_spare(spa_t *spa);
190 static int spa_load_impl(spa_t *spa, spa_import_type_t type,
191 const char **ereport);
192 static void spa_vdev_resilver_done(spa_t *spa);
193
194 /*
195 * Percentage of all CPUs that can be used by the metaslab preload taskq.
196 */
197 static uint_t metaslab_preload_pct = 50;
198
199 static uint_t zio_taskq_batch_pct = 80; /* 1 thread per cpu in pset */
200 static uint_t zio_taskq_batch_tpq; /* threads per taskq */
201
202 #ifdef HAVE_SYSDC
203 static const boolean_t zio_taskq_sysdc = B_TRUE; /* use SDC scheduling class */
204 static const uint_t zio_taskq_basedc = 80; /* base duty cycle */
205 #endif
206
207 #ifdef HAVE_SPA_THREAD
208 static const boolean_t spa_create_process = B_TRUE; /* no process => no sysdc */
209 #endif
210
211 static uint_t zio_taskq_wr_iss_ncpus = 0;
212
213 /*
214 * Report any spa_load_verify errors found, but do not fail spa_load.
215 * This is used by zdb to analyze non-idle pools.
216 */
217 boolean_t spa_load_verify_dryrun = B_FALSE;
218
219 /*
220 * Allow read spacemaps in case of readonly import (spa_mode == SPA_MODE_READ).
221 * This is used by zdb for spacemaps verification.
222 */
223 boolean_t spa_mode_readable_spacemaps = B_FALSE;
224
225 /*
226 * This (illegal) pool name is used when temporarily importing a spa_t in order
227 * to get the vdev stats associated with the imported devices.
228 */
229 #define TRYIMPORT_NAME "$import"
230
231 /*
232 * For debugging purposes: print out vdev tree during pool import.
233 */
234 static int spa_load_print_vdev_tree = B_FALSE;
235
236 /*
237 * A non-zero value for zfs_max_missing_tvds means that we allow importing
238 * pools with missing top-level vdevs. This is strictly intended for advanced
239 * pool recovery cases since missing data is almost inevitable. Pools with
240 * missing devices can only be imported read-only for safety reasons, and their
241 * fail-mode will be automatically set to "continue".
242 *
243 * With 1 missing vdev we should be able to import the pool and mount all
244 * datasets. User data that was not modified after the missing device has been
245 * added should be recoverable. This means that snapshots created prior to the
246 * addition of that device should be completely intact.
247 *
248 * With 2 missing vdevs, some datasets may fail to mount since there are
249 * dataset statistics that are stored as regular metadata. Some data might be
250 * recoverable if those vdevs were added recently.
251 *
252 * With 3 or more missing vdevs, the pool is severely damaged and MOS entries
253 * may be missing entirely. Chances of data recovery are very low. Note that
254 * there are also risks of performing an inadvertent rewind as we might be
255 * missing all the vdevs with the latest uberblocks.
256 */
257 uint64_t zfs_max_missing_tvds = 0;
258
259 /*
260 * The parameters below are similar to zfs_max_missing_tvds but are only
261 * intended for a preliminary open of the pool with an untrusted config which
262 * might be incomplete or out-dated.
263 *
264 * We are more tolerant for pools opened from a cachefile since we could have
265 * an out-dated cachefile where a device removal was not registered.
266 * We could have set the limit arbitrarily high but in the case where devices
267 * are really missing we would want to return the proper error codes; we chose
268 * SPA_DVAS_PER_BP - 1 so that some copies of the MOS would still be available
269 * and we get a chance to retrieve the trusted config.
270 */
271 uint64_t zfs_max_missing_tvds_cachefile = SPA_DVAS_PER_BP - 1;
272
273 /*
274 * In the case where config was assembled by scanning device paths (/dev/dsks
275 * by default) we are less tolerant since all the existing devices should have
276 * been detected and we want spa_load to return the right error codes.
277 */
278 uint64_t zfs_max_missing_tvds_scan = 0;
279
280 /*
281 * Debugging aid that pauses spa_sync() towards the end.
282 */
283 static const boolean_t zfs_pause_spa_sync = B_FALSE;
284
285 /*
286 * Variables to indicate the livelist condense zthr func should wait at certain
287 * points for the livelist to be removed - used to test condense/destroy races
288 */
289 static int zfs_livelist_condense_zthr_pause = 0;
290 static int zfs_livelist_condense_sync_pause = 0;
291
292 /*
293 * Variables to track whether or not condense cancellation has been
294 * triggered in testing.
295 */
296 static int zfs_livelist_condense_sync_cancel = 0;
297 static int zfs_livelist_condense_zthr_cancel = 0;
298
299 /*
300 * Variable to track whether or not extra ALLOC blkptrs were added to a
301 * livelist entry while it was being condensed (caused by the way we track
302 * remapped blkptrs in dbuf_remap_impl)
303 */
304 static int zfs_livelist_condense_new_alloc = 0;
305
306 /*
307 * ==========================================================================
308 * SPA properties routines
309 * ==========================================================================
310 */
311
312 /*
313 * Add a (source=src, propname=propval) list to an nvlist.
314 */
315 static void
316 spa_prop_add_list(nvlist_t *nvl, zpool_prop_t prop, const char *strval,
317 uint64_t intval, zprop_source_t src)
318 {
319 const char *propname = zpool_prop_to_name(prop);
320 nvlist_t *propval;
321
322 propval = fnvlist_alloc();
323 fnvlist_add_uint64(propval, ZPROP_SOURCE, src);
324
325 if (strval != NULL)
326 fnvlist_add_string(propval, ZPROP_VALUE, strval);
327 else
328 fnvlist_add_uint64(propval, ZPROP_VALUE, intval);
329
330 fnvlist_add_nvlist(nvl, propname, propval);
331 nvlist_free(propval);
332 }
333
334 /*
335 * Add a user property (source=src, propname=propval) to an nvlist.
336 */
337 static void
338 spa_prop_add_user(nvlist_t *nvl, const char *propname, char *strval,
339 zprop_source_t src)
340 {
341 nvlist_t *propval;
342
343 VERIFY(nvlist_alloc(&propval, NV_UNIQUE_NAME, KM_SLEEP) == 0);
344 VERIFY(nvlist_add_uint64(propval, ZPROP_SOURCE, src) == 0);
345 VERIFY(nvlist_add_string(propval, ZPROP_VALUE, strval) == 0);
346 VERIFY(nvlist_add_nvlist(nvl, propname, propval) == 0);
347 nvlist_free(propval);
348 }
349
350 /*
351 * Get property values from the spa configuration.
352 */
353 static void
354 spa_prop_get_config(spa_t *spa, nvlist_t **nvp)
355 {
356 vdev_t *rvd = spa->spa_root_vdev;
357 dsl_pool_t *pool = spa->spa_dsl_pool;
358 uint64_t size, alloc, cap, version;
359 const zprop_source_t src = ZPROP_SRC_NONE;
360 spa_config_dirent_t *dp;
361 metaslab_class_t *mc = spa_normal_class(spa);
362
363 ASSERT(MUTEX_HELD(&spa->spa_props_lock));
364
365 if (rvd != NULL) {
366 alloc = metaslab_class_get_alloc(mc);
367 alloc += metaslab_class_get_alloc(spa_special_class(spa));
368 alloc += metaslab_class_get_alloc(spa_dedup_class(spa));
369 alloc += metaslab_class_get_alloc(spa_embedded_log_class(spa));
370
371 size = metaslab_class_get_space(mc);
372 size += metaslab_class_get_space(spa_special_class(spa));
373 size += metaslab_class_get_space(spa_dedup_class(spa));
374 size += metaslab_class_get_space(spa_embedded_log_class(spa));
375
376 spa_prop_add_list(*nvp, ZPOOL_PROP_NAME, spa_name(spa), 0, src);
377 spa_prop_add_list(*nvp, ZPOOL_PROP_SIZE, NULL, size, src);
378 spa_prop_add_list(*nvp, ZPOOL_PROP_ALLOCATED, NULL, alloc, src);
379 spa_prop_add_list(*nvp, ZPOOL_PROP_FREE, NULL,
380 size - alloc, src);
381 spa_prop_add_list(*nvp, ZPOOL_PROP_CHECKPOINT, NULL,
382 spa->spa_checkpoint_info.sci_dspace, src);
383
384 spa_prop_add_list(*nvp, ZPOOL_PROP_FRAGMENTATION, NULL,
385 metaslab_class_fragmentation(mc), src);
386 spa_prop_add_list(*nvp, ZPOOL_PROP_EXPANDSZ, NULL,
387 metaslab_class_expandable_space(mc), src);
388 spa_prop_add_list(*nvp, ZPOOL_PROP_READONLY, NULL,
389 (spa_mode(spa) == SPA_MODE_READ), src);
390
391 cap = (size == 0) ? 0 : (alloc * 100 / size);
392 spa_prop_add_list(*nvp, ZPOOL_PROP_CAPACITY, NULL, cap, src);
393
394 spa_prop_add_list(*nvp, ZPOOL_PROP_DEDUPRATIO, NULL,
395 ddt_get_pool_dedup_ratio(spa), src);
396 spa_prop_add_list(*nvp, ZPOOL_PROP_BCLONEUSED, NULL,
397 brt_get_used(spa), src);
398 spa_prop_add_list(*nvp, ZPOOL_PROP_BCLONESAVED, NULL,
399 brt_get_saved(spa), src);
400 spa_prop_add_list(*nvp, ZPOOL_PROP_BCLONERATIO, NULL,
401 brt_get_ratio(spa), src);
402
403 spa_prop_add_list(*nvp, ZPOOL_PROP_HEALTH, NULL,
404 rvd->vdev_state, src);
405
406 version = spa_version(spa);
407 if (version == zpool_prop_default_numeric(ZPOOL_PROP_VERSION)) {
408 spa_prop_add_list(*nvp, ZPOOL_PROP_VERSION, NULL,
409 version, ZPROP_SRC_DEFAULT);
410 } else {
411 spa_prop_add_list(*nvp, ZPOOL_PROP_VERSION, NULL,
412 version, ZPROP_SRC_LOCAL);
413 }
414 spa_prop_add_list(*nvp, ZPOOL_PROP_LOAD_GUID,
415 NULL, spa_load_guid(spa), src);
416 }
417
418 if (pool != NULL) {
419 /*
420 * The $FREE directory was introduced in SPA_VERSION_DEADLISTS,
421 * when opening pools before this version freedir will be NULL.
422 */
423 if (pool->dp_free_dir != NULL) {
424 spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING, NULL,
425 dsl_dir_phys(pool->dp_free_dir)->dd_used_bytes,
426 src);
427 } else {
428 spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING,
429 NULL, 0, src);
430 }
431
432 if (pool->dp_leak_dir != NULL) {
433 spa_prop_add_list(*nvp, ZPOOL_PROP_LEAKED, NULL,
434 dsl_dir_phys(pool->dp_leak_dir)->dd_used_bytes,
435 src);
436 } else {
437 spa_prop_add_list(*nvp, ZPOOL_PROP_LEAKED,
438 NULL, 0, src);
439 }
440 }
441
442 spa_prop_add_list(*nvp, ZPOOL_PROP_GUID, NULL, spa_guid(spa), src);
443
444 if (spa->spa_comment != NULL) {
445 spa_prop_add_list(*nvp, ZPOOL_PROP_COMMENT, spa->spa_comment,
446 0, ZPROP_SRC_LOCAL);
447 }
448
449 if (spa->spa_compatibility != NULL) {
450 spa_prop_add_list(*nvp, ZPOOL_PROP_COMPATIBILITY,
451 spa->spa_compatibility, 0, ZPROP_SRC_LOCAL);
452 }
453
454 if (spa->spa_root != NULL)
455 spa_prop_add_list(*nvp, ZPOOL_PROP_ALTROOT, spa->spa_root,
456 0, ZPROP_SRC_LOCAL);
457
458 if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_BLOCKS)) {
459 spa_prop_add_list(*nvp, ZPOOL_PROP_MAXBLOCKSIZE, NULL,
460 MIN(zfs_max_recordsize, SPA_MAXBLOCKSIZE), ZPROP_SRC_NONE);
461 } else {
462 spa_prop_add_list(*nvp, ZPOOL_PROP_MAXBLOCKSIZE, NULL,
463 SPA_OLD_MAXBLOCKSIZE, ZPROP_SRC_NONE);
464 }
465
466 if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_DNODE)) {
467 spa_prop_add_list(*nvp, ZPOOL_PROP_MAXDNODESIZE, NULL,
468 DNODE_MAX_SIZE, ZPROP_SRC_NONE);
469 } else {
470 spa_prop_add_list(*nvp, ZPOOL_PROP_MAXDNODESIZE, NULL,
471 DNODE_MIN_SIZE, ZPROP_SRC_NONE);
472 }
473
474 if ((dp = list_head(&spa->spa_config_list)) != NULL) {
475 if (dp->scd_path == NULL) {
476 spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
477 "none", 0, ZPROP_SRC_LOCAL);
478 } else if (strcmp(dp->scd_path, spa_config_path) != 0) {
479 spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
480 dp->scd_path, 0, ZPROP_SRC_LOCAL);
481 }
482 }
483 }
484
485 /*
486 * Get zpool property values.
487 */
488 int
489 spa_prop_get(spa_t *spa, nvlist_t **nvp)
490 {
491 objset_t *mos = spa->spa_meta_objset;
492 zap_cursor_t zc;
493 zap_attribute_t za;
494 dsl_pool_t *dp;
495 int err;
496
497 err = nvlist_alloc(nvp, NV_UNIQUE_NAME, KM_SLEEP);
498 if (err)
499 return (err);
500
501 dp = spa_get_dsl(spa);
502 dsl_pool_config_enter(dp, FTAG);
503 mutex_enter(&spa->spa_props_lock);
504
505 /*
506 * Get properties from the spa config.
507 */
508 spa_prop_get_config(spa, nvp);
509
510 /* If no pool property object, no more prop to get. */
511 if (mos == NULL || spa->spa_pool_props_object == 0)
512 goto out;
513
514 /*
515 * Get properties from the MOS pool property object.
516 */
517 for (zap_cursor_init(&zc, mos, spa->spa_pool_props_object);
518 (err = zap_cursor_retrieve(&zc, &za)) == 0;
519 zap_cursor_advance(&zc)) {
520 uint64_t intval = 0;
521 char *strval = NULL;
522 zprop_source_t src = ZPROP_SRC_DEFAULT;
523 zpool_prop_t prop;
524
525 if ((prop = zpool_name_to_prop(za.za_name)) ==
526 ZPOOL_PROP_INVAL && !zfs_prop_user(za.za_name))
527 continue;
528
529 switch (za.za_integer_length) {
530 case 8:
531 /* integer property */
532 if (za.za_first_integer !=
533 zpool_prop_default_numeric(prop))
534 src = ZPROP_SRC_LOCAL;
535
536 if (prop == ZPOOL_PROP_BOOTFS) {
537 dsl_dataset_t *ds = NULL;
538
539 err = dsl_dataset_hold_obj(dp,
540 za.za_first_integer, FTAG, &ds);
541 if (err != 0)
542 break;
543
544 strval = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN,
545 KM_SLEEP);
546 dsl_dataset_name(ds, strval);
547 dsl_dataset_rele(ds, FTAG);
548 } else {
549 strval = NULL;
550 intval = za.za_first_integer;
551 }
552
553 spa_prop_add_list(*nvp, prop, strval, intval, src);
554
555 if (strval != NULL)
556 kmem_free(strval, ZFS_MAX_DATASET_NAME_LEN);
557
558 break;
559
560 case 1:
561 /* string property */
562 strval = kmem_alloc(za.za_num_integers, KM_SLEEP);
563 err = zap_lookup(mos, spa->spa_pool_props_object,
564 za.za_name, 1, za.za_num_integers, strval);
565 if (err) {
566 kmem_free(strval, za.za_num_integers);
567 break;
568 }
569 if (prop != ZPOOL_PROP_INVAL) {
570 spa_prop_add_list(*nvp, prop, strval, 0, src);
571 } else {
572 src = ZPROP_SRC_LOCAL;
573 spa_prop_add_user(*nvp, za.za_name, strval,
574 src);
575 }
576 kmem_free(strval, za.za_num_integers);
577 break;
578
579 default:
580 break;
581 }
582 }
583 zap_cursor_fini(&zc);
584 out:
585 mutex_exit(&spa->spa_props_lock);
586 dsl_pool_config_exit(dp, FTAG);
587 if (err && err != ENOENT) {
588 nvlist_free(*nvp);
589 *nvp = NULL;
590 return (err);
591 }
592
593 return (0);
594 }
595
596 /*
597 * Validate the given pool properties nvlist and modify the list
598 * for the property values to be set.
599 */
600 static int
601 spa_prop_validate(spa_t *spa, nvlist_t *props)
602 {
603 nvpair_t *elem;
604 int error = 0, reset_bootfs = 0;
605 uint64_t objnum = 0;
606 boolean_t has_feature = B_FALSE;
607
608 elem = NULL;
609 while ((elem = nvlist_next_nvpair(props, elem)) != NULL) {
610 uint64_t intval;
611 const char *strval, *slash, *check, *fname;
612 const char *propname = nvpair_name(elem);
613 zpool_prop_t prop = zpool_name_to_prop(propname);
614
615 switch (prop) {
616 case ZPOOL_PROP_INVAL:
617 /*
618 * Sanitize the input.
619 */
620 if (zfs_prop_user(propname)) {
621 if (strlen(propname) >= ZAP_MAXNAMELEN) {
622 error = SET_ERROR(ENAMETOOLONG);
623 break;
624 }
625
626 if (strlen(fnvpair_value_string(elem)) >=
627 ZAP_MAXVALUELEN) {
628 error = SET_ERROR(E2BIG);
629 break;
630 }
631 } else if (zpool_prop_feature(propname)) {
632 if (nvpair_type(elem) != DATA_TYPE_UINT64) {
633 error = SET_ERROR(EINVAL);
634 break;
635 }
636
637 if (nvpair_value_uint64(elem, &intval) != 0) {
638 error = SET_ERROR(EINVAL);
639 break;
640 }
641
642 if (intval != 0) {
643 error = SET_ERROR(EINVAL);
644 break;
645 }
646
647 fname = strchr(propname, '@') + 1;
648 if (zfeature_lookup_name(fname, NULL) != 0) {
649 error = SET_ERROR(EINVAL);
650 break;
651 }
652
653 has_feature = B_TRUE;
654 } else {
655 error = SET_ERROR(EINVAL);
656 break;
657 }
658 break;
659
660 case ZPOOL_PROP_VERSION:
661 error = nvpair_value_uint64(elem, &intval);
662 if (!error &&
663 (intval < spa_version(spa) ||
664 intval > SPA_VERSION_BEFORE_FEATURES ||
665 has_feature))
666 error = SET_ERROR(EINVAL);
667 break;
668
669 case ZPOOL_PROP_DELEGATION:
670 case ZPOOL_PROP_AUTOREPLACE:
671 case ZPOOL_PROP_LISTSNAPS:
672 case ZPOOL_PROP_AUTOEXPAND:
673 case ZPOOL_PROP_AUTOTRIM:
674 error = nvpair_value_uint64(elem, &intval);
675 if (!error && intval > 1)
676 error = SET_ERROR(EINVAL);
677 break;
678
679 case ZPOOL_PROP_MULTIHOST:
680 error = nvpair_value_uint64(elem, &intval);
681 if (!error && intval > 1)
682 error = SET_ERROR(EINVAL);
683
684 if (!error) {
685 uint32_t hostid = zone_get_hostid(NULL);
686 if (hostid)
687 spa->spa_hostid = hostid;
688 else
689 error = SET_ERROR(ENOTSUP);
690 }
691
692 break;
693
694 case ZPOOL_PROP_BOOTFS:
695 /*
696 * If the pool version is less than SPA_VERSION_BOOTFS,
697 * or the pool is still being created (version == 0),
698 * the bootfs property cannot be set.
699 */
700 if (spa_version(spa) < SPA_VERSION_BOOTFS) {
701 error = SET_ERROR(ENOTSUP);
702 break;
703 }
704
705 /*
706 * Make sure the vdev config is bootable
707 */
708 if (!vdev_is_bootable(spa->spa_root_vdev)) {
709 error = SET_ERROR(ENOTSUP);
710 break;
711 }
712
713 reset_bootfs = 1;
714
715 error = nvpair_value_string(elem, &strval);
716
717 if (!error) {
718 objset_t *os;
719
720 if (strval == NULL || strval[0] == '\0') {
721 objnum = zpool_prop_default_numeric(
722 ZPOOL_PROP_BOOTFS);
723 break;
724 }
725
726 error = dmu_objset_hold(strval, FTAG, &os);
727 if (error != 0)
728 break;
729
730 /* Must be ZPL. */
731 if (dmu_objset_type(os) != DMU_OST_ZFS) {
732 error = SET_ERROR(ENOTSUP);
733 } else {
734 objnum = dmu_objset_id(os);
735 }
736 dmu_objset_rele(os, FTAG);
737 }
738 break;
739
740 case ZPOOL_PROP_FAILUREMODE:
741 error = nvpair_value_uint64(elem, &intval);
742 if (!error && intval > ZIO_FAILURE_MODE_PANIC)
743 error = SET_ERROR(EINVAL);
744
745 /*
746 * This is a special case which only occurs when
747 * the pool has completely failed. This allows
748 * the user to change the in-core failmode property
749 * without syncing it out to disk (I/Os might
750 * currently be blocked). We do this by returning
751 * EIO to the caller (spa_prop_set) to trick it
752 * into thinking we encountered a property validation
753 * error.
754 */
755 if (!error && spa_suspended(spa)) {
756 spa->spa_failmode = intval;
757 error = SET_ERROR(EIO);
758 }
759 break;
760
761 case ZPOOL_PROP_CACHEFILE:
762 if ((error = nvpair_value_string(elem, &strval)) != 0)
763 break;
764
765 if (strval[0] == '\0')
766 break;
767
768 if (strcmp(strval, "none") == 0)
769 break;
770
771 if (strval[0] != '/') {
772 error = SET_ERROR(EINVAL);
773 break;
774 }
775
776 slash = strrchr(strval, '/');
777 ASSERT(slash != NULL);
778
779 if (slash[1] == '\0' || strcmp(slash, "/.") == 0 ||
780 strcmp(slash, "/..") == 0)
781 error = SET_ERROR(EINVAL);
782 break;
783
784 case ZPOOL_PROP_COMMENT:
785 if ((error = nvpair_value_string(elem, &strval)) != 0)
786 break;
787 for (check = strval; *check != '\0'; check++) {
788 if (!isprint(*check)) {
789 error = SET_ERROR(EINVAL);
790 break;
791 }
792 }
793 if (strlen(strval) > ZPROP_MAX_COMMENT)
794 error = SET_ERROR(E2BIG);
795 break;
796
797 default:
798 break;
799 }
800
801 if (error)
802 break;
803 }
804
805 (void) nvlist_remove_all(props,
806 zpool_prop_to_name(ZPOOL_PROP_DEDUPDITTO));
807
808 if (!error && reset_bootfs) {
809 error = nvlist_remove(props,
810 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), DATA_TYPE_STRING);
811
812 if (!error) {
813 error = nvlist_add_uint64(props,
814 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), objnum);
815 }
816 }
817
818 return (error);
819 }
820
821 void
822 spa_configfile_set(spa_t *spa, nvlist_t *nvp, boolean_t need_sync)
823 {
824 const char *cachefile;
825 spa_config_dirent_t *dp;
826
827 if (nvlist_lookup_string(nvp, zpool_prop_to_name(ZPOOL_PROP_CACHEFILE),
828 &cachefile) != 0)
829 return;
830
831 dp = kmem_alloc(sizeof (spa_config_dirent_t),
832 KM_SLEEP);
833
834 if (cachefile[0] == '\0')
835 dp->scd_path = spa_strdup(spa_config_path);
836 else if (strcmp(cachefile, "none") == 0)
837 dp->scd_path = NULL;
838 else
839 dp->scd_path = spa_strdup(cachefile);
840
841 list_insert_head(&spa->spa_config_list, dp);
842 if (need_sync)
843 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
844 }
845
846 int
847 spa_prop_set(spa_t *spa, nvlist_t *nvp)
848 {
849 int error;
850 nvpair_t *elem = NULL;
851 boolean_t need_sync = B_FALSE;
852
853 if ((error = spa_prop_validate(spa, nvp)) != 0)
854 return (error);
855
856 while ((elem = nvlist_next_nvpair(nvp, elem)) != NULL) {
857 zpool_prop_t prop = zpool_name_to_prop(nvpair_name(elem));
858
859 if (prop == ZPOOL_PROP_CACHEFILE ||
860 prop == ZPOOL_PROP_ALTROOT ||
861 prop == ZPOOL_PROP_READONLY)
862 continue;
863
864 if (prop == ZPOOL_PROP_INVAL &&
865 zfs_prop_user(nvpair_name(elem))) {
866 need_sync = B_TRUE;
867 break;
868 }
869
870 if (prop == ZPOOL_PROP_VERSION || prop == ZPOOL_PROP_INVAL) {
871 uint64_t ver = 0;
872
873 if (prop == ZPOOL_PROP_VERSION) {
874 VERIFY(nvpair_value_uint64(elem, &ver) == 0);
875 } else {
876 ASSERT(zpool_prop_feature(nvpair_name(elem)));
877 ver = SPA_VERSION_FEATURES;
878 need_sync = B_TRUE;
879 }
880
881 /* Save time if the version is already set. */
882 if (ver == spa_version(spa))
883 continue;
884
885 /*
886 * In addition to the pool directory object, we might
887 * create the pool properties object, the features for
888 * read object, the features for write object, or the
889 * feature descriptions object.
890 */
891 error = dsl_sync_task(spa->spa_name, NULL,
892 spa_sync_version, &ver,
893 6, ZFS_SPACE_CHECK_RESERVED);
894 if (error)
895 return (error);
896 continue;
897 }
898
899 need_sync = B_TRUE;
900 break;
901 }
902
903 if (need_sync) {
904 return (dsl_sync_task(spa->spa_name, NULL, spa_sync_props,
905 nvp, 6, ZFS_SPACE_CHECK_RESERVED));
906 }
907
908 return (0);
909 }
910
911 /*
912 * If the bootfs property value is dsobj, clear it.
913 */
914 void
915 spa_prop_clear_bootfs(spa_t *spa, uint64_t dsobj, dmu_tx_t *tx)
916 {
917 if (spa->spa_bootfs == dsobj && spa->spa_pool_props_object != 0) {
918 VERIFY(zap_remove(spa->spa_meta_objset,
919 spa->spa_pool_props_object,
920 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), tx) == 0);
921 spa->spa_bootfs = 0;
922 }
923 }
924
925 static int
926 spa_change_guid_check(void *arg, dmu_tx_t *tx)
927 {
928 uint64_t *newguid __maybe_unused = arg;
929 spa_t *spa = dmu_tx_pool(tx)->dp_spa;
930 vdev_t *rvd = spa->spa_root_vdev;
931 uint64_t vdev_state;
932
933 if (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) {
934 int error = (spa_has_checkpoint(spa)) ?
935 ZFS_ERR_CHECKPOINT_EXISTS : ZFS_ERR_DISCARDING_CHECKPOINT;
936 return (SET_ERROR(error));
937 }
938
939 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
940 vdev_state = rvd->vdev_state;
941 spa_config_exit(spa, SCL_STATE, FTAG);
942
943 if (vdev_state != VDEV_STATE_HEALTHY)
944 return (SET_ERROR(ENXIO));
945
946 ASSERT3U(spa_guid(spa), !=, *newguid);
947
948 return (0);
949 }
950
951 static void
952 spa_change_guid_sync(void *arg, dmu_tx_t *tx)
953 {
954 uint64_t *newguid = arg;
955 spa_t *spa = dmu_tx_pool(tx)->dp_spa;
956 uint64_t oldguid;
957 vdev_t *rvd = spa->spa_root_vdev;
958
959 oldguid = spa_guid(spa);
960
961 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
962 rvd->vdev_guid = *newguid;
963 rvd->vdev_guid_sum += (*newguid - oldguid);
964 vdev_config_dirty(rvd);
965 spa_config_exit(spa, SCL_STATE, FTAG);
966
967 spa_history_log_internal(spa, "guid change", tx, "old=%llu new=%llu",
968 (u_longlong_t)oldguid, (u_longlong_t)*newguid);
969 }
970
971 /*
972 * Change the GUID for the pool. This is done so that we can later
973 * re-import a pool built from a clone of our own vdevs. We will modify
974 * the root vdev's guid, our own pool guid, and then mark all of our
975 * vdevs dirty. Note that we must make sure that all our vdevs are
976 * online when we do this, or else any vdevs that weren't present
977 * would be orphaned from our pool. We are also going to issue a
978 * sysevent to update any watchers.
979 */
980 int
981 spa_change_guid(spa_t *spa)
982 {
983 int error;
984 uint64_t guid;
985
986 mutex_enter(&spa->spa_vdev_top_lock);
987 mutex_enter(&spa_namespace_lock);
988 guid = spa_generate_guid(NULL);
989
990 error = dsl_sync_task(spa->spa_name, spa_change_guid_check,
991 spa_change_guid_sync, &guid, 5, ZFS_SPACE_CHECK_RESERVED);
992
993 if (error == 0) {
994 /*
995 * Clear the kobj flag from all the vdevs to allow
996 * vdev_cache_process_kobj_evt() to post events to all the
997 * vdevs since GUID is updated.
998 */
999 vdev_clear_kobj_evt(spa->spa_root_vdev);
1000 for (int i = 0; i < spa->spa_l2cache.sav_count; i++)
1001 vdev_clear_kobj_evt(spa->spa_l2cache.sav_vdevs[i]);
1002
1003 spa_write_cachefile(spa, B_FALSE, B_TRUE, B_TRUE);
1004 spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_REGUID);
1005 }
1006
1007 mutex_exit(&spa_namespace_lock);
1008 mutex_exit(&spa->spa_vdev_top_lock);
1009
1010 return (error);
1011 }
1012
1013 /*
1014 * ==========================================================================
1015 * SPA state manipulation (open/create/destroy/import/export)
1016 * ==========================================================================
1017 */
1018
1019 static int
1020 spa_error_entry_compare(const void *a, const void *b)
1021 {
1022 const spa_error_entry_t *sa = (const spa_error_entry_t *)a;
1023 const spa_error_entry_t *sb = (const spa_error_entry_t *)b;
1024 int ret;
1025
1026 ret = memcmp(&sa->se_bookmark, &sb->se_bookmark,
1027 sizeof (zbookmark_phys_t));
1028
1029 return (TREE_ISIGN(ret));
1030 }
1031
1032 /*
1033 * Utility function which retrieves copies of the current logs and
1034 * re-initializes them in the process.
1035 */
1036 void
1037 spa_get_errlists(spa_t *spa, avl_tree_t *last, avl_tree_t *scrub)
1038 {
1039 ASSERT(MUTEX_HELD(&spa->spa_errlist_lock));
1040
1041 memcpy(last, &spa->spa_errlist_last, sizeof (avl_tree_t));
1042 memcpy(scrub, &spa->spa_errlist_scrub, sizeof (avl_tree_t));
1043
1044 avl_create(&spa->spa_errlist_scrub,
1045 spa_error_entry_compare, sizeof (spa_error_entry_t),
1046 offsetof(spa_error_entry_t, se_avl));
1047 avl_create(&spa->spa_errlist_last,
1048 spa_error_entry_compare, sizeof (spa_error_entry_t),
1049 offsetof(spa_error_entry_t, se_avl));
1050 }
1051
1052 static void
1053 spa_taskqs_init(spa_t *spa, zio_type_t t, zio_taskq_type_t q)
1054 {
1055 const zio_taskq_info_t *ztip = &zio_taskqs[t][q];
1056 enum zti_modes mode = ztip->zti_mode;
1057 uint_t value = ztip->zti_value;
1058 uint_t count = ztip->zti_count;
1059 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
1060 uint_t cpus, flags = TASKQ_DYNAMIC;
1061
1062 switch (mode) {
1063 case ZTI_MODE_FIXED:
1064 ASSERT3U(value, >, 0);
1065 break;
1066
1067 case ZTI_MODE_SYNC:
1068
1069 /*
1070 * Create one wr_iss taskq for every 'zio_taskq_wr_iss_ncpus',
1071 * not to exceed the number of spa allocators.
1072 */
1073 if (zio_taskq_wr_iss_ncpus == 0) {
1074 count = MAX(boot_ncpus / spa->spa_alloc_count, 1);
1075 } else {
1076 count = MAX(1,
1077 boot_ncpus / MAX(1, zio_taskq_wr_iss_ncpus));
1078 }
1079 count = MAX(count, (zio_taskq_batch_pct + 99) / 100);
1080 count = MIN(count, spa->spa_alloc_count);
1081
1082 /*
1083 * zio_taskq_batch_pct is unbounded and may exceed 100%, but no
1084 * single taskq may have more threads than 100% of online cpus.
1085 */
1086 value = (zio_taskq_batch_pct + count / 2) / count;
1087 value = MIN(value, 100);
1088 flags |= TASKQ_THREADS_CPU_PCT;
1089 break;
1090
1091 case ZTI_MODE_SCALE:
1092 flags |= TASKQ_THREADS_CPU_PCT;
1093 /*
1094 * We want more taskqs to reduce lock contention, but we want
1095 * less for better request ordering and CPU utilization.
1096 */
1097 cpus = MAX(1, boot_ncpus * zio_taskq_batch_pct / 100);
1098 if (zio_taskq_batch_tpq > 0) {
1099 count = MAX(1, (cpus + zio_taskq_batch_tpq / 2) /
1100 zio_taskq_batch_tpq);
1101 } else {
1102 /*
1103 * Prefer 6 threads per taskq, but no more taskqs
1104 * than threads in them on large systems. For 80%:
1105 *
1106 * taskq taskq total
1107 * cpus taskqs percent threads threads
1108 * ------- ------- ------- ------- -------
1109 * 1 1 80% 1 1
1110 * 2 1 80% 1 1
1111 * 4 1 80% 3 3
1112 * 8 2 40% 3 6
1113 * 16 3 27% 4 12
1114 * 32 5 16% 5 25
1115 * 64 7 11% 7 49
1116 * 128 10 8% 10 100
1117 * 256 14 6% 15 210
1118 */
1119 count = 1 + cpus / 6;
1120 while (count * count > cpus)
1121 count--;
1122 }
1123 /* Limit each taskq within 100% to not trigger assertion. */
1124 count = MAX(count, (zio_taskq_batch_pct + 99) / 100);
1125 value = (zio_taskq_batch_pct + count / 2) / count;
1126 break;
1127
1128 case ZTI_MODE_NULL:
1129 tqs->stqs_count = 0;
1130 tqs->stqs_taskq = NULL;
1131 return;
1132
1133 default:
1134 panic("unrecognized mode for %s_%s taskq (%u:%u) in "
1135 "spa_taskqs_init()",
1136 zio_type_name[t], zio_taskq_types[q], mode, value);
1137 break;
1138 }
1139
1140 ASSERT3U(count, >, 0);
1141 tqs->stqs_count = count;
1142 tqs->stqs_taskq = kmem_alloc(count * sizeof (taskq_t *), KM_SLEEP);
1143
1144 for (uint_t i = 0; i < count; i++) {
1145 taskq_t *tq;
1146 char name[32];
1147
1148 if (count > 1)
1149 (void) snprintf(name, sizeof (name), "%s_%s_%u",
1150 zio_type_name[t], zio_taskq_types[q], i);
1151 else
1152 (void) snprintf(name, sizeof (name), "%s_%s",
1153 zio_type_name[t], zio_taskq_types[q]);
1154
1155 #ifdef HAVE_SYSDC
1156 if (zio_taskq_sysdc && spa->spa_proc != &p0) {
1157 (void) zio_taskq_basedc;
1158 tq = taskq_create_sysdc(name, value, 50, INT_MAX,
1159 spa->spa_proc, zio_taskq_basedc, flags);
1160 } else {
1161 #endif
1162 pri_t pri = maxclsyspri;
1163 /*
1164 * The write issue taskq can be extremely CPU
1165 * intensive. Run it at slightly less important
1166 * priority than the other taskqs.
1167 *
1168 * Under Linux and FreeBSD this means incrementing
1169 * the priority value as opposed to platforms like
1170 * illumos where it should be decremented.
1171 *
1172 * On FreeBSD, if priorities divided by four (RQ_PPQ)
1173 * are equal then a difference between them is
1174 * insignificant.
1175 */
1176 if (t == ZIO_TYPE_WRITE && q == ZIO_TASKQ_ISSUE) {
1177 #if defined(__linux__)
1178 pri++;
1179 #elif defined(__FreeBSD__)
1180 pri += 4;
1181 #else
1182 #error "unknown OS"
1183 #endif
1184 }
1185 tq = taskq_create_proc(name, value, pri, 50,
1186 INT_MAX, spa->spa_proc, flags);
1187 #ifdef HAVE_SYSDC
1188 }
1189 #endif
1190
1191 tqs->stqs_taskq[i] = tq;
1192 }
1193 }
1194
1195 static void
1196 spa_taskqs_fini(spa_t *spa, zio_type_t t, zio_taskq_type_t q)
1197 {
1198 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
1199
1200 if (tqs->stqs_taskq == NULL) {
1201 ASSERT3U(tqs->stqs_count, ==, 0);
1202 return;
1203 }
1204
1205 for (uint_t i = 0; i < tqs->stqs_count; i++) {
1206 ASSERT3P(tqs->stqs_taskq[i], !=, NULL);
1207 taskq_destroy(tqs->stqs_taskq[i]);
1208 }
1209
1210 kmem_free(tqs->stqs_taskq, tqs->stqs_count * sizeof (taskq_t *));
1211 tqs->stqs_taskq = NULL;
1212 }
1213
1214 #ifdef _KERNEL
1215 /*
1216 * The READ and WRITE rows of zio_taskqs are configurable at module load time
1217 * by setting zio_taskq_read or zio_taskq_write.
1218 *
1219 * Example (the defaults for READ and WRITE)
1220 * zio_taskq_read='fixed,1,8 null scale null'
1221 * zio_taskq_write='sync fixed,1,5 scale fixed,1,5'
1222 *
1223 * Each sets the entire row at a time.
1224 *
1225 * 'fixed' is parameterised: fixed,Q,T where Q is number of taskqs, T is number
1226 * of threads per taskq.
1227 *
1228 * 'null' can only be set on the high-priority queues (queue selection for
1229 * high-priority queues will fall back to the regular queue if the high-pri
1230 * is NULL.
1231 */
1232 static const char *const modes[ZTI_NMODES] = {
1233 "fixed", "scale", "sync", "null"
1234 };
1235
1236 /* Parse the incoming config string. Modifies cfg */
1237 static int
1238 spa_taskq_param_set(zio_type_t t, char *cfg)
1239 {
1240 int err = 0;
1241
1242 zio_taskq_info_t row[ZIO_TASKQ_TYPES] = {{0}};
1243
1244 char *next = cfg, *tok, *c;
1245
1246 /*
1247 * Parse out each element from the string and fill `row`. The entire
1248 * row has to be set at once, so any errors are flagged by just
1249 * breaking out of this loop early.
1250 */
1251 uint_t q;
1252 for (q = 0; q < ZIO_TASKQ_TYPES; q++) {
1253 /* `next` is the start of the config */
1254 if (next == NULL)
1255 break;
1256
1257 /* Eat up leading space */
1258 while (isspace(*next))
1259 next++;
1260 if (*next == '\0')
1261 break;
1262
1263 /* Mode ends at space or end of string */
1264 tok = next;
1265 next = strchr(tok, ' ');
1266 if (next != NULL) *next++ = '\0';
1267
1268 /* Parameters start after a comma */
1269 c = strchr(tok, ',');
1270 if (c != NULL) *c++ = '\0';
1271
1272 /* Match mode string */
1273 uint_t mode;
1274 for (mode = 0; mode < ZTI_NMODES; mode++)
1275 if (strcmp(tok, modes[mode]) == 0)
1276 break;
1277 if (mode == ZTI_NMODES)
1278 break;
1279
1280 /* Invalid canary */
1281 row[q].zti_mode = ZTI_NMODES;
1282
1283 /* Per-mode setup */
1284 switch (mode) {
1285
1286 /*
1287 * FIXED is parameterised: number of queues, and number of
1288 * threads per queue.
1289 */
1290 case ZTI_MODE_FIXED: {
1291 /* No parameters? */
1292 if (c == NULL || *c == '\0')
1293 break;
1294
1295 /* Find next parameter */
1296 tok = c;
1297 c = strchr(tok, ',');
1298 if (c == NULL)
1299 break;
1300
1301 /* Take digits and convert */
1302 unsigned long long nq;
1303 if (!(isdigit(*tok)))
1304 break;
1305 err = ddi_strtoull(tok, &tok, 10, &nq);
1306 /* Must succeed and also end at the next param sep */
1307 if (err != 0 || tok != c)
1308 break;
1309
1310 /* Move past the comma */
1311 tok++;
1312 /* Need another number */
1313 if (!(isdigit(*tok)))
1314 break;
1315 /* Remember start to make sure we moved */
1316 c = tok;
1317
1318 /* Take digits */
1319 unsigned long long ntpq;
1320 err = ddi_strtoull(tok, &tok, 10, &ntpq);
1321 /* Must succeed, and moved forward */
1322 if (err != 0 || tok == c || *tok != '\0')
1323 break;
1324
1325 /*
1326 * sanity; zero queues/threads make no sense, and
1327 * 16K is almost certainly more than anyone will ever
1328 * need and avoids silly numbers like UINT32_MAX
1329 */
1330 if (nq == 0 || nq >= 16384 ||
1331 ntpq == 0 || ntpq >= 16384)
1332 break;
1333
1334 const zio_taskq_info_t zti = ZTI_P(ntpq, nq);
1335 row[q] = zti;
1336 break;
1337 }
1338
1339 case ZTI_MODE_SCALE: {
1340 const zio_taskq_info_t zti = ZTI_SCALE;
1341 row[q] = zti;
1342 break;
1343 }
1344
1345 case ZTI_MODE_SYNC: {
1346 const zio_taskq_info_t zti = ZTI_SYNC;
1347 row[q] = zti;
1348 break;
1349 }
1350
1351 case ZTI_MODE_NULL: {
1352 /*
1353 * Can only null the high-priority queues; the general-
1354 * purpose ones have to exist.
1355 */
1356 if (q != ZIO_TASKQ_ISSUE_HIGH &&
1357 q != ZIO_TASKQ_INTERRUPT_HIGH)
1358 break;
1359
1360 const zio_taskq_info_t zti = ZTI_NULL;
1361 row[q] = zti;
1362 break;
1363 }
1364
1365 default:
1366 break;
1367 }
1368
1369 /* Ensure we set a mode */
1370 if (row[q].zti_mode == ZTI_NMODES)
1371 break;
1372 }
1373
1374 /* Didn't get a full row, fail */
1375 if (q < ZIO_TASKQ_TYPES)
1376 return (SET_ERROR(EINVAL));
1377
1378 /* Eat trailing space */
1379 if (next != NULL)
1380 while (isspace(*next))
1381 next++;
1382
1383 /* If there's anything left over then fail */
1384 if (next != NULL && *next != '\0')
1385 return (SET_ERROR(EINVAL));
1386
1387 /* Success! Copy it into the real config */
1388 for (q = 0; q < ZIO_TASKQ_TYPES; q++)
1389 zio_taskqs[t][q] = row[q];
1390
1391 return (0);
1392 }
1393
1394 static int
1395 spa_taskq_param_get(zio_type_t t, char *buf)
1396 {
1397 int pos = 0;
1398
1399 /* Build paramater string from live config */
1400 const char *sep = "";
1401 for (uint_t q = 0; q < ZIO_TASKQ_TYPES; q++) {
1402 const zio_taskq_info_t *zti = &zio_taskqs[t][q];
1403 if (zti->zti_mode == ZTI_MODE_FIXED)
1404 pos += sprintf(&buf[pos], "%s%s,%u,%u", sep,
1405 modes[zti->zti_mode], zti->zti_count,
1406 zti->zti_value);
1407 else
1408 pos += sprintf(&buf[pos], "%s%s", sep,
1409 modes[zti->zti_mode]);
1410 sep = " ";
1411 }
1412
1413 buf[pos++] = '\n';
1414 buf[pos] = '\0';
1415
1416 return (pos);
1417 }
1418
1419 #ifdef __linux__
1420 static int
1421 spa_taskq_read_param_set(const char *val, zfs_kernel_param_t *kp)
1422 {
1423 char *cfg = kmem_strdup(val);
1424 int err = spa_taskq_param_set(ZIO_TYPE_READ, cfg);
1425 kmem_free(cfg, strlen(val)+1);
1426 return (-err);
1427 }
1428 static int
1429 spa_taskq_read_param_get(char *buf, zfs_kernel_param_t *kp)
1430 {
1431 return (spa_taskq_param_get(ZIO_TYPE_READ, buf));
1432 }
1433
1434 static int
1435 spa_taskq_write_param_set(const char *val, zfs_kernel_param_t *kp)
1436 {
1437 char *cfg = kmem_strdup(val);
1438 int err = spa_taskq_param_set(ZIO_TYPE_WRITE, cfg);
1439 kmem_free(cfg, strlen(val)+1);
1440 return (-err);
1441 }
1442 static int
1443 spa_taskq_write_param_get(char *buf, zfs_kernel_param_t *kp)
1444 {
1445 return (spa_taskq_param_get(ZIO_TYPE_WRITE, buf));
1446 }
1447 #else
1448 #include <sys/sbuf.h>
1449
1450 /*
1451 * On FreeBSD load-time parameters can be set up before malloc() is available,
1452 * so we have to do all the parsing work on the stack.
1453 */
1454 #define SPA_TASKQ_PARAM_MAX (128)
1455
1456 static int
1457 spa_taskq_read_param(ZFS_MODULE_PARAM_ARGS)
1458 {
1459 char buf[SPA_TASKQ_PARAM_MAX];
1460 int err = 0;
1461
1462 if (req->newptr == NULL) {
1463 int len = spa_taskq_param_get(ZIO_TYPE_READ, buf);
1464 struct sbuf *s = sbuf_new_for_sysctl(NULL, NULL, len+1, req);
1465 sbuf_cpy(s, buf);
1466 err = sbuf_finish(s);
1467 sbuf_delete(s);
1468 return (err);
1469 }
1470
1471 err = sysctl_handle_string(oidp, buf, sizeof (buf), req);
1472 if (err)
1473 return (err);
1474 return (spa_taskq_param_set(ZIO_TYPE_READ, buf));
1475 }
1476
1477 static int
1478 spa_taskq_write_param(ZFS_MODULE_PARAM_ARGS)
1479 {
1480 char buf[SPA_TASKQ_PARAM_MAX];
1481 int err = 0;
1482
1483 if (req->newptr == NULL) {
1484 int len = spa_taskq_param_get(ZIO_TYPE_WRITE, buf);
1485 struct sbuf *s = sbuf_new_for_sysctl(NULL, NULL, len+1, req);
1486 sbuf_cpy(s, buf);
1487 err = sbuf_finish(s);
1488 sbuf_delete(s);
1489 return (err);
1490 }
1491
1492 err = sysctl_handle_string(oidp, buf, sizeof (buf), req);
1493 if (err)
1494 return (err);
1495 return (spa_taskq_param_set(ZIO_TYPE_WRITE, buf));
1496 }
1497 #endif
1498 #endif /* _KERNEL */
1499
1500 /*
1501 * Dispatch a task to the appropriate taskq for the ZFS I/O type and priority.
1502 * Note that a type may have multiple discrete taskqs to avoid lock contention
1503 * on the taskq itself.
1504 */
1505 static taskq_t *
1506 spa_taskq_dispatch_select(spa_t *spa, zio_type_t t, zio_taskq_type_t q,
1507 zio_t *zio)
1508 {
1509 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
1510 taskq_t *tq;
1511
1512 ASSERT3P(tqs->stqs_taskq, !=, NULL);
1513 ASSERT3U(tqs->stqs_count, !=, 0);
1514
1515 if ((t == ZIO_TYPE_WRITE) && (q == ZIO_TASKQ_ISSUE) &&
1516 (zio != NULL) && (zio->io_wr_iss_tq != NULL)) {
1517 /* dispatch to assigned write issue taskq */
1518 tq = zio->io_wr_iss_tq;
1519 return (tq);
1520 }
1521
1522 if (tqs->stqs_count == 1) {
1523 tq = tqs->stqs_taskq[0];
1524 } else {
1525 tq = tqs->stqs_taskq[((uint64_t)gethrtime()) % tqs->stqs_count];
1526 }
1527 return (tq);
1528 }
1529
1530 void
1531 spa_taskq_dispatch_ent(spa_t *spa, zio_type_t t, zio_taskq_type_t q,
1532 task_func_t *func, void *arg, uint_t flags, taskq_ent_t *ent,
1533 zio_t *zio)
1534 {
1535 taskq_t *tq = spa_taskq_dispatch_select(spa, t, q, zio);
1536 taskq_dispatch_ent(tq, func, arg, flags, ent);
1537 }
1538
1539 /*
1540 * Same as spa_taskq_dispatch_ent() but block on the task until completion.
1541 */
1542 void
1543 spa_taskq_dispatch_sync(spa_t *spa, zio_type_t t, zio_taskq_type_t q,
1544 task_func_t *func, void *arg, uint_t flags)
1545 {
1546 taskq_t *tq = spa_taskq_dispatch_select(spa, t, q, NULL);
1547 taskqid_t id = taskq_dispatch(tq, func, arg, flags);
1548 if (id)
1549 taskq_wait_id(tq, id);
1550 }
1551
1552 static void
1553 spa_create_zio_taskqs(spa_t *spa)
1554 {
1555 for (int t = 0; t < ZIO_TYPES; t++) {
1556 for (int q = 0; q < ZIO_TASKQ_TYPES; q++) {
1557 spa_taskqs_init(spa, t, q);
1558 }
1559 }
1560 }
1561
1562 #if defined(_KERNEL) && defined(HAVE_SPA_THREAD)
1563 static void
1564 spa_thread(void *arg)
1565 {
1566 psetid_t zio_taskq_psrset_bind = PS_NONE;
1567 callb_cpr_t cprinfo;
1568
1569 spa_t *spa = arg;
1570 user_t *pu = PTOU(curproc);
1571
1572 CALLB_CPR_INIT(&cprinfo, &spa->spa_proc_lock, callb_generic_cpr,
1573 spa->spa_name);
1574
1575 ASSERT(curproc != &p0);
1576 (void) snprintf(pu->u_psargs, sizeof (pu->u_psargs),
1577 "zpool-%s", spa->spa_name);
1578 (void) strlcpy(pu->u_comm, pu->u_psargs, sizeof (pu->u_comm));
1579
1580 /* bind this thread to the requested psrset */
1581 if (zio_taskq_psrset_bind != PS_NONE) {
1582 pool_lock();
1583 mutex_enter(&cpu_lock);
1584 mutex_enter(&pidlock);
1585 mutex_enter(&curproc->p_lock);
1586
1587 if (cpupart_bind_thread(curthread, zio_taskq_psrset_bind,
1588 0, NULL, NULL) == 0) {
1589 curthread->t_bind_pset = zio_taskq_psrset_bind;
1590 } else {
1591 cmn_err(CE_WARN,
1592 "Couldn't bind process for zfs pool \"%s\" to "
1593 "pset %d\n", spa->spa_name, zio_taskq_psrset_bind);
1594 }
1595
1596 mutex_exit(&curproc->p_lock);
1597 mutex_exit(&pidlock);
1598 mutex_exit(&cpu_lock);
1599 pool_unlock();
1600 }
1601
1602 #ifdef HAVE_SYSDC
1603 if (zio_taskq_sysdc) {
1604 sysdc_thread_enter(curthread, 100, 0);
1605 }
1606 #endif
1607
1608 spa->spa_proc = curproc;
1609 spa->spa_did = curthread->t_did;
1610
1611 spa_create_zio_taskqs(spa);
1612
1613 mutex_enter(&spa->spa_proc_lock);
1614 ASSERT(spa->spa_proc_state == SPA_PROC_CREATED);
1615
1616 spa->spa_proc_state = SPA_PROC_ACTIVE;
1617 cv_broadcast(&spa->spa_proc_cv);
1618
1619 CALLB_CPR_SAFE_BEGIN(&cprinfo);
1620 while (spa->spa_proc_state == SPA_PROC_ACTIVE)
1621 cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock);
1622 CALLB_CPR_SAFE_END(&cprinfo, &spa->spa_proc_lock);
1623
1624 ASSERT(spa->spa_proc_state == SPA_PROC_DEACTIVATE);
1625 spa->spa_proc_state = SPA_PROC_GONE;
1626 spa->spa_proc = &p0;
1627 cv_broadcast(&spa->spa_proc_cv);
1628 CALLB_CPR_EXIT(&cprinfo); /* drops spa_proc_lock */
1629
1630 mutex_enter(&curproc->p_lock);
1631 lwp_exit();
1632 }
1633 #endif
1634
1635 extern metaslab_ops_t *metaslab_allocator(spa_t *spa);
1636
1637 /*
1638 * Activate an uninitialized pool.
