]> git.proxmox.com Git - mirror_zfs.git/blob - module/zfs/spa.c
Simplify spa_sync by breaking it up to smaller functions
[mirror_zfs.git] / module / zfs / spa.c
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22 /*
23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright (c) 2011, 2017 by Delphix. All rights reserved.
25 * Copyright (c) 2018, Nexenta Systems, Inc. All rights reserved.
26 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
27 * Copyright 2013 Saso Kiselkov. All rights reserved.
28 * Copyright (c) 2014 Integros [integros.com]
29 * Copyright 2016 Toomas Soome <tsoome@me.com>
30 * Copyright (c) 2016 Actifio, Inc. All rights reserved.
31 * Copyright 2018 Joyent, Inc.
32 * Copyright (c) 2017 Datto Inc.
33 * Copyright 2017 Joyent, Inc.
34 * Copyright (c) 2017, Intel Corporation.
35 */
36
37 /*
38 * SPA: Storage Pool Allocator
39 *
40 * This file contains all the routines used when modifying on-disk SPA state.
41 * This includes opening, importing, destroying, exporting a pool, and syncing a
42 * pool.
43 */
44
45 #include <sys/zfs_context.h>
46 #include <sys/fm/fs/zfs.h>
47 #include <sys/spa_impl.h>
48 #include <sys/zio.h>
49 #include <sys/zio_checksum.h>
50 #include <sys/dmu.h>
51 #include <sys/dmu_tx.h>
52 #include <sys/zap.h>
53 #include <sys/zil.h>
54 #include <sys/ddt.h>
55 #include <sys/vdev_impl.h>
56 #include <sys/vdev_removal.h>
57 #include <sys/vdev_indirect_mapping.h>
58 #include <sys/vdev_indirect_births.h>
59 #include <sys/vdev_initialize.h>
60 #include <sys/vdev_disk.h>
61 #include <sys/metaslab.h>
62 #include <sys/metaslab_impl.h>
63 #include <sys/mmp.h>
64 #include <sys/uberblock_impl.h>
65 #include <sys/txg.h>
66 #include <sys/avl.h>
67 #include <sys/bpobj.h>
68 #include <sys/dmu_traverse.h>
69 #include <sys/dmu_objset.h>
70 #include <sys/unique.h>
71 #include <sys/dsl_pool.h>
72 #include <sys/dsl_dataset.h>
73 #include <sys/dsl_dir.h>
74 #include <sys/dsl_prop.h>
75 #include <sys/dsl_synctask.h>
76 #include <sys/fs/zfs.h>
77 #include <sys/arc.h>
78 #include <sys/callb.h>
79 #include <sys/systeminfo.h>
80 #include <sys/spa_boot.h>
81 #include <sys/zfs_ioctl.h>
82 #include <sys/dsl_scan.h>
83 #include <sys/zfeature.h>
84 #include <sys/dsl_destroy.h>
85 #include <sys/zvol.h>
86
87 #ifdef _KERNEL
88 #include <sys/fm/protocol.h>
89 #include <sys/fm/util.h>
90 #include <sys/callb.h>
91 #include <sys/zone.h>
92 #endif /* _KERNEL */
93
94 #include "zfs_prop.h"
95 #include "zfs_comutil.h"
96
97 /*
98 * The interval, in seconds, at which failed configuration cache file writes
99 * should be retried.
100 */
101 int zfs_ccw_retry_interval = 300;
102
103 typedef enum zti_modes {
104 ZTI_MODE_FIXED, /* value is # of threads (min 1) */
105 ZTI_MODE_BATCH, /* cpu-intensive; value is ignored */
106 ZTI_MODE_NULL, /* don't create a taskq */
107 ZTI_NMODES
108 } zti_modes_t;
109
110 #define ZTI_P(n, q) { ZTI_MODE_FIXED, (n), (q) }
111 #define ZTI_PCT(n) { ZTI_MODE_ONLINE_PERCENT, (n), 1 }
112 #define ZTI_BATCH { ZTI_MODE_BATCH, 0, 1 }
113 #define ZTI_NULL { ZTI_MODE_NULL, 0, 0 }
114
115 #define ZTI_N(n) ZTI_P(n, 1)
116 #define ZTI_ONE ZTI_N(1)
117
118 typedef struct zio_taskq_info {
119 zti_modes_t zti_mode;
120 uint_t zti_value;
121 uint_t zti_count;
122 } zio_taskq_info_t;
123
124 static const char *const zio_taskq_types[ZIO_TASKQ_TYPES] = {
125 "iss", "iss_h", "int", "int_h"
126 };
127
128 /*
129 * This table defines the taskq settings for each ZFS I/O type. When
130 * initializing a pool, we use this table to create an appropriately sized
131 * taskq. Some operations are low volume and therefore have a small, static
132 * number of threads assigned to their taskqs using the ZTI_N(#) or ZTI_ONE
133 * macros. Other operations process a large amount of data; the ZTI_BATCH
134 * macro causes us to create a taskq oriented for throughput. Some operations
135 * are so high frequency and short-lived that the taskq itself can become a a
136 * point of lock contention. The ZTI_P(#, #) macro indicates that we need an
137 * additional degree of parallelism specified by the number of threads per-
138 * taskq and the number of taskqs; when dispatching an event in this case, the
139 * particular taskq is chosen at random.
140 *
141 * The different taskq priorities are to handle the different contexts (issue
142 * and interrupt) and then to reserve threads for ZIO_PRIORITY_NOW I/Os that
143 * need to be handled with minimum delay.
144 */
145 const zio_taskq_info_t zio_taskqs[ZIO_TYPES][ZIO_TASKQ_TYPES] = {
146 /* ISSUE ISSUE_HIGH INTR INTR_HIGH */
147 { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* NULL */
148 { ZTI_N(8), ZTI_NULL, ZTI_P(12, 8), ZTI_NULL }, /* READ */
149 { ZTI_BATCH, ZTI_N(5), ZTI_P(12, 8), ZTI_N(5) }, /* WRITE */
150 { ZTI_P(12, 8), ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* FREE */
151 { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* CLAIM */
152 { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* IOCTL */
153 };
154
155 static void spa_sync_version(void *arg, dmu_tx_t *tx);
156 static void spa_sync_props(void *arg, dmu_tx_t *tx);
157 static boolean_t spa_has_active_shared_spare(spa_t *spa);
158 static int spa_load_impl(spa_t *spa, spa_import_type_t type, char **ereport);
159 static void spa_vdev_resilver_done(spa_t *spa);
160
161 uint_t zio_taskq_batch_pct = 75; /* 1 thread per cpu in pset */
162 boolean_t zio_taskq_sysdc = B_TRUE; /* use SDC scheduling class */
163 uint_t zio_taskq_basedc = 80; /* base duty cycle */
164
165 boolean_t spa_create_process = B_TRUE; /* no process ==> no sysdc */
166
167 /*
168 * Report any spa_load_verify errors found, but do not fail spa_load.
169 * This is used by zdb to analyze non-idle pools.
170 */
171 boolean_t spa_load_verify_dryrun = B_FALSE;
172
173 /*
174 * This (illegal) pool name is used when temporarily importing a spa_t in order
175 * to get the vdev stats associated with the imported devices.
176 */
177 #define TRYIMPORT_NAME "$import"
178
179 /*
180 * For debugging purposes: print out vdev tree during pool import.
181 */
182 int spa_load_print_vdev_tree = B_FALSE;
183
184 /*
185 * A non-zero value for zfs_max_missing_tvds means that we allow importing
186 * pools with missing top-level vdevs. This is strictly intended for advanced
187 * pool recovery cases since missing data is almost inevitable. Pools with
188 * missing devices can only be imported read-only for safety reasons, and their
189 * fail-mode will be automatically set to "continue".
190 *
191 * With 1 missing vdev we should be able to import the pool and mount all
192 * datasets. User data that was not modified after the missing device has been
193 * added should be recoverable. This means that snapshots created prior to the
194 * addition of that device should be completely intact.
195 *
196 * With 2 missing vdevs, some datasets may fail to mount since there are
197 * dataset statistics that are stored as regular metadata. Some data might be
198 * recoverable if those vdevs were added recently.
199 *
200 * With 3 or more missing vdevs, the pool is severely damaged and MOS entries
201 * may be missing entirely. Chances of data recovery are very low. Note that
202 * there are also risks of performing an inadvertent rewind as we might be
203 * missing all the vdevs with the latest uberblocks.
204 */
205 unsigned long zfs_max_missing_tvds = 0;
206
207 /*
208 * The parameters below are similar to zfs_max_missing_tvds but are only
209 * intended for a preliminary open of the pool with an untrusted config which
210 * might be incomplete or out-dated.
211 *
212 * We are more tolerant for pools opened from a cachefile since we could have
213 * an out-dated cachefile where a device removal was not registered.
214 * We could have set the limit arbitrarily high but in the case where devices
215 * are really missing we would want to return the proper error codes; we chose
216 * SPA_DVAS_PER_BP - 1 so that some copies of the MOS would still be available
217 * and we get a chance to retrieve the trusted config.
218 */
219 uint64_t zfs_max_missing_tvds_cachefile = SPA_DVAS_PER_BP - 1;
220
221 /*
222 * In the case where config was assembled by scanning device paths (/dev/dsks
223 * by default) we are less tolerant since all the existing devices should have
224 * been detected and we want spa_load to return the right error codes.
225 */
226 uint64_t zfs_max_missing_tvds_scan = 0;
227
228 /*
229 * Debugging aid that pauses spa_sync() towards the end.
230 */
231 boolean_t zfs_pause_spa_sync = B_FALSE;
232
233 /*
234 * ==========================================================================
235 * SPA properties routines
236 * ==========================================================================
237 */
238
239 /*
240 * Add a (source=src, propname=propval) list to an nvlist.
241 */
242 static void
243 spa_prop_add_list(nvlist_t *nvl, zpool_prop_t prop, char *strval,
244 uint64_t intval, zprop_source_t src)
245 {
246 const char *propname = zpool_prop_to_name(prop);
247 nvlist_t *propval;
248
249 VERIFY(nvlist_alloc(&propval, NV_UNIQUE_NAME, KM_SLEEP) == 0);
250 VERIFY(nvlist_add_uint64(propval, ZPROP_SOURCE, src) == 0);
251
252 if (strval != NULL)
253 VERIFY(nvlist_add_string(propval, ZPROP_VALUE, strval) == 0);
254 else
255 VERIFY(nvlist_add_uint64(propval, ZPROP_VALUE, intval) == 0);
256
257 VERIFY(nvlist_add_nvlist(nvl, propname, propval) == 0);
258 nvlist_free(propval);
259 }
260
261 /*
262 * Get property values from the spa configuration.
263 */
264 static void
265 spa_prop_get_config(spa_t *spa, nvlist_t **nvp)
266 {
267 vdev_t *rvd = spa->spa_root_vdev;
268 dsl_pool_t *pool = spa->spa_dsl_pool;
269 uint64_t size, alloc, cap, version;
270 const zprop_source_t src = ZPROP_SRC_NONE;
271 spa_config_dirent_t *dp;
272 metaslab_class_t *mc = spa_normal_class(spa);
273
274 ASSERT(MUTEX_HELD(&spa->spa_props_lock));
275
276 if (rvd != NULL) {
277 alloc = metaslab_class_get_alloc(mc);
278 alloc += metaslab_class_get_alloc(spa_special_class(spa));
279 alloc += metaslab_class_get_alloc(spa_dedup_class(spa));
280
281 size = metaslab_class_get_space(mc);
282 size += metaslab_class_get_space(spa_special_class(spa));
283 size += metaslab_class_get_space(spa_dedup_class(spa));
284
285 spa_prop_add_list(*nvp, ZPOOL_PROP_NAME, spa_name(spa), 0, src);
286 spa_prop_add_list(*nvp, ZPOOL_PROP_SIZE, NULL, size, src);
287 spa_prop_add_list(*nvp, ZPOOL_PROP_ALLOCATED, NULL, alloc, src);
288 spa_prop_add_list(*nvp, ZPOOL_PROP_FREE, NULL,
289 size - alloc, src);
290 spa_prop_add_list(*nvp, ZPOOL_PROP_CHECKPOINT, NULL,
291 spa->spa_checkpoint_info.sci_dspace, src);
292
293 spa_prop_add_list(*nvp, ZPOOL_PROP_FRAGMENTATION, NULL,
294 metaslab_class_fragmentation(mc), src);
295 spa_prop_add_list(*nvp, ZPOOL_PROP_EXPANDSZ, NULL,
296 metaslab_class_expandable_space(mc), src);
297 spa_prop_add_list(*nvp, ZPOOL_PROP_READONLY, NULL,
298 (spa_mode(spa) == FREAD), src);
299
300 cap = (size == 0) ? 0 : (alloc * 100 / size);
301 spa_prop_add_list(*nvp, ZPOOL_PROP_CAPACITY, NULL, cap, src);
302
303 spa_prop_add_list(*nvp, ZPOOL_PROP_DEDUPRATIO, NULL,
304 ddt_get_pool_dedup_ratio(spa), src);
305
306 spa_prop_add_list(*nvp, ZPOOL_PROP_HEALTH, NULL,
307 rvd->vdev_state, src);
308
309 version = spa_version(spa);
310 if (version == zpool_prop_default_numeric(ZPOOL_PROP_VERSION)) {
311 spa_prop_add_list(*nvp, ZPOOL_PROP_VERSION, NULL,
312 version, ZPROP_SRC_DEFAULT);
313 } else {
314 spa_prop_add_list(*nvp, ZPOOL_PROP_VERSION, NULL,
315 version, ZPROP_SRC_LOCAL);
316 }
317 spa_prop_add_list(*nvp, ZPOOL_PROP_LOAD_GUID,
318 NULL, spa_load_guid(spa), src);
319 }
320
321 if (pool != NULL) {
322 /*
323 * The $FREE directory was introduced in SPA_VERSION_DEADLISTS,
324 * when opening pools before this version freedir will be NULL.
325 */
326 if (pool->dp_free_dir != NULL) {
327 spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING, NULL,
328 dsl_dir_phys(pool->dp_free_dir)->dd_used_bytes,
329 src);
330 } else {
331 spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING,
332 NULL, 0, src);
333 }
334
335 if (pool->dp_leak_dir != NULL) {
336 spa_prop_add_list(*nvp, ZPOOL_PROP_LEAKED, NULL,
337 dsl_dir_phys(pool->dp_leak_dir)->dd_used_bytes,
338 src);
339 } else {
340 spa_prop_add_list(*nvp, ZPOOL_PROP_LEAKED,
341 NULL, 0, src);
342 }
343 }
344
345 spa_prop_add_list(*nvp, ZPOOL_PROP_GUID, NULL, spa_guid(spa), src);
346
347 if (spa->spa_comment != NULL) {
348 spa_prop_add_list(*nvp, ZPOOL_PROP_COMMENT, spa->spa_comment,
349 0, ZPROP_SRC_LOCAL);
350 }
351
352 if (spa->spa_root != NULL)
353 spa_prop_add_list(*nvp, ZPOOL_PROP_ALTROOT, spa->spa_root,
354 0, ZPROP_SRC_LOCAL);
355
356 if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_BLOCKS)) {
357 spa_prop_add_list(*nvp, ZPOOL_PROP_MAXBLOCKSIZE, NULL,
358 MIN(zfs_max_recordsize, SPA_MAXBLOCKSIZE), ZPROP_SRC_NONE);
359 } else {
360 spa_prop_add_list(*nvp, ZPOOL_PROP_MAXBLOCKSIZE, NULL,
361 SPA_OLD_MAXBLOCKSIZE, ZPROP_SRC_NONE);
362 }
363
364 if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_DNODE)) {
365 spa_prop_add_list(*nvp, ZPOOL_PROP_MAXDNODESIZE, NULL,
366 DNODE_MAX_SIZE, ZPROP_SRC_NONE);
367 } else {
368 spa_prop_add_list(*nvp, ZPOOL_PROP_MAXDNODESIZE, NULL,
369 DNODE_MIN_SIZE, ZPROP_SRC_NONE);
370 }
371
372 if ((dp = list_head(&spa->spa_config_list)) != NULL) {
373 if (dp->scd_path == NULL) {
374 spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
375 "none", 0, ZPROP_SRC_LOCAL);
376 } else if (strcmp(dp->scd_path, spa_config_path) != 0) {
377 spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
378 dp->scd_path, 0, ZPROP_SRC_LOCAL);
379 }
380 }
381 }
382
383 /*
384 * Get zpool property values.
385 */
386 int
387 spa_prop_get(spa_t *spa, nvlist_t **nvp)
388 {
389 objset_t *mos = spa->spa_meta_objset;
390 zap_cursor_t zc;
391 zap_attribute_t za;
392 int err;
393
394 err = nvlist_alloc(nvp, NV_UNIQUE_NAME, KM_SLEEP);
395 if (err)
396 return (err);
397
398 mutex_enter(&spa->spa_props_lock);
399
400 /*
401 * Get properties from the spa config.
402 */
403 spa_prop_get_config(spa, nvp);
404
405 /* If no pool property object, no more prop to get. */
406 if (mos == NULL || spa->spa_pool_props_object == 0) {
407 mutex_exit(&spa->spa_props_lock);
408 goto out;
409 }
410
411 /*
412 * Get properties from the MOS pool property object.
413 */
414 for (zap_cursor_init(&zc, mos, spa->spa_pool_props_object);
415 (err = zap_cursor_retrieve(&zc, &za)) == 0;
416 zap_cursor_advance(&zc)) {
417 uint64_t intval = 0;
418 char *strval = NULL;
419 zprop_source_t src = ZPROP_SRC_DEFAULT;
420 zpool_prop_t prop;
421
422 if ((prop = zpool_name_to_prop(za.za_name)) == ZPOOL_PROP_INVAL)
423 continue;
424
425 switch (za.za_integer_length) {
426 case 8:
427 /* integer property */
428 if (za.za_first_integer !=
429 zpool_prop_default_numeric(prop))
430 src = ZPROP_SRC_LOCAL;
431
432 if (prop == ZPOOL_PROP_BOOTFS) {
433 dsl_pool_t *dp;
434 dsl_dataset_t *ds = NULL;
435
436 dp = spa_get_dsl(spa);
437 dsl_pool_config_enter(dp, FTAG);
438 err = dsl_dataset_hold_obj(dp,
439 za.za_first_integer, FTAG, &ds);
440 if (err != 0) {
441 dsl_pool_config_exit(dp, FTAG);
442 break;
443 }
444
445 strval = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN,
446 KM_SLEEP);
447 dsl_dataset_name(ds, strval);
448 dsl_dataset_rele(ds, FTAG);
449 dsl_pool_config_exit(dp, FTAG);
450 } else {
451 strval = NULL;
452 intval = za.za_first_integer;
453 }
454
455 spa_prop_add_list(*nvp, prop, strval, intval, src);
456
457 if (strval != NULL)
458 kmem_free(strval, ZFS_MAX_DATASET_NAME_LEN);
459
460 break;
461
462 case 1:
463 /* string property */
464 strval = kmem_alloc(za.za_num_integers, KM_SLEEP);
465 err = zap_lookup(mos, spa->spa_pool_props_object,
466 za.za_name, 1, za.za_num_integers, strval);
467 if (err) {
468 kmem_free(strval, za.za_num_integers);
469 break;
470 }
471 spa_prop_add_list(*nvp, prop, strval, 0, src);
472 kmem_free(strval, za.za_num_integers);
473 break;
474
475 default:
476 break;
477 }
478 }
479 zap_cursor_fini(&zc);
480 mutex_exit(&spa->spa_props_lock);
481 out:
482 if (err && err != ENOENT) {
483 nvlist_free(*nvp);
484 *nvp = NULL;
485 return (err);
486 }
487
488 return (0);
489 }
490
491 /*
492 * Validate the given pool properties nvlist and modify the list
493 * for the property values to be set.
494 */
495 static int
496 spa_prop_validate(spa_t *spa, nvlist_t *props)
497 {
498 nvpair_t *elem;
499 int error = 0, reset_bootfs = 0;
500 uint64_t objnum = 0;
501 boolean_t has_feature = B_FALSE;
502
503 elem = NULL;
504 while ((elem = nvlist_next_nvpair(props, elem)) != NULL) {
505 uint64_t intval;
506 char *strval, *slash, *check, *fname;
507 const char *propname = nvpair_name(elem);
508 zpool_prop_t prop = zpool_name_to_prop(propname);
509
510 switch (prop) {
511 case ZPOOL_PROP_INVAL:
512 if (!zpool_prop_feature(propname)) {
513 error = SET_ERROR(EINVAL);
514 break;
515 }
516
517 /*
518 * Sanitize the input.
519 */
520 if (nvpair_type(elem) != DATA_TYPE_UINT64) {
521 error = SET_ERROR(EINVAL);
522 break;
523 }
524
525 if (nvpair_value_uint64(elem, &intval) != 0) {
526 error = SET_ERROR(EINVAL);
527 break;
528 }
529
530 if (intval != 0) {
531 error = SET_ERROR(EINVAL);
532 break;
533 }
534
535 fname = strchr(propname, '@') + 1;
536 if (zfeature_lookup_name(fname, NULL) != 0) {
537 error = SET_ERROR(EINVAL);
538 break;
539 }
540
541 has_feature = B_TRUE;
542 break;
543
544 case ZPOOL_PROP_VERSION:
545 error = nvpair_value_uint64(elem, &intval);
546 if (!error &&
547 (intval < spa_version(spa) ||
548 intval > SPA_VERSION_BEFORE_FEATURES ||
549 has_feature))
550 error = SET_ERROR(EINVAL);
551 break;
552
553 case ZPOOL_PROP_DELEGATION:
554 case ZPOOL_PROP_AUTOREPLACE:
555 case ZPOOL_PROP_LISTSNAPS:
556 case ZPOOL_PROP_AUTOEXPAND:
557 error = nvpair_value_uint64(elem, &intval);
558 if (!error && intval > 1)
559 error = SET_ERROR(EINVAL);
560 break;
561
562 case ZPOOL_PROP_MULTIHOST:
563 error = nvpair_value_uint64(elem, &intval);
564 if (!error && intval > 1)
565 error = SET_ERROR(EINVAL);
566
567 if (!error && !spa_get_hostid())
568 error = SET_ERROR(ENOTSUP);
569
570 break;
571
572 case ZPOOL_PROP_BOOTFS:
573 /*
574 * If the pool version is less than SPA_VERSION_BOOTFS,
575 * or the pool is still being created (version == 0),
576 * the bootfs property cannot be set.
577 */
578 if (spa_version(spa) < SPA_VERSION_BOOTFS) {
579 error = SET_ERROR(ENOTSUP);
580 break;
581 }
582
583 /*
584 * Make sure the vdev config is bootable
585 */
586 if (!vdev_is_bootable(spa->spa_root_vdev)) {
587 error = SET_ERROR(ENOTSUP);
588 break;
589 }
590
591 reset_bootfs = 1;
592
593 error = nvpair_value_string(elem, &strval);
594
595 if (!error) {
596 objset_t *os;
597 uint64_t propval;
598
599 if (strval == NULL || strval[0] == '\0') {
600 objnum = zpool_prop_default_numeric(
601 ZPOOL_PROP_BOOTFS);
602 break;
603 }
604
605 error = dmu_objset_hold(strval, FTAG, &os);
606 if (error != 0)
607 break;
608
609 /*
610 * Must be ZPL, and its property settings
611 * must be supported by GRUB (compression
612 * is not gzip, and large blocks or large
613 * dnodes are not used).
614 */
615
616 if (dmu_objset_type(os) != DMU_OST_ZFS) {
617 error = SET_ERROR(ENOTSUP);
618 } else if ((error =
619 dsl_prop_get_int_ds(dmu_objset_ds(os),
620 zfs_prop_to_name(ZFS_PROP_COMPRESSION),
621 &propval)) == 0 &&
622 !BOOTFS_COMPRESS_VALID(propval)) {
623 error = SET_ERROR(ENOTSUP);
624 } else if ((error =
625 dsl_prop_get_int_ds(dmu_objset_ds(os),
626 zfs_prop_to_name(ZFS_PROP_DNODESIZE),
627 &propval)) == 0 &&
628 propval != ZFS_DNSIZE_LEGACY) {
629 error = SET_ERROR(ENOTSUP);
630 } else {
631 objnum = dmu_objset_id(os);
632 }
633 dmu_objset_rele(os, FTAG);
634 }
635 break;
636
637 case ZPOOL_PROP_FAILUREMODE:
638 error = nvpair_value_uint64(elem, &intval);
639 if (!error && intval > ZIO_FAILURE_MODE_PANIC)
640 error = SET_ERROR(EINVAL);
641
642 /*
643 * This is a special case which only occurs when
644 * the pool has completely failed. This allows
645 * the user to change the in-core failmode property
646 * without syncing it out to disk (I/Os might
647 * currently be blocked). We do this by returning
648 * EIO to the caller (spa_prop_set) to trick it
649 * into thinking we encountered a property validation
650 * error.
651 */
652 if (!error && spa_suspended(spa)) {
653 spa->spa_failmode = intval;
654 error = SET_ERROR(EIO);
655 }
656 break;
657
658 case ZPOOL_PROP_CACHEFILE:
659 if ((error = nvpair_value_string(elem, &strval)) != 0)
660 break;
661
662 if (strval[0] == '\0')
663 break;
664
665 if (strcmp(strval, "none") == 0)
666 break;
667
668 if (strval[0] != '/') {
669 error = SET_ERROR(EINVAL);
670 break;
671 }
672
673 slash = strrchr(strval, '/');
674 ASSERT(slash != NULL);
675
676 if (slash[1] == '\0' || strcmp(slash, "/.") == 0 ||
677 strcmp(slash, "/..") == 0)
678 error = SET_ERROR(EINVAL);
679 break;
680
681 case ZPOOL_PROP_COMMENT:
682 if ((error = nvpair_value_string(elem, &strval)) != 0)
683 break;
684 for (check = strval; *check != '\0'; check++) {
685 if (!isprint(*check)) {
686 error = SET_ERROR(EINVAL);
687 break;
688 }
689 }
690 if (strlen(strval) > ZPROP_MAX_COMMENT)
691 error = SET_ERROR(E2BIG);
692 break;
693
694 case ZPOOL_PROP_DEDUPDITTO:
695 if (spa_version(spa) < SPA_VERSION_DEDUP)
696 error = SET_ERROR(ENOTSUP);
697 else
698 error = nvpair_value_uint64(elem, &intval);
699 if (error == 0 &&
700 intval != 0 && intval < ZIO_DEDUPDITTO_MIN)
701 error = SET_ERROR(EINVAL);
702 break;
703
704 default:
705 break;
706 }
707
708 if (error)
709 break;
710 }
711
712 if (!error && reset_bootfs) {
713 error = nvlist_remove(props,
714 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), DATA_TYPE_STRING);
715
716 if (!error) {
717 error = nvlist_add_uint64(props,
718 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), objnum);
719 }
720 }
721
722 return (error);
723 }
724
725 void
726 spa_configfile_set(spa_t *spa, nvlist_t *nvp, boolean_t need_sync)
727 {
728 char *cachefile;
729 spa_config_dirent_t *dp;
730
731 if (nvlist_lookup_string(nvp, zpool_prop_to_name(ZPOOL_PROP_CACHEFILE),
732 &cachefile) != 0)
733 return;
734
735 dp = kmem_alloc(sizeof (spa_config_dirent_t),
736 KM_SLEEP);
737
738 if (cachefile[0] == '\0')
739 dp->scd_path = spa_strdup(spa_config_path);
740 else if (strcmp(cachefile, "none") == 0)
741 dp->scd_path = NULL;
742 else
743 dp->scd_path = spa_strdup(cachefile);
744
745 list_insert_head(&spa->spa_config_list, dp);
746 if (need_sync)
747 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
748 }
749
750 int
751 spa_prop_set(spa_t *spa, nvlist_t *nvp)
752 {
753 int error;
754 nvpair_t *elem = NULL;
755 boolean_t need_sync = B_FALSE;
756
757 if ((error = spa_prop_validate(spa, nvp)) != 0)
758 return (error);
759
760 while ((elem = nvlist_next_nvpair(nvp, elem)) != NULL) {
761 zpool_prop_t prop = zpool_name_to_prop(nvpair_name(elem));
762
763 if (prop == ZPOOL_PROP_CACHEFILE ||
764 prop == ZPOOL_PROP_ALTROOT ||
765 prop == ZPOOL_PROP_READONLY)
766 continue;
767
768 if (prop == ZPOOL_PROP_VERSION || prop == ZPOOL_PROP_INVAL) {
769 uint64_t ver;
770
771 if (prop == ZPOOL_PROP_VERSION) {
772 VERIFY(nvpair_value_uint64(elem, &ver) == 0);
773 } else {
774 ASSERT(zpool_prop_feature(nvpair_name(elem)));
775 ver = SPA_VERSION_FEATURES;
776 need_sync = B_TRUE;
777 }
778
779 /* Save time if the version is already set. */
780 if (ver == spa_version(spa))
781 continue;
782
783 /*
784 * In addition to the pool directory object, we might
785 * create the pool properties object, the features for
786 * read object, the features for write object, or the
787 * feature descriptions object.
788 */
789 error = dsl_sync_task(spa->spa_name, NULL,
790 spa_sync_version, &ver,
791 6, ZFS_SPACE_CHECK_RESERVED);
792 if (error)
793 return (error);
794 continue;
795 }
796
797 need_sync = B_TRUE;
798 break;
799 }
800
801 if (need_sync) {
802 return (dsl_sync_task(spa->spa_name, NULL, spa_sync_props,
803 nvp, 6, ZFS_SPACE_CHECK_RESERVED));
804 }
805
806 return (0);
807 }
808
809 /*
810 * If the bootfs property value is dsobj, clear it.
811 */
812 void
813 spa_prop_clear_bootfs(spa_t *spa, uint64_t dsobj, dmu_tx_t *tx)
814 {
815 if (spa->spa_bootfs == dsobj && spa->spa_pool_props_object != 0) {
816 VERIFY(zap_remove(spa->spa_meta_objset,
817 spa->spa_pool_props_object,
818 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), tx) == 0);
819 spa->spa_bootfs = 0;
820 }
821 }
822
823 /*ARGSUSED*/
824 static int
825 spa_change_guid_check(void *arg, dmu_tx_t *tx)
826 {
827 ASSERTV(uint64_t *newguid = arg);
828 spa_t *spa = dmu_tx_pool(tx)->dp_spa;
829 vdev_t *rvd = spa->spa_root_vdev;
830 uint64_t vdev_state;
831
832 if (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) {
833 int error = (spa_has_checkpoint(spa)) ?
834 ZFS_ERR_CHECKPOINT_EXISTS : ZFS_ERR_DISCARDING_CHECKPOINT;
835 return (SET_ERROR(error));
836 }
837
838 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
839 vdev_state = rvd->vdev_state;
840 spa_config_exit(spa, SCL_STATE, FTAG);
841
842 if (vdev_state != VDEV_STATE_HEALTHY)
843 return (SET_ERROR(ENXIO));
844
845 ASSERT3U(spa_guid(spa), !=, *newguid);
846
847 return (0);
848 }
849
850 static void
851 spa_change_guid_sync(void *arg, dmu_tx_t *tx)
852 {
853 uint64_t *newguid = arg;
854 spa_t *spa = dmu_tx_pool(tx)->dp_spa;
855 uint64_t oldguid;
856 vdev_t *rvd = spa->spa_root_vdev;
857
858 oldguid = spa_guid(spa);
859
860 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
861 rvd->vdev_guid = *newguid;
862 rvd->vdev_guid_sum += (*newguid - oldguid);
863 vdev_config_dirty(rvd);
864 spa_config_exit(spa, SCL_STATE, FTAG);
865
866 spa_history_log_internal(spa, "guid change", tx, "old=%llu new=%llu",
867 oldguid, *newguid);
868 }
869
870 /*
871 * Change the GUID for the pool. This is done so that we can later
872 * re-import a pool built from a clone of our own vdevs. We will modify
873 * the root vdev's guid, our own pool guid, and then mark all of our
874 * vdevs dirty. Note that we must make sure that all our vdevs are
875 * online when we do this, or else any vdevs that weren't present
876 * would be orphaned from our pool. We are also going to issue a
877 * sysevent to update any watchers.
878 */
879 int
880 spa_change_guid(spa_t *spa)
881 {
882 int error;
883 uint64_t guid;
884
885 mutex_enter(&spa->spa_vdev_top_lock);
886 mutex_enter(&spa_namespace_lock);
887 guid = spa_generate_guid(NULL);
888
889 error = dsl_sync_task(spa->spa_name, spa_change_guid_check,
890 spa_change_guid_sync, &guid, 5, ZFS_SPACE_CHECK_RESERVED);
891
892 if (error == 0) {
893 spa_write_cachefile(spa, B_FALSE, B_TRUE);
894 spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_REGUID);
895 }
896
897 mutex_exit(&spa_namespace_lock);
898 mutex_exit(&spa->spa_vdev_top_lock);
899
900 return (error);
901 }
902
903 /*
904 * ==========================================================================
905 * SPA state manipulation (open/create/destroy/import/export)
906 * ==========================================================================
907 */
908
909 static int
910 spa_error_entry_compare(const void *a, const void *b)
911 {
912 const spa_error_entry_t *sa = (const spa_error_entry_t *)a;
913 const spa_error_entry_t *sb = (const spa_error_entry_t *)b;
914 int ret;
915
916 ret = memcmp(&sa->se_bookmark, &sb->se_bookmark,
917 sizeof (zbookmark_phys_t));
918
919 return (AVL_ISIGN(ret));
920 }
921
922 /*
923 * Utility function which retrieves copies of the current logs and
924 * re-initializes them in the process.
925 */
926 void
927 spa_get_errlists(spa_t *spa, avl_tree_t *last, avl_tree_t *scrub)
928 {
929 ASSERT(MUTEX_HELD(&spa->spa_errlist_lock));
930
931 bcopy(&spa->spa_errlist_last, last, sizeof (avl_tree_t));
932 bcopy(&spa->spa_errlist_scrub, scrub, sizeof (avl_tree_t));
933
934 avl_create(&spa->spa_errlist_scrub,
935 spa_error_entry_compare, sizeof (spa_error_entry_t),
936 offsetof(spa_error_entry_t, se_avl));
937 avl_create(&spa->spa_errlist_last,
938 spa_error_entry_compare, sizeof (spa_error_entry_t),
939 offsetof(spa_error_entry_t, se_avl));
940 }
941
942 static void
943 spa_taskqs_init(spa_t *spa, zio_type_t t, zio_taskq_type_t q)
944 {
945 const zio_taskq_info_t *ztip = &zio_taskqs[t][q];
946 enum zti_modes mode = ztip->zti_mode;
947 uint_t value = ztip->zti_value;
948 uint_t count = ztip->zti_count;
949 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
950 uint_t flags = 0;
951 boolean_t batch = B_FALSE;
952
953 if (mode == ZTI_MODE_NULL) {
954 tqs->stqs_count = 0;
955 tqs->stqs_taskq = NULL;
956 return;
957 }
958
959 ASSERT3U(count, >, 0);
960
961 tqs->stqs_count = count;
962 tqs->stqs_taskq = kmem_alloc(count * sizeof (taskq_t *), KM_SLEEP);
963
964 switch (mode) {
965 case ZTI_MODE_FIXED:
966 ASSERT3U(value, >=, 1);
967 value = MAX(value, 1);
968 flags |= TASKQ_DYNAMIC;
969 break;
970
971 case ZTI_MODE_BATCH:
972 batch = B_TRUE;
973 flags |= TASKQ_THREADS_CPU_PCT;
974 value = MIN(zio_taskq_batch_pct, 100);
975 break;
976
977 default:
978 panic("unrecognized mode for %s_%s taskq (%u:%u) in "
979 "spa_activate()",
980 zio_type_name[t], zio_taskq_types[q], mode, value);
981 break;
982 }
983
984 for (uint_t i = 0; i < count; i++) {
985 taskq_t *tq;
986 char name[32];
987
988 (void) snprintf(name, sizeof (name), "%s_%s",
989 zio_type_name[t], zio_taskq_types[q]);
990
991 if (zio_taskq_sysdc && spa->spa_proc != &p0) {
992 if (batch)
993 flags |= TASKQ_DC_BATCH;
994
995 tq = taskq_create_sysdc(name, value, 50, INT_MAX,
996 spa->spa_proc, zio_taskq_basedc, flags);
997 } else {
998 pri_t pri = maxclsyspri;
999 /*
1000 * The write issue taskq can be extremely CPU
1001 * intensive. Run it at slightly less important
1002 * priority than the other taskqs. Under Linux this
1003 * means incrementing the priority value on platforms
1004 * like illumos it should be decremented.
1005 */
1006 if (t == ZIO_TYPE_WRITE && q == ZIO_TASKQ_ISSUE)
1007 pri++;
1008
1009 tq = taskq_create_proc(name, value, pri, 50,
1010 INT_MAX, spa->spa_proc, flags);
1011 }
1012
1013 tqs->stqs_taskq[i] = tq;
1014 }
1015 }
1016
1017 static void
1018 spa_taskqs_fini(spa_t *spa, zio_type_t t, zio_taskq_type_t q)
1019 {
1020 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
1021
1022 if (tqs->stqs_taskq == NULL) {
1023 ASSERT3U(tqs->stqs_count, ==, 0);
1024 return;
1025 }
1026
1027 for (uint_t i = 0; i < tqs->stqs_count; i++) {
1028 ASSERT3P(tqs->stqs_taskq[i], !=, NULL);
1029 taskq_destroy(tqs->stqs_taskq[i]);
1030 }
1031
1032 kmem_free(tqs->stqs_taskq, tqs->stqs_count * sizeof (taskq_t *));
1033 tqs->stqs_taskq = NULL;
1034 }
1035
1036 /*
1037 * Dispatch a task to the appropriate taskq for the ZFS I/O type and priority.
1038 * Note that a type may have multiple discrete taskqs to avoid lock contention
1039 * on the taskq itself. In that case we choose which taskq at random by using
1040 * the low bits of gethrtime().
1041 */
1042 void
1043 spa_taskq_dispatch_ent(spa_t *spa, zio_type_t t, zio_taskq_type_t q,
1044 task_func_t *func, void *arg, uint_t flags, taskq_ent_t *ent)
1045 {
1046 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
1047 taskq_t *tq;
1048
1049 ASSERT3P(tqs->stqs_taskq, !=, NULL);
1050 ASSERT3U(tqs->stqs_count, !=, 0);
1051
1052 if (tqs->stqs_count == 1) {
1053 tq = tqs->stqs_taskq[0];
1054 } else {
1055 tq = tqs->stqs_taskq[((uint64_t)gethrtime()) % tqs->stqs_count];
1056 }
1057
1058 taskq_dispatch_ent(tq, func, arg, flags, ent);
1059 }
1060
1061 /*
1062 * Same as spa_taskq_dispatch_ent() but block on the task until completion.
1063 */
1064 void
1065 spa_taskq_dispatch_sync(spa_t *spa, zio_type_t t, zio_taskq_type_t q,
1066 task_func_t *func, void *arg, uint_t flags)
1067 {
1068 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
1069 taskq_t *tq;
1070 taskqid_t id;
1071
1072 ASSERT3P(tqs->stqs_taskq, !=, NULL);
1073 ASSERT3U(tqs->stqs_count, !=, 0);
1074
1075 if (tqs->stqs_count == 1) {
1076 tq = tqs->stqs_taskq[0];
1077 } else {
1078 tq = tqs->stqs_taskq[((uint64_t)gethrtime()) % tqs->stqs_count];
1079 }
1080
1081 id = taskq_dispatch(tq, func, arg, flags);
1082 if (id)
1083 taskq_wait_id(tq, id);
1084 }
1085
1086 static void
1087 spa_create_zio_taskqs(spa_t *spa)
1088 {
1089 for (int t = 0; t < ZIO_TYPES; t++) {
1090 for (int q = 0; q < ZIO_TASKQ_TYPES; q++) {
1091 spa_taskqs_init(spa, t, q);
1092 }
1093 }
1094 }
1095
1096 /*
1097 * Disabled until spa_thread() can be adapted for Linux.
1098 */
1099 #undef HAVE_SPA_THREAD
1100
1101 #if defined(_KERNEL) && defined(HAVE_SPA_THREAD)
1102 static void
1103 spa_thread(void *arg)
1104 {
1105 psetid_t zio_taskq_psrset_bind = PS_NONE;
1106 callb_cpr_t cprinfo;
1107
1108 spa_t *spa = arg;
1109 user_t *pu = PTOU(curproc);
1110
1111 CALLB_CPR_INIT(&cprinfo, &spa->spa_proc_lock, callb_generic_cpr,
1112 spa->spa_name);
1113
1114 ASSERT(curproc != &p0);
1115 (void) snprintf(pu->u_psargs, sizeof (pu->u_psargs),
1116 "zpool-%s", spa->spa_name);
1117 (void) strlcpy(pu->u_comm, pu->u_psargs, sizeof (pu->u_comm));
1118
1119 /* bind this thread to the requested psrset */
1120 if (zio_taskq_psrset_bind != PS_NONE) {
1121 pool_lock();
1122 mutex_enter(&cpu_lock);
1123 mutex_enter(&pidlock);
1124 mutex_enter(&curproc->p_lock);
1125
1126 if (cpupart_bind_thread(curthread, zio_taskq_psrset_bind,
1127 0, NULL, NULL) == 0) {
1128 curthread->t_bind_pset = zio_taskq_psrset_bind;
1129 } else {
1130 cmn_err(CE_WARN,
1131 "Couldn't bind process for zfs pool \"%s\" to "
1132 "pset %d\n", spa->spa_name, zio_taskq_psrset_bind);
1133 }
1134
1135 mutex_exit(&curproc->p_lock);
1136 mutex_exit(&pidlock);
1137 mutex_exit(&cpu_lock);
1138 pool_unlock();
1139 }
1140
1141 if (zio_taskq_sysdc) {
1142 sysdc_thread_enter(curthread, 100, 0);
1143 }
1144
1145 spa->spa_proc = curproc;
1146 spa->spa_did = curthread->t_did;
1147
1148 spa_create_zio_taskqs(spa);
1149
1150 mutex_enter(&spa->spa_proc_lock);
1151 ASSERT(spa->spa_proc_state == SPA_PROC_CREATED);
1152
1153 spa->spa_proc_state = SPA_PROC_ACTIVE;
1154 cv_broadcast(&spa->spa_proc_cv);
1155
1156 CALLB_CPR_SAFE_BEGIN(&cprinfo);
1157 while (spa->spa_proc_state == SPA_PROC_ACTIVE)
1158 cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock);
1159 CALLB_CPR_SAFE_END(&cprinfo, &spa->spa_proc_lock);
1160
1161 ASSERT(spa->spa_proc_state == SPA_PROC_DEACTIVATE);
1162 spa->spa_proc_state = SPA_PROC_GONE;
1163 spa->spa_proc = &p0;
1164 cv_broadcast(&spa->spa_proc_cv);
1165 CALLB_CPR_EXIT(&cprinfo); /* drops spa_proc_lock */
1166
1167 mutex_enter(&curproc->p_lock);
1168 lwp_exit();
1169 }
1170 #endif
1171
1172 /*
1173 * Activate an uninitialized pool.
1174 */
1175 static void
1176 spa_activate(spa_t *spa, int mode)
1177 {
1178 ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED);
1179
1180 spa->spa_state = POOL_STATE_ACTIVE;
1181 spa->spa_mode = mode;
1182
1183 spa->spa_normal_class = metaslab_class_create(spa, zfs_metaslab_ops);
1184 spa->spa_log_class = metaslab_class_create(spa, zfs_metaslab_ops);
1185 spa->spa_special_class = metaslab_class_create(spa, zfs_metaslab_ops);
1186 spa->spa_dedup_class = metaslab_class_create(spa, zfs_metaslab_ops);
1187
1188 /* Try to create a covering process */
1189 mutex_enter(&spa->spa_proc_lock);
1190 ASSERT(spa->spa_proc_state == SPA_PROC_NONE);
1191 ASSERT(spa->spa_proc == &p0);
1192 spa->spa_did = 0;
1193
1194 #ifdef HAVE_SPA_THREAD
1195 /* Only create a process if we're going to be around a while. */
1196 if (spa_create_process && strcmp(spa->spa_name, TRYIMPORT_NAME) != 0) {
1197 if (newproc(spa_thread, (caddr_t)spa, syscid, maxclsyspri,
1198 NULL, 0) == 0) {
1199 spa->spa_proc_state = SPA_PROC_CREATED;
1200 while (spa->spa_proc_state == SPA_PROC_CREATED) {
1201 cv_wait(&spa->spa_proc_cv,
1202 &spa->spa_proc_lock);
1203 }
1204 ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE);
1205 ASSERT(spa->spa_proc != &p0);
1206 ASSERT(spa->spa_did != 0);
1207 } else {
1208 #ifdef _KERNEL
1209 cmn_err(CE_WARN,
1210 "Couldn't create process for zfs pool \"%s\"\n",
1211 spa->spa_name);
1212 #endif
1213 }
1214 }
1215 #endif /* HAVE_SPA_THREAD */
1216 mutex_exit(&spa->spa_proc_lock);
1217
1218 /* If we didn't create a process, we need to create our taskqs. */
1219 if (spa->spa_proc == &p0) {
1220 spa_create_zio_taskqs(spa);
1221 }
1222
1223 for (size_t i = 0; i < TXG_SIZE; i++) {
1224 spa->spa_txg_zio[i] = zio_root(spa, NULL, NULL,
1225 ZIO_FLAG_CANFAIL);
1226 }
1227
1228 list_create(&spa->spa_config_dirty_list, sizeof (vdev_t),
1229 offsetof(vdev_t, vdev_config_dirty_node));
1230 list_create(&spa->spa_evicting_os_list, sizeof (objset_t),
1231 offsetof(objset_t, os_evicting_node));
1232 list_create(&spa->spa_state_dirty_list, sizeof (vdev_t),
1233 offsetof(vdev_t, vdev_state_dirty_node));
1234
1235 txg_list_create(&spa->spa_vdev_txg_list, spa,
1236 offsetof(struct vdev, vdev_txg_node));
1237
1238 avl_create(&spa->spa_errlist_scrub,
1239 spa_error_entry_compare, sizeof (spa_error_entry_t),
1240 offsetof(spa_error_entry_t, se_avl));
1241 avl_create(&spa->spa_errlist_last,
1242 spa_error_entry_compare, sizeof (spa_error_entry_t),
1243 offsetof(spa_error_entry_t, se_avl));
1244
1245 spa_keystore_init(&spa->spa_keystore);
1246
1247 /*
1248 * This taskq is used to perform zvol-minor-related tasks
1249 * asynchronously. This has several advantages, including easy
1250 * resolution of various deadlocks (zfsonlinux bug #3681).
1251 *
1252 * The taskq must be single threaded to ensure tasks are always
1253 * processed in the order in which they were dispatched.
1254 *
1255 * A taskq per pool allows one to keep the pools independent.
1256 * This way if one pool is suspended, it will not impact another.
1257 *
1258 * The preferred location to dispatch a zvol minor task is a sync
1259 * task. In this context, there is easy access to the spa_t and minimal
1260 * error handling is required because the sync task must succeed.
1261 */
1262 spa->spa_zvol_taskq = taskq_create("z_zvol", 1, defclsyspri,
1263 1, INT_MAX, 0);
1264
1265 /*
1266 * Taskq dedicated to prefetcher threads: this is used to prevent the
1267 * pool traverse code from monopolizing the global (and limited)
1268 * system_taskq by inappropriately scheduling long running tasks on it.
1269 */
1270 spa->spa_prefetch_taskq = taskq_create("z_prefetch", boot_ncpus,
1271 defclsyspri, 1, INT_MAX, TASKQ_DYNAMIC);
1272
1273 /*
1274 * The taskq to upgrade datasets in this pool. Currently used by
1275 * feature SPA_FEATURE_USEROBJ_ACCOUNTING/SPA_FEATURE_PROJECT_QUOTA.
1276 */
1277 spa->spa_upgrade_taskq = taskq_create("z_upgrade", boot_ncpus,
1278 defclsyspri, 1, INT_MAX, TASKQ_DYNAMIC);
1279 }
1280
1281 /*
1282 * Opposite of spa_activate().
1283 */
1284 static void
1285 spa_deactivate(spa_t *spa)
1286 {
1287 ASSERT(spa->spa_sync_on == B_FALSE);
1288 ASSERT(spa->spa_dsl_pool == NULL);
1289 ASSERT(spa->spa_root_vdev == NULL);
1290 ASSERT(spa->spa_async_zio_root == NULL);
1291 ASSERT(spa->spa_state != POOL_STATE_UNINITIALIZED);
1292
1293 spa_evicting_os_wait(spa);
1294
1295 if (spa->spa_zvol_taskq) {
1296 taskq_destroy(spa->spa_zvol_taskq);
1297 spa->spa_zvol_taskq = NULL;
1298 }
1299
1300 if (spa->spa_prefetch_taskq) {
1301 taskq_destroy(spa->spa_prefetch_taskq);
1302 spa->spa_prefetch_taskq = NULL;
1303 }
1304
1305 if (spa->spa_upgrade_taskq) {
1306 taskq_destroy(spa->spa_upgrade_taskq);
1307 spa->spa_upgrade_taskq = NULL;
1308 }
1309
1310 txg_list_destroy(&spa->spa_vdev_txg_list);
1311
1312 list_destroy(&spa->spa_config_dirty_list);
1313 list_destroy(&spa->spa_evicting_os_list);
1314 list_destroy(&spa->spa_state_dirty_list);
1315
1316 taskq_cancel_id(system_delay_taskq, spa->spa_deadman_tqid);
1317
1318 for (int t = 0; t < ZIO_TYPES; t++) {
1319 for (int q = 0; q < ZIO_TASKQ_TYPES; q++) {
1320 spa_taskqs_fini(spa, t, q);
1321 }
1322 }
1323
1324 for (size_t i = 0; i < TXG_SIZE; i++) {
1325 ASSERT3P(spa->spa_txg_zio[i], !=, NULL);
1326 VERIFY0(zio_wait(spa->spa_txg_zio[i]));
1327 spa->spa_txg_zio[i] = NULL;
1328 }
1329
1330 metaslab_class_destroy(spa->spa_normal_class);
1331 spa->spa_normal_class = NULL;
1332
1333 metaslab_class_destroy(spa->spa_log_class);
1334 spa->spa_log_class = NULL;
1335
1336 metaslab_class_destroy(spa->spa_special_class);
1337 spa->spa_special_class = NULL;
1338
1339 metaslab_class_destroy(spa->spa_dedup_class);
1340 spa->spa_dedup_class = NULL;
1341
1342 /*
1343 * If this was part of an import or the open otherwise failed, we may
1344 * still have errors left in the queues. Empty them just in case.
1345 */
1346 spa_errlog_drain(spa);
1347 avl_destroy(&spa->spa_errlist_scrub);
1348 avl_destroy(&spa->spa_errlist_last);
1349
1350 spa_keystore_fini(&spa->spa_keystore);
1351
1352 spa->spa_state = POOL_STATE_UNINITIALIZED;
1353
1354 mutex_enter(&spa->spa_proc_lock);
1355 if (spa->spa_proc_state != SPA_PROC_NONE) {
1356 ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE);
1357 spa->spa_proc_state = SPA_PROC_DEACTIVATE;
1358 cv_broadcast(&spa->spa_proc_cv);
1359 while (spa->spa_proc_state == SPA_PROC_DEACTIVATE) {
1360 ASSERT(spa->spa_proc != &p0);
1361 cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock);
1362 }
1363 ASSERT(spa->spa_proc_state == SPA_PROC_GONE);
1364 spa->spa_proc_state = SPA_PROC_NONE;
1365 }
1366 ASSERT(spa->spa_proc == &p0);
1367 mutex_exit(&spa->spa_proc_lock);
1368
1369 /*
1370 * We want to make sure spa_thread() has actually exited the ZFS
1371 * module, so that the module can't be unloaded out from underneath
1372 * it.
1373 */
1374 if (spa->spa_did != 0) {
1375 thread_join(spa->spa_did);
1376 spa->spa_did = 0;
1377 }
1378 }
1379
1380 /*
1381 * Verify a pool configuration, and construct the vdev tree appropriately. This
1382 * will create all the necessary vdevs in the appropriate layout, with each vdev
1383 * in the CLOSED state. This will prep the pool before open/creation/import.
1384 * All vdev validation is done by the vdev_alloc() routine.
1385 */
1386 static int
1387 spa_config_parse(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent,
1388 uint_t id, int atype)
1389 {
1390 nvlist_t **child;
1391 uint_t children;
1392 int error;
1393
1394 if ((error = vdev_alloc(spa, vdp, nv, parent, id, atype)) != 0)
1395 return (error);
1396
1397 if ((*vdp)->vdev_ops->vdev_op_leaf)
1398 return (0);
1399
1400 error = nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
1401 &child, &children);
1402
1403 if (error == ENOENT)
1404 return (0);
1405
1406 if (error) {
1407 vdev_free(*vdp);
1408 *vdp = NULL;
1409 return (SET_ERROR(EINVAL));
1410 }
1411
1412 for (int c = 0; c < children; c++) {
1413 vdev_t *vd;
1414 if ((error = spa_config_parse(spa, &vd, child[c], *vdp, c,
1415 atype)) != 0) {
1416 vdev_free(*vdp);
1417 *vdp = NULL;
1418 return (error);
1419 }
1420 }
1421
1422 ASSERT(*vdp != NULL);
1423
1424 return (0);
1425 }
1426
1427 /*
1428 * Opposite of spa_load().
1429 */
1430 static void
1431 spa_unload(spa_t *spa)
1432 {
1433 int i;
1434
1435 ASSERT(MUTEX_HELD(&spa_namespace_lock));
1436
1437 spa_load_note(spa, "UNLOADING");
1438
1439 /*
1440 * Stop async tasks.
1441 */
1442 spa_async_suspend(spa);
1443
1444 if (spa->spa_root_vdev) {
1445 vdev_initialize_stop_all(spa->spa_root_vdev,
1446 VDEV_INITIALIZE_ACTIVE);
1447 }
1448
1449 /*
1450 * Stop syncing.
1451 */
1452 if (spa->spa_sync_on) {
1453 txg_sync_stop(spa->spa_dsl_pool);
1454 spa->spa_sync_on = B_FALSE;
1455 }
1456
1457 /*
1458 * Even though vdev_free() also calls vdev_metaslab_fini, we need
1459 * to call it earlier, before we wait for async i/o to complete.
1460 * This ensures that there is no async metaslab prefetching, by
1461 * calling taskq_wait(mg_taskq).
1462 */
1463 if (spa->spa_root_vdev != NULL) {
1464 spa_config_enter(spa, SCL_ALL, spa, RW_WRITER);
1465 for (int c = 0; c < spa->spa_root_vdev->vdev_children; c++)
1466 vdev_metaslab_fini(spa->spa_root_vdev->vdev_child[c]);
1467 spa_config_exit(spa, SCL_ALL, spa);
1468 }
1469
1470 if (spa->spa_mmp.mmp_thread)
1471 mmp_thread_stop(spa);
1472
1473 /*
1474 * Wait for any outstanding async I/O to complete.
1475 */
1476 if (spa->spa_async_zio_root != NULL) {
1477 for (int i = 0; i < max_ncpus; i++)
1478 (void) zio_wait(spa->spa_async_zio_root[i]);
1479 kmem_free(spa->spa_async_zio_root, max_ncpus * sizeof (void *));
1480 spa->spa_async_zio_root = NULL;
1481 }
1482
1483 if (spa->spa_vdev_removal != NULL) {
1484 spa_vdev_removal_destroy(spa->spa_vdev_removal);
1485 spa->spa_vdev_removal = NULL;
1486 }
1487
1488 if (spa->spa_condense_zthr != NULL) {
1489 zthr_destroy(spa->spa_condense_zthr);
1490 spa->spa_condense_zthr = NULL;
1491 }
1492
1493 if (spa->spa_checkpoint_discard_zthr != NULL) {
1494 zthr_destroy(spa->spa_checkpoint_discard_zthr);
1495 spa->spa_checkpoint_discard_zthr = NULL;
1496 }
1497
1498 spa_condense_fini(spa);
1499
1500 bpobj_close(&spa->spa_deferred_bpobj);
1501
1502 spa_config_enter(spa, SCL_ALL, spa, RW_WRITER);
1503
1504 /*
1505 * Close all vdevs.
1506 */
1507 if (spa->spa_root_vdev)
1508 vdev_free(spa->spa_root_vdev);
1509 ASSERT(spa->spa_root_vdev == NULL);
1510
1511 /*
1512 * Close the dsl pool.
1513 */
1514 if (spa->spa_dsl_pool) {
1515 dsl_pool_close(spa->spa_dsl_pool);
1516 spa->spa_dsl_pool = NULL;
1517 spa->spa_meta_objset = NULL;
1518 }
1519
1520 ddt_unload(spa);
1521
1522 /*
1523 * Drop and purge level 2 cache
1524 */
1525 spa_l2cache_drop(spa);
1526
1527 for (i = 0; i < spa->spa_spares.sav_count; i++)
1528 vdev_free(spa->spa_spares.sav_vdevs[i]);
1529 if (spa->spa_spares.sav_vdevs) {
1530 kmem_free(spa->spa_spares.sav_vdevs,
1531 spa->spa_spares.sav_count * sizeof (void *));
1532 spa->spa_spares.sav_vdevs = NULL;
1533 }
1534 if (spa->spa_spares.sav_config) {
1535 nvlist_free(spa->spa_spares.sav_config);
1536 spa->spa_spares.sav_config = NULL;
1537 }
1538 spa->spa_spares.sav_count = 0;
1539
1540 for (i = 0; i < spa->spa_l2cache.sav_count; i++) {
1541 vdev_clear_stats(spa->spa_l2cache.sav_vdevs[i]);
1542 vdev_free(spa->spa_l2cache.sav_vdevs[i]);
1543 }
1544 if (spa->spa_l2cache.sav_vdevs) {
1545 kmem_free(spa->spa_l2cache.sav_vdevs,
1546 spa->spa_l2cache.sav_count * sizeof (void *));
1547 spa->spa_l2cache.sav_vdevs = NULL;
1548 }
1549 if (spa->spa_l2cache.sav_config) {
1550 nvlist_free(spa->spa_l2cache.sav_config);
1551 spa->spa_l2cache.sav_config = NULL;
1552 }
1553 spa->spa_l2cache.sav_count = 0;
1554
1555 spa->spa_async_suspended = 0;
1556
1557 spa->spa_indirect_vdevs_loaded = B_FALSE;
1558
1559 if (spa->spa_comment != NULL) {
1560 spa_strfree(spa->spa_comment);
1561 spa->spa_comment = NULL;
1562 }
1563
1564 spa_config_exit(spa, SCL_ALL, spa);
1565 }
1566
1567 /*
1568 * Load (or re-load) the current list of vdevs describing the active spares for
1569 * this pool. When this is called, we have some form of basic information in
1570 * 'spa_spares.sav_config'. We parse this into vdevs, try to open them, and
1571 * then re-generate a more complete list including status information.
1572 */
1573 void
1574 spa_load_spares(spa_t *spa)
1575 {
1576 nvlist_t **spares;
1577 uint_t nspares;
1578 int i;
1579 vdev_t *vd, *tvd;
1580
1581 #ifndef _KERNEL
1582 /*
1583 * zdb opens both the current state of the pool and the
1584 * checkpointed state (if present), with a different spa_t.
1585 *
1586 * As spare vdevs are shared among open pools, we skip loading
1587 * them when we load the checkpointed state of the pool.
1588 */
1589 if (!spa_writeable(spa))
1590 return;
1591 #endif
1592
1593 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1594
1595 /*
1596 * First, close and free any existing spare vdevs.
1597 */
1598 for (i = 0; i < spa->spa_spares.sav_count; i++) {
1599 vd = spa->spa_spares.sav_vdevs[i];
1600
1601 /* Undo the call to spa_activate() below */
1602 if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
1603 B_FALSE)) != NULL && tvd->vdev_isspare)
1604 spa_spare_remove(tvd);
1605 vdev_close(vd);
1606 vdev_free(vd);
1607 }
1608
1609 if (spa->spa_spares.sav_vdevs)
1610 kmem_free(spa->spa_spares.sav_vdevs,
1611 spa->spa_spares.sav_count * sizeof (void *));
1612
1613 if (spa->spa_spares.sav_config == NULL)
1614 nspares = 0;
1615 else
1616 VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
1617 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
1618
1619 spa->spa_spares.sav_count = (int)nspares;
1620 spa->spa_spares.sav_vdevs = NULL;
1621
1622 if (nspares == 0)
1623 return;
1624
1625 /*
1626 * Construct the array of vdevs, opening them to get status in the
1627 * process. For each spare, there is potentially two different vdev_t
1628 * structures associated with it: one in the list of spares (used only
1629 * for basic validation purposes) and one in the active vdev
1630 * configuration (if it's spared in). During this phase we open and
1631 * validate each vdev on the spare list. If the vdev also exists in the
1632 * active configuration, then we also mark this vdev as an active spare.
1633 */
1634 spa->spa_spares.sav_vdevs = kmem_zalloc(nspares * sizeof (void *),
1635 KM_SLEEP);
1636 for (i = 0; i < spa->spa_spares.sav_count; i++) {
1637 VERIFY(spa_config_parse(spa, &vd, spares[i], NULL, 0,
1638 VDEV_ALLOC_SPARE) == 0);
1639 ASSERT(vd != NULL);
1640
1641 spa->spa_spares.sav_vdevs[i] = vd;
1642
1643 if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
1644 B_FALSE)) != NULL) {
1645 if (!tvd->vdev_isspare)
1646 spa_spare_add(tvd);
1647
1648 /*
1649 * We only mark the spare active if we were successfully
1650 * able to load the vdev. Otherwise, importing a pool
1651 * with a bad active spare would result in strange
1652 * behavior, because multiple pool would think the spare
1653 * is actively in use.
1654 *
1655 * There is a vulnerability here to an equally bizarre
1656 * circumstance, where a dead active spare is later
1657 * brought back to life (onlined or otherwise). Given
1658 * the rarity of this scenario, and the extra complexity
1659 * it adds, we ignore the possibility.
1660 */
1661 if (!vdev_is_dead(tvd))
1662 spa_spare_activate(tvd);
1663 }
1664
1665 vd->vdev_top = vd;
1666 vd->vdev_aux = &spa->spa_spares;
1667
1668 if (vdev_open(vd) != 0)
1669 continue;
1670
1671 if (vdev_validate_aux(vd) == 0)
1672 spa_spare_add(vd);
1673 }
1674
1675 /*
1676 * Recompute the stashed list of spares, with status information
1677 * this time.
1678 */
1679 VERIFY(nvlist_remove(spa->spa_spares.sav_config, ZPOOL_CONFIG_SPARES,
1680 DATA_TYPE_NVLIST_ARRAY) == 0);
1681
1682 spares = kmem_alloc(spa->spa_spares.sav_count * sizeof (void *),
1683 KM_SLEEP);
1684 for (i = 0; i < spa->spa_spares.sav_count; i++)
1685 spares[i] = vdev_config_generate(spa,
1686 spa->spa_spares.sav_vdevs[i], B_TRUE, VDEV_CONFIG_SPARE);
1687 VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
1688 ZPOOL_CONFIG_SPARES, spares, spa->spa_spares.sav_count) == 0);
1689 for (i = 0; i < spa->spa_spares.sav_count; i++)
1690 nvlist_free(spares[i]);
1691 kmem_free(spares, spa->spa_spares.sav_count * sizeof (void *));
1692 }
1693
1694 /*
1695 * Load (or re-load) the current list of vdevs describing the active l2cache for
1696 * this pool. When this is called, we have some form of basic information in
1697 * 'spa_l2cache.sav_config'. We parse this into vdevs, try to open them, and
1698 * then re-generate a more complete list including status information.
1699 * Devices which are already active have their details maintained, and are
1700 * not re-opened.
1701 */
1702 void
1703 spa_load_l2cache(spa_t *spa)
1704 {
1705 nvlist_t **l2cache = NULL;
1706 uint_t nl2cache;
1707 int i, j, oldnvdevs;
1708 uint64_t guid;
1709 vdev_t *vd, **oldvdevs, **newvdevs;
1710 spa_aux_vdev_t *sav = &spa->spa_l2cache;
1711
1712 #ifndef _KERNEL
1713 /*
1714 * zdb opens both the current state of the pool and the
1715 * checkpointed state (if present), with a different spa_t.
1716 *
1717 * As L2 caches are part of the ARC which is shared among open
1718 * pools, we skip loading them when we load the checkpointed
1719 * state of the pool.
1720 */
1721 if (!spa_writeable(spa))
1722 return;
1723 #endif
1724
1725 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1726
1727 oldvdevs = sav->sav_vdevs;
1728 oldnvdevs = sav->sav_count;
1729 sav->sav_vdevs = NULL;
1730 sav->sav_count = 0;
1731
1732 if (sav->sav_config == NULL) {
1733 nl2cache = 0;
1734 newvdevs = NULL;
1735 goto out;
1736 }
1737
1738 VERIFY(nvlist_lookup_nvlist_array(sav->sav_config,
1739 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
1740 newvdevs = kmem_alloc(nl2cache * sizeof (void *), KM_SLEEP);
1741
1742 /*
1743 * Process new nvlist of vdevs.
1744 */
1745 for (i = 0; i < nl2cache; i++) {
1746 VERIFY(nvlist_lookup_uint64(l2cache[i], ZPOOL_CONFIG_GUID,
1747 &guid) == 0);
1748
1749 newvdevs[i] = NULL;
1750 for (j = 0; j < oldnvdevs; j++) {
1751 vd = oldvdevs[j];
1752 if (vd != NULL && guid == vd->vdev_guid) {
1753 /*
1754 * Retain previous vdev for add/remove ops.
1755 */
1756 newvdevs[i] = vd;
1757 oldvdevs[j] = NULL;
1758 break;
1759 }
1760 }
1761
1762 if (newvdevs[i] == NULL) {
1763 /*
1764 * Create new vdev
1765 */
1766 VERIFY(spa_config_parse(spa, &vd, l2cache[i], NULL, 0,
1767 VDEV_ALLOC_L2CACHE) == 0);
1768 ASSERT(vd != NULL);
1769 newvdevs[i] = vd;
1770
1771 /*
1772 * Commit this vdev as an l2cache device,
1773 * even if it fails to open.
1774 */
1775 spa_l2cache_add(vd);
1776
1777 vd->vdev_top = vd;
1778 vd->vdev_aux = sav;
1779
1780 spa_l2cache_activate(vd);
1781
1782 if (vdev_open(vd) != 0)
1783 continue;
1784
1785 (void) vdev_validate_aux(vd);
1786
1787 if (!vdev_is_dead(vd))
1788 l2arc_add_vdev(spa, vd);
1789 }
1790 }
1791
1792 sav->sav_vdevs = newvdevs;
1793 sav->sav_count = (int)nl2cache;
1794
1795 /*
1796 * Recompute the stashed list of l2cache devices, with status
1797 * information this time.
1798 */
1799 VERIFY(nvlist_remove(sav->sav_config, ZPOOL_CONFIG_L2CACHE,
1800 DATA_TYPE_NVLIST_ARRAY) == 0);
1801
1802 if (sav->sav_count > 0)
1803 l2cache = kmem_alloc(sav->sav_count * sizeof (void *),
1804 KM_SLEEP);
1805 for (i = 0; i < sav->sav_count; i++)
1806 l2cache[i] = vdev_config_generate(spa,
1807 sav->sav_vdevs[i], B_TRUE, VDEV_CONFIG_L2CACHE);
1808 VERIFY(nvlist_add_nvlist_array(sav->sav_config,
1809 ZPOOL_CONFIG_L2CACHE, l2cache, sav->sav_count) == 0);
1810
1811 out:
1812 /*
1813 * Purge vdevs that were dropped
1814 */
1815 for (i = 0; i < oldnvdevs; i++) {
1816 uint64_t pool;
1817
1818 vd = oldvdevs[i];
1819 if (vd != NULL) {
1820 ASSERT(vd->vdev_isl2cache);
1821
1822 if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
1823 pool != 0ULL && l2arc_vdev_present(vd))
1824 l2arc_remove_vdev(vd);
1825 vdev_clear_stats(vd);
1826 vdev_free(vd);
1827 }
1828 }
1829
1830 if (oldvdevs)
1831 kmem_free(oldvdevs, oldnvdevs * sizeof (void *));
1832
1833 for (i = 0; i < sav->sav_count; i++)
1834 nvlist_free(l2cache[i]);
1835 if (sav->sav_count)
1836 kmem_free(l2cache, sav->sav_count * sizeof (void *));
1837 }
1838
1839 static int
1840 load_nvlist(spa_t *spa, uint64_t obj, nvlist_t **value)
1841 {
1842 dmu_buf_t *db;
1843 char *packed = NULL;
1844 size_t nvsize = 0;
1845 int error;
1846 *value = NULL;
1847
1848 error = dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db);
1849 if (error)
1850 return (error);
1851
1852 nvsize = *(uint64_t *)db->db_data;
1853 dmu_buf_rele(db, FTAG);
1854
1855 packed = vmem_alloc(nvsize, KM_SLEEP);
1856 error = dmu_read(spa->spa_meta_objset, obj, 0, nvsize, packed,
1857 DMU_READ_PREFETCH);
1858 if (error == 0)
1859 error = nvlist_unpack(packed, nvsize, value, 0);
1860 vmem_free(packed, nvsize);
1861
1862 return (error);
1863 }
1864
1865 /*
1866 * Concrete top-level vdevs that are not missing and are not logs. At every
1867 * spa_sync we write new uberblocks to at least SPA_SYNC_MIN_VDEVS core tvds.
1868 */
1869 static uint64_t
1870 spa_healthy_core_tvds(spa_t *spa)
1871 {
1872 vdev_t *rvd = spa->spa_root_vdev;
1873 uint64_t tvds = 0;
1874
1875 for (uint64_t i = 0; i < rvd->vdev_children; i++) {
1876 vdev_t *vd = rvd->vdev_child[i];
1877 if (vd->vdev_islog)
1878 continue;
1879 if (vdev_is_concrete(vd) && !vdev_is_dead(vd))
1880 tvds++;
1881 }
1882
1883 return (tvds);
1884 }
1885
1886 /*
1887 * Checks to see if the given vdev could not be opened, in which case we post a
1888 * sysevent to notify the autoreplace code that the device has been removed.
1889 */
1890 static void
1891 spa_check_removed(vdev_t *vd)
1892 {
1893 for (uint64_t c = 0; c < vd->vdev_children; c++)
1894 spa_check_removed(vd->vdev_child[c]);
1895
1896 if (vd->vdev_ops->vdev_op_leaf && vdev_is_dead(vd) &&
1897 vdev_is_concrete(vd)) {
1898 zfs_post_autoreplace(vd->vdev_spa, vd);
1899 spa_event_notify(vd->vdev_spa, vd, NULL, ESC_ZFS_VDEV_CHECK);
1900 }
1901 }
1902
1903 static int
1904 spa_check_for_missing_logs(spa_t *spa)
1905 {
1906 vdev_t *rvd = spa->spa_root_vdev;
1907
1908 /*
1909 * If we're doing a normal import, then build up any additional
1910 * diagnostic information about missing log devices.
1911 * We'll pass this up to the user for further processing.
1912 */
1913 if (!(spa->spa_import_flags & ZFS_IMPORT_MISSING_LOG)) {
1914 nvlist_t **child, *nv;
1915 uint64_t idx = 0;
1916
1917 child = kmem_alloc(rvd->vdev_children * sizeof (nvlist_t *),
1918 KM_SLEEP);
1919 VERIFY(nvlist_alloc(&nv, NV_UNIQUE_NAME, KM_SLEEP) == 0);
1920
1921 for (uint64_t c = 0; c < rvd->vdev_children; c++) {
1922 vdev_t *tvd = rvd->vdev_child[c];
1923
1924 /*
1925 * We consider a device as missing only if it failed
1926 * to open (i.e. offline or faulted is not considered
1927 * as missing).
1928 */
1929 if (tvd->vdev_islog &&
1930 tvd->vdev_state == VDEV_STATE_CANT_OPEN) {
1931 child[idx++] = vdev_config_generate(spa, tvd,
1932 B_FALSE, VDEV_CONFIG_MISSING);
1933 }
1934 }
1935
1936 if (idx > 0) {
1937 fnvlist_add_nvlist_array(nv,
1938 ZPOOL_CONFIG_CHILDREN, child, idx);
1939 fnvlist_add_nvlist(spa->spa_load_info,
1940 ZPOOL_CONFIG_MISSING_DEVICES, nv);
1941
1942 for (uint64_t i = 0; i < idx; i++)
1943 nvlist_free(child[i]);
1944 }
1945 nvlist_free(nv);
1946 kmem_free(child, rvd->vdev_children * sizeof (char **));
1947
1948 if (idx > 0) {
1949 spa_load_failed(spa, "some log devices are missing");
1950 vdev_dbgmsg_print_tree(rvd, 2);
1951 return (SET_ERROR(ENXIO));
1952 }
1953 } else {
1954 for (uint64_t c = 0; c < rvd->vdev_children; c++) {
1955 vdev_t *tvd = rvd->vdev_child[c];
1956
1957 if (tvd->vdev_islog &&
1958 tvd->vdev_state == VDEV_STATE_CANT_OPEN) {
1959 spa_set_log_state(spa, SPA_LOG_CLEAR);
1960 spa_load_note(spa, "some log devices are "
1961 "missing, ZIL is dropped.");
1962 vdev_dbgmsg_print_tree(rvd, 2);
1963 break;
1964 }
1965 }
1966 }
1967
1968 return (0);
1969 }
1970
1971 /*
1972 * Check for missing log devices
1973 */
1974 static boolean_t
1975 spa_check_logs(spa_t *spa)
1976 {
1977 boolean_t rv = B_FALSE;
1978 dsl_pool_t *dp = spa_get_dsl(spa);
1979
1980 switch (spa->spa_log_state) {
1981 default:
1982 break;
1983 case SPA_LOG_MISSING:
1984 /* need to recheck in case slog has been restored */
1985 case SPA_LOG_UNKNOWN:
1986 rv = (dmu_objset_find_dp(dp, dp->dp_root_dir_obj,
1987 zil_check_log_chain, NULL, DS_FIND_CHILDREN) != 0);
1988 if (rv)
1989 spa_set_log_state(spa, SPA_LOG_MISSING);
1990 break;
1991 }
1992 return (rv);
1993 }
1994
1995 static boolean_t
1996 spa_passivate_log(spa_t *spa)
1997 {
1998 vdev_t *rvd = spa->spa_root_vdev;
1999 boolean_t slog_found = B_FALSE;
2000
2001 ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER));
2002
2003 if (!spa_has_slogs(spa))
2004 return (B_FALSE);
2005
2006 for (int c = 0; c < rvd->vdev_children; c++) {
2007 vdev_t *tvd = rvd->vdev_child[c];
2008 metaslab_group_t *mg = tvd->vdev_mg;
2009
2010 if (tvd->vdev_islog) {
2011 metaslab_group_passivate(mg);
2012 slog_found = B_TRUE;
2013 }
2014 }
2015
2016 return (slog_found);
2017 }
2018
2019 static void
2020 spa_activate_log(spa_t *spa)
2021 {
2022 vdev_t *rvd = spa->spa_root_vdev;
2023
2024 ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER));
2025
2026 for (int c = 0; c < rvd->vdev_children; c++) {
2027 vdev_t *tvd = rvd->vdev_child[c];
2028 metaslab_group_t *mg = tvd->vdev_mg;
2029
2030 if (tvd->vdev_islog)
2031 metaslab_group_activate(mg);
2032 }
2033 }
2034
2035 int
2036 spa_reset_logs(spa_t *spa)
2037 {
2038 int error;
2039
2040 error = dmu_objset_find(spa_name(spa), zil_reset,
2041 NULL, DS_FIND_CHILDREN);
2042 if (error == 0) {
2043 /*
2044 * We successfully offlined the log device, sync out the
2045 * current txg so that the "stubby" block can be removed
2046 * by zil_sync().
2047 */
2048 txg_wait_synced(spa->spa_dsl_pool, 0);
2049 }
2050 return (error);
2051 }
2052
2053 static void
2054 spa_aux_check_removed(spa_aux_vdev_t *sav)
2055 {
2056 for (int i = 0; i < sav->sav_count; i++)
2057 spa_check_removed(sav->sav_vdevs[i]);
2058 }
2059
2060 void
2061 spa_claim_notify(zio_t *zio)
2062 {
2063 spa_t *spa = zio->io_spa;
2064
2065 if (zio->io_error)
2066 return;
2067
2068 mutex_enter(&spa->spa_props_lock); /* any mutex will do */
2069 if (spa->spa_claim_max_txg < zio->io_bp->blk_birth)
2070 spa->spa_claim_max_txg = zio->io_bp->blk_birth;
2071 mutex_exit(&spa->spa_props_lock);
2072 }
2073
2074 typedef struct spa_load_error {
2075 uint64_t sle_meta_count;
2076 uint64_t sle_data_count;
2077 } spa_load_error_t;
2078
2079 static void
2080 spa_load_verify_done(zio_t *zio)
2081 {
2082 blkptr_t *bp = zio->io_bp;
2083 spa_load_error_t *sle = zio->io_private;
2084 dmu_object_type_t type = BP_GET_TYPE(bp);
2085 int error = zio->io_error;
2086 spa_t *spa = zio->io_spa;
2087
2088 abd_free(zio->io_abd);
2089 if (error) {
2090 if ((BP_GET_LEVEL(bp) != 0 || DMU_OT_IS_METADATA(type)) &&
2091 type != DMU_OT_INTENT_LOG)
2092 atomic_inc_64(&sle->sle_meta_count);
2093 else
2094 atomic_inc_64(&sle->sle_data_count);
2095 }
2096
2097 mutex_enter(&spa->spa_scrub_lock);
2098 spa->spa_load_verify_ios--;
2099 cv_broadcast(&spa->spa_scrub_io_cv);
2100 mutex_exit(&spa->spa_scrub_lock);
2101 }
2102
2103 /*
2104 * Maximum number of concurrent scrub i/os to create while verifying
2105 * a pool while importing it.
2106 */
2107 int spa_load_verify_maxinflight = 10000;
2108 int spa_load_verify_metadata = B_TRUE;
2109 int spa_load_verify_data = B_TRUE;
2110
2111 /*ARGSUSED*/
2112 static int
2113 spa_load_verify_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp,
2114 const zbookmark_phys_t *zb, const dnode_phys_t *dnp, void *arg)
2115 {
2116 if (bp == NULL || BP_IS_HOLE(bp) || BP_IS_EMBEDDED(bp))
2117 return (0);
2118 /*
2119 * Note: normally this routine will not be called if
2120 * spa_load_verify_metadata is not set. However, it may be useful
2121 * to manually set the flag after the traversal has begun.