1639 */
1640 static void
1641 spa_activate(spa_t *spa, spa_mode_t mode)
1642 {
1643 metaslab_ops_t *msp = metaslab_allocator(spa);
1644 ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED);
1645
1646 spa->spa_state = POOL_STATE_ACTIVE;
1647 spa->spa_mode = mode;
1648 spa->spa_read_spacemaps = spa_mode_readable_spacemaps;
1649
1650 spa->spa_normal_class = metaslab_class_create(spa, msp);
1651 spa->spa_log_class = metaslab_class_create(spa, msp);
1652 spa->spa_embedded_log_class = metaslab_class_create(spa, msp);
1653 spa->spa_special_class = metaslab_class_create(spa, msp);
1654 spa->spa_dedup_class = metaslab_class_create(spa, msp);
1655
1656 /* Try to create a covering process */
1657 mutex_enter(&spa->spa_proc_lock);
1658 ASSERT(spa->spa_proc_state == SPA_PROC_NONE);
1659 ASSERT(spa->spa_proc == &p0);
1660 spa->spa_did = 0;
1661
1662 #ifdef HAVE_SPA_THREAD
1663 /* Only create a process if we're going to be around a while. */
1664 if (spa_create_process && strcmp(spa->spa_name, TRYIMPORT_NAME) != 0) {
1665 if (newproc(spa_thread, (caddr_t)spa, syscid, maxclsyspri,
1666 NULL, 0) == 0) {
1667 spa->spa_proc_state = SPA_PROC_CREATED;
1668 while (spa->spa_proc_state == SPA_PROC_CREATED) {
1669 cv_wait(&spa->spa_proc_cv,
1670 &spa->spa_proc_lock);
1671 }
1672 ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE);
1673 ASSERT(spa->spa_proc != &p0);
1674 ASSERT(spa->spa_did != 0);
1675 } else {
1676 #ifdef _KERNEL
1677 cmn_err(CE_WARN,
1678 "Couldn't create process for zfs pool \"%s\"\n",
1679 spa->spa_name);
1680 #endif
1681 }
1682 }
1683 #endif /* HAVE_SPA_THREAD */
1684 mutex_exit(&spa->spa_proc_lock);
1685
1686 /* If we didn't create a process, we need to create our taskqs. */
1687 if (spa->spa_proc == &p0) {
1688 spa_create_zio_taskqs(spa);
1689 }
1690
1691 for (size_t i = 0; i < TXG_SIZE; i++) {
1692 spa->spa_txg_zio[i] = zio_root(spa, NULL, NULL,
1693 ZIO_FLAG_CANFAIL);
1694 }
1695
1696 list_create(&spa->spa_config_dirty_list, sizeof (vdev_t),
1697 offsetof(vdev_t, vdev_config_dirty_node));
1698 list_create(&spa->spa_evicting_os_list, sizeof (objset_t),
1699 offsetof(objset_t, os_evicting_node));
1700 list_create(&spa->spa_state_dirty_list, sizeof (vdev_t),
1701 offsetof(vdev_t, vdev_state_dirty_node));
1702
1703 txg_list_create(&spa->spa_vdev_txg_list, spa,
1704 offsetof(struct vdev, vdev_txg_node));
1705
1706 avl_create(&spa->spa_errlist_scrub,
1707 spa_error_entry_compare, sizeof (spa_error_entry_t),
1708 offsetof(spa_error_entry_t, se_avl));
1709 avl_create(&spa->spa_errlist_last,
1710 spa_error_entry_compare, sizeof (spa_error_entry_t),
1711 offsetof(spa_error_entry_t, se_avl));
1712 avl_create(&spa->spa_errlist_healed,
1713 spa_error_entry_compare, sizeof (spa_error_entry_t),
1714 offsetof(spa_error_entry_t, se_avl));
1715
1716 spa_activate_os(spa);
1717
1718 spa_keystore_init(&spa->spa_keystore);
1719
1720 /*
1721 * This taskq is used to perform zvol-minor-related tasks
1722 * asynchronously. This has several advantages, including easy
1723 * resolution of various deadlocks.
1724 *
1725 * The taskq must be single threaded to ensure tasks are always
1726 * processed in the order in which they were dispatched.
1727 *
1728 * A taskq per pool allows one to keep the pools independent.
1729 * This way if one pool is suspended, it will not impact another.
1730 *
1731 * The preferred location to dispatch a zvol minor task is a sync
1732 * task. In this context, there is easy access to the spa_t and minimal
1733 * error handling is required because the sync task must succeed.
1734 */
1735 spa->spa_zvol_taskq = taskq_create("z_zvol", 1, defclsyspri,
1736 1, INT_MAX, 0);
1737
1738 /*
1739 * The taskq to preload metaslabs.
1740 */
1741 spa->spa_metaslab_taskq = taskq_create("z_metaslab",
1742 metaslab_preload_pct, maxclsyspri, 1, INT_MAX,
1743 TASKQ_DYNAMIC | TASKQ_THREADS_CPU_PCT);
1744
1745 /*
1746 * Taskq dedicated to prefetcher threads: this is used to prevent the
1747 * pool traverse code from monopolizing the global (and limited)
1748 * system_taskq by inappropriately scheduling long running tasks on it.
1749 */
1750 spa->spa_prefetch_taskq = taskq_create("z_prefetch", 100,
1751 defclsyspri, 1, INT_MAX, TASKQ_DYNAMIC | TASKQ_THREADS_CPU_PCT);
1752
1753 /*
1754 * The taskq to upgrade datasets in this pool. Currently used by
1755 * feature SPA_FEATURE_USEROBJ_ACCOUNTING/SPA_FEATURE_PROJECT_QUOTA.
1756 */
1757 spa->spa_upgrade_taskq = taskq_create("z_upgrade", 100,
1758 defclsyspri, 1, INT_MAX, TASKQ_DYNAMIC | TASKQ_THREADS_CPU_PCT);
1759 }
1760
1761 /*
1762 * Opposite of spa_activate().
1763 */
1764 static void
1765 spa_deactivate(spa_t *spa)
1766 {
1767 ASSERT(spa->spa_sync_on == B_FALSE);
1768 ASSERT(spa->spa_dsl_pool == NULL);
1769 ASSERT(spa->spa_root_vdev == NULL);
1770 ASSERT(spa->spa_async_zio_root == NULL);
1771 ASSERT(spa->spa_state != POOL_STATE_UNINITIALIZED);
1772
1773 spa_evicting_os_wait(spa);
1774
1775 if (spa->spa_zvol_taskq) {
1776 taskq_destroy(spa->spa_zvol_taskq);
1777 spa->spa_zvol_taskq = NULL;
1778 }
1779
1780 if (spa->spa_metaslab_taskq) {
1781 taskq_destroy(spa->spa_metaslab_taskq);
1782 spa->spa_metaslab_taskq = NULL;
1783 }
1784
1785 if (spa->spa_prefetch_taskq) {
1786 taskq_destroy(spa->spa_prefetch_taskq);
1787 spa->spa_prefetch_taskq = NULL;
1788 }
1789
1790 if (spa->spa_upgrade_taskq) {
1791 taskq_destroy(spa->spa_upgrade_taskq);
1792 spa->spa_upgrade_taskq = NULL;
1793 }
1794
1795 txg_list_destroy(&spa->spa_vdev_txg_list);
1796
1797 list_destroy(&spa->spa_config_dirty_list);
1798 list_destroy(&spa->spa_evicting_os_list);
1799 list_destroy(&spa->spa_state_dirty_list);
1800
1801 taskq_cancel_id(system_delay_taskq, spa->spa_deadman_tqid);
1802
1803 for (int t = 0; t < ZIO_TYPES; t++) {
1804 for (int q = 0; q < ZIO_TASKQ_TYPES; q++) {
1805 spa_taskqs_fini(spa, t, q);
1806 }
1807 }
1808
1809 for (size_t i = 0; i < TXG_SIZE; i++) {
1810 ASSERT3P(spa->spa_txg_zio[i], !=, NULL);
1811 VERIFY0(zio_wait(spa->spa_txg_zio[i]));
1812 spa->spa_txg_zio[i] = NULL;
1813 }
1814
1815 metaslab_class_destroy(spa->spa_normal_class);
1816 spa->spa_normal_class = NULL;
1817
1818 metaslab_class_destroy(spa->spa_log_class);
1819 spa->spa_log_class = NULL;
1820
1821 metaslab_class_destroy(spa->spa_embedded_log_class);
1822 spa->spa_embedded_log_class = NULL;
1823
1824 metaslab_class_destroy(spa->spa_special_class);
1825 spa->spa_special_class = NULL;
1826
1827 metaslab_class_destroy(spa->spa_dedup_class);
1828 spa->spa_dedup_class = NULL;
1829
1830 /*
1831 * If this was part of an import or the open otherwise failed, we may
1832 * still have errors left in the queues. Empty them just in case.
1833 */
1834 spa_errlog_drain(spa);
1835 avl_destroy(&spa->spa_errlist_scrub);
1836 avl_destroy(&spa->spa_errlist_last);
1837 avl_destroy(&spa->spa_errlist_healed);
1838
1839 spa_keystore_fini(&spa->spa_keystore);
1840
1841 spa->spa_state = POOL_STATE_UNINITIALIZED;
1842
1843 mutex_enter(&spa->spa_proc_lock);
1844 if (spa->spa_proc_state != SPA_PROC_NONE) {
1845 ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE);
1846 spa->spa_proc_state = SPA_PROC_DEACTIVATE;
1847 cv_broadcast(&spa->spa_proc_cv);
1848 while (spa->spa_proc_state == SPA_PROC_DEACTIVATE) {
1849 ASSERT(spa->spa_proc != &p0);
1850 cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock);
1851 }
1852 ASSERT(spa->spa_proc_state == SPA_PROC_GONE);
1853 spa->spa_proc_state = SPA_PROC_NONE;
1854 }
1855 ASSERT(spa->spa_proc == &p0);
1856 mutex_exit(&spa->spa_proc_lock);
1857
1858 /*
1859 * We want to make sure spa_thread() has actually exited the ZFS
1860 * module, so that the module can't be unloaded out from underneath
1861 * it.
1862 */
1863 if (spa->spa_did != 0) {
1864 thread_join(spa->spa_did);
1865 spa->spa_did = 0;
1866 }
1867
1868 spa_deactivate_os(spa);
1869
1870 }
1871
1872 /*
1873 * Verify a pool configuration, and construct the vdev tree appropriately. This
1874 * will create all the necessary vdevs in the appropriate layout, with each vdev
1875 * in the CLOSED state. This will prep the pool before open/creation/import.
1876 * All vdev validation is done by the vdev_alloc() routine.
1877 */
1878 int
1879 spa_config_parse(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent,
1880 uint_t id, int atype)
1881 {
1882 nvlist_t **child;
1883 uint_t children;
1884 int error;
1885
1886 if ((error = vdev_alloc(spa, vdp, nv, parent, id, atype)) != 0)
1887 return (error);
1888
1889 if ((*vdp)->vdev_ops->vdev_op_leaf)
1890 return (0);
1891
1892 error = nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
1893 &child, &children);
1894
1895 if (error == ENOENT)
1896 return (0);
1897
1898 if (error) {
1899 vdev_free(*vdp);
1900 *vdp = NULL;
1901 return (SET_ERROR(EINVAL));
1902 }
1903
1904 for (int c = 0; c < children; c++) {
1905 vdev_t *vd;
1906 if ((error = spa_config_parse(spa, &vd, child[c], *vdp, c,
1907 atype)) != 0) {
1908 vdev_free(*vdp);
1909 *vdp = NULL;
1910 return (error);
1911 }
1912 }
1913
1914 ASSERT(*vdp != NULL);
1915
1916 return (0);
1917 }
1918
1919 static boolean_t
1920 spa_should_flush_logs_on_unload(spa_t *spa)
1921 {
1922 if (!spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP))
1923 return (B_FALSE);
1924
1925 if (!spa_writeable(spa))
1926 return (B_FALSE);
1927
1928 if (!spa->spa_sync_on)
1929 return (B_FALSE);
1930
1931 if (spa_state(spa) != POOL_STATE_EXPORTED)
1932 return (B_FALSE);
1933
1934 if (zfs_keep_log_spacemaps_at_export)
1935 return (B_FALSE);
1936
1937 return (B_TRUE);
1938 }
1939
1940 /*
1941 * Opens a transaction that will set the flag that will instruct
1942 * spa_sync to attempt to flush all the metaslabs for that txg.
1943 */
1944 static void
1945 spa_unload_log_sm_flush_all(spa_t *spa)
1946 {
1947 dmu_tx_t *tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
1948 VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
1949
1950 ASSERT3U(spa->spa_log_flushall_txg, ==, 0);
1951 spa->spa_log_flushall_txg = dmu_tx_get_txg(tx);
1952
1953 dmu_tx_commit(tx);
1954 txg_wait_synced(spa_get_dsl(spa), spa->spa_log_flushall_txg);
1955 }
1956
1957 static void
1958 spa_unload_log_sm_metadata(spa_t *spa)
1959 {
1960 void *cookie = NULL;
1961 spa_log_sm_t *sls;
1962 log_summary_entry_t *e;
1963
1964 while ((sls = avl_destroy_nodes(&spa->spa_sm_logs_by_txg,
1965 &cookie)) != NULL) {
1966 VERIFY0(sls->sls_mscount);
1967 kmem_free(sls, sizeof (spa_log_sm_t));
1968 }
1969
1970 while ((e = list_remove_head(&spa->spa_log_summary)) != NULL) {
1971 VERIFY0(e->lse_mscount);
1972 kmem_free(e, sizeof (log_summary_entry_t));
1973 }
1974
1975 spa->spa_unflushed_stats.sus_nblocks = 0;
1976 spa->spa_unflushed_stats.sus_memused = 0;
1977 spa->spa_unflushed_stats.sus_blocklimit = 0;
1978 }
1979
1980 static void
1981 spa_destroy_aux_threads(spa_t *spa)
1982 {
1983 if (spa->spa_condense_zthr != NULL) {
1984 zthr_destroy(spa->spa_condense_zthr);
1985 spa->spa_condense_zthr = NULL;
1986 }
1987 if (spa->spa_checkpoint_discard_zthr != NULL) {
1988 zthr_destroy(spa->spa_checkpoint_discard_zthr);
1989 spa->spa_checkpoint_discard_zthr = NULL;
1990 }
1991 if (spa->spa_livelist_delete_zthr != NULL) {
1992 zthr_destroy(spa->spa_livelist_delete_zthr);
1993 spa->spa_livelist_delete_zthr = NULL;
1994 }
1995 if (spa->spa_livelist_condense_zthr != NULL) {
1996 zthr_destroy(spa->spa_livelist_condense_zthr);
1997 spa->spa_livelist_condense_zthr = NULL;
1998 }
1999 if (spa->spa_raidz_expand_zthr != NULL) {
2000 zthr_destroy(spa->spa_raidz_expand_zthr);
2001 spa->spa_raidz_expand_zthr = NULL;
2002 }
2003 }
2004
2005 /*
2006 * Opposite of spa_load().
2007 */
2008 static void
2009 spa_unload(spa_t *spa)
2010 {
2011 ASSERT(MUTEX_HELD(&spa_namespace_lock));
2012 ASSERT(spa_state(spa) != POOL_STATE_UNINITIALIZED);
2013
2014 spa_import_progress_remove(spa_guid(spa));
2015 spa_load_note(spa, "UNLOADING");
2016
2017 spa_wake_waiters(spa);
2018
2019 /*
2020 * If we have set the spa_final_txg, we have already performed the
2021 * tasks below in spa_export_common(). We should not redo it here since
2022 * we delay the final TXGs beyond what spa_final_txg is set at.
2023 */
2024 if (spa->spa_final_txg == UINT64_MAX) {
2025 /*
2026 * If the log space map feature is enabled and the pool is
2027 * getting exported (but not destroyed), we want to spend some
2028 * time flushing as many metaslabs as we can in an attempt to
2029 * destroy log space maps and save import time.
2030 */
2031 if (spa_should_flush_logs_on_unload(spa))
2032 spa_unload_log_sm_flush_all(spa);
2033
2034 /*
2035 * Stop async tasks.
2036 */
2037 spa_async_suspend(spa);
2038
2039 if (spa->spa_root_vdev) {
2040 vdev_t *root_vdev = spa->spa_root_vdev;
2041 vdev_initialize_stop_all(root_vdev,
2042 VDEV_INITIALIZE_ACTIVE);
2043 vdev_trim_stop_all(root_vdev, VDEV_TRIM_ACTIVE);
2044 vdev_autotrim_stop_all(spa);
2045 vdev_rebuild_stop_all(spa);
2046 }
2047 }
2048
2049 /*
2050 * Stop syncing.
2051 */
2052 if (spa->spa_sync_on) {
2053 txg_sync_stop(spa->spa_dsl_pool);
2054 spa->spa_sync_on = B_FALSE;
2055 }
2056
2057 /*
2058 * This ensures that there is no async metaslab prefetching
2059 * while we attempt to unload the spa.
2060 */
2061 taskq_wait(spa->spa_metaslab_taskq);
2062
2063 if (spa->spa_mmp.mmp_thread)
2064 mmp_thread_stop(spa);
2065
2066 /*
2067 * Wait for any outstanding async I/O to complete.
2068 */
2069 if (spa->spa_async_zio_root != NULL) {
2070 for (int i = 0; i < max_ncpus; i++)
2071 (void) zio_wait(spa->spa_async_zio_root[i]);
2072 kmem_free(spa->spa_async_zio_root, max_ncpus * sizeof (void *));
2073 spa->spa_async_zio_root = NULL;
2074 }
2075
2076 if (spa->spa_vdev_removal != NULL) {
2077 spa_vdev_removal_destroy(spa->spa_vdev_removal);
2078 spa->spa_vdev_removal = NULL;
2079 }
2080
2081 spa_destroy_aux_threads(spa);
2082
2083 spa_condense_fini(spa);
2084
2085 bpobj_close(&spa->spa_deferred_bpobj);
2086
2087 spa_config_enter(spa, SCL_ALL, spa, RW_WRITER);
2088
2089 /*
2090 * Close all vdevs.
2091 */
2092 if (spa->spa_root_vdev)
2093 vdev_free(spa->spa_root_vdev);
2094 ASSERT(spa->spa_root_vdev == NULL);
2095
2096 /*
2097 * Close the dsl pool.
2098 */
2099 if (spa->spa_dsl_pool) {
2100 dsl_pool_close(spa->spa_dsl_pool);
2101 spa->spa_dsl_pool = NULL;
2102 spa->spa_meta_objset = NULL;
2103 }
2104
2105 ddt_unload(spa);
2106 brt_unload(spa);
2107 spa_unload_log_sm_metadata(spa);
2108
2109 /*
2110 * Drop and purge level 2 cache
2111 */
2112 spa_l2cache_drop(spa);
2113
2114 if (spa->spa_spares.sav_vdevs) {
2115 for (int i = 0; i < spa->spa_spares.sav_count; i++)
2116 vdev_free(spa->spa_spares.sav_vdevs[i]);
2117 kmem_free(spa->spa_spares.sav_vdevs,
2118 spa->spa_spares.sav_count * sizeof (void *));
2119 spa->spa_spares.sav_vdevs = NULL;
2120 }
2121 if (spa->spa_spares.sav_config) {
2122 nvlist_free(spa->spa_spares.sav_config);
2123 spa->spa_spares.sav_config = NULL;
2124 }
2125 spa->spa_spares.sav_count = 0;
2126
2127 if (spa->spa_l2cache.sav_vdevs) {
2128 for (int i = 0; i < spa->spa_l2cache.sav_count; i++) {
2129 vdev_clear_stats(spa->spa_l2cache.sav_vdevs[i]);
2130 vdev_free(spa->spa_l2cache.sav_vdevs[i]);
2131 }
2132 kmem_free(spa->spa_l2cache.sav_vdevs,
2133 spa->spa_l2cache.sav_count * sizeof (void *));
2134 spa->spa_l2cache.sav_vdevs = NULL;
2135 }
2136 if (spa->spa_l2cache.sav_config) {
2137 nvlist_free(spa->spa_l2cache.sav_config);
2138 spa->spa_l2cache.sav_config = NULL;
2139 }
2140 spa->spa_l2cache.sav_count = 0;
2141
2142 spa->spa_async_suspended = 0;
2143
2144 spa->spa_indirect_vdevs_loaded = B_FALSE;
2145
2146 if (spa->spa_comment != NULL) {
2147 spa_strfree(spa->spa_comment);
2148 spa->spa_comment = NULL;
2149 }
2150 if (spa->spa_compatibility != NULL) {
2151 spa_strfree(spa->spa_compatibility);
2152 spa->spa_compatibility = NULL;
2153 }
2154
2155 spa->spa_raidz_expand = NULL;
2156
2157 spa_config_exit(spa, SCL_ALL, spa);
2158 }
2159
2160 /*
2161 * Load (or re-load) the current list of vdevs describing the active spares for
2162 * this pool. When this is called, we have some form of basic information in
2163 * 'spa_spares.sav_config'. We parse this into vdevs, try to open them, and
2164 * then re-generate a more complete list including status information.
2165 */
2166 void
2167 spa_load_spares(spa_t *spa)
2168 {
2169 nvlist_t **spares;
2170 uint_t nspares;
2171 int i;
2172 vdev_t *vd, *tvd;
2173
2174 #ifndef _KERNEL
2175 /*
2176 * zdb opens both the current state of the pool and the
2177 * checkpointed state (if present), with a different spa_t.
2178 *
2179 * As spare vdevs are shared among open pools, we skip loading
2180 * them when we load the checkpointed state of the pool.
2181 */
2182 if (!spa_writeable(spa))
2183 return;
2184 #endif
2185
2186 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
2187
2188 /*
2189 * First, close and free any existing spare vdevs.
2190 */
2191 if (spa->spa_spares.sav_vdevs) {
2192 for (i = 0; i < spa->spa_spares.sav_count; i++) {
2193 vd = spa->spa_spares.sav_vdevs[i];
2194
2195 /* Undo the call to spa_activate() below */
2196 if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
2197 B_FALSE)) != NULL && tvd->vdev_isspare)
2198 spa_spare_remove(tvd);
2199 vdev_close(vd);
2200 vdev_free(vd);
2201 }
2202
2203 kmem_free(spa->spa_spares.sav_vdevs,
2204 spa->spa_spares.sav_count * sizeof (void *));
2205 }
2206
2207 if (spa->spa_spares.sav_config == NULL)
2208 nspares = 0;
2209 else
2210 VERIFY0(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
2211 ZPOOL_CONFIG_SPARES, &spares, &nspares));
2212
2213 spa->spa_spares.sav_count = (int)nspares;
2214 spa->spa_spares.sav_vdevs = NULL;
2215
2216 if (nspares == 0)
2217 return;
2218
2219 /*
2220 * Construct the array of vdevs, opening them to get status in the
2221 * process. For each spare, there is potentially two different vdev_t
2222 * structures associated with it: one in the list of spares (used only
2223 * for basic validation purposes) and one in the active vdev
2224 * configuration (if it's spared in). During this phase we open and
2225 * validate each vdev on the spare list. If the vdev also exists in the
2226 * active configuration, then we also mark this vdev as an active spare.
2227 */
2228 spa->spa_spares.sav_vdevs = kmem_zalloc(nspares * sizeof (void *),
2229 KM_SLEEP);
2230 for (i = 0; i < spa->spa_spares.sav_count; i++) {
2231 VERIFY(spa_config_parse(spa, &vd, spares[i], NULL, 0,
2232 VDEV_ALLOC_SPARE) == 0);
2233 ASSERT(vd != NULL);
2234
2235 spa->spa_spares.sav_vdevs[i] = vd;
2236
2237 if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
2238 B_FALSE)) != NULL) {
2239 if (!tvd->vdev_isspare)
2240 spa_spare_add(tvd);
2241
2242 /*
2243 * We only mark the spare active if we were successfully
2244 * able to load the vdev. Otherwise, importing a pool
2245 * with a bad active spare would result in strange
2246 * behavior, because multiple pool would think the spare
2247 * is actively in use.
2248 *
2249 * There is a vulnerability here to an equally bizarre
2250 * circumstance, where a dead active spare is later
2251 * brought back to life (onlined or otherwise). Given
2252 * the rarity of this scenario, and the extra complexity
2253 * it adds, we ignore the possibility.
2254 */
2255 if (!vdev_is_dead(tvd))
2256 spa_spare_activate(tvd);
2257 }
2258
2259 vd->vdev_top = vd;
2260 vd->vdev_aux = &spa->spa_spares;
2261
2262 if (vdev_open(vd) != 0)
2263 continue;
2264
2265 if (vdev_validate_aux(vd) == 0)
2266 spa_spare_add(vd);
2267 }
2268
2269 /*
2270 * Recompute the stashed list of spares, with status information
2271 * this time.
2272 */
2273 fnvlist_remove(spa->spa_spares.sav_config, ZPOOL_CONFIG_SPARES);
2274
2275 spares = kmem_alloc(spa->spa_spares.sav_count * sizeof (void *),
2276 KM_SLEEP);
2277 for (i = 0; i < spa->spa_spares.sav_count; i++)
2278 spares[i] = vdev_config_generate(spa,
2279 spa->spa_spares.sav_vdevs[i], B_TRUE, VDEV_CONFIG_SPARE);
2280 fnvlist_add_nvlist_array(spa->spa_spares.sav_config,
2281 ZPOOL_CONFIG_SPARES, (const nvlist_t * const *)spares,
2282 spa->spa_spares.sav_count);
2283 for (i = 0; i < spa->spa_spares.sav_count; i++)
2284 nvlist_free(spares[i]);
2285 kmem_free(spares, spa->spa_spares.sav_count * sizeof (void *));
2286 }
2287
2288 /*
2289 * Load (or re-load) the current list of vdevs describing the active l2cache for
2290 * this pool. When this is called, we have some form of basic information in
2291 * 'spa_l2cache.sav_config'. We parse this into vdevs, try to open them, and
2292 * then re-generate a more complete list including status information.
2293 * Devices which are already active have their details maintained, and are
2294 * not re-opened.
2295 */
2296 void
2297 spa_load_l2cache(spa_t *spa)
2298 {
2299 nvlist_t **l2cache = NULL;
2300 uint_t nl2cache;
2301 int i, j, oldnvdevs;
2302 uint64_t guid;
2303 vdev_t *vd, **oldvdevs, **newvdevs;
2304 spa_aux_vdev_t *sav = &spa->spa_l2cache;
2305
2306 #ifndef _KERNEL
2307 /*
2308 * zdb opens both the current state of the pool and the
2309 * checkpointed state (if present), with a different spa_t.
2310 *
2311 * As L2 caches are part of the ARC which is shared among open
2312 * pools, we skip loading them when we load the checkpointed
2313 * state of the pool.
2314 */
2315 if (!spa_writeable(spa))
2316 return;
2317 #endif
2318
2319 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
2320
2321 oldvdevs = sav->sav_vdevs;
2322 oldnvdevs = sav->sav_count;
2323 sav->sav_vdevs = NULL;
2324 sav->sav_count = 0;
2325
2326 if (sav->sav_config == NULL) {
2327 nl2cache = 0;
2328 newvdevs = NULL;
2329 goto out;
2330 }
2331
2332 VERIFY0(nvlist_lookup_nvlist_array(sav->sav_config,
2333 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache));
2334 newvdevs = kmem_alloc(nl2cache * sizeof (void *), KM_SLEEP);
2335
2336 /*
2337 * Process new nvlist of vdevs.
2338 */
2339 for (i = 0; i < nl2cache; i++) {
2340 guid = fnvlist_lookup_uint64(l2cache[i], ZPOOL_CONFIG_GUID);
2341
2342 newvdevs[i] = NULL;
2343 for (j = 0; j < oldnvdevs; j++) {
2344 vd = oldvdevs[j];
2345 if (vd != NULL && guid == vd->vdev_guid) {
2346 /*
2347 * Retain previous vdev for add/remove ops.
2348 */
2349 newvdevs[i] = vd;
2350 oldvdevs[j] = NULL;
2351 break;
2352 }
2353 }
2354
2355 if (newvdevs[i] == NULL) {
2356 /*
2357 * Create new vdev
2358 */
2359 VERIFY(spa_config_parse(spa, &vd, l2cache[i], NULL, 0,
2360 VDEV_ALLOC_L2CACHE) == 0);
2361 ASSERT(vd != NULL);
2362 newvdevs[i] = vd;
2363
2364 /*
2365 * Commit this vdev as an l2cache device,
2366 * even if it fails to open.
2367 */
2368 spa_l2cache_add(vd);
2369
2370 vd->vdev_top = vd;
2371 vd->vdev_aux = sav;
2372
2373 spa_l2cache_activate(vd);
2374
2375 if (vdev_open(vd) != 0)
2376 continue;
2377
2378 (void) vdev_validate_aux(vd);
2379
2380 if (!vdev_is_dead(vd))
2381 l2arc_add_vdev(spa, vd);
2382
2383 /*
2384 * Upon cache device addition to a pool or pool
2385 * creation with a cache device or if the header
2386 * of the device is invalid we issue an async
2387 * TRIM command for the whole device which will
2388 * execute if l2arc_trim_ahead > 0.
2389 */
2390 spa_async_request(spa, SPA_ASYNC_L2CACHE_TRIM);
2391 }
2392 }
2393
2394 sav->sav_vdevs = newvdevs;
2395 sav->sav_count = (int)nl2cache;
2396
2397 /*
2398 * Recompute the stashed list of l2cache devices, with status
2399 * information this time.
2400 */
2401 fnvlist_remove(sav->sav_config, ZPOOL_CONFIG_L2CACHE);
2402
2403 if (sav->sav_count > 0)
2404 l2cache = kmem_alloc(sav->sav_count * sizeof (void *),
2405 KM_SLEEP);
2406 for (i = 0; i < sav->sav_count; i++)
2407 l2cache[i] = vdev_config_generate(spa,
2408 sav->sav_vdevs[i], B_TRUE, VDEV_CONFIG_L2CACHE);
2409 fnvlist_add_nvlist_array(sav->sav_config, ZPOOL_CONFIG_L2CACHE,
2410 (const nvlist_t * const *)l2cache, sav->sav_count);
2411
2412 out:
2413 /*
2414 * Purge vdevs that were dropped
2415 */
2416 if (oldvdevs) {
2417 for (i = 0; i < oldnvdevs; i++) {
2418 uint64_t pool;
2419
2420 vd = oldvdevs[i];
2421 if (vd != NULL) {
2422 ASSERT(vd->vdev_isl2cache);
2423
2424 if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
2425 pool != 0ULL && l2arc_vdev_present(vd))
2426 l2arc_remove_vdev(vd);
2427 vdev_clear_stats(vd);
2428 vdev_free(vd);
2429 }
2430 }
2431
2432 kmem_free(oldvdevs, oldnvdevs * sizeof (void *));
2433 }
2434
2435 for (i = 0; i < sav->sav_count; i++)
2436 nvlist_free(l2cache[i]);
2437 if (sav->sav_count)
2438 kmem_free(l2cache, sav->sav_count * sizeof (void *));
2439 }
2440
2441 static int
2442 load_nvlist(spa_t *spa, uint64_t obj, nvlist_t **value)
2443 {
2444 dmu_buf_t *db;
2445 char *packed = NULL;
2446 size_t nvsize = 0;
2447 int error;
2448 *value = NULL;
2449
2450 error = dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db);
2451 if (error)
2452 return (error);
2453
2454 nvsize = *(uint64_t *)db->db_data;
2455 dmu_buf_rele(db, FTAG);
2456
2457 packed = vmem_alloc(nvsize, KM_SLEEP);
2458 error = dmu_read(spa->spa_meta_objset, obj, 0, nvsize, packed,
2459 DMU_READ_PREFETCH);
2460 if (error == 0)
2461 error = nvlist_unpack(packed, nvsize, value, 0);
2462 vmem_free(packed, nvsize);
2463
2464 return (error);
2465 }
2466
2467 /*
2468 * Concrete top-level vdevs that are not missing and are not logs. At every
2469 * spa_sync we write new uberblocks to at least SPA_SYNC_MIN_VDEVS core tvds.
2470 */
2471 static uint64_t
2472 spa_healthy_core_tvds(spa_t *spa)
2473 {
2474 vdev_t *rvd = spa->spa_root_vdev;
2475 uint64_t tvds = 0;
2476
2477 for (uint64_t i = 0; i < rvd->vdev_children; i++) {
2478 vdev_t *vd = rvd->vdev_child[i];
2479 if (vd->vdev_islog)
2480 continue;
2481 if (vdev_is_concrete(vd) && !vdev_is_dead(vd))
2482 tvds++;
2483 }
2484
2485 return (tvds);
2486 }
2487
2488 /*
2489 * Checks to see if the given vdev could not be opened, in which case we post a
2490 * sysevent to notify the autoreplace code that the device has been removed.
2491 */
2492 static void
2493 spa_check_removed(vdev_t *vd)
2494 {
2495 for (uint64_t c = 0; c < vd->vdev_children; c++)
2496 spa_check_removed(vd->vdev_child[c]);
2497
2498 if (vd->vdev_ops->vdev_op_leaf && vdev_is_dead(vd) &&
2499 vdev_is_concrete(vd)) {
2500 zfs_post_autoreplace(vd->vdev_spa, vd);
2501 spa_event_notify(vd->vdev_spa, vd, NULL, ESC_ZFS_VDEV_CHECK);
2502 }
2503 }
2504
2505 static int
2506 spa_check_for_missing_logs(spa_t *spa)
2507 {
2508 vdev_t *rvd = spa->spa_root_vdev;
2509
2510 /*
2511 * If we're doing a normal import, then build up any additional
2512 * diagnostic information about missing log devices.
2513 * We'll pass this up to the user for further processing.
2514 */
2515 if (!(spa->spa_import_flags & ZFS_IMPORT_MISSING_LOG)) {
2516 nvlist_t **child, *nv;
2517 uint64_t idx = 0;
2518
2519 child = kmem_alloc(rvd->vdev_children * sizeof (nvlist_t *),
2520 KM_SLEEP);
2521 nv = fnvlist_alloc();
2522
2523 for (uint64_t c = 0; c < rvd->vdev_children; c++) {
2524 vdev_t *tvd = rvd->vdev_child[c];
2525
2526 /*
2527 * We consider a device as missing only if it failed
2528 * to open (i.e. offline or faulted is not considered
2529 * as missing).
2530 */
2531 if (tvd->vdev_islog &&
2532 tvd->vdev_state == VDEV_STATE_CANT_OPEN) {
2533 child[idx++] = vdev_config_generate(spa, tvd,
2534 B_FALSE, VDEV_CONFIG_MISSING);
2535 }
2536 }
2537
2538 if (idx > 0) {
2539 fnvlist_add_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
2540 (const nvlist_t * const *)child, idx);
2541 fnvlist_add_nvlist(spa->spa_load_info,
2542 ZPOOL_CONFIG_MISSING_DEVICES, nv);
2543
2544 for (uint64_t i = 0; i < idx; i++)
2545 nvlist_free(child[i]);
2546 }
2547 nvlist_free(nv);
2548 kmem_free(child, rvd->vdev_children * sizeof (char **));
2549
2550 if (idx > 0) {
2551 spa_load_failed(spa, "some log devices are missing");
2552 vdev_dbgmsg_print_tree(rvd, 2);
2553 return (SET_ERROR(ENXIO));
2554 }
2555 } else {
2556 for (uint64_t c = 0; c < rvd->vdev_children; c++) {
2557 vdev_t *tvd = rvd->vdev_child[c];
2558
2559 if (tvd->vdev_islog &&
2560 tvd->vdev_state == VDEV_STATE_CANT_OPEN) {
2561 spa_set_log_state(spa, SPA_LOG_CLEAR);
2562 spa_load_note(spa, "some log devices are "
2563 "missing, ZIL is dropped.");
2564 vdev_dbgmsg_print_tree(rvd, 2);
2565 break;
2566 }
2567 }
2568 }
2569
2570 return (0);
2571 }
2572
2573 /*
2574 * Check for missing log devices
2575 */
2576 static boolean_t
2577 spa_check_logs(spa_t *spa)
2578 {
2579 boolean_t rv = B_FALSE;
2580 dsl_pool_t *dp = spa_get_dsl(spa);
2581
2582 switch (spa->spa_log_state) {
2583 default:
2584 break;
2585 case SPA_LOG_MISSING:
2586 /* need to recheck in case slog has been restored */
2587 case SPA_LOG_UNKNOWN:
2588 rv = (dmu_objset_find_dp(dp, dp->dp_root_dir_obj,
2589 zil_check_log_chain, NULL, DS_FIND_CHILDREN) != 0);
2590 if (rv)
2591 spa_set_log_state(spa, SPA_LOG_MISSING);
2592 break;
2593 }
2594 return (rv);
2595 }
2596
2597 /*
2598 * Passivate any log vdevs (note, does not apply to embedded log metaslabs).
2599 */
2600 static boolean_t
2601 spa_passivate_log(spa_t *spa)
2602 {
2603 vdev_t *rvd = spa->spa_root_vdev;
2604 boolean_t slog_found = B_FALSE;
2605
2606 ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER));
2607
2608 for (int c = 0; c < rvd->vdev_children; c++) {
2609 vdev_t *tvd = rvd->vdev_child[c];
2610
2611 if (tvd->vdev_islog) {
2612 ASSERT3P(tvd->vdev_log_mg, ==, NULL);
2613 metaslab_group_passivate(tvd->vdev_mg);
2614 slog_found = B_TRUE;
2615 }
2616 }
2617
2618 return (slog_found);
2619 }
2620
2621 /*
2622 * Activate any log vdevs (note, does not apply to embedded log metaslabs).
2623 */
2624 static void
2625 spa_activate_log(spa_t *spa)
2626 {
2627 vdev_t *rvd = spa->spa_root_vdev;
2628
2629 ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER));
2630
2631 for (int c = 0; c < rvd->vdev_children; c++) {
2632 vdev_t *tvd = rvd->vdev_child[c];
2633
2634 if (tvd->vdev_islog) {
2635 ASSERT3P(tvd->vdev_log_mg, ==, NULL);
2636 metaslab_group_activate(tvd->vdev_mg);
2637 }
2638 }
2639 }
2640
2641 int
2642 spa_reset_logs(spa_t *spa)
2643 {
2644 int error;
2645
2646 error = dmu_objset_find(spa_name(spa), zil_reset,
2647 NULL, DS_FIND_CHILDREN);
2648 if (error == 0) {
2649 /*
2650 * We successfully offlined the log device, sync out the
2651 * current txg so that the "stubby" block can be removed
2652 * by zil_sync().
2653 */
2654 txg_wait_synced(spa->spa_dsl_pool, 0);
2655 }
2656 return (error);
2657 }
2658
2659 static void
2660 spa_aux_check_removed(spa_aux_vdev_t *sav)
2661 {
2662 for (int i = 0; i < sav->sav_count; i++)
2663 spa_check_removed(sav->sav_vdevs[i]);
2664 }
2665
2666 void
2667 spa_claim_notify(zio_t *zio)
2668 {
2669 spa_t *spa = zio->io_spa;
2670
2671 if (zio->io_error)
2672 return;
2673
2674 mutex_enter(&spa->spa_props_lock); /* any mutex will do */
2675 if (spa->spa_claim_max_txg < zio->io_bp->blk_birth)
2676 spa->spa_claim_max_txg = zio->io_bp->blk_birth;
2677 mutex_exit(&spa->spa_props_lock);
2678 }
2679
2680 typedef struct spa_load_error {
2681 boolean_t sle_verify_data;
2682 uint64_t sle_meta_count;
2683 uint64_t sle_data_count;
2684 } spa_load_error_t;
2685
2686 static void
2687 spa_load_verify_done(zio_t *zio)
2688 {
2689 blkptr_t *bp = zio->io_bp;
2690 spa_load_error_t *sle = zio->io_private;
2691 dmu_object_type_t type = BP_GET_TYPE(bp);
2692 int error = zio->io_error;
2693 spa_t *spa = zio->io_spa;
2694
2695 abd_free(zio->io_abd);
2696 if (error) {
2697 if ((BP_GET_LEVEL(bp) != 0 || DMU_OT_IS_METADATA(type)) &&
2698 type != DMU_OT_INTENT_LOG)
2699 atomic_inc_64(&sle->sle_meta_count);
2700 else
2701 atomic_inc_64(&sle->sle_data_count);
2702 }
2703
2704 mutex_enter(&spa->spa_scrub_lock);
2705 spa->spa_load_verify_bytes -= BP_GET_PSIZE(bp);
2706 cv_broadcast(&spa->spa_scrub_io_cv);
2707 mutex_exit(&spa->spa_scrub_lock);
2708 }
2709
2710 /*
2711 * Maximum number of inflight bytes is the log2 fraction of the arc size.
2712 * By default, we set it to 1/16th of the arc.
2713 */
2714 static uint_t spa_load_verify_shift = 4;
2715 static int spa_load_verify_metadata = B_TRUE;
2716 static int spa_load_verify_data = B_TRUE;
2717
2718 static int
2719 spa_load_verify_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp,
2720 const zbookmark_phys_t *zb, const dnode_phys_t *dnp, void *arg)
2721 {
2722 zio_t *rio = arg;
2723 spa_load_error_t *sle = rio->io_private;
2724
2725 (void) zilog, (void) dnp;
2726
2727 /*
2728 * Note: normally this routine will not be called if
2729 * spa_load_verify_metadata is not set. However, it may be useful
2730 * to manually set the flag after the traversal has begun.
2731 */
2732 if (!spa_load_verify_metadata)
2733 return (0);
2734
2735 /*
2736 * Sanity check the block pointer in order to detect obvious damage
2737 * before using the contents in subsequent checks or in zio_read().
2738 * When damaged consider it to be a metadata error since we cannot
2739 * trust the BP_GET_TYPE and BP_GET_LEVEL values.
2740 */
2741 if (!zfs_blkptr_verify(spa, bp, BLK_CONFIG_NEEDED, BLK_VERIFY_LOG)) {
2742 atomic_inc_64(&sle->sle_meta_count);
2743 return (0);
2744 }
2745
2746 if (zb->zb_level == ZB_DNODE_LEVEL || BP_IS_HOLE(bp) ||
2747 BP_IS_EMBEDDED(bp) || BP_IS_REDACTED(bp))
2748 return (0);
2749
2750 if (!BP_IS_METADATA(bp) &&
2751 (!spa_load_verify_data || !sle->sle_verify_data))
2752 return (0);
2753
2754 uint64_t maxinflight_bytes =
2755 arc_target_bytes() >> spa_load_verify_shift;
2756 size_t size = BP_GET_PSIZE(bp);
2757
2758 mutex_enter(&spa->spa_scrub_lock);
2759 while (spa->spa_load_verify_bytes >= maxinflight_bytes)
2760 cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock);
2761 spa->spa_load_verify_bytes += size;
2762 mutex_exit(&spa->spa_scrub_lock);
2763
2764 zio_nowait(zio_read(rio, spa, bp, abd_alloc_for_io(size, B_FALSE), size,
2765 spa_load_verify_done, rio->io_private, ZIO_PRIORITY_SCRUB,
2766 ZIO_FLAG_SPECULATIVE | ZIO_FLAG_CANFAIL |
2767 ZIO_FLAG_SCRUB | ZIO_FLAG_RAW, zb));
2768 return (0);
2769 }
2770
2771 static int
2772 verify_dataset_name_len(dsl_pool_t *dp, dsl_dataset_t *ds, void *arg)
2773 {
2774 (void) dp, (void) arg;
2775
2776 if (dsl_dataset_namelen(ds) >= ZFS_MAX_DATASET_NAME_LEN)
2777 return (SET_ERROR(ENAMETOOLONG));
2778
2779 return (0);
2780 }
2781
2782 static int
2783 spa_load_verify(spa_t *spa)
2784 {
2785 zio_t *rio;
2786 spa_load_error_t sle = { 0 };
2787 zpool_load_policy_t policy;
2788 boolean_t verify_ok = B_FALSE;
2789 int error = 0;
2790
2791 zpool_get_load_policy(spa->spa_config, &policy);
2792
2793 if (policy.zlp_rewind & ZPOOL_NEVER_REWIND ||
2794 policy.zlp_maxmeta == UINT64_MAX)
2795 return (0);
2796
2797 dsl_pool_config_enter(spa->spa_dsl_pool, FTAG);
2798 error = dmu_objset_find_dp(spa->spa_dsl_pool,
2799 spa->spa_dsl_pool->dp_root_dir_obj, verify_dataset_name_len, NULL,
2800 DS_FIND_CHILDREN);
2801 dsl_pool_config_exit(spa->spa_dsl_pool, FTAG);
2802 if (error != 0)
2803 return (error);
2804
2805 /*
2806 * Verify data only if we are rewinding or error limit was set.
2807 * Otherwise nothing except dbgmsg care about it to waste time.
2808 */
2809 sle.sle_verify_data = (policy.zlp_rewind & ZPOOL_REWIND_MASK) ||
2810 (policy.zlp_maxdata < UINT64_MAX);
2811
2812 rio = zio_root(spa, NULL, &sle,
2813 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE);
2814
2815 if (spa_load_verify_metadata) {
2816 if (spa->spa_extreme_rewind) {
2817 spa_load_note(spa, "performing a complete scan of the "
2818 "pool since extreme rewind is on. This may take "
2819 "a very long time.\n (spa_load_verify_data=%u, "
2820 "spa_load_verify_metadata=%u)",
2821 spa_load_verify_data, spa_load_verify_metadata);
2822 }
2823
2824 error = traverse_pool(spa, spa->spa_verify_min_txg,
2825 TRAVERSE_PRE | TRAVERSE_PREFETCH_METADATA |
2826 TRAVERSE_NO_DECRYPT, spa_load_verify_cb, rio);
2827 }
2828
2829 (void) zio_wait(rio);
2830 ASSERT0(spa->spa_load_verify_bytes);
2831
2832 spa->spa_load_meta_errors = sle.sle_meta_count;
2833 spa->spa_load_data_errors = sle.sle_data_count;
2834
2835 if (sle.sle_meta_count != 0 || sle.sle_data_count != 0) {
2836 spa_load_note(spa, "spa_load_verify found %llu metadata errors "
2837 "and %llu data errors", (u_longlong_t)sle.sle_meta_count,
2838 (u_longlong_t)sle.sle_data_count);
2839 }
2840
2841 if (spa_load_verify_dryrun ||
2842 (!error && sle.sle_meta_count <= policy.zlp_maxmeta &&
2843 sle.sle_data_count <= policy.zlp_maxdata)) {
2844 int64_t loss = 0;
2845
2846 verify_ok = B_TRUE;
2847 spa->spa_load_txg = spa->spa_uberblock.ub_txg;
2848 spa->spa_load_txg_ts = spa->spa_uberblock.ub_timestamp;
2849
2850 loss = spa->spa_last_ubsync_txg_ts - spa->spa_load_txg_ts;
2851 fnvlist_add_uint64(spa->spa_load_info, ZPOOL_CONFIG_LOAD_TIME,
2852 spa->spa_load_txg_ts);
2853 fnvlist_add_int64(spa->spa_load_info, ZPOOL_CONFIG_REWIND_TIME,
2854 loss);
2855 fnvlist_add_uint64(spa->spa_load_info,
2856 ZPOOL_CONFIG_LOAD_META_ERRORS, sle.sle_meta_count);
2857 fnvlist_add_uint64(spa->spa_load_info,
2858 ZPOOL_CONFIG_LOAD_DATA_ERRORS, sle.sle_data_count);
2859 } else {
2860 spa->spa_load_max_txg = spa->spa_uberblock.ub_txg;
2861 }
2862
2863 if (spa_load_verify_dryrun)
2864 return (0);
2865
2866 if (error) {
2867 if (error != ENXIO && error != EIO)
2868 error = SET_ERROR(EIO);
2869 return (error);
2870 }
2871
2872 return (verify_ok ? 0 : EIO);
2873 }
2874
2875 /*
2876 * Find a value in the pool props object.
2877 */
2878 static void
2879 spa_prop_find(spa_t *spa, zpool_prop_t prop, uint64_t *val)
2880 {
2881 (void) zap_lookup(spa->spa_meta_objset, spa->spa_pool_props_object,
2882 zpool_prop_to_name(prop), sizeof (uint64_t), 1, val);
2883 }
2884
2885 /*
2886 * Find a value in the pool directory object.
2887 */
2888 static int
2889 spa_dir_prop(spa_t *spa, const char *name, uint64_t *val, boolean_t log_enoent)
2890 {
2891 int error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
2892 name, sizeof (uint64_t), 1, val);
2893
2894 if (error != 0 && (error != ENOENT || log_enoent)) {
2895 spa_load_failed(spa, "couldn't get '%s' value in MOS directory "
2896 "[error=%d]", name, error);
2897 }
2898
2899 return (error);
2900 }
2901
2902 static int
2903 spa_vdev_err(vdev_t *vdev, vdev_aux_t aux, int err)
2904 {
2905 vdev_set_state(vdev, B_TRUE, VDEV_STATE_CANT_OPEN, aux);
2906 return (SET_ERROR(err));
2907 }
2908
2909 boolean_t
2910 spa_livelist_delete_check(spa_t *spa)
2911 {
2912 return (spa->spa_livelists_to_delete != 0);
2913 }
2914
2915 static boolean_t
2916 spa_livelist_delete_cb_check(void *arg, zthr_t *z)
2917 {
2918 (void) z;
2919 spa_t *spa = arg;
2920 return (spa_livelist_delete_check(spa));
2921 }
2922
2923 static int
2924 delete_blkptr_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
2925 {
2926 spa_t *spa = arg;
2927 zio_free(spa, tx->tx_txg, bp);
2928 dsl_dir_diduse_space(tx->tx_pool->dp_free_dir, DD_USED_HEAD,
2929 -bp_get_dsize_sync(spa, bp),
2930 -BP_GET_PSIZE(bp), -BP_GET_UCSIZE(bp), tx);
2931 return (0);
2932 }
2933
2934 static int
2935 dsl_get_next_livelist_obj(objset_t *os, uint64_t zap_obj, uint64_t *llp)
2936 {
2937 int err;
2938 zap_cursor_t zc;
2939 zap_attribute_t za;
2940 zap_cursor_init(&zc, os, zap_obj);
2941 err = zap_cursor_retrieve(&zc, &za);
2942 zap_cursor_fini(&zc);
2943 if (err == 0)
2944 *llp = za.za_first_integer;
2945 return (err);
2946 }
2947
2948 /*
2949 * Components of livelist deletion that must be performed in syncing
2950 * context: freeing block pointers and updating the pool-wide data
2951 * structures to indicate how much work is left to do
2952 */
2953 typedef struct sublist_delete_arg {
2954 spa_t *spa;
2955 dsl_deadlist_t *ll;
2956 uint64_t key;
2957 bplist_t *to_free;
2958 } sublist_delete_arg_t;
2959
2960 static void
2961 sublist_delete_sync(void *arg, dmu_tx_t *tx)
2962 {
2963 sublist_delete_arg_t *sda = arg;
2964 spa_t *spa = sda->spa;
2965 dsl_deadlist_t *ll = sda->ll;
2966 uint64_t key = sda->key;
2967 bplist_t *to_free = sda->to_free;
2968
2969 bplist_iterate(to_free, delete_blkptr_cb, spa, tx);
2970 dsl_deadlist_remove_entry(ll, key, tx);
2971 }
2972
2973 typedef struct livelist_delete_arg {
2974 spa_t *spa;
2975 uint64_t ll_obj;
2976 uint64_t zap_obj;
2977 } livelist_delete_arg_t;
2978
2979 static void
2980 livelist_delete_sync(void *arg, dmu_tx_t *tx)
2981 {
2982 livelist_delete_arg_t *lda = arg;
2983 spa_t *spa = lda->spa;
2984 uint64_t ll_obj = lda->ll_obj;
2985 uint64_t zap_obj = lda->zap_obj;
2986 objset_t *mos = spa->spa_meta_objset;
2987 uint64_t count;
2988
2989 /* free the livelist and decrement the feature count */
2990 VERIFY0(zap_remove_int(mos, zap_obj, ll_obj, tx));
2991 dsl_deadlist_free(mos, ll_obj, tx);
2992 spa_feature_decr(spa, SPA_FEATURE_LIVELIST, tx);
2993 VERIFY0(zap_count(mos, zap_obj, &count));
2994 if (count == 0) {
2995 /* no more livelists to delete */
2996 VERIFY0(zap_remove(mos, DMU_POOL_DIRECTORY_OBJECT,
2997 DMU_POOL_DELETED_CLONES, tx));
2998 VERIFY0(zap_destroy(mos, zap_obj, tx));
2999 spa->spa_livelists_to_delete = 0;
3000 spa_notify_waiters(spa);
3001 }
3002 }
3003
3004 /*
3005 * Load in the value for the livelist to be removed and open it. Then,
3006 * load its first sublist and determine which block pointers should actually
3007 * be freed. Then, call a synctask which performs the actual frees and updates
3008 * the pool-wide livelist data.
3009 */
3010 static void
3011 spa_livelist_delete_cb(void *arg, zthr_t *z)
3012 {
3013 spa_t *spa = arg;
3014 uint64_t ll_obj = 0, count;
3015 objset_t *mos = spa->spa_meta_objset;
3016 uint64_t zap_obj = spa->spa_livelists_to_delete;
3017 /*
3018 * Determine the next livelist to delete. This function should only
3019 * be called if there is at least one deleted clone.
3020 */
3021 VERIFY0(dsl_get_next_livelist_obj(mos, zap_obj, &ll_obj));
3022 VERIFY0(zap_count(mos, ll_obj, &count));
3023 if (count > 0) {
3024 dsl_deadlist_t *ll;
3025 dsl_deadlist_entry_t *dle;
3026 bplist_t to_free;
3027 ll = kmem_zalloc(sizeof (dsl_deadlist_t), KM_SLEEP);
3028 dsl_deadlist_open(ll, mos, ll_obj);
3029 dle = dsl_deadlist_first(ll);
3030 ASSERT3P(dle, !=, NULL);
3031 bplist_create(&to_free);
3032 int err = dsl_process_sub_livelist(&dle->dle_bpobj, &to_free,
3033 z, NULL);
3034 if (err == 0) {
3035 sublist_delete_arg_t sync_arg = {
3036 .spa = spa,
3037 .ll = ll,
3038 .key = dle->dle_mintxg,
3039 .to_free = &to_free
3040 };
3041 zfs_dbgmsg("deleting sublist (id %llu) from"
3042 " livelist %llu, %lld remaining",
3043 (u_longlong_t)dle->dle_bpobj.bpo_object,
3044 (u_longlong_t)ll_obj, (longlong_t)count - 1);
3045 VERIFY0(dsl_sync_task(spa_name(spa), NULL,
3046 sublist_delete_sync, &sync_arg, 0,
3047 ZFS_SPACE_CHECK_DESTROY));
3048 } else {
3049 VERIFY3U(err, ==, EINTR);
3050 }
3051 bplist_clear(&to_free);
3052 bplist_destroy(&to_free);
3053 dsl_deadlist_close(ll);
3054 kmem_free(ll, sizeof (dsl_deadlist_t));
3055 } else {
3056 livelist_delete_arg_t sync_arg = {
3057 .spa = spa,
3058 .ll_obj = ll_obj,
3059 .zap_obj = zap_obj
3060 };
3061 zfs_dbgmsg("deletion of livelist %llu completed",
3062 (u_longlong_t)ll_obj);
3063 VERIFY0(dsl_sync_task(spa_name(spa), NULL, livelist_delete_sync,
3064 &sync_arg, 0, ZFS_SPACE_CHECK_DESTROY));
3065 }
3066 }
3067
3068 static void
3069 spa_start_livelist_destroy_thread(spa_t *spa)
3070 {
3071 ASSERT3P(spa->spa_livelist_delete_zthr, ==, NULL);
3072 spa->spa_livelist_delete_zthr =
3073 zthr_create("z_livelist_destroy",
3074 spa_livelist_delete_cb_check, spa_livelist_delete_cb, spa,
3075 minclsyspri);
3076 }
3077
3078 typedef struct livelist_new_arg {
3079 bplist_t *allocs;
3080 bplist_t *frees;
3081 } livelist_new_arg_t;
3082
3083 static int
3084 livelist_track_new_cb(void *arg, const blkptr_t *bp, boolean_t bp_freed,
3085 dmu_tx_t *tx)
3086 {
3087 ASSERT(tx == NULL);
3088 livelist_new_arg_t *lna = arg;
3089 if (bp_freed) {
3090 bplist_append(lna->frees, bp);
3091 } else {
3092 bplist_append(lna->allocs, bp);
3093 zfs_livelist_condense_new_alloc++;
3094 }
3095 return (0);
3096 }
3097
3098 typedef struct livelist_condense_arg {
3099 spa_t *spa;
3100 bplist_t to_keep;
3101 uint64_t first_size;
3102 uint64_t next_size;
3103 } livelist_condense_arg_t;
3104
3105 static void
3106 spa_livelist_condense_sync(void *arg, dmu_tx_t *tx)
3107 {
3108 livelist_condense_arg_t *lca = arg;
3109 spa_t *spa = lca->spa;
3110 bplist_t new_frees;
3111 dsl_dataset_t *ds = spa->spa_to_condense.ds;
3112
3113 /* Have we been cancelled? */
3114 if (spa->spa_to_condense.cancelled) {
3115 zfs_livelist_condense_sync_cancel++;
3116 goto out;
3117 }
3118
3119 dsl_deadlist_entry_t *first = spa->spa_to_condense.first;
3120 dsl_deadlist_entry_t *next = spa->spa_to_condense.next;
3121 dsl_deadlist_t *ll = &ds->ds_dir->dd_livelist;
3122
3123 /*
3124 * It's possible that the livelist was changed while the zthr was
3125 * running. Therefore, we need to check for new blkptrs in the two
3126 * entries being condensed and continue to track them in the livelist.
3127 * Because of the way we handle remapped blkptrs (see dbuf_remap_impl),
3128 * it's possible that the newly added blkptrs are FREEs or ALLOCs so
3129 * we need to sort them into two different bplists.
3130 */
3131 uint64_t first_obj = first->dle_bpobj.bpo_object;
3132 uint64_t next_obj = next->dle_bpobj.bpo_object;
3133 uint64_t cur_first_size = first->dle_bpobj.bpo_phys->bpo_num_blkptrs;
3134 uint64_t cur_next_size = next->dle_bpobj.bpo_phys->bpo_num_blkptrs;
3135
3136 bplist_create(&new_frees);
3137 livelist_new_arg_t new_bps = {
3138 .allocs = &lca->to_keep,
3139 .frees = &new_frees,
3140 };
3141
3142 if (cur_first_size > lca->first_size) {
3143 VERIFY0(livelist_bpobj_iterate_from_nofree(&first->dle_bpobj,
3144 livelist_track_new_cb, &new_bps, lca->first_size));
3145 }
3146 if (cur_next_size > lca->next_size) {
3147 VERIFY0(livelist_bpobj_iterate_from_nofree(&next->dle_bpobj,
3148 livelist_track_new_cb, &new_bps, lca->next_size));
3149 }
3150
3151 dsl_deadlist_clear_entry(first, ll, tx);
3152 ASSERT(bpobj_is_empty(&first->dle_bpobj));
3153 dsl_deadlist_remove_entry(ll, next->dle_mintxg, tx);
3154
3155 bplist_iterate(&lca->to_keep, dsl_deadlist_insert_alloc_cb, ll, tx);
3156 bplist_iterate(&new_frees, dsl_deadlist_insert_free_cb, ll, tx);
3157 bplist_destroy(&new_frees);
3158
3159 char dsname[ZFS_MAX_DATASET_NAME_LEN];
3160 dsl_dataset_name(ds, dsname);
3161 zfs_dbgmsg("txg %llu condensing livelist of %s (id %llu), bpobj %llu "
3162 "(%llu blkptrs) and bpobj %llu (%llu blkptrs) -> bpobj %llu "
3163 "(%llu blkptrs)", (u_longlong_t)tx->tx_txg, dsname,
3164 (u_longlong_t)ds->ds_object, (u_longlong_t)first_obj,
3165 (u_longlong_t)cur_first_size, (u_longlong_t)next_obj,
3166 (u_longlong_t)cur_next_size,
3167 (u_longlong_t)first->dle_bpobj.bpo_object,
3168 (u_longlong_t)first->dle_bpobj.bpo_phys->bpo_num_blkptrs);
3169 out:
3170 dmu_buf_rele(ds->ds_dbuf, spa);
3171 spa->spa_to_condense.ds = NULL;
3172 bplist_clear(&lca->to_keep);
3173 bplist_destroy(&lca->to_keep);
3174 kmem_free(lca, sizeof (livelist_condense_arg_t));
3175 spa->spa_to_condense.syncing = B_FALSE;
3176 }
3177
3178 static void
3179 spa_livelist_condense_cb(void *arg, zthr_t *t)
3180 {
3181 while (zfs_livelist_condense_zthr_pause &&
3182 !(zthr_has_waiters(t) || zthr_iscancelled(t)))
3183 delay(1);
3184
3185 spa_t *spa = arg;
3186 dsl_deadlist_entry_t *first = spa->spa_to_condense.first;
3187 dsl_deadlist_entry_t *next = spa->spa_to_condense.next;
3188 uint64_t first_size, next_size;
3189
3190 livelist_condense_arg_t *lca =
3191 kmem_alloc(sizeof (livelist_condense_arg_t), KM_SLEEP);
3192 bplist_create(&lca->to_keep);
3193
3194 /*
3195 * Process the livelists (matching FREEs and ALLOCs) in open context
3196 * so we have minimal work in syncing context to condense.
3197 *
3198 * We save bpobj sizes (first_size and next_size) to use later in
3199 * syncing context to determine if entries were added to these sublists
3200 * while in open context. This is possible because the clone is still
3201 * active and open for normal writes and we want to make sure the new,
3202 * unprocessed blockpointers are inserted into the livelist normally.
3203 *
3204 * Note that dsl_process_sub_livelist() both stores the size number of
3205 * blockpointers and iterates over them while the bpobj's lock held, so
3206 * the sizes returned to us are consistent which what was actually
3207 * processed.
3208 */
3209 int err = dsl_process_sub_livelist(&first->dle_bpobj, &lca->to_keep, t,
3210 &first_size);
3211 if (err == 0)
3212 err = dsl_process_sub_livelist(&next->dle_bpobj, &lca->to_keep,
3213 t, &next_size);
3214
3215 if (err == 0) {
3216 while (zfs_livelist_condense_sync_pause &&
3217 !(zthr_has_waiters(t) || zthr_iscancelled(t)))
3218 delay(1);
3219
3220 dmu_tx_t *tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
3221 dmu_tx_mark_netfree(tx);
3222 dmu_tx_hold_space(tx, 1);
3223 err = dmu_tx_assign(tx, TXG_NOWAIT | TXG_NOTHROTTLE);
3224 if (err == 0) {
3225 /*
3226 * Prevent the condense zthr restarting before
3227 * the synctask completes.
3228 */
3229 spa->spa_to_condense.syncing = B_TRUE;
3230 lca->spa = spa;
3231 lca->first_size = first_size;
3232 lca->next_size = next_size;
3233 dsl_sync_task_nowait(spa_get_dsl(spa),
3234 spa_livelist_condense_sync, lca, tx);
3235 dmu_tx_commit(tx);
3236 return;
3237 }
3238 }
3239 /*
3240 * Condensing can not continue: either it was externally stopped or
3241 * we were unable to assign to a tx because the pool has run out of
3242 * space. In the second case, we'll just end up trying to condense
3243 * again in a later txg.
3244 */
3245 ASSERT(err != 0);
3246 bplist_clear(&lca->to_keep);
3247 bplist_destroy(&lca->to_keep);
3248 kmem_free(lca, sizeof (livelist_condense_arg_t));
3249 dmu_buf_rele(spa->spa_to_condense.ds->ds_dbuf, spa);
3250 spa->spa_to_condense.ds = NULL;
3251 if (err == EINTR)
3252 zfs_livelist_condense_zthr_cancel++;
3253 }
3254
3255 /*
3256 * Check that there is something to condense but that a condense is not
3257 * already in progress and that condensing has not been cancelled.
3258 */
3259 static boolean_t
3260 spa_livelist_condense_cb_check(void *arg, zthr_t *z)
3261 {
3262 (void) z;
3263 spa_t *spa = arg;
3264 if ((spa->spa_to_condense.ds != NULL) &&
3265 (spa->spa_to_condense.syncing == B_FALSE) &&
3266 (spa->spa_to_condense.cancelled == B_FALSE)) {
3267 return (B_TRUE);
3268 }
3269 return (B_FALSE);
3270 }
3271
3272 static void
3273 spa_start_livelist_condensing_thread(spa_t *spa)
3274 {
3275 spa->spa_to_condense.ds = NULL;
3276 spa->spa_to_condense.first = NULL;
3277 spa->spa_to_condense.next = NULL;
3278 spa->spa_to_condense.syncing = B_FALSE;
3279 spa->spa_to_condense.cancelled = B_FALSE;
3280
3281 ASSERT3P(spa->spa_livelist_condense_zthr, ==, NULL);
3282 spa->spa_livelist_condense_zthr =
3283 zthr_create("z_livelist_condense",
3284 spa_livelist_condense_cb_check,
3285 spa_livelist_condense_cb, spa, minclsyspri);
3286 }
3287
3288 static void
3289 spa_spawn_aux_threads(spa_t *spa)
3290 {
3291 ASSERT(spa_writeable(spa));
3292
3293 ASSERT(MUTEX_HELD(&spa_namespace_lock));
3294
3295 spa_start_raidz_expansion_thread(spa);
3296 spa_start_indirect_condensing_thread(spa);
3297 spa_start_livelist_destroy_thread(spa);
3298 spa_start_livelist_condensing_thread(spa);
3299
3300 ASSERT3P(spa->spa_checkpoint_discard_zthr, ==, NULL);
3301 spa->spa_checkpoint_discard_zthr =
3302 zthr_create("z_checkpoint_discard",
3303 spa_checkpoint_discard_thread_check,
3304 spa_checkpoint_discard_thread, spa, minclsyspri);
3305 }
3306
3307 /*
3308 * Fix up config after a partly-completed split. This is done with the
3309 * ZPOOL_CONFIG_SPLIT nvlist. Both the splitting pool and the split-off
3310 * pool have that entry in their config, but only the splitting one contains
3311 * a list of all the guids of the vdevs that are being split off.
3312 *
3313 * This function determines what to do with that list: either rejoin
3314 * all the disks to the pool, or complete the splitting process. To attempt
3315 * the rejoin, each disk that is offlined is marked online again, and
3316 * we do a reopen() call. If the vdev label for every disk that was
3317 * marked online indicates it was successfully split off (VDEV_AUX_SPLIT_POOL)
3318 * then we call vdev_split() on each disk, and complete the split.
3319 *
3320 * Otherwise we leave the config alone, with all the vdevs in place in
3321 * the original pool.
3322 */
3323 static void
3324 spa_try_repair(spa_t *spa, nvlist_t *config)
3325 {
3326 uint_t extracted;
3327 uint64_t *glist;
3328 uint_t i, gcount;
3329 nvlist_t *nvl;
3330 vdev_t **vd;
3331 boolean_t attempt_reopen;
3332
3333 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT, &nvl) != 0)
3334 return;
3335
3336 /* check that the config is complete */
3337 if (nvlist_lookup_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST,
3338 &glist, &gcount) != 0)
3339 return;
3340
3341 vd = kmem_zalloc(gcount * sizeof (vdev_t *), KM_SLEEP);
3342
3343 /* attempt to online all the vdevs & validate */
3344 attempt_reopen = B_TRUE;
3345 for (i = 0; i < gcount; i++) {
3346 if (glist[i] == 0) /* vdev is hole */
3347 continue;
3348
3349 vd[i] = spa_lookup_by_guid(spa, glist[i], B_FALSE);
3350 if (vd[i] == NULL) {
3351 /*
3352 * Don't bother attempting to reopen the disks;
3353 * just do the split.
3354 */
3355 attempt_reopen = B_FALSE;
3356 } else {
3357 /* attempt to re-online it */
3358 vd[i]->vdev_offline = B_FALSE;
3359 }
3360 }
3361
3362 if (attempt_reopen) {
3363 vdev_reopen(spa->spa_root_vdev);
3364
3365 /* check each device to see what state it's in */
3366 for (extracted = 0, i = 0; i < gcount; i++) {
3367 if (vd[i] != NULL &&
3368 vd[i]->vdev_stat.vs_aux != VDEV_AUX_SPLIT_POOL)
3369 break;
3370 ++extracted;
3371 }
3372 }
3373
3374 /*
3375 * If every disk has been moved to the new pool, or if we never
3376 * even attempted to look at them, then we split them off for
3377 * good.
3378 */
3379 if (!attempt_reopen || gcount == extracted) {
3380 for (i = 0; i < gcount; i++)
3381 if (vd[i] != NULL)
3382 vdev_split(vd[i]);
3383 vdev_reopen(spa->spa_root_vdev);
3384 }
3385
3386 kmem_free(vd, gcount * sizeof (vdev_t *));
3387 }
3388
3389 static int
3390 spa_load(spa_t *spa, spa_load_state_t state, spa_import_type_t type)
3391 {
3392 const char *ereport = FM_EREPORT_ZFS_POOL;
3393 int error;
3394
3395 spa->spa_load_state = state;
3396 (void) spa_import_progress_set_state(spa_guid(spa),
3397 spa_load_state(spa));
3398 spa_import_progress_set_notes(spa, "spa_load()");
3399
3400 gethrestime(&spa->spa_loaded_ts);
3401 error = spa_load_impl(spa, type, &ereport);
3402
3403 /*
3404 * Don't count references from objsets that are already closed
3405 * and are making their way through the eviction process.
3406 */
3407 spa_evicting_os_wait(spa);
3408 spa->spa_minref = zfs_refcount_count(&spa->spa_refcount);
3409 if (error) {
3410 if (error != EEXIST) {
3411 spa->spa_loaded_ts.tv_sec = 0;
3412 spa->spa_loaded_ts.tv_nsec = 0;
3413 }
3414 if (error != EBADF) {
3415 (void) zfs_ereport_post(ereport, spa,
3416 NULL, NULL, NULL, 0);
3417 }
3418 }
3419 spa->spa_load_state = error ? SPA_LOAD_ERROR : SPA_LOAD_NONE;
3420 spa->spa_ena = 0;
3421
3422 (void) spa_import_progress_set_state(spa_guid(spa),
3423 spa_load_state(spa));
3424
3425 return (error);
3426 }
3427
3428 #ifdef ZFS_DEBUG
3429 /*
3430 * Count the number of per-vdev ZAPs associated with all of the vdevs in the
3431 * vdev tree rooted in the given vd, and ensure that each ZAP is present in the
3432 * spa's per-vdev ZAP list.
3433 */
3434 static uint64_t
3435 vdev_count_verify_zaps(vdev_t *vd)
3436 {
3437 spa_t *spa = vd->vdev_spa;
3438 uint64_t total = 0;
3439
3440 if (spa_feature_is_active(vd->vdev_spa, SPA_FEATURE_AVZ_V2) &&
3441 vd->vdev_root_zap != 0) {
3442 total++;
3443 ASSERT0(zap_lookup_int(spa->spa_meta_objset,
3444 spa->spa_all_vdev_zaps, vd->vdev_root_zap));
3445 }
3446 if (vd->vdev_top_zap != 0) {
3447 total++;
3448 ASSERT0(zap_lookup_int(spa->spa_meta_objset,
3449 spa->spa_all_vdev_zaps, vd->vdev_top_zap));
3450 }
3451 if (vd->vdev_leaf_zap != 0) {
3452 total++;
3453 ASSERT0(zap_lookup_int(spa->spa_meta_objset,
3454 spa->spa_all_vdev_zaps, vd->vdev_leaf_zap));
3455 }
3456
3457 for (uint64_t i = 0; i < vd->vdev_children; i++) {
3458 total += vdev_count_verify_zaps(vd->vdev_child[i]);
3459 }
3460
3461 return (total);
3462 }
3463 #else
3464 #define vdev_count_verify_zaps(vd) ((void) sizeof (vd), 0)
3465 #endif
3466
3467 /*
3468 * Determine whether the activity check is required.
3469 */
3470 static boolean_t
3471 spa_activity_check_required(spa_t *spa, uberblock_t *ub, nvlist_t *label,
3472 nvlist_t *config)
3473 {
3474 uint64_t state = 0;
3475 uint64_t hostid = 0;
3476 uint64_t tryconfig_txg = 0;
3477 uint64_t tryconfig_timestamp = 0;
3478 uint16_t tryconfig_mmp_seq = 0;
3479 nvlist_t *nvinfo;
3480
3481 if (nvlist_exists(config, ZPOOL_CONFIG_LOAD_INFO)) {
3482 nvinfo = fnvlist_lookup_nvlist(config, ZPOOL_CONFIG_LOAD_INFO);
3483 (void) nvlist_lookup_uint64(nvinfo, ZPOOL_CONFIG_MMP_TXG,
3484 &tryconfig_txg);
3485 (void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_TIMESTAMP,
3486 &tryconfig_timestamp);
3487 (void) nvlist_lookup_uint16(nvinfo, ZPOOL_CONFIG_MMP_SEQ,
3488 &tryconfig_mmp_seq);
3489 }
3490
3491 (void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_STATE, &state);
3492
3493 /*
3494 * Disable the MMP activity check - This is used by zdb which
3495 * is intended to be used on potentially active pools.
3496 */
3497 if (spa->spa_import_flags & ZFS_IMPORT_SKIP_MMP)
3498 return (B_FALSE);
3499
3500 /*
3501 * Skip the activity check when the MMP feature is disabled.
3502 */
3503 if (ub->ub_mmp_magic == MMP_MAGIC && ub->ub_mmp_delay == 0)
3504 return (B_FALSE);
3505
3506 /*
3507 * If the tryconfig_ values are nonzero, they are the results of an
3508 * earlier tryimport. If they all match the uberblock we just found,
3509 * then the pool has not changed and we return false so we do not test
3510 * a second time.
3511 */
3512 if (tryconfig_txg && tryconfig_txg == ub->ub_txg &&
3513 tryconfig_timestamp && tryconfig_timestamp == ub->ub_timestamp &&
3514 tryconfig_mmp_seq && tryconfig_mmp_seq ==
3515 (MMP_SEQ_VALID(ub) ? MMP_SEQ(ub) : 0))
3516 return (B_FALSE);
3517
3518 /*
3519 * Allow the activity check to be skipped when importing the pool
3520 * on the same host which last imported it. Since the hostid from
3521 * configuration may be stale use the one read from the label.
3522 */
3523 if (nvlist_exists(label, ZPOOL_CONFIG_HOSTID))
3524 hostid = fnvlist_lookup_uint64(label, ZPOOL_CONFIG_HOSTID);
3525
3526 if (hostid == spa_get_hostid(spa))
3527 return (B_FALSE);
3528
3529 /*
3530 * Skip the activity test when the pool was cleanly exported.
3531 */
3532 if (state != POOL_STATE_ACTIVE)
3533 return (B_FALSE);
3534
3535 return (B_TRUE);
3536 }
3537
3538 /*
3539 * Nanoseconds the activity check must watch for changes on-disk.
3540 */
3541 static uint64_t
3542 spa_activity_check_duration(spa_t *spa, uberblock_t *ub)
3543 {
3544 uint64_t import_intervals = MAX(zfs_multihost_import_intervals, 1);
3545 uint64_t multihost_interval = MSEC2NSEC(
3546 MMP_INTERVAL_OK(zfs_multihost_interval));
3547 uint64_t import_delay = MAX(NANOSEC, import_intervals *
3548 multihost_interval);
3549
3550 /*
3551 * Local tunables determine a minimum duration except for the case
3552 * where we know when the remote host will suspend the pool if MMP
3553 * writes do not land.
3554 *
3555 * See Big Theory comment at the top of mmp.c for the reasoning behind
3556 * these cases and times.
3557 */
3558
3559 ASSERT(MMP_IMPORT_SAFETY_FACTOR >= 100);
3560
3561 if (MMP_INTERVAL_VALID(ub) && MMP_FAIL_INT_VALID(ub) &&
3562 MMP_FAIL_INT(ub) > 0) {
3563
3564 /* MMP on remote host will suspend pool after failed writes */
3565 import_delay = MMP_FAIL_INT(ub) * MSEC2NSEC(MMP_INTERVAL(ub)) *
3566 MMP_IMPORT_SAFETY_FACTOR / 100;
3567
3568 zfs_dbgmsg("fail_intvals>0 import_delay=%llu ub_mmp "
3569 "mmp_fails=%llu ub_mmp mmp_interval=%llu "
3570 "import_intervals=%llu", (u_longlong_t)import_delay,
3571 (u_longlong_t)MMP_FAIL_INT(ub),
3572 (u_longlong_t)MMP_INTERVAL(ub),
3573 (u_longlong_t)import_intervals);
3574
3575 } else if (MMP_INTERVAL_VALID(ub) && MMP_FAIL_INT_VALID(ub) &&
3576 MMP_FAIL_INT(ub) == 0) {
3577
3578 /* MMP on remote host will never suspend pool */
3579 import_delay = MAX(import_delay, (MSEC2NSEC(MMP_INTERVAL(ub)) +
3580 ub->ub_mmp_delay) * import_intervals);
3581
3582 zfs_dbgmsg("fail_intvals=0 import_delay=%llu ub_mmp "
3583 "mmp_interval=%llu ub_mmp_delay=%llu "
3584 "import_intervals=%llu", (u_longlong_t)import_delay,
3585 (u_longlong_t)MMP_INTERVAL(ub),
3586 (u_longlong_t)ub->ub_mmp_delay,
3587 (u_longlong_t)import_intervals);
3588
3589 } else if (MMP_VALID(ub)) {
3590 /*
3591 * zfs-0.7 compatibility case
3592 */
3593
3594 import_delay = MAX(import_delay, (multihost_interval +
3595 ub->ub_mmp_delay) * import_intervals);
3596
3597 zfs_dbgmsg("import_delay=%llu ub_mmp_delay=%llu "
3598 "import_intervals=%llu leaves=%u",
3599 (u_longlong_t)import_delay,
3600 (u_longlong_t)ub->ub_mmp_delay,
3601 (u_longlong_t)import_intervals,
3602 vdev_count_leaves(spa));
3603 } else {
3604 /* Using local tunings is the only reasonable option */
3605 zfs_dbgmsg("pool last imported on non-MMP aware "
3606 "host using import_delay=%llu multihost_interval=%llu "
3607 "import_intervals=%llu", (u_longlong_t)import_delay,
3608 (u_longlong_t)multihost_interval,
3609 (u_longlong_t)import_intervals);
3610 }
3611
3612 return (import_delay);
3613 }
3614
3615 /*
3616 * Perform the import activity check. If the user canceled the import or
3617 * we detected activity then fail.
3618 */
3619 static int
3620 spa_activity_check(spa_t *spa, uberblock_t *ub, nvlist_t *config)
3621 {
3622 uint64_t txg = ub->ub_txg;
3623 uint64_t timestamp = ub->ub_timestamp;
3624 uint64_t mmp_config = ub->ub_mmp_config;
3625 uint16_t mmp_seq = MMP_SEQ_VALID(ub) ? MMP_SEQ(ub) : 0;
3626 uint64_t import_delay;
3627 hrtime_t import_expire, now;
3628 nvlist_t *mmp_label = NULL;
3629 vdev_t *rvd = spa->spa_root_vdev;
3630 kcondvar_t cv;
3631 kmutex_t mtx;
3632 int error = 0;
3633
3634 cv_init(&cv, NULL, CV_DEFAULT, NULL);
3635 mutex_init(&mtx, NULL, MUTEX_DEFAULT, NULL);
3636 mutex_enter(&mtx);
3637
3638 /*
3639 * If ZPOOL_CONFIG_MMP_TXG is present an activity check was performed
3640 * during the earlier tryimport. If the txg recorded there is 0 then
3641 * the pool is known to be active on another host.
3642 *
3643 * Otherwise, the pool might be in use on another host. Check for
3644 * changes in the uberblocks on disk if necessary.
3645 */
3646 if (nvlist_exists(config, ZPOOL_CONFIG_LOAD_INFO)) {
3647 nvlist_t *nvinfo = fnvlist_lookup_nvlist(config,
3648 ZPOOL_CONFIG_LOAD_INFO);
3649
3650 if (nvlist_exists(nvinfo, ZPOOL_CONFIG_MMP_TXG) &&
3651 fnvlist_lookup_uint64(nvinfo, ZPOOL_CONFIG_MMP_TXG) == 0) {
3652 vdev_uberblock_load(rvd, ub, &mmp_label);
3653 error = SET_ERROR(EREMOTEIO);
3654 goto out;
3655 }
3656 }
3657
3658 import_delay = spa_activity_check_duration(spa, ub);
3659
3660 /* Add a small random factor in case of simultaneous imports (0-25%) */
3661 import_delay += import_delay * random_in_range(250) / 1000;
3662
3663 import_expire = gethrtime() + import_delay;
3664
3665 spa_import_progress_set_notes(spa, "Checking MMP activity, waiting "
3666 "%llu ms", (u_longlong_t)NSEC2MSEC(import_delay));
3667
3668 int interations = 0;
3669 while ((now = gethrtime()) < import_expire) {
3670 if (interations++ % 30 == 0) {
3671 spa_import_progress_set_notes(spa, "Checking MMP "
3672 "activity, %llu ms remaining",
3673 (u_longlong_t)NSEC2MSEC(import_expire - now));
3674 }
3675
3676 (void) spa_import_progress_set_mmp_check(spa_guid(spa),
3677 NSEC2SEC(import_expire - gethrtime()));
3678
3679 vdev_uberblock_load(rvd, ub, &mmp_label);
3680
3681 if (txg != ub->ub_txg || timestamp != ub->ub_timestamp ||
3682 mmp_seq != (MMP_SEQ_VALID(ub) ? MMP_SEQ(ub) : 0)) {
3683 zfs_dbgmsg("multihost activity detected "
3684 "txg %llu ub_txg %llu "
3685 "timestamp %llu ub_timestamp %llu "
3686 "mmp_config %#llx ub_mmp_config %#llx",
3687 (u_longlong_t)txg, (u_longlong_t)ub->ub_txg,
3688 (u_longlong_t)timestamp,
3689 (u_longlong_t)ub->ub_timestamp,
3690 (u_longlong_t)mmp_config,
3691 (u_longlong_t)ub->ub_mmp_config);
3692
3693 error = SET_ERROR(EREMOTEIO);
3694 break;
3695 }
3696
3697 if (mmp_label) {
3698 nvlist_free(mmp_label);
3699 mmp_label = NULL;
3700 }
3701
3702 error = cv_timedwait_sig(&cv, &mtx, ddi_get_lbolt() + hz);
3703 if (error != -1) {
3704 error = SET_ERROR(EINTR);
3705 break;
3706 }
3707 error = 0;
3708 }
3709
3710 out:
3711 mutex_exit(&mtx);
3712 mutex_destroy(&mtx);
3713 cv_destroy(&cv);
3714
3715 /*
3716 * If the pool is determined to be active store the status in the
3717 * spa->spa_load_info nvlist. If the remote hostname or hostid are
3718 * available from configuration read from disk store them as well.
3719 * This allows 'zpool import' to generate a more useful message.
3720 *
3721 * ZPOOL_CONFIG_MMP_STATE - observed pool status (mandatory)
3722 * ZPOOL_CONFIG_MMP_HOSTNAME - hostname from the active pool
3723 * ZPOOL_CONFIG_MMP_HOSTID - hostid from the active pool
3724 */
3725 if (error == EREMOTEIO) {
3726 const char *hostname = "<unknown>";
3727 uint64_t hostid = 0;
3728
3729 if (mmp_label) {
3730 if (nvlist_exists(mmp_label, ZPOOL_CONFIG_HOSTNAME)) {
3731 hostname = fnvlist_lookup_string(mmp_label,
3732 ZPOOL_CONFIG_HOSTNAME);
3733 fnvlist_add_string(spa->spa_load_info,
3734 ZPOOL_CONFIG_MMP_HOSTNAME, hostname);
3735 }
3736
3737 if (nvlist_exists(mmp_label, ZPOOL_CONFIG_HOSTID)) {
3738 hostid = fnvlist_lookup_uint64(mmp_label,
3739 ZPOOL_CONFIG_HOSTID);
3740 fnvlist_add_uint64(spa->spa_load_info,
3741 ZPOOL_CONFIG_MMP_HOSTID, hostid);
3742 }
3743 }
3744
3745 fnvlist_add_uint64(spa->spa_load_info,
3746 ZPOOL_CONFIG_MMP_STATE, MMP_STATE_ACTIVE);
3747 fnvlist_add_uint64(spa->spa_load_info,
3748 ZPOOL_CONFIG_MMP_TXG, 0);
3749
3750 error = spa_vdev_err(rvd, VDEV_AUX_ACTIVE, EREMOTEIO);
3751 }
3752
3753 if (mmp_label)
3754 nvlist_free(mmp_label);
3755
3756 return (error);
3757 }
3758
3759 static int
3760 spa_verify_host(spa_t *spa, nvlist_t *mos_config)
3761 {
3762 uint64_t hostid;
3763 const char *hostname;
3764 uint64_t myhostid = 0;
3765
3766 if (!spa_is_root(spa) && nvlist_lookup_uint64(mos_config,
3767 ZPOOL_CONFIG_HOSTID, &hostid) == 0) {
3768 hostname = fnvlist_lookup_string(mos_config,
3769 ZPOOL_CONFIG_HOSTNAME);
3770
3771 myhostid = zone_get_hostid(NULL);
3772
3773 if (hostid != 0 && myhostid != 0 && hostid != myhostid) {
3774 cmn_err(CE_WARN, "pool '%s' could not be "
3775 "loaded as it was last accessed by "
3776 "another system (host: %s hostid: 0x%llx). "
3777 "See: https://openzfs.github.io/openzfs-docs/msg/"
3778 "ZFS-8000-EY",
3779 spa_name(spa), hostname, (u_longlong_t)hostid);
3780 spa_load_failed(spa, "hostid verification failed: pool "
3781 "last accessed by host: %s (hostid: 0x%llx)",
3782 hostname, (u_longlong_t)hostid);
3783 return (SET_ERROR(EBADF));
3784 }
3785 }
3786
3787 return (0);
3788 }
3789
3790 static int
3791 spa_ld_parse_config(spa_t *spa, spa_import_type_t type)
3792 {
3793 int error = 0;
3794 nvlist_t *nvtree, *nvl, *config = spa->spa_config;
3795 int parse;
3796 vdev_t *rvd;
3797 uint64_t pool_guid;
3798 const char *comment;
3799 const char *compatibility;
3800
3801 /*
3802 * Versioning wasn't explicitly added to the label until later, so if
3803 * it's not present treat it as the initial version.
3804 */
3805 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VERSION,
3806 &spa->spa_ubsync.ub_version) != 0)
3807 spa->spa_ubsync.ub_version = SPA_VERSION_INITIAL;
3808
3809 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, &pool_guid)) {
3810 spa_load_failed(spa, "invalid config provided: '%s' missing",
3811 ZPOOL_CONFIG_POOL_GUID);
3812 return (SET_ERROR(EINVAL));
3813 }
3814
3815 /*
3816 * If we are doing an import, ensure that the pool is not already
3817 * imported by checking if its pool guid already exists in the
3818 * spa namespace.
3819 *
3820 * The only case that we allow an already imported pool to be
3821 * imported again, is when the pool is checkpointed and we want to
3822 * look at its checkpointed state from userland tools like zdb.
3823 */
3824 #ifdef _KERNEL
3825 if ((spa->spa_load_state == SPA_LOAD_IMPORT ||
3826 spa->spa_load_state == SPA_LOAD_TRYIMPORT) &&
3827 spa_guid_exists(pool_guid, 0)) {
3828 #else
3829 if ((spa->spa_load_state == SPA_LOAD_IMPORT ||
3830 spa->spa_load_state == SPA_LOAD_TRYIMPORT) &&
3831 spa_guid_exists(pool_guid, 0) &&
3832 !spa_importing_readonly_checkpoint(spa)) {
3833 #endif
3834 spa_load_failed(spa, "a pool with guid %llu is already open",
3835 (u_longlong_t)pool_guid);
3836 return (SET_ERROR(EEXIST));
3837 }
3838
3839 spa->spa_config_guid = pool_guid;
3840
3841 nvlist_free(spa->spa_load_info);
3842 spa->spa_load_info = fnvlist_alloc();
3843
3844 ASSERT(spa->spa_comment == NULL);
3845 if (nvlist_lookup_string(config, ZPOOL_CONFIG_COMMENT, &comment) == 0)
3846 spa->spa_comment = spa_strdup(comment);
3847
3848 ASSERT(spa->spa_compatibility == NULL);
3849 if (nvlist_lookup_string(config, ZPOOL_CONFIG_COMPATIBILITY,
3850 &compatibility) == 0)
3851 spa->spa_compatibility = spa_strdup(compatibility);
3852
3853 (void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG,
3854 &spa->spa_config_txg);
3855
3856 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT, &nvl) == 0)
3857 spa->spa_config_splitting = fnvlist_dup(nvl);
3858
3859 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvtree)) {
3860 spa_load_failed(spa, "invalid config provided: '%s' missing",
3861 ZPOOL_CONFIG_VDEV_TREE);
3862 return (SET_ERROR(EINVAL));
3863 }
3864
3865 /*
3866 * Create "The Godfather" zio to hold all async IOs
3867 */
3868 spa->spa_async_zio_root = kmem_alloc(max_ncpus * sizeof (void *),
3869 KM_SLEEP);
3870 for (int i = 0; i < max_ncpus; i++) {
3871 spa->spa_async_zio_root[i] = zio_root(spa, NULL, NULL,
3872 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
3873 ZIO_FLAG_GODFATHER);
3874 }
3875
3876 /*
3877 * Parse the configuration into a vdev tree. We explicitly set the
3878 * value that will be returned by spa_version() since parsing the
3879 * configuration requires knowing the version number.
3880 */
3881 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3882 parse = (type == SPA_IMPORT_EXISTING ?
3883 VDEV_ALLOC_LOAD : VDEV_ALLOC_SPLIT);
3884 error = spa_config_parse(spa, &rvd, nvtree, NULL, 0, parse);
3885 spa_config_exit(spa, SCL_ALL, FTAG);
3886
3887 if (error != 0) {
3888 spa_load_failed(spa, "unable to parse config [error=%d]",
3889 error);
3890 return (error);
3891 }
3892
3893 ASSERT(spa->spa_root_vdev == rvd);
3894 ASSERT3U(spa->spa_min_ashift, >=, SPA_MINBLOCKSHIFT);
3895 ASSERT3U(spa->spa_max_ashift, <=, SPA_MAXBLOCKSHIFT);
3896
3897 if (type != SPA_IMPORT_ASSEMBLE) {
3898 ASSERT(spa_guid(spa) == pool_guid);
3899 }
3900
3901 return (0);
3902 }
3903
3904 /*
3905 * Recursively open all vdevs in the vdev tree. This function is called twice:
3906 * first with the untrusted config, then with the trusted config.
3907 */
3908 static int
3909 spa_ld_open_vdevs(spa_t *spa)
3910 {
3911 int error = 0;
3912
3913 /*
3914 * spa_missing_tvds_allowed defines how many top-level vdevs can be
3915 * missing/unopenable for the root vdev to be still considered openable.
3916 */
3917 if (spa->spa_trust_config) {
3918 spa->spa_missing_tvds_allowed = zfs_max_missing_tvds;
3919 } else if (spa->spa_config_source == SPA_CONFIG_SRC_CACHEFILE) {
3920 spa->spa_missing_tvds_allowed = zfs_max_missing_tvds_cachefile;
3921 } else if (spa->spa_config_source == SPA_CONFIG_SRC_SCAN) {
3922 spa->spa_missing_tvds_allowed = zfs_max_missing_tvds_scan;
3923 } else {
3924 spa->spa_missing_tvds_allowed = 0;
3925 }
3926
3927 spa->spa_missing_tvds_allowed =
3928 MAX(zfs_max_missing_tvds, spa->spa_missing_tvds_allowed);
3929
3930 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3931 error = vdev_open(spa->spa_root_vdev);
3932 spa_config_exit(spa, SCL_ALL, FTAG);
3933
3934 if (spa->spa_missing_tvds != 0) {
3935 spa_load_note(spa, "vdev tree has %lld missing top-level "
3936 "vdevs.", (u_longlong_t)spa->spa_missing_tvds);
3937 if (spa->spa_trust_config && (spa->spa_mode & SPA_MODE_WRITE)) {
3938 /*
3939 * Although theoretically we could allow users to open
3940 * incomplete pools in RW mode, we'd need to add a lot
3941 * of extra logic (e.g. adjust pool space to account
3942 * for missing vdevs).
3943 * This limitation also prevents users from accidentally
3944 * opening the pool in RW mode during data recovery and
3945 * damaging it further.
3946 */
3947 spa_load_note(spa, "pools with missing top-level "
3948 "vdevs can only be opened in read-only mode.");
3949 error = SET_ERROR(ENXIO);
3950 } else {
3951 spa_load_note(spa, "current settings allow for maximum "
3952 "%lld missing top-level vdevs at this stage.",
3953 (u_longlong_t)spa->spa_missing_tvds_allowed);
3954 }
3955 }
3956 if (error != 0) {
3957 spa_load_failed(spa, "unable to open vdev tree [error=%d]",
3958 error);
3959 }
3960 if (spa->spa_missing_tvds != 0 || error != 0)
3961 vdev_dbgmsg_print_tree(spa->spa_root_vdev, 2);
3962
3963 return (error);
3964 }
3965
3966 /*
3967 * We need to validate the vdev labels against the configuration that
3968 * we have in hand. This function is called twice: first with an untrusted
3969 * config, then with a trusted config. The validation is more strict when the
3970 * config is trusted.
3971 */
3972 static int
3973 spa_ld_validate_vdevs(spa_t *spa)
3974 {
3975 int error = 0;
3976 vdev_t *rvd = spa->spa_root_vdev;
3977
3978 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3979 error = vdev_validate(rvd);
3980 spa_config_exit(spa, SCL_ALL, FTAG);
3981
3982 if (error != 0) {
3983 spa_load_failed(spa, "vdev_validate failed [error=%d]", error);
3984 return (error);
3985 }
3986
3987 if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN) {
3988 spa_load_failed(spa, "cannot open vdev tree after invalidating "
3989 "some vdevs");
3990 vdev_dbgmsg_print_tree(rvd, 2);
3991 return (SET_ERROR(ENXIO));
3992 }
3993
3994 return (0);
3995 }
3996
3997 static void
3998 spa_ld_select_uberblock_done(spa_t *spa, uberblock_t *ub)
3999 {
4000 spa->spa_state = POOL_STATE_ACTIVE;
4001 spa->spa_ubsync = spa->spa_uberblock;
4002 spa->spa_verify_min_txg = spa->spa_extreme_rewind ?
4003 TXG_INITIAL - 1 : spa_last_synced_txg(spa) - TXG_DEFER_SIZE - 1;
4004 spa->spa_first_txg = spa->spa_last_ubsync_txg ?
4005 spa->spa_last_ubsync_txg : spa_last_synced_txg(spa) + 1;
4006 spa->spa_claim_max_txg = spa->spa_first_txg;
4007 spa->spa_prev_software_version = ub->ub_software_version;
4008 }
4009
4010 static int
4011 spa_ld_select_uberblock(spa_t *spa, spa_import_type_t type)
4012 {
4013 vdev_t *rvd = spa->spa_root_vdev;
4014 nvlist_t *label;
4015 uberblock_t *ub = &spa->spa_uberblock;
4016 boolean_t activity_check = B_FALSE;
4017
4018 /*
4019 * If we are opening the checkpointed state of the pool by
4020 * rewinding to it, at this point we will have written the
4021 * checkpointed uberblock to the vdev labels, so searching
4022 * the labels will find the right uberblock. However, if
4023 * we are opening the checkpointed state read-only, we have
4024 * not modified the labels. Therefore, we must ignore the
4025 * labels and continue using the spa_uberblock that was set
4026 * by spa_ld_checkpoint_rewind.
4027 *
4028 * Note that it would be fine to ignore the labels when
4029 * rewinding (opening writeable) as well. However, if we
4030 * crash just after writing the labels, we will end up
4031 * searching the labels. Doing so in the common case means
4032 * that this code path gets exercised normally, rather than
4033 * just in the edge case.
4034 */
4035 if (ub->ub_checkpoint_txg != 0 &&
4036 spa_importing_readonly_checkpoint(spa)) {
4037 spa_ld_select_uberblock_done(spa, ub);
4038 return (0);
4039 }
4040
4041 /*
4042 * Find the best uberblock.
4043 */
4044 vdev_uberblock_load(rvd, ub, &label);
4045
4046 /*
4047 * If we weren't able to find a single valid uberblock, return failure.
4048 */
4049 if (ub->ub_txg == 0) {
4050 nvlist_free(label);
4051 spa_load_failed(spa, "no valid uberblock found");
4052 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, ENXIO));
4053 }
4054
4055 if (spa->spa_load_max_txg != UINT64_MAX) {
4056 (void) spa_import_progress_set_max_txg(spa_guid(spa),
4057 (u_longlong_t)spa->spa_load_max_txg);
4058 }
4059 spa_load_note(spa, "using uberblock with txg=%llu",
4060 (u_longlong_t)ub->ub_txg);
4061 if (ub->ub_raidz_reflow_info != 0) {
4062 spa_load_note(spa, "uberblock raidz_reflow_info: "
4063 "state=%u offset=%llu",
4064 (int)RRSS_GET_STATE(ub),
4065 (u_longlong_t)RRSS_GET_OFFSET(ub));
4066 }
4067
4068
4069 /*
4070 * For pools which have the multihost property on determine if the
4071 * pool is truly inactive and can be safely imported. Prevent
4072 * hosts which don't have a hostid set from importing the pool.
4073 */
4074 activity_check = spa_activity_check_required(spa, ub, label,
4075 spa->spa_config);
4076 if (activity_check) {
4077 if (ub->ub_mmp_magic == MMP_MAGIC && ub->ub_mmp_delay &&
4078 spa_get_hostid(spa) == 0) {
4079 nvlist_free(label);
4080 fnvlist_add_uint64(spa->spa_load_info,
4081 ZPOOL_CONFIG_MMP_STATE, MMP_STATE_NO_HOSTID);
4082 return (spa_vdev_err(rvd, VDEV_AUX_ACTIVE, EREMOTEIO));
4083 }
4084
4085 int error = spa_activity_check(spa, ub, spa->spa_config);
4086 if (error) {
4087 nvlist_free(label);
4088 return (error);
4089 }
4090
4091 fnvlist_add_uint64(spa->spa_load_info,
4092 ZPOOL_CONFIG_MMP_STATE, MMP_STATE_INACTIVE);
4093 fnvlist_add_uint64(spa->spa_load_info,
4094 ZPOOL_CONFIG_MMP_TXG, ub->ub_txg);
4095 fnvlist_add_uint16(spa->spa_load_info,
4096 ZPOOL_CONFIG_MMP_SEQ,
4097 (MMP_SEQ_VALID(ub) ? MMP_SEQ(ub) : 0));
4098 }
4099
4100 /*
4101 * If the pool has an unsupported version we can't open it.
4102 */
4103 if (!SPA_VERSION_IS_SUPPORTED(ub->ub_version)) {
4104 nvlist_free(label);
4105 spa_load_failed(spa, "version %llu is not supported",
4106 (u_longlong_t)ub->ub_version);
4107 return (spa_vdev_err(rvd, VDEV_AUX_VERSION_NEWER, ENOTSUP));
4108 }
4109
4110 if (ub->ub_version >= SPA_VERSION_FEATURES) {
4111 nvlist_t *features;
4112
4113 /*
4114 * If we weren't able to find what's necessary for reading the
4115 * MOS in the label, return failure.
4116 */
4117 if (label == NULL) {
4118 spa_load_failed(spa, "label config unavailable");
4119 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
4120 ENXIO));
4121 }
4122
4123 if (nvlist_lookup_nvlist(label, ZPOOL_CONFIG_FEATURES_FOR_READ,
4124 &features) != 0) {
4125 nvlist_free(label);
4126 spa_load_failed(spa, "invalid label: '%s' missing",
4127 ZPOOL_CONFIG_FEATURES_FOR_READ);
4128 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
4129 ENXIO));
4130 }
4131
4132 /*
4133 * Update our in-core representation with the definitive values
4134 * from the label.
4135 */
4136 nvlist_free(spa->spa_label_features);
4137 spa->spa_label_features = fnvlist_dup(features);
4138 }
4139
4140 nvlist_free(label);
4141
4142 /*
4143 * Look through entries in the label nvlist's features_for_read. If
4144 * there is a feature listed there which we don't understand then we
4145 * cannot open a pool.
4146 */
4147 if (ub->ub_version >= SPA_VERSION_FEATURES) {
4148 nvlist_t *unsup_feat;
4149
4150 unsup_feat = fnvlist_alloc();
4151
4152 for (nvpair_t *nvp = nvlist_next_nvpair(spa->spa_label_features,
4153 NULL); nvp != NULL;
4154 nvp = nvlist_next_nvpair(spa->spa_label_features, nvp)) {
4155 if (!zfeature_is_supported(nvpair_name(nvp))) {
4156 fnvlist_add_string(unsup_feat,
4157 nvpair_name(nvp), "");
4158 }
4159 }
4160
4161 if (!nvlist_empty(unsup_feat)) {
4162 fnvlist_add_nvlist(spa->spa_load_info,
4163 ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat);
4164 nvlist_free(unsup_feat);
4165 spa_load_failed(spa, "some features are unsupported");
4166 return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT,
4167 ENOTSUP));
4168 }
4169
4170 nvlist_free(unsup_feat);
4171 }
4172
4173 if (type != SPA_IMPORT_ASSEMBLE && spa->spa_config_splitting) {
4174 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4175 spa_try_repair(spa, spa->spa_config);
4176 spa_config_exit(spa, SCL_ALL, FTAG);
4177 nvlist_free(spa->spa_config_splitting);
4178 spa->spa_config_splitting = NULL;
4179 }
4180
4181 /*
4182 * Initialize internal SPA structures.
4183 */
4184 spa_ld_select_uberblock_done(spa, ub);
4185
4186 return (0);
4187 }
4188
4189 static int
4190 spa_ld_open_rootbp(spa_t *spa)
4191 {
4192 int error = 0;
4193 vdev_t *rvd = spa->spa_root_vdev;
4194
4195 error = dsl_pool_init(spa, spa->spa_first_txg, &spa->spa_dsl_pool);
4196 if (error != 0) {
4197 spa_load_failed(spa, "unable to open rootbp in dsl_pool_init "
4198 "[error=%d]", error);
4199 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4200 }
4201 spa->spa_meta_objset = spa->spa_dsl_pool->dp_meta_objset;
4202
4203 return (0);
4204 }
4205
4206 static int
4207 spa_ld_trusted_config(spa_t *spa, spa_import_type_t type,
4208 boolean_t reloading)
4209 {
4210 vdev_t *mrvd, *rvd = spa->spa_root_vdev;
4211 nvlist_t *nv, *mos_config, *policy;
4212 int error = 0, copy_error;
4213 uint64_t healthy_tvds, healthy_tvds_mos;
4214 uint64_t mos_config_txg;
4215
4216 if (spa_dir_prop(spa, DMU_POOL_CONFIG, &spa->spa_config_object, B_TRUE)
4217 != 0)
4218 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4219
4220 /*
4221 * If we're assembling a pool from a split, the config provided is
4222 * already trusted so there is nothing to do.