2122 */
2123 if (!spa_load_verify_metadata)
2124 return (0);
2125 if (!BP_IS_METADATA(bp) && !spa_load_verify_data)
2126 return (0);
2127
2128 zio_t *rio = arg;
2129 size_t size = BP_GET_PSIZE(bp);
2130
2131 mutex_enter(&spa->spa_scrub_lock);
2132 while (spa->spa_load_verify_ios >= spa_load_verify_maxinflight)
2133 cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock);
2134 spa->spa_load_verify_ios++;
2135 mutex_exit(&spa->spa_scrub_lock);
2136
2137 zio_nowait(zio_read(rio, spa, bp, abd_alloc_for_io(size, B_FALSE), size,
2138 spa_load_verify_done, rio->io_private, ZIO_PRIORITY_SCRUB,
2139 ZIO_FLAG_SPECULATIVE | ZIO_FLAG_CANFAIL |
2140 ZIO_FLAG_SCRUB | ZIO_FLAG_RAW, zb));
2141 return (0);
2142 }
2143
2144 /* ARGSUSED */
2145 int
2146 verify_dataset_name_len(dsl_pool_t *dp, dsl_dataset_t *ds, void *arg)
2147 {
2148 if (dsl_dataset_namelen(ds) >= ZFS_MAX_DATASET_NAME_LEN)
2149 return (SET_ERROR(ENAMETOOLONG));
2150
2151 return (0);
2152 }
2153
2154 static int
2155 spa_load_verify(spa_t *spa)
2156 {
2157 zio_t *rio;
2158 spa_load_error_t sle = { 0 };
2159 zpool_load_policy_t policy;
2160 boolean_t verify_ok = B_FALSE;
2161 int error = 0;
2162
2163 zpool_get_load_policy(spa->spa_config, &policy);
2164
2165 if (policy.zlp_rewind & ZPOOL_NEVER_REWIND)
2166 return (0);
2167
2168 dsl_pool_config_enter(spa->spa_dsl_pool, FTAG);
2169 error = dmu_objset_find_dp(spa->spa_dsl_pool,
2170 spa->spa_dsl_pool->dp_root_dir_obj, verify_dataset_name_len, NULL,
2171 DS_FIND_CHILDREN);
2172 dsl_pool_config_exit(spa->spa_dsl_pool, FTAG);
2173 if (error != 0)
2174 return (error);
2175
2176 rio = zio_root(spa, NULL, &sle,
2177 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE);
2178
2179 if (spa_load_verify_metadata) {
2180 if (spa->spa_extreme_rewind) {
2181 spa_load_note(spa, "performing a complete scan of the "
2182 "pool since extreme rewind is on. This may take "
2183 "a very long time.\n (spa_load_verify_data=%u, "
2184 "spa_load_verify_metadata=%u)",
2185 spa_load_verify_data, spa_load_verify_metadata);
2186 }
2187 error = traverse_pool(spa, spa->spa_verify_min_txg,
2188 TRAVERSE_PRE | TRAVERSE_PREFETCH_METADATA |
2189 TRAVERSE_NO_DECRYPT, spa_load_verify_cb, rio);
2190 }
2191
2192 (void) zio_wait(rio);
2193
2194 spa->spa_load_meta_errors = sle.sle_meta_count;
2195 spa->spa_load_data_errors = sle.sle_data_count;
2196
2197 if (sle.sle_meta_count != 0 || sle.sle_data_count != 0) {
2198 spa_load_note(spa, "spa_load_verify found %llu metadata errors "
2199 "and %llu data errors", (u_longlong_t)sle.sle_meta_count,
2200 (u_longlong_t)sle.sle_data_count);
2201 }
2202
2203 if (spa_load_verify_dryrun ||
2204 (!error && sle.sle_meta_count <= policy.zlp_maxmeta &&
2205 sle.sle_data_count <= policy.zlp_maxdata)) {
2206 int64_t loss = 0;
2207
2208 verify_ok = B_TRUE;
2209 spa->spa_load_txg = spa->spa_uberblock.ub_txg;
2210 spa->spa_load_txg_ts = spa->spa_uberblock.ub_timestamp;
2211
2212 loss = spa->spa_last_ubsync_txg_ts - spa->spa_load_txg_ts;
2213 VERIFY(nvlist_add_uint64(spa->spa_load_info,
2214 ZPOOL_CONFIG_LOAD_TIME, spa->spa_load_txg_ts) == 0);
2215 VERIFY(nvlist_add_int64(spa->spa_load_info,
2216 ZPOOL_CONFIG_REWIND_TIME, loss) == 0);
2217 VERIFY(nvlist_add_uint64(spa->spa_load_info,
2218 ZPOOL_CONFIG_LOAD_DATA_ERRORS, sle.sle_data_count) == 0);
2219 } else {
2220 spa->spa_load_max_txg = spa->spa_uberblock.ub_txg;
2221 }
2222
2223 if (spa_load_verify_dryrun)
2224 return (0);
2225
2226 if (error) {
2227 if (error != ENXIO && error != EIO)
2228 error = SET_ERROR(EIO);
2229 return (error);
2230 }
2231
2232 return (verify_ok ? 0 : EIO);
2233 }
2234
2235 /*
2236 * Find a value in the pool props object.
2237 */
2238 static void
2239 spa_prop_find(spa_t *spa, zpool_prop_t prop, uint64_t *val)
2240 {
2241 (void) zap_lookup(spa->spa_meta_objset, spa->spa_pool_props_object,
2242 zpool_prop_to_name(prop), sizeof (uint64_t), 1, val);
2243 }
2244
2245 /*
2246 * Find a value in the pool directory object.
2247 */
2248 static int
2249 spa_dir_prop(spa_t *spa, const char *name, uint64_t *val, boolean_t log_enoent)
2250 {
2251 int error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
2252 name, sizeof (uint64_t), 1, val);
2253
2254 if (error != 0 && (error != ENOENT || log_enoent)) {
2255 spa_load_failed(spa, "couldn't get '%s' value in MOS directory "
2256 "[error=%d]", name, error);
2257 }
2258
2259 return (error);
2260 }
2261
2262 static int
2263 spa_vdev_err(vdev_t *vdev, vdev_aux_t aux, int err)
2264 {
2265 vdev_set_state(vdev, B_TRUE, VDEV_STATE_CANT_OPEN, aux);
2266 return (SET_ERROR(err));
2267 }
2268
2269 static void
2270 spa_spawn_aux_threads(spa_t *spa)
2271 {
2272 ASSERT(spa_writeable(spa));
2273
2274 ASSERT(MUTEX_HELD(&spa_namespace_lock));
2275
2276 spa_start_indirect_condensing_thread(spa);
2277
2278 ASSERT3P(spa->spa_checkpoint_discard_zthr, ==, NULL);
2279 spa->spa_checkpoint_discard_zthr =
2280 zthr_create(spa_checkpoint_discard_thread_check,
2281 spa_checkpoint_discard_thread, spa);
2282 }
2283
2284 /*
2285 * Fix up config after a partly-completed split. This is done with the
2286 * ZPOOL_CONFIG_SPLIT nvlist. Both the splitting pool and the split-off
2287 * pool have that entry in their config, but only the splitting one contains
2288 * a list of all the guids of the vdevs that are being split off.
2289 *
2290 * This function determines what to do with that list: either rejoin
2291 * all the disks to the pool, or complete the splitting process. To attempt
2292 * the rejoin, each disk that is offlined is marked online again, and
2293 * we do a reopen() call. If the vdev label for every disk that was
2294 * marked online indicates it was successfully split off (VDEV_AUX_SPLIT_POOL)
2295 * then we call vdev_split() on each disk, and complete the split.
2296 *
2297 * Otherwise we leave the config alone, with all the vdevs in place in
2298 * the original pool.
2299 */
2300 static void
2301 spa_try_repair(spa_t *spa, nvlist_t *config)
2302 {
2303 uint_t extracted;
2304 uint64_t *glist;
2305 uint_t i, gcount;
2306 nvlist_t *nvl;
2307 vdev_t **vd;
2308 boolean_t attempt_reopen;
2309
2310 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT, &nvl) != 0)
2311 return;
2312
2313 /* check that the config is complete */
2314 if (nvlist_lookup_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST,
2315 &glist, &gcount) != 0)
2316 return;
2317
2318 vd = kmem_zalloc(gcount * sizeof (vdev_t *), KM_SLEEP);
2319
2320 /* attempt to online all the vdevs & validate */
2321 attempt_reopen = B_TRUE;
2322 for (i = 0; i < gcount; i++) {
2323 if (glist[i] == 0) /* vdev is hole */
2324 continue;
2325
2326 vd[i] = spa_lookup_by_guid(spa, glist[i], B_FALSE);
2327 if (vd[i] == NULL) {
2328 /*
2329 * Don't bother attempting to reopen the disks;
2330 * just do the split.
2331 */
2332 attempt_reopen = B_FALSE;
2333 } else {
2334 /* attempt to re-online it */
2335 vd[i]->vdev_offline = B_FALSE;
2336 }
2337 }
2338
2339 if (attempt_reopen) {
2340 vdev_reopen(spa->spa_root_vdev);
2341
2342 /* check each device to see what state it's in */
2343 for (extracted = 0, i = 0; i < gcount; i++) {
2344 if (vd[i] != NULL &&
2345 vd[i]->vdev_stat.vs_aux != VDEV_AUX_SPLIT_POOL)
2346 break;
2347 ++extracted;
2348 }
2349 }
2350
2351 /*
2352 * If every disk has been moved to the new pool, or if we never
2353 * even attempted to look at them, then we split them off for
2354 * good.
2355 */
2356 if (!attempt_reopen || gcount == extracted) {
2357 for (i = 0; i < gcount; i++)
2358 if (vd[i] != NULL)
2359 vdev_split(vd[i]);
2360 vdev_reopen(spa->spa_root_vdev);
2361 }
2362
2363 kmem_free(vd, gcount * sizeof (vdev_t *));
2364 }
2365
2366 static int
2367 spa_load(spa_t *spa, spa_load_state_t state, spa_import_type_t type)
2368 {
2369 char *ereport = FM_EREPORT_ZFS_POOL;
2370 int error;
2371
2372 spa->spa_load_state = state;
2373
2374 gethrestime(&spa->spa_loaded_ts);
2375 error = spa_load_impl(spa, type, &ereport);
2376
2377 /*
2378 * Don't count references from objsets that are already closed
2379 * and are making their way through the eviction process.
2380 */
2381 spa_evicting_os_wait(spa);
2382 spa->spa_minref = zfs_refcount_count(&spa->spa_refcount);
2383 if (error) {
2384 if (error != EEXIST) {
2385 spa->spa_loaded_ts.tv_sec = 0;
2386 spa->spa_loaded_ts.tv_nsec = 0;
2387 }
2388 if (error != EBADF) {
2389 zfs_ereport_post(ereport, spa, NULL, NULL, NULL, 0, 0);
2390 }
2391 }
2392 spa->spa_load_state = error ? SPA_LOAD_ERROR : SPA_LOAD_NONE;
2393 spa->spa_ena = 0;
2394
2395 return (error);
2396 }
2397
2398 #ifdef ZFS_DEBUG
2399 /*
2400 * Count the number of per-vdev ZAPs associated with all of the vdevs in the
2401 * vdev tree rooted in the given vd, and ensure that each ZAP is present in the
2402 * spa's per-vdev ZAP list.
2403 */
2404 static uint64_t
2405 vdev_count_verify_zaps(vdev_t *vd)
2406 {
2407 spa_t *spa = vd->vdev_spa;
2408 uint64_t total = 0;
2409
2410 if (vd->vdev_top_zap != 0) {
2411 total++;
2412 ASSERT0(zap_lookup_int(spa->spa_meta_objset,
2413 spa->spa_all_vdev_zaps, vd->vdev_top_zap));
2414 }
2415 if (vd->vdev_leaf_zap != 0) {
2416 total++;
2417 ASSERT0(zap_lookup_int(spa->spa_meta_objset,
2418 spa->spa_all_vdev_zaps, vd->vdev_leaf_zap));
2419 }
2420
2421 for (uint64_t i = 0; i < vd->vdev_children; i++) {
2422 total += vdev_count_verify_zaps(vd->vdev_child[i]);
2423 }
2424
2425 return (total);
2426 }
2427 #endif
2428
2429 /*
2430 * Determine whether the activity check is required.
2431 */
2432 static boolean_t
2433 spa_activity_check_required(spa_t *spa, uberblock_t *ub, nvlist_t *label,
2434 nvlist_t *config)
2435 {
2436 uint64_t state = 0;
2437 uint64_t hostid = 0;
2438 uint64_t tryconfig_txg = 0;
2439 uint64_t tryconfig_timestamp = 0;
2440 nvlist_t *nvinfo;
2441
2442 if (nvlist_exists(config, ZPOOL_CONFIG_LOAD_INFO)) {
2443 nvinfo = fnvlist_lookup_nvlist(config, ZPOOL_CONFIG_LOAD_INFO);
2444 (void) nvlist_lookup_uint64(nvinfo, ZPOOL_CONFIG_MMP_TXG,
2445 &tryconfig_txg);
2446 (void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_TIMESTAMP,
2447 &tryconfig_timestamp);
2448 }
2449
2450 (void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_STATE, &state);
2451
2452 /*
2453 * Disable the MMP activity check - This is used by zdb which
2454 * is intended to be used on potentially active pools.
2455 */
2456 if (spa->spa_import_flags & ZFS_IMPORT_SKIP_MMP)
2457 return (B_FALSE);
2458
2459 /*
2460 * Skip the activity check when the MMP feature is disabled.
2461 */
2462 if (ub->ub_mmp_magic == MMP_MAGIC && ub->ub_mmp_delay == 0)
2463 return (B_FALSE);
2464 /*
2465 * If the tryconfig_* values are nonzero, they are the results of an
2466 * earlier tryimport. If they match the uberblock we just found, then
2467 * the pool has not changed and we return false so we do not test a
2468 * second time.
2469 */
2470 if (tryconfig_txg && tryconfig_txg == ub->ub_txg &&
2471 tryconfig_timestamp && tryconfig_timestamp == ub->ub_timestamp)
2472 return (B_FALSE);
2473
2474 /*
2475 * Allow the activity check to be skipped when importing the pool
2476 * on the same host which last imported it. Since the hostid from
2477 * configuration may be stale use the one read from the label.
2478 */
2479 if (nvlist_exists(label, ZPOOL_CONFIG_HOSTID))
2480 hostid = fnvlist_lookup_uint64(label, ZPOOL_CONFIG_HOSTID);
2481
2482 if (hostid == spa_get_hostid())
2483 return (B_FALSE);
2484
2485 /*
2486 * Skip the activity test when the pool was cleanly exported.
2487 */
2488 if (state != POOL_STATE_ACTIVE)
2489 return (B_FALSE);
2490
2491 return (B_TRUE);
2492 }
2493
2494 /*
2495 * Perform the import activity check. If the user canceled the import or
2496 * we detected activity then fail.
2497 */
2498 static int
2499 spa_activity_check(spa_t *spa, uberblock_t *ub, nvlist_t *config)
2500 {
2501 uint64_t import_intervals = MAX(zfs_multihost_import_intervals, 1);
2502 uint64_t txg = ub->ub_txg;
2503 uint64_t timestamp = ub->ub_timestamp;
2504 uint64_t import_delay = NANOSEC;
2505 hrtime_t import_expire;
2506 nvlist_t *mmp_label = NULL;
2507 vdev_t *rvd = spa->spa_root_vdev;
2508 kcondvar_t cv;
2509 kmutex_t mtx;
2510 int error = 0;
2511
2512 cv_init(&cv, NULL, CV_DEFAULT, NULL);
2513 mutex_init(&mtx, NULL, MUTEX_DEFAULT, NULL);
2514 mutex_enter(&mtx);
2515
2516 /*
2517 * If ZPOOL_CONFIG_MMP_TXG is present an activity check was performed
2518 * during the earlier tryimport. If the txg recorded there is 0 then
2519 * the pool is known to be active on another host.
2520 *
2521 * Otherwise, the pool might be in use on another node. Check for
2522 * changes in the uberblocks on disk if necessary.
2523 */
2524 if (nvlist_exists(config, ZPOOL_CONFIG_LOAD_INFO)) {
2525 nvlist_t *nvinfo = fnvlist_lookup_nvlist(config,
2526 ZPOOL_CONFIG_LOAD_INFO);
2527
2528 if (nvlist_exists(nvinfo, ZPOOL_CONFIG_MMP_TXG) &&
2529 fnvlist_lookup_uint64(nvinfo, ZPOOL_CONFIG_MMP_TXG) == 0) {
2530 vdev_uberblock_load(rvd, ub, &mmp_label);
2531 error = SET_ERROR(EREMOTEIO);
2532 goto out;
2533 }
2534 }
2535
2536 /*
2537 * Preferentially use the zfs_multihost_interval from the node which
2538 * last imported the pool. This value is stored in an MMP uberblock as.
2539 *
2540 * ub_mmp_delay * vdev_count_leaves() == zfs_multihost_interval
2541 */
2542 if (ub->ub_mmp_magic == MMP_MAGIC && ub->ub_mmp_delay)
2543 import_delay = MAX(import_delay, import_intervals *
2544 ub->ub_mmp_delay * MAX(vdev_count_leaves(spa), 1));
2545
2546 /* Apply a floor using the local default values. */
2547 import_delay = MAX(import_delay, import_intervals *
2548 MSEC2NSEC(MAX(zfs_multihost_interval, MMP_MIN_INTERVAL)));
2549
2550 zfs_dbgmsg("import_delay=%llu ub_mmp_delay=%llu import_intervals=%u "
2551 "leaves=%u", import_delay, ub->ub_mmp_delay, import_intervals,
2552 vdev_count_leaves(spa));
2553
2554 /* Add a small random factor in case of simultaneous imports (0-25%) */
2555 import_expire = gethrtime() + import_delay +
2556 (import_delay * spa_get_random(250) / 1000);
2557
2558 while (gethrtime() < import_expire) {
2559 vdev_uberblock_load(rvd, ub, &mmp_label);
2560
2561 if (txg != ub->ub_txg || timestamp != ub->ub_timestamp) {
2562 error = SET_ERROR(EREMOTEIO);
2563 break;
2564 }
2565
2566 if (mmp_label) {
2567 nvlist_free(mmp_label);
2568 mmp_label = NULL;
2569 }
2570
2571 error = cv_timedwait_sig(&cv, &mtx, ddi_get_lbolt() + hz);
2572 if (error != -1) {
2573 error = SET_ERROR(EINTR);
2574 break;
2575 }
2576 error = 0;
2577 }
2578
2579 out:
2580 mutex_exit(&mtx);
2581 mutex_destroy(&mtx);
2582 cv_destroy(&cv);
2583
2584 /*
2585 * If the pool is determined to be active store the status in the
2586 * spa->spa_load_info nvlist. If the remote hostname or hostid are
2587 * available from configuration read from disk store them as well.
2588 * This allows 'zpool import' to generate a more useful message.
2589 *
2590 * ZPOOL_CONFIG_MMP_STATE - observed pool status (mandatory)
2591 * ZPOOL_CONFIG_MMP_HOSTNAME - hostname from the active pool
2592 * ZPOOL_CONFIG_MMP_HOSTID - hostid from the active pool
2593 */
2594 if (error == EREMOTEIO) {
2595 char *hostname = "<unknown>";
2596 uint64_t hostid = 0;
2597
2598 if (mmp_label) {
2599 if (nvlist_exists(mmp_label, ZPOOL_CONFIG_HOSTNAME)) {
2600 hostname = fnvlist_lookup_string(mmp_label,
2601 ZPOOL_CONFIG_HOSTNAME);
2602 fnvlist_add_string(spa->spa_load_info,
2603 ZPOOL_CONFIG_MMP_HOSTNAME, hostname);
2604 }
2605
2606 if (nvlist_exists(mmp_label, ZPOOL_CONFIG_HOSTID)) {
2607 hostid = fnvlist_lookup_uint64(mmp_label,
2608 ZPOOL_CONFIG_HOSTID);
2609 fnvlist_add_uint64(spa->spa_load_info,
2610 ZPOOL_CONFIG_MMP_HOSTID, hostid);
2611 }
2612 }
2613
2614 fnvlist_add_uint64(spa->spa_load_info,
2615 ZPOOL_CONFIG_MMP_STATE, MMP_STATE_ACTIVE);
2616 fnvlist_add_uint64(spa->spa_load_info,
2617 ZPOOL_CONFIG_MMP_TXG, 0);
2618
2619 error = spa_vdev_err(rvd, VDEV_AUX_ACTIVE, EREMOTEIO);
2620 }
2621
2622 if (mmp_label)
2623 nvlist_free(mmp_label);
2624
2625 return (error);
2626 }
2627
2628 static int
2629 spa_verify_host(spa_t *spa, nvlist_t *mos_config)
2630 {
2631 uint64_t hostid;
2632 char *hostname;
2633 uint64_t myhostid = 0;
2634
2635 if (!spa_is_root(spa) && nvlist_lookup_uint64(mos_config,
2636 ZPOOL_CONFIG_HOSTID, &hostid) == 0) {
2637 hostname = fnvlist_lookup_string(mos_config,
2638 ZPOOL_CONFIG_HOSTNAME);
2639
2640 myhostid = zone_get_hostid(NULL);
2641
2642 if (hostid != 0 && myhostid != 0 && hostid != myhostid) {
2643 cmn_err(CE_WARN, "pool '%s' could not be "
2644 "loaded as it was last accessed by "
2645 "another system (host: %s hostid: 0x%llx). "
2646 "See: http://illumos.org/msg/ZFS-8000-EY",
2647 spa_name(spa), hostname, (u_longlong_t)hostid);
2648 spa_load_failed(spa, "hostid verification failed: pool "
2649 "last accessed by host: %s (hostid: 0x%llx)",
2650 hostname, (u_longlong_t)hostid);
2651 return (SET_ERROR(EBADF));
2652 }
2653 }
2654
2655 return (0);
2656 }
2657
2658 static int
2659 spa_ld_parse_config(spa_t *spa, spa_import_type_t type)
2660 {
2661 int error = 0;
2662 nvlist_t *nvtree, *nvl, *config = spa->spa_config;
2663 int parse;
2664 vdev_t *rvd;
2665 uint64_t pool_guid;
2666 char *comment;
2667
2668 /*
2669 * Versioning wasn't explicitly added to the label until later, so if
2670 * it's not present treat it as the initial version.
2671 */
2672 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VERSION,
2673 &spa->spa_ubsync.ub_version) != 0)
2674 spa->spa_ubsync.ub_version = SPA_VERSION_INITIAL;
2675
2676 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, &pool_guid)) {
2677 spa_load_failed(spa, "invalid config provided: '%s' missing",
2678 ZPOOL_CONFIG_POOL_GUID);
2679 return (SET_ERROR(EINVAL));
2680 }
2681
2682 /*
2683 * If we are doing an import, ensure that the pool is not already
2684 * imported by checking if its pool guid already exists in the
2685 * spa namespace.
2686 *
2687 * The only case that we allow an already imported pool to be
2688 * imported again, is when the pool is checkpointed and we want to
2689 * look at its checkpointed state from userland tools like zdb.
2690 */
2691 #ifdef _KERNEL
2692 if ((spa->spa_load_state == SPA_LOAD_IMPORT ||
2693 spa->spa_load_state == SPA_LOAD_TRYIMPORT) &&
2694 spa_guid_exists(pool_guid, 0)) {
2695 #else
2696 if ((spa->spa_load_state == SPA_LOAD_IMPORT ||
2697 spa->spa_load_state == SPA_LOAD_TRYIMPORT) &&
2698 spa_guid_exists(pool_guid, 0) &&
2699 !spa_importing_readonly_checkpoint(spa)) {
2700 #endif
2701 spa_load_failed(spa, "a pool with guid %llu is already open",
2702 (u_longlong_t)pool_guid);
2703 return (SET_ERROR(EEXIST));
2704 }
2705
2706 spa->spa_config_guid = pool_guid;
2707
2708 nvlist_free(spa->spa_load_info);
2709 spa->spa_load_info = fnvlist_alloc();
2710
2711 ASSERT(spa->spa_comment == NULL);
2712 if (nvlist_lookup_string(config, ZPOOL_CONFIG_COMMENT, &comment) == 0)
2713 spa->spa_comment = spa_strdup(comment);
2714
2715 (void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG,
2716 &spa->spa_config_txg);
2717
2718 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT, &nvl) == 0)
2719 spa->spa_config_splitting = fnvlist_dup(nvl);
2720
2721 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvtree)) {
2722 spa_load_failed(spa, "invalid config provided: '%s' missing",
2723 ZPOOL_CONFIG_VDEV_TREE);
2724 return (SET_ERROR(EINVAL));
2725 }
2726
2727 /*
2728 * Create "The Godfather" zio to hold all async IOs
2729 */
2730 spa->spa_async_zio_root = kmem_alloc(max_ncpus * sizeof (void *),
2731 KM_SLEEP);
2732 for (int i = 0; i < max_ncpus; i++) {
2733 spa->spa_async_zio_root[i] = zio_root(spa, NULL, NULL,
2734 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
2735 ZIO_FLAG_GODFATHER);
2736 }
2737
2738 /*
2739 * Parse the configuration into a vdev tree. We explicitly set the
2740 * value that will be returned by spa_version() since parsing the
2741 * configuration requires knowing the version number.
2742 */
2743 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2744 parse = (type == SPA_IMPORT_EXISTING ?
2745 VDEV_ALLOC_LOAD : VDEV_ALLOC_SPLIT);
2746 error = spa_config_parse(spa, &rvd, nvtree, NULL, 0, parse);
2747 spa_config_exit(spa, SCL_ALL, FTAG);
2748
2749 if (error != 0) {
2750 spa_load_failed(spa, "unable to parse config [error=%d]",
2751 error);
2752 return (error);
2753 }
2754
2755 ASSERT(spa->spa_root_vdev == rvd);
2756 ASSERT3U(spa->spa_min_ashift, >=, SPA_MINBLOCKSHIFT);
2757 ASSERT3U(spa->spa_max_ashift, <=, SPA_MAXBLOCKSHIFT);
2758
2759 if (type != SPA_IMPORT_ASSEMBLE) {
2760 ASSERT(spa_guid(spa) == pool_guid);
2761 }
2762
2763 return (0);
2764 }
2765
2766 /*
2767 * Recursively open all vdevs in the vdev tree. This function is called twice:
2768 * first with the untrusted config, then with the trusted config.
2769 */
2770 static int
2771 spa_ld_open_vdevs(spa_t *spa)
2772 {
2773 int error = 0;
2774
2775 /*
2776 * spa_missing_tvds_allowed defines how many top-level vdevs can be
2777 * missing/unopenable for the root vdev to be still considered openable.
2778 */
2779 if (spa->spa_trust_config) {
2780 spa->spa_missing_tvds_allowed = zfs_max_missing_tvds;
2781 } else if (spa->spa_config_source == SPA_CONFIG_SRC_CACHEFILE) {
2782 spa->spa_missing_tvds_allowed = zfs_max_missing_tvds_cachefile;
2783 } else if (spa->spa_config_source == SPA_CONFIG_SRC_SCAN) {
2784 spa->spa_missing_tvds_allowed = zfs_max_missing_tvds_scan;
2785 } else {
2786 spa->spa_missing_tvds_allowed = 0;
2787 }
2788
2789 spa->spa_missing_tvds_allowed =
2790 MAX(zfs_max_missing_tvds, spa->spa_missing_tvds_allowed);
2791
2792 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2793 error = vdev_open(spa->spa_root_vdev);
2794 spa_config_exit(spa, SCL_ALL, FTAG);
2795
2796 if (spa->spa_missing_tvds != 0) {
2797 spa_load_note(spa, "vdev tree has %lld missing top-level "
2798 "vdevs.", (u_longlong_t)spa->spa_missing_tvds);
2799 if (spa->spa_trust_config && (spa->spa_mode & FWRITE)) {
2800 /*
2801 * Although theoretically we could allow users to open
2802 * incomplete pools in RW mode, we'd need to add a lot
2803 * of extra logic (e.g. adjust pool space to account
2804 * for missing vdevs).
2805 * This limitation also prevents users from accidentally
2806 * opening the pool in RW mode during data recovery and
2807 * damaging it further.
2808 */
2809 spa_load_note(spa, "pools with missing top-level "
2810 "vdevs can only be opened in read-only mode.");
2811 error = SET_ERROR(ENXIO);
2812 } else {
2813 spa_load_note(spa, "current settings allow for maximum "
2814 "%lld missing top-level vdevs at this stage.",
2815 (u_longlong_t)spa->spa_missing_tvds_allowed);
2816 }
2817 }
2818 if (error != 0) {
2819 spa_load_failed(spa, "unable to open vdev tree [error=%d]",
2820 error);
2821 }
2822 if (spa->spa_missing_tvds != 0 || error != 0)
2823 vdev_dbgmsg_print_tree(spa->spa_root_vdev, 2);
2824
2825 return (error);
2826 }
2827
2828 /*
2829 * We need to validate the vdev labels against the configuration that
2830 * we have in hand. This function is called twice: first with an untrusted
2831 * config, then with a trusted config. The validation is more strict when the
2832 * config is trusted.
2833 */
2834 static int
2835 spa_ld_validate_vdevs(spa_t *spa)
2836 {
2837 int error = 0;
2838 vdev_t *rvd = spa->spa_root_vdev;
2839
2840 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2841 error = vdev_validate(rvd);
2842 spa_config_exit(spa, SCL_ALL, FTAG);
2843
2844 if (error != 0) {
2845 spa_load_failed(spa, "vdev_validate failed [error=%d]", error);
2846 return (error);
2847 }
2848
2849 if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN) {
2850 spa_load_failed(spa, "cannot open vdev tree after invalidating "
2851 "some vdevs");
2852 vdev_dbgmsg_print_tree(rvd, 2);
2853 return (SET_ERROR(ENXIO));
2854 }
2855
2856 return (0);
2857 }
2858
2859 static void
2860 spa_ld_select_uberblock_done(spa_t *spa, uberblock_t *ub)
2861 {
2862 spa->spa_state = POOL_STATE_ACTIVE;
2863 spa->spa_ubsync = spa->spa_uberblock;
2864 spa->spa_verify_min_txg = spa->spa_extreme_rewind ?
2865 TXG_INITIAL - 1 : spa_last_synced_txg(spa) - TXG_DEFER_SIZE - 1;
2866 spa->spa_first_txg = spa->spa_last_ubsync_txg ?
2867 spa->spa_last_ubsync_txg : spa_last_synced_txg(spa) + 1;
2868 spa->spa_claim_max_txg = spa->spa_first_txg;
2869 spa->spa_prev_software_version = ub->ub_software_version;
2870 }
2871
2872 static int
2873 spa_ld_select_uberblock(spa_t *spa, spa_import_type_t type)
2874 {
2875 vdev_t *rvd = spa->spa_root_vdev;
2876 nvlist_t *label;
2877 uberblock_t *ub = &spa->spa_uberblock;
2878 boolean_t activity_check = B_FALSE;
2879
2880 /*
2881 * If we are opening the checkpointed state of the pool by
2882 * rewinding to it, at this point we will have written the
2883 * checkpointed uberblock to the vdev labels, so searching
2884 * the labels will find the right uberblock. However, if
2885 * we are opening the checkpointed state read-only, we have
2886 * not modified the labels. Therefore, we must ignore the
2887 * labels and continue using the spa_uberblock that was set
2888 * by spa_ld_checkpoint_rewind.
2889 *
2890 * Note that it would be fine to ignore the labels when
2891 * rewinding (opening writeable) as well. However, if we
2892 * crash just after writing the labels, we will end up
2893 * searching the labels. Doing so in the common case means
2894 * that this code path gets exercised normally, rather than
2895 * just in the edge case.
2896 */
2897 if (ub->ub_checkpoint_txg != 0 &&
2898 spa_importing_readonly_checkpoint(spa)) {
2899 spa_ld_select_uberblock_done(spa, ub);
2900 return (0);
2901 }
2902
2903 /*
2904 * Find the best uberblock.
2905 */
2906 vdev_uberblock_load(rvd, ub, &label);
2907
2908 /*
2909 * If we weren't able to find a single valid uberblock, return failure.
2910 */
2911 if (ub->ub_txg == 0) {
2912 nvlist_free(label);
2913 spa_load_failed(spa, "no valid uberblock found");
2914 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, ENXIO));
2915 }
2916
2917 spa_load_note(spa, "using uberblock with txg=%llu",
2918 (u_longlong_t)ub->ub_txg);
2919
2920
2921 /*
2922 * For pools which have the multihost property on determine if the
2923 * pool is truly inactive and can be safely imported. Prevent
2924 * hosts which don't have a hostid set from importing the pool.
2925 */
2926 activity_check = spa_activity_check_required(spa, ub, label,
2927 spa->spa_config);
2928 if (activity_check) {
2929 if (ub->ub_mmp_magic == MMP_MAGIC && ub->ub_mmp_delay &&
2930 spa_get_hostid() == 0) {
2931 nvlist_free(label);
2932 fnvlist_add_uint64(spa->spa_load_info,
2933 ZPOOL_CONFIG_MMP_STATE, MMP_STATE_NO_HOSTID);
2934 return (spa_vdev_err(rvd, VDEV_AUX_ACTIVE, EREMOTEIO));
2935 }
2936
2937 int error = spa_activity_check(spa, ub, spa->spa_config);
2938 if (error) {
2939 nvlist_free(label);
2940 return (error);
2941 }
2942
2943 fnvlist_add_uint64(spa->spa_load_info,
2944 ZPOOL_CONFIG_MMP_STATE, MMP_STATE_INACTIVE);
2945 fnvlist_add_uint64(spa->spa_load_info,
2946 ZPOOL_CONFIG_MMP_TXG, ub->ub_txg);
2947 }
2948
2949 /*
2950 * If the pool has an unsupported version we can't open it.
2951 */
2952 if (!SPA_VERSION_IS_SUPPORTED(ub->ub_version)) {
2953 nvlist_free(label);
2954 spa_load_failed(spa, "version %llu is not supported",
2955 (u_longlong_t)ub->ub_version);
2956 return (spa_vdev_err(rvd, VDEV_AUX_VERSION_NEWER, ENOTSUP));
2957 }
2958
2959 if (ub->ub_version >= SPA_VERSION_FEATURES) {
2960 nvlist_t *features;
2961
2962 /*
2963 * If we weren't able to find what's necessary for reading the
2964 * MOS in the label, return failure.
2965 */
2966 if (label == NULL) {
2967 spa_load_failed(spa, "label config unavailable");
2968 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
2969 ENXIO));
2970 }
2971
2972 if (nvlist_lookup_nvlist(label, ZPOOL_CONFIG_FEATURES_FOR_READ,
2973 &features) != 0) {
2974 nvlist_free(label);
2975 spa_load_failed(spa, "invalid label: '%s' missing",
2976 ZPOOL_CONFIG_FEATURES_FOR_READ);
2977 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
2978 ENXIO));
2979 }
2980
2981 /*
2982 * Update our in-core representation with the definitive values
2983 * from the label.
2984 */
2985 nvlist_free(spa->spa_label_features);
2986 VERIFY(nvlist_dup(features, &spa->spa_label_features, 0) == 0);
2987 }
2988
2989 nvlist_free(label);
2990
2991 /*
2992 * Look through entries in the label nvlist's features_for_read. If
2993 * there is a feature listed there which we don't understand then we
2994 * cannot open a pool.
2995 */
2996 if (ub->ub_version >= SPA_VERSION_FEATURES) {
2997 nvlist_t *unsup_feat;
2998
2999 VERIFY(nvlist_alloc(&unsup_feat, NV_UNIQUE_NAME, KM_SLEEP) ==
3000 0);
3001
3002 for (nvpair_t *nvp = nvlist_next_nvpair(spa->spa_label_features,
3003 NULL); nvp != NULL;
3004 nvp = nvlist_next_nvpair(spa->spa_label_features, nvp)) {
3005 if (!zfeature_is_supported(nvpair_name(nvp))) {
3006 VERIFY(nvlist_add_string(unsup_feat,
3007 nvpair_name(nvp), "") == 0);
3008 }
3009 }
3010
3011 if (!nvlist_empty(unsup_feat)) {
3012 VERIFY(nvlist_add_nvlist(spa->spa_load_info,
3013 ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat) == 0);
3014 nvlist_free(unsup_feat);
3015 spa_load_failed(spa, "some features are unsupported");
3016 return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT,
3017 ENOTSUP));
3018 }
3019
3020 nvlist_free(unsup_feat);
3021 }
3022
3023 if (type != SPA_IMPORT_ASSEMBLE && spa->spa_config_splitting) {
3024 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3025 spa_try_repair(spa, spa->spa_config);
3026 spa_config_exit(spa, SCL_ALL, FTAG);
3027 nvlist_free(spa->spa_config_splitting);
3028 spa->spa_config_splitting = NULL;
3029 }
3030
3031 /*
3032 * Initialize internal SPA structures.
3033 */
3034 spa_ld_select_uberblock_done(spa, ub);
3035
3036 return (0);
3037 }
3038
3039 static int
3040 spa_ld_open_rootbp(spa_t *spa)
3041 {
3042 int error = 0;
3043 vdev_t *rvd = spa->spa_root_vdev;
3044
3045 error = dsl_pool_init(spa, spa->spa_first_txg, &spa->spa_dsl_pool);
3046 if (error != 0) {
3047 spa_load_failed(spa, "unable to open rootbp in dsl_pool_init "
3048 "[error=%d]", error);
3049 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3050 }
3051 spa->spa_meta_objset = spa->spa_dsl_pool->dp_meta_objset;
3052
3053 return (0);
3054 }
3055
3056 static int
3057 spa_ld_trusted_config(spa_t *spa, spa_import_type_t type,
3058 boolean_t reloading)
3059 {
3060 vdev_t *mrvd, *rvd = spa->spa_root_vdev;
3061 nvlist_t *nv, *mos_config, *policy;
3062 int error = 0, copy_error;
3063 uint64_t healthy_tvds, healthy_tvds_mos;
3064 uint64_t mos_config_txg;
3065
3066 if (spa_dir_prop(spa, DMU_POOL_CONFIG, &spa->spa_config_object, B_TRUE)
3067 != 0)
3068 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3069
3070 /*
3071 * If we're assembling a pool from a split, the config provided is
3072 * already trusted so there is nothing to do.
3073 */
3074 if (type == SPA_IMPORT_ASSEMBLE)
3075 return (0);
3076
3077 healthy_tvds = spa_healthy_core_tvds(spa);
3078
3079 if (load_nvlist(spa, spa->spa_config_object, &mos_config)
3080 != 0) {
3081 spa_load_failed(spa, "unable to retrieve MOS config");
3082 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3083 }
3084
3085 /*
3086 * If we are doing an open, pool owner wasn't verified yet, thus do
3087 * the verification here.
3088 */
3089 if (spa->spa_load_state == SPA_LOAD_OPEN) {
3090 error = spa_verify_host(spa, mos_config);
3091 if (error != 0) {
3092 nvlist_free(mos_config);
3093 return (error);
3094 }
3095 }
3096
3097 nv = fnvlist_lookup_nvlist(mos_config, ZPOOL_CONFIG_VDEV_TREE);
3098
3099 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3100
3101 /*
3102 * Build a new vdev tree from the trusted config
3103 */
3104 VERIFY(spa_config_parse(spa, &mrvd, nv, NULL, 0, VDEV_ALLOC_LOAD) == 0);
3105
3106 /*
3107 * Vdev paths in the MOS may be obsolete. If the untrusted config was
3108 * obtained by scanning /dev/dsk, then it will have the right vdev
3109 * paths. We update the trusted MOS config with this information.
3110 * We first try to copy the paths with vdev_copy_path_strict, which
3111 * succeeds only when both configs have exactly the same vdev tree.
3112 * If that fails, we fall back to a more flexible method that has a
3113 * best effort policy.
3114 */
3115 copy_error = vdev_copy_path_strict(rvd, mrvd);
3116 if (copy_error != 0 || spa_load_print_vdev_tree) {
3117 spa_load_note(spa, "provided vdev tree:");
3118 vdev_dbgmsg_print_tree(rvd, 2);
3119 spa_load_note(spa, "MOS vdev tree:");
3120 vdev_dbgmsg_print_tree(mrvd, 2);
3121 }
3122 if (copy_error != 0) {
3123 spa_load_note(spa, "vdev_copy_path_strict failed, falling "
3124 "back to vdev_copy_path_relaxed");
3125 vdev_copy_path_relaxed(rvd, mrvd);
3126 }
3127
3128 vdev_close(rvd);
3129 vdev_free(rvd);
3130 spa->spa_root_vdev = mrvd;
3131 rvd = mrvd;
3132 spa_config_exit(spa, SCL_ALL, FTAG);
3133
3134 /*
3135 * We will use spa_config if we decide to reload the spa or if spa_load
3136 * fails and we rewind. We must thus regenerate the config using the
3137 * MOS information with the updated paths. ZPOOL_LOAD_POLICY is used to
3138 * pass settings on how to load the pool and is not stored in the MOS.