4223 */
4224 if (type == SPA_IMPORT_ASSEMBLE)
4225 return (0);
4226
4227 healthy_tvds = spa_healthy_core_tvds(spa);
4228
4229 if (load_nvlist(spa, spa->spa_config_object, &mos_config)
4230 != 0) {
4231 spa_load_failed(spa, "unable to retrieve MOS config");
4232 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4233 }
4234
4235 /*
4236 * If we are doing an open, pool owner wasn't verified yet, thus do
4237 * the verification here.
4238 */
4239 if (spa->spa_load_state == SPA_LOAD_OPEN) {
4240 error = spa_verify_host(spa, mos_config);
4241 if (error != 0) {
4242 nvlist_free(mos_config);
4243 return (error);
4244 }
4245 }
4246
4247 nv = fnvlist_lookup_nvlist(mos_config, ZPOOL_CONFIG_VDEV_TREE);
4248
4249 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4250
4251 /*
4252 * Build a new vdev tree from the trusted config
4253 */
4254 error = spa_config_parse(spa, &mrvd, nv, NULL, 0, VDEV_ALLOC_LOAD);
4255 if (error != 0) {
4256 nvlist_free(mos_config);
4257 spa_config_exit(spa, SCL_ALL, FTAG);
4258 spa_load_failed(spa, "spa_config_parse failed [error=%d]",
4259 error);
4260 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, error));
4261 }
4262
4263 /*
4264 * Vdev paths in the MOS may be obsolete. If the untrusted config was
4265 * obtained by scanning /dev/dsk, then it will have the right vdev
4266 * paths. We update the trusted MOS config with this information.
4267 * We first try to copy the paths with vdev_copy_path_strict, which
4268 * succeeds only when both configs have exactly the same vdev tree.
4269 * If that fails, we fall back to a more flexible method that has a
4270 * best effort policy.
4271 */
4272 copy_error = vdev_copy_path_strict(rvd, mrvd);
4273 if (copy_error != 0 || spa_load_print_vdev_tree) {
4274 spa_load_note(spa, "provided vdev tree:");
4275 vdev_dbgmsg_print_tree(rvd, 2);
4276 spa_load_note(spa, "MOS vdev tree:");
4277 vdev_dbgmsg_print_tree(mrvd, 2);
4278 }
4279 if (copy_error != 0) {
4280 spa_load_note(spa, "vdev_copy_path_strict failed, falling "
4281 "back to vdev_copy_path_relaxed");
4282 vdev_copy_path_relaxed(rvd, mrvd);
4283 }
4284
4285 vdev_close(rvd);
4286 vdev_free(rvd);
4287 spa->spa_root_vdev = mrvd;
4288 rvd = mrvd;
4289 spa_config_exit(spa, SCL_ALL, FTAG);
4290
4291 /*
4292 * If 'zpool import' used a cached config, then the on-disk hostid and
4293 * hostname may be different to the cached config in ways that should
4294 * prevent import. Userspace can't discover this without a scan, but
4295 * we know, so we add these values to LOAD_INFO so the caller can know
4296 * the difference.
4297 *
4298 * Note that we have to do this before the config is regenerated,
4299 * because the new config will have the hostid and hostname for this
4300 * host, in readiness for import.
4301 */
4302 if (nvlist_exists(mos_config, ZPOOL_CONFIG_HOSTID))
4303 fnvlist_add_uint64(spa->spa_load_info, ZPOOL_CONFIG_HOSTID,
4304 fnvlist_lookup_uint64(mos_config, ZPOOL_CONFIG_HOSTID));
4305 if (nvlist_exists(mos_config, ZPOOL_CONFIG_HOSTNAME))
4306 fnvlist_add_string(spa->spa_load_info, ZPOOL_CONFIG_HOSTNAME,
4307 fnvlist_lookup_string(mos_config, ZPOOL_CONFIG_HOSTNAME));
4308
4309 /*
4310 * We will use spa_config if we decide to reload the spa or if spa_load
4311 * fails and we rewind. We must thus regenerate the config using the
4312 * MOS information with the updated paths. ZPOOL_LOAD_POLICY is used to
4313 * pass settings on how to load the pool and is not stored in the MOS.
4314 * We copy it over to our new, trusted config.
4315 */
4316 mos_config_txg = fnvlist_lookup_uint64(mos_config,
4317 ZPOOL_CONFIG_POOL_TXG);
4318 nvlist_free(mos_config);
4319 mos_config = spa_config_generate(spa, NULL, mos_config_txg, B_FALSE);
4320 if (nvlist_lookup_nvlist(spa->spa_config, ZPOOL_LOAD_POLICY,
4321 &policy) == 0)
4322 fnvlist_add_nvlist(mos_config, ZPOOL_LOAD_POLICY, policy);
4323 spa_config_set(spa, mos_config);
4324 spa->spa_config_source = SPA_CONFIG_SRC_MOS;
4325
4326 /*
4327 * Now that we got the config from the MOS, we should be more strict
4328 * in checking blkptrs and can make assumptions about the consistency
4329 * of the vdev tree. spa_trust_config must be set to true before opening
4330 * vdevs in order for them to be writeable.
4331 */
4332 spa->spa_trust_config = B_TRUE;
4333
4334 /*
4335 * Open and validate the new vdev tree
4336 */
4337 error = spa_ld_open_vdevs(spa);
4338 if (error != 0)
4339 return (error);
4340
4341 error = spa_ld_validate_vdevs(spa);
4342 if (error != 0)
4343 return (error);
4344
4345 if (copy_error != 0 || spa_load_print_vdev_tree) {
4346 spa_load_note(spa, "final vdev tree:");
4347 vdev_dbgmsg_print_tree(rvd, 2);
4348 }
4349
4350 if (spa->spa_load_state != SPA_LOAD_TRYIMPORT &&
4351 !spa->spa_extreme_rewind && zfs_max_missing_tvds == 0) {
4352 /*
4353 * Sanity check to make sure that we are indeed loading the
4354 * latest uberblock. If we missed SPA_SYNC_MIN_VDEVS tvds
4355 * in the config provided and they happened to be the only ones
4356 * to have the latest uberblock, we could involuntarily perform
4357 * an extreme rewind.
4358 */
4359 healthy_tvds_mos = spa_healthy_core_tvds(spa);
4360 if (healthy_tvds_mos - healthy_tvds >=
4361 SPA_SYNC_MIN_VDEVS) {
4362 spa_load_note(spa, "config provided misses too many "
4363 "top-level vdevs compared to MOS (%lld vs %lld). ",
4364 (u_longlong_t)healthy_tvds,
4365 (u_longlong_t)healthy_tvds_mos);
4366 spa_load_note(spa, "vdev tree:");
4367 vdev_dbgmsg_print_tree(rvd, 2);
4368 if (reloading) {
4369 spa_load_failed(spa, "config was already "
4370 "provided from MOS. Aborting.");
4371 return (spa_vdev_err(rvd,
4372 VDEV_AUX_CORRUPT_DATA, EIO));
4373 }
4374 spa_load_note(spa, "spa must be reloaded using MOS "
4375 "config");
4376 return (SET_ERROR(EAGAIN));
4377 }
4378 }
4379
4380 error = spa_check_for_missing_logs(spa);
4381 if (error != 0)
4382 return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM, ENXIO));
4383
4384 if (rvd->vdev_guid_sum != spa->spa_uberblock.ub_guid_sum) {
4385 spa_load_failed(spa, "uberblock guid sum doesn't match MOS "
4386 "guid sum (%llu != %llu)",
4387 (u_longlong_t)spa->spa_uberblock.ub_guid_sum,
4388 (u_longlong_t)rvd->vdev_guid_sum);
4389 return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM,
4390 ENXIO));
4391 }
4392
4393 return (0);
4394 }
4395
4396 static int
4397 spa_ld_open_indirect_vdev_metadata(spa_t *spa)
4398 {
4399 int error = 0;
4400 vdev_t *rvd = spa->spa_root_vdev;
4401
4402 /*
4403 * Everything that we read before spa_remove_init() must be stored
4404 * on concreted vdevs. Therefore we do this as early as possible.
4405 */
4406 error = spa_remove_init(spa);
4407 if (error != 0) {
4408 spa_load_failed(spa, "spa_remove_init failed [error=%d]",
4409 error);
4410 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4411 }
4412
4413 /*
4414 * Retrieve information needed to condense indirect vdev mappings.
4415 */
4416 error = spa_condense_init(spa);
4417 if (error != 0) {
4418 spa_load_failed(spa, "spa_condense_init failed [error=%d]",
4419 error);
4420 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, error));
4421 }
4422
4423 return (0);
4424 }
4425
4426 static int
4427 spa_ld_check_features(spa_t *spa, boolean_t *missing_feat_writep)
4428 {
4429 int error = 0;
4430 vdev_t *rvd = spa->spa_root_vdev;
4431
4432 if (spa_version(spa) >= SPA_VERSION_FEATURES) {
4433 boolean_t missing_feat_read = B_FALSE;
4434 nvlist_t *unsup_feat, *enabled_feat;
4435
4436 if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_READ,
4437 &spa->spa_feat_for_read_obj, B_TRUE) != 0) {
4438 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4439 }
4440
4441 if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_WRITE,
4442 &spa->spa_feat_for_write_obj, B_TRUE) != 0) {
4443 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4444 }
4445
4446 if (spa_dir_prop(spa, DMU_POOL_FEATURE_DESCRIPTIONS,
4447 &spa->spa_feat_desc_obj, B_TRUE) != 0) {
4448 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4449 }
4450
4451 enabled_feat = fnvlist_alloc();
4452 unsup_feat = fnvlist_alloc();
4453
4454 if (!spa_features_check(spa, B_FALSE,
4455 unsup_feat, enabled_feat))
4456 missing_feat_read = B_TRUE;
4457
4458 if (spa_writeable(spa) ||
4459 spa->spa_load_state == SPA_LOAD_TRYIMPORT) {
4460 if (!spa_features_check(spa, B_TRUE,
4461 unsup_feat, enabled_feat)) {
4462 *missing_feat_writep = B_TRUE;
4463 }
4464 }
4465
4466 fnvlist_add_nvlist(spa->spa_load_info,
4467 ZPOOL_CONFIG_ENABLED_FEAT, enabled_feat);
4468
4469 if (!nvlist_empty(unsup_feat)) {
4470 fnvlist_add_nvlist(spa->spa_load_info,
4471 ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat);
4472 }
4473
4474 fnvlist_free(enabled_feat);
4475 fnvlist_free(unsup_feat);
4476
4477 if (!missing_feat_read) {
4478 fnvlist_add_boolean(spa->spa_load_info,
4479 ZPOOL_CONFIG_CAN_RDONLY);
4480 }
4481
4482 /*
4483 * If the state is SPA_LOAD_TRYIMPORT, our objective is
4484 * twofold: to determine whether the pool is available for
4485 * import in read-write mode and (if it is not) whether the
4486 * pool is available for import in read-only mode. If the pool
4487 * is available for import in read-write mode, it is displayed
4488 * as available in userland; if it is not available for import
4489 * in read-only mode, it is displayed as unavailable in
4490 * userland. If the pool is available for import in read-only
4491 * mode but not read-write mode, it is displayed as unavailable
4492 * in userland with a special note that the pool is actually
4493 * available for open in read-only mode.
4494 *
4495 * As a result, if the state is SPA_LOAD_TRYIMPORT and we are
4496 * missing a feature for write, we must first determine whether
4497 * the pool can be opened read-only before returning to
4498 * userland in order to know whether to display the
4499 * abovementioned note.
4500 */
4501 if (missing_feat_read || (*missing_feat_writep &&
4502 spa_writeable(spa))) {
4503 spa_load_failed(spa, "pool uses unsupported features");
4504 return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT,
4505 ENOTSUP));
4506 }
4507
4508 /*
4509 * Load refcounts for ZFS features from disk into an in-memory
4510 * cache during SPA initialization.
4511 */
4512 for (spa_feature_t i = 0; i < SPA_FEATURES; i++) {
4513 uint64_t refcount;
4514
4515 error = feature_get_refcount_from_disk(spa,
4516 &spa_feature_table[i], &refcount);
4517 if (error == 0) {
4518 spa->spa_feat_refcount_cache[i] = refcount;
4519 } else if (error == ENOTSUP) {
4520 spa->spa_feat_refcount_cache[i] =
4521 SPA_FEATURE_DISABLED;
4522 } else {
4523 spa_load_failed(spa, "error getting refcount "
4524 "for feature %s [error=%d]",
4525 spa_feature_table[i].fi_guid, error);
4526 return (spa_vdev_err(rvd,
4527 VDEV_AUX_CORRUPT_DATA, EIO));
4528 }
4529 }
4530 }
4531
4532 if (spa_feature_is_active(spa, SPA_FEATURE_ENABLED_TXG)) {
4533 if (spa_dir_prop(spa, DMU_POOL_FEATURE_ENABLED_TXG,
4534 &spa->spa_feat_enabled_txg_obj, B_TRUE) != 0)
4535 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4536 }
4537
4538 /*
4539 * Encryption was added before bookmark_v2, even though bookmark_v2
4540 * is now a dependency. If this pool has encryption enabled without
4541 * bookmark_v2, trigger an errata message.
4542 */
4543 if (spa_feature_is_enabled(spa, SPA_FEATURE_ENCRYPTION) &&
4544 !spa_feature_is_enabled(spa, SPA_FEATURE_BOOKMARK_V2)) {
4545 spa->spa_errata = ZPOOL_ERRATA_ZOL_8308_ENCRYPTION;
4546 }
4547
4548 return (0);
4549 }
4550
4551 static int
4552 spa_ld_load_special_directories(spa_t *spa)
4553 {
4554 int error = 0;
4555 vdev_t *rvd = spa->spa_root_vdev;
4556
4557 spa->spa_is_initializing = B_TRUE;
4558 error = dsl_pool_open(spa->spa_dsl_pool);
4559 spa->spa_is_initializing = B_FALSE;
4560 if (error != 0) {
4561 spa_load_failed(spa, "dsl_pool_open failed [error=%d]", error);
4562 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4563 }
4564
4565 return (0);
4566 }
4567
4568 static int
4569 spa_ld_get_props(spa_t *spa)
4570 {
4571 int error = 0;
4572 uint64_t obj;
4573 vdev_t *rvd = spa->spa_root_vdev;
4574
4575 /* Grab the checksum salt from the MOS. */
4576 error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
4577 DMU_POOL_CHECKSUM_SALT, 1,
4578 sizeof (spa->spa_cksum_salt.zcs_bytes),
4579 spa->spa_cksum_salt.zcs_bytes);
4580 if (error == ENOENT) {
4581 /* Generate a new salt for subsequent use */
4582 (void) random_get_pseudo_bytes(spa->spa_cksum_salt.zcs_bytes,
4583 sizeof (spa->spa_cksum_salt.zcs_bytes));
4584 } else if (error != 0) {
4585 spa_load_failed(spa, "unable to retrieve checksum salt from "
4586 "MOS [error=%d]", error);
4587 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4588 }
4589
4590 if (spa_dir_prop(spa, DMU_POOL_SYNC_BPOBJ, &obj, B_TRUE) != 0)
4591 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4592 error = bpobj_open(&spa->spa_deferred_bpobj, spa->spa_meta_objset, obj);
4593 if (error != 0) {
4594 spa_load_failed(spa, "error opening deferred-frees bpobj "
4595 "[error=%d]", error);
4596 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4597 }
4598
4599 /*
4600 * Load the bit that tells us to use the new accounting function
4601 * (raid-z deflation). If we have an older pool, this will not
4602 * be present.
4603 */
4604 error = spa_dir_prop(spa, DMU_POOL_DEFLATE, &spa->spa_deflate, B_FALSE);
4605 if (error != 0 && error != ENOENT)
4606 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4607
4608 error = spa_dir_prop(spa, DMU_POOL_CREATION_VERSION,
4609 &spa->spa_creation_version, B_FALSE);
4610 if (error != 0 && error != ENOENT)
4611 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4612
4613 /*
4614 * Load the persistent error log. If we have an older pool, this will
4615 * not be present.
4616 */
4617 error = spa_dir_prop(spa, DMU_POOL_ERRLOG_LAST, &spa->spa_errlog_last,
4618 B_FALSE);
4619 if (error != 0 && error != ENOENT)
4620 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4621
4622 error = spa_dir_prop(spa, DMU_POOL_ERRLOG_SCRUB,
4623 &spa->spa_errlog_scrub, B_FALSE);
4624 if (error != 0 && error != ENOENT)
4625 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4626
4627 /*
4628 * Load the livelist deletion field. If a livelist is queued for
4629 * deletion, indicate that in the spa
4630 */
4631 error = spa_dir_prop(spa, DMU_POOL_DELETED_CLONES,
4632 &spa->spa_livelists_to_delete, B_FALSE);
4633 if (error != 0 && error != ENOENT)
4634 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4635
4636 /*
4637 * Load the history object. If we have an older pool, this
4638 * will not be present.
4639 */
4640 error = spa_dir_prop(spa, DMU_POOL_HISTORY, &spa->spa_history, B_FALSE);
4641 if (error != 0 && error != ENOENT)
4642 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4643
4644 /*
4645 * Load the per-vdev ZAP map. If we have an older pool, this will not
4646 * be present; in this case, defer its creation to a later time to
4647 * avoid dirtying the MOS this early / out of sync context. See
4648 * spa_sync_config_object.
4649 */
4650
4651 /* The sentinel is only available in the MOS config. */
4652 nvlist_t *mos_config;
4653 if (load_nvlist(spa, spa->spa_config_object, &mos_config) != 0) {
4654 spa_load_failed(spa, "unable to retrieve MOS config");
4655 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4656 }
4657
4658 error = spa_dir_prop(spa, DMU_POOL_VDEV_ZAP_MAP,
4659 &spa->spa_all_vdev_zaps, B_FALSE);
4660
4661 if (error == ENOENT) {
4662 VERIFY(!nvlist_exists(mos_config,
4663 ZPOOL_CONFIG_HAS_PER_VDEV_ZAPS));
4664 spa->spa_avz_action = AVZ_ACTION_INITIALIZE;
4665 ASSERT0(vdev_count_verify_zaps(spa->spa_root_vdev));
4666 } else if (error != 0) {
4667 nvlist_free(mos_config);
4668 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4669 } else if (!nvlist_exists(mos_config, ZPOOL_CONFIG_HAS_PER_VDEV_ZAPS)) {
4670 /*
4671 * An older version of ZFS overwrote the sentinel value, so
4672 * we have orphaned per-vdev ZAPs in the MOS. Defer their
4673 * destruction to later; see spa_sync_config_object.
4674 */
4675 spa->spa_avz_action = AVZ_ACTION_DESTROY;
4676 /*
4677 * We're assuming that no vdevs have had their ZAPs created
4678 * before this. Better be sure of it.
4679 */
4680 ASSERT0(vdev_count_verify_zaps(spa->spa_root_vdev));
4681 }
4682 nvlist_free(mos_config);
4683
4684 spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
4685
4686 error = spa_dir_prop(spa, DMU_POOL_PROPS, &spa->spa_pool_props_object,
4687 B_FALSE);
4688 if (error && error != ENOENT)
4689 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4690
4691 if (error == 0) {
4692 uint64_t autoreplace = 0;
4693
4694 spa_prop_find(spa, ZPOOL_PROP_BOOTFS, &spa->spa_bootfs);
4695 spa_prop_find(spa, ZPOOL_PROP_AUTOREPLACE, &autoreplace);
4696 spa_prop_find(spa, ZPOOL_PROP_DELEGATION, &spa->spa_delegation);
4697 spa_prop_find(spa, ZPOOL_PROP_FAILUREMODE, &spa->spa_failmode);
4698 spa_prop_find(spa, ZPOOL_PROP_AUTOEXPAND, &spa->spa_autoexpand);
4699 spa_prop_find(spa, ZPOOL_PROP_MULTIHOST, &spa->spa_multihost);
4700 spa_prop_find(spa, ZPOOL_PROP_AUTOTRIM, &spa->spa_autotrim);
4701 spa->spa_autoreplace = (autoreplace != 0);
4702 }
4703
4704 /*
4705 * If we are importing a pool with missing top-level vdevs,
4706 * we enforce that the pool doesn't panic or get suspended on
4707 * error since the likelihood of missing data is extremely high.
4708 */
4709 if (spa->spa_missing_tvds > 0 &&
4710 spa->spa_failmode != ZIO_FAILURE_MODE_CONTINUE &&
4711 spa->spa_load_state != SPA_LOAD_TRYIMPORT) {
4712 spa_load_note(spa, "forcing failmode to 'continue' "
4713 "as some top level vdevs are missing");
4714 spa->spa_failmode = ZIO_FAILURE_MODE_CONTINUE;
4715 }
4716
4717 return (0);
4718 }
4719
4720 static int
4721 spa_ld_open_aux_vdevs(spa_t *spa, spa_import_type_t type)
4722 {
4723 int error = 0;
4724 vdev_t *rvd = spa->spa_root_vdev;
4725
4726 /*
4727 * If we're assembling the pool from the split-off vdevs of
4728 * an existing pool, we don't want to attach the spares & cache
4729 * devices.
4730 */
4731
4732 /*
4733 * Load any hot spares for this pool.
4734 */
4735 error = spa_dir_prop(spa, DMU_POOL_SPARES, &spa->spa_spares.sav_object,
4736 B_FALSE);
4737 if (error != 0 && error != ENOENT)
4738 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4739 if (error == 0 && type != SPA_IMPORT_ASSEMBLE) {
4740 ASSERT(spa_version(spa) >= SPA_VERSION_SPARES);
4741 if (load_nvlist(spa, spa->spa_spares.sav_object,
4742 &spa->spa_spares.sav_config) != 0) {
4743 spa_load_failed(spa, "error loading spares nvlist");
4744 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4745 }
4746
4747 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4748 spa_load_spares(spa);
4749 spa_config_exit(spa, SCL_ALL, FTAG);
4750 } else if (error == 0) {
4751 spa->spa_spares.sav_sync = B_TRUE;
4752 }
4753
4754 /*
4755 * Load any level 2 ARC devices for this pool.
4756 */
4757 error = spa_dir_prop(spa, DMU_POOL_L2CACHE,
4758 &spa->spa_l2cache.sav_object, B_FALSE);
4759 if (error != 0 && error != ENOENT)
4760 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4761 if (error == 0 && type != SPA_IMPORT_ASSEMBLE) {
4762 ASSERT(spa_version(spa) >= SPA_VERSION_L2CACHE);
4763 if (load_nvlist(spa, spa->spa_l2cache.sav_object,
4764 &spa->spa_l2cache.sav_config) != 0) {
4765 spa_load_failed(spa, "error loading l2cache nvlist");
4766 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4767 }
4768
4769 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4770 spa_load_l2cache(spa);
4771 spa_config_exit(spa, SCL_ALL, FTAG);
4772 } else if (error == 0) {
4773 spa->spa_l2cache.sav_sync = B_TRUE;
4774 }
4775
4776 return (0);
4777 }
4778
4779 static int
4780 spa_ld_load_vdev_metadata(spa_t *spa)
4781 {
4782 int error = 0;
4783 vdev_t *rvd = spa->spa_root_vdev;
4784
4785 /*
4786 * If the 'multihost' property is set, then never allow a pool to
4787 * be imported when the system hostid is zero. The exception to
4788 * this rule is zdb which is always allowed to access pools.
4789 */
4790 if (spa_multihost(spa) && spa_get_hostid(spa) == 0 &&
4791 (spa->spa_import_flags & ZFS_IMPORT_SKIP_MMP) == 0) {
4792 fnvlist_add_uint64(spa->spa_load_info,
4793 ZPOOL_CONFIG_MMP_STATE, MMP_STATE_NO_HOSTID);
4794 return (spa_vdev_err(rvd, VDEV_AUX_ACTIVE, EREMOTEIO));
4795 }
4796
4797 /*
4798 * If the 'autoreplace' property is set, then post a resource notifying
4799 * the ZFS DE that it should not issue any faults for unopenable
4800 * devices. We also iterate over the vdevs, and post a sysevent for any
4801 * unopenable vdevs so that the normal autoreplace handler can take
4802 * over.
4803 */
4804 if (spa->spa_autoreplace && spa->spa_load_state != SPA_LOAD_TRYIMPORT) {
4805 spa_check_removed(spa->spa_root_vdev);
4806 /*
4807 * For the import case, this is done in spa_import(), because
4808 * at this point we're using the spare definitions from
4809 * the MOS config, not necessarily from the userland config.
4810 */
4811 if (spa->spa_load_state != SPA_LOAD_IMPORT) {
4812 spa_aux_check_removed(&spa->spa_spares);
4813 spa_aux_check_removed(&spa->spa_l2cache);
4814 }
4815 }
4816
4817 /*
4818 * Load the vdev metadata such as metaslabs, DTLs, spacemap object, etc.
4819 */
4820 error = vdev_load(rvd);
4821 if (error != 0) {
4822 spa_load_failed(spa, "vdev_load failed [error=%d]", error);
4823 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, error));
4824 }
4825
4826 error = spa_ld_log_spacemaps(spa);
4827 if (error != 0) {
4828 spa_load_failed(spa, "spa_ld_log_spacemaps failed [error=%d]",
4829 error);
4830 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, error));
4831 }
4832
4833 /*
4834 * Propagate the leaf DTLs we just loaded all the way up the vdev tree.
4835 */
4836 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4837 vdev_dtl_reassess(rvd, 0, 0, B_FALSE, B_FALSE);
4838 spa_config_exit(spa, SCL_ALL, FTAG);
4839
4840 return (0);
4841 }
4842
4843 static int
4844 spa_ld_load_dedup_tables(spa_t *spa)
4845 {
4846 int error = 0;
4847 vdev_t *rvd = spa->spa_root_vdev;
4848
4849 error = ddt_load(spa);
4850 if (error != 0) {
4851 spa_load_failed(spa, "ddt_load failed [error=%d]", error);
4852 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4853 }
4854
4855 return (0);
4856 }
4857
4858 static int
4859 spa_ld_load_brt(spa_t *spa)
4860 {
4861 int error = 0;
4862 vdev_t *rvd = spa->spa_root_vdev;
4863
4864 error = brt_load(spa);
4865 if (error != 0) {
4866 spa_load_failed(spa, "brt_load failed [error=%d]", error);
4867 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4868 }
4869
4870 return (0);
4871 }
4872
4873 static int
4874 spa_ld_verify_logs(spa_t *spa, spa_import_type_t type, const char **ereport)
4875 {
4876 vdev_t *rvd = spa->spa_root_vdev;
4877
4878 if (type != SPA_IMPORT_ASSEMBLE && spa_writeable(spa)) {
4879 boolean_t missing = spa_check_logs(spa);
4880 if (missing) {
4881 if (spa->spa_missing_tvds != 0) {
4882 spa_load_note(spa, "spa_check_logs failed "
4883 "so dropping the logs");
4884 } else {
4885 *ereport = FM_EREPORT_ZFS_LOG_REPLAY;
4886 spa_load_failed(spa, "spa_check_logs failed");
4887 return (spa_vdev_err(rvd, VDEV_AUX_BAD_LOG,
4888 ENXIO));
4889 }
4890 }
4891 }
4892
4893 return (0);
4894 }
4895
4896 static int
4897 spa_ld_verify_pool_data(spa_t *spa)
4898 {
4899 int error = 0;
4900 vdev_t *rvd = spa->spa_root_vdev;
4901
4902 /*
4903 * We've successfully opened the pool, verify that we're ready
4904 * to start pushing transactions.
4905 */
4906 if (spa->spa_load_state != SPA_LOAD_TRYIMPORT) {
4907 error = spa_load_verify(spa);
4908 if (error != 0) {
4909 spa_load_failed(spa, "spa_load_verify failed "
4910 "[error=%d]", error);
4911 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
4912 error));
4913 }
4914 }
4915
4916 return (0);
4917 }
4918
4919 static void
4920 spa_ld_claim_log_blocks(spa_t *spa)
4921 {
4922 dmu_tx_t *tx;
4923 dsl_pool_t *dp = spa_get_dsl(spa);
4924
4925 /*
4926 * Claim log blocks that haven't been committed yet.
4927 * This must all happen in a single txg.
4928 * Note: spa_claim_max_txg is updated by spa_claim_notify(),
4929 * invoked from zil_claim_log_block()'s i/o done callback.
4930 * Price of rollback is that we abandon the log.
4931 */
4932 spa->spa_claiming = B_TRUE;
4933
4934 tx = dmu_tx_create_assigned(dp, spa_first_txg(spa));
4935 (void) dmu_objset_find_dp(dp, dp->dp_root_dir_obj,
4936 zil_claim, tx, DS_FIND_CHILDREN);
4937 dmu_tx_commit(tx);
4938
4939 spa->spa_claiming = B_FALSE;
4940
4941 spa_set_log_state(spa, SPA_LOG_GOOD);
4942 }
4943
4944 static void
4945 spa_ld_check_for_config_update(spa_t *spa, uint64_t config_cache_txg,
4946 boolean_t update_config_cache)
4947 {
4948 vdev_t *rvd = spa->spa_root_vdev;
4949 int need_update = B_FALSE;
4950
4951 /*
4952 * If the config cache is stale, or we have uninitialized
4953 * metaslabs (see spa_vdev_add()), then update the config.
4954 *
4955 * If this is a verbatim import, trust the current
4956 * in-core spa_config and update the disk labels.
4957 */
4958 if (update_config_cache || config_cache_txg != spa->spa_config_txg ||
4959 spa->spa_load_state == SPA_LOAD_IMPORT ||
4960 spa->spa_load_state == SPA_LOAD_RECOVER ||
4961 (spa->spa_import_flags & ZFS_IMPORT_VERBATIM))
4962 need_update = B_TRUE;
4963
4964 for (int c = 0; c < rvd->vdev_children; c++)
4965 if (rvd->vdev_child[c]->vdev_ms_array == 0)
4966 need_update = B_TRUE;
4967
4968 /*
4969 * Update the config cache asynchronously in case we're the
4970 * root pool, in which case the config cache isn't writable yet.
4971 */
4972 if (need_update)
4973 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
4974 }
4975
4976 static void
4977 spa_ld_prepare_for_reload(spa_t *spa)
4978 {
4979 spa_mode_t mode = spa->spa_mode;
4980 int async_suspended = spa->spa_async_suspended;
4981
4982 spa_unload(spa);
4983 spa_deactivate(spa);
4984 spa_activate(spa, mode);
4985
4986 /*
4987 * We save the value of spa_async_suspended as it gets reset to 0 by
4988 * spa_unload(). We want to restore it back to the original value before
4989 * returning as we might be calling spa_async_resume() later.
4990 */
4991 spa->spa_async_suspended = async_suspended;
4992 }
4993
4994 static int
4995 spa_ld_read_checkpoint_txg(spa_t *spa)
4996 {
4997 uberblock_t checkpoint;
4998 int error = 0;
4999
5000 ASSERT0(spa->spa_checkpoint_txg);
5001 ASSERT(MUTEX_HELD(&spa_namespace_lock));
5002
5003 error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
5004 DMU_POOL_ZPOOL_CHECKPOINT, sizeof (uint64_t),
5005 sizeof (uberblock_t) / sizeof (uint64_t), &checkpoint);
5006
5007 if (error == ENOENT)
5008 return (0);
5009
5010 if (error != 0)
5011 return (error);
5012
5013 ASSERT3U(checkpoint.ub_txg, !=, 0);
5014 ASSERT3U(checkpoint.ub_checkpoint_txg, !=, 0);
5015 ASSERT3U(checkpoint.ub_timestamp, !=, 0);
5016 spa->spa_checkpoint_txg = checkpoint.ub_txg;
5017 spa->spa_checkpoint_info.sci_timestamp = checkpoint.ub_timestamp;
5018
5019 return (0);
5020 }
5021
5022 static int
5023 spa_ld_mos_init(spa_t *spa, spa_import_type_t type)
5024 {
5025 int error = 0;
5026
5027 ASSERT(MUTEX_HELD(&spa_namespace_lock));
5028 ASSERT(spa->spa_config_source != SPA_CONFIG_SRC_NONE);
5029
5030 /*
5031 * Never trust the config that is provided unless we are assembling
5032 * a pool following a split.
5033 * This means don't trust blkptrs and the vdev tree in general. This
5034 * also effectively puts the spa in read-only mode since
5035 * spa_writeable() checks for spa_trust_config to be true.
5036 * We will later load a trusted config from the MOS.
5037 */
5038 if (type != SPA_IMPORT_ASSEMBLE)
5039 spa->spa_trust_config = B_FALSE;
5040
5041 /*
5042 * Parse the config provided to create a vdev tree.
5043 */
5044 error = spa_ld_parse_config(spa, type);
5045 if (error != 0)
5046 return (error);
5047
5048 spa_import_progress_add(spa);
5049
5050 /*
5051 * Now that we have the vdev tree, try to open each vdev. This involves
5052 * opening the underlying physical device, retrieving its geometry and
5053 * probing the vdev with a dummy I/O. The state of each vdev will be set
5054 * based on the success of those operations. After this we'll be ready
5055 * to read from the vdevs.
5056 */
5057 error = spa_ld_open_vdevs(spa);
5058 if (error != 0)
5059 return (error);
5060
5061 /*
5062 * Read the label of each vdev and make sure that the GUIDs stored
5063 * there match the GUIDs in the config provided.
5064 * If we're assembling a new pool that's been split off from an
5065 * existing pool, the labels haven't yet been updated so we skip
5066 * validation for now.
5067 */
5068 if (type != SPA_IMPORT_ASSEMBLE) {
5069 error = spa_ld_validate_vdevs(spa);
5070 if (error != 0)
5071 return (error);
5072 }
5073
5074 /*
5075 * Read all vdev labels to find the best uberblock (i.e. latest,
5076 * unless spa_load_max_txg is set) and store it in spa_uberblock. We
5077 * get the list of features required to read blkptrs in the MOS from
5078 * the vdev label with the best uberblock and verify that our version
5079 * of zfs supports them all.
5080 */
5081 error = spa_ld_select_uberblock(spa, type);
5082 if (error != 0)
5083 return (error);
5084
5085 /*
5086 * Pass that uberblock to the dsl_pool layer which will open the root
5087 * blkptr. This blkptr points to the latest version of the MOS and will
5088 * allow us to read its contents.
5089 */
5090 error = spa_ld_open_rootbp(spa);
5091 if (error != 0)
5092 return (error);
5093
5094 return (0);
5095 }
5096
5097 static int
5098 spa_ld_checkpoint_rewind(spa_t *spa)
5099 {
5100 uberblock_t checkpoint;
5101 int error = 0;
5102
5103 ASSERT(MUTEX_HELD(&spa_namespace_lock));
5104 ASSERT(spa->spa_import_flags & ZFS_IMPORT_CHECKPOINT);
5105
5106 error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
5107 DMU_POOL_ZPOOL_CHECKPOINT, sizeof (uint64_t),
5108 sizeof (uberblock_t) / sizeof (uint64_t), &checkpoint);
5109
5110 if (error != 0) {
5111 spa_load_failed(spa, "unable to retrieve checkpointed "
5112 "uberblock from the MOS config [error=%d]", error);
5113
5114 if (error == ENOENT)
5115 error = ZFS_ERR_NO_CHECKPOINT;
5116
5117 return (error);
5118 }
5119
5120 ASSERT3U(checkpoint.ub_txg, <, spa->spa_uberblock.ub_txg);
5121 ASSERT3U(checkpoint.ub_txg, ==, checkpoint.ub_checkpoint_txg);
5122
5123 /*
5124 * We need to update the txg and timestamp of the checkpointed
5125 * uberblock to be higher than the latest one. This ensures that
5126 * the checkpointed uberblock is selected if we were to close and
5127 * reopen the pool right after we've written it in the vdev labels.
5128 * (also see block comment in vdev_uberblock_compare)
5129 */
5130 checkpoint.ub_txg = spa->spa_uberblock.ub_txg + 1;
5131 checkpoint.ub_timestamp = gethrestime_sec();
5132
5133 /*
5134 * Set current uberblock to be the checkpointed uberblock.
5135 */
5136 spa->spa_uberblock = checkpoint;
5137
5138 /*
5139 * If we are doing a normal rewind, then the pool is open for
5140 * writing and we sync the "updated" checkpointed uberblock to
5141 * disk. Once this is done, we've basically rewound the whole
5142 * pool and there is no way back.
5143 *
5144 * There are cases when we don't want to attempt and sync the
5145 * checkpointed uberblock to disk because we are opening a
5146 * pool as read-only. Specifically, verifying the checkpointed
5147 * state with zdb, and importing the checkpointed state to get
5148 * a "preview" of its content.
5149 */
5150 if (spa_writeable(spa)) {
5151 vdev_t *rvd = spa->spa_root_vdev;
5152
5153 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5154 vdev_t *svd[SPA_SYNC_MIN_VDEVS] = { NULL };
5155 int svdcount = 0;
5156 int children = rvd->vdev_children;
5157 int c0 = random_in_range(children);
5158
5159 for (int c = 0; c < children; c++) {
5160 vdev_t *vd = rvd->vdev_child[(c0 + c) % children];
5161
5162 /* Stop when revisiting the first vdev */
5163 if (c > 0 && svd[0] == vd)
5164 break;
5165
5166 if (vd->vdev_ms_array == 0 || vd->vdev_islog ||
5167 !vdev_is_concrete(vd))
5168 continue;
5169
5170 svd[svdcount++] = vd;
5171 if (svdcount == SPA_SYNC_MIN_VDEVS)
5172 break;
5173 }
5174 error = vdev_config_sync(svd, svdcount, spa->spa_first_txg);
5175 if (error == 0)
5176 spa->spa_last_synced_guid = rvd->vdev_guid;
5177 spa_config_exit(spa, SCL_ALL, FTAG);
5178
5179 if (error != 0) {
5180 spa_load_failed(spa, "failed to write checkpointed "
5181 "uberblock to the vdev labels [error=%d]", error);
5182 return (error);
5183 }
5184 }
5185
5186 return (0);
5187 }
5188
5189 static int
5190 spa_ld_mos_with_trusted_config(spa_t *spa, spa_import_type_t type,
5191 boolean_t *update_config_cache)
5192 {
5193 int error;
5194
5195 /*
5196 * Parse the config for pool, open and validate vdevs,
5197 * select an uberblock, and use that uberblock to open
5198 * the MOS.
5199 */
5200 error = spa_ld_mos_init(spa, type);
5201 if (error != 0)
5202 return (error);
5203
5204 /*
5205 * Retrieve the trusted config stored in the MOS and use it to create
5206 * a new, exact version of the vdev tree, then reopen all vdevs.
5207 */
5208 error = spa_ld_trusted_config(spa, type, B_FALSE);
5209 if (error == EAGAIN) {
5210 if (update_config_cache != NULL)
5211 *update_config_cache = B_TRUE;
5212
5213 /*
5214 * Redo the loading process with the trusted config if it is
5215 * too different from the untrusted config.
5216 */
5217 spa_ld_prepare_for_reload(spa);
5218 spa_load_note(spa, "RELOADING");
5219 error = spa_ld_mos_init(spa, type);
5220 if (error != 0)
5221 return (error);
5222
5223 error = spa_ld_trusted_config(spa, type, B_TRUE);
5224 if (error != 0)
5225 return (error);
5226
5227 } else if (error != 0) {
5228 return (error);
5229 }
5230
5231 return (0);
5232 }
5233
5234 /*
5235 * Load an existing storage pool, using the config provided. This config
5236 * describes which vdevs are part of the pool and is later validated against
5237 * partial configs present in each vdev's label and an entire copy of the
5238 * config stored in the MOS.
5239 */
5240 static int
5241 spa_load_impl(spa_t *spa, spa_import_type_t type, const char **ereport)
5242 {
5243 int error = 0;
5244 boolean_t missing_feat_write = B_FALSE;
5245 boolean_t checkpoint_rewind =
5246 (spa->spa_import_flags & ZFS_IMPORT_CHECKPOINT);
5247 boolean_t update_config_cache = B_FALSE;
5248
5249 ASSERT(MUTEX_HELD(&spa_namespace_lock));
5250 ASSERT(spa->spa_config_source != SPA_CONFIG_SRC_NONE);
5251
5252 spa_load_note(spa, "LOADING");
5253
5254 error = spa_ld_mos_with_trusted_config(spa, type, &update_config_cache);
5255 if (error != 0)
5256 return (error);
5257
5258 /*
5259 * If we are rewinding to the checkpoint then we need to repeat
5260 * everything we've done so far in this function but this time
5261 * selecting the checkpointed uberblock and using that to open
5262 * the MOS.
5263 */
5264 if (checkpoint_rewind) {
5265 /*
5266 * If we are rewinding to the checkpoint update config cache
5267 * anyway.
5268 */
5269 update_config_cache = B_TRUE;
5270
5271 /*
5272 * Extract the checkpointed uberblock from the current MOS
5273 * and use this as the pool's uberblock from now on. If the
5274 * pool is imported as writeable we also write the checkpoint
5275 * uberblock to the labels, making the rewind permanent.
5276 */
5277 error = spa_ld_checkpoint_rewind(spa);
5278 if (error != 0)
5279 return (error);
5280
5281 /*
5282 * Redo the loading process again with the
5283 * checkpointed uberblock.
5284 */
5285 spa_ld_prepare_for_reload(spa);
5286 spa_load_note(spa, "LOADING checkpointed uberblock");
5287 error = spa_ld_mos_with_trusted_config(spa, type, NULL);
5288 if (error != 0)
5289 return (error);
5290 }
5291
5292 /*
5293 * Retrieve the checkpoint txg if the pool has a checkpoint.
5294 */
5295 spa_import_progress_set_notes(spa, "Loading checkpoint txg");
5296 error = spa_ld_read_checkpoint_txg(spa);
5297 if (error != 0)
5298 return (error);
5299
5300 /*
5301 * Retrieve the mapping of indirect vdevs. Those vdevs were removed
5302 * from the pool and their contents were re-mapped to other vdevs. Note
5303 * that everything that we read before this step must have been
5304 * rewritten on concrete vdevs after the last device removal was
5305 * initiated. Otherwise we could be reading from indirect vdevs before
5306 * we have loaded their mappings.
5307 */
5308 spa_import_progress_set_notes(spa, "Loading indirect vdev metadata");
5309 error = spa_ld_open_indirect_vdev_metadata(spa);
5310 if (error != 0)
5311 return (error);
5312
5313 /*
5314 * Retrieve the full list of active features from the MOS and check if
5315 * they are all supported.
5316 */
5317 spa_import_progress_set_notes(spa, "Checking feature flags");
5318 error = spa_ld_check_features(spa, &missing_feat_write);
5319 if (error != 0)
5320 return (error);
5321
5322 /*
5323 * Load several special directories from the MOS needed by the dsl_pool
5324 * layer.
5325 */
5326 spa_import_progress_set_notes(spa, "Loading special MOS directories");
5327 error = spa_ld_load_special_directories(spa);
5328 if (error != 0)
5329 return (error);
5330
5331 /*
5332 * Retrieve pool properties from the MOS.
5333 */
5334 spa_import_progress_set_notes(spa, "Loading properties");
5335 error = spa_ld_get_props(spa);
5336 if (error != 0)
5337 return (error);
5338
5339 /*
5340 * Retrieve the list of auxiliary devices - cache devices and spares -
5341 * and open them.
5342 */
5343 spa_import_progress_set_notes(spa, "Loading AUX vdevs");
5344 error = spa_ld_open_aux_vdevs(spa, type);
5345 if (error != 0)
5346 return (error);
5347
5348 /*
5349 * Load the metadata for all vdevs. Also check if unopenable devices
5350 * should be autoreplaced.
5351 */
5352 spa_import_progress_set_notes(spa, "Loading vdev metadata");
5353 error = spa_ld_load_vdev_metadata(spa);
5354 if (error != 0)
5355 return (error);
5356
5357 spa_import_progress_set_notes(spa, "Loading dedup tables");
5358 error = spa_ld_load_dedup_tables(spa);
5359 if (error != 0)
5360 return (error);
5361
5362 spa_import_progress_set_notes(spa, "Loading BRT");
5363 error = spa_ld_load_brt(spa);
5364 if (error != 0)
5365 return (error);
5366
5367 /*
5368 * Verify the logs now to make sure we don't have any unexpected errors
5369 * when we claim log blocks later.
5370 */
5371 spa_import_progress_set_notes(spa, "Verifying Log Devices");
5372 error = spa_ld_verify_logs(spa, type, ereport);
5373 if (error != 0)
5374 return (error);
5375
5376 if (missing_feat_write) {
5377 ASSERT(spa->spa_load_state == SPA_LOAD_TRYIMPORT);
5378
5379 /*
5380 * At this point, we know that we can open the pool in
5381 * read-only mode but not read-write mode. We now have enough
5382 * information and can return to userland.
5383 */
5384 return (spa_vdev_err(spa->spa_root_vdev, VDEV_AUX_UNSUP_FEAT,
5385 ENOTSUP));
5386 }
5387
5388 /*
5389 * Traverse the last txgs to make sure the pool was left off in a safe
5390 * state. When performing an extreme rewind, we verify the whole pool,
5391 * which can take a very long time.
5392 */
5393 spa_import_progress_set_notes(spa, "Verifying pool data");
5394 error = spa_ld_verify_pool_data(spa);
5395 if (error != 0)
5396 return (error);
5397
5398 /*
5399 * Calculate the deflated space for the pool. This must be done before
5400 * we write anything to the pool because we'd need to update the space
5401 * accounting using the deflated sizes.
5402 */
5403 spa_import_progress_set_notes(spa, "Calculating deflated space");
5404 spa_update_dspace(spa);
5405
5406 /*
5407 * We have now retrieved all the information we needed to open the
5408 * pool. If we are importing the pool in read-write mode, a few
5409 * additional steps must be performed to finish the import.
5410 */
5411 spa_import_progress_set_notes(spa, "Starting import");
5412 if (spa_writeable(spa) && (spa->spa_load_state == SPA_LOAD_RECOVER ||
5413 spa->spa_load_max_txg == UINT64_MAX)) {
5414 uint64_t config_cache_txg = spa->spa_config_txg;
5415
5416 ASSERT(spa->spa_load_state != SPA_LOAD_TRYIMPORT);
5417
5418 /*
5419 * Before we do any zio_write's, complete the raidz expansion
5420 * scratch space copying, if necessary.
5421 */
5422 if (RRSS_GET_STATE(&spa->spa_uberblock) == RRSS_SCRATCH_VALID)
5423 vdev_raidz_reflow_copy_scratch(spa);
5424
5425 /*
5426 * In case of a checkpoint rewind, log the original txg
5427 * of the checkpointed uberblock.
5428 */
5429 if (checkpoint_rewind) {
5430 spa_history_log_internal(spa, "checkpoint rewind",
5431 NULL, "rewound state to txg=%llu",
5432 (u_longlong_t)spa->spa_uberblock.ub_checkpoint_txg);
5433 }
5434
5435 spa_import_progress_set_notes(spa, "Claiming ZIL blocks");
5436 /*
5437 * Traverse the ZIL and claim all blocks.
5438 */
5439 spa_ld_claim_log_blocks(spa);
5440
5441 /*
5442 * Kick-off the syncing thread.
5443 */
5444 spa->spa_sync_on = B_TRUE;
5445 txg_sync_start(spa->spa_dsl_pool);
5446 mmp_thread_start(spa);
5447
5448 /*
5449 * Wait for all claims to sync. We sync up to the highest
5450 * claimed log block birth time so that claimed log blocks
5451 * don't appear to be from the future. spa_claim_max_txg
5452 * will have been set for us by ZIL traversal operations
5453 * performed above.
5454 */
5455 spa_import_progress_set_notes(spa, "Syncing ZIL claims");
5456 txg_wait_synced(spa->spa_dsl_pool, spa->spa_claim_max_txg);
5457
5458 /*
5459 * Check if we need to request an update of the config. On the
5460 * next sync, we would update the config stored in vdev labels
5461 * and the cachefile (by default /etc/zfs/zpool.cache).
5462 */
5463 spa_import_progress_set_notes(spa, "Updating configs");
5464 spa_ld_check_for_config_update(spa, config_cache_txg,
5465 update_config_cache);
5466
5467 /*
5468 * Check if a rebuild was in progress and if so resume it.
5469 * Then check all DTLs to see if anything needs resilvering.
5470 * The resilver will be deferred if a rebuild was started.
5471 */
5472 spa_import_progress_set_notes(spa, "Starting resilvers");
5473 if (vdev_rebuild_active(spa->spa_root_vdev)) {
5474 vdev_rebuild_restart(spa);
5475 } else if (!dsl_scan_resilvering(spa->spa_dsl_pool) &&
5476 vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL)) {
5477 spa_async_request(spa, SPA_ASYNC_RESILVER);
5478 }
5479
5480 /*
5481 * Log the fact that we booted up (so that we can detect if
5482 * we rebooted in the middle of an operation).
5483 */
5484 spa_history_log_version(spa, "open", NULL);
5485
5486 spa_import_progress_set_notes(spa,
5487 "Restarting device removals");
5488 spa_restart_removal(spa);
5489 spa_spawn_aux_threads(spa);
5490
5491 /*
5492 * Delete any inconsistent datasets.
5493 *
5494 * Note:
5495 * Since we may be issuing deletes for clones here,
5496 * we make sure to do so after we've spawned all the
5497 * auxiliary threads above (from which the livelist
5498 * deletion zthr is part of).
5499 */
5500 spa_import_progress_set_notes(spa,
5501 "Cleaning up inconsistent objsets");
5502 (void) dmu_objset_find(spa_name(spa),
5503 dsl_destroy_inconsistent, NULL, DS_FIND_CHILDREN);
5504
5505 /*
5506 * Clean up any stale temporary dataset userrefs.
5507 */
5508 spa_import_progress_set_notes(spa,
5509 "Cleaning up temporary userrefs");
5510 dsl_pool_clean_tmp_userrefs(spa->spa_dsl_pool);
5511
5512 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
5513 spa_import_progress_set_notes(spa, "Restarting initialize");
5514 vdev_initialize_restart(spa->spa_root_vdev);
5515 spa_import_progress_set_notes(spa, "Restarting TRIM");
5516 vdev_trim_restart(spa->spa_root_vdev);
5517 vdev_autotrim_restart(spa);
5518 spa_config_exit(spa, SCL_CONFIG, FTAG);
5519 spa_import_progress_set_notes(spa, "Finished importing");
5520 }
5521
5522 spa_import_progress_remove(spa_guid(spa));
5523 spa_async_request(spa, SPA_ASYNC_L2CACHE_REBUILD);
5524
5525 spa_load_note(spa, "LOADED");
5526
5527 return (0);
5528 }
5529
5530 static int
5531 spa_load_retry(spa_t *spa, spa_load_state_t state)
5532 {
5533 spa_mode_t mode = spa->spa_mode;
5534
5535 spa_unload(spa);
5536 spa_deactivate(spa);
5537
5538 spa->spa_load_max_txg = spa->spa_uberblock.ub_txg - 1;
5539
5540 spa_activate(spa, mode);
5541 spa_async_suspend(spa);
5542
5543 spa_load_note(spa, "spa_load_retry: rewind, max txg: %llu",
5544 (u_longlong_t)spa->spa_load_max_txg);
5545
5546 return (spa_load(spa, state, SPA_IMPORT_EXISTING));
5547 }
5548
5549 /*
5550 * If spa_load() fails this function will try loading prior txg's. If
5551 * 'state' is SPA_LOAD_RECOVER and one of these loads succeeds the pool
5552 * will be rewound to that txg. If 'state' is not SPA_LOAD_RECOVER this
5553 * function will not rewind the pool and will return the same error as
5554 * spa_load().
5555 */
5556 static int
5557 spa_load_best(spa_t *spa, spa_load_state_t state, uint64_t max_request,
5558 int rewind_flags)
5559 {
5560 nvlist_t *loadinfo = NULL;
5561 nvlist_t *config = NULL;
5562 int load_error, rewind_error;
5563 uint64_t safe_rewind_txg;
5564 uint64_t min_txg;
5565
5566 if (spa->spa_load_txg && state == SPA_LOAD_RECOVER) {
5567 spa->spa_load_max_txg = spa->spa_load_txg;
5568 spa_set_log_state(spa, SPA_LOG_CLEAR);
5569 } else {
5570 spa->spa_load_max_txg = max_request;
5571 if (max_request != UINT64_MAX)
5572 spa->spa_extreme_rewind = B_TRUE;
5573 }
5574
5575 load_error = rewind_error = spa_load(spa, state, SPA_IMPORT_EXISTING);
5576 if (load_error == 0)
5577 return (0);
5578 if (load_error == ZFS_ERR_NO_CHECKPOINT) {
5579 /*
5580 * When attempting checkpoint-rewind on a pool with no
5581 * checkpoint, we should not attempt to load uberblocks
5582 * from previous txgs when spa_load fails.
5583 */
5584 ASSERT(spa->spa_import_flags & ZFS_IMPORT_CHECKPOINT);
5585 spa_import_progress_remove(spa_guid(spa));
5586 return (load_error);
5587 }
5588
5589 if (spa->spa_root_vdev != NULL)
5590 config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
5591
5592 spa->spa_last_ubsync_txg = spa->spa_uberblock.ub_txg;
5593 spa->spa_last_ubsync_txg_ts = spa->spa_uberblock.ub_timestamp;
5594
5595 if (rewind_flags & ZPOOL_NEVER_REWIND) {
5596 nvlist_free(config);
5597 spa_import_progress_remove(spa_guid(spa));
5598 return (load_error);
5599 }
5600
5601 if (state == SPA_LOAD_RECOVER) {
5602 /* Price of rolling back is discarding txgs, including log */
5603 spa_set_log_state(spa, SPA_LOG_CLEAR);
5604 } else {
5605 /*
5606 * If we aren't rolling back save the load info from our first
5607 * import attempt so that we can restore it after attempting
5608 * to rewind.
5609 */
5610 loadinfo = spa->spa_load_info;
5611 spa->spa_load_info = fnvlist_alloc();
5612 }
5613
5614 spa->spa_load_max_txg = spa->spa_last_ubsync_txg;
5615 safe_rewind_txg = spa->spa_last_ubsync_txg - TXG_DEFER_SIZE;
5616 min_txg = (rewind_flags & ZPOOL_EXTREME_REWIND) ?
5617 TXG_INITIAL : safe_rewind_txg;
5618
5619 /*
5620 * Continue as long as we're finding errors, we're still within
5621 * the acceptable rewind range, and we're still finding uberblocks
5622 */
5623 while (rewind_error && spa->spa_uberblock.ub_txg >= min_txg &&
5624 spa->spa_uberblock.ub_txg <= spa->spa_load_max_txg) {
5625 if (spa->spa_load_max_txg < safe_rewind_txg)
5626 spa->spa_extreme_rewind = B_TRUE;
5627 rewind_error = spa_load_retry(spa, state);
5628 }
5629
5630 spa->spa_extreme_rewind = B_FALSE;
5631 spa->spa_load_max_txg = UINT64_MAX;
5632
5633 if (config && (rewind_error || state != SPA_LOAD_RECOVER))
5634 spa_config_set(spa, config);
5635 else
5636 nvlist_free(config);
5637
5638 if (state == SPA_LOAD_RECOVER) {
5639 ASSERT3P(loadinfo, ==, NULL);
5640 spa_import_progress_remove(spa_guid(spa));
5641 return (rewind_error);
5642 } else {
5643 /* Store the rewind info as part of the initial load info */
5644 fnvlist_add_nvlist(loadinfo, ZPOOL_CONFIG_REWIND_INFO,
5645 spa->spa_load_info);
5646
5647 /* Restore the initial load info */
5648 fnvlist_free(spa->spa_load_info);
5649 spa->spa_load_info = loadinfo;
5650
5651 spa_import_progress_remove(spa_guid(spa));
5652 return (load_error);
5653 }
5654 }
5655
5656 /*
5657 * Pool Open/Import
5658 *
5659 * The import case is identical to an open except that the configuration is sent
5660 * down from userland, instead of grabbed from the configuration cache. For the
5661 * case of an open, the pool configuration will exist in the
5662 * POOL_STATE_UNINITIALIZED state.
5663 *
5664 * The stats information (gen/count/ustats) is used to gather vdev statistics at
5665 * the same time open the pool, without having to keep around the spa_t in some
5666 * ambiguous state.
5667 */
5668 static int
5669 spa_open_common(const char *pool, spa_t **spapp, const void *tag,
5670 nvlist_t *nvpolicy, nvlist_t **config)
5671 {
5672 spa_t *spa;
5673 spa_load_state_t state = SPA_LOAD_OPEN;
5674 int error;
5675 int locked = B_FALSE;
5676 int firstopen = B_FALSE;
5677
5678 *spapp = NULL;
5679
5680 /*
5681 * As disgusting as this is, we need to support recursive calls to this
5682 * function because dsl_dir_open() is called during spa_load(), and ends
5683 * up calling spa_open() again. The real fix is to figure out how to
5684 * avoid dsl_dir_open() calling this in the first place.
5685 */
5686 if (MUTEX_NOT_HELD(&spa_namespace_lock)) {
5687 mutex_enter(&spa_namespace_lock);
5688 locked = B_TRUE;
5689 }
5690
5691 if ((spa = spa_lookup(pool)) == NULL) {
5692 if (locked)
5693 mutex_exit(&spa_namespace_lock);
5694 return (SET_ERROR(ENOENT));
5695 }
5696
5697 if (spa->spa_state == POOL_STATE_UNINITIALIZED) {
5698 zpool_load_policy_t policy;
5699
5700 firstopen = B_TRUE;
5701
5702 zpool_get_load_policy(nvpolicy ? nvpolicy : spa->spa_config,
5703 &policy);
5704 if (policy.zlp_rewind & ZPOOL_DO_REWIND)
5705 state = SPA_LOAD_RECOVER;
5706
5707 spa_activate(spa, spa_mode_global);
5708
5709 if (state != SPA_LOAD_RECOVER)
5710 spa->spa_last_ubsync_txg = spa->spa_load_txg = 0;
5711 spa->spa_config_source = SPA_CONFIG_SRC_CACHEFILE;
5712
5713 zfs_dbgmsg("spa_open_common: opening %s", pool);
5714 error = spa_load_best(spa, state, policy.zlp_txg,
5715 policy.zlp_rewind);
5716
5717 if (error == EBADF) {
5718 /*
5719 * If vdev_validate() returns failure (indicated by
5720 * EBADF), it indicates that one of the vdevs indicates
5721 * that the pool has been exported or destroyed. If
5722 * this is the case, the config cache is out of sync and
5723 * we should remove the pool from the namespace.
5724 */
5725 spa_unload(spa);
5726 spa_deactivate(spa);
5727 spa_write_cachefile(spa, B_TRUE, B_TRUE, B_FALSE);
5728 spa_remove(spa);
5729 if (locked)
5730 mutex_exit(&spa_namespace_lock);
5731 return (SET_ERROR(ENOENT));
5732 }
5733
5734 if (error) {
5735 /*
5736 * We can't open the pool, but we still have useful
5737 * information: the state of each vdev after the
5738 * attempted vdev_open(). Return this to the user.
5739 */
5740 if (config != NULL && spa->spa_config) {
5741 *config = fnvlist_dup(spa->spa_config);
5742 fnvlist_add_nvlist(*config,
5743 ZPOOL_CONFIG_LOAD_INFO,
5744 spa->spa_load_info);
5745 }
5746 spa_unload(spa);
5747 spa_deactivate(spa);
5748 spa->spa_last_open_failed = error;
5749 if (locked)
5750 mutex_exit(&spa_namespace_lock);
5751 *spapp = NULL;
5752 return (error);
5753 }
5754 }
5755
5756 spa_open_ref(spa, tag);
5757
5758 if (config != NULL)
5759 *config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
5760
5761 /*
5762 * If we've recovered the pool, pass back any information we
5763 * gathered while doing the load.
5764 */
5765 if (state == SPA_LOAD_RECOVER && config != NULL) {
5766 fnvlist_add_nvlist(*config, ZPOOL_CONFIG_LOAD_INFO,
5767 spa->spa_load_info);
5768 }
5769
5770 if (locked) {
5771 spa->spa_last_open_failed = 0;
5772 spa->spa_last_ubsync_txg = 0;
5773 spa->spa_load_txg = 0;
5774 mutex_exit(&spa_namespace_lock);
5775 }
5776
5777 if (firstopen)
5778 zvol_create_minors_recursive(spa_name(spa));
5779
5780 *spapp = spa;
5781
5782 return (0);
5783 }
5784
5785 int
5786 spa_open_rewind(const char *name, spa_t **spapp, const void *tag,
5787 nvlist_t *policy, nvlist_t **config)
5788 {
5789 return (spa_open_common(name, spapp, tag, policy, config));
5790 }
5791
5792 int
5793 spa_open(const char *name, spa_t **spapp, const void *tag)
5794 {
5795 return (spa_open_common(name, spapp, tag, NULL, NULL));
5796 }
5797
5798 /*
5799 * Lookup the given spa_t, incrementing the inject count in the process,
5800 * preventing it from being exported or destroyed.
5801 */
5802 spa_t *
5803 spa_inject_addref(char *name)
5804 {
5805 spa_t *spa;
5806
5807 mutex_enter(&spa_namespace_lock);
5808 if ((spa = spa_lookup(name)) == NULL) {
5809 mutex_exit(&spa_namespace_lock);
5810 return (NULL);
5811 }
5812 spa->spa_inject_ref++;
5813 mutex_exit(&spa_namespace_lock);
5814
5815 return (spa);
5816 }
5817
5818 void
5819 spa_inject_delref(spa_t *spa)
5820 {
5821 mutex_enter(&spa_namespace_lock);
5822 spa->spa_inject_ref--;
5823 mutex_exit(&spa_namespace_lock);
5824 }
5825
5826 /*
5827 * Add spares device information to the nvlist.
5828 */
5829 static void
5830 spa_add_spares(spa_t *spa, nvlist_t *config)
5831 {
5832 nvlist_t **spares;
5833 uint_t i, nspares;
5834 nvlist_t *nvroot;
5835 uint64_t guid;
5836 vdev_stat_t *vs;
5837 uint_t vsc;
5838 uint64_t pool;
5839
5840 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
5841
5842 if (spa->spa_spares.sav_count == 0)
5843 return;
5844
5845 nvroot = fnvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE);
5846 VERIFY0(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
5847 ZPOOL_CONFIG_SPARES, &spares, &nspares));
5848 if (nspares != 0) {
5849 fnvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
5850 (const nvlist_t * const *)spares, nspares);
5851 VERIFY0(nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
5852 &spares, &nspares));
5853
5854 /*
5855 * Go through and find any spares which have since been
5856 * repurposed as an active spare. If this is the case, update
5857 * their status appropriately.
5858 */
5859 for (i = 0; i < nspares; i++) {
5860 guid = fnvlist_lookup_uint64(spares[i],
5861 ZPOOL_CONFIG_GUID);
5862 VERIFY0(nvlist_lookup_uint64_array(spares[i],
5863 ZPOOL_CONFIG_VDEV_STATS, (uint64_t **)&vs, &vsc));
5864 if (spa_spare_exists(guid, &pool, NULL) &&
5865 pool != 0ULL) {
5866 vs->vs_state = VDEV_STATE_CANT_OPEN;
5867 vs->vs_aux = VDEV_AUX_SPARED;
5868 } else {
5869 vs->vs_state =
5870 spa->spa_spares.sav_vdevs[i]->vdev_state;
5871 }
5872 }
5873 }
5874 }
5875
5876 /*
5877 * Add l2cache device information to the nvlist, including vdev stats.
5878 */
5879 static void
5880 spa_add_l2cache(spa_t *spa, nvlist_t *config)
5881 {
5882 nvlist_t **l2cache;
5883 uint_t i, j, nl2cache;
5884 nvlist_t *nvroot;
5885 uint64_t guid;
5886 vdev_t *vd;
5887 vdev_stat_t *vs;
5888 uint_t vsc;
5889
5890 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
5891
5892 if (spa->spa_l2cache.sav_count == 0)
5893 return;
5894
5895 nvroot = fnvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE);
5896 VERIFY0(nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config,
5897 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache));
5898 if (nl2cache != 0) {
5899 fnvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
5900 (const nvlist_t * const *)l2cache, nl2cache);
5901 VERIFY0(nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
5902 &l2cache, &nl2cache));
5903
5904 /*
5905 * Update level 2 cache device stats.
5906 */
5907
5908 for (i = 0; i < nl2cache; i++) {
5909 guid = fnvlist_lookup_uint64(l2cache[i],
5910 ZPOOL_CONFIG_GUID);
5911
5912 vd = NULL;
5913 for (j = 0; j < spa->spa_l2cache.sav_count; j++) {
5914 if (guid ==
5915 spa->spa_l2cache.sav_vdevs[j]->vdev_guid) {
5916 vd = spa->spa_l2cache.sav_vdevs[j];
5917 break;
5918 }
5919 }
5920 ASSERT(vd != NULL);
5921
5922 VERIFY0(nvlist_lookup_uint64_array(l2cache[i],
5923 ZPOOL_CONFIG_VDEV_STATS, (uint64_t **)&vs, &vsc));
5924 vdev_get_stats(vd, vs);
5925 vdev_config_generate_stats(vd, l2cache[i]);
5926
5927 }
5928 }
5929 }
5930
5931 static void
5932 spa_feature_stats_from_disk(spa_t *spa, nvlist_t *features)
5933 {
5934 zap_cursor_t zc;
5935 zap_attribute_t za;
5936
5937 if (spa->spa_feat_for_read_obj != 0) {
5938 for (zap_cursor_init(&zc, spa->spa_meta_objset,
5939 spa->spa_feat_for_read_obj);
5940 zap_cursor_retrieve(&zc, &za) == 0;
5941 zap_cursor_advance(&zc)) {
5942 ASSERT(za.za_integer_length == sizeof (uint64_t) &&
5943 za.za_num_integers == 1);
5944 VERIFY0(nvlist_add_uint64(features, za.za_name,
5945 za.za_first_integer));
5946 }
5947 zap_cursor_fini(&zc);
5948 }
5949
5950 if (spa->spa_feat_for_write_obj != 0) {
5951 for (zap_cursor_init(&zc, spa->spa_meta_objset,
5952 spa->spa_feat_for_write_obj);
5953 zap_cursor_retrieve(&zc, &za) == 0;
5954 zap_cursor_advance(&zc)) {
5955 ASSERT(za.za_integer_length == sizeof (uint64_t) &&
5956 za.za_num_integers == 1);
5957 VERIFY0(nvlist_add_uint64(features, za.za_name,
5958 za.za_first_integer));
5959 }
5960 zap_cursor_fini(&zc);
5961 }
5962 }
5963
5964 static void
5965 spa_feature_stats_from_cache(spa_t *spa, nvlist_t *features)
5966 {
5967 int i;
5968
5969 for (i = 0; i < SPA_FEATURES; i++) {
5970 zfeature_info_t feature = spa_feature_table[i];
5971 uint64_t refcount;
5972
5973 if (feature_get_refcount(spa, &feature, &refcount) != 0)
5974 continue;
5975
5976 VERIFY0(nvlist_add_uint64(features, feature.fi_guid, refcount));
5977 }
5978 }
5979
5980 /*
5981 * Store a list of pool features and their reference counts in the
5982 * config.
5983 *
5984 * The first time this is called on a spa, allocate a new nvlist, fetch
5985 * the pool features and reference counts from disk, then save the list
5986 * in the spa. In subsequent calls on the same spa use the saved nvlist
5987 * and refresh its values from the cached reference counts. This
5988 * ensures we don't block here on I/O on a suspended pool so 'zpool
5989 * clear' can resume the pool.
5990 */
5991 static void
5992 spa_add_feature_stats(spa_t *spa, nvlist_t *config)
5993 {
5994 nvlist_t *features;
5995
5996 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
5997
5998 mutex_enter(&spa->spa_feat_stats_lock);
5999 features = spa->spa_feat_stats;
6000
6001 if (features != NULL) {
6002 spa_feature_stats_from_cache(spa, features);
6003 } else {
6004 VERIFY0(nvlist_alloc(&features, NV_UNIQUE_NAME, KM_SLEEP));
6005 spa->spa_feat_stats = features;
6006 spa_feature_stats_from_disk(spa, features);
6007 }
6008
6009 VERIFY0(nvlist_add_nvlist(config, ZPOOL_CONFIG_FEATURE_STATS,
6010 features));
6011
6012 mutex_exit(&spa->spa_feat_stats_lock);
6013 }
6014
6015 int
6016 spa_get_stats(const char *name, nvlist_t **config,
6017 char *altroot, size_t buflen)
6018 {
6019 int error;
6020 spa_t *spa;
6021
6022 *config = NULL;
6023 error = spa_open_common(name, &spa, FTAG, NULL, config);
6024
6025 if (spa != NULL) {
6026 /*
6027 * This still leaves a window of inconsistency where the spares
6028 * or l2cache devices could change and the config would be
6029 * self-inconsistent.
6030 */
6031 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
6032
6033 if (*config != NULL) {
6034 uint64_t loadtimes[2];
6035
6036 loadtimes[0] = spa->spa_loaded_ts.tv_sec;
6037 loadtimes[1] = spa->spa_loaded_ts.tv_nsec;
6038 fnvlist_add_uint64_array(*config,
6039 ZPOOL_CONFIG_LOADED_TIME, loadtimes, 2);
6040
6041 fnvlist_add_uint64(*config,
6042 ZPOOL_CONFIG_ERRCOUNT,
6043 spa_approx_errlog_size(spa));
6044
6045 if (spa_suspended(spa)) {
6046 fnvlist_add_uint64(*config,
6047 ZPOOL_CONFIG_SUSPENDED,
6048 spa->spa_failmode);
6049 fnvlist_add_uint64(*config,
6050 ZPOOL_CONFIG_SUSPENDED_REASON,
6051 spa->spa_suspended);
6052 }
6053
6054 spa_add_spares(spa, *config);
6055 spa_add_l2cache(spa, *config);
6056 spa_add_feature_stats(spa, *config);
6057 }
6058 }
6059
6060 /*
6061 * We want to get the alternate root even for faulted pools, so we cheat
6062 * and call spa_lookup() directly.
6063 */
6064 if (altroot) {
6065 if (spa == NULL) {
6066 mutex_enter(&spa_namespace_lock);
6067 spa = spa_lookup(name);
6068 if (spa)
6069 spa_altroot(spa, altroot, buflen);
6070 else
6071 altroot[0] = '\0';
6072 spa = NULL;
6073 mutex_exit(&spa_namespace_lock);
6074 } else {
6075 spa_altroot(spa, altroot, buflen);
6076 }
6077 }
6078
6079 if (spa != NULL) {
6080 spa_config_exit(spa, SCL_CONFIG, FTAG);
6081 spa_close(spa, FTAG);
6082 }
6083
6084 return (error);
6085 }
6086
6087 /*
6088 * Validate that the auxiliary device array is well formed. We must have an
6089 * array of nvlists, each which describes a valid leaf vdev. If this is an
6090 * import (mode is VDEV_ALLOC_SPARE), then we allow corrupted spares to be
6091 * specified, as long as they are well-formed.
6092 */
6093 static int
6094 spa_validate_aux_devs(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode,
6095 spa_aux_vdev_t *sav, const char *config, uint64_t version,
6096 vdev_labeltype_t label)
6097 {
6098 nvlist_t **dev;
6099 uint_t i, ndev;
6100 vdev_t *vd;
6101 int error;
6102
6103 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
6104
6105 /*
6106 * It's acceptable to have no devs specified.
6107 */
6108 if (nvlist_lookup_nvlist_array(nvroot, config, &dev, &ndev) != 0)
6109 return (0);
6110
6111 if (ndev == 0)
6112 return (SET_ERROR(EINVAL));
6113
6114 /*
6115 * Make sure the pool is formatted with a version that supports this
6116 * device type.
6117 */
6118 if (spa_version(spa) < version)
6119 return (SET_ERROR(ENOTSUP));
6120
6121 /*
6122 * Set the pending device list so we correctly handle device in-use
6123 * checking.
6124 */
6125 sav->sav_pending = dev;
6126 sav->sav_npending = ndev;
6127
6128 for (i = 0; i < ndev; i++) {
6129 if ((error = spa_config_parse(spa, &vd, dev[i], NULL, 0,
6130 mode)) != 0)
6131 goto out;
6132
6133 if (!vd->vdev_ops->vdev_op_leaf) {
6134 vdev_free(vd);
6135 error = SET_ERROR(EINVAL);
6136 goto out;
6137 }
6138
6139 vd->vdev_top = vd;
6140
6141 if ((error = vdev_open(vd)) == 0 &&
6142 (error = vdev_label_init(vd, crtxg, label)) == 0) {
6143 fnvlist_add_uint64(dev[i], ZPOOL_CONFIG_GUID,
6144 vd->vdev_guid);
6145 }
6146
6147 vdev_free(vd);
6148
6149 if (error &&
6150 (mode != VDEV_ALLOC_SPARE && mode != VDEV_ALLOC_L2CACHE))
6151 goto out;
6152 else
6153 error = 0;
6154 }
6155
6156 out:
6157 sav->sav_pending = NULL;
6158 sav->sav_npending = 0;
6159 return (error);
6160 }
6161
6162 static int
6163 spa_validate_aux(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode)
6164 {
6165 int error;
6166
6167 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
6168
6169 if ((error = spa_validate_aux_devs(spa, nvroot, crtxg, mode,
6170 &spa->spa_spares, ZPOOL_CONFIG_SPARES, SPA_VERSION_SPARES,
6171 VDEV_LABEL_SPARE)) != 0) {
6172 return (error);
6173 }
6174
6175 return (spa_validate_aux_devs(spa, nvroot, crtxg, mode,
6176 &spa->spa_l2cache, ZPOOL_CONFIG_L2CACHE, SPA_VERSION_L2CACHE,
6177 VDEV_LABEL_L2CACHE));
6178 }
6179
6180 static void
6181 spa_set_aux_vdevs(spa_aux_vdev_t *sav, nvlist_t **devs, int ndevs,
6182 const char *config)
6183 {
6184 int i;
6185
6186 if (sav->sav_config != NULL) {
6187 nvlist_t **olddevs;
6188 uint_t oldndevs;
6189 nvlist_t **newdevs;
6190
6191 /*
6192 * Generate new dev list by concatenating with the
6193 * current dev list.
6194 */
6195 VERIFY0(nvlist_lookup_nvlist_array(sav->sav_config, config,
6196 &olddevs, &oldndevs));
6197
6198 newdevs = kmem_alloc(sizeof (void *) *
6199 (ndevs + oldndevs), KM_SLEEP);
6200 for (i = 0; i < oldndevs; i++)
6201 newdevs[i] = fnvlist_dup(olddevs[i]);
6202 for (i = 0; i < ndevs; i++)
6203 newdevs[i + oldndevs] = fnvlist_dup(devs[i]);
6204
6205 fnvlist_remove(sav->sav_config, config);
6206
6207 fnvlist_add_nvlist_array(sav->sav_config, config,
6208 (const nvlist_t * const *)newdevs, ndevs + oldndevs);
6209 for (i = 0; i < oldndevs + ndevs; i++)
6210 nvlist_free(newdevs[i]);
6211 kmem_free(newdevs, (oldndevs + ndevs) * sizeof (void *));
6212 } else {
6213 /*
6214 * Generate a new dev list.
6215 */
6216 sav->sav_config = fnvlist_alloc();
6217 fnvlist_add_nvlist_array(sav->sav_config, config,
6218 (const nvlist_t * const *)devs, ndevs);
6219 }
6220 }
6221
6222 /*
6223 * Stop and drop level 2 ARC devices
6224 */
6225 void
6226 spa_l2cache_drop(spa_t *spa)
6227 {
6228 vdev_t *vd;
6229 int i;
6230 spa_aux_vdev_t *sav = &spa->spa_l2cache;
6231
6232 for (i = 0; i < sav->sav_count; i++) {
6233 uint64_t pool;
6234
6235 vd = sav->sav_vdevs[i];
6236 ASSERT(vd != NULL);
6237
6238 if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
6239 pool != 0ULL && l2arc_vdev_present(vd))
6240 l2arc_remove_vdev(vd);
6241 }
6242 }
6243
6244 /*
6245 * Verify encryption parameters for spa creation. If we are encrypting, we must
6246 * have the encryption feature flag enabled.
6247 */
6248 static int
6249 spa_create_check_encryption_params(dsl_crypto_params_t *dcp,
6250 boolean_t has_encryption)
6251 {
6252 if (dcp->cp_crypt != ZIO_CRYPT_OFF &&
6253 dcp->cp_crypt != ZIO_CRYPT_INHERIT &&
6254 !has_encryption)
6255 return (SET_ERROR(ENOTSUP));
6256
6257 return (dmu_objset_create_crypt_check(NULL, dcp, NULL));
6258 }
6259
6260 /*
6261 * Pool Creation
6262 */
6263 int
6264 spa_create(const char *pool, nvlist_t *nvroot, nvlist_t *props,
6265 nvlist_t *zplprops, dsl_crypto_params_t *dcp)
6266 {
6267 spa_t *spa;
6268 const char *altroot = NULL;
6269 vdev_t *rvd;
6270 dsl_pool_t *dp;
6271 dmu_tx_t *tx;
6272 int error = 0;
6273 uint64_t txg = TXG_INITIAL;
6274 nvlist_t **spares, **l2cache;
6275 uint_t nspares, nl2cache;
6276 uint64_t version, obj, ndraid = 0;
6277 boolean_t has_features;
6278 boolean_t has_encryption;
6279 boolean_t has_allocclass;
6280 spa_feature_t feat;
6281 const char *feat_name;
6282 const char *poolname;
6283 nvlist_t *nvl;
6284
6285 if (props == NULL ||
6286 nvlist_lookup_string(props, "tname", &poolname) != 0)
6287 poolname = (char *)pool;
6288
6289 /*
6290 * If this pool already exists, return failure.
6291 */
6292 mutex_enter(&spa_namespace_lock);
6293 if (spa_lookup(poolname) != NULL) {
6294 mutex_exit(&spa_namespace_lock);
6295 return (SET_ERROR(EEXIST));
6296 }
6297
6298 /*
6299 * Allocate a new spa_t structure.
6300 */
6301 nvl = fnvlist_alloc();
6302 fnvlist_add_string(nvl, ZPOOL_CONFIG_POOL_NAME, pool);
6303 (void) nvlist_lookup_string(props,
6304 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
6305 spa = spa_add(poolname, nvl, altroot);
6306 fnvlist_free(nvl);
6307 spa_activate(spa, spa_mode_global);
6308
6309 if (props && (error = spa_prop_validate(spa, props))) {
6310 spa_deactivate(spa);
6311 spa_remove(spa);
6312 mutex_exit(&spa_namespace_lock);
6313 return (error);
6314 }
6315
6316 /*
6317 * Temporary pool names should never be written to disk.
6318 */
6319 if (poolname != pool)
6320 spa->spa_import_flags |= ZFS_IMPORT_TEMP_NAME;
6321
6322 has_features = B_FALSE;
6323 has_encryption = B_FALSE;
6324 has_allocclass = B_FALSE;
6325 for (nvpair_t *elem = nvlist_next_nvpair(props, NULL);
6326 elem != NULL; elem = nvlist_next_nvpair(props, elem)) {
6327 if (zpool_prop_feature(nvpair_name(elem))) {
6328 has_features = B_TRUE;
6329
6330 feat_name = strchr(nvpair_name(elem), '@') + 1;
6331 VERIFY0(zfeature_lookup_name(feat_name, &feat));
6332 if (feat == SPA_FEATURE_ENCRYPTION)
6333 has_encryption = B_TRUE;
6334 if (feat == SPA_FEATURE_ALLOCATION_CLASSES)
6335 has_allocclass = B_TRUE;
6336 }
6337 }
6338
6339 /* verify encryption params, if they were provided */
6340 if (dcp != NULL) {
6341 error = spa_create_check_encryption_params(dcp, has_encryption);
6342 if (error != 0) {
6343 spa_deactivate(spa);
6344 spa_remove(spa);
6345 mutex_exit(&spa_namespace_lock);
6346 return (error);
6347 }
6348 }
6349 if (!has_allocclass && zfs_special_devs(nvroot, NULL)) {
6350 spa_deactivate(spa);
6351 spa_remove(spa);
6352 mutex_exit(&spa_namespace_lock);
6353 return (ENOTSUP);
6354 }
6355
6356 if (has_features || nvlist_lookup_uint64(props,
6357 zpool_prop_to_name(ZPOOL_PROP_VERSION), &version) != 0) {
6358 version = SPA_VERSION;
6359 }
6360 ASSERT(SPA_VERSION_IS_SUPPORTED(version));
6361
6362 spa->spa_first_txg = txg;
6363 spa->spa_uberblock.ub_txg = txg - 1;
6364 spa->spa_uberblock.ub_version = version;
6365 spa->spa_ubsync = spa->spa_uberblock;
6366 spa->spa_load_state = SPA_LOAD_CREATE;
6367 spa->spa_removing_phys.sr_state = DSS_NONE;
6368 spa->spa_removing_phys.sr_removing_vdev = -1;
6369 spa->spa_removing_phys.sr_prev_indirect_vdev = -1;
6370 spa->spa_indirect_vdevs_loaded = B_TRUE;
6371
6372 /*
6373 * Create "The Godfather" zio to hold all async IOs
6374 */
6375 spa->spa_async_zio_root = kmem_alloc(max_ncpus * sizeof (void *),
6376 KM_SLEEP);
6377 for (int i = 0; i < max_ncpus; i++) {
6378 spa->spa_async_zio_root[i] = zio_root(spa, NULL, NULL,
6379 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
6380 ZIO_FLAG_GODFATHER);
6381 }
6382
6383 /*
6384 * Create the root vdev.
6385 */
6386 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
6387
6388 error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, VDEV_ALLOC_ADD);
6389
6390 ASSERT(error != 0 || rvd != NULL);
6391 ASSERT(error != 0 || spa->spa_root_vdev == rvd);
6392
6393 if (error == 0 && !zfs_allocatable_devs(nvroot))
6394 error = SET_ERROR(EINVAL);
6395
6396 if (error == 0 &&
6397 (error = vdev_create(rvd, txg, B_FALSE)) == 0 &&
6398 (error = vdev_draid_spare_create(nvroot, rvd, &ndraid, 0)) == 0 &&
6399 (error = spa_validate_aux(spa, nvroot, txg, VDEV_ALLOC_ADD)) == 0) {
6400 /*
6401 * instantiate the metaslab groups (this will dirty the vdevs)
6402 * we can no longer error exit past this point
6403 */
6404 for (int c = 0; error == 0 && c < rvd->vdev_children; c++) {
6405 vdev_t *vd = rvd->vdev_child[c];
6406
6407 vdev_metaslab_set_size(vd);
6408 vdev_expand(vd, txg);
6409 }
6410 }
6411
6412 spa_config_exit(spa, SCL_ALL, FTAG);
6413
6414 if (error != 0) {
6415 spa_unload(spa);
6416 spa_deactivate(spa);
6417 spa_remove(spa);
6418 mutex_exit(&spa_namespace_lock);
6419 return (error);
6420 }
6421
6422 /*
6423 * Get the list of spares, if specified.
6424 */
6425 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
6426 &spares, &nspares) == 0) {
6427 spa->spa_spares.sav_config = fnvlist_alloc();
6428 fnvlist_add_nvlist_array(spa->spa_spares.sav_config,
6429 ZPOOL_CONFIG_SPARES, (const nvlist_t * const *)spares,
6430 nspares);
6431 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
6432 spa_load_spares(spa);
6433 spa_config_exit(spa, SCL_ALL, FTAG);
6434 spa->spa_spares.sav_sync = B_TRUE;
6435 }
6436
6437 /*
6438 * Get the list of level 2 cache devices, if specified.
6439 */
6440 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
6441 &l2cache, &nl2cache) == 0) {
6442 VERIFY0(nvlist_alloc(&spa->spa_l2cache.sav_config,
6443 NV_UNIQUE_NAME, KM_SLEEP));
6444 fnvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
6445 ZPOOL_CONFIG_L2CACHE, (const nvlist_t * const *)l2cache,
6446 nl2cache);
6447 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
6448 spa_load_l2cache(spa);
6449 spa_config_exit(spa, SCL_ALL, FTAG);
6450 spa->spa_l2cache.sav_sync = B_TRUE;
6451 }
6452
6453 spa->spa_is_initializing = B_TRUE;
6454 spa->spa_dsl_pool = dp = dsl_pool_create(spa, zplprops, dcp, txg);
6455 spa->spa_is_initializing = B_FALSE;
6456
6457 /*
6458 * Create DDTs (dedup tables).
6459 */
6460 ddt_create(spa);
6461 /*
6462 * Create BRT table and BRT table object.
6463 */
6464 brt_create(spa);
6465
6466 spa_update_dspace(spa);
6467
6468 tx = dmu_tx_create_assigned(dp, txg);
6469
6470 /*
6471 * Create the pool's history object.
6472 */
6473 if (version >= SPA_VERSION_ZPOOL_HISTORY && !spa->spa_history)
6474 spa_history_create_obj(spa, tx);
6475
6476 spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_CREATE);
6477 spa_history_log_version(spa, "create", tx);
6478
6479 /*
6480 * Create the pool config object.
6481 */
6482 spa->spa_config_object = dmu_object_alloc(spa->spa_meta_objset,
6483 DMU_OT_PACKED_NVLIST, SPA_CONFIG_BLOCKSIZE,
6484 DMU_OT_PACKED_NVLIST_SIZE, sizeof (uint64_t), tx);
6485
6486 if (zap_add(spa->spa_meta_objset,
6487 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CONFIG,
6488 sizeof (uint64_t), 1, &spa->spa_config_object, tx) != 0) {
6489 cmn_err(CE_PANIC, "failed to add pool config");
6490 }
6491
6492 if (zap_add(spa->spa_meta_objset,
6493 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CREATION_VERSION,
6494 sizeof (uint64_t), 1, &version, tx) != 0) {
6495 cmn_err(CE_PANIC, "failed to add pool version");
6496 }
6497
6498 /* Newly created pools with the right version are always deflated. */
6499 if (version >= SPA_VERSION_RAIDZ_DEFLATE) {
6500 spa->spa_deflate = TRUE;
6501 if (zap_add(spa->spa_meta_objset,
6502 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
6503 sizeof (uint64_t), 1, &spa->spa_deflate, tx) != 0) {
6504 cmn_err(CE_PANIC, "failed to add deflate");
6505 }
6506 }
6507
6508 /*
6509 * Create the deferred-free bpobj. Turn off compression
6510 * because sync-to-convergence takes longer if the blocksize
6511 * keeps changing.
6512 */
6513 obj = bpobj_alloc(spa->spa_meta_objset, 1 << 14, tx);
6514 dmu_object_set_compress(spa->spa_meta_objset, obj,
6515 ZIO_COMPRESS_OFF, tx);
6516 if (zap_add(spa->spa_meta_objset,
6517 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SYNC_BPOBJ,
6518 sizeof (uint64_t), 1, &obj, tx) != 0) {
6519 cmn_err(CE_PANIC, "failed to add bpobj");
6520 }
6521 VERIFY3U(0, ==, bpobj_open(&spa->spa_deferred_bpobj,
6522 spa->spa_meta_objset, obj));
6523
6524 /*
6525 * Generate some random noise for salted checksums to operate on.
6526 */
6527 (void) random_get_pseudo_bytes(spa->spa_cksum_salt.zcs_bytes,
6528 sizeof (spa->spa_cksum_salt.zcs_bytes));
6529
6530 /*
6531 * Set pool properties.
6532 */
6533 spa->spa_bootfs = zpool_prop_default_numeric(ZPOOL_PROP_BOOTFS);
6534 spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
6535 spa->spa_failmode = zpool_prop_default_numeric(ZPOOL_PROP_FAILUREMODE);
6536 spa->spa_autoexpand = zpool_prop_default_numeric(ZPOOL_PROP_AUTOEXPAND);
6537 spa->spa_multihost = zpool_prop_default_numeric(ZPOOL_PROP_MULTIHOST);
6538 spa->spa_autotrim = zpool_prop_default_numeric(ZPOOL_PROP_AUTOTRIM);
6539
6540 if (props != NULL) {
6541 spa_configfile_set(spa, props, B_FALSE);
6542 spa_sync_props(props, tx);
6543 }
6544
6545 for (int i = 0; i < ndraid; i++)
6546 spa_feature_incr(spa, SPA_FEATURE_DRAID, tx);
6547
6548 dmu_tx_commit(tx);
6549
6550 spa->spa_sync_on = B_TRUE;
6551 txg_sync_start(dp);
6552 mmp_thread_start(spa);
6553 txg_wait_synced(dp, txg);
6554
6555 spa_spawn_aux_threads(spa);
6556
6557 spa_write_cachefile(spa, B_FALSE, B_TRUE, B_TRUE);
6558
6559 /*
6560 * Don't count references from objsets that are already closed
6561 * and are making their way through the eviction process.
6562 */
6563 spa_evicting_os_wait(spa);
6564 spa->spa_minref = zfs_refcount_count(&spa->spa_refcount);
6565 spa->spa_load_state = SPA_LOAD_NONE;
6566
6567 spa_import_os(spa);
6568
6569 mutex_exit(&spa_namespace_lock);
6570
6571 return (0);
6572 }
6573
6574 /*
6575 * Import a non-root pool into the system.
6576 */
6577 int
6578 spa_import(char *pool, nvlist_t *config, nvlist_t *props, uint64_t flags)
6579 {
6580 spa_t *spa;
6581 const char *altroot = NULL;
6582 spa_load_state_t state = SPA_LOAD_IMPORT;
6583 zpool_load_policy_t policy;
6584 spa_mode_t mode = spa_mode_global;
6585 uint64_t readonly = B_FALSE;
6586 int error;
6587 nvlist_t *nvroot;
6588 nvlist_t **spares, **l2cache;
6589 uint_t nspares, nl2cache;
6590
6591 /*
6592 * If a pool with this name exists, return failure.
6593 */
6594 mutex_enter(&spa_namespace_lock);
6595 if (spa_lookup(pool) != NULL) {
6596 mutex_exit(&spa_namespace_lock);
6597 return (SET_ERROR(EEXIST));
6598 }
6599
6600 /*
6601 * Create and initialize the spa structure.
6602 */
6603 (void) nvlist_lookup_string(props,
6604 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
6605 (void) nvlist_lookup_uint64(props,
6606 zpool_prop_to_name(ZPOOL_PROP_READONLY), &readonly);
6607 if (readonly)
6608 mode = SPA_MODE_READ;
6609 spa = spa_add(pool, config, altroot);
6610 spa->spa_import_flags = flags;
6611
6612 /*
6613 * Verbatim import - Take a pool and insert it into the namespace
6614 * as if it had been loaded at boot.
6615 */
6616 if (spa->spa_import_flags & ZFS_IMPORT_VERBATIM) {
6617 if (props != NULL)
6618 spa_configfile_set(spa, props, B_FALSE);
6619
6620 spa_write_cachefile(spa, B_FALSE, B_TRUE, B_FALSE);
6621 spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_IMPORT);
6622 zfs_dbgmsg("spa_import: verbatim import of %s", pool);
6623 mutex_exit(&spa_namespace_lock);
6624 return (0);
6625 }
6626
6627 spa_activate(spa, mode);
6628
6629 /*
6630 * Don't start async tasks until we know everything is healthy.
6631 */
6632 spa_async_suspend(spa);
6633
6634 zpool_get_load_policy(config, &policy);
6635 if (policy.zlp_rewind & ZPOOL_DO_REWIND)
6636 state = SPA_LOAD_RECOVER;
6637
6638 spa->spa_config_source = SPA_CONFIG_SRC_TRYIMPORT;
6639
6640 if (state != SPA_LOAD_RECOVER) {
6641 spa->spa_last_ubsync_txg = spa->spa_load_txg = 0;
6642 zfs_dbgmsg("spa_import: importing %s", pool);
6643 } else {
6644 zfs_dbgmsg("spa_import: importing %s, max_txg=%lld "
6645 "(RECOVERY MODE)", pool, (longlong_t)policy.zlp_txg);
6646 }
6647 error = spa_load_best(spa, state, policy.zlp_txg, policy.zlp_rewind);
6648
6649 /*
6650 * Propagate anything learned while loading the pool and pass it
6651 * back to caller (i.e. rewind info, missing devices, etc).
6652 */
6653 fnvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO, spa->spa_load_info);
6654
6655 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
6656 /*
6657 * Toss any existing sparelist, as it doesn't have any validity
6658 * anymore, and conflicts with spa_has_spare().
6659 */
6660 if (spa->spa_spares.sav_config) {
6661 nvlist_free(spa->spa_spares.sav_config);
6662 spa->spa_spares.sav_config = NULL;
6663 spa_load_spares(spa);
6664 }
6665 if (spa->spa_l2cache.sav_config) {
6666 nvlist_free(spa->spa_l2cache.sav_config);
6667 spa->spa_l2cache.sav_config = NULL;
6668 spa_load_l2cache(spa);
6669 }
6670
6671 nvroot = fnvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE);
6672 spa_config_exit(spa, SCL_ALL, FTAG);
6673
6674 if (props != NULL)
6675 spa_configfile_set(spa, props, B_FALSE);
6676
6677 if (error != 0 || (props && spa_writeable(spa) &&
6678 (error = spa_prop_set(spa, props)))) {
6679 spa_unload(spa);
6680 spa_deactivate(spa);
6681 spa_remove(spa);
6682 mutex_exit(&spa_namespace_lock);
6683 return (error);
6684 }
6685
6686 spa_async_resume(spa);
6687
6688 /*
6689 * Override any spares and level 2 cache devices as specified by
6690 * the user, as these may have correct device names/devids, etc.
6691 */
6692 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
6693 &spares, &nspares) == 0) {
6694 if (spa->spa_spares.sav_config)
6695 fnvlist_remove(spa->spa_spares.sav_config,
6696 ZPOOL_CONFIG_SPARES);
6697 else
6698 spa->spa_spares.sav_config = fnvlist_alloc();
6699 fnvlist_add_nvlist_array(spa->spa_spares.sav_config,
6700 ZPOOL_CONFIG_SPARES, (const nvlist_t * const *)spares,
6701 nspares);
6702 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
6703 spa_load_spares(spa);
6704 spa_config_exit(spa, SCL_ALL, FTAG);
6705 spa->spa_spares.sav_sync = B_TRUE;
6706 }
6707 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
6708 &l2cache, &nl2cache) == 0) {
6709 if (spa->spa_l2cache.sav_config)
6710 fnvlist_remove(spa->spa_l2cache.sav_config,
6711 ZPOOL_CONFIG_L2CACHE);
6712 else
6713 spa->spa_l2cache.sav_config = fnvlist_alloc();
6714 fnvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
6715 ZPOOL_CONFIG_L2CACHE, (const nvlist_t * const *)l2cache,
6716 nl2cache);
6717 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
6718 spa_load_l2cache(spa);
6719 spa_config_exit(spa, SCL_ALL, FTAG);
6720 spa->spa_l2cache.sav_sync = B_TRUE;
6721 }
6722
6723 /*
6724 * Check for any removed devices.
6725 */
6726 if (spa->spa_autoreplace) {
6727 spa_aux_check_removed(&spa->spa_spares);
6728 spa_aux_check_removed(&spa->spa_l2cache);
6729 }
6730
6731 if (spa_writeable(spa)) {
6732 /*
6733 * Update the config cache to include the newly-imported pool.
6734 */
6735 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
6736 }
6737
6738 /*
6739 * It's possible that the pool was expanded while it was exported.
6740 * We kick off an async task to handle this for us.
6741 */
6742 spa_async_request(spa, SPA_ASYNC_AUTOEXPAND);
6743
6744 spa_history_log_version(spa, "import", NULL);
6745
6746 spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_IMPORT);
6747
6748 mutex_exit(&spa_namespace_lock);
6749
6750 zvol_create_minors_recursive(pool);
6751
6752 spa_import_os(spa);
6753
6754 return (0);
6755 }
6756
6757 nvlist_t *
6758 spa_tryimport(nvlist_t *tryconfig)
6759 {
6760 nvlist_t *config = NULL;
6761 const char *poolname, *cachefile;
6762 spa_t *spa;
6763 uint64_t state;
6764 int error;
6765 zpool_load_policy_t policy;
6766
6767 if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_POOL_NAME, &poolname))
6768 return (NULL);
6769
6770 if (nvlist_lookup_uint64(tryconfig, ZPOOL_CONFIG_POOL_STATE, &state))
6771 return (NULL);
6772
6773 /*
6774 * Create and initialize the spa structure.
6775 */
6776 mutex_enter(&spa_namespace_lock);
6777 spa = spa_add(TRYIMPORT_NAME, tryconfig, NULL);
6778 spa_activate(spa, SPA_MODE_READ);
6779
6780 /*
6781 * Rewind pool if a max txg was provided.
6782 */
6783 zpool_get_load_policy(spa->spa_config, &policy);
6784 if (policy.zlp_txg != UINT64_MAX) {
6785 spa->spa_load_max_txg = policy.zlp_txg;
6786 spa->spa_extreme_rewind = B_TRUE;
6787 zfs_dbgmsg("spa_tryimport: importing %s, max_txg=%lld",
6788 poolname, (longlong_t)policy.zlp_txg);
6789 } else {
6790 zfs_dbgmsg("spa_tryimport: importing %s", poolname);
6791 }
6792
6793 if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_CACHEFILE, &cachefile)
6794 == 0) {
6795 zfs_dbgmsg("spa_tryimport: using cachefile '%s'", cachefile);
6796 spa->spa_config_source = SPA_CONFIG_SRC_CACHEFILE;
6797 } else {
6798 spa->spa_config_source = SPA_CONFIG_SRC_SCAN;
6799 }
6800
6801 /*
6802 * spa_import() relies on a pool config fetched by spa_try_import()
6803 * for spare/cache devices. Import flags are not passed to
6804 * spa_tryimport(), which makes it return early due to a missing log
6805 * device and missing retrieving the cache device and spare eventually.
6806 * Passing ZFS_IMPORT_MISSING_LOG to spa_tryimport() makes it fetch
6807 * the correct configuration regardless of the missing log device.
6808 */
6809 spa->spa_import_flags |= ZFS_IMPORT_MISSING_LOG;
6810
6811 error = spa_load(spa, SPA_LOAD_TRYIMPORT, SPA_IMPORT_EXISTING);
6812
6813 /*
6814 * If 'tryconfig' was at least parsable, return the current config.
6815 */
6816 if (spa->spa_root_vdev != NULL) {
6817 config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
6818 fnvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME, poolname);
6819 fnvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE, state);
6820 fnvlist_add_uint64(config, ZPOOL_CONFIG_TIMESTAMP,
6821 spa->spa_uberblock.ub_timestamp);
6822 fnvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO,
6823 spa->spa_load_info);
6824 fnvlist_add_uint64(config, ZPOOL_CONFIG_ERRATA,
6825 spa->spa_errata);
6826
6827 /*
6828 * If the bootfs property exists on this pool then we
6829 * copy it out so that external consumers can tell which
6830 * pools are bootable.
6831 */
6832 if ((!error || error == EEXIST) && spa->spa_bootfs) {
6833 char *tmpname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
6834
6835 /*
6836 * We have to play games with the name since the
6837 * pool was opened as TRYIMPORT_NAME.
6838 */
6839 if (dsl_dsobj_to_dsname(spa_name(spa),
6840 spa->spa_bootfs, tmpname) == 0) {
6841 char *cp;
6842 char *dsname;
6843
6844 dsname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
6845
6846 cp = strchr(tmpname, '/');
6847 if (cp == NULL) {
6848 (void) strlcpy(dsname, tmpname,
6849 MAXPATHLEN);
6850 } else {
6851 (void) snprintf(dsname, MAXPATHLEN,
6852 "%s/%s", poolname, ++cp);
6853 }
6854 fnvlist_add_string(config, ZPOOL_CONFIG_BOOTFS,
6855 dsname);
6856 kmem_free(dsname, MAXPATHLEN);
6857 }
6858 kmem_free(tmpname, MAXPATHLEN);
6859 }
6860
6861 /*
6862 * Add the list of hot spares and level 2 cache devices.
6863 */
6864 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
6865 spa_add_spares(spa, config);
6866 spa_add_l2cache(spa, config);
6867 spa_config_exit(spa, SCL_CONFIG, FTAG);
6868 }
6869
6870 spa_unload(spa);
6871 spa_deactivate(spa);
6872 spa_remove(spa);
6873 mutex_exit(&spa_namespace_lock);
6874
6875 return (config);
6876 }
6877
6878 /*
6879 * Pool export/destroy
6880 *
6881 * The act of destroying or exporting a pool is very simple. We make sure there
6882 * is no more pending I/O and any references to the pool are gone. Then, we
6883 * update the pool state and sync all the labels to disk, removing the
6884 * configuration from the cache afterwards. If the 'hardforce' flag is set, then
6885 * we don't sync the labels or remove the configuration cache.
6886 */
6887 static int
6888 spa_export_common(const char *pool, int new_state, nvlist_t **oldconfig,
6889 boolean_t force, boolean_t hardforce)
6890 {
6891 int error;
6892 spa_t *spa;
6893
6894 if (oldconfig)
6895 *oldconfig = NULL;
6896
6897 if (!(spa_mode_global & SPA_MODE_WRITE))
6898 return (SET_ERROR(EROFS));
6899
6900 mutex_enter(&spa_namespace_lock);
6901 if ((spa = spa_lookup(pool)) == NULL) {
6902 mutex_exit(&spa_namespace_lock);
6903 return (SET_ERROR(ENOENT));
6904 }
6905
6906 if (spa->spa_is_exporting) {
6907 /* the pool is being exported by another thread */
6908 mutex_exit(&spa_namespace_lock);
6909 return (SET_ERROR(ZFS_ERR_EXPORT_IN_PROGRESS));
6910 }
6911 spa->spa_is_exporting = B_TRUE;
6912
6913 /*
6914 * Put a hold on the pool, drop the namespace lock, stop async tasks,
6915 * reacquire the namespace lock, and see if we can export.
6916 */
6917 spa_open_ref(spa, FTAG);
6918 mutex_exit(&spa_namespace_lock);
6919 spa_async_suspend(spa);
6920 if (spa->spa_zvol_taskq) {
6921 zvol_remove_minors(spa, spa_name(spa), B_TRUE);
6922 taskq_wait(spa->spa_zvol_taskq);
6923 }
6924 mutex_enter(&spa_namespace_lock);
6925 spa_close(spa, FTAG);
6926
6927 if (spa->spa_state == POOL_STATE_UNINITIALIZED)
6928 goto export_spa;
6929 /*
6930 * The pool will be in core if it's openable, in which case we can
6931 * modify its state. Objsets may be open only because they're dirty,
6932 * so we have to force it to sync before checking spa_refcnt.
6933 */
6934 if (spa->spa_sync_on) {
6935 txg_wait_synced(spa->spa_dsl_pool, 0);
6936 spa_evicting_os_wait(spa);
6937 }
6938
6939 /*
6940 * A pool cannot be exported or destroyed if there are active
6941 * references. If we are resetting a pool, allow references by
6942 * fault injection handlers.
6943 */
6944 if (!spa_refcount_zero(spa) || (spa->spa_inject_ref != 0)) {
6945 error = SET_ERROR(EBUSY);
6946 goto fail;
6947 }
6948
6949 if (spa->spa_sync_on) {
6950 vdev_t *rvd = spa->spa_root_vdev;
6951 /*
6952 * A pool cannot be exported if it has an active shared spare.
6953 * This is to prevent other pools stealing the active spare
6954 * from an exported pool. At user's own will, such pool can
6955 * be forcedly exported.
6956 */
6957 if (!force && new_state == POOL_STATE_EXPORTED &&
6958 spa_has_active_shared_spare(spa)) {
6959 error = SET_ERROR(EXDEV);
6960 goto fail;
6961 }
6962
6963 /*
6964 * We're about to export or destroy this pool. Make sure
6965 * we stop all initialization and trim activity here before
6966 * we set the spa_final_txg. This will ensure that all
6967 * dirty data resulting from the initialization is
6968 * committed to disk before we unload the pool.