3139 * We copy it over to our new, trusted config.
3140 */
3141 mos_config_txg = fnvlist_lookup_uint64(mos_config,
3142 ZPOOL_CONFIG_POOL_TXG);
3143 nvlist_free(mos_config);
3144 mos_config = spa_config_generate(spa, NULL, mos_config_txg, B_FALSE);
3145 if (nvlist_lookup_nvlist(spa->spa_config, ZPOOL_LOAD_POLICY,
3146 &policy) == 0)
3147 fnvlist_add_nvlist(mos_config, ZPOOL_LOAD_POLICY, policy);
3148 spa_config_set(spa, mos_config);
3149 spa->spa_config_source = SPA_CONFIG_SRC_MOS;
3150
3151 /*
3152 * Now that we got the config from the MOS, we should be more strict
3153 * in checking blkptrs and can make assumptions about the consistency
3154 * of the vdev tree. spa_trust_config must be set to true before opening
3155 * vdevs in order for them to be writeable.
3156 */
3157 spa->spa_trust_config = B_TRUE;
3158
3159 /*
3160 * Open and validate the new vdev tree
3161 */
3162 error = spa_ld_open_vdevs(spa);
3163 if (error != 0)
3164 return (error);
3165
3166 error = spa_ld_validate_vdevs(spa);
3167 if (error != 0)
3168 return (error);
3169
3170 if (copy_error != 0 || spa_load_print_vdev_tree) {
3171 spa_load_note(spa, "final vdev tree:");
3172 vdev_dbgmsg_print_tree(rvd, 2);
3173 }
3174
3175 if (spa->spa_load_state != SPA_LOAD_TRYIMPORT &&
3176 !spa->spa_extreme_rewind && zfs_max_missing_tvds == 0) {
3177 /*
3178 * Sanity check to make sure that we are indeed loading the
3179 * latest uberblock. If we missed SPA_SYNC_MIN_VDEVS tvds
3180 * in the config provided and they happened to be the only ones
3181 * to have the latest uberblock, we could involuntarily perform
3182 * an extreme rewind.
3183 */
3184 healthy_tvds_mos = spa_healthy_core_tvds(spa);
3185 if (healthy_tvds_mos - healthy_tvds >=
3186 SPA_SYNC_MIN_VDEVS) {
3187 spa_load_note(spa, "config provided misses too many "
3188 "top-level vdevs compared to MOS (%lld vs %lld). ",
3189 (u_longlong_t)healthy_tvds,
3190 (u_longlong_t)healthy_tvds_mos);
3191 spa_load_note(spa, "vdev tree:");
3192 vdev_dbgmsg_print_tree(rvd, 2);
3193 if (reloading) {
3194 spa_load_failed(spa, "config was already "
3195 "provided from MOS. Aborting.");
3196 return (spa_vdev_err(rvd,
3197 VDEV_AUX_CORRUPT_DATA, EIO));
3198 }
3199 spa_load_note(spa, "spa must be reloaded using MOS "
3200 "config");
3201 return (SET_ERROR(EAGAIN));
3202 }
3203 }
3204
3205 error = spa_check_for_missing_logs(spa);
3206 if (error != 0)
3207 return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM, ENXIO));
3208
3209 if (rvd->vdev_guid_sum != spa->spa_uberblock.ub_guid_sum) {
3210 spa_load_failed(spa, "uberblock guid sum doesn't match MOS "
3211 "guid sum (%llu != %llu)",
3212 (u_longlong_t)spa->spa_uberblock.ub_guid_sum,
3213 (u_longlong_t)rvd->vdev_guid_sum);
3214 return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM,
3215 ENXIO));
3216 }
3217
3218 return (0);
3219 }
3220
3221 static int
3222 spa_ld_open_indirect_vdev_metadata(spa_t *spa)
3223 {
3224 int error = 0;
3225 vdev_t *rvd = spa->spa_root_vdev;
3226
3227 /*
3228 * Everything that we read before spa_remove_init() must be stored
3229 * on concreted vdevs. Therefore we do this as early as possible.
3230 */
3231 error = spa_remove_init(spa);
3232 if (error != 0) {
3233 spa_load_failed(spa, "spa_remove_init failed [error=%d]",
3234 error);
3235 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3236 }
3237
3238 /*
3239 * Retrieve information needed to condense indirect vdev mappings.
3240 */
3241 error = spa_condense_init(spa);
3242 if (error != 0) {
3243 spa_load_failed(spa, "spa_condense_init failed [error=%d]",
3244 error);
3245 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, error));
3246 }
3247
3248 return (0);
3249 }
3250
3251 static int
3252 spa_ld_check_features(spa_t *spa, boolean_t *missing_feat_writep)
3253 {
3254 int error = 0;
3255 vdev_t *rvd = spa->spa_root_vdev;
3256
3257 if (spa_version(spa) >= SPA_VERSION_FEATURES) {
3258 boolean_t missing_feat_read = B_FALSE;
3259 nvlist_t *unsup_feat, *enabled_feat;
3260
3261 if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_READ,
3262 &spa->spa_feat_for_read_obj, B_TRUE) != 0) {
3263 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3264 }
3265
3266 if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_WRITE,
3267 &spa->spa_feat_for_write_obj, B_TRUE) != 0) {
3268 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3269 }
3270
3271 if (spa_dir_prop(spa, DMU_POOL_FEATURE_DESCRIPTIONS,
3272 &spa->spa_feat_desc_obj, B_TRUE) != 0) {
3273 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3274 }
3275
3276 enabled_feat = fnvlist_alloc();
3277 unsup_feat = fnvlist_alloc();
3278
3279 if (!spa_features_check(spa, B_FALSE,
3280 unsup_feat, enabled_feat))
3281 missing_feat_read = B_TRUE;
3282
3283 if (spa_writeable(spa) ||
3284 spa->spa_load_state == SPA_LOAD_TRYIMPORT) {
3285 if (!spa_features_check(spa, B_TRUE,
3286 unsup_feat, enabled_feat)) {
3287 *missing_feat_writep = B_TRUE;
3288 }
3289 }
3290
3291 fnvlist_add_nvlist(spa->spa_load_info,
3292 ZPOOL_CONFIG_ENABLED_FEAT, enabled_feat);
3293
3294 if (!nvlist_empty(unsup_feat)) {
3295 fnvlist_add_nvlist(spa->spa_load_info,
3296 ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat);
3297 }
3298
3299 fnvlist_free(enabled_feat);
3300 fnvlist_free(unsup_feat);
3301
3302 if (!missing_feat_read) {
3303 fnvlist_add_boolean(spa->spa_load_info,
3304 ZPOOL_CONFIG_CAN_RDONLY);
3305 }
3306
3307 /*
3308 * If the state is SPA_LOAD_TRYIMPORT, our objective is
3309 * twofold: to determine whether the pool is available for
3310 * import in read-write mode and (if it is not) whether the
3311 * pool is available for import in read-only mode. If the pool
3312 * is available for import in read-write mode, it is displayed
3313 * as available in userland; if it is not available for import
3314 * in read-only mode, it is displayed as unavailable in
3315 * userland. If the pool is available for import in read-only
3316 * mode but not read-write mode, it is displayed as unavailable
3317 * in userland with a special note that the pool is actually
3318 * available for open in read-only mode.
3319 *
3320 * As a result, if the state is SPA_LOAD_TRYIMPORT and we are
3321 * missing a feature for write, we must first determine whether
3322 * the pool can be opened read-only before returning to
3323 * userland in order to know whether to display the
3324 * abovementioned note.
3325 */
3326 if (missing_feat_read || (*missing_feat_writep &&
3327 spa_writeable(spa))) {
3328 spa_load_failed(spa, "pool uses unsupported features");
3329 return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT,
3330 ENOTSUP));
3331 }
3332
3333 /*
3334 * Load refcounts for ZFS features from disk into an in-memory
3335 * cache during SPA initialization.
3336 */
3337 for (spa_feature_t i = 0; i < SPA_FEATURES; i++) {
3338 uint64_t refcount;
3339
3340 error = feature_get_refcount_from_disk(spa,
3341 &spa_feature_table[i], &refcount);
3342 if (error == 0) {
3343 spa->spa_feat_refcount_cache[i] = refcount;
3344 } else if (error == ENOTSUP) {
3345 spa->spa_feat_refcount_cache[i] =
3346 SPA_FEATURE_DISABLED;
3347 } else {
3348 spa_load_failed(spa, "error getting refcount "
3349 "for feature %s [error=%d]",
3350 spa_feature_table[i].fi_guid, error);
3351 return (spa_vdev_err(rvd,
3352 VDEV_AUX_CORRUPT_DATA, EIO));
3353 }
3354 }
3355 }
3356
3357 if (spa_feature_is_active(spa, SPA_FEATURE_ENABLED_TXG)) {
3358 if (spa_dir_prop(spa, DMU_POOL_FEATURE_ENABLED_TXG,
3359 &spa->spa_feat_enabled_txg_obj, B_TRUE) != 0)
3360 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3361 }
3362
3363 return (0);
3364 }
3365
3366 static int
3367 spa_ld_load_special_directories(spa_t *spa)
3368 {
3369 int error = 0;
3370 vdev_t *rvd = spa->spa_root_vdev;
3371
3372 spa->spa_is_initializing = B_TRUE;
3373 error = dsl_pool_open(spa->spa_dsl_pool);
3374 spa->spa_is_initializing = B_FALSE;
3375 if (error != 0) {
3376 spa_load_failed(spa, "dsl_pool_open failed [error=%d]", error);
3377 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3378 }
3379
3380 return (0);
3381 }
3382
3383 static int
3384 spa_ld_get_props(spa_t *spa)
3385 {
3386 int error = 0;
3387 uint64_t obj;
3388 vdev_t *rvd = spa->spa_root_vdev;
3389
3390 /* Grab the checksum salt from the MOS. */
3391 error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
3392 DMU_POOL_CHECKSUM_SALT, 1,
3393 sizeof (spa->spa_cksum_salt.zcs_bytes),
3394 spa->spa_cksum_salt.zcs_bytes);
3395 if (error == ENOENT) {
3396 /* Generate a new salt for subsequent use */
3397 (void) random_get_pseudo_bytes(spa->spa_cksum_salt.zcs_bytes,
3398 sizeof (spa->spa_cksum_salt.zcs_bytes));
3399 } else if (error != 0) {
3400 spa_load_failed(spa, "unable to retrieve checksum salt from "
3401 "MOS [error=%d]", error);
3402 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3403 }
3404
3405 if (spa_dir_prop(spa, DMU_POOL_SYNC_BPOBJ, &obj, B_TRUE) != 0)
3406 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3407 error = bpobj_open(&spa->spa_deferred_bpobj, spa->spa_meta_objset, obj);
3408 if (error != 0) {
3409 spa_load_failed(spa, "error opening deferred-frees bpobj "
3410 "[error=%d]", error);
3411 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3412 }
3413
3414 /*
3415 * Load the bit that tells us to use the new accounting function
3416 * (raid-z deflation). If we have an older pool, this will not
3417 * be present.
3418 */
3419 error = spa_dir_prop(spa, DMU_POOL_DEFLATE, &spa->spa_deflate, B_FALSE);
3420 if (error != 0 && error != ENOENT)
3421 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3422
3423 error = spa_dir_prop(spa, DMU_POOL_CREATION_VERSION,
3424 &spa->spa_creation_version, B_FALSE);
3425 if (error != 0 && error != ENOENT)
3426 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3427
3428 /*
3429 * Load the persistent error log. If we have an older pool, this will
3430 * not be present.
3431 */
3432 error = spa_dir_prop(spa, DMU_POOL_ERRLOG_LAST, &spa->spa_errlog_last,
3433 B_FALSE);
3434 if (error != 0 && error != ENOENT)
3435 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3436
3437 error = spa_dir_prop(spa, DMU_POOL_ERRLOG_SCRUB,
3438 &spa->spa_errlog_scrub, B_FALSE);
3439 if (error != 0 && error != ENOENT)
3440 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3441
3442 /*
3443 * Load the history object. If we have an older pool, this
3444 * will not be present.
3445 */
3446 error = spa_dir_prop(spa, DMU_POOL_HISTORY, &spa->spa_history, B_FALSE);
3447 if (error != 0 && error != ENOENT)
3448 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3449
3450 /*
3451 * Load the per-vdev ZAP map. If we have an older pool, this will not
3452 * be present; in this case, defer its creation to a later time to
3453 * avoid dirtying the MOS this early / out of sync context. See
3454 * spa_sync_config_object.
3455 */
3456
3457 /* The sentinel is only available in the MOS config. */
3458 nvlist_t *mos_config;
3459 if (load_nvlist(spa, spa->spa_config_object, &mos_config) != 0) {
3460 spa_load_failed(spa, "unable to retrieve MOS config");
3461 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3462 }
3463
3464 error = spa_dir_prop(spa, DMU_POOL_VDEV_ZAP_MAP,
3465 &spa->spa_all_vdev_zaps, B_FALSE);
3466
3467 if (error == ENOENT) {
3468 VERIFY(!nvlist_exists(mos_config,
3469 ZPOOL_CONFIG_HAS_PER_VDEV_ZAPS));
3470 spa->spa_avz_action = AVZ_ACTION_INITIALIZE;
3471 ASSERT0(vdev_count_verify_zaps(spa->spa_root_vdev));
3472 } else if (error != 0) {
3473 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3474 } else if (!nvlist_exists(mos_config, ZPOOL_CONFIG_HAS_PER_VDEV_ZAPS)) {
3475 /*
3476 * An older version of ZFS overwrote the sentinel value, so
3477 * we have orphaned per-vdev ZAPs in the MOS. Defer their
3478 * destruction to later; see spa_sync_config_object.
3479 */
3480 spa->spa_avz_action = AVZ_ACTION_DESTROY;
3481 /*
3482 * We're assuming that no vdevs have had their ZAPs created
3483 * before this. Better be sure of it.
3484 */
3485 ASSERT0(vdev_count_verify_zaps(spa->spa_root_vdev));
3486 }
3487 nvlist_free(mos_config);
3488
3489 spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
3490
3491 error = spa_dir_prop(spa, DMU_POOL_PROPS, &spa->spa_pool_props_object,
3492 B_FALSE);
3493 if (error && error != ENOENT)
3494 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3495
3496 if (error == 0) {
3497 uint64_t autoreplace;
3498
3499 spa_prop_find(spa, ZPOOL_PROP_BOOTFS, &spa->spa_bootfs);
3500 spa_prop_find(spa, ZPOOL_PROP_AUTOREPLACE, &autoreplace);
3501 spa_prop_find(spa, ZPOOL_PROP_DELEGATION, &spa->spa_delegation);
3502 spa_prop_find(spa, ZPOOL_PROP_FAILUREMODE, &spa->spa_failmode);
3503 spa_prop_find(spa, ZPOOL_PROP_AUTOEXPAND, &spa->spa_autoexpand);
3504 spa_prop_find(spa, ZPOOL_PROP_MULTIHOST, &spa->spa_multihost);
3505 spa_prop_find(spa, ZPOOL_PROP_DEDUPDITTO,
3506 &spa->spa_dedup_ditto);
3507
3508 spa->spa_autoreplace = (autoreplace != 0);
3509 }
3510
3511 /*
3512 * If we are importing a pool with missing top-level vdevs,
3513 * we enforce that the pool doesn't panic or get suspended on
3514 * error since the likelihood of missing data is extremely high.
3515 */
3516 if (spa->spa_missing_tvds > 0 &&
3517 spa->spa_failmode != ZIO_FAILURE_MODE_CONTINUE &&
3518 spa->spa_load_state != SPA_LOAD_TRYIMPORT) {
3519 spa_load_note(spa, "forcing failmode to 'continue' "
3520 "as some top level vdevs are missing");
3521 spa->spa_failmode = ZIO_FAILURE_MODE_CONTINUE;
3522 }
3523
3524 return (0);
3525 }
3526
3527 static int
3528 spa_ld_open_aux_vdevs(spa_t *spa, spa_import_type_t type)
3529 {
3530 int error = 0;
3531 vdev_t *rvd = spa->spa_root_vdev;
3532
3533 /*
3534 * If we're assembling the pool from the split-off vdevs of
3535 * an existing pool, we don't want to attach the spares & cache
3536 * devices.
3537 */
3538
3539 /*
3540 * Load any hot spares for this pool.
3541 */
3542 error = spa_dir_prop(spa, DMU_POOL_SPARES, &spa->spa_spares.sav_object,
3543 B_FALSE);
3544 if (error != 0 && error != ENOENT)
3545 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3546 if (error == 0 && type != SPA_IMPORT_ASSEMBLE) {
3547 ASSERT(spa_version(spa) >= SPA_VERSION_SPARES);
3548 if (load_nvlist(spa, spa->spa_spares.sav_object,
3549 &spa->spa_spares.sav_config) != 0) {
3550 spa_load_failed(spa, "error loading spares nvlist");
3551 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3552 }
3553
3554 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3555 spa_load_spares(spa);
3556 spa_config_exit(spa, SCL_ALL, FTAG);
3557 } else if (error == 0) {
3558 spa->spa_spares.sav_sync = B_TRUE;
3559 }
3560
3561 /*
3562 * Load any level 2 ARC devices for this pool.
3563 */
3564 error = spa_dir_prop(spa, DMU_POOL_L2CACHE,
3565 &spa->spa_l2cache.sav_object, B_FALSE);
3566 if (error != 0 && error != ENOENT)
3567 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3568 if (error == 0 && type != SPA_IMPORT_ASSEMBLE) {
3569 ASSERT(spa_version(spa) >= SPA_VERSION_L2CACHE);
3570 if (load_nvlist(spa, spa->spa_l2cache.sav_object,
3571 &spa->spa_l2cache.sav_config) != 0) {
3572 spa_load_failed(spa, "error loading l2cache nvlist");
3573 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3574 }
3575
3576 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3577 spa_load_l2cache(spa);
3578 spa_config_exit(spa, SCL_ALL, FTAG);
3579 } else if (error == 0) {
3580 spa->spa_l2cache.sav_sync = B_TRUE;
3581 }
3582
3583 return (0);
3584 }
3585
3586 static int
3587 spa_ld_load_vdev_metadata(spa_t *spa)
3588 {
3589 int error = 0;
3590 vdev_t *rvd = spa->spa_root_vdev;
3591
3592 /*
3593 * If the 'multihost' property is set, then never allow a pool to
3594 * be imported when the system hostid is zero. The exception to
3595 * this rule is zdb which is always allowed to access pools.
3596 */
3597 if (spa_multihost(spa) && spa_get_hostid() == 0 &&
3598 (spa->spa_import_flags & ZFS_IMPORT_SKIP_MMP) == 0) {
3599 fnvlist_add_uint64(spa->spa_load_info,
3600 ZPOOL_CONFIG_MMP_STATE, MMP_STATE_NO_HOSTID);
3601 return (spa_vdev_err(rvd, VDEV_AUX_ACTIVE, EREMOTEIO));
3602 }
3603
3604 /*
3605 * If the 'autoreplace' property is set, then post a resource notifying
3606 * the ZFS DE that it should not issue any faults for unopenable
3607 * devices. We also iterate over the vdevs, and post a sysevent for any
3608 * unopenable vdevs so that the normal autoreplace handler can take
3609 * over.
3610 */
3611 if (spa->spa_autoreplace && spa->spa_load_state != SPA_LOAD_TRYIMPORT) {
3612 spa_check_removed(spa->spa_root_vdev);
3613 /*
3614 * For the import case, this is done in spa_import(), because
3615 * at this point we're using the spare definitions from
3616 * the MOS config, not necessarily from the userland config.
3617 */
3618 if (spa->spa_load_state != SPA_LOAD_IMPORT) {
3619 spa_aux_check_removed(&spa->spa_spares);
3620 spa_aux_check_removed(&spa->spa_l2cache);
3621 }
3622 }
3623
3624 /*
3625 * Load the vdev metadata such as metaslabs, DTLs, spacemap object, etc.
3626 */
3627 error = vdev_load(rvd);
3628 if (error != 0) {
3629 spa_load_failed(spa, "vdev_load failed [error=%d]", error);
3630 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, error));
3631 }
3632
3633 /*
3634 * Propagate the leaf DTLs we just loaded all the way up the vdev tree.
3635 */
3636 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3637 vdev_dtl_reassess(rvd, 0, 0, B_FALSE);
3638 spa_config_exit(spa, SCL_ALL, FTAG);
3639
3640 return (0);
3641 }
3642
3643 static int
3644 spa_ld_load_dedup_tables(spa_t *spa)
3645 {
3646 int error = 0;
3647 vdev_t *rvd = spa->spa_root_vdev;
3648
3649 error = ddt_load(spa);
3650 if (error != 0) {
3651 spa_load_failed(spa, "ddt_load failed [error=%d]", error);
3652 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3653 }
3654
3655 return (0);
3656 }
3657
3658 static int
3659 spa_ld_verify_logs(spa_t *spa, spa_import_type_t type, char **ereport)
3660 {
3661 vdev_t *rvd = spa->spa_root_vdev;
3662
3663 if (type != SPA_IMPORT_ASSEMBLE && spa_writeable(spa)) {
3664 boolean_t missing = spa_check_logs(spa);
3665 if (missing) {
3666 if (spa->spa_missing_tvds != 0) {
3667 spa_load_note(spa, "spa_check_logs failed "
3668 "so dropping the logs");
3669 } else {
3670 *ereport = FM_EREPORT_ZFS_LOG_REPLAY;
3671 spa_load_failed(spa, "spa_check_logs failed");
3672 return (spa_vdev_err(rvd, VDEV_AUX_BAD_LOG,
3673 ENXIO));
3674 }
3675 }
3676 }
3677
3678 return (0);
3679 }
3680
3681 static int
3682 spa_ld_verify_pool_data(spa_t *spa)
3683 {
3684 int error = 0;
3685 vdev_t *rvd = spa->spa_root_vdev;
3686
3687 /*
3688 * We've successfully opened the pool, verify that we're ready
3689 * to start pushing transactions.
3690 */
3691 if (spa->spa_load_state != SPA_LOAD_TRYIMPORT) {
3692 error = spa_load_verify(spa);
3693 if (error != 0) {
3694 spa_load_failed(spa, "spa_load_verify failed "
3695 "[error=%d]", error);
3696 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
3697 error));
3698 }
3699 }
3700
3701 return (0);
3702 }
3703
3704 static void
3705 spa_ld_claim_log_blocks(spa_t *spa)
3706 {
3707 dmu_tx_t *tx;
3708 dsl_pool_t *dp = spa_get_dsl(spa);
3709
3710 /*
3711 * Claim log blocks that haven't been committed yet.
3712 * This must all happen in a single txg.
3713 * Note: spa_claim_max_txg is updated by spa_claim_notify(),
3714 * invoked from zil_claim_log_block()'s i/o done callback.
3715 * Price of rollback is that we abandon the log.
3716 */
3717 spa->spa_claiming = B_TRUE;
3718
3719 tx = dmu_tx_create_assigned(dp, spa_first_txg(spa));
3720 (void) dmu_objset_find_dp(dp, dp->dp_root_dir_obj,
3721 zil_claim, tx, DS_FIND_CHILDREN);
3722 dmu_tx_commit(tx);
3723
3724 spa->spa_claiming = B_FALSE;
3725
3726 spa_set_log_state(spa, SPA_LOG_GOOD);
3727 }
3728
3729 static void
3730 spa_ld_check_for_config_update(spa_t *spa, uint64_t config_cache_txg,
3731 boolean_t update_config_cache)
3732 {
3733 vdev_t *rvd = spa->spa_root_vdev;
3734 int need_update = B_FALSE;
3735
3736 /*
3737 * If the config cache is stale, or we have uninitialized
3738 * metaslabs (see spa_vdev_add()), then update the config.
3739 *
3740 * If this is a verbatim import, trust the current
3741 * in-core spa_config and update the disk labels.
3742 */
3743 if (update_config_cache || config_cache_txg != spa->spa_config_txg ||
3744 spa->spa_load_state == SPA_LOAD_IMPORT ||
3745 spa->spa_load_state == SPA_LOAD_RECOVER ||
3746 (spa->spa_import_flags & ZFS_IMPORT_VERBATIM))
3747 need_update = B_TRUE;
3748
3749 for (int c = 0; c < rvd->vdev_children; c++)
3750 if (rvd->vdev_child[c]->vdev_ms_array == 0)
3751 need_update = B_TRUE;
3752
3753 /*
3754 * Update the config cache asychronously in case we're the
3755 * root pool, in which case the config cache isn't writable yet.
3756 */
3757 if (need_update)
3758 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
3759 }
3760
3761 static void
3762 spa_ld_prepare_for_reload(spa_t *spa)
3763 {
3764 int mode = spa->spa_mode;
3765 int async_suspended = spa->spa_async_suspended;
3766
3767 spa_unload(spa);
3768 spa_deactivate(spa);
3769 spa_activate(spa, mode);
3770
3771 /*
3772 * We save the value of spa_async_suspended as it gets reset to 0 by
3773 * spa_unload(). We want to restore it back to the original value before
3774 * returning as we might be calling spa_async_resume() later.
3775 */
3776 spa->spa_async_suspended = async_suspended;
3777 }
3778
3779 static int
3780 spa_ld_read_checkpoint_txg(spa_t *spa)
3781 {
3782 uberblock_t checkpoint;
3783 int error = 0;
3784
3785 ASSERT0(spa->spa_checkpoint_txg);
3786 ASSERT(MUTEX_HELD(&spa_namespace_lock));
3787
3788 error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
3789 DMU_POOL_ZPOOL_CHECKPOINT, sizeof (uint64_t),
3790 sizeof (uberblock_t) / sizeof (uint64_t), &checkpoint);
3791
3792 if (error == ENOENT)
3793 return (0);
3794
3795 if (error != 0)
3796 return (error);
3797
3798 ASSERT3U(checkpoint.ub_txg, !=, 0);
3799 ASSERT3U(checkpoint.ub_checkpoint_txg, !=, 0);
3800 ASSERT3U(checkpoint.ub_timestamp, !=, 0);
3801 spa->spa_checkpoint_txg = checkpoint.ub_txg;
3802 spa->spa_checkpoint_info.sci_timestamp = checkpoint.ub_timestamp;
3803
3804 return (0);
3805 }
3806
3807 static int
3808 spa_ld_mos_init(spa_t *spa, spa_import_type_t type)
3809 {
3810 int error = 0;
3811
3812 ASSERT(MUTEX_HELD(&spa_namespace_lock));
3813 ASSERT(spa->spa_config_source != SPA_CONFIG_SRC_NONE);
3814
3815 /*
3816 * Never trust the config that is provided unless we are assembling
3817 * a pool following a split.
3818 * This means don't trust blkptrs and the vdev tree in general. This
3819 * also effectively puts the spa in read-only mode since
3820 * spa_writeable() checks for spa_trust_config to be true.
3821 * We will later load a trusted config from the MOS.
3822 */
3823 if (type != SPA_IMPORT_ASSEMBLE)
3824 spa->spa_trust_config = B_FALSE;
3825
3826 /*
3827 * Parse the config provided to create a vdev tree.
3828 */
3829 error = spa_ld_parse_config(spa, type);
3830 if (error != 0)
3831 return (error);
3832
3833 /*
3834 * Now that we have the vdev tree, try to open each vdev. This involves
3835 * opening the underlying physical device, retrieving its geometry and
3836 * probing the vdev with a dummy I/O. The state of each vdev will be set
3837 * based on the success of those operations. After this we'll be ready
3838 * to read from the vdevs.
3839 */
3840 error = spa_ld_open_vdevs(spa);
3841 if (error != 0)
3842 return (error);
3843
3844 /*
3845 * Read the label of each vdev and make sure that the GUIDs stored
3846 * there match the GUIDs in the config provided.
3847 * If we're assembling a new pool that's been split off from an
3848 * existing pool, the labels haven't yet been updated so we skip
3849 * validation for now.
3850 */
3851 if (type != SPA_IMPORT_ASSEMBLE) {
3852 error = spa_ld_validate_vdevs(spa);
3853 if (error != 0)
3854 return (error);
3855 }
3856
3857 /*
3858 * Read all vdev labels to find the best uberblock (i.e. latest,
3859 * unless spa_load_max_txg is set) and store it in spa_uberblock. We
3860 * get the list of features required to read blkptrs in the MOS from
3861 * the vdev label with the best uberblock and verify that our version
3862 * of zfs supports them all.
3863 */
3864 error = spa_ld_select_uberblock(spa, type);
3865 if (error != 0)
3866 return (error);
3867
3868 /*
3869 * Pass that uberblock to the dsl_pool layer which will open the root
3870 * blkptr. This blkptr points to the latest version of the MOS and will
3871 * allow us to read its contents.
3872 */
3873 error = spa_ld_open_rootbp(spa);
3874 if (error != 0)
3875 return (error);
3876
3877 return (0);
3878 }
3879
3880 static int
3881 spa_ld_checkpoint_rewind(spa_t *spa)
3882 {
3883 uberblock_t checkpoint;
3884 int error = 0;
3885
3886 ASSERT(MUTEX_HELD(&spa_namespace_lock));
3887 ASSERT(spa->spa_import_flags & ZFS_IMPORT_CHECKPOINT);
3888
3889 error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
3890 DMU_POOL_ZPOOL_CHECKPOINT, sizeof (uint64_t),
3891 sizeof (uberblock_t) / sizeof (uint64_t), &checkpoint);
3892
3893 if (error != 0) {
3894 spa_load_failed(spa, "unable to retrieve checkpointed "
3895 "uberblock from the MOS config [error=%d]", error);
3896
3897 if (error == ENOENT)
3898 error = ZFS_ERR_NO_CHECKPOINT;
3899
3900 return (error);
3901 }
3902
3903 ASSERT3U(checkpoint.ub_txg, <, spa->spa_uberblock.ub_txg);
3904 ASSERT3U(checkpoint.ub_txg, ==, checkpoint.ub_checkpoint_txg);
3905
3906 /*
3907 * We need to update the txg and timestamp of the checkpointed
3908 * uberblock to be higher than the latest one. This ensures that
3909 * the checkpointed uberblock is selected if we were to close and
3910 * reopen the pool right after we've written it in the vdev labels.
3911 * (also see block comment in vdev_uberblock_compare)
3912 */
3913 checkpoint.ub_txg = spa->spa_uberblock.ub_txg + 1;
3914 checkpoint.ub_timestamp = gethrestime_sec();
3915
3916 /*
3917 * Set current uberblock to be the checkpointed uberblock.
3918 */
3919 spa->spa_uberblock = checkpoint;
3920
3921 /*
3922 * If we are doing a normal rewind, then the pool is open for
3923 * writing and we sync the "updated" checkpointed uberblock to
3924 * disk. Once this is done, we've basically rewound the whole
3925 * pool and there is no way back.
3926 *
3927 * There are cases when we don't want to attempt and sync the
3928 * checkpointed uberblock to disk because we are opening a
3929 * pool as read-only. Specifically, verifying the checkpointed
3930 * state with zdb, and importing the checkpointed state to get
3931 * a "preview" of its content.
3932 */
3933 if (spa_writeable(spa)) {
3934 vdev_t *rvd = spa->spa_root_vdev;
3935
3936 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3937 vdev_t *svd[SPA_SYNC_MIN_VDEVS] = { NULL };
3938 int svdcount = 0;
3939 int children = rvd->vdev_children;
3940 int c0 = spa_get_random(children);
3941
3942 for (int c = 0; c < children; c++) {
3943 vdev_t *vd = rvd->vdev_child[(c0 + c) % children];
3944
3945 /* Stop when revisiting the first vdev */
3946 if (c > 0 && svd[0] == vd)
3947 break;
3948
3949 if (vd->vdev_ms_array == 0 || vd->vdev_islog ||
3950 !vdev_is_concrete(vd))
3951 continue;
3952
3953 svd[svdcount++] = vd;
3954 if (svdcount == SPA_SYNC_MIN_VDEVS)
3955 break;
3956 }
3957 error = vdev_config_sync(svd, svdcount, spa->spa_first_txg);
3958 if (error == 0)
3959 spa->spa_last_synced_guid = rvd->vdev_guid;
3960 spa_config_exit(spa, SCL_ALL, FTAG);
3961
3962 if (error != 0) {
3963 spa_load_failed(spa, "failed to write checkpointed "
3964 "uberblock to the vdev labels [error=%d]", error);
3965 return (error);
3966 }
3967 }
3968
3969 return (0);
3970 }
3971
3972 static int
3973 spa_ld_mos_with_trusted_config(spa_t *spa, spa_import_type_t type,
3974 boolean_t *update_config_cache)
3975 {
3976 int error;
3977
3978 /*
3979 * Parse the config for pool, open and validate vdevs,
3980 * select an uberblock, and use that uberblock to open
3981 * the MOS.
3982 */
3983 error = spa_ld_mos_init(spa, type);
3984 if (error != 0)
3985 return (error);
3986
3987 /*
3988 * Retrieve the trusted config stored in the MOS and use it to create
3989 * a new, exact version of the vdev tree, then reopen all vdevs.
3990 */
3991 error = spa_ld_trusted_config(spa, type, B_FALSE);
3992 if (error == EAGAIN) {
3993 if (update_config_cache != NULL)
3994 *update_config_cache = B_TRUE;
3995
3996 /*
3997 * Redo the loading process with the trusted config if it is
3998 * too different from the untrusted config.
3999 */
4000 spa_ld_prepare_for_reload(spa);
4001 spa_load_note(spa, "RELOADING");
4002 error = spa_ld_mos_init(spa, type);
4003 if (error != 0)
4004 return (error);
4005
4006 error = spa_ld_trusted_config(spa, type, B_TRUE);
4007 if (error != 0)
4008 return (error);
4009
4010 } else if (error != 0) {
4011 return (error);
4012 }
4013
4014 return (0);
4015 }
4016
4017 /*
4018 * Load an existing storage pool, using the config provided. This config
4019 * describes which vdevs are part of the pool and is later validated against
4020 * partial configs present in each vdev's label and an entire copy of the
4021 * config stored in the MOS.
4022 */
4023 static int
4024 spa_load_impl(spa_t *spa, spa_import_type_t type, char **ereport)
4025 {
4026 int error = 0;
4027 boolean_t missing_feat_write = B_FALSE;
4028 boolean_t checkpoint_rewind =
4029 (spa->spa_import_flags & ZFS_IMPORT_CHECKPOINT);
4030 boolean_t update_config_cache = B_FALSE;
4031
4032 ASSERT(MUTEX_HELD(&spa_namespace_lock));
4033 ASSERT(spa->spa_config_source != SPA_CONFIG_SRC_NONE);
4034
4035 spa_load_note(spa, "LOADING");
4036
4037 error = spa_ld_mos_with_trusted_config(spa, type, &update_config_cache);
4038 if (error != 0)
4039 return (error);
4040
4041 /*
4042 * If we are rewinding to the checkpoint then we need to repeat
4043 * everything we've done so far in this function but this time
4044 * selecting the checkpointed uberblock and using that to open
4045 * the MOS.
4046 */
4047 if (checkpoint_rewind) {
4048 /*
4049 * If we are rewinding to the checkpoint update config cache
4050 * anyway.
4051 */
4052 update_config_cache = B_TRUE;
4053
4054 /*
4055 * Extract the checkpointed uberblock from the current MOS
4056 * and use this as the pool's uberblock from now on. If the
4057 * pool is imported as writeable we also write the checkpoint
4058 * uberblock to the labels, making the rewind permanent.
4059 */
4060 error = spa_ld_checkpoint_rewind(spa);
4061 if (error != 0)
4062 return (error);
4063
4064 /*
4065 * Redo the loading process process again with the
4066 * checkpointed uberblock.
4067 */
4068 spa_ld_prepare_for_reload(spa);
4069 spa_load_note(spa, "LOADING checkpointed uberblock");
4070 error = spa_ld_mos_with_trusted_config(spa, type, NULL);
4071 if (error != 0)
4072 return (error);
4073 }
4074
4075 /*
4076 * Retrieve the checkpoint txg if the pool has a checkpoint.
4077 */
4078 error = spa_ld_read_checkpoint_txg(spa);
4079 if (error != 0)
4080 return (error);
4081
4082 /*
4083 * Retrieve the mapping of indirect vdevs. Those vdevs were removed
4084 * from the pool and their contents were re-mapped to other vdevs. Note
4085 * that everything that we read before this step must have been
4086 * rewritten on concrete vdevs after the last device removal was
4087 * initiated. Otherwise we could be reading from indirect vdevs before
4088 * we have loaded their mappings.
4089 */
4090 error = spa_ld_open_indirect_vdev_metadata(spa);
4091 if (error != 0)
4092 return (error);
4093
4094 /*
4095 * Retrieve the full list of active features from the MOS and check if
4096 * they are all supported.
4097 */
4098 error = spa_ld_check_features(spa, &missing_feat_write);
4099 if (error != 0)
4100 return (error);
4101
4102 /*
4103 * Load several special directories from the MOS needed by the dsl_pool
4104 * layer.
4105 */
4106 error = spa_ld_load_special_directories(spa);
4107 if (error != 0)
4108 return (error);
4109
4110 /*
4111 * Retrieve pool properties from the MOS.
4112 */
4113 error = spa_ld_get_props(spa);
4114 if (error != 0)
4115 return (error);
4116
4117 /*
4118 * Retrieve the list of auxiliary devices - cache devices and spares -
4119 * and open them.
4120 */
4121 error = spa_ld_open_aux_vdevs(spa, type);
4122 if (error != 0)
4123 return (error);
4124
4125 /*
4126 * Load the metadata for all vdevs. Also check if unopenable devices
4127 * should be autoreplaced.
4128 */
4129 error = spa_ld_load_vdev_metadata(spa);
4130 if (error != 0)
4131 return (error);
4132
4133 error = spa_ld_load_dedup_tables(spa);
4134 if (error != 0)
4135 return (error);
4136
4137 /*
4138 * Verify the logs now to make sure we don't have any unexpected errors
4139 * when we claim log blocks later.
4140 */
4141 error = spa_ld_verify_logs(spa, type, ereport);
4142 if (error != 0)
4143 return (error);
4144
4145 if (missing_feat_write) {
4146 ASSERT(spa->spa_load_state == SPA_LOAD_TRYIMPORT);
4147
4148 /*
4149 * At this point, we know that we can open the pool in
4150 * read-only mode but not read-write mode. We now have enough
4151 * information and can return to userland.
4152 */
4153 return (spa_vdev_err(spa->spa_root_vdev, VDEV_AUX_UNSUP_FEAT,
4154 ENOTSUP));
4155 }
4156
4157 /*
4158 * Traverse the last txgs to make sure the pool was left off in a safe
4159 * state. When performing an extreme rewind, we verify the whole pool,
4160 * which can take a very long time.
4161 */
4162 error = spa_ld_verify_pool_data(spa);
4163 if (error != 0)
4164 return (error);
4165
4166 /*
4167 * Calculate the deflated space for the pool. This must be done before
4168 * we write anything to the pool because we'd need to update the space
4169 * accounting using the deflated sizes.
4170 */
4171 spa_update_dspace(spa);
4172
4173 /*
4174 * We have now retrieved all the information we needed to open the
4175 * pool. If we are importing the pool in read-write mode, a few
4176 * additional steps must be performed to finish the import.
4177 */
4178 if (spa_writeable(spa) && (spa->spa_load_state == SPA_LOAD_RECOVER ||
4179 spa->spa_load_max_txg == UINT64_MAX)) {
4180 uint64_t config_cache_txg = spa->spa_config_txg;
4181
4182 ASSERT(spa->spa_load_state != SPA_LOAD_TRYIMPORT);
4183
4184 /*
4185 * In case of a checkpoint rewind, log the original txg
4186 * of the checkpointed uberblock.
4187 */
4188 if (checkpoint_rewind) {
4189 spa_history_log_internal(spa, "checkpoint rewind",
4190 NULL, "rewound state to txg=%llu",
4191 (u_longlong_t)spa->spa_uberblock.ub_checkpoint_txg);
4192 }
4193
4194 /*
4195 * Traverse the ZIL and claim all blocks.
4196 */
4197 spa_ld_claim_log_blocks(spa);
4198
4199 /*
4200 * Kick-off the syncing thread.
4201 */
4202 spa->spa_sync_on = B_TRUE;
4203 txg_sync_start(spa->spa_dsl_pool);
4204 mmp_thread_start(spa);
4205
4206 /*
4207 * Wait for all claims to sync. We sync up to the highest
4208 * claimed log block birth time so that claimed log blocks
4209 * don't appear to be from the future. spa_claim_max_txg
4210 * will have been set for us by ZIL traversal operations
4211 * performed above.
4212 */
4213 txg_wait_synced(spa->spa_dsl_pool, spa->spa_claim_max_txg);
4214
4215 /*
4216 * Check if we need to request an update of the config. On the
4217 * next sync, we would update the config stored in vdev labels
4218 * and the cachefile (by default /etc/zfs/zpool.cache).
4219 */
4220 spa_ld_check_for_config_update(spa, config_cache_txg,
4221 update_config_cache);
4222
4223 /*
4224 * Check all DTLs to see if anything needs resilvering.
4225 */
4226 if (!dsl_scan_resilvering(spa->spa_dsl_pool) &&
4227 vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL))
4228 spa_async_request(spa, SPA_ASYNC_RESILVER);
4229
4230 /*
4231 * Log the fact that we booted up (so that we can detect if
4232 * we rebooted in the middle of an operation).
4233 */
4234 spa_history_log_version(spa, "open", NULL);
4235
4236 spa_restart_removal(spa);
4237 spa_spawn_aux_threads(spa);
4238
4239 /*
4240 * Delete any inconsistent datasets.
4241 *
4242 * Note:
4243 * Since we may be issuing deletes for clones here,
4244 * we make sure to do so after we've spawned all the
4245 * auxiliary threads above (from which the livelist
4246 * deletion zthr is part of).
4247 */
4248 (void) dmu_objset_find(spa_name(spa),
4249 dsl_destroy_inconsistent, NULL, DS_FIND_CHILDREN);
4250
4251 /*
4252 * Clean up any stale temporary dataset userrefs.
4253 */
4254 dsl_pool_clean_tmp_userrefs(spa->spa_dsl_pool);
4255
4256 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
4257 vdev_initialize_restart(spa->spa_root_vdev);
4258 spa_config_exit(spa, SCL_CONFIG, FTAG);
4259 }
4260
4261 spa_load_note(spa, "LOADED");
4262
4263 return (0);
4264 }
4265
4266 static int
4267 spa_load_retry(spa_t *spa, spa_load_state_t state)
4268 {
4269 int mode = spa->spa_mode;
4270
4271 spa_unload(spa);
4272 spa_deactivate(spa);
4273
4274 spa->spa_load_max_txg = spa->spa_uberblock.ub_txg - 1;
4275
4276 spa_activate(spa, mode);
4277 spa_async_suspend(spa);
4278
4279 spa_load_note(spa, "spa_load_retry: rewind, max txg: %llu",
4280 (u_longlong_t)spa->spa_load_max_txg);
4281
4282 return (spa_load(spa, state, SPA_IMPORT_EXISTING));
4283 }
4284
4285 /*
4286 * If spa_load() fails this function will try loading prior txg's. If
4287 * 'state' is SPA_LOAD_RECOVER and one of these loads succeeds the pool
4288 * will be rewound to that txg. If 'state' is not SPA_LOAD_RECOVER this
4289 * function will not rewind the pool and will return the same error as
4290 * spa_load().
4291 */
4292 static int
4293 spa_load_best(spa_t *spa, spa_load_state_t state, uint64_t max_request,
4294 int rewind_flags)
4295 {
4296 nvlist_t *loadinfo = NULL;
4297 nvlist_t *config = NULL;
4298 int load_error, rewind_error;
4299 uint64_t safe_rewind_txg;
4300 uint64_t min_txg;
4301
4302 if (spa->spa_load_txg && state == SPA_LOAD_RECOVER) {
4303 spa->spa_load_max_txg = spa->spa_load_txg;
4304 spa_set_log_state(spa, SPA_LOG_CLEAR);
4305 } else {
4306 spa->spa_load_max_txg = max_request;
4307 if (max_request != UINT64_MAX)
4308 spa->spa_extreme_rewind = B_TRUE;
4309 }
4310
4311 load_error = rewind_error = spa_load(spa, state, SPA_IMPORT_EXISTING);
4312 if (load_error == 0)
4313 return (0);
4314 if (load_error == ZFS_ERR_NO_CHECKPOINT) {
4315 /*
4316 * When attempting checkpoint-rewind on a pool with no
4317 * checkpoint, we should not attempt to load uberblocks
4318 * from previous txgs when spa_load fails.
4319 */
4320 ASSERT(spa->spa_import_flags & ZFS_IMPORT_CHECKPOINT);
4321 return (load_error);
4322 }
4323
4324 if (spa->spa_root_vdev != NULL)
4325 config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
4326
4327 spa->spa_last_ubsync_txg = spa->spa_uberblock.ub_txg;
4328 spa->spa_last_ubsync_txg_ts = spa->spa_uberblock.ub_timestamp;
4329
4330 if (rewind_flags & ZPOOL_NEVER_REWIND) {
4331 nvlist_free(config);
4332 return (load_error);
4333 }
4334
4335 if (state == SPA_LOAD_RECOVER) {
4336 /* Price of rolling back is discarding txgs, including log */
4337 spa_set_log_state(spa, SPA_LOG_CLEAR);
4338 } else {
4339 /*
4340 * If we aren't rolling back save the load info from our first
4341 * import attempt so that we can restore it after attempting
4342 * to rewind.
4343 */
4344 loadinfo = spa->spa_load_info;
4345 spa->spa_load_info = fnvlist_alloc();
4346 }
4347
4348 spa->spa_load_max_txg = spa->spa_last_ubsync_txg;
4349 safe_rewind_txg = spa->spa_last_ubsync_txg - TXG_DEFER_SIZE;
4350 min_txg = (rewind_flags & ZPOOL_EXTREME_REWIND) ?
4351 TXG_INITIAL : safe_rewind_txg;
4352
4353 /*
4354 * Continue as long as we're finding errors, we're still within
4355 * the acceptable rewind range, and we're still finding uberblocks
4356 */
4357 while (rewind_error && spa->spa_uberblock.ub_txg >= min_txg &&
4358 spa->spa_uberblock.ub_txg <= spa->spa_load_max_txg) {
4359 if (spa->spa_load_max_txg < safe_rewind_txg)
4360 spa->spa_extreme_rewind = B_TRUE;
4361 rewind_error = spa_load_retry(spa, state);
4362 }
4363
4364 spa->spa_extreme_rewind = B_FALSE;
4365 spa->spa_load_max_txg = UINT64_MAX;
4366
4367 if (config && (rewind_error || state != SPA_LOAD_RECOVER))
4368 spa_config_set(spa, config);
4369 else
4370 nvlist_free(config);
4371
4372 if (state == SPA_LOAD_RECOVER) {
4373 ASSERT3P(loadinfo, ==, NULL);
4374 return (rewind_error);
4375 } else {
4376 /* Store the rewind info as part of the initial load info */
4377 fnvlist_add_nvlist(loadinfo, ZPOOL_CONFIG_REWIND_INFO,
4378 spa->spa_load_info);
4379
4380 /* Restore the initial load info */
4381 fnvlist_free(spa->spa_load_info);
4382 spa->spa_load_info = loadinfo;
4383
4384 return (load_error);
4385 }
4386 }
4387
4388 /*
4389 * Pool Open/Import
4390 *
4391 * The import case is identical to an open except that the configuration is sent
4392 * down from userland, instead of grabbed from the configuration cache. For the
4393 * case of an open, the pool configuration will exist in the
4394 * POOL_STATE_UNINITIALIZED state.
4395 *
4396 * The stats information (gen/count/ustats) is used to gather vdev statistics at
4397 * the same time open the pool, without having to keep around the spa_t in some
4398 * ambiguous state.
4399 */
4400 static int
4401 spa_open_common(const char *pool, spa_t **spapp, void *tag, nvlist_t *nvpolicy,
4402 nvlist_t **config)
4403 {
4404 spa_t *spa;
4405 spa_load_state_t state = SPA_LOAD_OPEN;
4406 int error;
4407 int locked = B_FALSE;
4408 int firstopen = B_FALSE;
4409
4410 *spapp = NULL;
4411
4412 /*
4413 * As disgusting as this is, we need to support recursive calls to this
4414 * function because dsl_dir_open() is called during spa_load(), and ends
4415 * up calling spa_open() again. The real fix is to figure out how to
4416 * avoid dsl_dir_open() calling this in the first place.
4417 */
4418 if (MUTEX_NOT_HELD(&spa_namespace_lock)) {
4419 mutex_enter(&spa_namespace_lock);
4420 locked = B_TRUE;
4421 }
4422
4423 if ((spa = spa_lookup(pool)) == NULL) {
4424 if (locked)
4425 mutex_exit(&spa_namespace_lock);
4426 return (SET_ERROR(ENOENT));
4427 }
4428
4429 if (spa->spa_state == POOL_STATE_UNINITIALIZED) {
4430 zpool_load_policy_t policy;
4431
4432 firstopen = B_TRUE;
4433
4434 zpool_get_load_policy(nvpolicy ? nvpolicy : spa->spa_config,
4435 &policy);
4436 if (policy.zlp_rewind & ZPOOL_DO_REWIND)
4437 state = SPA_LOAD_RECOVER;
4438
4439 spa_activate(spa, spa_mode_global);
4440
4441 if (state != SPA_LOAD_RECOVER)
4442 spa->spa_last_ubsync_txg = spa->spa_load_txg = 0;
4443 spa->spa_config_source = SPA_CONFIG_SRC_CACHEFILE;
4444
4445 zfs_dbgmsg("spa_open_common: opening %s", pool);
4446 error = spa_load_best(spa, state, policy.zlp_txg,
4447 policy.zlp_rewind);
4448
4449 if (error == EBADF) {
4450 /*
4451 * If vdev_validate() returns failure (indicated by
4452 * EBADF), it indicates that one of the vdevs indicates
4453 * that the pool has been exported or destroyed. If
4454 * this is the case, the config cache is out of sync and
4455 * we should remove the pool from the namespace.
4456 */
4457 spa_unload(spa);
4458 spa_deactivate(spa);
4459 spa_write_cachefile(spa, B_TRUE, B_TRUE);
4460 spa_remove(spa);
4461 if (locked)
4462 mutex_exit(&spa_namespace_lock);
4463 return (SET_ERROR(ENOENT));
4464 }
4465
4466 if (error) {
4467 /*
4468 * We can't open the pool, but we still have useful
4469 * information: the state of each vdev after the
4470 * attempted vdev_open(). Return this to the user.
4471 */
4472 if (config != NULL && spa->spa_config) {
4473 VERIFY(nvlist_dup(spa->spa_config, config,
4474 KM_SLEEP) == 0);
4475 VERIFY(nvlist_add_nvlist(*config,
4476 ZPOOL_CONFIG_LOAD_INFO,
4477 spa->spa_load_info) == 0);
4478 }
4479 spa_unload(spa);
4480 spa_deactivate(spa);
4481 spa->spa_last_open_failed = error;
4482 if (locked)
4483 mutex_exit(&spa_namespace_lock);
4484 *spapp = NULL;
4485 return (error);
4486 }
4487 }
4488
4489 spa_open_ref(spa, tag);
4490
4491 if (config != NULL)
4492 *config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
4493
4494 /*
4495 * If we've recovered the pool, pass back any information we
4496 * gathered while doing the load.
4497 */
4498 if (state == SPA_LOAD_RECOVER) {
4499 VERIFY(nvlist_add_nvlist(*config, ZPOOL_CONFIG_LOAD_INFO,
4500 spa->spa_load_info) == 0);
4501 }
4502
4503 if (locked) {
4504 spa->spa_last_open_failed = 0;
4505 spa->spa_last_ubsync_txg = 0;
4506 spa->spa_load_txg = 0;
4507 mutex_exit(&spa_namespace_lock);
4508 }
4509
4510 if (firstopen)
4511 zvol_create_minors(spa, spa_name(spa), B_TRUE);
4512
4513 *spapp = spa;
4514
4515 return (0);
4516 }
4517
4518 int
4519 spa_open_rewind(const char *name, spa_t **spapp, void *tag, nvlist_t *policy,
4520 nvlist_t **config)
4521 {
4522 return (spa_open_common(name, spapp, tag, policy, config));
4523 }
4524
4525 int
4526 spa_open(const char *name, spa_t **spapp, void *tag)
4527 {
4528 return (spa_open_common(name, spapp, tag, NULL, NULL));
4529 }
4530
4531 /*
4532 * Lookup the given spa_t, incrementing the inject count in the process,
4533 * preventing it from being exported or destroyed.
4534 */
4535 spa_t *
4536 spa_inject_addref(char *name)
4537 {
4538 spa_t *spa;
4539
4540 mutex_enter(&spa_namespace_lock);
4541 if ((spa = spa_lookup(name)) == NULL) {
4542 mutex_exit(&spa_namespace_lock);
4543 return (NULL);
4544 }
4545 spa->spa_inject_ref++;
4546 mutex_exit(&spa_namespace_lock);
4547
4548 return (spa);
4549 }
4550
4551 void
4552 spa_inject_delref(spa_t *spa)
4553 {
4554 mutex_enter(&spa_namespace_lock);
4555 spa->spa_inject_ref--;
4556 mutex_exit(&spa_namespace_lock);
4557 }
4558
4559 /*
4560 * Add spares device information to the nvlist.
4561 */
4562 static void
4563 spa_add_spares(spa_t *spa, nvlist_t *config)
4564 {
4565 nvlist_t **spares;
4566 uint_t i, nspares;
4567 nvlist_t *nvroot;
4568 uint64_t guid;
4569 vdev_stat_t *vs;
4570 uint_t vsc;
4571 uint64_t pool;
4572
4573 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
4574
4575 if (spa->spa_spares.sav_count == 0)
4576 return;
4577
4578 VERIFY(nvlist_lookup_nvlist(config,
4579 ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
4580 VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
4581 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
4582 if (nspares != 0) {
4583 VERIFY(nvlist_add_nvlist_array(nvroot,
4584 ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
4585 VERIFY(nvlist_lookup_nvlist_array(nvroot,
4586 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
4587
4588 /*
4589 * Go through and find any spares which have since been
4590 * repurposed as an active spare. If this is the case, update
4591 * their status appropriately.
4592 */
4593 for (i = 0; i < nspares; i++) {
4594 VERIFY(nvlist_lookup_uint64(spares[i],
4595 ZPOOL_CONFIG_GUID, &guid) == 0);
4596 if (spa_spare_exists(guid, &pool, NULL) &&
4597 pool != 0ULL) {
4598 VERIFY(nvlist_lookup_uint64_array(
4599 spares[i], ZPOOL_CONFIG_VDEV_STATS,
4600 (uint64_t **)&vs, &vsc) == 0);
4601 vs->vs_state = VDEV_STATE_CANT_OPEN;
4602 vs->vs_aux = VDEV_AUX_SPARED;
4603 }
4604 }
4605 }
4606 }
4607
4608 /*
4609 * Add l2cache device information to the nvlist, including vdev stats.
4610 */
4611 static void
4612 spa_add_l2cache(spa_t *spa, nvlist_t *config)
4613 {
4614 nvlist_t **l2cache;
4615 uint_t i, j, nl2cache;
4616 nvlist_t *nvroot;
4617 uint64_t guid;
4618 vdev_t *vd;
4619 vdev_stat_t *vs;
4620 uint_t vsc;
4621
4622 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
4623
4624 if (spa->spa_l2cache.sav_count == 0)
4625 return;
4626
4627 VERIFY(nvlist_lookup_nvlist(config,
4628 ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
4629 VERIFY(nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config,
4630 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
4631 if (nl2cache != 0) {
4632 VERIFY(nvlist_add_nvlist_array(nvroot,
4633 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
4634 VERIFY(nvlist_lookup_nvlist_array(nvroot,
4635 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
4636
4637 /*
4638 * Update level 2 cache device stats.
4639 */
4640
4641 for (i = 0; i < nl2cache; i++) {
4642 VERIFY(nvlist_lookup_uint64(l2cache[i],
4643 ZPOOL_CONFIG_GUID, &guid) == 0);
4644
4645 vd = NULL;
4646 for (j = 0; j < spa->spa_l2cache.sav_count; j++) {
4647 if (guid ==
4648 spa->spa_l2cache.sav_vdevs[j]->vdev_guid) {
4649 vd = spa->spa_l2cache.sav_vdevs[j];
4650 break;
4651 }
4652 }
4653 ASSERT(vd != NULL);
4654
4655 VERIFY(nvlist_lookup_uint64_array(l2cache[i],
4656 ZPOOL_CONFIG_VDEV_STATS, (uint64_t **)&vs, &vsc)
4657 == 0);
4658 vdev_get_stats(vd, vs);
4659 vdev_config_generate_stats(vd, l2cache[i]);
4660
4661 }
4662 }
4663 }
4664
4665 static void
4666 spa_feature_stats_from_disk(spa_t *spa, nvlist_t *features)
4667 {
4668 zap_cursor_t zc;
4669 zap_attribute_t za;
4670
4671 if (spa->spa_feat_for_read_obj != 0) {
4672 for (zap_cursor_init(&zc, spa->spa_meta_objset,
4673 spa->spa_feat_for_read_obj);
4674 zap_cursor_retrieve(&zc, &za) == 0;
4675 zap_cursor_advance(&zc)) {
4676 ASSERT(za.za_integer_length == sizeof (uint64_t) &&
4677 za.za_num_integers == 1);
4678 VERIFY0(nvlist_add_uint64(features, za.za_name,
4679 za.za_first_integer));
4680 }
4681 zap_cursor_fini(&zc);
4682 }
4683
4684 if (spa->spa_feat_for_write_obj != 0) {
4685 for (zap_cursor_init(&zc, spa->spa_meta_objset,
4686 spa->spa_feat_for_write_obj);
4687 zap_cursor_retrieve(&zc, &za) == 0;
4688 zap_cursor_advance(&zc)) {
4689 ASSERT(za.za_integer_length == sizeof (uint64_t) &&
4690 za.za_num_integers == 1);
4691 VERIFY0(nvlist_add_uint64(features, za.za_name,
4692 za.za_first_integer));
4693 }
4694 zap_cursor_fini(&zc);
4695 }
4696 }
4697
4698 static void
4699 spa_feature_stats_from_cache(spa_t *spa, nvlist_t *features)
4700 {
4701 int i;
4702
4703 for (i = 0; i < SPA_FEATURES; i++) {
4704 zfeature_info_t feature = spa_feature_table[i];
4705 uint64_t refcount;
4706
4707 if (feature_get_refcount(spa, &feature, &refcount) != 0)
4708 continue;
4709
4710 VERIFY0(nvlist_add_uint64(features, feature.fi_guid, refcount));
4711 }
4712 }
4713
4714 /*
4715 * Store a list of pool features and their reference counts in the
4716 * config.
4717 *
4718 * The first time this is called on a spa, allocate a new nvlist, fetch
4719 * the pool features and reference counts from disk, then save the list
4720 * in the spa. In subsequent calls on the same spa use the saved nvlist
4721 * and refresh its values from the cached reference counts. This
4722 * ensures we don't block here on I/O on a suspended pool so 'zpool
4723 * clear' can resume the pool.
4724 */
4725 static void
4726 spa_add_feature_stats(spa_t *spa, nvlist_t *config)
4727 {
4728 nvlist_t *features;
4729
4730 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
4731
4732 mutex_enter(&spa->spa_feat_stats_lock);
4733 features = spa->spa_feat_stats;
4734
4735 if (features != NULL) {
4736 spa_feature_stats_from_cache(spa, features);
4737 } else {
4738 VERIFY0(nvlist_alloc(&features, NV_UNIQUE_NAME, KM_SLEEP));
4739 spa->spa_feat_stats = features;
4740 spa_feature_stats_from_disk(spa, features);
4741 }
4742
4743 VERIFY0(nvlist_add_nvlist(config, ZPOOL_CONFIG_FEATURE_STATS,
4744 features));
4745
4746 mutex_exit(&spa->spa_feat_stats_lock);
4747 }
4748
4749 int
4750 spa_get_stats(const char *name, nvlist_t **config,
4751 char *altroot, size_t buflen)
4752 {
4753 int error;
4754 spa_t *spa;
4755
4756 *config = NULL;
4757 error = spa_open_common(name, &spa, FTAG, NULL, config);
4758
4759 if (spa != NULL) {
4760 /*
4761 * This still leaves a window of inconsistency where the spares
4762 * or l2cache devices could change and the config would be
4763 * self-inconsistent.
4764 */
4765 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
4766
4767 if (*config != NULL) {
4768 uint64_t loadtimes[2];
4769
4770 loadtimes[0] = spa->spa_loaded_ts.tv_sec;
4771 loadtimes[1] = spa->spa_loaded_ts.tv_nsec;
4772 VERIFY(nvlist_add_uint64_array(*config,
4773 ZPOOL_CONFIG_LOADED_TIME, loadtimes, 2) == 0);
4774
4775 VERIFY(nvlist_add_uint64(*config,
4776 ZPOOL_CONFIG_ERRCOUNT,
4777 spa_get_errlog_size(spa)) == 0);
4778
4779 if (spa_suspended(spa)) {
4780 VERIFY(nvlist_add_uint64(*config,
4781 ZPOOL_CONFIG_SUSPENDED,
4782 spa->spa_failmode) == 0);
4783 VERIFY(nvlist_add_uint64(*config,
4784 ZPOOL_CONFIG_SUSPENDED_REASON,
4785 spa->spa_suspended) == 0);
4786 }
4787
4788 spa_add_spares(spa, *config);
4789 spa_add_l2cache(spa, *config);
4790 spa_add_feature_stats(spa, *config);
4791 }
4792 }
4793
4794 /*
4795 * We want to get the alternate root even for faulted pools, so we cheat
4796 * and call spa_lookup() directly.
4797 */
4798 if (altroot) {
4799 if (spa == NULL) {
4800 mutex_enter(&spa_namespace_lock);
4801 spa = spa_lookup(name);
4802 if (spa)
4803 spa_altroot(spa, altroot, buflen);
4804 else
4805 altroot[0] = '\0';
4806 spa = NULL;
4807 mutex_exit(&spa_namespace_lock);
4808 } else {
4809 spa_altroot(spa, altroot, buflen);
4810 }
4811 }
4812
4813 if (spa != NULL) {
4814 spa_config_exit(spa, SCL_CONFIG, FTAG);
4815 spa_close(spa, FTAG);
4816 }
4817
4818 return (error);
4819 }
4820
4821 /*
4822 * Validate that the auxiliary device array is well formed. We must have an
4823 * array of nvlists, each which describes a valid leaf vdev. If this is an
4824 * import (mode is VDEV_ALLOC_SPARE), then we allow corrupted spares to be
4825 * specified, as long as they are well-formed.
4826 */
4827 static int
4828 spa_validate_aux_devs(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode,
4829 spa_aux_vdev_t *sav, const char *config, uint64_t version,
4830 vdev_labeltype_t label)
4831 {
4832 nvlist_t **dev;
4833 uint_t i, ndev;
4834 vdev_t *vd;
4835 int error;
4836
4837 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
4838
4839 /*
4840 * It's acceptable to have no devs specified.
4841 */
4842 if (nvlist_lookup_nvlist_array(nvroot, config, &dev, &ndev) != 0)
4843 return (0);
4844
4845 if (ndev == 0)
4846 return (SET_ERROR(EINVAL));
4847
4848 /*
4849 * Make sure the pool is formatted with a version that supports this
4850 * device type.
4851 */
4852 if (spa_version(spa) < version)
4853 return (SET_ERROR(ENOTSUP));
4854
4855 /*
4856 * Set the pending device list so we correctly handle device in-use
4857 * checking.
4858 */
4859 sav->sav_pending = dev;
4860 sav->sav_npending = ndev;
4861
4862 for (i = 0; i < ndev; i++) {
4863 if ((error = spa_config_parse(spa, &vd, dev[i], NULL, 0,
4864 mode)) != 0)
4865 goto out;
4866
4867 if (!vd->vdev_ops->vdev_op_leaf) {
4868 vdev_free(vd);
4869 error = SET_ERROR(EINVAL);
4870 goto out;
4871 }
4872
4873 vd->vdev_top = vd;
4874
4875 if ((error = vdev_open(vd)) == 0 &&
4876 (error = vdev_label_init(vd, crtxg, label)) == 0) {
4877 VERIFY(nvlist_add_uint64(dev[i], ZPOOL_CONFIG_GUID,
4878 vd->vdev_guid) == 0);
4879 }
4880
4881 vdev_free(vd);
4882
4883 if (error &&
4884 (mode != VDEV_ALLOC_SPARE && mode != VDEV_ALLOC_L2CACHE))
4885 goto out;
4886 else
4887 error = 0;
4888 }
4889
4890 out:
4891 sav->sav_pending = NULL;
4892 sav->sav_npending = 0;
4893 return (error);
4894 }
4895
4896 static int
4897 spa_validate_aux(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode)
4898 {
4899 int error;
4900
4901 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
4902
4903 if ((error = spa_validate_aux_devs(spa, nvroot, crtxg, mode,
4904 &spa->spa_spares, ZPOOL_CONFIG_SPARES, SPA_VERSION_SPARES,
4905 VDEV_LABEL_SPARE)) != 0) {
4906 return (error);
4907 }
4908
4909 return (spa_validate_aux_devs(spa, nvroot, crtxg, mode,
4910 &spa->spa_l2cache, ZPOOL_CONFIG_L2CACHE, SPA_VERSION_L2CACHE,
4911 VDEV_LABEL_L2CACHE));
4912 }
4913
4914 static void
4915 spa_set_aux_vdevs(spa_aux_vdev_t *sav, nvlist_t **devs, int ndevs,
4916 const char *config)
4917 {
4918 int i;
4919
4920 if (sav->sav_config != NULL) {
4921 nvlist_t **olddevs;
4922 uint_t oldndevs;
4923 nvlist_t **newdevs;
4924
4925 /*
4926 * Generate new dev list by concatenating with the
4927 * current dev list.
4928 */
4929 VERIFY(nvlist_lookup_nvlist_array(sav->sav_config, config,
4930 &olddevs, &oldndevs) == 0);
4931
4932 newdevs = kmem_alloc(sizeof (void *) *
4933 (ndevs + oldndevs), KM_SLEEP);
4934 for (i = 0; i < oldndevs; i++)
4935 VERIFY(nvlist_dup(olddevs[i], &newdevs[i],
4936 KM_SLEEP) == 0);
4937 for (i = 0; i < ndevs; i++)
4938 VERIFY(nvlist_dup(devs[i], &newdevs[i + oldndevs],
4939 KM_SLEEP) == 0);
4940
4941 VERIFY(nvlist_remove(sav->sav_config, config,
4942 DATA_TYPE_NVLIST_ARRAY) == 0);
4943
4944 VERIFY(nvlist_add_nvlist_array(sav->sav_config,
4945 config, newdevs, ndevs + oldndevs) == 0);
4946 for (i = 0; i < oldndevs + ndevs; i++)
4947 nvlist_free(newdevs[i]);
4948 kmem_free(newdevs, (oldndevs + ndevs) * sizeof (void *));
4949 } else {
4950 /*
4951 * Generate a new dev list.
4952 */
4953 VERIFY(nvlist_alloc(&sav->sav_config, NV_UNIQUE_NAME,
4954 KM_SLEEP) == 0);
4955 VERIFY(nvlist_add_nvlist_array(sav->sav_config, config,
4956 devs, ndevs) == 0);
4957 }
4958 }
4959
4960 /*
4961 * Stop and drop level 2 ARC devices
4962 */
4963 void
4964 spa_l2cache_drop(spa_t *spa)
4965 {
4966 vdev_t *vd;
4967 int i;
4968 spa_aux_vdev_t *sav = &spa->spa_l2cache;
4969
4970 for (i = 0; i < sav->sav_count; i++) {
4971 uint64_t pool;
4972
4973 vd = sav->sav_vdevs[i];
4974 ASSERT(vd != NULL);
4975
4976 if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
4977 pool != 0ULL && l2arc_vdev_present(vd))
4978 l2arc_remove_vdev(vd);
4979 }
4980 }
4981
4982 /*
4983 * Verify encryption parameters for spa creation. If we are encrypting, we must
4984 * have the encryption feature flag enabled.
4985 */
4986 static int
4987 spa_create_check_encryption_params(dsl_crypto_params_t *dcp,
4988 boolean_t has_encryption)
4989 {
4990 if (dcp->cp_crypt != ZIO_CRYPT_OFF &&
4991 dcp->cp_crypt != ZIO_CRYPT_INHERIT &&
4992 !has_encryption)
4993 return (SET_ERROR(ENOTSUP));
4994
4995 return (dmu_objset_create_crypt_check(NULL, dcp, NULL));
4996 }
4997
4998 /*
4999 * Pool Creation
5000 */
5001 int
5002 spa_create(const char *pool, nvlist_t *nvroot, nvlist_t *props,
5003 nvlist_t *zplprops, dsl_crypto_params_t *dcp)
5004 {
5005 spa_t *spa;
5006 char *altroot = NULL;
5007 vdev_t *rvd;
5008 dsl_pool_t *dp;
5009 dmu_tx_t *tx;
5010 int error = 0;
5011 uint64_t txg = TXG_INITIAL;
5012 nvlist_t **spares, **l2cache;
5013 uint_t nspares, nl2cache;
5014 uint64_t version, obj;
5015 boolean_t has_features;
5016 boolean_t has_encryption;
5017 spa_feature_t feat;
5018 char *feat_name;
5019 char *poolname;
5020 nvlist_t *nvl;
5021
5022 if (props == NULL ||
5023 nvlist_lookup_string(props, "tname", &poolname) != 0)
5024 poolname = (char *)pool;
5025
5026 /*
5027 * If this pool already exists, return failure.
5028 */
5029 mutex_enter(&spa_namespace_lock);
5030 if (spa_lookup(poolname) != NULL) {
5031 mutex_exit(&spa_namespace_lock);
5032 return (SET_ERROR(EEXIST));
5033 }
5034
5035 /*
5036 * Allocate a new spa_t structure.
5037 */
5038 nvl = fnvlist_alloc();
5039 fnvlist_add_string(nvl, ZPOOL_CONFIG_POOL_NAME, pool);
5040 (void) nvlist_lookup_string(props,
5041 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
5042 spa = spa_add(poolname, nvl, altroot);
5043 fnvlist_free(nvl);
5044 spa_activate(spa, spa_mode_global);
5045
5046 if (props && (error = spa_prop_validate(spa, props))) {
5047 spa_deactivate(spa);
5048 spa_remove(spa);
5049 mutex_exit(&spa_namespace_lock);
5050 return (error);
5051 }
5052
5053 /*
5054 * Temporary pool names should never be written to disk.
5055 */
5056 if (poolname != pool)
5057 spa->spa_import_flags |= ZFS_IMPORT_TEMP_NAME;
5058
5059 has_features = B_FALSE;
5060 has_encryption = B_FALSE;
5061 for (nvpair_t *elem = nvlist_next_nvpair(props, NULL);
5062 elem != NULL; elem = nvlist_next_nvpair(props, elem)) {
5063 if (zpool_prop_feature(nvpair_name(elem))) {
5064 has_features = B_TRUE;
5065
5066 feat_name = strchr(nvpair_name(elem), '@') + 1;
5067 VERIFY0(zfeature_lookup_name(feat_name, &feat));
5068 if (feat == SPA_FEATURE_ENCRYPTION)
5069 has_encryption = B_TRUE;
5070 }
5071 }
5072
5073 /* verify encryption params, if they were provided */
5074 if (dcp != NULL) {
5075 error = spa_create_check_encryption_params(dcp, has_encryption);
5076 if (error != 0) {
5077 spa_deactivate(spa);
5078 spa_remove(spa);
5079 mutex_exit(&spa_namespace_lock);
5080 return (error);
5081 }
5082 }
5083
5084 if (has_features || nvlist_lookup_uint64(props,
5085 zpool_prop_to_name(ZPOOL_PROP_VERSION), &version) != 0) {
5086 version = SPA_VERSION;
5087 }
5088 ASSERT(SPA_VERSION_IS_SUPPORTED(version));
5089
5090 spa->spa_first_txg = txg;
5091 spa->spa_uberblock.ub_txg = txg - 1;
5092 spa->spa_uberblock.ub_version = version;
5093 spa->spa_ubsync = spa->spa_uberblock;
5094 spa->spa_load_state = SPA_LOAD_CREATE;
5095 spa->spa_removing_phys.sr_state = DSS_NONE;
5096 spa->spa_removing_phys.sr_removing_vdev = -1;
5097 spa->spa_removing_phys.sr_prev_indirect_vdev = -1;
5098
5099 /*
5100 * Create "The Godfather" zio to hold all async IOs
5101 */
5102 spa->spa_async_zio_root = kmem_alloc(max_ncpus * sizeof (void *),
5103 KM_SLEEP);
5104 for (int i = 0; i < max_ncpus; i++) {
5105 spa->spa_async_zio_root[i] = zio_root(spa, NULL, NULL,
5106 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
5107 ZIO_FLAG_GODFATHER);
5108 }
5109
5110 /*
5111 * Create the root vdev.
5112 */
5113 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5114
5115 error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, VDEV_ALLOC_ADD);
5116
5117 ASSERT(error != 0 || rvd != NULL);
5118 ASSERT(error != 0 || spa->spa_root_vdev == rvd);
5119
5120 if (error == 0 && !zfs_allocatable_devs(nvroot))
5121 error = SET_ERROR(EINVAL);
5122
5123 if (error == 0 &&
5124 (error = vdev_create(rvd, txg, B_FALSE)) == 0 &&
5125 (error = spa_validate_aux(spa, nvroot, txg,
5126 VDEV_ALLOC_ADD)) == 0) {
5127 /*
5128 * instantiate the metaslab groups (this will dirty the vdevs)
5129 * we can no longer error exit past this point
5130 */
5131 for (int c = 0; error == 0 && c < rvd->vdev_children; c++) {
5132 vdev_t *vd = rvd->vdev_child[c];
5133
5134 vdev_metaslab_set_size(vd);
5135 vdev_expand(vd, txg);
5136 }
5137 }
5138
5139 spa_config_exit(spa, SCL_ALL, FTAG);
5140
5141 if (error != 0) {
5142 spa_unload(spa);
5143 spa_deactivate(spa);
5144 spa_remove(spa);
5145 mutex_exit(&spa_namespace_lock);
5146 return (error);
5147 }
5148
5149 /*
5150 * Get the list of spares, if specified.
5151 */
5152 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
5153 &spares, &nspares) == 0) {
5154 VERIFY(nvlist_alloc(&spa->spa_spares.sav_config, NV_UNIQUE_NAME,
5155 KM_SLEEP) == 0);
5156 VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
5157 ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
5158 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5159 spa_load_spares(spa);
5160 spa_config_exit(spa, SCL_ALL, FTAG);
5161 spa->spa_spares.sav_sync = B_TRUE;
5162 }
5163
5164 /*
5165 * Get the list of level 2 cache devices, if specified.
5166 */
5167 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
5168 &l2cache, &nl2cache) == 0) {
5169 VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config,
5170 NV_UNIQUE_NAME, KM_SLEEP) == 0);
5171 VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
5172 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
5173 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5174 spa_load_l2cache(spa);
5175 spa_config_exit(spa, SCL_ALL, FTAG);
5176 spa->spa_l2cache.sav_sync = B_TRUE;
5177 }
5178
5179 spa->spa_is_initializing = B_TRUE;
5180 spa->spa_dsl_pool = dp = dsl_pool_create(spa, zplprops, dcp, txg);
5181 spa->spa_is_initializing = B_FALSE;
5182
5183 /*
5184 * Create DDTs (dedup tables).
5185 */
5186 ddt_create(spa);
5187
5188 spa_update_dspace(spa);
5189
5190 tx = dmu_tx_create_assigned(dp, txg);
5191
5192 /*
5193 * Create the pool's history object.
5194 */
5195 if (version >= SPA_VERSION_ZPOOL_HISTORY && !spa->spa_history)
5196 spa_history_create_obj(spa, tx);
5197
5198 spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_CREATE);
5199 spa_history_log_version(spa, "create", tx);
5200
5201 /*
5202 * Create the pool config object.
5203 */
5204 spa->spa_config_object = dmu_object_alloc(spa->spa_meta_objset,
5205 DMU_OT_PACKED_NVLIST, SPA_CONFIG_BLOCKSIZE,
5206 DMU_OT_PACKED_NVLIST_SIZE, sizeof (uint64_t), tx);
5207
5208 if (zap_add(spa->spa_meta_objset,
5209 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CONFIG,
5210 sizeof (uint64_t), 1, &spa->spa_config_object, tx) != 0) {
5211 cmn_err(CE_PANIC, "failed to add pool config");
5212 }
5213
5214 if (zap_add(spa->spa_meta_objset,
5215 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CREATION_VERSION,
5216 sizeof (uint64_t), 1, &version, tx) != 0) {
5217 cmn_err(CE_PANIC, "failed to add pool version");
5218 }
5219
5220 /* Newly created pools with the right version are always deflated. */
5221 if (version >= SPA_VERSION_RAIDZ_DEFLATE) {
5222 spa->spa_deflate = TRUE;
5223 if (zap_add(spa->spa_meta_objset,
5224 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
5225 sizeof (uint64_t), 1, &spa->spa_deflate, tx) != 0) {
5226 cmn_err(CE_PANIC, "failed to add deflate");
5227 }
5228 }
5229
5230 /*
5231 * Create the deferred-free bpobj. Turn off compression
5232 * because sync-to-convergence takes longer if the blocksize
5233 * keeps changing.
5234 */
5235 obj = bpobj_alloc(spa->spa_meta_objset, 1 << 14, tx);
5236 dmu_object_set_compress(spa->spa_meta_objset, obj,
5237 ZIO_COMPRESS_OFF, tx);
5238 if (zap_add(spa->spa_meta_objset,
5239 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SYNC_BPOBJ,
5240 sizeof (uint64_t), 1, &obj, tx) != 0) {
5241 cmn_err(CE_PANIC, "failed to add bpobj");
5242 }
5243 VERIFY3U(0, ==, bpobj_open(&spa->spa_deferred_bpobj,
5244 spa->spa_meta_objset, obj));
5245
5246 /*
5247 * Generate some random noise for salted checksums to operate on.
5248 */
5249 (void) random_get_pseudo_bytes(spa->spa_cksum_salt.zcs_bytes,
5250 sizeof (spa->spa_cksum_salt.zcs_bytes));
5251
5252 /*
5253 * Set pool properties.
5254 */
5255 spa->spa_bootfs = zpool_prop_default_numeric(ZPOOL_PROP_BOOTFS);
5256 spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
5257 spa->spa_failmode = zpool_prop_default_numeric(ZPOOL_PROP_FAILUREMODE);
5258 spa->spa_autoexpand = zpool_prop_default_numeric(ZPOOL_PROP_AUTOEXPAND);
5259 spa->spa_multihost = zpool_prop_default_numeric(ZPOOL_PROP_MULTIHOST);
5260
5261 if (props != NULL) {
5262 spa_configfile_set(spa, props, B_FALSE);
5263 spa_sync_props(props, tx);
5264 }
5265
5266 dmu_tx_commit(tx);
5267
5268 spa->spa_sync_on = B_TRUE;
5269 txg_sync_start(dp);
5270 mmp_thread_start(spa);
5271 txg_wait_synced(dp, txg);
5272
5273 spa_spawn_aux_threads(spa);
5274
5275 spa_write_cachefile(spa, B_FALSE, B_TRUE);
5276
5277 /*
5278 * Don't count references from objsets that are already closed
5279 * and are making their way through the eviction process.