6969 */
6970 vdev_initialize_stop_all(rvd, VDEV_INITIALIZE_ACTIVE);
6971 vdev_trim_stop_all(rvd, VDEV_TRIM_ACTIVE);
6972 vdev_autotrim_stop_all(spa);
6973 vdev_rebuild_stop_all(spa);
6974
6975 /*
6976 * We want this to be reflected on every label,
6977 * so mark them all dirty. spa_unload() will do the
6978 * final sync that pushes these changes out.
6979 */
6980 if (new_state != POOL_STATE_UNINITIALIZED && !hardforce) {
6981 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
6982 spa->spa_state = new_state;
6983 vdev_config_dirty(rvd);
6984 spa_config_exit(spa, SCL_ALL, FTAG);
6985 }
6986
6987 /*
6988 * If the log space map feature is enabled and the pool is
6989 * getting exported (but not destroyed), we want to spend some
6990 * time flushing as many metaslabs as we can in an attempt to
6991 * destroy log space maps and save import time. This has to be
6992 * done before we set the spa_final_txg, otherwise
6993 * spa_sync() -> spa_flush_metaslabs() may dirty the final TXGs.
6994 * spa_should_flush_logs_on_unload() should be called after
6995 * spa_state has been set to the new_state.
6996 */
6997 if (spa_should_flush_logs_on_unload(spa))
6998 spa_unload_log_sm_flush_all(spa);
6999
7000 if (new_state != POOL_STATE_UNINITIALIZED && !hardforce) {
7001 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
7002 spa->spa_final_txg = spa_last_synced_txg(spa) +
7003 TXG_DEFER_SIZE + 1;
7004 spa_config_exit(spa, SCL_ALL, FTAG);
7005 }
7006 }
7007
7008 export_spa:
7009 spa_export_os(spa);
7010
7011 if (new_state == POOL_STATE_DESTROYED)
7012 spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_DESTROY);
7013 else if (new_state == POOL_STATE_EXPORTED)
7014 spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_EXPORT);
7015
7016 if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
7017 spa_unload(spa);
7018 spa_deactivate(spa);
7019 }
7020
7021 if (oldconfig && spa->spa_config)
7022 *oldconfig = fnvlist_dup(spa->spa_config);
7023
7024 if (new_state != POOL_STATE_UNINITIALIZED) {
7025 if (!hardforce)
7026 spa_write_cachefile(spa, B_TRUE, B_TRUE, B_FALSE);
7027 spa_remove(spa);
7028 } else {
7029 /*
7030 * If spa_remove() is not called for this spa_t and
7031 * there is any possibility that it can be reused,
7032 * we make sure to reset the exporting flag.
7033 */
7034 spa->spa_is_exporting = B_FALSE;
7035 }
7036
7037 mutex_exit(&spa_namespace_lock);
7038 return (0);
7039
7040 fail:
7041 spa->spa_is_exporting = B_FALSE;
7042 spa_async_resume(spa);
7043 mutex_exit(&spa_namespace_lock);
7044 return (error);
7045 }
7046
7047 /*
7048 * Destroy a storage pool.
7049 */
7050 int
7051 spa_destroy(const char *pool)
7052 {
7053 return (spa_export_common(pool, POOL_STATE_DESTROYED, NULL,
7054 B_FALSE, B_FALSE));
7055 }
7056
7057 /*
7058 * Export a storage pool.
7059 */
7060 int
7061 spa_export(const char *pool, nvlist_t **oldconfig, boolean_t force,
7062 boolean_t hardforce)
7063 {
7064 return (spa_export_common(pool, POOL_STATE_EXPORTED, oldconfig,
7065 force, hardforce));
7066 }
7067
7068 /*
7069 * Similar to spa_export(), this unloads the spa_t without actually removing it
7070 * from the namespace in any way.
7071 */
7072 int
7073 spa_reset(const char *pool)
7074 {
7075 return (spa_export_common(pool, POOL_STATE_UNINITIALIZED, NULL,
7076 B_FALSE, B_FALSE));
7077 }
7078
7079 /*
7080 * ==========================================================================
7081 * Device manipulation
7082 * ==========================================================================
7083 */
7084
7085 /*
7086 * This is called as a synctask to increment the draid feature flag
7087 */
7088 static void
7089 spa_draid_feature_incr(void *arg, dmu_tx_t *tx)
7090 {
7091 spa_t *spa = dmu_tx_pool(tx)->dp_spa;
7092 int draid = (int)(uintptr_t)arg;
7093
7094 for (int c = 0; c < draid; c++)
7095 spa_feature_incr(spa, SPA_FEATURE_DRAID, tx);
7096 }
7097
7098 /*
7099 * Add a device to a storage pool.
7100 */
7101 int
7102 spa_vdev_add(spa_t *spa, nvlist_t *nvroot)
7103 {
7104 uint64_t txg, ndraid = 0;
7105 int error;
7106 vdev_t *rvd = spa->spa_root_vdev;
7107 vdev_t *vd, *tvd;
7108 nvlist_t **spares, **l2cache;
7109 uint_t nspares, nl2cache;
7110
7111 ASSERT(spa_writeable(spa));
7112
7113 txg = spa_vdev_enter(spa);
7114
7115 if ((error = spa_config_parse(spa, &vd, nvroot, NULL, 0,
7116 VDEV_ALLOC_ADD)) != 0)
7117 return (spa_vdev_exit(spa, NULL, txg, error));
7118
7119 spa->spa_pending_vdev = vd; /* spa_vdev_exit() will clear this */
7120
7121 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, &spares,
7122 &nspares) != 0)
7123 nspares = 0;
7124
7125 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, &l2cache,
7126 &nl2cache) != 0)
7127 nl2cache = 0;
7128
7129 if (vd->vdev_children == 0 && nspares == 0 && nl2cache == 0)
7130 return (spa_vdev_exit(spa, vd, txg, EINVAL));
7131
7132 if (vd->vdev_children != 0 &&
7133 (error = vdev_create(vd, txg, B_FALSE)) != 0) {
7134 return (spa_vdev_exit(spa, vd, txg, error));
7135 }
7136
7137 /*
7138 * The virtual dRAID spares must be added after vdev tree is created
7139 * and the vdev guids are generated. The guid of their associated
7140 * dRAID is stored in the config and used when opening the spare.
7141 */
7142 if ((error = vdev_draid_spare_create(nvroot, vd, &ndraid,
7143 rvd->vdev_children)) == 0) {
7144 if (ndraid > 0 && nvlist_lookup_nvlist_array(nvroot,
7145 ZPOOL_CONFIG_SPARES, &spares, &nspares) != 0)
7146 nspares = 0;
7147 } else {
7148 return (spa_vdev_exit(spa, vd, txg, error));
7149 }
7150
7151 /*
7152 * We must validate the spares and l2cache devices after checking the
7153 * children. Otherwise, vdev_inuse() will blindly overwrite the spare.
7154 */
7155 if ((error = spa_validate_aux(spa, nvroot, txg, VDEV_ALLOC_ADD)) != 0)
7156 return (spa_vdev_exit(spa, vd, txg, error));
7157
7158 /*
7159 * If we are in the middle of a device removal, we can only add
7160 * devices which match the existing devices in the pool.
7161 * If we are in the middle of a removal, or have some indirect
7162 * vdevs, we can not add raidz or dRAID top levels.
7163 */
7164 if (spa->spa_vdev_removal != NULL ||
7165 spa->spa_removing_phys.sr_prev_indirect_vdev != -1) {
7166 for (int c = 0; c < vd->vdev_children; c++) {
7167 tvd = vd->vdev_child[c];
7168 if (spa->spa_vdev_removal != NULL &&
7169 tvd->vdev_ashift != spa->spa_max_ashift) {
7170 return (spa_vdev_exit(spa, vd, txg, EINVAL));
7171 }
7172 /* Fail if top level vdev is raidz or a dRAID */
7173 if (vdev_get_nparity(tvd) != 0)
7174 return (spa_vdev_exit(spa, vd, txg, EINVAL));
7175
7176 /*
7177 * Need the top level mirror to be
7178 * a mirror of leaf vdevs only
7179 */
7180 if (tvd->vdev_ops == &vdev_mirror_ops) {
7181 for (uint64_t cid = 0;
7182 cid < tvd->vdev_children; cid++) {
7183 vdev_t *cvd = tvd->vdev_child[cid];
7184 if (!cvd->vdev_ops->vdev_op_leaf) {
7185 return (spa_vdev_exit(spa, vd,
7186 txg, EINVAL));
7187 }
7188 }
7189 }
7190 }
7191 }
7192
7193 for (int c = 0; c < vd->vdev_children; c++) {
7194 tvd = vd->vdev_child[c];
7195 vdev_remove_child(vd, tvd);
7196 tvd->vdev_id = rvd->vdev_children;
7197 vdev_add_child(rvd, tvd);
7198 vdev_config_dirty(tvd);
7199 }
7200
7201 if (nspares != 0) {
7202 spa_set_aux_vdevs(&spa->spa_spares, spares, nspares,
7203 ZPOOL_CONFIG_SPARES);
7204 spa_load_spares(spa);
7205 spa->spa_spares.sav_sync = B_TRUE;
7206 }
7207
7208 if (nl2cache != 0) {
7209 spa_set_aux_vdevs(&spa->spa_l2cache, l2cache, nl2cache,
7210 ZPOOL_CONFIG_L2CACHE);
7211 spa_load_l2cache(spa);
7212 spa->spa_l2cache.sav_sync = B_TRUE;
7213 }
7214
7215 /*
7216 * We can't increment a feature while holding spa_vdev so we
7217 * have to do it in a synctask.
7218 */
7219 if (ndraid != 0) {
7220 dmu_tx_t *tx;
7221
7222 tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
7223 dsl_sync_task_nowait(spa->spa_dsl_pool, spa_draid_feature_incr,
7224 (void *)(uintptr_t)ndraid, tx);
7225 dmu_tx_commit(tx);
7226 }
7227
7228 /*
7229 * We have to be careful when adding new vdevs to an existing pool.
7230 * If other threads start allocating from these vdevs before we
7231 * sync the config cache, and we lose power, then upon reboot we may
7232 * fail to open the pool because there are DVAs that the config cache
7233 * can't translate. Therefore, we first add the vdevs without
7234 * initializing metaslabs; sync the config cache (via spa_vdev_exit());
7235 * and then let spa_config_update() initialize the new metaslabs.
7236 *
7237 * spa_load() checks for added-but-not-initialized vdevs, so that
7238 * if we lose power at any point in this sequence, the remaining
7239 * steps will be completed the next time we load the pool.
7240 */
7241 (void) spa_vdev_exit(spa, vd, txg, 0);
7242
7243 mutex_enter(&spa_namespace_lock);
7244 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
7245 spa_event_notify(spa, NULL, NULL, ESC_ZFS_VDEV_ADD);
7246 mutex_exit(&spa_namespace_lock);
7247
7248 return (0);
7249 }
7250
7251 /*
7252 * Attach a device to a vdev specified by its guid. The vdev type can be
7253 * a mirror, a raidz, or a leaf device that is also a top-level (e.g. a
7254 * single device). When the vdev is a single device, a mirror vdev will be
7255 * automatically inserted.
7256 *
7257 * If 'replacing' is specified, the new device is intended to replace the
7258 * existing device; in this case the two devices are made into their own
7259 * mirror using the 'replacing' vdev, which is functionally identical to
7260 * the mirror vdev (it actually reuses all the same ops) but has a few
7261 * extra rules: you can't attach to it after it's been created, and upon
7262 * completion of resilvering, the first disk (the one being replaced)
7263 * is automatically detached.
7264 *
7265 * If 'rebuild' is specified, then sequential reconstruction (a.ka. rebuild)
7266 * should be performed instead of traditional healing reconstruction. From
7267 * an administrators perspective these are both resilver operations.
7268 */
7269 int
7270 spa_vdev_attach(spa_t *spa, uint64_t guid, nvlist_t *nvroot, int replacing,
7271 int rebuild)
7272 {
7273 uint64_t txg, dtl_max_txg;
7274 vdev_t *rvd = spa->spa_root_vdev;
7275 vdev_t *oldvd, *newvd, *newrootvd, *pvd, *tvd;
7276 vdev_ops_t *pvops;
7277 char *oldvdpath, *newvdpath;
7278 int newvd_isspare = B_FALSE;
7279 int error;
7280
7281 ASSERT(spa_writeable(spa));
7282
7283 txg = spa_vdev_enter(spa);
7284
7285 oldvd = spa_lookup_by_guid(spa, guid, B_FALSE);
7286
7287 ASSERT(MUTEX_HELD(&spa_namespace_lock));
7288 if (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) {
7289 error = (spa_has_checkpoint(spa)) ?
7290 ZFS_ERR_CHECKPOINT_EXISTS : ZFS_ERR_DISCARDING_CHECKPOINT;
7291 return (spa_vdev_exit(spa, NULL, txg, error));
7292 }
7293
7294 if (rebuild) {
7295 if (!spa_feature_is_enabled(spa, SPA_FEATURE_DEVICE_REBUILD))
7296 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
7297
7298 if (dsl_scan_resilvering(spa_get_dsl(spa)) ||
7299 dsl_scan_resilver_scheduled(spa_get_dsl(spa))) {
7300 return (spa_vdev_exit(spa, NULL, txg,
7301 ZFS_ERR_RESILVER_IN_PROGRESS));
7302 }
7303 } else {
7304 if (vdev_rebuild_active(rvd))
7305 return (spa_vdev_exit(spa, NULL, txg,
7306 ZFS_ERR_REBUILD_IN_PROGRESS));
7307 }
7308
7309 if (spa->spa_vdev_removal != NULL) {
7310 return (spa_vdev_exit(spa, NULL, txg,
7311 ZFS_ERR_DEVRM_IN_PROGRESS));
7312 }
7313
7314 if (oldvd == NULL)
7315 return (spa_vdev_exit(spa, NULL, txg, ENODEV));
7316
7317 boolean_t raidz = oldvd->vdev_ops == &vdev_raidz_ops;
7318
7319 if (raidz) {
7320 if (!spa_feature_is_enabled(spa, SPA_FEATURE_RAIDZ_EXPANSION))
7321 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
7322
7323 /*
7324 * Can't expand a raidz while prior expand is in progress.
7325 */
7326 if (spa->spa_raidz_expand != NULL) {
7327 return (spa_vdev_exit(spa, NULL, txg,
7328 ZFS_ERR_RAIDZ_EXPAND_IN_PROGRESS));
7329 }
7330 } else if (!oldvd->vdev_ops->vdev_op_leaf) {
7331 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
7332 }
7333
7334 if (raidz)
7335 pvd = oldvd;
7336 else
7337 pvd = oldvd->vdev_parent;
7338
7339 if (spa_config_parse(spa, &newrootvd, nvroot, NULL, 0,
7340 VDEV_ALLOC_ATTACH) != 0)
7341 return (spa_vdev_exit(spa, NULL, txg, EINVAL));
7342
7343 if (newrootvd->vdev_children != 1)
7344 return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
7345
7346 newvd = newrootvd->vdev_child[0];
7347
7348 if (!newvd->vdev_ops->vdev_op_leaf)
7349 return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
7350
7351 if ((error = vdev_create(newrootvd, txg, replacing)) != 0)
7352 return (spa_vdev_exit(spa, newrootvd, txg, error));
7353
7354 /*
7355 * log, dedup and special vdevs should not be replaced by spares.
7356 */
7357 if ((oldvd->vdev_top->vdev_alloc_bias != VDEV_BIAS_NONE ||
7358 oldvd->vdev_top->vdev_islog) && newvd->vdev_isspare) {
7359 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
7360 }
7361
7362 /*
7363 * A dRAID spare can only replace a child of its parent dRAID vdev.
7364 */
7365 if (newvd->vdev_ops == &vdev_draid_spare_ops &&
7366 oldvd->vdev_top != vdev_draid_spare_get_parent(newvd)) {
7367 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
7368 }
7369
7370 if (rebuild) {
7371 /*
7372 * For rebuilds, the top vdev must support reconstruction
7373 * using only space maps. This means the only allowable
7374 * vdevs types are the root vdev, a mirror, or dRAID.
7375 */
7376 tvd = pvd;
7377 if (pvd->vdev_top != NULL)
7378 tvd = pvd->vdev_top;
7379
7380 if (tvd->vdev_ops != &vdev_mirror_ops &&
7381 tvd->vdev_ops != &vdev_root_ops &&
7382 tvd->vdev_ops != &vdev_draid_ops) {
7383 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
7384 }
7385 }
7386
7387 if (!replacing) {
7388 /*
7389 * For attach, the only allowable parent is a mirror or
7390 * the root vdev. A raidz vdev can be attached to, but
7391 * you cannot attach to a raidz child.
7392 */
7393 if (pvd->vdev_ops != &vdev_mirror_ops &&
7394 pvd->vdev_ops != &vdev_root_ops &&
7395 !raidz)
7396 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
7397
7398 pvops = &vdev_mirror_ops;
7399 } else {
7400 /*
7401 * Active hot spares can only be replaced by inactive hot
7402 * spares.
7403 */
7404 if (pvd->vdev_ops == &vdev_spare_ops &&
7405 oldvd->vdev_isspare &&
7406 !spa_has_spare(spa, newvd->vdev_guid))
7407 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
7408
7409 /*
7410 * If the source is a hot spare, and the parent isn't already a
7411 * spare, then we want to create a new hot spare. Otherwise, we
7412 * want to create a replacing vdev. The user is not allowed to
7413 * attach to a spared vdev child unless the 'isspare' state is
7414 * the same (spare replaces spare, non-spare replaces
7415 * non-spare).
7416 */
7417 if (pvd->vdev_ops == &vdev_replacing_ops &&
7418 spa_version(spa) < SPA_VERSION_MULTI_REPLACE) {
7419 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
7420 } else if (pvd->vdev_ops == &vdev_spare_ops &&
7421 newvd->vdev_isspare != oldvd->vdev_isspare) {
7422 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
7423 }
7424
7425 if (newvd->vdev_isspare)
7426 pvops = &vdev_spare_ops;
7427 else
7428 pvops = &vdev_replacing_ops;
7429 }
7430
7431 /*
7432 * Make sure the new device is big enough.
7433 */
7434 vdev_t *min_vdev = raidz ? oldvd->vdev_child[0] : oldvd;
7435 if (newvd->vdev_asize < vdev_get_min_asize(min_vdev))
7436 return (spa_vdev_exit(spa, newrootvd, txg, EOVERFLOW));
7437
7438 /*
7439 * The new device cannot have a higher alignment requirement
7440 * than the top-level vdev.
7441 */
7442 if (newvd->vdev_ashift > oldvd->vdev_top->vdev_ashift)
7443 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
7444
7445 /*
7446 * RAIDZ-expansion-specific checks.
7447 */
7448 if (raidz) {
7449 if (vdev_raidz_attach_check(newvd) != 0)
7450 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
7451
7452 /*
7453 * Fail early if a child is not healthy or being replaced
7454 */
7455 for (int i = 0; i < oldvd->vdev_children; i++) {
7456 if (vdev_is_dead(oldvd->vdev_child[i]) ||
7457 !oldvd->vdev_child[i]->vdev_ops->vdev_op_leaf) {
7458 return (spa_vdev_exit(spa, newrootvd, txg,
7459 ENXIO));
7460 }
7461 /* Also fail if reserved boot area is in-use */
7462 if (vdev_check_boot_reserve(spa, oldvd->vdev_child[i])
7463 != 0) {
7464 return (spa_vdev_exit(spa, newrootvd, txg,
7465 EADDRINUSE));
7466 }
7467 }
7468 }
7469
7470 if (raidz) {
7471 /*
7472 * Note: oldvdpath is freed by spa_strfree(), but
7473 * kmem_asprintf() is freed by kmem_strfree(), so we have to
7474 * move it to a spa_strdup-ed string.
7475 */
7476 char *tmp = kmem_asprintf("raidz%u-%u",
7477 (uint_t)vdev_get_nparity(oldvd), (uint_t)oldvd->vdev_id);
7478 oldvdpath = spa_strdup(tmp);
7479 kmem_strfree(tmp);
7480 } else {
7481 oldvdpath = spa_strdup(oldvd->vdev_path);
7482 }
7483 newvdpath = spa_strdup(newvd->vdev_path);
7484
7485 /*
7486 * If this is an in-place replacement, update oldvd's path and devid
7487 * to make it distinguishable from newvd, and unopenable from now on.
7488 */
7489 if (strcmp(oldvdpath, newvdpath) == 0) {
7490 spa_strfree(oldvd->vdev_path);
7491 oldvd->vdev_path = kmem_alloc(strlen(newvdpath) + 5,
7492 KM_SLEEP);
7493 (void) sprintf(oldvd->vdev_path, "%s/old",
7494 newvdpath);
7495 if (oldvd->vdev_devid != NULL) {
7496 spa_strfree(oldvd->vdev_devid);
7497 oldvd->vdev_devid = NULL;
7498 }
7499 spa_strfree(oldvdpath);
7500 oldvdpath = spa_strdup(oldvd->vdev_path);
7501 }
7502
7503 /*
7504 * If the parent is not a mirror, or if we're replacing, insert the new
7505 * mirror/replacing/spare vdev above oldvd.
7506 */
7507 if (!raidz && pvd->vdev_ops != pvops) {
7508 pvd = vdev_add_parent(oldvd, pvops);
7509 ASSERT(pvd->vdev_ops == pvops);
7510 ASSERT(oldvd->vdev_parent == pvd);
7511 }
7512
7513 ASSERT(pvd->vdev_top->vdev_parent == rvd);
7514
7515 /*
7516 * Extract the new device from its root and add it to pvd.
7517 */
7518 vdev_remove_child(newrootvd, newvd);
7519 newvd->vdev_id = pvd->vdev_children;
7520 newvd->vdev_crtxg = oldvd->vdev_crtxg;
7521 vdev_add_child(pvd, newvd);
7522
7523 /*
7524 * Reevaluate the parent vdev state.
7525 */
7526 vdev_propagate_state(pvd);
7527
7528 tvd = newvd->vdev_top;
7529 ASSERT(pvd->vdev_top == tvd);
7530 ASSERT(tvd->vdev_parent == rvd);
7531
7532 vdev_config_dirty(tvd);
7533
7534 /*
7535 * Set newvd's DTL to [TXG_INITIAL, dtl_max_txg) so that we account
7536 * for any dmu_sync-ed blocks. It will propagate upward when
7537 * spa_vdev_exit() calls vdev_dtl_reassess().
7538 */
7539 dtl_max_txg = txg + TXG_CONCURRENT_STATES;
7540
7541 if (raidz) {
7542 /*
7543 * Wait for the youngest allocations and frees to sync,
7544 * and then wait for the deferral of those frees to finish.
7545 */
7546 spa_vdev_config_exit(spa, NULL,
7547 txg + TXG_CONCURRENT_STATES + TXG_DEFER_SIZE, 0, FTAG);
7548
7549 vdev_initialize_stop_all(tvd, VDEV_INITIALIZE_ACTIVE);
7550 vdev_trim_stop_all(tvd, VDEV_TRIM_ACTIVE);
7551 vdev_autotrim_stop_wait(tvd);
7552
7553 dtl_max_txg = spa_vdev_config_enter(spa);
7554
7555 tvd->vdev_rz_expanding = B_TRUE;
7556
7557 vdev_dirty_leaves(tvd, VDD_DTL, dtl_max_txg);
7558 vdev_config_dirty(tvd);
7559
7560 dmu_tx_t *tx = dmu_tx_create_assigned(spa->spa_dsl_pool,
7561 dtl_max_txg);
7562 dsl_sync_task_nowait(spa->spa_dsl_pool, vdev_raidz_attach_sync,
7563 newvd, tx);
7564 dmu_tx_commit(tx);
7565 } else {
7566 vdev_dtl_dirty(newvd, DTL_MISSING, TXG_INITIAL,
7567 dtl_max_txg - TXG_INITIAL);
7568
7569 if (newvd->vdev_isspare) {
7570 spa_spare_activate(newvd);
7571 spa_event_notify(spa, newvd, NULL, ESC_ZFS_VDEV_SPARE);
7572 }
7573
7574 newvd_isspare = newvd->vdev_isspare;
7575
7576 /*
7577 * Mark newvd's DTL dirty in this txg.
7578 */
7579 vdev_dirty(tvd, VDD_DTL, newvd, txg);
7580
7581 /*
7582 * Schedule the resilver or rebuild to restart in the future.
7583 * We do this to ensure that dmu_sync-ed blocks have been
7584 * stitched into the respective datasets.
7585 */
7586 if (rebuild) {
7587 newvd->vdev_rebuild_txg = txg;
7588
7589 vdev_rebuild(tvd);
7590 } else {
7591 newvd->vdev_resilver_txg = txg;
7592
7593 if (dsl_scan_resilvering(spa_get_dsl(spa)) &&
7594 spa_feature_is_enabled(spa,
7595 SPA_FEATURE_RESILVER_DEFER)) {
7596 vdev_defer_resilver(newvd);
7597 } else {
7598 dsl_scan_restart_resilver(spa->spa_dsl_pool,
7599 dtl_max_txg);
7600 }
7601 }
7602 }
7603
7604 if (spa->spa_bootfs)
7605 spa_event_notify(spa, newvd, NULL, ESC_ZFS_BOOTFS_VDEV_ATTACH);
7606
7607 spa_event_notify(spa, newvd, NULL, ESC_ZFS_VDEV_ATTACH);
7608
7609 /*
7610 * Commit the config
7611 */
7612 (void) spa_vdev_exit(spa, newrootvd, dtl_max_txg, 0);
7613
7614 spa_history_log_internal(spa, "vdev attach", NULL,
7615 "%s vdev=%s %s vdev=%s",
7616 replacing && newvd_isspare ? "spare in" :
7617 replacing ? "replace" : "attach", newvdpath,
7618 replacing ? "for" : "to", oldvdpath);
7619
7620 spa_strfree(oldvdpath);
7621 spa_strfree(newvdpath);
7622
7623 return (0);
7624 }
7625
7626 /*
7627 * Detach a device from a mirror or replacing vdev.
7628 *
7629 * If 'replace_done' is specified, only detach if the parent
7630 * is a replacing or a spare vdev.
7631 */
7632 int
7633 spa_vdev_detach(spa_t *spa, uint64_t guid, uint64_t pguid, int replace_done)
7634 {
7635 uint64_t txg;
7636 int error;
7637 vdev_t *rvd __maybe_unused = spa->spa_root_vdev;
7638 vdev_t *vd, *pvd, *cvd, *tvd;
7639 boolean_t unspare = B_FALSE;
7640 uint64_t unspare_guid = 0;
7641 char *vdpath;
7642
7643 ASSERT(spa_writeable(spa));
7644
7645 txg = spa_vdev_detach_enter(spa, guid);
7646
7647 vd = spa_lookup_by_guid(spa, guid, B_FALSE);
7648
7649 /*
7650 * Besides being called directly from the userland through the
7651 * ioctl interface, spa_vdev_detach() can be potentially called
7652 * at the end of spa_vdev_resilver_done().
7653 *
7654 * In the regular case, when we have a checkpoint this shouldn't
7655 * happen as we never empty the DTLs of a vdev during the scrub
7656 * [see comment in dsl_scan_done()]. Thus spa_vdev_resilvering_done()
7657 * should never get here when we have a checkpoint.
7658 *
7659 * That said, even in a case when we checkpoint the pool exactly
7660 * as spa_vdev_resilver_done() calls this function everything
7661 * should be fine as the resilver will return right away.
7662 */
7663 ASSERT(MUTEX_HELD(&spa_namespace_lock));
7664 if (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) {
7665 error = (spa_has_checkpoint(spa)) ?
7666 ZFS_ERR_CHECKPOINT_EXISTS : ZFS_ERR_DISCARDING_CHECKPOINT;
7667 return (spa_vdev_exit(spa, NULL, txg, error));
7668 }
7669
7670 if (vd == NULL)
7671 return (spa_vdev_exit(spa, NULL, txg, ENODEV));
7672
7673 if (!vd->vdev_ops->vdev_op_leaf)
7674 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
7675
7676 pvd = vd->vdev_parent;
7677
7678 /*
7679 * If the parent/child relationship is not as expected, don't do it.
7680 * Consider M(A,R(B,C)) -- that is, a mirror of A with a replacing
7681 * vdev that's replacing B with C. The user's intent in replacing
7682 * is to go from M(A,B) to M(A,C). If the user decides to cancel
7683 * the replace by detaching C, the expected behavior is to end up
7684 * M(A,B). But suppose that right after deciding to detach C,
7685 * the replacement of B completes. We would have M(A,C), and then
7686 * ask to detach C, which would leave us with just A -- not what
7687 * the user wanted. To prevent this, we make sure that the
7688 * parent/child relationship hasn't changed -- in this example,
7689 * that C's parent is still the replacing vdev R.
7690 */
7691 if (pvd->vdev_guid != pguid && pguid != 0)
7692 return (spa_vdev_exit(spa, NULL, txg, EBUSY));
7693
7694 /*
7695 * Only 'replacing' or 'spare' vdevs can be replaced.
7696 */
7697 if (replace_done && pvd->vdev_ops != &vdev_replacing_ops &&
7698 pvd->vdev_ops != &vdev_spare_ops)
7699 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
7700
7701 ASSERT(pvd->vdev_ops != &vdev_spare_ops ||
7702 spa_version(spa) >= SPA_VERSION_SPARES);
7703
7704 /*
7705 * Only mirror, replacing, and spare vdevs support detach.
7706 */
7707 if (pvd->vdev_ops != &vdev_replacing_ops &&
7708 pvd->vdev_ops != &vdev_mirror_ops &&
7709 pvd->vdev_ops != &vdev_spare_ops)
7710 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
7711
7712 /*
7713 * If this device has the only valid copy of some data,
7714 * we cannot safely detach it.
7715 */
7716 if (vdev_dtl_required(vd))
7717 return (spa_vdev_exit(spa, NULL, txg, EBUSY));
7718
7719 ASSERT(pvd->vdev_children >= 2);
7720
7721 /*
7722 * If we are detaching the second disk from a replacing vdev, then
7723 * check to see if we changed the original vdev's path to have "/old"
7724 * at the end in spa_vdev_attach(). If so, undo that change now.
7725 */
7726 if (pvd->vdev_ops == &vdev_replacing_ops && vd->vdev_id > 0 &&
7727 vd->vdev_path != NULL) {
7728 size_t len = strlen(vd->vdev_path);
7729
7730 for (int c = 0; c < pvd->vdev_children; c++) {
7731 cvd = pvd->vdev_child[c];
7732
7733 if (cvd == vd || cvd->vdev_path == NULL)
7734 continue;
7735
7736 if (strncmp(cvd->vdev_path, vd->vdev_path, len) == 0 &&
7737 strcmp(cvd->vdev_path + len, "/old") == 0) {
7738 spa_strfree(cvd->vdev_path);
7739 cvd->vdev_path = spa_strdup(vd->vdev_path);
7740 break;
7741 }
7742 }
7743 }
7744
7745 /*
7746 * If we are detaching the original disk from a normal spare, then it
7747 * implies that the spare should become a real disk, and be removed
7748 * from the active spare list for the pool. dRAID spares on the
7749 * other hand are coupled to the pool and thus should never be removed
7750 * from the spares list.
7751 */
7752 if (pvd->vdev_ops == &vdev_spare_ops && vd->vdev_id == 0) {
7753 vdev_t *last_cvd = pvd->vdev_child[pvd->vdev_children - 1];
7754
7755 if (last_cvd->vdev_isspare &&
7756 last_cvd->vdev_ops != &vdev_draid_spare_ops) {
7757 unspare = B_TRUE;
7758 }
7759 }
7760
7761 /*
7762 * Erase the disk labels so the disk can be used for other things.
7763 * This must be done after all other error cases are handled,
7764 * but before we disembowel vd (so we can still do I/O to it).
7765 * But if we can't do it, don't treat the error as fatal --
7766 * it may be that the unwritability of the disk is the reason
7767 * it's being detached!
7768 */
7769 (void) vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
7770
7771 /*
7772 * Remove vd from its parent and compact the parent's children.
7773 */
7774 vdev_remove_child(pvd, vd);
7775 vdev_compact_children(pvd);
7776
7777 /*
7778 * Remember one of the remaining children so we can get tvd below.
7779 */
7780 cvd = pvd->vdev_child[pvd->vdev_children - 1];
7781
7782 /*
7783 * If we need to remove the remaining child from the list of hot spares,
7784 * do it now, marking the vdev as no longer a spare in the process.
7785 * We must do this before vdev_remove_parent(), because that can
7786 * change the GUID if it creates a new toplevel GUID. For a similar
7787 * reason, we must remove the spare now, in the same txg as the detach;
7788 * otherwise someone could attach a new sibling, change the GUID, and
7789 * the subsequent attempt to spa_vdev_remove(unspare_guid) would fail.
7790 */
7791 if (unspare) {
7792 ASSERT(cvd->vdev_isspare);
7793 spa_spare_remove(cvd);
7794 unspare_guid = cvd->vdev_guid;
7795 (void) spa_vdev_remove(spa, unspare_guid, B_TRUE);
7796 cvd->vdev_unspare = B_TRUE;
7797 }
7798
7799 /*
7800 * If the parent mirror/replacing vdev only has one child,
7801 * the parent is no longer needed. Remove it from the tree.
7802 */
7803 if (pvd->vdev_children == 1) {
7804 if (pvd->vdev_ops == &vdev_spare_ops)
7805 cvd->vdev_unspare = B_FALSE;
7806 vdev_remove_parent(cvd);
7807 }
7808
7809 /*
7810 * We don't set tvd until now because the parent we just removed
7811 * may have been the previous top-level vdev.
7812 */
7813 tvd = cvd->vdev_top;
7814 ASSERT(tvd->vdev_parent == rvd);
7815
7816 /*
7817 * Reevaluate the parent vdev state.
7818 */
7819 vdev_propagate_state(cvd);
7820
7821 /*
7822 * If the 'autoexpand' property is set on the pool then automatically
7823 * try to expand the size of the pool. For example if the device we
7824 * just detached was smaller than the others, it may be possible to
7825 * add metaslabs (i.e. grow the pool). We need to reopen the vdev
7826 * first so that we can obtain the updated sizes of the leaf vdevs.
7827 */
7828 if (spa->spa_autoexpand) {
7829 vdev_reopen(tvd);
7830 vdev_expand(tvd, txg);
7831 }
7832
7833 vdev_config_dirty(tvd);
7834
7835 /*
7836 * Mark vd's DTL as dirty in this txg. vdev_dtl_sync() will see that
7837 * vd->vdev_detached is set and free vd's DTL object in syncing context.
7838 * But first make sure we're not on any *other* txg's DTL list, to
7839 * prevent vd from being accessed after it's freed.
7840 */
7841 vdpath = spa_strdup(vd->vdev_path ? vd->vdev_path : "none");
7842 for (int t = 0; t < TXG_SIZE; t++)
7843 (void) txg_list_remove_this(&tvd->vdev_dtl_list, vd, t);
7844 vd->vdev_detached = B_TRUE;
7845 vdev_dirty(tvd, VDD_DTL, vd, txg);
7846
7847 spa_event_notify(spa, vd, NULL, ESC_ZFS_VDEV_REMOVE);
7848 spa_notify_waiters(spa);
7849
7850 /* hang on to the spa before we release the lock */
7851 spa_open_ref(spa, FTAG);
7852
7853 error = spa_vdev_exit(spa, vd, txg, 0);
7854
7855 spa_history_log_internal(spa, "detach", NULL,
7856 "vdev=%s", vdpath);
7857 spa_strfree(vdpath);
7858
7859 /*
7860 * If this was the removal of the original device in a hot spare vdev,
7861 * then we want to go through and remove the device from the hot spare
7862 * list of every other pool.
7863 */
7864 if (unspare) {
7865 spa_t *altspa = NULL;
7866
7867 mutex_enter(&spa_namespace_lock);
7868 while ((altspa = spa_next(altspa)) != NULL) {
7869 if (altspa->spa_state != POOL_STATE_ACTIVE ||
7870 altspa == spa)
7871 continue;
7872
7873 spa_open_ref(altspa, FTAG);
7874 mutex_exit(&spa_namespace_lock);
7875 (void) spa_vdev_remove(altspa, unspare_guid, B_TRUE);
7876 mutex_enter(&spa_namespace_lock);
7877 spa_close(altspa, FTAG);
7878 }
7879 mutex_exit(&spa_namespace_lock);
7880
7881 /* search the rest of the vdevs for spares to remove */
7882 spa_vdev_resilver_done(spa);
7883 }
7884
7885 /* all done with the spa; OK to release */
7886 mutex_enter(&spa_namespace_lock);
7887 spa_close(spa, FTAG);
7888 mutex_exit(&spa_namespace_lock);
7889
7890 return (error);
7891 }
7892
7893 static int
7894 spa_vdev_initialize_impl(spa_t *spa, uint64_t guid, uint64_t cmd_type,
7895 list_t *vd_list)
7896 {
7897 ASSERT(MUTEX_HELD(&spa_namespace_lock));
7898
7899 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
7900
7901 /* Look up vdev and ensure it's a leaf. */
7902 vdev_t *vd = spa_lookup_by_guid(spa, guid, B_FALSE);
7903 if (vd == NULL || vd->vdev_detached) {
7904 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
7905 return (SET_ERROR(ENODEV));
7906 } else if (!vd->vdev_ops->vdev_op_leaf || !vdev_is_concrete(vd)) {
7907 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
7908 return (SET_ERROR(EINVAL));
7909 } else if (!vdev_writeable(vd)) {
7910 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
7911 return (SET_ERROR(EROFS));
7912 }
7913 mutex_enter(&vd->vdev_initialize_lock);
7914 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
7915
7916 /*
7917 * When we activate an initialize action we check to see
7918 * if the vdev_initialize_thread is NULL. We do this instead
7919 * of using the vdev_initialize_state since there might be
7920 * a previous initialization process which has completed but
7921 * the thread is not exited.
7922 */
7923 if (cmd_type == POOL_INITIALIZE_START &&
7924 (vd->vdev_initialize_thread != NULL ||
7925 vd->vdev_top->vdev_removing || vd->vdev_top->vdev_rz_expanding)) {
7926 mutex_exit(&vd->vdev_initialize_lock);
7927 return (SET_ERROR(EBUSY));
7928 } else if (cmd_type == POOL_INITIALIZE_CANCEL &&
7929 (vd->vdev_initialize_state != VDEV_INITIALIZE_ACTIVE &&
7930 vd->vdev_initialize_state != VDEV_INITIALIZE_SUSPENDED)) {
7931 mutex_exit(&vd->vdev_initialize_lock);
7932 return (SET_ERROR(ESRCH));
7933 } else if (cmd_type == POOL_INITIALIZE_SUSPEND &&
7934 vd->vdev_initialize_state != VDEV_INITIALIZE_ACTIVE) {
7935 mutex_exit(&vd->vdev_initialize_lock);
7936 return (SET_ERROR(ESRCH));
7937 } else if (cmd_type == POOL_INITIALIZE_UNINIT &&
7938 vd->vdev_initialize_thread != NULL) {
7939 mutex_exit(&vd->vdev_initialize_lock);
7940 return (SET_ERROR(EBUSY));
7941 }
7942
7943 switch (cmd_type) {
7944 case POOL_INITIALIZE_START:
7945 vdev_initialize(vd);
7946 break;
7947 case POOL_INITIALIZE_CANCEL:
7948 vdev_initialize_stop(vd, VDEV_INITIALIZE_CANCELED, vd_list);
7949 break;
7950 case POOL_INITIALIZE_SUSPEND:
7951 vdev_initialize_stop(vd, VDEV_INITIALIZE_SUSPENDED, vd_list);
7952 break;
7953 case POOL_INITIALIZE_UNINIT:
7954 vdev_uninitialize(vd);
7955 break;
7956 default:
7957 panic("invalid cmd_type %llu", (unsigned long long)cmd_type);
7958 }
7959 mutex_exit(&vd->vdev_initialize_lock);
7960
7961 return (0);
7962 }
7963
7964 int
7965 spa_vdev_initialize(spa_t *spa, nvlist_t *nv, uint64_t cmd_type,
7966 nvlist_t *vdev_errlist)
7967 {
7968 int total_errors = 0;
7969 list_t vd_list;
7970
7971 list_create(&vd_list, sizeof (vdev_t),
7972 offsetof(vdev_t, vdev_initialize_node));
7973
7974 /*
7975 * We hold the namespace lock through the whole function
7976 * to prevent any changes to the pool while we're starting or
7977 * stopping initialization. The config and state locks are held so that
7978 * we can properly assess the vdev state before we commit to
7979 * the initializing operation.
7980 */
7981 mutex_enter(&spa_namespace_lock);
7982
7983 for (nvpair_t *pair = nvlist_next_nvpair(nv, NULL);
7984 pair != NULL; pair = nvlist_next_nvpair(nv, pair)) {
7985 uint64_t vdev_guid = fnvpair_value_uint64(pair);
7986
7987 int error = spa_vdev_initialize_impl(spa, vdev_guid, cmd_type,
7988 &vd_list);
7989 if (error != 0) {
7990 char guid_as_str[MAXNAMELEN];
7991
7992 (void) snprintf(guid_as_str, sizeof (guid_as_str),
7993 "%llu", (unsigned long long)vdev_guid);
7994 fnvlist_add_int64(vdev_errlist, guid_as_str, error);
7995 total_errors++;
7996 }
7997 }
7998
7999 /* Wait for all initialize threads to stop. */
8000 vdev_initialize_stop_wait(spa, &vd_list);
8001
8002 /* Sync out the initializing state */
8003 txg_wait_synced(spa->spa_dsl_pool, 0);
8004 mutex_exit(&spa_namespace_lock);
8005
8006 list_destroy(&vd_list);
8007
8008 return (total_errors);
8009 }
8010
8011 static int
8012 spa_vdev_trim_impl(spa_t *spa, uint64_t guid, uint64_t cmd_type,
8013 uint64_t rate, boolean_t partial, boolean_t secure, list_t *vd_list)
8014 {
8015 ASSERT(MUTEX_HELD(&spa_namespace_lock));
8016
8017 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
8018
8019 /* Look up vdev and ensure it's a leaf. */
8020 vdev_t *vd = spa_lookup_by_guid(spa, guid, B_FALSE);
8021 if (vd == NULL || vd->vdev_detached) {
8022 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
8023 return (SET_ERROR(ENODEV));
8024 } else if (!vd->vdev_ops->vdev_op_leaf || !vdev_is_concrete(vd)) {
8025 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
8026 return (SET_ERROR(EINVAL));
8027 } else if (!vdev_writeable(vd)) {
8028 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
8029 return (SET_ERROR(EROFS));
8030 } else if (!vd->vdev_has_trim) {
8031 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
8032 return (SET_ERROR(EOPNOTSUPP));
8033 } else if (secure && !vd->vdev_has_securetrim) {
8034 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
8035 return (SET_ERROR(EOPNOTSUPP));
8036 }
8037 mutex_enter(&vd->vdev_trim_lock);
8038 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
8039
8040 /*
8041 * When we activate a TRIM action we check to see if the
8042 * vdev_trim_thread is NULL. We do this instead of using the
8043 * vdev_trim_state since there might be a previous TRIM process
8044 * which has completed but the thread is not exited.
8045 */
8046 if (cmd_type == POOL_TRIM_START &&
8047 (vd->vdev_trim_thread != NULL || vd->vdev_top->vdev_removing ||
8048 vd->vdev_top->vdev_rz_expanding)) {
8049 mutex_exit(&vd->vdev_trim_lock);
8050 return (SET_ERROR(EBUSY));
8051 } else if (cmd_type == POOL_TRIM_CANCEL &&
8052 (vd->vdev_trim_state != VDEV_TRIM_ACTIVE &&
8053 vd->vdev_trim_state != VDEV_TRIM_SUSPENDED)) {
8054 mutex_exit(&vd->vdev_trim_lock);
8055 return (SET_ERROR(ESRCH));
8056 } else if (cmd_type == POOL_TRIM_SUSPEND &&
8057 vd->vdev_trim_state != VDEV_TRIM_ACTIVE) {
8058 mutex_exit(&vd->vdev_trim_lock);
8059 return (SET_ERROR(ESRCH));
8060 }
8061
8062 switch (cmd_type) {
8063 case POOL_TRIM_START:
8064 vdev_trim(vd, rate, partial, secure);
8065 break;
8066 case POOL_TRIM_CANCEL:
8067 vdev_trim_stop(vd, VDEV_TRIM_CANCELED, vd_list);
8068 break;
8069 case POOL_TRIM_SUSPEND:
8070 vdev_trim_stop(vd, VDEV_TRIM_SUSPENDED, vd_list);
8071 break;
8072 default:
8073 panic("invalid cmd_type %llu", (unsigned long long)cmd_type);
8074 }
8075 mutex_exit(&vd->vdev_trim_lock);
8076
8077 return (0);
8078 }
8079
8080 /*
8081 * Initiates a manual TRIM for the requested vdevs. This kicks off individual
8082 * TRIM threads for each child vdev. These threads pass over all of the free
8083 * space in the vdev's metaslabs and issues TRIM commands for that space.
8084 */
8085 int
8086 spa_vdev_trim(spa_t *spa, nvlist_t *nv, uint64_t cmd_type, uint64_t rate,
8087 boolean_t partial, boolean_t secure, nvlist_t *vdev_errlist)
8088 {
8089 int total_errors = 0;
8090 list_t vd_list;
8091
8092 list_create(&vd_list, sizeof (vdev_t),
8093 offsetof(vdev_t, vdev_trim_node));
8094
8095 /*
8096 * We hold the namespace lock through the whole function
8097 * to prevent any changes to the pool while we're starting or
8098 * stopping TRIM. The config and state locks are held so that
8099 * we can properly assess the vdev state before we commit to
8100 * the TRIM operation.
8101 */
8102 mutex_enter(&spa_namespace_lock);
8103
8104 for (nvpair_t *pair = nvlist_next_nvpair(nv, NULL);
8105 pair != NULL; pair = nvlist_next_nvpair(nv, pair)) {
8106 uint64_t vdev_guid = fnvpair_value_uint64(pair);
8107
8108 int error = spa_vdev_trim_impl(spa, vdev_guid, cmd_type,
8109 rate, partial, secure, &vd_list);
8110 if (error != 0) {
8111 char guid_as_str[MAXNAMELEN];
8112
8113 (void) snprintf(guid_as_str, sizeof (guid_as_str),
8114 "%llu", (unsigned long long)vdev_guid);
8115 fnvlist_add_int64(vdev_errlist, guid_as_str, error);
8116 total_errors++;
8117 }
8118 }
8119
8120 /* Wait for all TRIM threads to stop. */
8121 vdev_trim_stop_wait(spa, &vd_list);
8122
8123 /* Sync out the TRIM state */
8124 txg_wait_synced(spa->spa_dsl_pool, 0);
8125 mutex_exit(&spa_namespace_lock);
8126
8127 list_destroy(&vd_list);
8128
8129 return (total_errors);
8130 }
8131
8132 /*
8133 * Split a set of devices from their mirrors, and create a new pool from them.
8134 */
8135 int
8136 spa_vdev_split_mirror(spa_t *spa, const char *newname, nvlist_t *config,
8137 nvlist_t *props, boolean_t exp)
8138 {
8139 int error = 0;
8140 uint64_t txg, *glist;
8141 spa_t *newspa;
8142 uint_t c, children, lastlog;
8143 nvlist_t **child, *nvl, *tmp;
8144 dmu_tx_t *tx;
8145 const char *altroot = NULL;
8146 vdev_t *rvd, **vml = NULL; /* vdev modify list */
8147 boolean_t activate_slog;
8148
8149 ASSERT(spa_writeable(spa));
8150
8151 txg = spa_vdev_enter(spa);
8152
8153 ASSERT(MUTEX_HELD(&spa_namespace_lock));
8154 if (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) {
8155 error = (spa_has_checkpoint(spa)) ?
8156 ZFS_ERR_CHECKPOINT_EXISTS : ZFS_ERR_DISCARDING_CHECKPOINT;
8157 return (spa_vdev_exit(spa, NULL, txg, error));
8158 }
8159
8160 /* clear the log and flush everything up to now */
8161 activate_slog = spa_passivate_log(spa);
8162 (void) spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
8163 error = spa_reset_logs(spa);
8164 txg = spa_vdev_config_enter(spa);
8165
8166 if (activate_slog)
8167 spa_activate_log(spa);
8168
8169 if (error != 0)
8170 return (spa_vdev_exit(spa, NULL, txg, error));
8171
8172 /* check new spa name before going any further */
8173 if (spa_lookup(newname) != NULL)
8174 return (spa_vdev_exit(spa, NULL, txg, EEXIST));
8175
8176 /*
8177 * scan through all the children to ensure they're all mirrors
8178 */
8179 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvl) != 0 ||
8180 nvlist_lookup_nvlist_array(nvl, ZPOOL_CONFIG_CHILDREN, &child,
8181 &children) != 0)
8182 return (spa_vdev_exit(spa, NULL, txg, EINVAL));
8183
8184 /* first, check to ensure we've got the right child count */
8185 rvd = spa->spa_root_vdev;
8186 lastlog = 0;
8187 for (c = 0; c < rvd->vdev_children; c++) {
8188 vdev_t *vd = rvd->vdev_child[c];
8189
8190 /* don't count the holes & logs as children */
8191 if (vd->vdev_islog || (vd->vdev_ops != &vdev_indirect_ops &&
8192 !vdev_is_concrete(vd))) {
8193 if (lastlog == 0)
8194 lastlog = c;
8195 continue;
8196 }
8197
8198 lastlog = 0;
8199 }
8200 if (children != (lastlog != 0 ? lastlog : rvd->vdev_children))
8201 return (spa_vdev_exit(spa, NULL, txg, EINVAL));
8202
8203 /* next, ensure no spare or cache devices are part of the split */
8204 if (nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_SPARES, &tmp) == 0 ||
8205 nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_L2CACHE, &tmp) == 0)
8206 return (spa_vdev_exit(spa, NULL, txg, EINVAL));
8207
8208 vml = kmem_zalloc(children * sizeof (vdev_t *), KM_SLEEP);
8209 glist = kmem_zalloc(children * sizeof (uint64_t), KM_SLEEP);
8210
8211 /* then, loop over each vdev and validate it */
8212 for (c = 0; c < children; c++) {
8213 uint64_t is_hole = 0;
8214
8215 (void) nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_IS_HOLE,
8216 &is_hole);
8217
8218 if (is_hole != 0) {
8219 if (spa->spa_root_vdev->vdev_child[c]->vdev_ishole ||
8220 spa->spa_root_vdev->vdev_child[c]->vdev_islog) {
8221 continue;
8222 } else {
8223 error = SET_ERROR(EINVAL);
8224 break;
8225 }
8226 }
8227
8228 /* deal with indirect vdevs */
8229 if (spa->spa_root_vdev->vdev_child[c]->vdev_ops ==
8230 &vdev_indirect_ops)
8231 continue;
8232
8233 /* which disk is going to be split? */
8234 if (nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_GUID,
8235 &glist[c]) != 0) {
8236 error = SET_ERROR(EINVAL);
8237 break;
8238 }
8239
8240 /* look it up in the spa */
8241 vml[c] = spa_lookup_by_guid(spa, glist[c], B_FALSE);
8242 if (vml[c] == NULL) {
8243 error = SET_ERROR(ENODEV);
8244 break;
8245 }
8246
8247 /* make sure there's nothing stopping the split */
8248 if (vml[c]->vdev_parent->vdev_ops != &vdev_mirror_ops ||
8249 vml[c]->vdev_islog ||
8250 !vdev_is_concrete(vml[c]) ||
8251 vml[c]->vdev_isspare ||
8252 vml[c]->vdev_isl2cache ||
8253 !vdev_writeable(vml[c]) ||
8254 vml[c]->vdev_children != 0 ||
8255 vml[c]->vdev_state != VDEV_STATE_HEALTHY ||
8256 c != spa->spa_root_vdev->vdev_child[c]->vdev_id) {
8257 error = SET_ERROR(EINVAL);
8258 break;
8259 }
8260
8261 if (vdev_dtl_required(vml[c]) ||
8262 vdev_resilver_needed(vml[c], NULL, NULL)) {
8263 error = SET_ERROR(EBUSY);
8264 break;
8265 }
8266
8267 /* we need certain info from the top level */
8268 fnvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_ARRAY,
8269 vml[c]->vdev_top->vdev_ms_array);
8270 fnvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_SHIFT,
8271 vml[c]->vdev_top->vdev_ms_shift);
8272 fnvlist_add_uint64(child[c], ZPOOL_CONFIG_ASIZE,
8273 vml[c]->vdev_top->vdev_asize);
8274 fnvlist_add_uint64(child[c], ZPOOL_CONFIG_ASHIFT,
8275 vml[c]->vdev_top->vdev_ashift);
8276
8277 /* transfer per-vdev ZAPs */
8278 ASSERT3U(vml[c]->vdev_leaf_zap, !=, 0);
8279 VERIFY0(nvlist_add_uint64(child[c],
8280 ZPOOL_CONFIG_VDEV_LEAF_ZAP, vml[c]->vdev_leaf_zap));
8281
8282 ASSERT3U(vml[c]->vdev_top->vdev_top_zap, !=, 0);
8283 VERIFY0(nvlist_add_uint64(child[c],
8284 ZPOOL_CONFIG_VDEV_TOP_ZAP,
8285 vml[c]->vdev_parent->vdev_top_zap));
8286 }
8287
8288 if (error != 0) {
8289 kmem_free(vml, children * sizeof (vdev_t *));
8290 kmem_free(glist, children * sizeof (uint64_t));
8291 return (spa_vdev_exit(spa, NULL, txg, error));
8292 }
8293
8294 /* stop writers from using the disks */
8295 for (c = 0; c < children; c++) {
8296 if (vml[c] != NULL)
8297 vml[c]->vdev_offline = B_TRUE;
8298 }
8299 vdev_reopen(spa->spa_root_vdev);
8300
8301 /*
8302 * Temporarily record the splitting vdevs in the spa config. This
8303 * will disappear once the config is regenerated.