5280 */
5281 spa_evicting_os_wait(spa);
5282 spa->spa_minref = zfs_refcount_count(&spa->spa_refcount);
5283 spa->spa_load_state = SPA_LOAD_NONE;
5284
5285 mutex_exit(&spa_namespace_lock);
5286
5287 return (0);
5288 }
5289
5290 /*
5291 * Import a non-root pool into the system.
5292 */
5293 int
5294 spa_import(char *pool, nvlist_t *config, nvlist_t *props, uint64_t flags)
5295 {
5296 spa_t *spa;
5297 char *altroot = NULL;
5298 spa_load_state_t state = SPA_LOAD_IMPORT;
5299 zpool_load_policy_t policy;
5300 uint64_t mode = spa_mode_global;
5301 uint64_t readonly = B_FALSE;
5302 int error;
5303 nvlist_t *nvroot;
5304 nvlist_t **spares, **l2cache;
5305 uint_t nspares, nl2cache;
5306
5307 /*
5308 * If a pool with this name exists, return failure.
5309 */
5310 mutex_enter(&spa_namespace_lock);
5311 if (spa_lookup(pool) != NULL) {
5312 mutex_exit(&spa_namespace_lock);
5313 return (SET_ERROR(EEXIST));
5314 }
5315
5316 /*
5317 * Create and initialize the spa structure.
5318 */
5319 (void) nvlist_lookup_string(props,
5320 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
5321 (void) nvlist_lookup_uint64(props,
5322 zpool_prop_to_name(ZPOOL_PROP_READONLY), &readonly);
5323 if (readonly)
5324 mode = FREAD;
5325 spa = spa_add(pool, config, altroot);
5326 spa->spa_import_flags = flags;
5327
5328 /*
5329 * Verbatim import - Take a pool and insert it into the namespace
5330 * as if it had been loaded at boot.
5331 */
5332 if (spa->spa_import_flags & ZFS_IMPORT_VERBATIM) {
5333 if (props != NULL)
5334 spa_configfile_set(spa, props, B_FALSE);
5335
5336 spa_write_cachefile(spa, B_FALSE, B_TRUE);
5337 spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_IMPORT);
5338 zfs_dbgmsg("spa_import: verbatim import of %s", pool);
5339 mutex_exit(&spa_namespace_lock);
5340 return (0);
5341 }
5342
5343 spa_activate(spa, mode);
5344
5345 /*
5346 * Don't start async tasks until we know everything is healthy.
5347 */
5348 spa_async_suspend(spa);
5349
5350 zpool_get_load_policy(config, &policy);
5351 if (policy.zlp_rewind & ZPOOL_DO_REWIND)
5352 state = SPA_LOAD_RECOVER;
5353
5354 spa->spa_config_source = SPA_CONFIG_SRC_TRYIMPORT;
5355
5356 if (state != SPA_LOAD_RECOVER) {
5357 spa->spa_last_ubsync_txg = spa->spa_load_txg = 0;
5358 zfs_dbgmsg("spa_import: importing %s", pool);
5359 } else {
5360 zfs_dbgmsg("spa_import: importing %s, max_txg=%lld "
5361 "(RECOVERY MODE)", pool, (longlong_t)policy.zlp_txg);
5362 }
5363 error = spa_load_best(spa, state, policy.zlp_txg, policy.zlp_rewind);
5364
5365 /*
5366 * Propagate anything learned while loading the pool and pass it
5367 * back to caller (i.e. rewind info, missing devices, etc).
5368 */
5369 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO,
5370 spa->spa_load_info) == 0);
5371
5372 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5373 /*
5374 * Toss any existing sparelist, as it doesn't have any validity
5375 * anymore, and conflicts with spa_has_spare().
5376 */
5377 if (spa->spa_spares.sav_config) {
5378 nvlist_free(spa->spa_spares.sav_config);
5379 spa->spa_spares.sav_config = NULL;
5380 spa_load_spares(spa);
5381 }
5382 if (spa->spa_l2cache.sav_config) {
5383 nvlist_free(spa->spa_l2cache.sav_config);
5384 spa->spa_l2cache.sav_config = NULL;
5385 spa_load_l2cache(spa);
5386 }
5387
5388 VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
5389 &nvroot) == 0);
5390 spa_config_exit(spa, SCL_ALL, FTAG);
5391
5392 if (props != NULL)
5393 spa_configfile_set(spa, props, B_FALSE);
5394
5395 if (error != 0 || (props && spa_writeable(spa) &&
5396 (error = spa_prop_set(spa, props)))) {
5397 spa_unload(spa);
5398 spa_deactivate(spa);
5399 spa_remove(spa);
5400 mutex_exit(&spa_namespace_lock);
5401 return (error);
5402 }
5403
5404 spa_async_resume(spa);
5405
5406 /*
5407 * Override any spares and level 2 cache devices as specified by
5408 * the user, as these may have correct device names/devids, etc.
5409 */
5410 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
5411 &spares, &nspares) == 0) {
5412 if (spa->spa_spares.sav_config)
5413 VERIFY(nvlist_remove(spa->spa_spares.sav_config,
5414 ZPOOL_CONFIG_SPARES, DATA_TYPE_NVLIST_ARRAY) == 0);
5415 else
5416 VERIFY(nvlist_alloc(&spa->spa_spares.sav_config,
5417 NV_UNIQUE_NAME, KM_SLEEP) == 0);
5418 VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
5419 ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
5420 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5421 spa_load_spares(spa);
5422 spa_config_exit(spa, SCL_ALL, FTAG);
5423 spa->spa_spares.sav_sync = B_TRUE;
5424 }
5425 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
5426 &l2cache, &nl2cache) == 0) {
5427 if (spa->spa_l2cache.sav_config)
5428 VERIFY(nvlist_remove(spa->spa_l2cache.sav_config,
5429 ZPOOL_CONFIG_L2CACHE, DATA_TYPE_NVLIST_ARRAY) == 0);
5430 else
5431 VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config,
5432 NV_UNIQUE_NAME, KM_SLEEP) == 0);
5433 VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
5434 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
5435 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5436 spa_load_l2cache(spa);
5437 spa_config_exit(spa, SCL_ALL, FTAG);
5438 spa->spa_l2cache.sav_sync = B_TRUE;
5439 }
5440
5441 /*
5442 * Check for any removed devices.
5443 */
5444 if (spa->spa_autoreplace) {
5445 spa_aux_check_removed(&spa->spa_spares);
5446 spa_aux_check_removed(&spa->spa_l2cache);
5447 }
5448
5449 if (spa_writeable(spa)) {
5450 /*
5451 * Update the config cache to include the newly-imported pool.
5452 */
5453 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
5454 }
5455
5456 /*
5457 * It's possible that the pool was expanded while it was exported.
5458 * We kick off an async task to handle this for us.
5459 */
5460 spa_async_request(spa, SPA_ASYNC_AUTOEXPAND);
5461
5462 spa_history_log_version(spa, "import", NULL);
5463
5464 spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_IMPORT);
5465
5466 zvol_create_minors(spa, pool, B_TRUE);
5467
5468 mutex_exit(&spa_namespace_lock);
5469
5470 return (0);
5471 }
5472
5473 nvlist_t *
5474 spa_tryimport(nvlist_t *tryconfig)
5475 {
5476 nvlist_t *config = NULL;
5477 char *poolname, *cachefile;
5478 spa_t *spa;
5479 uint64_t state;
5480 int error;
5481 zpool_load_policy_t policy;
5482
5483 if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_POOL_NAME, &poolname))
5484 return (NULL);
5485
5486 if (nvlist_lookup_uint64(tryconfig, ZPOOL_CONFIG_POOL_STATE, &state))
5487 return (NULL);
5488
5489 /*
5490 * Create and initialize the spa structure.
5491 */
5492 mutex_enter(&spa_namespace_lock);
5493 spa = spa_add(TRYIMPORT_NAME, tryconfig, NULL);
5494 spa_activate(spa, FREAD);
5495
5496 /*
5497 * Rewind pool if a max txg was provided.
5498 */
5499 zpool_get_load_policy(spa->spa_config, &policy);
5500 if (policy.zlp_txg != UINT64_MAX) {
5501 spa->spa_load_max_txg = policy.zlp_txg;
5502 spa->spa_extreme_rewind = B_TRUE;
5503 zfs_dbgmsg("spa_tryimport: importing %s, max_txg=%lld",
5504 poolname, (longlong_t)policy.zlp_txg);
5505 } else {
5506 zfs_dbgmsg("spa_tryimport: importing %s", poolname);
5507 }
5508
5509 if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_CACHEFILE, &cachefile)
5510 == 0) {
5511 zfs_dbgmsg("spa_tryimport: using cachefile '%s'", cachefile);
5512 spa->spa_config_source = SPA_CONFIG_SRC_CACHEFILE;
5513 } else {
5514 spa->spa_config_source = SPA_CONFIG_SRC_SCAN;
5515 }
5516
5517 error = spa_load(spa, SPA_LOAD_TRYIMPORT, SPA_IMPORT_EXISTING);
5518
5519 /*
5520 * If 'tryconfig' was at least parsable, return the current config.
5521 */
5522 if (spa->spa_root_vdev != NULL) {
5523 config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
5524 VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME,
5525 poolname) == 0);
5526 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
5527 state) == 0);
5528 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_TIMESTAMP,
5529 spa->spa_uberblock.ub_timestamp) == 0);
5530 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO,
5531 spa->spa_load_info) == 0);
5532 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_ERRATA,
5533 spa->spa_errata) == 0);
5534
5535 /*
5536 * If the bootfs property exists on this pool then we
5537 * copy it out so that external consumers can tell which
5538 * pools are bootable.
5539 */
5540 if ((!error || error == EEXIST) && spa->spa_bootfs) {
5541 char *tmpname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
5542
5543 /*
5544 * We have to play games with the name since the
5545 * pool was opened as TRYIMPORT_NAME.
5546 */
5547 if (dsl_dsobj_to_dsname(spa_name(spa),
5548 spa->spa_bootfs, tmpname) == 0) {
5549 char *cp;
5550 char *dsname;
5551
5552 dsname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
5553
5554 cp = strchr(tmpname, '/');
5555 if (cp == NULL) {
5556 (void) strlcpy(dsname, tmpname,
5557 MAXPATHLEN);
5558 } else {
5559 (void) snprintf(dsname, MAXPATHLEN,
5560 "%s/%s", poolname, ++cp);
5561 }
5562 VERIFY(nvlist_add_string(config,
5563 ZPOOL_CONFIG_BOOTFS, dsname) == 0);
5564 kmem_free(dsname, MAXPATHLEN);
5565 }
5566 kmem_free(tmpname, MAXPATHLEN);
5567 }
5568
5569 /*
5570 * Add the list of hot spares and level 2 cache devices.
5571 */
5572 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
5573 spa_add_spares(spa, config);
5574 spa_add_l2cache(spa, config);
5575 spa_config_exit(spa, SCL_CONFIG, FTAG);
5576 }
5577
5578 spa_unload(spa);
5579 spa_deactivate(spa);
5580 spa_remove(spa);
5581 mutex_exit(&spa_namespace_lock);
5582
5583 return (config);
5584 }
5585
5586 /*
5587 * Pool export/destroy
5588 *
5589 * The act of destroying or exporting a pool is very simple. We make sure there
5590 * is no more pending I/O and any references to the pool are gone. Then, we
5591 * update the pool state and sync all the labels to disk, removing the
5592 * configuration from the cache afterwards. If the 'hardforce' flag is set, then
5593 * we don't sync the labels or remove the configuration cache.
5594 */
5595 static int
5596 spa_export_common(char *pool, int new_state, nvlist_t **oldconfig,
5597 boolean_t force, boolean_t hardforce)
5598 {
5599 spa_t *spa;
5600
5601 if (oldconfig)
5602 *oldconfig = NULL;
5603
5604 if (!(spa_mode_global & FWRITE))
5605 return (SET_ERROR(EROFS));
5606
5607 mutex_enter(&spa_namespace_lock);
5608 if ((spa = spa_lookup(pool)) == NULL) {
5609 mutex_exit(&spa_namespace_lock);
5610 return (SET_ERROR(ENOENT));
5611 }
5612
5613 /*
5614 * Put a hold on the pool, drop the namespace lock, stop async tasks,
5615 * reacquire the namespace lock, and see if we can export.
5616 */
5617 spa_open_ref(spa, FTAG);
5618 mutex_exit(&spa_namespace_lock);
5619 spa_async_suspend(spa);
5620 if (spa->spa_zvol_taskq) {
5621 zvol_remove_minors(spa, spa_name(spa), B_TRUE);
5622 taskq_wait(spa->spa_zvol_taskq);
5623 }
5624 mutex_enter(&spa_namespace_lock);
5625 spa_close(spa, FTAG);
5626
5627 if (spa->spa_state == POOL_STATE_UNINITIALIZED)
5628 goto export_spa;
5629 /*
5630 * The pool will be in core if it's openable, in which case we can
5631 * modify its state. Objsets may be open only because they're dirty,
5632 * so we have to force it to sync before checking spa_refcnt.
5633 */
5634 if (spa->spa_sync_on) {
5635 txg_wait_synced(spa->spa_dsl_pool, 0);
5636 spa_evicting_os_wait(spa);
5637 }
5638
5639 /*
5640 * A pool cannot be exported or destroyed if there are active
5641 * references. If we are resetting a pool, allow references by
5642 * fault injection handlers.
5643 */
5644 if (!spa_refcount_zero(spa) ||
5645 (spa->spa_inject_ref != 0 &&
5646 new_state != POOL_STATE_UNINITIALIZED)) {
5647 spa_async_resume(spa);
5648 mutex_exit(&spa_namespace_lock);
5649 return (SET_ERROR(EBUSY));
5650 }
5651
5652 if (spa->spa_sync_on) {
5653 /*
5654 * A pool cannot be exported if it has an active shared spare.
5655 * This is to prevent other pools stealing the active spare
5656 * from an exported pool. At user's own will, such pool can
5657 * be forcedly exported.
5658 */
5659 if (!force && new_state == POOL_STATE_EXPORTED &&
5660 spa_has_active_shared_spare(spa)) {
5661 spa_async_resume(spa);
5662 mutex_exit(&spa_namespace_lock);
5663 return (SET_ERROR(EXDEV));
5664 }
5665
5666 /*
5667 * We're about to export or destroy this pool. Make sure
5668 * we stop all initializtion activity here before we
5669 * set the spa_final_txg. This will ensure that all
5670 * dirty data resulting from the initialization is
5671 * committed to disk before we unload the pool.
5672 */
5673 if (spa->spa_root_vdev != NULL) {
5674 vdev_initialize_stop_all(spa->spa_root_vdev,
5675 VDEV_INITIALIZE_ACTIVE);
5676 }
5677
5678 /*
5679 * We want this to be reflected on every label,
5680 * so mark them all dirty. spa_unload() will do the
5681 * final sync that pushes these changes out.
5682 */
5683 if (new_state != POOL_STATE_UNINITIALIZED && !hardforce) {
5684 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5685 spa->spa_state = new_state;
5686 spa->spa_final_txg = spa_last_synced_txg(spa) +
5687 TXG_DEFER_SIZE + 1;
5688 vdev_config_dirty(spa->spa_root_vdev);
5689 spa_config_exit(spa, SCL_ALL, FTAG);
5690 }
5691 }
5692
5693 export_spa:
5694 if (new_state == POOL_STATE_DESTROYED)
5695 spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_DESTROY);
5696 else if (new_state == POOL_STATE_EXPORTED)
5697 spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_EXPORT);
5698
5699 if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
5700 spa_unload(spa);
5701 spa_deactivate(spa);
5702 }
5703
5704 if (oldconfig && spa->spa_config)
5705 VERIFY(nvlist_dup(spa->spa_config, oldconfig, 0) == 0);
5706
5707 if (new_state != POOL_STATE_UNINITIALIZED) {
5708 if (!hardforce)
5709 spa_write_cachefile(spa, B_TRUE, B_TRUE);
5710 spa_remove(spa);
5711 }
5712 mutex_exit(&spa_namespace_lock);
5713
5714 return (0);
5715 }
5716
5717 /*
5718 * Destroy a storage pool.
5719 */
5720 int
5721 spa_destroy(char *pool)
5722 {
5723 return (spa_export_common(pool, POOL_STATE_DESTROYED, NULL,
5724 B_FALSE, B_FALSE));
5725 }
5726
5727 /*
5728 * Export a storage pool.
5729 */
5730 int
5731 spa_export(char *pool, nvlist_t **oldconfig, boolean_t force,
5732 boolean_t hardforce)
5733 {
5734 return (spa_export_common(pool, POOL_STATE_EXPORTED, oldconfig,
5735 force, hardforce));
5736 }
5737
5738 /*
5739 * Similar to spa_export(), this unloads the spa_t without actually removing it
5740 * from the namespace in any way.
5741 */
5742 int
5743 spa_reset(char *pool)
5744 {
5745 return (spa_export_common(pool, POOL_STATE_UNINITIALIZED, NULL,
5746 B_FALSE, B_FALSE));
5747 }
5748
5749 /*
5750 * ==========================================================================
5751 * Device manipulation
5752 * ==========================================================================
5753 */
5754
5755 /*
5756 * Add a device to a storage pool.
5757 */
5758 int
5759 spa_vdev_add(spa_t *spa, nvlist_t *nvroot)
5760 {
5761 uint64_t txg, id;
5762 int error;
5763 vdev_t *rvd = spa->spa_root_vdev;
5764 vdev_t *vd, *tvd;
5765 nvlist_t **spares, **l2cache;
5766 uint_t nspares, nl2cache;
5767
5768 ASSERT(spa_writeable(spa));
5769
5770 txg = spa_vdev_enter(spa);
5771
5772 if ((error = spa_config_parse(spa, &vd, nvroot, NULL, 0,
5773 VDEV_ALLOC_ADD)) != 0)
5774 return (spa_vdev_exit(spa, NULL, txg, error));
5775
5776 spa->spa_pending_vdev = vd; /* spa_vdev_exit() will clear this */
5777
5778 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, &spares,
5779 &nspares) != 0)
5780 nspares = 0;
5781
5782 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, &l2cache,
5783 &nl2cache) != 0)
5784 nl2cache = 0;
5785
5786 if (vd->vdev_children == 0 && nspares == 0 && nl2cache == 0)
5787 return (spa_vdev_exit(spa, vd, txg, EINVAL));
5788
5789 if (vd->vdev_children != 0 &&
5790 (error = vdev_create(vd, txg, B_FALSE)) != 0)
5791 return (spa_vdev_exit(spa, vd, txg, error));
5792
5793 /*
5794 * We must validate the spares and l2cache devices after checking the
5795 * children. Otherwise, vdev_inuse() will blindly overwrite the spare.
5796 */
5797 if ((error = spa_validate_aux(spa, nvroot, txg, VDEV_ALLOC_ADD)) != 0)
5798 return (spa_vdev_exit(spa, vd, txg, error));
5799
5800 /*
5801 * If we are in the middle of a device removal, we can only add
5802 * devices which match the existing devices in the pool.
5803 * If we are in the middle of a removal, or have some indirect
5804 * vdevs, we can not add raidz toplevels.
5805 */
5806 if (spa->spa_vdev_removal != NULL ||
5807 spa->spa_removing_phys.sr_prev_indirect_vdev != -1) {
5808 for (int c = 0; c < vd->vdev_children; c++) {
5809 tvd = vd->vdev_child[c];
5810 if (spa->spa_vdev_removal != NULL &&
5811 tvd->vdev_ashift != spa->spa_max_ashift) {
5812 return (spa_vdev_exit(spa, vd, txg, EINVAL));
5813 }
5814 /* Fail if top level vdev is raidz */
5815 if (tvd->vdev_ops == &vdev_raidz_ops) {
5816 return (spa_vdev_exit(spa, vd, txg, EINVAL));
5817 }
5818 /*
5819 * Need the top level mirror to be
5820 * a mirror of leaf vdevs only
5821 */
5822 if (tvd->vdev_ops == &vdev_mirror_ops) {
5823 for (uint64_t cid = 0;
5824 cid < tvd->vdev_children; cid++) {
5825 vdev_t *cvd = tvd->vdev_child[cid];
5826 if (!cvd->vdev_ops->vdev_op_leaf) {
5827 return (spa_vdev_exit(spa, vd,
5828 txg, EINVAL));
5829 }
5830 }
5831 }
5832 }
5833 }
5834
5835 for (int c = 0; c < vd->vdev_children; c++) {
5836
5837 /*
5838 * Set the vdev id to the first hole, if one exists.
5839 */
5840 for (id = 0; id < rvd->vdev_children; id++) {
5841 if (rvd->vdev_child[id]->vdev_ishole) {
5842 vdev_free(rvd->vdev_child[id]);
5843 break;
5844 }
5845 }
5846 tvd = vd->vdev_child[c];
5847 vdev_remove_child(vd, tvd);
5848 tvd->vdev_id = id;
5849 vdev_add_child(rvd, tvd);
5850 vdev_config_dirty(tvd);
5851 }
5852
5853 if (nspares != 0) {
5854 spa_set_aux_vdevs(&spa->spa_spares, spares, nspares,
5855 ZPOOL_CONFIG_SPARES);
5856 spa_load_spares(spa);
5857 spa->spa_spares.sav_sync = B_TRUE;
5858 }
5859
5860 if (nl2cache != 0) {
5861 spa_set_aux_vdevs(&spa->spa_l2cache, l2cache, nl2cache,
5862 ZPOOL_CONFIG_L2CACHE);
5863 spa_load_l2cache(spa);
5864 spa->spa_l2cache.sav_sync = B_TRUE;
5865 }
5866
5867 /*
5868 * We have to be careful when adding new vdevs to an existing pool.
5869 * If other threads start allocating from these vdevs before we
5870 * sync the config cache, and we lose power, then upon reboot we may
5871 * fail to open the pool because there are DVAs that the config cache
5872 * can't translate. Therefore, we first add the vdevs without
5873 * initializing metaslabs; sync the config cache (via spa_vdev_exit());
5874 * and then let spa_config_update() initialize the new metaslabs.
5875 *
5876 * spa_load() checks for added-but-not-initialized vdevs, so that
5877 * if we lose power at any point in this sequence, the remaining
5878 * steps will be completed the next time we load the pool.
5879 */
5880 (void) spa_vdev_exit(spa, vd, txg, 0);
5881
5882 mutex_enter(&spa_namespace_lock);
5883 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
5884 spa_event_notify(spa, NULL, NULL, ESC_ZFS_VDEV_ADD);
5885 mutex_exit(&spa_namespace_lock);
5886
5887 return (0);
5888 }
5889
5890 /*
5891 * Attach a device to a mirror. The arguments are the path to any device
5892 * in the mirror, and the nvroot for the new device. If the path specifies
5893 * a device that is not mirrored, we automatically insert the mirror vdev.
5894 *
5895 * If 'replacing' is specified, the new device is intended to replace the
5896 * existing device; in this case the two devices are made into their own
5897 * mirror using the 'replacing' vdev, which is functionally identical to
5898 * the mirror vdev (it actually reuses all the same ops) but has a few
5899 * extra rules: you can't attach to it after it's been created, and upon
5900 * completion of resilvering, the first disk (the one being replaced)
5901 * is automatically detached.
5902 */
5903 int
5904 spa_vdev_attach(spa_t *spa, uint64_t guid, nvlist_t *nvroot, int replacing)
5905 {
5906 uint64_t txg, dtl_max_txg;
5907 ASSERTV(vdev_t *rvd = spa->spa_root_vdev);
5908 vdev_t *oldvd, *newvd, *newrootvd, *pvd, *tvd;
5909 vdev_ops_t *pvops;
5910 char *oldvdpath, *newvdpath;
5911 int newvd_isspare;
5912 int error;
5913
5914 ASSERT(spa_writeable(spa));
5915
5916 txg = spa_vdev_enter(spa);
5917
5918 oldvd = spa_lookup_by_guid(spa, guid, B_FALSE);
5919
5920 ASSERT(MUTEX_HELD(&spa_namespace_lock));
5921 if (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) {
5922 error = (spa_has_checkpoint(spa)) ?
5923 ZFS_ERR_CHECKPOINT_EXISTS : ZFS_ERR_DISCARDING_CHECKPOINT;
5924 return (spa_vdev_exit(spa, NULL, txg, error));
5925 }
5926
5927 if (spa->spa_vdev_removal != NULL)
5928 return (spa_vdev_exit(spa, NULL, txg, EBUSY));
5929
5930 if (oldvd == NULL)
5931 return (spa_vdev_exit(spa, NULL, txg, ENODEV));
5932
5933 if (!oldvd->vdev_ops->vdev_op_leaf)
5934 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
5935
5936 pvd = oldvd->vdev_parent;
5937
5938 if ((error = spa_config_parse(spa, &newrootvd, nvroot, NULL, 0,
5939 VDEV_ALLOC_ATTACH)) != 0)
5940 return (spa_vdev_exit(spa, NULL, txg, EINVAL));
5941
5942 if (newrootvd->vdev_children != 1)
5943 return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
5944
5945 newvd = newrootvd->vdev_child[0];
5946
5947 if (!newvd->vdev_ops->vdev_op_leaf)
5948 return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
5949
5950 if ((error = vdev_create(newrootvd, txg, replacing)) != 0)
5951 return (spa_vdev_exit(spa, newrootvd, txg, error));
5952
5953 /*
5954 * Spares can't replace logs
5955 */
5956 if (oldvd->vdev_top->vdev_islog && newvd->vdev_isspare)
5957 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
5958
5959 if (!replacing) {
5960 /*
5961 * For attach, the only allowable parent is a mirror or the root
5962 * vdev.
5963 */
5964 if (pvd->vdev_ops != &vdev_mirror_ops &&
5965 pvd->vdev_ops != &vdev_root_ops)
5966 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
5967
5968 pvops = &vdev_mirror_ops;
5969 } else {
5970 /*
5971 * Active hot spares can only be replaced by inactive hot
5972 * spares.
5973 */
5974 if (pvd->vdev_ops == &vdev_spare_ops &&
5975 oldvd->vdev_isspare &&
5976 !spa_has_spare(spa, newvd->vdev_guid))
5977 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
5978
5979 /*
5980 * If the source is a hot spare, and the parent isn't already a
5981 * spare, then we want to create a new hot spare. Otherwise, we
5982 * want to create a replacing vdev. The user is not allowed to
5983 * attach to a spared vdev child unless the 'isspare' state is
5984 * the same (spare replaces spare, non-spare replaces
5985 * non-spare).
5986 */
5987 if (pvd->vdev_ops == &vdev_replacing_ops &&
5988 spa_version(spa) < SPA_VERSION_MULTI_REPLACE) {
5989 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
5990 } else if (pvd->vdev_ops == &vdev_spare_ops &&
5991 newvd->vdev_isspare != oldvd->vdev_isspare) {
5992 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
5993 }
5994
5995 if (newvd->vdev_isspare)
5996 pvops = &vdev_spare_ops;
5997 else
5998 pvops = &vdev_replacing_ops;
5999 }
6000
6001 /*
6002 * Make sure the new device is big enough.
6003 */
6004 if (newvd->vdev_asize < vdev_get_min_asize(oldvd))
6005 return (spa_vdev_exit(spa, newrootvd, txg, EOVERFLOW));
6006
6007 /*
6008 * The new device cannot have a higher alignment requirement
6009 * than the top-level vdev.
6010 */
6011 if (newvd->vdev_ashift > oldvd->vdev_top->vdev_ashift)
6012 return (spa_vdev_exit(spa, newrootvd, txg, EDOM));
6013
6014 /*
6015 * If this is an in-place replacement, update oldvd's path and devid
6016 * to make it distinguishable from newvd, and unopenable from now on.
6017 */
6018 if (strcmp(oldvd->vdev_path, newvd->vdev_path) == 0) {
6019 spa_strfree(oldvd->vdev_path);
6020 oldvd->vdev_path = kmem_alloc(strlen(newvd->vdev_path) + 5,
6021 KM_SLEEP);
6022 (void) sprintf(oldvd->vdev_path, "%s/%s",
6023 newvd->vdev_path, "old");
6024 if (oldvd->vdev_devid != NULL) {
6025 spa_strfree(oldvd->vdev_devid);
6026 oldvd->vdev_devid = NULL;
6027 }
6028 }
6029
6030 /* mark the device being resilvered */
6031 newvd->vdev_resilver_txg = txg;
6032
6033 /*
6034 * If the parent is not a mirror, or if we're replacing, insert the new
6035 * mirror/replacing/spare vdev above oldvd.
6036 */
6037 if (pvd->vdev_ops != pvops)
6038 pvd = vdev_add_parent(oldvd, pvops);
6039
6040 ASSERT(pvd->vdev_top->vdev_parent == rvd);
6041 ASSERT(pvd->vdev_ops == pvops);
6042 ASSERT(oldvd->vdev_parent == pvd);
6043
6044 /*
6045 * Extract the new device from its root and add it to pvd.
6046 */
6047 vdev_remove_child(newrootvd, newvd);
6048 newvd->vdev_id = pvd->vdev_children;
6049 newvd->vdev_crtxg = oldvd->vdev_crtxg;
6050 vdev_add_child(pvd, newvd);
6051
6052 /*
6053 * Reevaluate the parent vdev state.
6054 */
6055 vdev_propagate_state(pvd);
6056
6057 tvd = newvd->vdev_top;
6058 ASSERT(pvd->vdev_top == tvd);
6059 ASSERT(tvd->vdev_parent == rvd);
6060
6061 vdev_config_dirty(tvd);
6062
6063 /*
6064 * Set newvd's DTL to [TXG_INITIAL, dtl_max_txg) so that we account
6065 * for any dmu_sync-ed blocks. It will propagate upward when
6066 * spa_vdev_exit() calls vdev_dtl_reassess().
6067 */
6068 dtl_max_txg = txg + TXG_CONCURRENT_STATES;
6069
6070 vdev_dtl_dirty(newvd, DTL_MISSING, TXG_INITIAL,
6071 dtl_max_txg - TXG_INITIAL);
6072
6073 if (newvd->vdev_isspare) {
6074 spa_spare_activate(newvd);
6075 spa_event_notify(spa, newvd, NULL, ESC_ZFS_VDEV_SPARE);
6076 }
6077
6078 oldvdpath = spa_strdup(oldvd->vdev_path);
6079 newvdpath = spa_strdup(newvd->vdev_path);
6080 newvd_isspare = newvd->vdev_isspare;
6081
6082 /*
6083 * Mark newvd's DTL dirty in this txg.
6084 */
6085 vdev_dirty(tvd, VDD_DTL, newvd, txg);
6086
6087 /*
6088 * Schedule the resilver to restart in the future. We do this to
6089 * ensure that dmu_sync-ed blocks have been stitched into the
6090 * respective datasets. We do not do this if resilvers have been
6091 * deferred.
6092 */
6093 if (dsl_scan_resilvering(spa_get_dsl(spa)) &&
6094 spa_feature_is_enabled(spa, SPA_FEATURE_RESILVER_DEFER))
6095 vdev_set_deferred_resilver(spa, newvd);
6096 else
6097 dsl_resilver_restart(spa->spa_dsl_pool, dtl_max_txg);
6098
6099 if (spa->spa_bootfs)
6100 spa_event_notify(spa, newvd, NULL, ESC_ZFS_BOOTFS_VDEV_ATTACH);
6101
6102 spa_event_notify(spa, newvd, NULL, ESC_ZFS_VDEV_ATTACH);
6103
6104 /*
6105 * Commit the config
6106 */
6107 (void) spa_vdev_exit(spa, newrootvd, dtl_max_txg, 0);
6108
6109 spa_history_log_internal(spa, "vdev attach", NULL,
6110 "%s vdev=%s %s vdev=%s",
6111 replacing && newvd_isspare ? "spare in" :
6112 replacing ? "replace" : "attach", newvdpath,
6113 replacing ? "for" : "to", oldvdpath);
6114
6115 spa_strfree(oldvdpath);
6116 spa_strfree(newvdpath);
6117
6118 return (0);
6119 }
6120
6121 /*
6122 * Detach a device from a mirror or replacing vdev.
6123 *
6124 * If 'replace_done' is specified, only detach if the parent
6125 * is a replacing vdev.
6126 */
6127 int
6128 spa_vdev_detach(spa_t *spa, uint64_t guid, uint64_t pguid, int replace_done)
6129 {
6130 uint64_t txg;
6131 int error;
6132 ASSERTV(vdev_t *rvd = spa->spa_root_vdev);
6133 vdev_t *vd, *pvd, *cvd, *tvd;
6134 boolean_t unspare = B_FALSE;
6135 uint64_t unspare_guid = 0;
6136 char *vdpath;
6137
6138 ASSERT(spa_writeable(spa));
6139
6140 txg = spa_vdev_enter(spa);
6141
6142 vd = spa_lookup_by_guid(spa, guid, B_FALSE);
6143
6144 /*
6145 * Besides being called directly from the userland through the
6146 * ioctl interface, spa_vdev_detach() can be potentially called
6147 * at the end of spa_vdev_resilver_done().
6148 *
6149 * In the regular case, when we have a checkpoint this shouldn't
6150 * happen as we never empty the DTLs of a vdev during the scrub
6151 * [see comment in dsl_scan_done()]. Thus spa_vdev_resilvering_done()
6152 * should never get here when we have a checkpoint.
6153 *
6154 * That said, even in a case when we checkpoint the pool exactly
6155 * as spa_vdev_resilver_done() calls this function everything
6156 * should be fine as the resilver will return right away.
6157 */
6158 ASSERT(MUTEX_HELD(&spa_namespace_lock));
6159 if (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) {
6160 error = (spa_has_checkpoint(spa)) ?
6161 ZFS_ERR_CHECKPOINT_EXISTS : ZFS_ERR_DISCARDING_CHECKPOINT;
6162 return (spa_vdev_exit(spa, NULL, txg, error));
6163 }
6164
6165 if (vd == NULL)
6166 return (spa_vdev_exit(spa, NULL, txg, ENODEV));
6167
6168 if (!vd->vdev_ops->vdev_op_leaf)
6169 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
6170
6171 pvd = vd->vdev_parent;
6172
6173 /*
6174 * If the parent/child relationship is not as expected, don't do it.
6175 * Consider M(A,R(B,C)) -- that is, a mirror of A with a replacing
6176 * vdev that's replacing B with C. The user's intent in replacing
6177 * is to go from M(A,B) to M(A,C). If the user decides to cancel
6178 * the replace by detaching C, the expected behavior is to end up
6179 * M(A,B). But suppose that right after deciding to detach C,
6180 * the replacement of B completes. We would have M(A,C), and then
6181 * ask to detach C, which would leave us with just A -- not what
6182 * the user wanted. To prevent this, we make sure that the
6183 * parent/child relationship hasn't changed -- in this example,
6184 * that C's parent is still the replacing vdev R.
6185 */
6186 if (pvd->vdev_guid != pguid && pguid != 0)
6187 return (spa_vdev_exit(spa, NULL, txg, EBUSY));
6188
6189 /*
6190 * Only 'replacing' or 'spare' vdevs can be replaced.
6191 */
6192 if (replace_done && pvd->vdev_ops != &vdev_replacing_ops &&
6193 pvd->vdev_ops != &vdev_spare_ops)
6194 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
6195
6196 ASSERT(pvd->vdev_ops != &vdev_spare_ops ||
6197 spa_version(spa) >= SPA_VERSION_SPARES);
6198
6199 /*
6200 * Only mirror, replacing, and spare vdevs support detach.
6201 */
6202 if (pvd->vdev_ops != &vdev_replacing_ops &&
6203 pvd->vdev_ops != &vdev_mirror_ops &&
6204 pvd->vdev_ops != &vdev_spare_ops)
6205 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
6206
6207 /*
6208 * If this device has the only valid copy of some data,
6209 * we cannot safely detach it.
6210 */
6211 if (vdev_dtl_required(vd))
6212 return (spa_vdev_exit(spa, NULL, txg, EBUSY));
6213
6214 ASSERT(pvd->vdev_children >= 2);
6215
6216 /*
6217 * If we are detaching the second disk from a replacing vdev, then
6218 * check to see if we changed the original vdev's path to have "/old"
6219 * at the end in spa_vdev_attach(). If so, undo that change now.
6220 */
6221 if (pvd->vdev_ops == &vdev_replacing_ops && vd->vdev_id > 0 &&
6222 vd->vdev_path != NULL) {
6223 size_t len = strlen(vd->vdev_path);
6224
6225 for (int c = 0; c < pvd->vdev_children; c++) {
6226 cvd = pvd->vdev_child[c];
6227
6228 if (cvd == vd || cvd->vdev_path == NULL)
6229 continue;
6230
6231 if (strncmp(cvd->vdev_path, vd->vdev_path, len) == 0 &&
6232 strcmp(cvd->vdev_path + len, "/old") == 0) {
6233 spa_strfree(cvd->vdev_path);
6234 cvd->vdev_path = spa_strdup(vd->vdev_path);
6235 break;
6236 }
6237 }
6238 }
6239
6240 /*
6241 * If we are detaching the original disk from a spare, then it implies
6242 * that the spare should become a real disk, and be removed from the
6243 * active spare list for the pool.
6244 */
6245 if (pvd->vdev_ops == &vdev_spare_ops &&
6246 vd->vdev_id == 0 &&
6247 pvd->vdev_child[pvd->vdev_children - 1]->vdev_isspare)
6248 unspare = B_TRUE;
6249
6250 /*
6251 * Erase the disk labels so the disk can be used for other things.
6252 * This must be done after all other error cases are handled,
6253 * but before we disembowel vd (so we can still do I/O to it).
6254 * But if we can't do it, don't treat the error as fatal --
6255 * it may be that the unwritability of the disk is the reason
6256 * it's being detached!
6257 */
6258 error = vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
6259
6260 /*
6261 * Remove vd from its parent and compact the parent's children.
6262 */
6263 vdev_remove_child(pvd, vd);
6264 vdev_compact_children(pvd);
6265
6266 /*
6267 * Remember one of the remaining children so we can get tvd below.
6268 */
6269 cvd = pvd->vdev_child[pvd->vdev_children - 1];
6270
6271 /*
6272 * If we need to remove the remaining child from the list of hot spares,
6273 * do it now, marking the vdev as no longer a spare in the process.
6274 * We must do this before vdev_remove_parent(), because that can
6275 * change the GUID if it creates a new toplevel GUID. For a similar
6276 * reason, we must remove the spare now, in the same txg as the detach;
6277 * otherwise someone could attach a new sibling, change the GUID, and
6278 * the subsequent attempt to spa_vdev_remove(unspare_guid) would fail.
6279 */
6280 if (unspare) {
6281 ASSERT(cvd->vdev_isspare);
6282 spa_spare_remove(cvd);
6283 unspare_guid = cvd->vdev_guid;
6284 (void) spa_vdev_remove(spa, unspare_guid, B_TRUE);
6285 cvd->vdev_unspare = B_TRUE;
6286 }
6287
6288 /*
6289 * If the parent mirror/replacing vdev only has one child,
6290 * the parent is no longer needed. Remove it from the tree.
6291 */
6292 if (pvd->vdev_children == 1) {
6293 if (pvd->vdev_ops == &vdev_spare_ops)
6294 cvd->vdev_unspare = B_FALSE;
6295 vdev_remove_parent(cvd);
6296 }
6297
6298
6299 /*
6300 * We don't set tvd until now because the parent we just removed
6301 * may have been the previous top-level vdev.
6302 */
6303 tvd = cvd->vdev_top;
6304 ASSERT(tvd->vdev_parent == rvd);
6305
6306 /*
6307 * Reevaluate the parent vdev state.
6308 */
6309 vdev_propagate_state(cvd);
6310
6311 /*
6312 * If the 'autoexpand' property is set on the pool then automatically
6313 * try to expand the size of the pool. For example if the device we
6314 * just detached was smaller than the others, it may be possible to
6315 * add metaslabs (i.e. grow the pool). We need to reopen the vdev
6316 * first so that we can obtain the updated sizes of the leaf vdevs.