8304 */
8305 nvl = fnvlist_alloc();
8306 fnvlist_add_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST, glist, children);
8307 kmem_free(glist, children * sizeof (uint64_t));
8308
8309 mutex_enter(&spa->spa_props_lock);
8310 fnvlist_add_nvlist(spa->spa_config, ZPOOL_CONFIG_SPLIT, nvl);
8311 mutex_exit(&spa->spa_props_lock);
8312 spa->spa_config_splitting = nvl;
8313 vdev_config_dirty(spa->spa_root_vdev);
8314
8315 /* configure and create the new pool */
8316 fnvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME, newname);
8317 fnvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
8318 exp ? POOL_STATE_EXPORTED : POOL_STATE_ACTIVE);
8319 fnvlist_add_uint64(config, ZPOOL_CONFIG_VERSION, spa_version(spa));
8320 fnvlist_add_uint64(config, ZPOOL_CONFIG_POOL_TXG, spa->spa_config_txg);
8321 fnvlist_add_uint64(config, ZPOOL_CONFIG_POOL_GUID,
8322 spa_generate_guid(NULL));
8323 VERIFY0(nvlist_add_boolean(config, ZPOOL_CONFIG_HAS_PER_VDEV_ZAPS));
8324 (void) nvlist_lookup_string(props,
8325 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
8326
8327 /* add the new pool to the namespace */
8328 newspa = spa_add(newname, config, altroot);
8329 newspa->spa_avz_action = AVZ_ACTION_REBUILD;
8330 newspa->spa_config_txg = spa->spa_config_txg;
8331 spa_set_log_state(newspa, SPA_LOG_CLEAR);
8332
8333 /* release the spa config lock, retaining the namespace lock */
8334 spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
8335
8336 if (zio_injection_enabled)
8337 zio_handle_panic_injection(spa, FTAG, 1);
8338
8339 spa_activate(newspa, spa_mode_global);
8340 spa_async_suspend(newspa);
8341
8342 /*
8343 * Temporarily stop the initializing and TRIM activity. We set the
8344 * state to ACTIVE so that we know to resume initializing or TRIM
8345 * once the split has completed.
8346 */
8347 list_t vd_initialize_list;
8348 list_create(&vd_initialize_list, sizeof (vdev_t),
8349 offsetof(vdev_t, vdev_initialize_node));
8350
8351 list_t vd_trim_list;
8352 list_create(&vd_trim_list, sizeof (vdev_t),
8353 offsetof(vdev_t, vdev_trim_node));
8354
8355 for (c = 0; c < children; c++) {
8356 if (vml[c] != NULL && vml[c]->vdev_ops != &vdev_indirect_ops) {
8357 mutex_enter(&vml[c]->vdev_initialize_lock);
8358 vdev_initialize_stop(vml[c],
8359 VDEV_INITIALIZE_ACTIVE, &vd_initialize_list);
8360 mutex_exit(&vml[c]->vdev_initialize_lock);
8361
8362 mutex_enter(&vml[c]->vdev_trim_lock);
8363 vdev_trim_stop(vml[c], VDEV_TRIM_ACTIVE, &vd_trim_list);
8364 mutex_exit(&vml[c]->vdev_trim_lock);
8365 }
8366 }
8367
8368 vdev_initialize_stop_wait(spa, &vd_initialize_list);
8369 vdev_trim_stop_wait(spa, &vd_trim_list);
8370
8371 list_destroy(&vd_initialize_list);
8372 list_destroy(&vd_trim_list);
8373
8374 newspa->spa_config_source = SPA_CONFIG_SRC_SPLIT;
8375 newspa->spa_is_splitting = B_TRUE;
8376
8377 /* create the new pool from the disks of the original pool */
8378 error = spa_load(newspa, SPA_LOAD_IMPORT, SPA_IMPORT_ASSEMBLE);
8379 if (error)
8380 goto out;
8381
8382 /* if that worked, generate a real config for the new pool */
8383 if (newspa->spa_root_vdev != NULL) {
8384 newspa->spa_config_splitting = fnvlist_alloc();
8385 fnvlist_add_uint64(newspa->spa_config_splitting,
8386 ZPOOL_CONFIG_SPLIT_GUID, spa_guid(spa));
8387 spa_config_set(newspa, spa_config_generate(newspa, NULL, -1ULL,
8388 B_TRUE));
8389 }
8390
8391 /* set the props */
8392 if (props != NULL) {
8393 spa_configfile_set(newspa, props, B_FALSE);
8394 error = spa_prop_set(newspa, props);
8395 if (error)
8396 goto out;
8397 }
8398
8399 /* flush everything */
8400 txg = spa_vdev_config_enter(newspa);
8401 vdev_config_dirty(newspa->spa_root_vdev);
8402 (void) spa_vdev_config_exit(newspa, NULL, txg, 0, FTAG);
8403
8404 if (zio_injection_enabled)
8405 zio_handle_panic_injection(spa, FTAG, 2);
8406
8407 spa_async_resume(newspa);
8408
8409 /* finally, update the original pool's config */
8410 txg = spa_vdev_config_enter(spa);
8411 tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
8412 error = dmu_tx_assign(tx, TXG_WAIT);
8413 if (error != 0)
8414 dmu_tx_abort(tx);
8415 for (c = 0; c < children; c++) {
8416 if (vml[c] != NULL && vml[c]->vdev_ops != &vdev_indirect_ops) {
8417 vdev_t *tvd = vml[c]->vdev_top;
8418
8419 /*
8420 * Need to be sure the detachable VDEV is not
8421 * on any *other* txg's DTL list to prevent it
8422 * from being accessed after it's freed.
8423 */
8424 for (int t = 0; t < TXG_SIZE; t++) {
8425 (void) txg_list_remove_this(
8426 &tvd->vdev_dtl_list, vml[c], t);
8427 }
8428
8429 vdev_split(vml[c]);
8430 if (error == 0)
8431 spa_history_log_internal(spa, "detach", tx,
8432 "vdev=%s", vml[c]->vdev_path);
8433
8434 vdev_free(vml[c]);
8435 }
8436 }
8437 spa->spa_avz_action = AVZ_ACTION_REBUILD;
8438 vdev_config_dirty(spa->spa_root_vdev);
8439 spa->spa_config_splitting = NULL;
8440 nvlist_free(nvl);
8441 if (error == 0)
8442 dmu_tx_commit(tx);
8443 (void) spa_vdev_exit(spa, NULL, txg, 0);
8444
8445 if (zio_injection_enabled)
8446 zio_handle_panic_injection(spa, FTAG, 3);
8447
8448 /* split is complete; log a history record */
8449 spa_history_log_internal(newspa, "split", NULL,
8450 "from pool %s", spa_name(spa));
8451
8452 newspa->spa_is_splitting = B_FALSE;
8453 kmem_free(vml, children * sizeof (vdev_t *));
8454
8455 /* if we're not going to mount the filesystems in userland, export */
8456 if (exp)
8457 error = spa_export_common(newname, POOL_STATE_EXPORTED, NULL,
8458 B_FALSE, B_FALSE);
8459
8460 return (error);
8461
8462 out:
8463 spa_unload(newspa);
8464 spa_deactivate(newspa);
8465 spa_remove(newspa);
8466
8467 txg = spa_vdev_config_enter(spa);
8468
8469 /* re-online all offlined disks */
8470 for (c = 0; c < children; c++) {
8471 if (vml[c] != NULL)
8472 vml[c]->vdev_offline = B_FALSE;
8473 }
8474
8475 /* restart initializing or trimming disks as necessary */
8476 spa_async_request(spa, SPA_ASYNC_INITIALIZE_RESTART);
8477 spa_async_request(spa, SPA_ASYNC_TRIM_RESTART);
8478 spa_async_request(spa, SPA_ASYNC_AUTOTRIM_RESTART);
8479
8480 vdev_reopen(spa->spa_root_vdev);
8481
8482 nvlist_free(spa->spa_config_splitting);
8483 spa->spa_config_splitting = NULL;
8484 (void) spa_vdev_exit(spa, NULL, txg, error);
8485
8486 kmem_free(vml, children * sizeof (vdev_t *));
8487 return (error);
8488 }
8489
8490 /*
8491 * Find any device that's done replacing, or a vdev marked 'unspare' that's
8492 * currently spared, so we can detach it.
8493 */
8494 static vdev_t *
8495 spa_vdev_resilver_done_hunt(vdev_t *vd)
8496 {
8497 vdev_t *newvd, *oldvd;
8498
8499 for (int c = 0; c < vd->vdev_children; c++) {
8500 oldvd = spa_vdev_resilver_done_hunt(vd->vdev_child[c]);
8501 if (oldvd != NULL)
8502 return (oldvd);
8503 }
8504
8505 /*
8506 * Check for a completed replacement. We always consider the first
8507 * vdev in the list to be the oldest vdev, and the last one to be
8508 * the newest (see spa_vdev_attach() for how that works). In
8509 * the case where the newest vdev is faulted, we will not automatically
8510 * remove it after a resilver completes. This is OK as it will require
8511 * user intervention to determine which disk the admin wishes to keep.
8512 */
8513 if (vd->vdev_ops == &vdev_replacing_ops) {
8514 ASSERT(vd->vdev_children > 1);
8515
8516 newvd = vd->vdev_child[vd->vdev_children - 1];
8517 oldvd = vd->vdev_child[0];
8518
8519 if (vdev_dtl_empty(newvd, DTL_MISSING) &&
8520 vdev_dtl_empty(newvd, DTL_OUTAGE) &&
8521 !vdev_dtl_required(oldvd))
8522 return (oldvd);
8523 }
8524
8525 /*
8526 * Check for a completed resilver with the 'unspare' flag set.
8527 * Also potentially update faulted state.
8528 */
8529 if (vd->vdev_ops == &vdev_spare_ops) {
8530 vdev_t *first = vd->vdev_child[0];
8531 vdev_t *last = vd->vdev_child[vd->vdev_children - 1];
8532
8533 if (last->vdev_unspare) {
8534 oldvd = first;
8535 newvd = last;
8536 } else if (first->vdev_unspare) {
8537 oldvd = last;
8538 newvd = first;
8539 } else {
8540 oldvd = NULL;
8541 }
8542
8543 if (oldvd != NULL &&
8544 vdev_dtl_empty(newvd, DTL_MISSING) &&
8545 vdev_dtl_empty(newvd, DTL_OUTAGE) &&
8546 !vdev_dtl_required(oldvd))
8547 return (oldvd);
8548
8549 vdev_propagate_state(vd);
8550
8551 /*
8552 * If there are more than two spares attached to a disk,
8553 * and those spares are not required, then we want to
8554 * attempt to free them up now so that they can be used
8555 * by other pools. Once we're back down to a single
8556 * disk+spare, we stop removing them.
8557 */
8558 if (vd->vdev_children > 2) {
8559 newvd = vd->vdev_child[1];
8560
8561 if (newvd->vdev_isspare && last->vdev_isspare &&
8562 vdev_dtl_empty(last, DTL_MISSING) &&
8563 vdev_dtl_empty(last, DTL_OUTAGE) &&
8564 !vdev_dtl_required(newvd))
8565 return (newvd);
8566 }
8567 }
8568
8569 return (NULL);
8570 }
8571
8572 static void
8573 spa_vdev_resilver_done(spa_t *spa)
8574 {
8575 vdev_t *vd, *pvd, *ppvd;
8576 uint64_t guid, sguid, pguid, ppguid;
8577
8578 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
8579
8580 while ((vd = spa_vdev_resilver_done_hunt(spa->spa_root_vdev)) != NULL) {
8581 pvd = vd->vdev_parent;
8582 ppvd = pvd->vdev_parent;
8583 guid = vd->vdev_guid;
8584 pguid = pvd->vdev_guid;
8585 ppguid = ppvd->vdev_guid;
8586 sguid = 0;
8587 /*
8588 * If we have just finished replacing a hot spared device, then
8589 * we need to detach the parent's first child (the original hot
8590 * spare) as well.
8591 */
8592 if (ppvd->vdev_ops == &vdev_spare_ops && pvd->vdev_id == 0 &&
8593 ppvd->vdev_children == 2) {
8594 ASSERT(pvd->vdev_ops == &vdev_replacing_ops);
8595 sguid = ppvd->vdev_child[1]->vdev_guid;
8596 }
8597 ASSERT(vd->vdev_resilver_txg == 0 || !vdev_dtl_required(vd));
8598
8599 spa_config_exit(spa, SCL_ALL, FTAG);
8600 if (spa_vdev_detach(spa, guid, pguid, B_TRUE) != 0)
8601 return;
8602 if (sguid && spa_vdev_detach(spa, sguid, ppguid, B_TRUE) != 0)
8603 return;
8604 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
8605 }
8606
8607 spa_config_exit(spa, SCL_ALL, FTAG);
8608
8609 /*
8610 * If a detach was not performed above replace waiters will not have
8611 * been notified. In which case we must do so now.
8612 */
8613 spa_notify_waiters(spa);
8614 }
8615
8616 /*
8617 * Update the stored path or FRU for this vdev.
8618 */
8619 static int
8620 spa_vdev_set_common(spa_t *spa, uint64_t guid, const char *value,
8621 boolean_t ispath)
8622 {
8623 vdev_t *vd;
8624 boolean_t sync = B_FALSE;
8625
8626 ASSERT(spa_writeable(spa));
8627
8628 spa_vdev_state_enter(spa, SCL_ALL);
8629
8630 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
8631 return (spa_vdev_state_exit(spa, NULL, ENOENT));
8632
8633 if (!vd->vdev_ops->vdev_op_leaf)
8634 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
8635
8636 if (ispath) {
8637 if (strcmp(value, vd->vdev_path) != 0) {
8638 spa_strfree(vd->vdev_path);
8639 vd->vdev_path = spa_strdup(value);
8640 sync = B_TRUE;
8641 }
8642 } else {
8643 if (vd->vdev_fru == NULL) {
8644 vd->vdev_fru = spa_strdup(value);
8645 sync = B_TRUE;
8646 } else if (strcmp(value, vd->vdev_fru) != 0) {
8647 spa_strfree(vd->vdev_fru);
8648 vd->vdev_fru = spa_strdup(value);
8649 sync = B_TRUE;
8650 }
8651 }
8652
8653 return (spa_vdev_state_exit(spa, sync ? vd : NULL, 0));
8654 }
8655
8656 int
8657 spa_vdev_setpath(spa_t *spa, uint64_t guid, const char *newpath)
8658 {
8659 return (spa_vdev_set_common(spa, guid, newpath, B_TRUE));
8660 }
8661
8662 int
8663 spa_vdev_setfru(spa_t *spa, uint64_t guid, const char *newfru)
8664 {
8665 return (spa_vdev_set_common(spa, guid, newfru, B_FALSE));
8666 }
8667
8668 /*
8669 * ==========================================================================
8670 * SPA Scanning
8671 * ==========================================================================
8672 */
8673 int
8674 spa_scrub_pause_resume(spa_t *spa, pool_scrub_cmd_t cmd)
8675 {
8676 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
8677
8678 if (dsl_scan_resilvering(spa->spa_dsl_pool))
8679 return (SET_ERROR(EBUSY));
8680
8681 return (dsl_scrub_set_pause_resume(spa->spa_dsl_pool, cmd));
8682 }
8683
8684 int
8685 spa_scan_stop(spa_t *spa)
8686 {
8687 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
8688 if (dsl_scan_resilvering(spa->spa_dsl_pool))
8689 return (SET_ERROR(EBUSY));
8690
8691 return (dsl_scan_cancel(spa->spa_dsl_pool));
8692 }
8693
8694 int
8695 spa_scan(spa_t *spa, pool_scan_func_t func)
8696 {
8697 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
8698
8699 if (func >= POOL_SCAN_FUNCS || func == POOL_SCAN_NONE)
8700 return (SET_ERROR(ENOTSUP));
8701
8702 if (func == POOL_SCAN_RESILVER &&
8703 !spa_feature_is_enabled(spa, SPA_FEATURE_RESILVER_DEFER))
8704 return (SET_ERROR(ENOTSUP));
8705
8706 /*
8707 * If a resilver was requested, but there is no DTL on a
8708 * writeable leaf device, we have nothing to do.
8709 */
8710 if (func == POOL_SCAN_RESILVER &&
8711 !vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL)) {
8712 spa_async_request(spa, SPA_ASYNC_RESILVER_DONE);
8713 return (0);
8714 }
8715
8716 if (func == POOL_SCAN_ERRORSCRUB &&
8717 !spa_feature_is_enabled(spa, SPA_FEATURE_HEAD_ERRLOG))
8718 return (SET_ERROR(ENOTSUP));
8719
8720 return (dsl_scan(spa->spa_dsl_pool, func));
8721 }
8722
8723 /*
8724 * ==========================================================================
8725 * SPA async task processing
8726 * ==========================================================================
8727 */
8728
8729 static void
8730 spa_async_remove(spa_t *spa, vdev_t *vd)
8731 {
8732 if (vd->vdev_remove_wanted) {
8733 vd->vdev_remove_wanted = B_FALSE;
8734 vd->vdev_delayed_close = B_FALSE;
8735 vdev_set_state(vd, B_FALSE, VDEV_STATE_REMOVED, VDEV_AUX_NONE);
8736
8737 /*
8738 * We want to clear the stats, but we don't want to do a full
8739 * vdev_clear() as that will cause us to throw away
8740 * degraded/faulted state as well as attempt to reopen the
8741 * device, all of which is a waste.
8742 */
8743 vd->vdev_stat.vs_read_errors = 0;
8744 vd->vdev_stat.vs_write_errors = 0;
8745 vd->vdev_stat.vs_checksum_errors = 0;
8746
8747 vdev_state_dirty(vd->vdev_top);
8748
8749 /* Tell userspace that the vdev is gone. */
8750 zfs_post_remove(spa, vd);
8751 }
8752
8753 for (int c = 0; c < vd->vdev_children; c++)
8754 spa_async_remove(spa, vd->vdev_child[c]);
8755 }
8756
8757 static void
8758 spa_async_probe(spa_t *spa, vdev_t *vd)
8759 {
8760 if (vd->vdev_probe_wanted) {
8761 vd->vdev_probe_wanted = B_FALSE;
8762 vdev_reopen(vd); /* vdev_open() does the actual probe */
8763 }
8764
8765 for (int c = 0; c < vd->vdev_children; c++)
8766 spa_async_probe(spa, vd->vdev_child[c]);
8767 }
8768
8769 static void
8770 spa_async_autoexpand(spa_t *spa, vdev_t *vd)
8771 {
8772 if (!spa->spa_autoexpand)
8773 return;
8774
8775 for (int c = 0; c < vd->vdev_children; c++) {
8776 vdev_t *cvd = vd->vdev_child[c];
8777 spa_async_autoexpand(spa, cvd);
8778 }
8779
8780 if (!vd->vdev_ops->vdev_op_leaf || vd->vdev_physpath == NULL)
8781 return;
8782
8783 spa_event_notify(vd->vdev_spa, vd, NULL, ESC_ZFS_VDEV_AUTOEXPAND);
8784 }
8785
8786 static __attribute__((noreturn)) void
8787 spa_async_thread(void *arg)
8788 {
8789 spa_t *spa = (spa_t *)arg;
8790 dsl_pool_t *dp = spa->spa_dsl_pool;
8791 int tasks;
8792
8793 ASSERT(spa->spa_sync_on);
8794
8795 mutex_enter(&spa->spa_async_lock);
8796 tasks = spa->spa_async_tasks;
8797 spa->spa_async_tasks = 0;
8798 mutex_exit(&spa->spa_async_lock);
8799
8800 /*
8801 * See if the config needs to be updated.
8802 */
8803 if (tasks & SPA_ASYNC_CONFIG_UPDATE) {
8804 uint64_t old_space, new_space;
8805
8806 mutex_enter(&spa_namespace_lock);
8807 old_space = metaslab_class_get_space(spa_normal_class(spa));
8808 old_space += metaslab_class_get_space(spa_special_class(spa));
8809 old_space += metaslab_class_get_space(spa_dedup_class(spa));
8810 old_space += metaslab_class_get_space(
8811 spa_embedded_log_class(spa));
8812
8813 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
8814
8815 new_space = metaslab_class_get_space(spa_normal_class(spa));
8816 new_space += metaslab_class_get_space(spa_special_class(spa));
8817 new_space += metaslab_class_get_space(spa_dedup_class(spa));
8818 new_space += metaslab_class_get_space(
8819 spa_embedded_log_class(spa));
8820 mutex_exit(&spa_namespace_lock);
8821
8822 /*
8823 * If the pool grew as a result of the config update,
8824 * then log an internal history event.
8825 */
8826 if (new_space != old_space) {
8827 spa_history_log_internal(spa, "vdev online", NULL,
8828 "pool '%s' size: %llu(+%llu)",
8829 spa_name(spa), (u_longlong_t)new_space,
8830 (u_longlong_t)(new_space - old_space));
8831 }
8832 }
8833
8834 /*
8835 * See if any devices need to be marked REMOVED.
8836 */
8837 if (tasks & SPA_ASYNC_REMOVE) {
8838 spa_vdev_state_enter(spa, SCL_NONE);
8839 spa_async_remove(spa, spa->spa_root_vdev);
8840 for (int i = 0; i < spa->spa_l2cache.sav_count; i++)
8841 spa_async_remove(spa, spa->spa_l2cache.sav_vdevs[i]);
8842 for (int i = 0; i < spa->spa_spares.sav_count; i++)
8843 spa_async_remove(spa, spa->spa_spares.sav_vdevs[i]);
8844 (void) spa_vdev_state_exit(spa, NULL, 0);
8845 }
8846
8847 if ((tasks & SPA_ASYNC_AUTOEXPAND) && !spa_suspended(spa)) {
8848 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
8849 spa_async_autoexpand(spa, spa->spa_root_vdev);
8850 spa_config_exit(spa, SCL_CONFIG, FTAG);
8851 }
8852
8853 /*
8854 * See if any devices need to be probed.
8855 */
8856 if (tasks & SPA_ASYNC_PROBE) {
8857 spa_vdev_state_enter(spa, SCL_NONE);
8858 spa_async_probe(spa, spa->spa_root_vdev);
8859 (void) spa_vdev_state_exit(spa, NULL, 0);
8860 }
8861
8862 /*
8863 * If any devices are done replacing, detach them.
8864 */
8865 if (tasks & SPA_ASYNC_RESILVER_DONE ||
8866 tasks & SPA_ASYNC_REBUILD_DONE ||
8867 tasks & SPA_ASYNC_DETACH_SPARE) {
8868 spa_vdev_resilver_done(spa);
8869 }
8870
8871 /*
8872 * Kick off a resilver.
8873 */
8874 if (tasks & SPA_ASYNC_RESILVER &&
8875 !vdev_rebuild_active(spa->spa_root_vdev) &&
8876 (!dsl_scan_resilvering(dp) ||
8877 !spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_RESILVER_DEFER)))
8878 dsl_scan_restart_resilver(dp, 0);
8879
8880 if (tasks & SPA_ASYNC_INITIALIZE_RESTART) {
8881 mutex_enter(&spa_namespace_lock);
8882 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
8883 vdev_initialize_restart(spa->spa_root_vdev);
8884 spa_config_exit(spa, SCL_CONFIG, FTAG);
8885 mutex_exit(&spa_namespace_lock);
8886 }
8887
8888 if (tasks & SPA_ASYNC_TRIM_RESTART) {
8889 mutex_enter(&spa_namespace_lock);
8890 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
8891 vdev_trim_restart(spa->spa_root_vdev);
8892 spa_config_exit(spa, SCL_CONFIG, FTAG);
8893 mutex_exit(&spa_namespace_lock);
8894 }
8895
8896 if (tasks & SPA_ASYNC_AUTOTRIM_RESTART) {
8897 mutex_enter(&spa_namespace_lock);
8898 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
8899 vdev_autotrim_restart(spa);
8900 spa_config_exit(spa, SCL_CONFIG, FTAG);
8901 mutex_exit(&spa_namespace_lock);
8902 }
8903
8904 /*
8905 * Kick off L2 cache whole device TRIM.
8906 */
8907 if (tasks & SPA_ASYNC_L2CACHE_TRIM) {
8908 mutex_enter(&spa_namespace_lock);
8909 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
8910 vdev_trim_l2arc(spa);
8911 spa_config_exit(spa, SCL_CONFIG, FTAG);
8912 mutex_exit(&spa_namespace_lock);
8913 }
8914
8915 /*
8916 * Kick off L2 cache rebuilding.
8917 */
8918 if (tasks & SPA_ASYNC_L2CACHE_REBUILD) {
8919 mutex_enter(&spa_namespace_lock);
8920 spa_config_enter(spa, SCL_L2ARC, FTAG, RW_READER);
8921 l2arc_spa_rebuild_start(spa);
8922 spa_config_exit(spa, SCL_L2ARC, FTAG);
8923 mutex_exit(&spa_namespace_lock);
8924 }
8925
8926 /*
8927 * Let the world know that we're done.
8928 */
8929 mutex_enter(&spa->spa_async_lock);
8930 spa->spa_async_thread = NULL;
8931 cv_broadcast(&spa->spa_async_cv);
8932 mutex_exit(&spa->spa_async_lock);
8933 thread_exit();
8934 }
8935
8936 void
8937 spa_async_suspend(spa_t *spa)
8938 {
8939 mutex_enter(&spa->spa_async_lock);
8940 spa->spa_async_suspended++;
8941 while (spa->spa_async_thread != NULL)
8942 cv_wait(&spa->spa_async_cv, &spa->spa_async_lock);
8943 mutex_exit(&spa->spa_async_lock);
8944
8945 spa_vdev_remove_suspend(spa);
8946
8947 zthr_t *condense_thread = spa->spa_condense_zthr;
8948 if (condense_thread != NULL)
8949 zthr_cancel(condense_thread);
8950
8951 zthr_t *raidz_expand_thread = spa->spa_raidz_expand_zthr;
8952 if (raidz_expand_thread != NULL)
8953 zthr_cancel(raidz_expand_thread);
8954
8955 zthr_t *discard_thread = spa->spa_checkpoint_discard_zthr;
8956 if (discard_thread != NULL)
8957 zthr_cancel(discard_thread);
8958
8959 zthr_t *ll_delete_thread = spa->spa_livelist_delete_zthr;
8960 if (ll_delete_thread != NULL)
8961 zthr_cancel(ll_delete_thread);
8962
8963 zthr_t *ll_condense_thread = spa->spa_livelist_condense_zthr;
8964 if (ll_condense_thread != NULL)
8965 zthr_cancel(ll_condense_thread);
8966 }
8967
8968 void
8969 spa_async_resume(spa_t *spa)
8970 {
8971 mutex_enter(&spa->spa_async_lock);
8972 ASSERT(spa->spa_async_suspended != 0);
8973 spa->spa_async_suspended--;
8974 mutex_exit(&spa->spa_async_lock);
8975 spa_restart_removal(spa);
8976
8977 zthr_t *condense_thread = spa->spa_condense_zthr;
8978 if (condense_thread != NULL)
8979 zthr_resume(condense_thread);
8980
8981 zthr_t *raidz_expand_thread = spa->spa_raidz_expand_zthr;
8982 if (raidz_expand_thread != NULL)
8983 zthr_resume(raidz_expand_thread);
8984
8985 zthr_t *discard_thread = spa->spa_checkpoint_discard_zthr;
8986 if (discard_thread != NULL)
8987 zthr_resume(discard_thread);
8988
8989 zthr_t *ll_delete_thread = spa->spa_livelist_delete_zthr;
8990 if (ll_delete_thread != NULL)
8991 zthr_resume(ll_delete_thread);
8992
8993 zthr_t *ll_condense_thread = spa->spa_livelist_condense_zthr;
8994 if (ll_condense_thread != NULL)
8995 zthr_resume(ll_condense_thread);
8996 }
8997
8998 static boolean_t
8999 spa_async_tasks_pending(spa_t *spa)
9000 {
9001 uint_t non_config_tasks;
9002 uint_t config_task;
9003 boolean_t config_task_suspended;
9004
9005 non_config_tasks = spa->spa_async_tasks & ~SPA_ASYNC_CONFIG_UPDATE;
9006 config_task = spa->spa_async_tasks & SPA_ASYNC_CONFIG_UPDATE;
9007 if (spa->spa_ccw_fail_time == 0) {
9008 config_task_suspended = B_FALSE;
9009 } else {
9010 config_task_suspended =
9011 (gethrtime() - spa->spa_ccw_fail_time) <
9012 ((hrtime_t)zfs_ccw_retry_interval * NANOSEC);
9013 }
9014
9015 return (non_config_tasks || (config_task && !config_task_suspended));
9016 }
9017
9018 static void
9019 spa_async_dispatch(spa_t *spa)
9020 {
9021 mutex_enter(&spa->spa_async_lock);
9022 if (spa_async_tasks_pending(spa) &&
9023 !spa->spa_async_suspended &&
9024 spa->spa_async_thread == NULL)
9025 spa->spa_async_thread = thread_create(NULL, 0,
9026 spa_async_thread, spa, 0, &p0, TS_RUN, maxclsyspri);
9027 mutex_exit(&spa->spa_async_lock);
9028 }
9029
9030 void
9031 spa_async_request(spa_t *spa, int task)
9032 {
9033 zfs_dbgmsg("spa=%s async request task=%u", spa->spa_name, task);
9034 mutex_enter(&spa->spa_async_lock);
9035 spa->spa_async_tasks |= task;
9036 mutex_exit(&spa->spa_async_lock);
9037 }
9038
9039 int
9040 spa_async_tasks(spa_t *spa)
9041 {
9042 return (spa->spa_async_tasks);
9043 }
9044
9045 /*
9046 * ==========================================================================
9047 * SPA syncing routines
9048 * ==========================================================================
9049 */
9050
9051
9052 static int
9053 bpobj_enqueue_cb(void *arg, const blkptr_t *bp, boolean_t bp_freed,
9054 dmu_tx_t *tx)
9055 {
9056 bpobj_t *bpo = arg;
9057 bpobj_enqueue(bpo, bp, bp_freed, tx);
9058 return (0);
9059 }
9060
9061 int
9062 bpobj_enqueue_alloc_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
9063 {
9064 return (bpobj_enqueue_cb(arg, bp, B_FALSE, tx));
9065 }
9066
9067 int
9068 bpobj_enqueue_free_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
9069 {
9070 return (bpobj_enqueue_cb(arg, bp, B_TRUE, tx));
9071 }
9072
9073 static int
9074 spa_free_sync_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
9075 {
9076 zio_t *pio = arg;
9077
9078 zio_nowait(zio_free_sync(pio, pio->io_spa, dmu_tx_get_txg(tx), bp,
9079 pio->io_flags));
9080 return (0);
9081 }
9082
9083 static int
9084 bpobj_spa_free_sync_cb(void *arg, const blkptr_t *bp, boolean_t bp_freed,
9085 dmu_tx_t *tx)
9086 {
9087 ASSERT(!bp_freed);
9088 return (spa_free_sync_cb(arg, bp, tx));
9089 }
9090
9091 /*
9092 * Note: this simple function is not inlined to make it easier to dtrace the
9093 * amount of time spent syncing frees.
9094 */
9095 static void
9096 spa_sync_frees(spa_t *spa, bplist_t *bpl, dmu_tx_t *tx)
9097 {
9098 zio_t *zio = zio_root(spa, NULL, NULL, 0);
9099 bplist_iterate(bpl, spa_free_sync_cb, zio, tx);
9100 VERIFY(zio_wait(zio) == 0);
9101 }
9102
9103 /*
9104 * Note: this simple function is not inlined to make it easier to dtrace the
9105 * amount of time spent syncing deferred frees.
9106 */
9107 static void
9108 spa_sync_deferred_frees(spa_t *spa, dmu_tx_t *tx)
9109 {
9110 if (spa_sync_pass(spa) != 1)
9111 return;
9112
9113 /*
9114 * Note:
9115 * If the log space map feature is active, we stop deferring
9116 * frees to the next TXG and therefore running this function
9117 * would be considered a no-op as spa_deferred_bpobj should
9118 * not have any entries.
9119 *
9120 * That said we run this function anyway (instead of returning
9121 * immediately) for the edge-case scenario where we just
9122 * activated the log space map feature in this TXG but we have
9123 * deferred frees from the previous TXG.
9124 */
9125 zio_t *zio = zio_root(spa, NULL, NULL, 0);
9126 VERIFY3U(bpobj_iterate(&spa->spa_deferred_bpobj,
9127 bpobj_spa_free_sync_cb, zio, tx), ==, 0);
9128 VERIFY0(zio_wait(zio));
9129 }
9130
9131 static void
9132 spa_sync_nvlist(spa_t *spa, uint64_t obj, nvlist_t *nv, dmu_tx_t *tx)
9133 {
9134 char *packed = NULL;
9135 size_t bufsize;
9136 size_t nvsize = 0;
9137 dmu_buf_t *db;
9138
9139 VERIFY(nvlist_size(nv, &nvsize, NV_ENCODE_XDR) == 0);
9140
9141 /*
9142 * Write full (SPA_CONFIG_BLOCKSIZE) blocks of configuration
9143 * information. This avoids the dmu_buf_will_dirty() path and
9144 * saves us a pre-read to get data we don't actually care about.
9145 */
9146 bufsize = P2ROUNDUP((uint64_t)nvsize, SPA_CONFIG_BLOCKSIZE);
9147 packed = vmem_alloc(bufsize, KM_SLEEP);
9148
9149 VERIFY(nvlist_pack(nv, &packed, &nvsize, NV_ENCODE_XDR,
9150 KM_SLEEP) == 0);
9151 memset(packed + nvsize, 0, bufsize - nvsize);
9152
9153 dmu_write(spa->spa_meta_objset, obj, 0, bufsize, packed, tx);
9154
9155 vmem_free(packed, bufsize);
9156
9157 VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db));
9158 dmu_buf_will_dirty(db, tx);
9159 *(uint64_t *)db->db_data = nvsize;
9160 dmu_buf_rele(db, FTAG);
9161 }
9162
9163 static void
9164 spa_sync_aux_dev(spa_t *spa, spa_aux_vdev_t *sav, dmu_tx_t *tx,
9165 const char *config, const char *entry)
9166 {
9167 nvlist_t *nvroot;
9168 nvlist_t **list;
9169 int i;
9170
9171 if (!sav->sav_sync)
9172 return;
9173
9174 /*
9175 * Update the MOS nvlist describing the list of available devices.
9176 * spa_validate_aux() will have already made sure this nvlist is
9177 * valid and the vdevs are labeled appropriately.
9178 */
9179 if (sav->sav_object == 0) {
9180 sav->sav_object = dmu_object_alloc(spa->spa_meta_objset,
9181 DMU_OT_PACKED_NVLIST, 1 << 14, DMU_OT_PACKED_NVLIST_SIZE,
9182 sizeof (uint64_t), tx);
9183 VERIFY(zap_update(spa->spa_meta_objset,
9184 DMU_POOL_DIRECTORY_OBJECT, entry, sizeof (uint64_t), 1,
9185 &sav->sav_object, tx) == 0);
9186 }
9187
9188 nvroot = fnvlist_alloc();
9189 if (sav->sav_count == 0) {
9190 fnvlist_add_nvlist_array(nvroot, config,
9191 (const nvlist_t * const *)NULL, 0);
9192 } else {
9193 list = kmem_alloc(sav->sav_count*sizeof (void *), KM_SLEEP);
9194 for (i = 0; i < sav->sav_count; i++)
9195 list[i] = vdev_config_generate(spa, sav->sav_vdevs[i],
9196 B_FALSE, VDEV_CONFIG_L2CACHE);
9197 fnvlist_add_nvlist_array(nvroot, config,
9198 (const nvlist_t * const *)list, sav->sav_count);
9199 for (i = 0; i < sav->sav_count; i++)
9200 nvlist_free(list[i]);
9201 kmem_free(list, sav->sav_count * sizeof (void *));
9202 }
9203
9204 spa_sync_nvlist(spa, sav->sav_object, nvroot, tx);
9205 nvlist_free(nvroot);
9206
9207 sav->sav_sync = B_FALSE;
9208 }
9209
9210 /*
9211 * Rebuild spa's all-vdev ZAP from the vdev ZAPs indicated in each vdev_t.
9212 * The all-vdev ZAP must be empty.
9213 */
9214 static void
9215 spa_avz_build(vdev_t *vd, uint64_t avz, dmu_tx_t *tx)
9216 {
9217 spa_t *spa = vd->vdev_spa;
9218
9219 if (vd->vdev_root_zap != 0 &&
9220 spa_feature_is_active(spa, SPA_FEATURE_AVZ_V2)) {
9221 VERIFY0(zap_add_int(spa->spa_meta_objset, avz,
9222 vd->vdev_root_zap, tx));
9223 }
9224 if (vd->vdev_top_zap != 0) {
9225 VERIFY0(zap_add_int(spa->spa_meta_objset, avz,
9226 vd->vdev_top_zap, tx));
9227 }
9228 if (vd->vdev_leaf_zap != 0) {
9229 VERIFY0(zap_add_int(spa->spa_meta_objset, avz,
9230 vd->vdev_leaf_zap, tx));
9231 }
9232 for (uint64_t i = 0; i < vd->vdev_children; i++) {
9233 spa_avz_build(vd->vdev_child[i], avz, tx);
9234 }
9235 }
9236
9237 static void
9238 spa_sync_config_object(spa_t *spa, dmu_tx_t *tx)
9239 {
9240 nvlist_t *config;
9241
9242 /*
9243 * If the pool is being imported from a pre-per-vdev-ZAP version of ZFS,
9244 * its config may not be dirty but we still need to build per-vdev ZAPs.
9245 * Similarly, if the pool is being assembled (e.g. after a split), we
9246 * need to rebuild the AVZ although the config may not be dirty.
9247 */
9248 if (list_is_empty(&spa->spa_config_dirty_list) &&
9249 spa->spa_avz_action == AVZ_ACTION_NONE)
9250 return;
9251
9252 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
9253
9254 ASSERT(spa->spa_avz_action == AVZ_ACTION_NONE ||
9255 spa->spa_avz_action == AVZ_ACTION_INITIALIZE ||
9256 spa->spa_all_vdev_zaps != 0);
9257
9258 if (spa->spa_avz_action == AVZ_ACTION_REBUILD) {
9259 /* Make and build the new AVZ */
9260 uint64_t new_avz = zap_create(spa->spa_meta_objset,
9261 DMU_OTN_ZAP_METADATA, DMU_OT_NONE, 0, tx);
9262 spa_avz_build(spa->spa_root_vdev, new_avz, tx);
9263
9264 /* Diff old AVZ with new one */
9265 zap_cursor_t zc;
9266 zap_attribute_t za;
9267
9268 for (zap_cursor_init(&zc, spa->spa_meta_objset,
9269 spa->spa_all_vdev_zaps);
9270 zap_cursor_retrieve(&zc, &za) == 0;
9271 zap_cursor_advance(&zc)) {
9272 uint64_t vdzap = za.za_first_integer;
9273 if (zap_lookup_int(spa->spa_meta_objset, new_avz,
9274 vdzap) == ENOENT) {
9275 /*
9276 * ZAP is listed in old AVZ but not in new one;
9277 * destroy it
9278 */
9279 VERIFY0(zap_destroy(spa->spa_meta_objset, vdzap,
9280 tx));
9281 }
9282 }
9283
9284 zap_cursor_fini(&zc);
9285
9286 /* Destroy the old AVZ */
9287 VERIFY0(zap_destroy(spa->spa_meta_objset,
9288 spa->spa_all_vdev_zaps, tx));
9289
9290 /* Replace the old AVZ in the dir obj with the new one */
9291 VERIFY0(zap_update(spa->spa_meta_objset,
9292 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_VDEV_ZAP_MAP,
9293 sizeof (new_avz), 1, &new_avz, tx));
9294
9295 spa->spa_all_vdev_zaps = new_avz;
9296 } else if (spa->spa_avz_action == AVZ_ACTION_DESTROY) {
9297 zap_cursor_t zc;
9298 zap_attribute_t za;
9299
9300 /* Walk through the AVZ and destroy all listed ZAPs */
9301 for (zap_cursor_init(&zc, spa->spa_meta_objset,
9302 spa->spa_all_vdev_zaps);
9303 zap_cursor_retrieve(&zc, &za) == 0;
9304 zap_cursor_advance(&zc)) {
9305 uint64_t zap = za.za_first_integer;
9306 VERIFY0(zap_destroy(spa->spa_meta_objset, zap, tx));
9307 }
9308
9309 zap_cursor_fini(&zc);
9310
9311 /* Destroy and unlink the AVZ itself */
9312 VERIFY0(zap_destroy(spa->spa_meta_objset,
9313 spa->spa_all_vdev_zaps, tx));
9314 VERIFY0(zap_remove(spa->spa_meta_objset,
9315 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_VDEV_ZAP_MAP, tx));
9316 spa->spa_all_vdev_zaps = 0;
9317 }
9318
9319 if (spa->spa_all_vdev_zaps == 0) {
9320 spa->spa_all_vdev_zaps = zap_create_link(spa->spa_meta_objset,
9321 DMU_OTN_ZAP_METADATA, DMU_POOL_DIRECTORY_OBJECT,
9322 DMU_POOL_VDEV_ZAP_MAP, tx);
9323 }
9324 spa->spa_avz_action = AVZ_ACTION_NONE;
9325
9326 /* Create ZAPs for vdevs that don't have them. */
9327 vdev_construct_zaps(spa->spa_root_vdev, tx);
9328
9329 config = spa_config_generate(spa, spa->spa_root_vdev,
9330 dmu_tx_get_txg(tx), B_FALSE);
9331
9332 /*
9333 * If we're upgrading the spa version then make sure that
9334 * the config object gets updated with the correct version.
9335 */
9336 if (spa->spa_ubsync.ub_version < spa->spa_uberblock.ub_version)
9337 fnvlist_add_uint64(config, ZPOOL_CONFIG_VERSION,
9338 spa->spa_uberblock.ub_version);
9339
9340 spa_config_exit(spa, SCL_STATE, FTAG);
9341
9342 nvlist_free(spa->spa_config_syncing);
9343 spa->spa_config_syncing = config;
9344
9345 spa_sync_nvlist(spa, spa->spa_config_object, config, tx);
9346 }
9347
9348 static void
9349 spa_sync_version(void *arg, dmu_tx_t *tx)
9350 {
9351 uint64_t *versionp = arg;
9352 uint64_t version = *versionp;
9353 spa_t *spa = dmu_tx_pool(tx)->dp_spa;
9354
9355 /*
9356 * Setting the version is special cased when first creating the pool.
9357 */
9358 ASSERT(tx->tx_txg != TXG_INITIAL);
9359
9360 ASSERT(SPA_VERSION_IS_SUPPORTED(version));
9361 ASSERT(version >= spa_version(spa));
9362
9363 spa->spa_uberblock.ub_version = version;
9364 vdev_config_dirty(spa->spa_root_vdev);
9365 spa_history_log_internal(spa, "set", tx, "version=%lld",
9366 (longlong_t)version);
9367 }
9368
9369 /*
9370 * Set zpool properties.
9371 */
9372 static void
9373 spa_sync_props(void *arg, dmu_tx_t *tx)
9374 {
9375 nvlist_t *nvp = arg;
9376 spa_t *spa = dmu_tx_pool(tx)->dp_spa;
9377 objset_t *mos = spa->spa_meta_objset;
9378 nvpair_t *elem = NULL;
9379
9380 mutex_enter(&spa->spa_props_lock);
9381
9382 while ((elem = nvlist_next_nvpair(nvp, elem))) {
9383 uint64_t intval;
9384 const char *strval, *fname;
9385 zpool_prop_t prop;
9386 const char *propname;
9387 const char *elemname = nvpair_name(elem);
9388 zprop_type_t proptype;
9389 spa_feature_t fid;
9390
9391 switch (prop = zpool_name_to_prop(elemname)) {
9392 case ZPOOL_PROP_VERSION:
9393 intval = fnvpair_value_uint64(elem);
9394 /*
9395 * The version is synced separately before other
9396 * properties and should be correct by now.
9397 */
9398 ASSERT3U(spa_version(spa), >=, intval);
9399 break;
9400
9401 case ZPOOL_PROP_ALTROOT:
9402 /*
9403 * 'altroot' is a non-persistent property. It should
9404 * have been set temporarily at creation or import time.
9405 */
9406 ASSERT(spa->spa_root != NULL);
9407 break;
9408
9409 case ZPOOL_PROP_READONLY:
9410 case ZPOOL_PROP_CACHEFILE:
9411 /*
9412 * 'readonly' and 'cachefile' are also non-persistent
9413 * properties.
9414 */
9415 break;
9416 case ZPOOL_PROP_COMMENT:
9417 strval = fnvpair_value_string(elem);
9418 if (spa->spa_comment != NULL)
9419 spa_strfree(spa->spa_comment);
9420 spa->spa_comment = spa_strdup(strval);
9421 /*
9422 * We need to dirty the configuration on all the vdevs
9423 * so that their labels get updated. We also need to
9424 * update the cache file to keep it in sync with the
9425 * MOS version. It's unnecessary to do this for pool
9426 * creation since the vdev's configuration has already
9427 * been dirtied.
9428 */
9429 if (tx->tx_txg != TXG_INITIAL) {
9430 vdev_config_dirty(spa->spa_root_vdev);
9431 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
9432 }
9433 spa_history_log_internal(spa, "set", tx,
9434 "%s=%s", elemname, strval);
9435 break;
9436 case ZPOOL_PROP_COMPATIBILITY:
9437 strval = fnvpair_value_string(elem);
9438 if (spa->spa_compatibility != NULL)
9439 spa_strfree(spa->spa_compatibility);
9440 spa->spa_compatibility = spa_strdup(strval);
9441 /*
9442 * Dirty the configuration on vdevs as above.
9443 */
9444 if (tx->tx_txg != TXG_INITIAL) {
9445 vdev_config_dirty(spa->spa_root_vdev);
9446 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
9447 }
9448
9449 spa_history_log_internal(spa, "set", tx,
9450 "%s=%s", nvpair_name(elem), strval);
9451 break;
9452
9453 case ZPOOL_PROP_INVAL:
9454 if (zpool_prop_feature(elemname)) {
9455 fname = strchr(elemname, '@') + 1;
9456 VERIFY0(zfeature_lookup_name(fname, &fid));
9457
9458 spa_feature_enable(spa, fid, tx);
9459 spa_history_log_internal(spa, "set", tx,
9460 "%s=enabled", elemname);
9461 break;
9462 } else if (!zfs_prop_user(elemname)) {
9463 ASSERT(zpool_prop_feature(elemname));
9464 break;
9465 }
9466 zfs_fallthrough;
9467 default:
9468 /*
9469 * Set pool property values in the poolprops mos object.
9470 */
9471 if (spa->spa_pool_props_object == 0) {
9472 spa->spa_pool_props_object =
9473 zap_create_link(mos, DMU_OT_POOL_PROPS,
9474 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_PROPS,
9475 tx);
9476 }
9477
9478 /* normalize the property name */
9479 if (prop == ZPOOL_PROP_INVAL) {
9480 propname = elemname;
9481 proptype = PROP_TYPE_STRING;
9482 } else {
9483 propname = zpool_prop_to_name(prop);
9484 proptype = zpool_prop_get_type(prop);
9485 }
9486
9487 if (nvpair_type(elem) == DATA_TYPE_STRING) {
9488 ASSERT(proptype == PROP_TYPE_STRING);
9489 strval = fnvpair_value_string(elem);
9490 VERIFY0(zap_update(mos,
9491 spa->spa_pool_props_object, propname,
9492 1, strlen(strval) + 1, strval, tx));
9493 spa_history_log_internal(spa, "set", tx,
9494 "%s=%s", elemname, strval);
9495 } else if (nvpair_type(elem) == DATA_TYPE_UINT64) {
9496 intval = fnvpair_value_uint64(elem);
9497
9498 if (proptype == PROP_TYPE_INDEX) {
9499 const char *unused;
9500 VERIFY0(zpool_prop_index_to_string(
9501 prop, intval, &unused));
9502 }
9503 VERIFY0(zap_update(mos,
9504 spa->spa_pool_props_object, propname,
9505 8, 1, &intval, tx));
9506 spa_history_log_internal(spa, "set", tx,
9507 "%s=%lld", elemname,
9508 (longlong_t)intval);
9509
9510 switch (prop) {
9511 case ZPOOL_PROP_DELEGATION:
9512 spa->spa_delegation = intval;
9513 break;
9514 case ZPOOL_PROP_BOOTFS:
9515 spa->spa_bootfs = intval;
9516 break;
9517 case ZPOOL_PROP_FAILUREMODE:
9518 spa->spa_failmode = intval;
9519 break;
9520 case ZPOOL_PROP_AUTOTRIM:
9521 spa->spa_autotrim = intval;
9522 spa_async_request(spa,
9523 SPA_ASYNC_AUTOTRIM_RESTART);
9524 break;
9525 case ZPOOL_PROP_AUTOEXPAND:
9526 spa->spa_autoexpand = intval;
9527 if (tx->tx_txg != TXG_INITIAL)
9528 spa_async_request(spa,
9529 SPA_ASYNC_AUTOEXPAND);
9530 break;
9531 case ZPOOL_PROP_MULTIHOST:
9532 spa->spa_multihost = intval;
9533 break;
9534 default:
9535 break;
9536 }
9537 } else {
9538 ASSERT(0); /* not allowed */
9539 }
9540 }
9541
9542 }
9543
9544 mutex_exit(&spa->spa_props_lock);
9545 }
9546
9547 /*
9548 * Perform one-time upgrade on-disk changes. spa_version() does not
9549 * reflect the new version this txg, so there must be no changes this
9550 * txg to anything that the upgrade code depends on after it executes.
9551 * Therefore this must be called after dsl_pool_sync() does the sync
9552 * tasks.