6317 */
6318 if (spa->spa_autoexpand) {
6319 vdev_reopen(tvd);
6320 vdev_expand(tvd, txg);
6321 }
6322
6323 vdev_config_dirty(tvd);
6324
6325 /*
6326 * Mark vd's DTL as dirty in this txg. vdev_dtl_sync() will see that
6327 * vd->vdev_detached is set and free vd's DTL object in syncing context.
6328 * But first make sure we're not on any *other* txg's DTL list, to
6329 * prevent vd from being accessed after it's freed.
6330 */
6331 vdpath = spa_strdup(vd->vdev_path ? vd->vdev_path : "none");
6332 for (int t = 0; t < TXG_SIZE; t++)
6333 (void) txg_list_remove_this(&tvd->vdev_dtl_list, vd, t);
6334 vd->vdev_detached = B_TRUE;
6335 vdev_dirty(tvd, VDD_DTL, vd, txg);
6336
6337 spa_event_notify(spa, vd, NULL, ESC_ZFS_VDEV_REMOVE);
6338
6339 /* hang on to the spa before we release the lock */
6340 spa_open_ref(spa, FTAG);
6341
6342 error = spa_vdev_exit(spa, vd, txg, 0);
6343
6344 spa_history_log_internal(spa, "detach", NULL,
6345 "vdev=%s", vdpath);
6346 spa_strfree(vdpath);
6347
6348 /*
6349 * If this was the removal of the original device in a hot spare vdev,
6350 * then we want to go through and remove the device from the hot spare
6351 * list of every other pool.
6352 */
6353 if (unspare) {
6354 spa_t *altspa = NULL;
6355
6356 mutex_enter(&spa_namespace_lock);
6357 while ((altspa = spa_next(altspa)) != NULL) {
6358 if (altspa->spa_state != POOL_STATE_ACTIVE ||
6359 altspa == spa)
6360 continue;
6361
6362 spa_open_ref(altspa, FTAG);
6363 mutex_exit(&spa_namespace_lock);
6364 (void) spa_vdev_remove(altspa, unspare_guid, B_TRUE);
6365 mutex_enter(&spa_namespace_lock);
6366 spa_close(altspa, FTAG);
6367 }
6368 mutex_exit(&spa_namespace_lock);
6369
6370 /* search the rest of the vdevs for spares to remove */
6371 spa_vdev_resilver_done(spa);
6372 }
6373
6374 /* all done with the spa; OK to release */
6375 mutex_enter(&spa_namespace_lock);
6376 spa_close(spa, FTAG);
6377 mutex_exit(&spa_namespace_lock);
6378
6379 return (error);
6380 }
6381
6382 static int
6383 spa_vdev_initialize_impl(spa_t *spa, uint64_t guid, uint64_t cmd_type,
6384 list_t *vd_list)
6385 {
6386 ASSERT(MUTEX_HELD(&spa_namespace_lock));
6387
6388 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
6389
6390 /* Look up vdev and ensure it's a leaf. */
6391 vdev_t *vd = spa_lookup_by_guid(spa, guid, B_FALSE);
6392 if (vd == NULL || vd->vdev_detached) {
6393 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
6394 return (SET_ERROR(ENODEV));
6395 } else if (!vd->vdev_ops->vdev_op_leaf || !vdev_is_concrete(vd)) {
6396 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
6397 return (SET_ERROR(EINVAL));
6398 } else if (!vdev_writeable(vd)) {
6399 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
6400 return (SET_ERROR(EROFS));
6401 }
6402 mutex_enter(&vd->vdev_initialize_lock);
6403 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
6404
6405 /*
6406 * When we activate an initialize action we check to see
6407 * if the vdev_initialize_thread is NULL. We do this instead
6408 * of using the vdev_initialize_state since there might be
6409 * a previous initialization process which has completed but
6410 * the thread is not exited.
6411 */
6412 if (cmd_type == POOL_INITIALIZE_DO &&
6413 (vd->vdev_initialize_thread != NULL ||
6414 vd->vdev_top->vdev_removing)) {
6415 mutex_exit(&vd->vdev_initialize_lock);
6416 return (SET_ERROR(EBUSY));
6417 } else if (cmd_type == POOL_INITIALIZE_CANCEL &&
6418 (vd->vdev_initialize_state != VDEV_INITIALIZE_ACTIVE &&
6419 vd->vdev_initialize_state != VDEV_INITIALIZE_SUSPENDED)) {
6420 mutex_exit(&vd->vdev_initialize_lock);
6421 return (SET_ERROR(ESRCH));
6422 } else if (cmd_type == POOL_INITIALIZE_SUSPEND &&
6423 vd->vdev_initialize_state != VDEV_INITIALIZE_ACTIVE) {
6424 mutex_exit(&vd->vdev_initialize_lock);
6425 return (SET_ERROR(ESRCH));
6426 }
6427
6428 switch (cmd_type) {
6429 case POOL_INITIALIZE_DO:
6430 vdev_initialize(vd);
6431 break;
6432 case POOL_INITIALIZE_CANCEL:
6433 vdev_initialize_stop(vd, VDEV_INITIALIZE_CANCELED, vd_list);
6434 break;
6435 case POOL_INITIALIZE_SUSPEND:
6436 vdev_initialize_stop(vd, VDEV_INITIALIZE_SUSPENDED, vd_list);
6437 break;
6438 default:
6439 panic("invalid cmd_type %llu", (unsigned long long)cmd_type);
6440 }
6441 mutex_exit(&vd->vdev_initialize_lock);
6442
6443 return (0);
6444 }
6445
6446 int
6447 spa_vdev_initialize(spa_t *spa, nvlist_t *nv, uint64_t cmd_type,
6448 nvlist_t *vdev_errlist)
6449 {
6450 int total_errors = 0;
6451 list_t vd_list;
6452
6453 list_create(&vd_list, sizeof (vdev_t),
6454 offsetof(vdev_t, vdev_initialize_node));
6455
6456 /*
6457 * We hold the namespace lock through the whole function
6458 * to prevent any changes to the pool while we're starting or
6459 * stopping initialization. The config and state locks are held so that
6460 * we can properly assess the vdev state before we commit to
6461 * the initializing operation.
6462 */
6463 mutex_enter(&spa_namespace_lock);
6464
6465 for (nvpair_t *pair = nvlist_next_nvpair(nv, NULL);
6466 pair != NULL; pair = nvlist_next_nvpair(nv, pair)) {
6467 uint64_t vdev_guid = fnvpair_value_uint64(pair);
6468
6469 int error = spa_vdev_initialize_impl(spa, vdev_guid, cmd_type,
6470 &vd_list);
6471 if (error != 0) {
6472 char guid_as_str[MAXNAMELEN];
6473
6474 (void) snprintf(guid_as_str, sizeof (guid_as_str),
6475 "%llu", (unsigned long long)vdev_guid);
6476 fnvlist_add_int64(vdev_errlist, guid_as_str, error);
6477 total_errors++;
6478 }
6479 }
6480
6481 /* Wait for all initialize threads to stop. */
6482 vdev_initialize_stop_wait(spa, &vd_list);
6483
6484 /* Sync out the initializing state */
6485 txg_wait_synced(spa->spa_dsl_pool, 0);
6486 mutex_exit(&spa_namespace_lock);
6487
6488 list_destroy(&vd_list);
6489
6490 return (total_errors);
6491 }
6492
6493 /*
6494 * Split a set of devices from their mirrors, and create a new pool from them.
6495 */
6496 int
6497 spa_vdev_split_mirror(spa_t *spa, char *newname, nvlist_t *config,
6498 nvlist_t *props, boolean_t exp)
6499 {
6500 int error = 0;
6501 uint64_t txg, *glist;
6502 spa_t *newspa;
6503 uint_t c, children, lastlog;
6504 nvlist_t **child, *nvl, *tmp;
6505 dmu_tx_t *tx;
6506 char *altroot = NULL;
6507 vdev_t *rvd, **vml = NULL; /* vdev modify list */
6508 boolean_t activate_slog;
6509
6510 ASSERT(spa_writeable(spa));
6511
6512 txg = spa_vdev_enter(spa);
6513
6514 ASSERT(MUTEX_HELD(&spa_namespace_lock));
6515 if (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) {
6516 error = (spa_has_checkpoint(spa)) ?
6517 ZFS_ERR_CHECKPOINT_EXISTS : ZFS_ERR_DISCARDING_CHECKPOINT;
6518 return (spa_vdev_exit(spa, NULL, txg, error));
6519 }
6520
6521 /* clear the log and flush everything up to now */
6522 activate_slog = spa_passivate_log(spa);
6523 (void) spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
6524 error = spa_reset_logs(spa);
6525 txg = spa_vdev_config_enter(spa);
6526
6527 if (activate_slog)
6528 spa_activate_log(spa);
6529
6530 if (error != 0)
6531 return (spa_vdev_exit(spa, NULL, txg, error));
6532
6533 /* check new spa name before going any further */
6534 if (spa_lookup(newname) != NULL)
6535 return (spa_vdev_exit(spa, NULL, txg, EEXIST));
6536
6537 /*
6538 * scan through all the children to ensure they're all mirrors
6539 */
6540 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvl) != 0 ||
6541 nvlist_lookup_nvlist_array(nvl, ZPOOL_CONFIG_CHILDREN, &child,
6542 &children) != 0)
6543 return (spa_vdev_exit(spa, NULL, txg, EINVAL));
6544
6545 /* first, check to ensure we've got the right child count */
6546 rvd = spa->spa_root_vdev;
6547 lastlog = 0;
6548 for (c = 0; c < rvd->vdev_children; c++) {
6549 vdev_t *vd = rvd->vdev_child[c];
6550
6551 /* don't count the holes & logs as children */
6552 if (vd->vdev_islog || !vdev_is_concrete(vd)) {
6553 if (lastlog == 0)
6554 lastlog = c;
6555 continue;
6556 }
6557
6558 lastlog = 0;
6559 }
6560 if (children != (lastlog != 0 ? lastlog : rvd->vdev_children))
6561 return (spa_vdev_exit(spa, NULL, txg, EINVAL));
6562
6563 /* next, ensure no spare or cache devices are part of the split */
6564 if (nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_SPARES, &tmp) == 0 ||
6565 nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_L2CACHE, &tmp) == 0)
6566 return (spa_vdev_exit(spa, NULL, txg, EINVAL));
6567
6568 vml = kmem_zalloc(children * sizeof (vdev_t *), KM_SLEEP);
6569 glist = kmem_zalloc(children * sizeof (uint64_t), KM_SLEEP);
6570
6571 /* then, loop over each vdev and validate it */
6572 for (c = 0; c < children; c++) {
6573 uint64_t is_hole = 0;
6574
6575 (void) nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_IS_HOLE,
6576 &is_hole);
6577
6578 if (is_hole != 0) {
6579 if (spa->spa_root_vdev->vdev_child[c]->vdev_ishole ||
6580 spa->spa_root_vdev->vdev_child[c]->vdev_islog) {
6581 continue;
6582 } else {
6583 error = SET_ERROR(EINVAL);
6584 break;
6585 }
6586 }
6587
6588 /* which disk is going to be split? */
6589 if (nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_GUID,
6590 &glist[c]) != 0) {
6591 error = SET_ERROR(EINVAL);
6592 break;
6593 }
6594
6595 /* look it up in the spa */
6596 vml[c] = spa_lookup_by_guid(spa, glist[c], B_FALSE);
6597 if (vml[c] == NULL) {
6598 error = SET_ERROR(ENODEV);
6599 break;
6600 }
6601
6602 /* make sure there's nothing stopping the split */
6603 if (vml[c]->vdev_parent->vdev_ops != &vdev_mirror_ops ||
6604 vml[c]->vdev_islog ||
6605 !vdev_is_concrete(vml[c]) ||
6606 vml[c]->vdev_isspare ||
6607 vml[c]->vdev_isl2cache ||
6608 !vdev_writeable(vml[c]) ||
6609 vml[c]->vdev_children != 0 ||
6610 vml[c]->vdev_state != VDEV_STATE_HEALTHY ||
6611 c != spa->spa_root_vdev->vdev_child[c]->vdev_id) {
6612 error = SET_ERROR(EINVAL);
6613 break;
6614 }
6615
6616 if (vdev_dtl_required(vml[c]) ||
6617 vdev_resilver_needed(vml[c], NULL, NULL)) {
6618 error = SET_ERROR(EBUSY);
6619 break;
6620 }
6621
6622 /* we need certain info from the top level */
6623 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_ARRAY,
6624 vml[c]->vdev_top->vdev_ms_array) == 0);
6625 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_SHIFT,
6626 vml[c]->vdev_top->vdev_ms_shift) == 0);
6627 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASIZE,
6628 vml[c]->vdev_top->vdev_asize) == 0);
6629 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASHIFT,
6630 vml[c]->vdev_top->vdev_ashift) == 0);
6631
6632 /* transfer per-vdev ZAPs */
6633 ASSERT3U(vml[c]->vdev_leaf_zap, !=, 0);
6634 VERIFY0(nvlist_add_uint64(child[c],
6635 ZPOOL_CONFIG_VDEV_LEAF_ZAP, vml[c]->vdev_leaf_zap));
6636
6637 ASSERT3U(vml[c]->vdev_top->vdev_top_zap, !=, 0);
6638 VERIFY0(nvlist_add_uint64(child[c],
6639 ZPOOL_CONFIG_VDEV_TOP_ZAP,
6640 vml[c]->vdev_parent->vdev_top_zap));
6641 }
6642
6643 if (error != 0) {
6644 kmem_free(vml, children * sizeof (vdev_t *));
6645 kmem_free(glist, children * sizeof (uint64_t));
6646 return (spa_vdev_exit(spa, NULL, txg, error));
6647 }
6648
6649 /* stop writers from using the disks */
6650 for (c = 0; c < children; c++) {
6651 if (vml[c] != NULL)
6652 vml[c]->vdev_offline = B_TRUE;
6653 }
6654 vdev_reopen(spa->spa_root_vdev);
6655
6656 /*
6657 * Temporarily record the splitting vdevs in the spa config. This
6658 * will disappear once the config is regenerated.
6659 */
6660 VERIFY(nvlist_alloc(&nvl, NV_UNIQUE_NAME, KM_SLEEP) == 0);
6661 VERIFY(nvlist_add_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST,
6662 glist, children) == 0);
6663 kmem_free(glist, children * sizeof (uint64_t));
6664
6665 mutex_enter(&spa->spa_props_lock);
6666 VERIFY(nvlist_add_nvlist(spa->spa_config, ZPOOL_CONFIG_SPLIT,
6667 nvl) == 0);
6668 mutex_exit(&spa->spa_props_lock);
6669 spa->spa_config_splitting = nvl;
6670 vdev_config_dirty(spa->spa_root_vdev);
6671
6672 /* configure and create the new pool */
6673 VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME, newname) == 0);
6674 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
6675 exp ? POOL_STATE_EXPORTED : POOL_STATE_ACTIVE) == 0);
6676 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_VERSION,
6677 spa_version(spa)) == 0);
6678 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_TXG,
6679 spa->spa_config_txg) == 0);
6680 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_GUID,
6681 spa_generate_guid(NULL)) == 0);
6682 VERIFY0(nvlist_add_boolean(config, ZPOOL_CONFIG_HAS_PER_VDEV_ZAPS));
6683 (void) nvlist_lookup_string(props,
6684 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
6685
6686 /* add the new pool to the namespace */
6687 newspa = spa_add(newname, config, altroot);
6688 newspa->spa_avz_action = AVZ_ACTION_REBUILD;
6689 newspa->spa_config_txg = spa->spa_config_txg;
6690 spa_set_log_state(newspa, SPA_LOG_CLEAR);
6691
6692 /* release the spa config lock, retaining the namespace lock */
6693 spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
6694
6695 if (zio_injection_enabled)
6696 zio_handle_panic_injection(spa, FTAG, 1);
6697
6698 spa_activate(newspa, spa_mode_global);
6699 spa_async_suspend(newspa);
6700
6701 /*
6702 * Temporarily stop the initializing activity. We set the state to
6703 * ACTIVE so that we know to resume the initializing once the split
6704 * has completed.
6705 */
6706 list_t vd_list;
6707 list_create(&vd_list, sizeof (vdev_t),
6708 offsetof(vdev_t, vdev_initialize_node));
6709
6710 for (c = 0; c < children; c++) {
6711 if (vml[c] != NULL) {
6712 mutex_enter(&vml[c]->vdev_initialize_lock);
6713 vdev_initialize_stop(vml[c], VDEV_INITIALIZE_ACTIVE,
6714 &vd_list);
6715 mutex_exit(&vml[c]->vdev_initialize_lock);
6716 }
6717 }
6718 vdev_initialize_stop_wait(spa, &vd_list);
6719 list_destroy(&vd_list);
6720
6721 newspa->spa_config_source = SPA_CONFIG_SRC_SPLIT;
6722
6723 /* create the new pool from the disks of the original pool */
6724 error = spa_load(newspa, SPA_LOAD_IMPORT, SPA_IMPORT_ASSEMBLE);
6725 if (error)
6726 goto out;
6727
6728 /* if that worked, generate a real config for the new pool */
6729 if (newspa->spa_root_vdev != NULL) {
6730 VERIFY(nvlist_alloc(&newspa->spa_config_splitting,
6731 NV_UNIQUE_NAME, KM_SLEEP) == 0);
6732 VERIFY(nvlist_add_uint64(newspa->spa_config_splitting,
6733 ZPOOL_CONFIG_SPLIT_GUID, spa_guid(spa)) == 0);
6734 spa_config_set(newspa, spa_config_generate(newspa, NULL, -1ULL,
6735 B_TRUE));
6736 }
6737
6738 /* set the props */
6739 if (props != NULL) {
6740 spa_configfile_set(newspa, props, B_FALSE);
6741 error = spa_prop_set(newspa, props);
6742 if (error)
6743 goto out;
6744 }
6745
6746 /* flush everything */
6747 txg = spa_vdev_config_enter(newspa);
6748 vdev_config_dirty(newspa->spa_root_vdev);
6749 (void) spa_vdev_config_exit(newspa, NULL, txg, 0, FTAG);
6750
6751 if (zio_injection_enabled)
6752 zio_handle_panic_injection(spa, FTAG, 2);
6753
6754 spa_async_resume(newspa);
6755
6756 /* finally, update the original pool's config */
6757 txg = spa_vdev_config_enter(spa);
6758 tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
6759 error = dmu_tx_assign(tx, TXG_WAIT);
6760 if (error != 0)
6761 dmu_tx_abort(tx);
6762 for (c = 0; c < children; c++) {
6763 if (vml[c] != NULL) {
6764 vdev_split(vml[c]);
6765 if (error == 0)
6766 spa_history_log_internal(spa, "detach", tx,
6767 "vdev=%s", vml[c]->vdev_path);
6768
6769 vdev_free(vml[c]);
6770 }
6771 }
6772 spa->spa_avz_action = AVZ_ACTION_REBUILD;
6773 vdev_config_dirty(spa->spa_root_vdev);
6774 spa->spa_config_splitting = NULL;
6775 nvlist_free(nvl);
6776 if (error == 0)
6777 dmu_tx_commit(tx);
6778 (void) spa_vdev_exit(spa, NULL, txg, 0);
6779
6780 if (zio_injection_enabled)
6781 zio_handle_panic_injection(spa, FTAG, 3);
6782
6783 /* split is complete; log a history record */
6784 spa_history_log_internal(newspa, "split", NULL,
6785 "from pool %s", spa_name(spa));
6786
6787 kmem_free(vml, children * sizeof (vdev_t *));
6788
6789 /* if we're not going to mount the filesystems in userland, export */
6790 if (exp)
6791 error = spa_export_common(newname, POOL_STATE_EXPORTED, NULL,
6792 B_FALSE, B_FALSE);
6793
6794 return (error);
6795
6796 out:
6797 spa_unload(newspa);
6798 spa_deactivate(newspa);
6799 spa_remove(newspa);
6800
6801 txg = spa_vdev_config_enter(spa);
6802
6803 /* re-online all offlined disks */
6804 for (c = 0; c < children; c++) {
6805 if (vml[c] != NULL)
6806 vml[c]->vdev_offline = B_FALSE;
6807 }
6808
6809 /* restart initializing disks as necessary */
6810 spa_async_request(spa, SPA_ASYNC_INITIALIZE_RESTART);
6811
6812 vdev_reopen(spa->spa_root_vdev);
6813
6814 nvlist_free(spa->spa_config_splitting);
6815 spa->spa_config_splitting = NULL;
6816 (void) spa_vdev_exit(spa, NULL, txg, error);
6817
6818 kmem_free(vml, children * sizeof (vdev_t *));
6819 return (error);
6820 }
6821
6822 /*
6823 * Find any device that's done replacing, or a vdev marked 'unspare' that's
6824 * currently spared, so we can detach it.
6825 */
6826 static vdev_t *
6827 spa_vdev_resilver_done_hunt(vdev_t *vd)
6828 {
6829 vdev_t *newvd, *oldvd;
6830
6831 for (int c = 0; c < vd->vdev_children; c++) {
6832 oldvd = spa_vdev_resilver_done_hunt(vd->vdev_child[c]);
6833 if (oldvd != NULL)
6834 return (oldvd);
6835 }
6836
6837 /*
6838 * Check for a completed replacement. We always consider the first
6839 * vdev in the list to be the oldest vdev, and the last one to be
6840 * the newest (see spa_vdev_attach() for how that works). In
6841 * the case where the newest vdev is faulted, we will not automatically
6842 * remove it after a resilver completes. This is OK as it will require
6843 * user intervention to determine which disk the admin wishes to keep.
6844 */
6845 if (vd->vdev_ops == &vdev_replacing_ops) {
6846 ASSERT(vd->vdev_children > 1);
6847
6848 newvd = vd->vdev_child[vd->vdev_children - 1];
6849 oldvd = vd->vdev_child[0];
6850
6851 if (vdev_dtl_empty(newvd, DTL_MISSING) &&
6852 vdev_dtl_empty(newvd, DTL_OUTAGE) &&
6853 !vdev_dtl_required(oldvd))
6854 return (oldvd);
6855 }
6856
6857 /*
6858 * Check for a completed resilver with the 'unspare' flag set.
6859 * Also potentially update faulted state.
6860 */
6861 if (vd->vdev_ops == &vdev_spare_ops) {
6862 vdev_t *first = vd->vdev_child[0];
6863 vdev_t *last = vd->vdev_child[vd->vdev_children - 1];
6864
6865 if (last->vdev_unspare) {
6866 oldvd = first;
6867 newvd = last;
6868 } else if (first->vdev_unspare) {
6869 oldvd = last;
6870 newvd = first;
6871 } else {
6872 oldvd = NULL;
6873 }
6874
6875 if (oldvd != NULL &&
6876 vdev_dtl_empty(newvd, DTL_MISSING) &&
6877 vdev_dtl_empty(newvd, DTL_OUTAGE) &&
6878 !vdev_dtl_required(oldvd))
6879 return (oldvd);
6880
6881 vdev_propagate_state(vd);
6882
6883 /*
6884 * If there are more than two spares attached to a disk,
6885 * and those spares are not required, then we want to
6886 * attempt to free them up now so that they can be used
6887 * by other pools. Once we're back down to a single
6888 * disk+spare, we stop removing them.
6889 */
6890 if (vd->vdev_children > 2) {
6891 newvd = vd->vdev_child[1];
6892
6893 if (newvd->vdev_isspare && last->vdev_isspare &&
6894 vdev_dtl_empty(last, DTL_MISSING) &&
6895 vdev_dtl_empty(last, DTL_OUTAGE) &&
6896 !vdev_dtl_required(newvd))
6897 return (newvd);
6898 }
6899 }
6900
6901 return (NULL);
6902 }
6903
6904 static void
6905 spa_vdev_resilver_done(spa_t *spa)
6906 {
6907 vdev_t *vd, *pvd, *ppvd;
6908 uint64_t guid, sguid, pguid, ppguid;
6909
6910 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
6911
6912 while ((vd = spa_vdev_resilver_done_hunt(spa->spa_root_vdev)) != NULL) {
6913 pvd = vd->vdev_parent;
6914 ppvd = pvd->vdev_parent;
6915 guid = vd->vdev_guid;
6916 pguid = pvd->vdev_guid;
6917 ppguid = ppvd->vdev_guid;
6918 sguid = 0;
6919 /*
6920 * If we have just finished replacing a hot spared device, then
6921 * we need to detach the parent's first child (the original hot
6922 * spare) as well.
6923 */
6924 if (ppvd->vdev_ops == &vdev_spare_ops && pvd->vdev_id == 0 &&
6925 ppvd->vdev_children == 2) {
6926 ASSERT(pvd->vdev_ops == &vdev_replacing_ops);
6927 sguid = ppvd->vdev_child[1]->vdev_guid;
6928 }
6929 ASSERT(vd->vdev_resilver_txg == 0 || !vdev_dtl_required(vd));
6930
6931 spa_config_exit(spa, SCL_ALL, FTAG);
6932 if (spa_vdev_detach(spa, guid, pguid, B_TRUE) != 0)
6933 return;
6934 if (sguid && spa_vdev_detach(spa, sguid, ppguid, B_TRUE) != 0)
6935 return;
6936 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
6937 }
6938
6939 spa_config_exit(spa, SCL_ALL, FTAG);
6940 }
6941
6942 /*
6943 * Update the stored path or FRU for this vdev.
6944 */
6945 int
6946 spa_vdev_set_common(spa_t *spa, uint64_t guid, const char *value,
6947 boolean_t ispath)
6948 {
6949 vdev_t *vd;
6950 boolean_t sync = B_FALSE;
6951
6952 ASSERT(spa_writeable(spa));
6953
6954 spa_vdev_state_enter(spa, SCL_ALL);
6955
6956 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
6957 return (spa_vdev_state_exit(spa, NULL, ENOENT));
6958
6959 if (!vd->vdev_ops->vdev_op_leaf)
6960 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
6961
6962 if (ispath) {
6963 if (strcmp(value, vd->vdev_path) != 0) {
6964 spa_strfree(vd->vdev_path);
6965 vd->vdev_path = spa_strdup(value);
6966 sync = B_TRUE;
6967 }
6968 } else {
6969 if (vd->vdev_fru == NULL) {
6970 vd->vdev_fru = spa_strdup(value);
6971 sync = B_TRUE;
6972 } else if (strcmp(value, vd->vdev_fru) != 0) {
6973 spa_strfree(vd->vdev_fru);
6974 vd->vdev_fru = spa_strdup(value);
6975 sync = B_TRUE;
6976 }
6977 }
6978
6979 return (spa_vdev_state_exit(spa, sync ? vd : NULL, 0));
6980 }
6981
6982 int
6983 spa_vdev_setpath(spa_t *spa, uint64_t guid, const char *newpath)
6984 {
6985 return (spa_vdev_set_common(spa, guid, newpath, B_TRUE));
6986 }
6987
6988 int
6989 spa_vdev_setfru(spa_t *spa, uint64_t guid, const char *newfru)
6990 {
6991 return (spa_vdev_set_common(spa, guid, newfru, B_FALSE));
6992 }
6993
6994 /*
6995 * ==========================================================================
6996 * SPA Scanning
6997 * ==========================================================================
6998 */
6999 int
7000 spa_scrub_pause_resume(spa_t *spa, pool_scrub_cmd_t cmd)
7001 {
7002 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
7003
7004 if (dsl_scan_resilvering(spa->spa_dsl_pool))
7005 return (SET_ERROR(EBUSY));
7006
7007 return (dsl_scrub_set_pause_resume(spa->spa_dsl_pool, cmd));
7008 }
7009
7010 int
7011 spa_scan_stop(spa_t *spa)
7012 {
7013 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
7014 if (dsl_scan_resilvering(spa->spa_dsl_pool))
7015 return (SET_ERROR(EBUSY));
7016 return (dsl_scan_cancel(spa->spa_dsl_pool));
7017 }
7018
7019 int
7020 spa_scan(spa_t *spa, pool_scan_func_t func)
7021 {
7022 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
7023
7024 if (func >= POOL_SCAN_FUNCS || func == POOL_SCAN_NONE)
7025 return (SET_ERROR(ENOTSUP));
7026
7027 /*
7028 * If a resilver was requested, but there is no DTL on a
7029 * writeable leaf device, we have nothing to do.
7030 */
7031 if (func == POOL_SCAN_RESILVER &&
7032 !vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL)) {
7033 spa_async_request(spa, SPA_ASYNC_RESILVER_DONE);
7034 return (0);
7035 }
7036
7037 return (dsl_scan(spa->spa_dsl_pool, func));
7038 }
7039
7040 /*
7041 * ==========================================================================
7042 * SPA async task processing
7043 * ==========================================================================
7044 */
7045
7046 static void
7047 spa_async_remove(spa_t *spa, vdev_t *vd)
7048 {
7049 if (vd->vdev_remove_wanted) {
7050 vd->vdev_remove_wanted = B_FALSE;
7051 vd->vdev_delayed_close = B_FALSE;
7052 vdev_set_state(vd, B_FALSE, VDEV_STATE_REMOVED, VDEV_AUX_NONE);
7053
7054 /*
7055 * We want to clear the stats, but we don't want to do a full
7056 * vdev_clear() as that will cause us to throw away
7057 * degraded/faulted state as well as attempt to reopen the
7058 * device, all of which is a waste.
7059 */
7060 vd->vdev_stat.vs_read_errors = 0;
7061 vd->vdev_stat.vs_write_errors = 0;
7062 vd->vdev_stat.vs_checksum_errors = 0;
7063
7064 vdev_state_dirty(vd->vdev_top);
7065 }
7066
7067 for (int c = 0; c < vd->vdev_children; c++)
7068 spa_async_remove(spa, vd->vdev_child[c]);
7069 }
7070
7071 static void
7072 spa_async_probe(spa_t *spa, vdev_t *vd)
7073 {
7074 if (vd->vdev_probe_wanted) {
7075 vd->vdev_probe_wanted = B_FALSE;
7076 vdev_reopen(vd); /* vdev_open() does the actual probe */
7077 }
7078
7079 for (int c = 0; c < vd->vdev_children; c++)
7080 spa_async_probe(spa, vd->vdev_child[c]);
7081 }
7082
7083 static void
7084 spa_async_autoexpand(spa_t *spa, vdev_t *vd)
7085 {
7086 if (!spa->spa_autoexpand)
7087 return;
7088
7089 for (int c = 0; c < vd->vdev_children; c++) {
7090 vdev_t *cvd = vd->vdev_child[c];
7091 spa_async_autoexpand(spa, cvd);
7092 }
7093
7094 if (!vd->vdev_ops->vdev_op_leaf || vd->vdev_physpath == NULL)
7095 return;
7096
7097 spa_event_notify(vd->vdev_spa, vd, NULL, ESC_ZFS_VDEV_AUTOEXPAND);
7098 }
7099
7100 static void
7101 spa_async_thread(void *arg)
7102 {
7103 spa_t *spa = (spa_t *)arg;
7104 dsl_pool_t *dp = spa->spa_dsl_pool;
7105 int tasks;
7106
7107 ASSERT(spa->spa_sync_on);
7108
7109 mutex_enter(&spa->spa_async_lock);
7110 tasks = spa->spa_async_tasks;
7111 spa->spa_async_tasks = 0;
7112 mutex_exit(&spa->spa_async_lock);
7113
7114 /*
7115 * See if the config needs to be updated.
7116 */
7117 if (tasks & SPA_ASYNC_CONFIG_UPDATE) {
7118 uint64_t old_space, new_space;
7119
7120 mutex_enter(&spa_namespace_lock);
7121 old_space = metaslab_class_get_space(spa_normal_class(spa));
7122 old_space += metaslab_class_get_space(spa_special_class(spa));
7123 old_space += metaslab_class_get_space(spa_dedup_class(spa));
7124
7125 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
7126
7127 new_space = metaslab_class_get_space(spa_normal_class(spa));
7128 new_space += metaslab_class_get_space(spa_special_class(spa));
7129 new_space += metaslab_class_get_space(spa_dedup_class(spa));
7130 mutex_exit(&spa_namespace_lock);
7131
7132 /*
7133 * If the pool grew as a result of the config update,
7134 * then log an internal history event.
7135 */
7136 if (new_space != old_space) {
7137 spa_history_log_internal(spa, "vdev online", NULL,
7138 "pool '%s' size: %llu(+%llu)",
7139 spa_name(spa), new_space, new_space - old_space);
7140 }
7141 }
7142
7143 /*
7144 * See if any devices need to be marked REMOVED.
7145 */
7146 if (tasks & SPA_ASYNC_REMOVE) {
7147 spa_vdev_state_enter(spa, SCL_NONE);
7148 spa_async_remove(spa, spa->spa_root_vdev);
7149 for (int i = 0; i < spa->spa_l2cache.sav_count; i++)
7150 spa_async_remove(spa, spa->spa_l2cache.sav_vdevs[i]);
7151 for (int i = 0; i < spa->spa_spares.sav_count; i++)
7152 spa_async_remove(spa, spa->spa_spares.sav_vdevs[i]);
7153 (void) spa_vdev_state_exit(spa, NULL, 0);
7154 }
7155
7156 if ((tasks & SPA_ASYNC_AUTOEXPAND) && !spa_suspended(spa)) {
7157 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
7158 spa_async_autoexpand(spa, spa->spa_root_vdev);
7159 spa_config_exit(spa, SCL_CONFIG, FTAG);
7160 }
7161
7162 /*
7163 * See if any devices need to be probed.
7164 */
7165 if (tasks & SPA_ASYNC_PROBE) {
7166 spa_vdev_state_enter(spa, SCL_NONE);
7167 spa_async_probe(spa, spa->spa_root_vdev);
7168 (void) spa_vdev_state_exit(spa, NULL, 0);
7169 }
7170
7171 /*
7172 * If any devices are done replacing, detach them.
7173 */
7174 if (tasks & SPA_ASYNC_RESILVER_DONE)
7175 spa_vdev_resilver_done(spa);
7176
7177 /*
7178 * Kick off a resilver.
7179 */
7180 if (tasks & SPA_ASYNC_RESILVER &&
7181 (!dsl_scan_resilvering(dp) ||
7182 !spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_RESILVER_DEFER)))
7183 dsl_resilver_restart(dp, 0);
7184
7185 if (tasks & SPA_ASYNC_INITIALIZE_RESTART) {
7186 mutex_enter(&spa_namespace_lock);
7187 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
7188 vdev_initialize_restart(spa->spa_root_vdev);
7189 spa_config_exit(spa, SCL_CONFIG, FTAG);
7190 mutex_exit(&spa_namespace_lock);
7191 }
7192
7193 /*
7194 * Let the world know that we're done.
7195 */
7196 mutex_enter(&spa->spa_async_lock);
7197 spa->spa_async_thread = NULL;
7198 cv_broadcast(&spa->spa_async_cv);
7199 mutex_exit(&spa->spa_async_lock);
7200 thread_exit();
7201 }
7202
7203 void
7204 spa_async_suspend(spa_t *spa)
7205 {
7206 mutex_enter(&spa->spa_async_lock);
7207 spa->spa_async_suspended++;
7208 while (spa->spa_async_thread != NULL)
7209 cv_wait(&spa->spa_async_cv, &spa->spa_async_lock);
7210 mutex_exit(&spa->spa_async_lock);
7211
7212 spa_vdev_remove_suspend(spa);
7213
7214 zthr_t *condense_thread = spa->spa_condense_zthr;
7215 if (condense_thread != NULL)
7216 zthr_cancel(condense_thread);
7217
7218 zthr_t *discard_thread = spa->spa_checkpoint_discard_zthr;
7219 if (discard_thread != NULL)
7220 zthr_cancel(discard_thread);
7221 }
7222
7223 void
7224 spa_async_resume(spa_t *spa)
7225 {
7226 mutex_enter(&spa->spa_async_lock);
7227 ASSERT(spa->spa_async_suspended != 0);
7228 spa->spa_async_suspended--;
7229 mutex_exit(&spa->spa_async_lock);
7230 spa_restart_removal(spa);
7231
7232 zthr_t *condense_thread = spa->spa_condense_zthr;
7233 if (condense_thread != NULL)
7234 zthr_resume(condense_thread);
7235
7236 zthr_t *discard_thread = spa->spa_checkpoint_discard_zthr;
7237 if (discard_thread != NULL)
7238 zthr_resume(discard_thread);
7239 }
7240
7241 static boolean_t
7242 spa_async_tasks_pending(spa_t *spa)
7243 {
7244 uint_t non_config_tasks;
7245 uint_t config_task;
7246 boolean_t config_task_suspended;
7247
7248 non_config_tasks = spa->spa_async_tasks & ~SPA_ASYNC_CONFIG_UPDATE;
7249 config_task = spa->spa_async_tasks & SPA_ASYNC_CONFIG_UPDATE;
7250 if (spa->spa_ccw_fail_time == 0) {
7251 config_task_suspended = B_FALSE;
7252 } else {
7253 config_task_suspended =
7254 (gethrtime() - spa->spa_ccw_fail_time) <
7255 ((hrtime_t)zfs_ccw_retry_interval * NANOSEC);
7256 }
7257
7258 return (non_config_tasks || (config_task && !config_task_suspended));
7259 }
7260
7261 static void
7262 spa_async_dispatch(spa_t *spa)
7263 {
7264 mutex_enter(&spa->spa_async_lock);
7265 if (spa_async_tasks_pending(spa) &&
7266 !spa->spa_async_suspended &&
7267 spa->spa_async_thread == NULL &&
7268 rootdir != NULL)
7269 spa->spa_async_thread = thread_create(NULL, 0,
7270 spa_async_thread, spa, 0, &p0, TS_RUN, maxclsyspri);
7271 mutex_exit(&spa->spa_async_lock);
7272 }
7273
7274 void
7275 spa_async_request(spa_t *spa, int task)
7276 {
7277 zfs_dbgmsg("spa=%s async request task=%u", spa->spa_name, task);
7278 mutex_enter(&spa->spa_async_lock);
7279 spa->spa_async_tasks |= task;
7280 mutex_exit(&spa->spa_async_lock);
7281 }
7282
7283 /*
7284 * ==========================================================================
7285 * SPA syncing routines
7286 * ==========================================================================
7287 */
7288
7289 static int
7290 bpobj_enqueue_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
7291 {
7292 bpobj_t *bpo = arg;
7293 bpobj_enqueue(bpo, bp, tx);
7294 return (0);
7295 }
7296
7297 static int
7298 spa_free_sync_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
7299 {
7300 zio_t *zio = arg;
7301
7302 zio_nowait(zio_free_sync(zio, zio->io_spa, dmu_tx_get_txg(tx), bp,
7303 zio->io_flags));
7304 return (0);
7305 }
7306
7307 /*
7308 * Note: this simple function is not inlined to make it easier to dtrace the
7309 * amount of time spent syncing frees.
7310 */
7311 static void
7312 spa_sync_frees(spa_t *spa, bplist_t *bpl, dmu_tx_t *tx)
7313 {
7314 zio_t *zio = zio_root(spa, NULL, NULL, 0);
7315 bplist_iterate(bpl, spa_free_sync_cb, zio, tx);
7316 VERIFY(zio_wait(zio) == 0);
7317 }
7318
7319 /*
7320 * Note: this simple function is not inlined to make it easier to dtrace the
7321 * amount of time spent syncing deferred frees.
7322 */
7323 static void
7324 spa_sync_deferred_frees(spa_t *spa, dmu_tx_t *tx)
7325 {
7326 if (spa_sync_pass(spa) != 1)
7327 return;
7328
7329 zio_t *zio = zio_root(spa, NULL, NULL, 0);
7330 VERIFY3U(bpobj_iterate(&spa->spa_deferred_bpobj,
7331 spa_free_sync_cb, zio, tx), ==, 0);
7332 VERIFY0(zio_wait(zio));
7333 }
7334
7335 static void
7336 spa_sync_nvlist(spa_t *spa, uint64_t obj, nvlist_t *nv, dmu_tx_t *tx)
7337 {
7338 char *packed = NULL;
7339 size_t bufsize;
7340 size_t nvsize = 0;
7341 dmu_buf_t *db;
7342
7343 VERIFY(nvlist_size(nv, &nvsize, NV_ENCODE_XDR) == 0);
7344
7345 /*
7346 * Write full (SPA_CONFIG_BLOCKSIZE) blocks of configuration
7347 * information. This avoids the dmu_buf_will_dirty() path and
7348 * saves us a pre-read to get data we don't actually care about.