9553 */
9554 static void
9555 spa_sync_upgrades(spa_t *spa, dmu_tx_t *tx)
9556 {
9557 if (spa_sync_pass(spa) != 1)
9558 return;
9559
9560 dsl_pool_t *dp = spa->spa_dsl_pool;
9561 rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG);
9562
9563 if (spa->spa_ubsync.ub_version < SPA_VERSION_ORIGIN &&
9564 spa->spa_uberblock.ub_version >= SPA_VERSION_ORIGIN) {
9565 dsl_pool_create_origin(dp, tx);
9566
9567 /* Keeping the origin open increases spa_minref */
9568 spa->spa_minref += 3;
9569 }
9570
9571 if (spa->spa_ubsync.ub_version < SPA_VERSION_NEXT_CLONES &&
9572 spa->spa_uberblock.ub_version >= SPA_VERSION_NEXT_CLONES) {
9573 dsl_pool_upgrade_clones(dp, tx);
9574 }
9575
9576 if (spa->spa_ubsync.ub_version < SPA_VERSION_DIR_CLONES &&
9577 spa->spa_uberblock.ub_version >= SPA_VERSION_DIR_CLONES) {
9578 dsl_pool_upgrade_dir_clones(dp, tx);
9579
9580 /* Keeping the freedir open increases spa_minref */
9581 spa->spa_minref += 3;
9582 }
9583
9584 if (spa->spa_ubsync.ub_version < SPA_VERSION_FEATURES &&
9585 spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) {
9586 spa_feature_create_zap_objects(spa, tx);
9587 }
9588
9589 /*
9590 * LZ4_COMPRESS feature's behaviour was changed to activate_on_enable
9591 * when possibility to use lz4 compression for metadata was added
9592 * Old pools that have this feature enabled must be upgraded to have
9593 * this feature active
9594 */
9595 if (spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) {
9596 boolean_t lz4_en = spa_feature_is_enabled(spa,
9597 SPA_FEATURE_LZ4_COMPRESS);
9598 boolean_t lz4_ac = spa_feature_is_active(spa,
9599 SPA_FEATURE_LZ4_COMPRESS);
9600
9601 if (lz4_en && !lz4_ac)
9602 spa_feature_incr(spa, SPA_FEATURE_LZ4_COMPRESS, tx);
9603 }
9604
9605 /*
9606 * If we haven't written the salt, do so now. Note that the
9607 * feature may not be activated yet, but that's fine since
9608 * the presence of this ZAP entry is backwards compatible.
9609 */
9610 if (zap_contains(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
9611 DMU_POOL_CHECKSUM_SALT) == ENOENT) {
9612 VERIFY0(zap_add(spa->spa_meta_objset,
9613 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CHECKSUM_SALT, 1,
9614 sizeof (spa->spa_cksum_salt.zcs_bytes),
9615 spa->spa_cksum_salt.zcs_bytes, tx));
9616 }
9617
9618 rrw_exit(&dp->dp_config_rwlock, FTAG);
9619 }
9620
9621 static void
9622 vdev_indirect_state_sync_verify(vdev_t *vd)
9623 {
9624 vdev_indirect_mapping_t *vim __maybe_unused = vd->vdev_indirect_mapping;
9625 vdev_indirect_births_t *vib __maybe_unused = vd->vdev_indirect_births;
9626
9627 if (vd->vdev_ops == &vdev_indirect_ops) {
9628 ASSERT(vim != NULL);
9629 ASSERT(vib != NULL);
9630 }
9631
9632 uint64_t obsolete_sm_object = 0;
9633 ASSERT0(vdev_obsolete_sm_object(vd, &obsolete_sm_object));
9634 if (obsolete_sm_object != 0) {
9635 ASSERT(vd->vdev_obsolete_sm != NULL);
9636 ASSERT(vd->vdev_removing ||
9637 vd->vdev_ops == &vdev_indirect_ops);
9638 ASSERT(vdev_indirect_mapping_num_entries(vim) > 0);
9639 ASSERT(vdev_indirect_mapping_bytes_mapped(vim) > 0);
9640 ASSERT3U(obsolete_sm_object, ==,
9641 space_map_object(vd->vdev_obsolete_sm));
9642 ASSERT3U(vdev_indirect_mapping_bytes_mapped(vim), >=,
9643 space_map_allocated(vd->vdev_obsolete_sm));
9644 }
9645 ASSERT(vd->vdev_obsolete_segments != NULL);
9646
9647 /*
9648 * Since frees / remaps to an indirect vdev can only
9649 * happen in syncing context, the obsolete segments
9650 * tree must be empty when we start syncing.
9651 */
9652 ASSERT0(range_tree_space(vd->vdev_obsolete_segments));
9653 }
9654
9655 /*
9656 * Set the top-level vdev's max queue depth. Evaluate each top-level's
9657 * async write queue depth in case it changed. The max queue depth will
9658 * not change in the middle of syncing out this txg.
9659 */
9660 static void
9661 spa_sync_adjust_vdev_max_queue_depth(spa_t *spa)
9662 {
9663 ASSERT(spa_writeable(spa));
9664
9665 vdev_t *rvd = spa->spa_root_vdev;
9666 uint32_t max_queue_depth = zfs_vdev_async_write_max_active *
9667 zfs_vdev_queue_depth_pct / 100;
9668 metaslab_class_t *normal = spa_normal_class(spa);
9669 metaslab_class_t *special = spa_special_class(spa);
9670 metaslab_class_t *dedup = spa_dedup_class(spa);
9671
9672 uint64_t slots_per_allocator = 0;
9673 for (int c = 0; c < rvd->vdev_children; c++) {
9674 vdev_t *tvd = rvd->vdev_child[c];
9675
9676 metaslab_group_t *mg = tvd->vdev_mg;
9677 if (mg == NULL || !metaslab_group_initialized(mg))
9678 continue;
9679
9680 metaslab_class_t *mc = mg->mg_class;
9681 if (mc != normal && mc != special && mc != dedup)
9682 continue;
9683
9684 /*
9685 * It is safe to do a lock-free check here because only async
9686 * allocations look at mg_max_alloc_queue_depth, and async
9687 * allocations all happen from spa_sync().
9688 */
9689 for (int i = 0; i < mg->mg_allocators; i++) {
9690 ASSERT0(zfs_refcount_count(
9691 &(mg->mg_allocator[i].mga_alloc_queue_depth)));
9692 }
9693 mg->mg_max_alloc_queue_depth = max_queue_depth;
9694
9695 for (int i = 0; i < mg->mg_allocators; i++) {
9696 mg->mg_allocator[i].mga_cur_max_alloc_queue_depth =
9697 zfs_vdev_def_queue_depth;
9698 }
9699 slots_per_allocator += zfs_vdev_def_queue_depth;
9700 }
9701
9702 for (int i = 0; i < spa->spa_alloc_count; i++) {
9703 ASSERT0(zfs_refcount_count(&normal->mc_allocator[i].
9704 mca_alloc_slots));
9705 ASSERT0(zfs_refcount_count(&special->mc_allocator[i].
9706 mca_alloc_slots));
9707 ASSERT0(zfs_refcount_count(&dedup->mc_allocator[i].
9708 mca_alloc_slots));
9709 normal->mc_allocator[i].mca_alloc_max_slots =
9710 slots_per_allocator;
9711 special->mc_allocator[i].mca_alloc_max_slots =
9712 slots_per_allocator;
9713 dedup->mc_allocator[i].mca_alloc_max_slots =
9714 slots_per_allocator;
9715 }
9716 normal->mc_alloc_throttle_enabled = zio_dva_throttle_enabled;
9717 special->mc_alloc_throttle_enabled = zio_dva_throttle_enabled;
9718 dedup->mc_alloc_throttle_enabled = zio_dva_throttle_enabled;
9719 }
9720
9721 static void
9722 spa_sync_condense_indirect(spa_t *spa, dmu_tx_t *tx)
9723 {
9724 ASSERT(spa_writeable(spa));
9725
9726 vdev_t *rvd = spa->spa_root_vdev;
9727 for (int c = 0; c < rvd->vdev_children; c++) {
9728 vdev_t *vd = rvd->vdev_child[c];
9729 vdev_indirect_state_sync_verify(vd);
9730
9731 if (vdev_indirect_should_condense(vd)) {
9732 spa_condense_indirect_start_sync(vd, tx);
9733 break;
9734 }
9735 }
9736 }
9737
9738 static void
9739 spa_sync_iterate_to_convergence(spa_t *spa, dmu_tx_t *tx)
9740 {
9741 objset_t *mos = spa->spa_meta_objset;
9742 dsl_pool_t *dp = spa->spa_dsl_pool;
9743 uint64_t txg = tx->tx_txg;
9744 bplist_t *free_bpl = &spa->spa_free_bplist[txg & TXG_MASK];
9745
9746 do {
9747 int pass = ++spa->spa_sync_pass;
9748
9749 spa_sync_config_object(spa, tx);
9750 spa_sync_aux_dev(spa, &spa->spa_spares, tx,
9751 ZPOOL_CONFIG_SPARES, DMU_POOL_SPARES);
9752 spa_sync_aux_dev(spa, &spa->spa_l2cache, tx,
9753 ZPOOL_CONFIG_L2CACHE, DMU_POOL_L2CACHE);
9754 spa_errlog_sync(spa, txg);
9755 dsl_pool_sync(dp, txg);
9756
9757 if (pass < zfs_sync_pass_deferred_free ||
9758 spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP)) {
9759 /*
9760 * If the log space map feature is active we don't
9761 * care about deferred frees and the deferred bpobj
9762 * as the log space map should effectively have the
9763 * same results (i.e. appending only to one object).
9764 */
9765 spa_sync_frees(spa, free_bpl, tx);
9766 } else {
9767 /*
9768 * We can not defer frees in pass 1, because
9769 * we sync the deferred frees later in pass 1.
9770 */
9771 ASSERT3U(pass, >, 1);
9772 bplist_iterate(free_bpl, bpobj_enqueue_alloc_cb,
9773 &spa->spa_deferred_bpobj, tx);
9774 }
9775
9776 brt_sync(spa, txg);
9777 ddt_sync(spa, txg);
9778 dsl_scan_sync(dp, tx);
9779 dsl_errorscrub_sync(dp, tx);
9780 svr_sync(spa, tx);
9781 spa_sync_upgrades(spa, tx);
9782
9783 spa_flush_metaslabs(spa, tx);
9784
9785 vdev_t *vd = NULL;
9786 while ((vd = txg_list_remove(&spa->spa_vdev_txg_list, txg))
9787 != NULL)
9788 vdev_sync(vd, txg);
9789
9790 if (pass == 1) {
9791 /*
9792 * dsl_pool_sync() -> dp_sync_tasks may have dirtied
9793 * the config. If that happens, this txg should not
9794 * be a no-op. So we must sync the config to the MOS
9795 * before checking for no-op.
9796 *
9797 * Note that when the config is dirty, it will
9798 * be written to the MOS (i.e. the MOS will be
9799 * dirtied) every time we call spa_sync_config_object()
9800 * in this txg. Therefore we can't call this after
9801 * dsl_pool_sync() every pass, because it would
9802 * prevent us from converging, since we'd dirty
9803 * the MOS every pass.
9804 *
9805 * Sync tasks can only be processed in pass 1, so
9806 * there's no need to do this in later passes.
9807 */
9808 spa_sync_config_object(spa, tx);
9809 }
9810
9811 /*
9812 * Note: We need to check if the MOS is dirty because we could
9813 * have marked the MOS dirty without updating the uberblock
9814 * (e.g. if we have sync tasks but no dirty user data). We need
9815 * to check the uberblock's rootbp because it is updated if we
9816 * have synced out dirty data (though in this case the MOS will
9817 * most likely also be dirty due to second order effects, we
9818 * don't want to rely on that here).
9819 */
9820 if (pass == 1 &&
9821 spa->spa_uberblock.ub_rootbp.blk_birth < txg &&
9822 !dmu_objset_is_dirty(mos, txg)) {
9823 /*
9824 * Nothing changed on the first pass, therefore this
9825 * TXG is a no-op. Avoid syncing deferred frees, so
9826 * that we can keep this TXG as a no-op.
9827 */
9828 ASSERT(txg_list_empty(&dp->dp_dirty_datasets, txg));
9829 ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg));
9830 ASSERT(txg_list_empty(&dp->dp_sync_tasks, txg));
9831 ASSERT(txg_list_empty(&dp->dp_early_sync_tasks, txg));
9832 break;
9833 }
9834
9835 spa_sync_deferred_frees(spa, tx);
9836 } while (dmu_objset_is_dirty(mos, txg));
9837 }
9838
9839 /*
9840 * Rewrite the vdev configuration (which includes the uberblock) to
9841 * commit the transaction group.
9842 *
9843 * If there are no dirty vdevs, we sync the uberblock to a few random
9844 * top-level vdevs that are known to be visible in the config cache
9845 * (see spa_vdev_add() for a complete description). If there *are* dirty
9846 * vdevs, sync the uberblock to all vdevs.
9847 */
9848 static void
9849 spa_sync_rewrite_vdev_config(spa_t *spa, dmu_tx_t *tx)
9850 {
9851 vdev_t *rvd = spa->spa_root_vdev;
9852 uint64_t txg = tx->tx_txg;
9853
9854 for (;;) {
9855 int error = 0;
9856
9857 /*
9858 * We hold SCL_STATE to prevent vdev open/close/etc.
9859 * while we're attempting to write the vdev labels.
9860 */
9861 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
9862
9863 if (list_is_empty(&spa->spa_config_dirty_list)) {
9864 vdev_t *svd[SPA_SYNC_MIN_VDEVS] = { NULL };
9865 int svdcount = 0;
9866 int children = rvd->vdev_children;
9867 int c0 = random_in_range(children);
9868
9869 for (int c = 0; c < children; c++) {
9870 vdev_t *vd =
9871 rvd->vdev_child[(c0 + c) % children];
9872
9873 /* Stop when revisiting the first vdev */
9874 if (c > 0 && svd[0] == vd)
9875 break;
9876
9877 if (vd->vdev_ms_array == 0 ||
9878 vd->vdev_islog ||
9879 !vdev_is_concrete(vd))
9880 continue;
9881
9882 svd[svdcount++] = vd;
9883 if (svdcount == SPA_SYNC_MIN_VDEVS)
9884 break;
9885 }
9886 error = vdev_config_sync(svd, svdcount, txg);
9887 } else {
9888 error = vdev_config_sync(rvd->vdev_child,
9889 rvd->vdev_children, txg);
9890 }
9891
9892 if (error == 0)
9893 spa->spa_last_synced_guid = rvd->vdev_guid;
9894
9895 spa_config_exit(spa, SCL_STATE, FTAG);
9896
9897 if (error == 0)
9898 break;
9899 zio_suspend(spa, NULL, ZIO_SUSPEND_IOERR);
9900 zio_resume_wait(spa);
9901 }
9902 }
9903
9904 /*
9905 * Sync the specified transaction group. New blocks may be dirtied as
9906 * part of the process, so we iterate until it converges.
9907 */
9908 void
9909 spa_sync(spa_t *spa, uint64_t txg)
9910 {
9911 vdev_t *vd = NULL;
9912
9913 VERIFY(spa_writeable(spa));
9914
9915 /*
9916 * Wait for i/os issued in open context that need to complete
9917 * before this txg syncs.
9918 */
9919 (void) zio_wait(spa->spa_txg_zio[txg & TXG_MASK]);
9920 spa->spa_txg_zio[txg & TXG_MASK] = zio_root(spa, NULL, NULL,
9921 ZIO_FLAG_CANFAIL);
9922
9923 /*
9924 * Now that there can be no more cloning in this transaction group,
9925 * but we are still before issuing frees, we can process pending BRT
9926 * updates.
9927 */
9928 brt_pending_apply(spa, txg);
9929
9930 /*
9931 * Lock out configuration changes.
9932 */
9933 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
9934
9935 spa->spa_syncing_txg = txg;
9936 spa->spa_sync_pass = 0;
9937
9938 for (int i = 0; i < spa->spa_alloc_count; i++) {
9939 mutex_enter(&spa->spa_allocs[i].spaa_lock);
9940 VERIFY0(avl_numnodes(&spa->spa_allocs[i].spaa_tree));
9941 mutex_exit(&spa->spa_allocs[i].spaa_lock);
9942 }
9943
9944 /*
9945 * If there are any pending vdev state changes, convert them
9946 * into config changes that go out with this transaction group.
9947 */
9948 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
9949 while ((vd = list_head(&spa->spa_state_dirty_list)) != NULL) {
9950 /* Avoid holding the write lock unless actually necessary */
9951 if (vd->vdev_aux == NULL) {
9952 vdev_state_clean(vd);
9953 vdev_config_dirty(vd);
9954 continue;
9955 }
9956 /*
9957 * We need the write lock here because, for aux vdevs,
9958 * calling vdev_config_dirty() modifies sav_config.
9959 * This is ugly and will become unnecessary when we
9960 * eliminate the aux vdev wart by integrating all vdevs
9961 * into the root vdev tree.
9962 */
9963 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
9964 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_WRITER);
9965 while ((vd = list_head(&spa->spa_state_dirty_list)) != NULL) {
9966 vdev_state_clean(vd);
9967 vdev_config_dirty(vd);
9968 }
9969 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
9970 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
9971 }
9972 spa_config_exit(spa, SCL_STATE, FTAG);
9973
9974 dsl_pool_t *dp = spa->spa_dsl_pool;
9975 dmu_tx_t *tx = dmu_tx_create_assigned(dp, txg);
9976
9977 spa->spa_sync_starttime = gethrtime();
9978 taskq_cancel_id(system_delay_taskq, spa->spa_deadman_tqid);
9979 spa->spa_deadman_tqid = taskq_dispatch_delay(system_delay_taskq,
9980 spa_deadman, spa, TQ_SLEEP, ddi_get_lbolt() +
9981 NSEC_TO_TICK(spa->spa_deadman_synctime));
9982
9983 /*
9984 * If we are upgrading to SPA_VERSION_RAIDZ_DEFLATE this txg,
9985 * set spa_deflate if we have no raid-z vdevs.
9986 */
9987 if (spa->spa_ubsync.ub_version < SPA_VERSION_RAIDZ_DEFLATE &&
9988 spa->spa_uberblock.ub_version >= SPA_VERSION_RAIDZ_DEFLATE) {
9989 vdev_t *rvd = spa->spa_root_vdev;
9990
9991 int i;
9992 for (i = 0; i < rvd->vdev_children; i++) {
9993 vd = rvd->vdev_child[i];
9994 if (vd->vdev_deflate_ratio != SPA_MINBLOCKSIZE)
9995 break;
9996 }
9997 if (i == rvd->vdev_children) {
9998 spa->spa_deflate = TRUE;
9999 VERIFY0(zap_add(spa->spa_meta_objset,
10000 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
10001 sizeof (uint64_t), 1, &spa->spa_deflate, tx));
10002 }
10003 }
10004
10005 spa_sync_adjust_vdev_max_queue_depth(spa);
10006
10007 spa_sync_condense_indirect(spa, tx);
10008
10009 spa_sync_iterate_to_convergence(spa, tx);
10010
10011 #ifdef ZFS_DEBUG
10012 if (!list_is_empty(&spa->spa_config_dirty_list)) {
10013 /*
10014 * Make sure that the number of ZAPs for all the vdevs matches
10015 * the number of ZAPs in the per-vdev ZAP list. This only gets
10016 * called if the config is dirty; otherwise there may be
10017 * outstanding AVZ operations that weren't completed in
10018 * spa_sync_config_object.
10019 */
10020 uint64_t all_vdev_zap_entry_count;
10021 ASSERT0(zap_count(spa->spa_meta_objset,
10022 spa->spa_all_vdev_zaps, &all_vdev_zap_entry_count));
10023 ASSERT3U(vdev_count_verify_zaps(spa->spa_root_vdev), ==,
10024 all_vdev_zap_entry_count);
10025 }
10026 #endif
10027
10028 if (spa->spa_vdev_removal != NULL) {
10029 ASSERT0(spa->spa_vdev_removal->svr_bytes_done[txg & TXG_MASK]);
10030 }
10031
10032 spa_sync_rewrite_vdev_config(spa, tx);
10033 dmu_tx_commit(tx);
10034
10035 taskq_cancel_id(system_delay_taskq, spa->spa_deadman_tqid);
10036 spa->spa_deadman_tqid = 0;
10037
10038 /*
10039 * Clear the dirty config list.
10040 */
10041 while ((vd = list_head(&spa->spa_config_dirty_list)) != NULL)
10042 vdev_config_clean(vd);
10043
10044 /*
10045 * Now that the new config has synced transactionally,
10046 * let it become visible to the config cache.
10047 */
10048 if (spa->spa_config_syncing != NULL) {
10049 spa_config_set(spa, spa->spa_config_syncing);
10050 spa->spa_config_txg = txg;
10051 spa->spa_config_syncing = NULL;
10052 }
10053
10054 dsl_pool_sync_done(dp, txg);
10055
10056 for (int i = 0; i < spa->spa_alloc_count; i++) {
10057 mutex_enter(&spa->spa_allocs[i].spaa_lock);
10058 VERIFY0(avl_numnodes(&spa->spa_allocs[i].spaa_tree));
10059 mutex_exit(&spa->spa_allocs[i].spaa_lock);
10060 }
10061
10062 /*
10063 * Update usable space statistics.
10064 */
10065 while ((vd = txg_list_remove(&spa->spa_vdev_txg_list, TXG_CLEAN(txg)))
10066 != NULL)
10067 vdev_sync_done(vd, txg);
10068
10069 metaslab_class_evict_old(spa->spa_normal_class, txg);
10070 metaslab_class_evict_old(spa->spa_log_class, txg);
10071
10072 spa_sync_close_syncing_log_sm(spa);
10073
10074 spa_update_dspace(spa);
10075
10076 if (spa_get_autotrim(spa) == SPA_AUTOTRIM_ON)
10077 vdev_autotrim_kick(spa);
10078
10079 /*
10080 * It had better be the case that we didn't dirty anything
10081 * since vdev_config_sync().
10082 */
10083 ASSERT(txg_list_empty(&dp->dp_dirty_datasets, txg));
10084 ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg));
10085 ASSERT(txg_list_empty(&spa->spa_vdev_txg_list, txg));
10086
10087 while (zfs_pause_spa_sync)
10088 delay(1);
10089
10090 spa->spa_sync_pass = 0;
10091
10092 /*
10093 * Update the last synced uberblock here. We want to do this at
10094 * the end of spa_sync() so that consumers of spa_last_synced_txg()
10095 * will be guaranteed that all the processing associated with
10096 * that txg has been completed.
10097 */
10098 spa->spa_ubsync = spa->spa_uberblock;
10099 spa_config_exit(spa, SCL_CONFIG, FTAG);
10100
10101 spa_handle_ignored_writes(spa);
10102
10103 /*
10104 * If any async tasks have been requested, kick them off.
10105 */
10106 spa_async_dispatch(spa);
10107 }
10108
10109 /*
10110 * Sync all pools. We don't want to hold the namespace lock across these
10111 * operations, so we take a reference on the spa_t and drop the lock during the
10112 * sync.
10113 */
10114 void
10115 spa_sync_allpools(void)
10116 {
10117 spa_t *spa = NULL;
10118 mutex_enter(&spa_namespace_lock);
10119 while ((spa = spa_next(spa)) != NULL) {
10120 if (spa_state(spa) != POOL_STATE_ACTIVE ||
10121 !spa_writeable(spa) || spa_suspended(spa))
10122 continue;
10123 spa_open_ref(spa, FTAG);
10124 mutex_exit(&spa_namespace_lock);
10125 txg_wait_synced(spa_get_dsl(spa), 0);
10126 mutex_enter(&spa_namespace_lock);
10127 spa_close(spa, FTAG);
10128 }
10129 mutex_exit(&spa_namespace_lock);
10130 }
10131
10132 taskq_t *
10133 spa_sync_tq_create(spa_t *spa, const char *name)
10134 {
10135 kthread_t **kthreads;
10136
10137 ASSERT(spa->spa_sync_tq == NULL);
10138 ASSERT3S(spa->spa_alloc_count, <=, boot_ncpus);
10139
10140 /*
10141 * - do not allow more allocators than cpus.
10142 * - there may be more cpus than allocators.
10143 * - do not allow more sync taskq threads than allocators or cpus.
10144 */
10145 int nthreads = spa->spa_alloc_count;
10146 spa->spa_syncthreads = kmem_zalloc(sizeof (spa_syncthread_info_t) *
10147 nthreads, KM_SLEEP);
10148
10149 spa->spa_sync_tq = taskq_create_synced(name, nthreads, minclsyspri,
10150 nthreads, INT_MAX, TASKQ_PREPOPULATE, &kthreads);
10151 VERIFY(spa->spa_sync_tq != NULL);
10152 VERIFY(kthreads != NULL);
10153
10154 spa_taskqs_t *tqs =
10155 &spa->spa_zio_taskq[ZIO_TYPE_WRITE][ZIO_TASKQ_ISSUE];
10156
10157 spa_syncthread_info_t *ti = spa->spa_syncthreads;
10158 for (int i = 0, w = 0; i < nthreads; i++, w++, ti++) {
10159 ti->sti_thread = kthreads[i];
10160 if (w == tqs->stqs_count) {
10161 w = 0;
10162 }
10163 ti->sti_wr_iss_tq = tqs->stqs_taskq[w];
10164 }
10165
10166 kmem_free(kthreads, sizeof (*kthreads) * nthreads);
10167 return (spa->spa_sync_tq);
10168 }
10169
10170 void
10171 spa_sync_tq_destroy(spa_t *spa)
10172 {
10173 ASSERT(spa->spa_sync_tq != NULL);
10174
10175 taskq_wait(spa->spa_sync_tq);
10176 taskq_destroy(spa->spa_sync_tq);
10177 kmem_free(spa->spa_syncthreads,
10178 sizeof (spa_syncthread_info_t) * spa->spa_alloc_count);
10179 spa->spa_sync_tq = NULL;
10180 }
10181
10182 void
10183 spa_select_allocator(zio_t *zio)
10184 {
10185 zbookmark_phys_t *bm = &zio->io_bookmark;
10186 spa_t *spa = zio->io_spa;
10187
10188 ASSERT(zio->io_type == ZIO_TYPE_WRITE);
10189
10190 /*
10191 * A gang block (for example) may have inherited its parent's
10192 * allocator, in which case there is nothing further to do here.
10193 */
10194 if (ZIO_HAS_ALLOCATOR(zio))
10195 return;
10196
10197 ASSERT(spa != NULL);
10198 ASSERT(bm != NULL);
10199
10200 /*
10201 * First try to use an allocator assigned to the syncthread, and set
10202 * the corresponding write issue taskq for the allocator.
10203 * Note, we must have an open pool to do this.
10204 */
10205 if (spa->spa_sync_tq != NULL) {
10206 spa_syncthread_info_t *ti = spa->spa_syncthreads;
10207 for (int i = 0; i < spa->spa_alloc_count; i++, ti++) {
10208 if (ti->sti_thread == curthread) {
10209 zio->io_allocator = i;
10210 zio->io_wr_iss_tq = ti->sti_wr_iss_tq;
10211 return;
10212 }
10213 }
10214 }
10215
10216 /*
10217 * We want to try to use as many allocators as possible to help improve
10218 * performance, but we also want logically adjacent IOs to be physically
10219 * adjacent to improve sequential read performance. We chunk each object
10220 * into 2^20 block regions, and then hash based on the objset, object,
10221 * level, and region to accomplish both of these goals.
10222 */
10223 uint64_t hv = cityhash4(bm->zb_objset, bm->zb_object, bm->zb_level,
10224 bm->zb_blkid >> 20);
10225
10226 zio->io_allocator = (uint_t)hv % spa->spa_alloc_count;
10227 zio->io_wr_iss_tq = NULL;
10228 }
10229
10230 /*
10231 * ==========================================================================
10232 * Miscellaneous routines
10233 * ==========================================================================
10234 */
10235
10236 /*
10237 * Remove all pools in the system.
10238 */
10239 void
10240 spa_evict_all(void)
10241 {
10242 spa_t *spa;
10243
10244 /*
10245 * Remove all cached state. All pools should be closed now,
10246 * so every spa in the AVL tree should be unreferenced.
10247 */
10248 mutex_enter(&spa_namespace_lock);
10249 while ((spa = spa_next(NULL)) != NULL) {
10250 /*
10251 * Stop async tasks. The async thread may need to detach
10252 * a device that's been replaced, which requires grabbing
10253 * spa_namespace_lock, so we must drop it here.
10254 */
10255 spa_open_ref(spa, FTAG);
10256 mutex_exit(&spa_namespace_lock);
10257 spa_async_suspend(spa);
10258 mutex_enter(&spa_namespace_lock);
10259 spa_close(spa, FTAG);
10260
10261 if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
10262 spa_unload(spa);
10263 spa_deactivate(spa);
10264 }
10265 spa_remove(spa);
10266 }
10267 mutex_exit(&spa_namespace_lock);
10268 }
10269
10270 vdev_t *
10271 spa_lookup_by_guid(spa_t *spa, uint64_t guid, boolean_t aux)
10272 {
10273 vdev_t *vd;
10274 int i;
10275
10276 if ((vd = vdev_lookup_by_guid(spa->spa_root_vdev, guid)) != NULL)
10277 return (vd);
10278
10279 if (aux) {
10280 for (i = 0; i < spa->spa_l2cache.sav_count; i++) {
10281 vd = spa->spa_l2cache.sav_vdevs[i];
10282 if (vd->vdev_guid == guid)
10283 return (vd);
10284 }
10285
10286 for (i = 0; i < spa->spa_spares.sav_count; i++) {
10287 vd = spa->spa_spares.sav_vdevs[i];
10288 if (vd->vdev_guid == guid)
10289 return (vd);
10290 }
10291 }
10292
10293 return (NULL);
10294 }
10295
10296 void
10297 spa_upgrade(spa_t *spa, uint64_t version)
10298 {
10299 ASSERT(spa_writeable(spa));
10300
10301 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
10302
10303 /*
10304 * This should only be called for a non-faulted pool, and since a
10305 * future version would result in an unopenable pool, this shouldn't be
10306 * possible.
10307 */
10308 ASSERT(SPA_VERSION_IS_SUPPORTED(spa->spa_uberblock.ub_version));
10309 ASSERT3U(version, >=, spa->spa_uberblock.ub_version);
10310
10311 spa->spa_uberblock.ub_version = version;
10312 vdev_config_dirty(spa->spa_root_vdev);
10313
10314 spa_config_exit(spa, SCL_ALL, FTAG);
10315
10316 txg_wait_synced(spa_get_dsl(spa), 0);
10317 }
10318
10319 static boolean_t
10320 spa_has_aux_vdev(spa_t *spa, uint64_t guid, spa_aux_vdev_t *sav)
10321 {
10322 (void) spa;
10323 int i;
10324 uint64_t vdev_guid;
10325
10326 for (i = 0; i < sav->sav_count; i++)
10327 if (sav->sav_vdevs[i]->vdev_guid == guid)
10328 return (B_TRUE);
10329
10330 for (i = 0; i < sav->sav_npending; i++) {
10331 if (nvlist_lookup_uint64(sav->sav_pending[i], ZPOOL_CONFIG_GUID,
10332 &vdev_guid) == 0 && vdev_guid == guid)
10333 return (B_TRUE);
10334 }
10335
10336 return (B_FALSE);
10337 }
10338
10339 boolean_t
10340 spa_has_l2cache(spa_t *spa, uint64_t guid)
10341 {
10342 return (spa_has_aux_vdev(spa, guid, &spa->spa_l2cache));
10343 }
10344
10345 boolean_t
10346 spa_has_spare(spa_t *spa, uint64_t guid)
10347 {
10348 return (spa_has_aux_vdev(spa, guid, &spa->spa_spares));
10349 }
10350
10351 /*
10352 * Check if a pool has an active shared spare device.
10353 * Note: reference count of an active spare is 2, as a spare and as a replace
10354 */
10355 static boolean_t
10356 spa_has_active_shared_spare(spa_t *spa)
10357 {
10358 int i, refcnt;
10359 uint64_t pool;
10360 spa_aux_vdev_t *sav = &spa->spa_spares;
10361
10362 for (i = 0; i < sav->sav_count; i++) {
10363 if (spa_spare_exists(sav->sav_vdevs[i]->vdev_guid, &pool,
10364 &refcnt) && pool != 0ULL && pool == spa_guid(spa) &&
10365 refcnt > 2)
10366 return (B_TRUE);
10367 }
10368
10369 return (B_FALSE);
10370 }
10371
10372 uint64_t
10373 spa_total_metaslabs(spa_t *spa)
10374 {
10375 vdev_t *rvd = spa->spa_root_vdev;
10376
10377 uint64_t m = 0;
10378 for (uint64_t c = 0; c < rvd->vdev_children; c++) {
10379 vdev_t *vd = rvd->vdev_child[c];
10380 if (!vdev_is_concrete(vd))
10381 continue;
10382 m += vd->vdev_ms_count;
10383 }
10384 return (m);
10385 }
10386
10387 /*
10388 * Notify any waiting threads that some activity has switched from being in-
10389 * progress to not-in-progress so that the thread can wake up and determine
10390 * whether it is finished waiting.
10391 */
10392 void
10393 spa_notify_waiters(spa_t *spa)
10394 {
10395 /*
10396 * Acquiring spa_activities_lock here prevents the cv_broadcast from
10397 * happening between the waiting thread's check and cv_wait.
10398 */
10399 mutex_enter(&spa->spa_activities_lock);
10400 cv_broadcast(&spa->spa_activities_cv);
10401 mutex_exit(&spa->spa_activities_lock);
10402 }
10403
10404 /*
10405 * Notify any waiting threads that the pool is exporting, and then block until
10406 * they are finished using the spa_t.
10407 */
10408 void
10409 spa_wake_waiters(spa_t *spa)
10410 {
10411 mutex_enter(&spa->spa_activities_lock);
10412 spa->spa_waiters_cancel = B_TRUE;
10413 cv_broadcast(&spa->spa_activities_cv);
10414 while (spa->spa_waiters != 0)
10415 cv_wait(&spa->spa_waiters_cv, &spa->spa_activities_lock);
10416 spa->spa_waiters_cancel = B_FALSE;
10417 mutex_exit(&spa->spa_activities_lock);
10418 }
10419
10420 /* Whether the vdev or any of its descendants are being initialized/trimmed. */
10421 static boolean_t
10422 spa_vdev_activity_in_progress_impl(vdev_t *vd, zpool_wait_activity_t activity)
10423 {
10424 spa_t *spa = vd->vdev_spa;
10425
10426 ASSERT(spa_config_held(spa, SCL_CONFIG | SCL_STATE, RW_READER));
10427 ASSERT(MUTEX_HELD(&spa->spa_activities_lock));
10428 ASSERT(activity == ZPOOL_WAIT_INITIALIZE ||
10429 activity == ZPOOL_WAIT_TRIM);
10430
10431 kmutex_t *lock = activity == ZPOOL_WAIT_INITIALIZE ?
10432 &vd->vdev_initialize_lock : &vd->vdev_trim_lock;
10433
10434 mutex_exit(&spa->spa_activities_lock);
10435 mutex_enter(lock);
10436 mutex_enter(&spa->spa_activities_lock);
10437
10438 boolean_t in_progress = (activity == ZPOOL_WAIT_INITIALIZE) ?
10439 (vd->vdev_initialize_state == VDEV_INITIALIZE_ACTIVE) :
10440 (vd->vdev_trim_state == VDEV_TRIM_ACTIVE);
10441 mutex_exit(lock);
10442
10443 if (in_progress)
10444 return (B_TRUE);
10445
10446 for (int i = 0; i < vd->vdev_children; i++) {
10447 if (spa_vdev_activity_in_progress_impl(vd->vdev_child[i],
10448 activity))
10449 return (B_TRUE);
10450 }
10451
10452 return (B_FALSE);
10453 }
10454
10455 /*
10456 * If use_guid is true, this checks whether the vdev specified by guid is
10457 * being initialized/trimmed. Otherwise, it checks whether any vdev in the pool
10458 * is being initialized/trimmed. The caller must hold the config lock and
10459 * spa_activities_lock.
10460 */
10461 static int
10462 spa_vdev_activity_in_progress(spa_t *spa, boolean_t use_guid, uint64_t guid,
10463 zpool_wait_activity_t activity, boolean_t *in_progress)
10464 {
10465 mutex_exit(&spa->spa_activities_lock);
10466 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
10467 mutex_enter(&spa->spa_activities_lock);
10468
10469 vdev_t *vd;
10470 if (use_guid) {
10471 vd = spa_lookup_by_guid(spa, guid, B_FALSE);
10472 if (vd == NULL || !vd->vdev_ops->vdev_op_leaf) {
10473 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
10474 return (EINVAL);
10475 }
10476 } else {
10477 vd = spa->spa_root_vdev;
10478 }
10479
10480 *in_progress = spa_vdev_activity_in_progress_impl(vd, activity);
10481
10482 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
10483 return (0);
10484 }
10485
10486 /*
10487 * Locking for waiting threads
10488 * ---------------------------
10489 *
10490 * Waiting threads need a way to check whether a given activity is in progress,
10491 * and then, if it is, wait for it to complete. Each activity will have some
10492 * in-memory representation of the relevant on-disk state which can be used to
10493 * determine whether or not the activity is in progress. The in-memory state and
10494 * the locking used to protect it will be different for each activity, and may
10495 * not be suitable for use with a cvar (e.g., some state is protected by the
10496 * config lock). To allow waiting threads to wait without any races, another
10497 * lock, spa_activities_lock, is used.
10498 *
10499 * When the state is checked, both the activity-specific lock (if there is one)
10500 * and spa_activities_lock are held. In some cases, the activity-specific lock
10501 * is acquired explicitly (e.g. the config lock). In others, the locking is
10502 * internal to some check (e.g. bpobj_is_empty). After checking, the waiting
10503 * thread releases the activity-specific lock and, if the activity is in
10504 * progress, then cv_waits using spa_activities_lock.
10505 *
10506 * The waiting thread is woken when another thread, one completing some
10507 * activity, updates the state of the activity and then calls
10508 * spa_notify_waiters, which will cv_broadcast. This 'completing' thread only
10509 * needs to hold its activity-specific lock when updating the state, and this
10510 * lock can (but doesn't have to) be dropped before calling spa_notify_waiters.
10511 *
10512 * Because spa_notify_waiters acquires spa_activities_lock before broadcasting,
10513 * and because it is held when the waiting thread checks the state of the
10514 * activity, it can never be the case that the completing thread both updates
10515 * the activity state and cv_broadcasts in between the waiting thread's check
10516 * and cv_wait. Thus, a waiting thread can never miss a wakeup.
10517 *
10518 * In order to prevent deadlock, when the waiting thread does its check, in some
10519 * cases it will temporarily drop spa_activities_lock in order to acquire the
10520 * activity-specific lock. The order in which spa_activities_lock and the
10521 * activity specific lock are acquired in the waiting thread is determined by
10522 * the order in which they are acquired in the completing thread; if the
10523 * completing thread calls spa_notify_waiters with the activity-specific lock
10524 * held, then the waiting thread must also acquire the activity-specific lock
10525 * first.
10526 */
10527
10528 static int
10529 spa_activity_in_progress(spa_t *spa, zpool_wait_activity_t activity,
10530 boolean_t use_tag, uint64_t tag, boolean_t *in_progress)
10531 {
10532 int error = 0;
10533
10534 ASSERT(MUTEX_HELD(&spa->spa_activities_lock));
10535
10536 switch (activity) {
10537 case ZPOOL_WAIT_CKPT_DISCARD:
10538 *in_progress =
10539 (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT) &&
10540 zap_contains(spa_meta_objset(spa),
10541 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_ZPOOL_CHECKPOINT) ==
10542 ENOENT);
10543 break;
10544 case ZPOOL_WAIT_FREE:
10545 *in_progress = ((spa_version(spa) >= SPA_VERSION_DEADLISTS &&
10546 !bpobj_is_empty(&spa->spa_dsl_pool->dp_free_bpobj)) ||
10547 spa_feature_is_active(spa, SPA_FEATURE_ASYNC_DESTROY) ||
10548 spa_livelist_delete_check(spa));
10549 break;
10550 case ZPOOL_WAIT_INITIALIZE:
10551 case ZPOOL_WAIT_TRIM:
10552 error = spa_vdev_activity_in_progress(spa, use_tag, tag,
10553 activity, in_progress);
10554 break;
10555 case ZPOOL_WAIT_REPLACE:
10556 mutex_exit(&spa->spa_activities_lock);
10557 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
10558 mutex_enter(&spa->spa_activities_lock);
10559
10560 *in_progress = vdev_replace_in_progress(spa->spa_root_vdev);
10561 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
10562 break;
10563 case ZPOOL_WAIT_REMOVE:
10564 *in_progress = (spa->spa_removing_phys.sr_state ==
10565 DSS_SCANNING);
10566 break;
10567 case ZPOOL_WAIT_RESILVER:
10568 *in_progress = vdev_rebuild_active(spa->spa_root_vdev);
10569 if (*in_progress)
10570 break;
10571 zfs_fallthrough;
10572 case ZPOOL_WAIT_SCRUB:
10573 {
10574 boolean_t scanning, paused, is_scrub;
10575 dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan;
10576
10577 is_scrub = (scn->scn_phys.scn_func == POOL_SCAN_SCRUB);
10578 scanning = (scn->scn_phys.scn_state == DSS_SCANNING);
10579 paused = dsl_scan_is_paused_scrub(scn);
10580 *in_progress = (scanning && !paused &&
10581 is_scrub == (activity == ZPOOL_WAIT_SCRUB));
10582 break;
10583 }
10584 case ZPOOL_WAIT_RAIDZ_EXPAND:
10585 {
10586 vdev_raidz_expand_t *vre = spa->spa_raidz_expand;
10587 *in_progress = (vre != NULL && vre->vre_state == DSS_SCANNING);
10588 break;
10589 }
10590 default:
10591 panic("unrecognized value for activity %d", activity);
10592 }
10593
10594 return (error);
10595 }
10596
10597 static int
10598 spa_wait_common(const char *pool, zpool_wait_activity_t activity,
10599 boolean_t use_tag, uint64_t tag, boolean_t *waited)
10600 {
10601 /*
10602 * The tag is used to distinguish between instances of an activity.
10603 * 'initialize' and 'trim' are the only activities that we use this for.
10604 * The other activities can only have a single instance in progress in a
10605 * pool at one time, making the tag unnecessary.
10606 *
10607 * There can be multiple devices being replaced at once, but since they
10608 * all finish once resilvering finishes, we don't bother keeping track
10609 * of them individually, we just wait for them all to finish.
10610 */
10611 if (use_tag && activity != ZPOOL_WAIT_INITIALIZE &&
10612 activity != ZPOOL_WAIT_TRIM)
10613 return (EINVAL);
10614
10615 if (activity < 0 || activity >= ZPOOL_WAIT_NUM_ACTIVITIES)
10616 return (EINVAL);
10617
10618 spa_t *spa;
10619 int error = spa_open(pool, &spa, FTAG);
10620 if (error != 0)
10621 return (error);
10622
10623 /*
10624 * Increment the spa's waiter count so that we can call spa_close and
10625 * still ensure that the spa_t doesn't get freed before this thread is
10626 * finished with it when the pool is exported. We want to call spa_close
10627 * before we start waiting because otherwise the additional ref would
10628 * prevent the pool from being exported or destroyed throughout the
10629 * potentially long wait.
10630 */
10631 mutex_enter(&spa->spa_activities_lock);
10632 spa->spa_waiters++;
10633 spa_close(spa, FTAG);
10634
10635 *waited = B_FALSE;
10636 for (;;) {
10637 boolean_t in_progress;
10638 error = spa_activity_in_progress(spa, activity, use_tag, tag,
10639 &in_progress);
10640
10641 if (error || !in_progress || spa->spa_waiters_cancel)
10642 break;
10643
10644 *waited = B_TRUE;
10645
10646 if (cv_wait_sig(&spa->spa_activities_cv,
10647 &spa->spa_activities_lock) == 0) {
10648 error = EINTR;
10649 break;
10650 }
10651 }
10652
10653 spa->spa_waiters--;
10654 cv_signal(&spa->spa_waiters_cv);
10655 mutex_exit(&spa->spa_activities_lock);
10656
10657 return (error);
10658 }
10659
10660 /*
10661 * Wait for a particular instance of the specified activity to complete, where
10662 * the instance is identified by 'tag'
10663 */
10664 int
10665 spa_wait_tag(const char *pool, zpool_wait_activity_t activity, uint64_t tag,
10666 boolean_t *waited)
10667 {
10668 return (spa_wait_common(pool, activity, B_TRUE, tag, waited));
10669 }
10670
10671 /*
10672 * Wait for all instances of the specified activity complete
10673 */
10674 int
10675 spa_wait(const char *pool, zpool_wait_activity_t activity, boolean_t *waited)
10676 {
10677
10678 return (spa_wait_common(pool, activity, B_FALSE, 0, waited));
10679 }
10680
10681 sysevent_t *
10682 spa_event_create(spa_t *spa, vdev_t *vd, nvlist_t *hist_nvl, const char *name)
10683 {
10684 sysevent_t *ev = NULL;
10685 #ifdef _KERNEL
10686 nvlist_t *resource;
10687
10688 resource = zfs_event_create(spa, vd, FM_SYSEVENT_CLASS, name, hist_nvl);
10689 if (resource) {
10690 ev = kmem_alloc(sizeof (sysevent_t), KM_SLEEP);
10691 ev->resource = resource;
10692 }
10693 #else
10694 (void) spa, (void) vd, (void) hist_nvl, (void) name;
10695 #endif
10696 return (ev);
10697 }
10698
10699 void
10700 spa_event_post(sysevent_t *ev)
10701 {
10702 #ifdef _KERNEL
10703 if (ev) {
10704 zfs_zevent_post(ev->resource, NULL, zfs_zevent_post_cb);
10705 kmem_free(ev, sizeof (*ev));
10706 }
10707 #else
10708 (void) ev;
10709 #endif
10710 }
10711
10712 /*
10713 * Post a zevent corresponding to the given sysevent. The 'name' must be one
10714 * of the event definitions in sys/sysevent/eventdefs.h. The payload will be
10715 * filled in from the spa and (optionally) the vdev. This doesn't do anything
10716 * in the userland libzpool, as we don't want consumers to misinterpret ztest
10717 * or zdb as real changes.
10718 */
10719 void
10720 spa_event_notify(spa_t *spa, vdev_t *vd, nvlist_t *hist_nvl, const char *name)
10721 {
10722 spa_event_post(spa_event_create(spa, vd, hist_nvl, name));
10723 }
10724
10725 /* state manipulation functions */
10726 EXPORT_SYMBOL(spa_open);
10727 EXPORT_SYMBOL(spa_open_rewind);
10728 EXPORT_SYMBOL(spa_get_stats);
10729 EXPORT_SYMBOL(spa_create);
10730 EXPORT_SYMBOL(spa_import);
10731 EXPORT_SYMBOL(spa_tryimport);
10732 EXPORT_SYMBOL(spa_destroy);
10733 EXPORT_SYMBOL(spa_export);
10734 EXPORT_SYMBOL(spa_reset);
10735 EXPORT_SYMBOL(spa_async_request);
10736 EXPORT_SYMBOL(spa_async_suspend);
10737 EXPORT_SYMBOL(spa_async_resume);
10738 EXPORT_SYMBOL(spa_inject_addref);
10739 EXPORT_SYMBOL(spa_inject_delref);
10740 EXPORT_SYMBOL(spa_scan_stat_init);
10741 EXPORT_SYMBOL(spa_scan_get_stats);
10742
10743 /* device manipulation */
10744 EXPORT_SYMBOL(spa_vdev_add);
10745 EXPORT_SYMBOL(spa_vdev_attach);
10746 EXPORT_SYMBOL(spa_vdev_detach);
10747 EXPORT_SYMBOL(spa_vdev_setpath);
10748 EXPORT_SYMBOL(spa_vdev_setfru);
10749 EXPORT_SYMBOL(spa_vdev_split_mirror);
10750
10751 /* spare statech is global across all pools) */
10752 EXPORT_SYMBOL(spa_spare_add);
10753 EXPORT_SYMBOL(spa_spare_remove);
10754 EXPORT_SYMBOL(spa_spare_exists);
10755 EXPORT_SYMBOL(spa_spare_activate);
10756
10757 /* L2ARC statech is global across all pools) */
10758 EXPORT_SYMBOL(spa_l2cache_add);
10759 EXPORT_SYMBOL(spa_l2cache_remove);
10760 EXPORT_SYMBOL(spa_l2cache_exists);
10761 EXPORT_SYMBOL(spa_l2cache_activate);
10762 EXPORT_SYMBOL(spa_l2cache_drop);
10763
10764 /* scanning */
10765 EXPORT_SYMBOL(spa_scan);
10766 EXPORT_SYMBOL(spa_scan_stop);
10767
10768 /* spa syncing */
10769 EXPORT_SYMBOL(spa_sync); /* only for DMU use */
10770 EXPORT_SYMBOL(spa_sync_allpools);
10771
10772 /* properties */
10773 EXPORT_SYMBOL(spa_prop_set);
10774 EXPORT_SYMBOL(spa_prop_get);
10775 EXPORT_SYMBOL(spa_prop_clear_bootfs);
10776
10777 /* asynchronous event notification */
10778 EXPORT_SYMBOL(spa_event_notify);
10779
10780 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, preload_pct, UINT, ZMOD_RW,
10781 "Percentage of CPUs to run a metaslab preload taskq");
10782
10783 /* BEGIN CSTYLED */
10784 ZFS_MODULE_PARAM(zfs_spa, spa_, load_verify_shift, UINT, ZMOD_RW,
10785 "log2 fraction of arc that can be used by inflight I/Os when "
10786 "verifying pool during import");
10787 /* END CSTYLED */
10788
10789 ZFS_MODULE_PARAM(zfs_spa, spa_, load_verify_metadata, INT, ZMOD_RW,
10790 "Set to traverse metadata on pool import");
10791
10792 ZFS_MODULE_PARAM(zfs_spa, spa_, load_verify_data, INT, ZMOD_RW,
10793 "Set to traverse data on pool import");
10794
10795 ZFS_MODULE_PARAM(zfs_spa, spa_, load_print_vdev_tree, INT, ZMOD_RW,
10796 "Print vdev tree to zfs_dbgmsg during pool import");
10797
10798 ZFS_MODULE_PARAM(zfs_zio, zio_, taskq_batch_pct, UINT, ZMOD_RD,
10799 "Percentage of CPUs to run an IO worker thread");
10800
10801 ZFS_MODULE_PARAM(zfs_zio, zio_, taskq_batch_tpq, UINT, ZMOD_RD,
10802 "Number of threads per IO worker taskqueue");
10803
10804 /* BEGIN CSTYLED */
10805 ZFS_MODULE_PARAM(zfs, zfs_, max_missing_tvds, U64, ZMOD_RW,
10806 "Allow importing pool with up to this number of missing top-level "
10807 "vdevs (in read-only mode)");
10808 /* END CSTYLED */
10809
10810 ZFS_MODULE_PARAM(zfs_livelist_condense, zfs_livelist_condense_, zthr_pause, INT,
10811 ZMOD_RW, "Set the livelist condense zthr to pause");
10812
10813 ZFS_MODULE_PARAM(zfs_livelist_condense, zfs_livelist_condense_, sync_pause, INT,
10814 ZMOD_RW, "Set the livelist condense synctask to pause");
10815
10816 /* BEGIN CSTYLED */
10817 ZFS_MODULE_PARAM(zfs_livelist_condense, zfs_livelist_condense_, sync_cancel,
10818 INT, ZMOD_RW,
10819 "Whether livelist condensing was canceled in the synctask");
10820
10821 ZFS_MODULE_PARAM(zfs_livelist_condense, zfs_livelist_condense_, zthr_cancel,
10822 INT, ZMOD_RW,
10823 "Whether livelist condensing was canceled in the zthr function");
10824
10825 ZFS_MODULE_PARAM(zfs_livelist_condense, zfs_livelist_condense_, new_alloc, INT,
10826 ZMOD_RW,
10827 "Whether extra ALLOC blkptrs were added to a livelist entry while it "
10828 "was being condensed");
10829
10830 #ifdef _KERNEL
10831 ZFS_MODULE_VIRTUAL_PARAM_CALL(zfs_zio, zio_, taskq_read,
10832 spa_taskq_read_param_set, spa_taskq_read_param_get, ZMOD_RD,
10833 "Configure IO queues for read IO");
10834 ZFS_MODULE_VIRTUAL_PARAM_CALL(zfs_zio, zio_, taskq_write,
10835 spa_taskq_write_param_set, spa_taskq_write_param_get, ZMOD_RD,
10836 "Configure IO queues for write IO");
10837 #endif
10838 /* END CSTYLED */
10839
10840 ZFS_MODULE_PARAM(zfs_zio, zio_, taskq_wr_iss_ncpus, UINT, ZMOD_RW,
10841 "Number of CPUs to run write issue taskqs");