7349 */
7350 bufsize = P2ROUNDUP((uint64_t)nvsize, SPA_CONFIG_BLOCKSIZE);
7351 packed = vmem_alloc(bufsize, KM_SLEEP);
7352
7353 VERIFY(nvlist_pack(nv, &packed, &nvsize, NV_ENCODE_XDR,
7354 KM_SLEEP) == 0);
7355 bzero(packed + nvsize, bufsize - nvsize);
7356
7357 dmu_write(spa->spa_meta_objset, obj, 0, bufsize, packed, tx);
7358
7359 vmem_free(packed, bufsize);
7360
7361 VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db));
7362 dmu_buf_will_dirty(db, tx);
7363 *(uint64_t *)db->db_data = nvsize;
7364 dmu_buf_rele(db, FTAG);
7365 }
7366
7367 static void
7368 spa_sync_aux_dev(spa_t *spa, spa_aux_vdev_t *sav, dmu_tx_t *tx,
7369 const char *config, const char *entry)
7370 {
7371 nvlist_t *nvroot;
7372 nvlist_t **list;
7373 int i;
7374
7375 if (!sav->sav_sync)
7376 return;
7377
7378 /*
7379 * Update the MOS nvlist describing the list of available devices.
7380 * spa_validate_aux() will have already made sure this nvlist is
7381 * valid and the vdevs are labeled appropriately.
7382 */
7383 if (sav->sav_object == 0) {
7384 sav->sav_object = dmu_object_alloc(spa->spa_meta_objset,
7385 DMU_OT_PACKED_NVLIST, 1 << 14, DMU_OT_PACKED_NVLIST_SIZE,
7386 sizeof (uint64_t), tx);
7387 VERIFY(zap_update(spa->spa_meta_objset,
7388 DMU_POOL_DIRECTORY_OBJECT, entry, sizeof (uint64_t), 1,
7389 &sav->sav_object, tx) == 0);
7390 }
7391
7392 VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0);
7393 if (sav->sav_count == 0) {
7394 VERIFY(nvlist_add_nvlist_array(nvroot, config, NULL, 0) == 0);
7395 } else {
7396 list = kmem_alloc(sav->sav_count*sizeof (void *), KM_SLEEP);
7397 for (i = 0; i < sav->sav_count; i++)
7398 list[i] = vdev_config_generate(spa, sav->sav_vdevs[i],
7399 B_FALSE, VDEV_CONFIG_L2CACHE);
7400 VERIFY(nvlist_add_nvlist_array(nvroot, config, list,
7401 sav->sav_count) == 0);
7402 for (i = 0; i < sav->sav_count; i++)
7403 nvlist_free(list[i]);
7404 kmem_free(list, sav->sav_count * sizeof (void *));
7405 }
7406
7407 spa_sync_nvlist(spa, sav->sav_object, nvroot, tx);
7408 nvlist_free(nvroot);
7409
7410 sav->sav_sync = B_FALSE;
7411 }
7412
7413 /*
7414 * Rebuild spa's all-vdev ZAP from the vdev ZAPs indicated in each vdev_t.
7415 * The all-vdev ZAP must be empty.
7416 */
7417 static void
7418 spa_avz_build(vdev_t *vd, uint64_t avz, dmu_tx_t *tx)
7419 {
7420 spa_t *spa = vd->vdev_spa;
7421
7422 if (vd->vdev_top_zap != 0) {
7423 VERIFY0(zap_add_int(spa->spa_meta_objset, avz,
7424 vd->vdev_top_zap, tx));
7425 }
7426 if (vd->vdev_leaf_zap != 0) {
7427 VERIFY0(zap_add_int(spa->spa_meta_objset, avz,
7428 vd->vdev_leaf_zap, tx));
7429 }
7430 for (uint64_t i = 0; i < vd->vdev_children; i++) {
7431 spa_avz_build(vd->vdev_child[i], avz, tx);
7432 }
7433 }
7434
7435 static void
7436 spa_sync_config_object(spa_t *spa, dmu_tx_t *tx)
7437 {
7438 nvlist_t *config;
7439
7440 /*
7441 * If the pool is being imported from a pre-per-vdev-ZAP version of ZFS,
7442 * its config may not be dirty but we still need to build per-vdev ZAPs.
7443 * Similarly, if the pool is being assembled (e.g. after a split), we
7444 * need to rebuild the AVZ although the config may not be dirty.
7445 */
7446 if (list_is_empty(&spa->spa_config_dirty_list) &&
7447 spa->spa_avz_action == AVZ_ACTION_NONE)
7448 return;
7449
7450 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
7451
7452 ASSERT(spa->spa_avz_action == AVZ_ACTION_NONE ||
7453 spa->spa_avz_action == AVZ_ACTION_INITIALIZE ||
7454 spa->spa_all_vdev_zaps != 0);
7455
7456 if (spa->spa_avz_action == AVZ_ACTION_REBUILD) {
7457 /* Make and build the new AVZ */
7458 uint64_t new_avz = zap_create(spa->spa_meta_objset,
7459 DMU_OTN_ZAP_METADATA, DMU_OT_NONE, 0, tx);
7460 spa_avz_build(spa->spa_root_vdev, new_avz, tx);
7461
7462 /* Diff old AVZ with new one */
7463 zap_cursor_t zc;
7464 zap_attribute_t za;
7465
7466 for (zap_cursor_init(&zc, spa->spa_meta_objset,
7467 spa->spa_all_vdev_zaps);
7468 zap_cursor_retrieve(&zc, &za) == 0;
7469 zap_cursor_advance(&zc)) {
7470 uint64_t vdzap = za.za_first_integer;
7471 if (zap_lookup_int(spa->spa_meta_objset, new_avz,
7472 vdzap) == ENOENT) {
7473 /*
7474 * ZAP is listed in old AVZ but not in new one;
7475 * destroy it
7476 */
7477 VERIFY0(zap_destroy(spa->spa_meta_objset, vdzap,
7478 tx));
7479 }
7480 }
7481
7482 zap_cursor_fini(&zc);
7483
7484 /* Destroy the old AVZ */
7485 VERIFY0(zap_destroy(spa->spa_meta_objset,
7486 spa->spa_all_vdev_zaps, tx));
7487
7488 /* Replace the old AVZ in the dir obj with the new one */
7489 VERIFY0(zap_update(spa->spa_meta_objset,
7490 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_VDEV_ZAP_MAP,
7491 sizeof (new_avz), 1, &new_avz, tx));
7492
7493 spa->spa_all_vdev_zaps = new_avz;
7494 } else if (spa->spa_avz_action == AVZ_ACTION_DESTROY) {
7495 zap_cursor_t zc;
7496 zap_attribute_t za;
7497
7498 /* Walk through the AVZ and destroy all listed ZAPs */
7499 for (zap_cursor_init(&zc, spa->spa_meta_objset,
7500 spa->spa_all_vdev_zaps);
7501 zap_cursor_retrieve(&zc, &za) == 0;
7502 zap_cursor_advance(&zc)) {
7503 uint64_t zap = za.za_first_integer;
7504 VERIFY0(zap_destroy(spa->spa_meta_objset, zap, tx));
7505 }
7506
7507 zap_cursor_fini(&zc);
7508
7509 /* Destroy and unlink the AVZ itself */
7510 VERIFY0(zap_destroy(spa->spa_meta_objset,
7511 spa->spa_all_vdev_zaps, tx));
7512 VERIFY0(zap_remove(spa->spa_meta_objset,
7513 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_VDEV_ZAP_MAP, tx));
7514 spa->spa_all_vdev_zaps = 0;
7515 }
7516
7517 if (spa->spa_all_vdev_zaps == 0) {
7518 spa->spa_all_vdev_zaps = zap_create_link(spa->spa_meta_objset,
7519 DMU_OTN_ZAP_METADATA, DMU_POOL_DIRECTORY_OBJECT,
7520 DMU_POOL_VDEV_ZAP_MAP, tx);
7521 }
7522 spa->spa_avz_action = AVZ_ACTION_NONE;
7523
7524 /* Create ZAPs for vdevs that don't have them. */
7525 vdev_construct_zaps(spa->spa_root_vdev, tx);
7526
7527 config = spa_config_generate(spa, spa->spa_root_vdev,
7528 dmu_tx_get_txg(tx), B_FALSE);
7529
7530 /*
7531 * If we're upgrading the spa version then make sure that
7532 * the config object gets updated with the correct version.
7533 */
7534 if (spa->spa_ubsync.ub_version < spa->spa_uberblock.ub_version)
7535 fnvlist_add_uint64(config, ZPOOL_CONFIG_VERSION,
7536 spa->spa_uberblock.ub_version);
7537
7538 spa_config_exit(spa, SCL_STATE, FTAG);
7539
7540 nvlist_free(spa->spa_config_syncing);
7541 spa->spa_config_syncing = config;
7542
7543 spa_sync_nvlist(spa, spa->spa_config_object, config, tx);
7544 }
7545
7546 static void
7547 spa_sync_version(void *arg, dmu_tx_t *tx)
7548 {
7549 uint64_t *versionp = arg;
7550 uint64_t version = *versionp;
7551 spa_t *spa = dmu_tx_pool(tx)->dp_spa;
7552
7553 /*
7554 * Setting the version is special cased when first creating the pool.
7555 */
7556 ASSERT(tx->tx_txg != TXG_INITIAL);
7557
7558 ASSERT(SPA_VERSION_IS_SUPPORTED(version));
7559 ASSERT(version >= spa_version(spa));
7560
7561 spa->spa_uberblock.ub_version = version;
7562 vdev_config_dirty(spa->spa_root_vdev);
7563 spa_history_log_internal(spa, "set", tx, "version=%lld", version);
7564 }
7565
7566 /*
7567 * Set zpool properties.
7568 */
7569 static void
7570 spa_sync_props(void *arg, dmu_tx_t *tx)
7571 {
7572 nvlist_t *nvp = arg;
7573 spa_t *spa = dmu_tx_pool(tx)->dp_spa;
7574 objset_t *mos = spa->spa_meta_objset;
7575 nvpair_t *elem = NULL;
7576
7577 mutex_enter(&spa->spa_props_lock);
7578
7579 while ((elem = nvlist_next_nvpair(nvp, elem))) {
7580 uint64_t intval;
7581 char *strval, *fname;
7582 zpool_prop_t prop;
7583 const char *propname;
7584 zprop_type_t proptype;
7585 spa_feature_t fid;
7586
7587 switch (prop = zpool_name_to_prop(nvpair_name(elem))) {
7588 case ZPOOL_PROP_INVAL:
7589 /*
7590 * We checked this earlier in spa_prop_validate().
7591 */
7592 ASSERT(zpool_prop_feature(nvpair_name(elem)));
7593
7594 fname = strchr(nvpair_name(elem), '@') + 1;
7595 VERIFY0(zfeature_lookup_name(fname, &fid));
7596
7597 spa_feature_enable(spa, fid, tx);
7598 spa_history_log_internal(spa, "set", tx,
7599 "%s=enabled", nvpair_name(elem));
7600 break;
7601
7602 case ZPOOL_PROP_VERSION:
7603 intval = fnvpair_value_uint64(elem);
7604 /*
7605 * The version is synced separately before other
7606 * properties and should be correct by now.
7607 */
7608 ASSERT3U(spa_version(spa), >=, intval);
7609 break;
7610
7611 case ZPOOL_PROP_ALTROOT:
7612 /*
7613 * 'altroot' is a non-persistent property. It should
7614 * have been set temporarily at creation or import time.
7615 */
7616 ASSERT(spa->spa_root != NULL);
7617 break;
7618
7619 case ZPOOL_PROP_READONLY:
7620 case ZPOOL_PROP_CACHEFILE:
7621 /*
7622 * 'readonly' and 'cachefile' are also non-persisitent
7623 * properties.
7624 */
7625 break;
7626 case ZPOOL_PROP_COMMENT:
7627 strval = fnvpair_value_string(elem);
7628 if (spa->spa_comment != NULL)
7629 spa_strfree(spa->spa_comment);
7630 spa->spa_comment = spa_strdup(strval);
7631 /*
7632 * We need to dirty the configuration on all the vdevs
7633 * so that their labels get updated. It's unnecessary
7634 * to do this for pool creation since the vdev's
7635 * configuration has already been dirtied.
7636 */
7637 if (tx->tx_txg != TXG_INITIAL)
7638 vdev_config_dirty(spa->spa_root_vdev);
7639 spa_history_log_internal(spa, "set", tx,
7640 "%s=%s", nvpair_name(elem), strval);
7641 break;
7642 default:
7643 /*
7644 * Set pool property values in the poolprops mos object.
7645 */
7646 if (spa->spa_pool_props_object == 0) {
7647 spa->spa_pool_props_object =
7648 zap_create_link(mos, DMU_OT_POOL_PROPS,
7649 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_PROPS,
7650 tx);
7651 }
7652
7653 /* normalize the property name */
7654 propname = zpool_prop_to_name(prop);
7655 proptype = zpool_prop_get_type(prop);
7656
7657 if (nvpair_type(elem) == DATA_TYPE_STRING) {
7658 ASSERT(proptype == PROP_TYPE_STRING);
7659 strval = fnvpair_value_string(elem);
7660 VERIFY0(zap_update(mos,
7661 spa->spa_pool_props_object, propname,
7662 1, strlen(strval) + 1, strval, tx));
7663 spa_history_log_internal(spa, "set", tx,
7664 "%s=%s", nvpair_name(elem), strval);
7665 } else if (nvpair_type(elem) == DATA_TYPE_UINT64) {
7666 intval = fnvpair_value_uint64(elem);
7667
7668 if (proptype == PROP_TYPE_INDEX) {
7669 const char *unused;
7670 VERIFY0(zpool_prop_index_to_string(
7671 prop, intval, &unused));
7672 }
7673 VERIFY0(zap_update(mos,
7674 spa->spa_pool_props_object, propname,
7675 8, 1, &intval, tx));
7676 spa_history_log_internal(spa, "set", tx,
7677 "%s=%lld", nvpair_name(elem), intval);
7678 } else {
7679 ASSERT(0); /* not allowed */
7680 }
7681
7682 switch (prop) {
7683 case ZPOOL_PROP_DELEGATION:
7684 spa->spa_delegation = intval;
7685 break;
7686 case ZPOOL_PROP_BOOTFS:
7687 spa->spa_bootfs = intval;
7688 break;
7689 case ZPOOL_PROP_FAILUREMODE:
7690 spa->spa_failmode = intval;
7691 break;
7692 case ZPOOL_PROP_AUTOEXPAND:
7693 spa->spa_autoexpand = intval;
7694 if (tx->tx_txg != TXG_INITIAL)
7695 spa_async_request(spa,
7696 SPA_ASYNC_AUTOEXPAND);
7697 break;
7698 case ZPOOL_PROP_MULTIHOST:
7699 spa->spa_multihost = intval;
7700 break;
7701 case ZPOOL_PROP_DEDUPDITTO:
7702 spa->spa_dedup_ditto = intval;
7703 break;
7704 default:
7705 break;
7706 }
7707 }
7708
7709 }
7710
7711 mutex_exit(&spa->spa_props_lock);
7712 }
7713
7714 /*
7715 * Perform one-time upgrade on-disk changes. spa_version() does not
7716 * reflect the new version this txg, so there must be no changes this
7717 * txg to anything that the upgrade code depends on after it executes.
7718 * Therefore this must be called after dsl_pool_sync() does the sync
7719 * tasks.
7720 */
7721 static void
7722 spa_sync_upgrades(spa_t *spa, dmu_tx_t *tx)
7723 {
7724 if (spa_sync_pass(spa) != 1)
7725 return;
7726
7727 dsl_pool_t *dp = spa->spa_dsl_pool;
7728 rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG);
7729
7730 if (spa->spa_ubsync.ub_version < SPA_VERSION_ORIGIN &&
7731 spa->spa_uberblock.ub_version >= SPA_VERSION_ORIGIN) {
7732 dsl_pool_create_origin(dp, tx);
7733
7734 /* Keeping the origin open increases spa_minref */
7735 spa->spa_minref += 3;
7736 }
7737
7738 if (spa->spa_ubsync.ub_version < SPA_VERSION_NEXT_CLONES &&
7739 spa->spa_uberblock.ub_version >= SPA_VERSION_NEXT_CLONES) {
7740 dsl_pool_upgrade_clones(dp, tx);
7741 }
7742
7743 if (spa->spa_ubsync.ub_version < SPA_VERSION_DIR_CLONES &&
7744 spa->spa_uberblock.ub_version >= SPA_VERSION_DIR_CLONES) {
7745 dsl_pool_upgrade_dir_clones(dp, tx);
7746
7747 /* Keeping the freedir open increases spa_minref */
7748 spa->spa_minref += 3;
7749 }
7750
7751 if (spa->spa_ubsync.ub_version < SPA_VERSION_FEATURES &&
7752 spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) {
7753 spa_feature_create_zap_objects(spa, tx);
7754 }
7755
7756 /*
7757 * LZ4_COMPRESS feature's behaviour was changed to activate_on_enable
7758 * when possibility to use lz4 compression for metadata was added
7759 * Old pools that have this feature enabled must be upgraded to have
7760 * this feature active
7761 */
7762 if (spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) {
7763 boolean_t lz4_en = spa_feature_is_enabled(spa,
7764 SPA_FEATURE_LZ4_COMPRESS);
7765 boolean_t lz4_ac = spa_feature_is_active(spa,
7766 SPA_FEATURE_LZ4_COMPRESS);
7767
7768 if (lz4_en && !lz4_ac)
7769 spa_feature_incr(spa, SPA_FEATURE_LZ4_COMPRESS, tx);
7770 }
7771
7772 /*
7773 * If we haven't written the salt, do so now. Note that the
7774 * feature may not be activated yet, but that's fine since
7775 * the presence of this ZAP entry is backwards compatible.
7776 */
7777 if (zap_contains(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
7778 DMU_POOL_CHECKSUM_SALT) == ENOENT) {
7779 VERIFY0(zap_add(spa->spa_meta_objset,
7780 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CHECKSUM_SALT, 1,
7781 sizeof (spa->spa_cksum_salt.zcs_bytes),
7782 spa->spa_cksum_salt.zcs_bytes, tx));
7783 }
7784
7785 rrw_exit(&dp->dp_config_rwlock, FTAG);
7786 }
7787
7788 static void
7789 vdev_indirect_state_sync_verify(vdev_t *vd)
7790 {
7791 ASSERTV(vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping);
7792 ASSERTV(vdev_indirect_births_t *vib = vd->vdev_indirect_births);
7793
7794 if (vd->vdev_ops == &vdev_indirect_ops) {
7795 ASSERT(vim != NULL);
7796 ASSERT(vib != NULL);
7797 }
7798
7799 uint64_t obsolete_sm_object = 0;
7800 ASSERT0(vdev_obsolete_sm_object(vd, &obsolete_sm_object));
7801 if (obsolete_sm_object != 0) {
7802 ASSERT(vd->vdev_obsolete_sm != NULL);
7803 ASSERT(vd->vdev_removing ||
7804 vd->vdev_ops == &vdev_indirect_ops);
7805 ASSERT(vdev_indirect_mapping_num_entries(vim) > 0);
7806 ASSERT(vdev_indirect_mapping_bytes_mapped(vim) > 0);
7807 ASSERT3U(obsolete_sm_object, ==,
7808 space_map_object(vd->vdev_obsolete_sm));
7809 ASSERT3U(vdev_indirect_mapping_bytes_mapped(vim), >=,
7810 space_map_allocated(vd->vdev_obsolete_sm));
7811 }
7812 ASSERT(vd->vdev_obsolete_segments != NULL);
7813
7814 /*
7815 * Since frees / remaps to an indirect vdev can only
7816 * happen in syncing context, the obsolete segments
7817 * tree must be empty when we start syncing.
7818 */
7819 ASSERT0(range_tree_space(vd->vdev_obsolete_segments));
7820 }
7821
7822 /*
7823 * Set the top-level vdev's max queue depth. Evaluate each top-level's
7824 * async write queue depth in case it changed. The max queue depth will
7825 * not change in the middle of syncing out this txg.
7826 */
7827 static void
7828 spa_sync_adjust_vdev_max_queue_depth(spa_t *spa)
7829 {
7830 ASSERT(spa_writeable(spa));
7831
7832 vdev_t *rvd = spa->spa_root_vdev;
7833 uint32_t max_queue_depth = zfs_vdev_async_write_max_active *
7834 zfs_vdev_queue_depth_pct / 100;
7835 metaslab_class_t *normal = spa_normal_class(spa);
7836 metaslab_class_t *special = spa_special_class(spa);
7837 metaslab_class_t *dedup = spa_dedup_class(spa);
7838
7839 uint64_t slots_per_allocator = 0;
7840 for (int c = 0; c < rvd->vdev_children; c++) {
7841 vdev_t *tvd = rvd->vdev_child[c];
7842
7843 metaslab_group_t *mg = tvd->vdev_mg;
7844 if (mg == NULL || !metaslab_group_initialized(mg))
7845 continue;
7846
7847 metaslab_class_t *mc = mg->mg_class;
7848 if (mc != normal && mc != special && mc != dedup)
7849 continue;
7850
7851 /*
7852 * It is safe to do a lock-free check here because only async
7853 * allocations look at mg_max_alloc_queue_depth, and async
7854 * allocations all happen from spa_sync().
7855 */
7856 for (int i = 0; i < spa->spa_alloc_count; i++)
7857 ASSERT0(zfs_refcount_count(
7858 &(mg->mg_alloc_queue_depth[i])));
7859 mg->mg_max_alloc_queue_depth = max_queue_depth;
7860
7861 for (int i = 0; i < spa->spa_alloc_count; i++) {
7862 mg->mg_cur_max_alloc_queue_depth[i] =
7863 zfs_vdev_def_queue_depth;
7864 }
7865 slots_per_allocator += zfs_vdev_def_queue_depth;
7866 }
7867
7868 for (int i = 0; i < spa->spa_alloc_count; i++) {
7869 ASSERT0(zfs_refcount_count(&normal->mc_alloc_slots[i]));
7870 ASSERT0(zfs_refcount_count(&special->mc_alloc_slots[i]));
7871 ASSERT0(zfs_refcount_count(&dedup->mc_alloc_slots[i]));
7872 normal->mc_alloc_max_slots[i] = slots_per_allocator;
7873 special->mc_alloc_max_slots[i] = slots_per_allocator;
7874 dedup->mc_alloc_max_slots[i] = slots_per_allocator;
7875 }
7876 normal->mc_alloc_throttle_enabled = zio_dva_throttle_enabled;
7877 special->mc_alloc_throttle_enabled = zio_dva_throttle_enabled;
7878 dedup->mc_alloc_throttle_enabled = zio_dva_throttle_enabled;
7879 }
7880
7881 static void
7882 spa_sync_condense_indirect(spa_t *spa, dmu_tx_t *tx)
7883 {
7884 ASSERT(spa_writeable(spa));
7885
7886 vdev_t *rvd = spa->spa_root_vdev;
7887 for (int c = 0; c < rvd->vdev_children; c++) {
7888 vdev_t *vd = rvd->vdev_child[c];
7889 vdev_indirect_state_sync_verify(vd);
7890
7891 if (vdev_indirect_should_condense(vd)) {
7892 spa_condense_indirect_start_sync(vd, tx);
7893 break;
7894 }
7895 }
7896 }
7897
7898 static void
7899 spa_sync_iterate_to_convergence(spa_t *spa, dmu_tx_t *tx)
7900 {
7901 objset_t *mos = spa->spa_meta_objset;
7902 dsl_pool_t *dp = spa->spa_dsl_pool;
7903 uint64_t txg = tx->tx_txg;
7904 bplist_t *free_bpl = &spa->spa_free_bplist[txg & TXG_MASK];
7905
7906 do {
7907 int pass = ++spa->spa_sync_pass;
7908
7909 spa_sync_config_object(spa, tx);
7910 spa_sync_aux_dev(spa, &spa->spa_spares, tx,
7911 ZPOOL_CONFIG_SPARES, DMU_POOL_SPARES);
7912 spa_sync_aux_dev(spa, &spa->spa_l2cache, tx,
7913 ZPOOL_CONFIG_L2CACHE, DMU_POOL_L2CACHE);
7914 spa_errlog_sync(spa, txg);
7915 dsl_pool_sync(dp, txg);
7916
7917 if (pass < zfs_sync_pass_deferred_free) {
7918 spa_sync_frees(spa, free_bpl, tx);
7919 } else {
7920 /*
7921 * We can not defer frees in pass 1, because
7922 * we sync the deferred frees later in pass 1.
7923 */
7924 ASSERT3U(pass, >, 1);
7925 bplist_iterate(free_bpl, bpobj_enqueue_cb,
7926 &spa->spa_deferred_bpobj, tx);
7927 }
7928
7929 ddt_sync(spa, txg);
7930 dsl_scan_sync(dp, tx);
7931 svr_sync(spa, tx);
7932 spa_sync_upgrades(spa, tx);
7933
7934 vdev_t *vd = NULL;
7935 while ((vd = txg_list_remove(&spa->spa_vdev_txg_list, txg))
7936 != NULL)
7937 vdev_sync(vd, txg);
7938
7939 /*
7940 * Note: We need to check if the MOS is dirty because we could
7941 * have marked the MOS dirty without updating the uberblock
7942 * (e.g. if we have sync tasks but no dirty user data). We need
7943 * to check the uberblock's rootbp because it is updated if we
7944 * have synced out dirty data (though in this case the MOS will
7945 * most likely also be dirty due to second order effects, we
7946 * don't want to rely on that here).
7947 */
7948 if (pass == 1 &&
7949 spa->spa_uberblock.ub_rootbp.blk_birth < txg &&
7950 !dmu_objset_is_dirty(mos, txg)) {
7951 /*
7952 * Nothing changed on the first pass, therefore this
7953 * TXG is a no-op. Avoid syncing deferred frees, so
7954 * that we can keep this TXG as a no-op.
7955 */
7956 ASSERT(txg_list_empty(&dp->dp_dirty_datasets, txg));
7957 ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg));
7958 ASSERT(txg_list_empty(&dp->dp_sync_tasks, txg));
7959 ASSERT(txg_list_empty(&dp->dp_early_sync_tasks, txg));
7960 break;
7961 }
7962
7963 spa_sync_deferred_frees(spa, tx);
7964 } while (dmu_objset_is_dirty(mos, txg));
7965 }
7966
7967 /*
7968 * Rewrite the vdev configuration (which includes the uberblock) to
7969 * commit the transaction group.
7970 *
7971 * If there are no dirty vdevs, we sync the uberblock to a few random
7972 * top-level vdevs that are known to be visible in the config cache
7973 * (see spa_vdev_add() for a complete description). If there *are* dirty
7974 * vdevs, sync the uberblock to all vdevs.
7975 */
7976 static void
7977 spa_sync_rewrite_vdev_config(spa_t *spa, dmu_tx_t *tx)
7978 {
7979 vdev_t *rvd = spa->spa_root_vdev;
7980 uint64_t txg = tx->tx_txg;
7981
7982 for (;;) {
7983 int error = 0;
7984
7985 /*
7986 * We hold SCL_STATE to prevent vdev open/close/etc.
7987 * while we're attempting to write the vdev labels.
7988 */
7989 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
7990
7991 if (list_is_empty(&spa->spa_config_dirty_list)) {
7992 vdev_t *svd[SPA_SYNC_MIN_VDEVS] = { NULL };
7993 int svdcount = 0;
7994 int children = rvd->vdev_children;
7995 int c0 = spa_get_random(children);
7996
7997 for (int c = 0; c < children; c++) {
7998 vdev_t *vd =
7999 rvd->vdev_child[(c0 + c) % children];
8000
8001 /* Stop when revisiting the first vdev */
8002 if (c > 0 && svd[0] == vd)
8003 break;
8004
8005 if (vd->vdev_ms_array == 0 ||
8006 vd->vdev_islog ||
8007 !vdev_is_concrete(vd))
8008 continue;
8009
8010 svd[svdcount++] = vd;
8011 if (svdcount == SPA_SYNC_MIN_VDEVS)
8012 break;
8013 }
8014 error = vdev_config_sync(svd, svdcount, txg);
8015 } else {
8016 error = vdev_config_sync(rvd->vdev_child,
8017 rvd->vdev_children, txg);
8018 }
8019
8020 if (error == 0)
8021 spa->spa_last_synced_guid = rvd->vdev_guid;
8022
8023 spa_config_exit(spa, SCL_STATE, FTAG);
8024
8025 if (error == 0)
8026 break;
8027 zio_suspend(spa, NULL, ZIO_SUSPEND_IOERR);
8028 zio_resume_wait(spa);
8029 }
8030 }
8031
8032 /*
8033 * Sync the specified transaction group. New blocks may be dirtied as
8034 * part of the process, so we iterate until it converges.
8035 */
8036 void
8037 spa_sync(spa_t *spa, uint64_t txg)
8038 {
8039 vdev_t *vd = NULL;
8040
8041 VERIFY(spa_writeable(spa));
8042
8043 /*
8044 * Wait for i/os issued in open context that need to complete
8045 * before this txg syncs.
8046 */
8047 (void) zio_wait(spa->spa_txg_zio[txg & TXG_MASK]);
8048 spa->spa_txg_zio[txg & TXG_MASK] = zio_root(spa, NULL, NULL,
8049 ZIO_FLAG_CANFAIL);
8050
8051 /*
8052 * Lock out configuration changes.
8053 */
8054 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
8055
8056 spa->spa_syncing_txg = txg;
8057 spa->spa_sync_pass = 0;
8058
8059 for (int i = 0; i < spa->spa_alloc_count; i++) {
8060 mutex_enter(&spa->spa_alloc_locks[i]);
8061 VERIFY0(avl_numnodes(&spa->spa_alloc_trees[i]));
8062 mutex_exit(&spa->spa_alloc_locks[i]);
8063 }
8064
8065 /*
8066 * If there are any pending vdev state changes, convert them
8067 * into config changes that go out with this transaction group.
8068 */
8069 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
8070 while (list_head(&spa->spa_state_dirty_list) != NULL) {
8071 /*
8072 * We need the write lock here because, for aux vdevs,
8073 * calling vdev_config_dirty() modifies sav_config.
8074 * This is ugly and will become unnecessary when we
8075 * eliminate the aux vdev wart by integrating all vdevs
8076 * into the root vdev tree.
8077 */
8078 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
8079 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_WRITER);
8080 while ((vd = list_head(&spa->spa_state_dirty_list)) != NULL) {
8081 vdev_state_clean(vd);
8082 vdev_config_dirty(vd);
8083 }
8084 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
8085 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
8086 }
8087 spa_config_exit(spa, SCL_STATE, FTAG);
8088
8089 dsl_pool_t *dp = spa->spa_dsl_pool;
8090 dmu_tx_t *tx = dmu_tx_create_assigned(dp, txg);
8091
8092 spa->spa_sync_starttime = gethrtime();
8093 taskq_cancel_id(system_delay_taskq, spa->spa_deadman_tqid);
8094 spa->spa_deadman_tqid = taskq_dispatch_delay(system_delay_taskq,
8095 spa_deadman, spa, TQ_SLEEP, ddi_get_lbolt() +
8096 NSEC_TO_TICK(spa->spa_deadman_synctime));
8097
8098 /*
8099 * If we are upgrading to SPA_VERSION_RAIDZ_DEFLATE this txg,
8100 * set spa_deflate if we have no raid-z vdevs.
8101 */
8102 if (spa->spa_ubsync.ub_version < SPA_VERSION_RAIDZ_DEFLATE &&
8103 spa->spa_uberblock.ub_version >= SPA_VERSION_RAIDZ_DEFLATE) {
8104 vdev_t *rvd = spa->spa_root_vdev;
8105
8106 int i;
8107 for (i = 0; i < rvd->vdev_children; i++) {
8108 vd = rvd->vdev_child[i];
8109 if (vd->vdev_deflate_ratio != SPA_MINBLOCKSIZE)
8110 break;
8111 }
8112 if (i == rvd->vdev_children) {
8113 spa->spa_deflate = TRUE;
8114 VERIFY0(zap_add(spa->spa_meta_objset,
8115 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
8116 sizeof (uint64_t), 1, &spa->spa_deflate, tx));
8117 }
8118 }
8119
8120 spa_sync_adjust_vdev_max_queue_depth(spa);
8121
8122 spa_sync_condense_indirect(spa, tx);
8123
8124 spa_sync_iterate_to_convergence(spa, tx);
8125
8126 #ifdef ZFS_DEBUG
8127 if (!list_is_empty(&spa->spa_config_dirty_list)) {
8128 /*
8129 * Make sure that the number of ZAPs for all the vdevs matches
8130 * the number of ZAPs in the per-vdev ZAP list. This only gets
8131 * called if the config is dirty; otherwise there may be
8132 * outstanding AVZ operations that weren't completed in
8133 * spa_sync_config_object.
8134 */
8135 uint64_t all_vdev_zap_entry_count;
8136 ASSERT0(zap_count(spa->spa_meta_objset,
8137 spa->spa_all_vdev_zaps, &all_vdev_zap_entry_count));
8138 ASSERT3U(vdev_count_verify_zaps(spa->spa_root_vdev), ==,
8139 all_vdev_zap_entry_count);
8140 }
8141 #endif
8142
8143 if (spa->spa_vdev_removal != NULL) {
8144 ASSERT0(spa->spa_vdev_removal->svr_bytes_done[txg & TXG_MASK]);
8145 }
8146
8147 spa_sync_rewrite_vdev_config(spa, tx);
8148 dmu_tx_commit(tx);
8149
8150 taskq_cancel_id(system_delay_taskq, spa->spa_deadman_tqid);
8151 spa->spa_deadman_tqid = 0;
8152
8153 /*
8154 * Clear the dirty config list.
8155 */
8156 while ((vd = list_head(&spa->spa_config_dirty_list)) != NULL)
8157 vdev_config_clean(vd);
8158
8159 /*
8160 * Now that the new config has synced transactionally,
8161 * let it become visible to the config cache.
8162 */
8163 if (spa->spa_config_syncing != NULL) {
8164 spa_config_set(spa, spa->spa_config_syncing);
8165 spa->spa_config_txg = txg;
8166 spa->spa_config_syncing = NULL;
8167 }
8168
8169 dsl_pool_sync_done(dp, txg);
8170
8171 for (int i = 0; i < spa->spa_alloc_count; i++) {
8172 mutex_enter(&spa->spa_alloc_locks[i]);
8173 VERIFY0(avl_numnodes(&spa->spa_alloc_trees[i]));
8174 mutex_exit(&spa->spa_alloc_locks[i]);
8175 }
8176
8177 /*
8178 * Update usable space statistics.
8179 */
8180 while ((vd = txg_list_remove(&spa->spa_vdev_txg_list, TXG_CLEAN(txg)))
8181 != NULL)
8182 vdev_sync_done(vd, txg);
8183
8184 spa_update_dspace(spa);
8185
8186 /*
8187 * It had better be the case that we didn't dirty anything
8188 * since vdev_config_sync().
8189 */
8190 ASSERT(txg_list_empty(&dp->dp_dirty_datasets, txg));
8191 ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg));
8192 ASSERT(txg_list_empty(&spa->spa_vdev_txg_list, txg));
8193
8194 while (zfs_pause_spa_sync)
8195 delay(1);
8196
8197 spa->spa_sync_pass = 0;
8198
8199 /*
8200 * Update the last synced uberblock here. We want to do this at
8201 * the end of spa_sync() so that consumers of spa_last_synced_txg()
8202 * will be guaranteed that all the processing associated with
8203 * that txg has been completed.
8204 */
8205 spa->spa_ubsync = spa->spa_uberblock;
8206 spa_config_exit(spa, SCL_CONFIG, FTAG);
8207
8208 spa_handle_ignored_writes(spa);
8209
8210 /*
8211 * If any async tasks have been requested, kick them off.
8212 */
8213 spa_async_dispatch(spa);
8214 }
8215
8216 /*
8217 * Sync all pools. We don't want to hold the namespace lock across these
8218 * operations, so we take a reference on the spa_t and drop the lock during the
8219 * sync.
8220 */
8221 void
8222 spa_sync_allpools(void)
8223 {
8224 spa_t *spa = NULL;
8225 mutex_enter(&spa_namespace_lock);
8226 while ((spa = spa_next(spa)) != NULL) {
8227 if (spa_state(spa) != POOL_STATE_ACTIVE ||
8228 !spa_writeable(spa) || spa_suspended(spa))
8229 continue;
8230 spa_open_ref(spa, FTAG);
8231 mutex_exit(&spa_namespace_lock);
8232 txg_wait_synced(spa_get_dsl(spa), 0);
8233 mutex_enter(&spa_namespace_lock);
8234 spa_close(spa, FTAG);
8235 }
8236 mutex_exit(&spa_namespace_lock);
8237 }
8238
8239 /*
8240 * ==========================================================================
8241 * Miscellaneous routines
8242 * ==========================================================================
8243 */
8244
8245 /*
8246 * Remove all pools in the system.
8247 */
8248 void
8249 spa_evict_all(void)
8250 {
8251 spa_t *spa;
8252
8253 /*
8254 * Remove all cached state. All pools should be closed now,
8255 * so every spa in the AVL tree should be unreferenced.
8256 */
8257 mutex_enter(&spa_namespace_lock);
8258 while ((spa = spa_next(NULL)) != NULL) {
8259 /*
8260 * Stop async tasks. The async thread may need to detach
8261 * a device that's been replaced, which requires grabbing
8262 * spa_namespace_lock, so we must drop it here.
8263 */
8264 spa_open_ref(spa, FTAG);
8265 mutex_exit(&spa_namespace_lock);
8266 spa_async_suspend(spa);
8267 mutex_enter(&spa_namespace_lock);
8268 spa_close(spa, FTAG);
8269
8270 if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
8271 spa_unload(spa);
8272 spa_deactivate(spa);
8273 }
8274 spa_remove(spa);
8275 }
8276 mutex_exit(&spa_namespace_lock);
8277 }
8278
8279 vdev_t *
8280 spa_lookup_by_guid(spa_t *spa, uint64_t guid, boolean_t aux)
8281 {
8282 vdev_t *vd;
8283 int i;
8284
8285 if ((vd = vdev_lookup_by_guid(spa->spa_root_vdev, guid)) != NULL)
8286 return (vd);
8287
8288 if (aux) {
8289 for (i = 0; i < spa->spa_l2cache.sav_count; i++) {
8290 vd = spa->spa_l2cache.sav_vdevs[i];
8291 if (vd->vdev_guid == guid)
8292 return (vd);
8293 }
8294
8295 for (i = 0; i < spa->spa_spares.sav_count; i++) {
8296 vd = spa->spa_spares.sav_vdevs[i];
8297 if (vd->vdev_guid == guid)
8298 return (vd);
8299 }
8300 }
8301
8302 return (NULL);
8303 }
8304
8305 void
8306 spa_upgrade(spa_t *spa, uint64_t version)
8307 {
8308 ASSERT(spa_writeable(spa));
8309
8310 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
8311
8312 /*
8313 * This should only be called for a non-faulted pool, and since a
8314 * future version would result in an unopenable pool, this shouldn't be
8315 * possible.
8316 */
8317 ASSERT(SPA_VERSION_IS_SUPPORTED(spa->spa_uberblock.ub_version));
8318 ASSERT3U(version, >=, spa->spa_uberblock.ub_version);
8319
8320 spa->spa_uberblock.ub_version = version;
8321 vdev_config_dirty(spa->spa_root_vdev);
8322
8323 spa_config_exit(spa, SCL_ALL, FTAG);
8324
8325 txg_wait_synced(spa_get_dsl(spa), 0);
8326 }
8327
8328 boolean_t
8329 spa_has_spare(spa_t *spa, uint64_t guid)
8330 {
8331 int i;
8332 uint64_t spareguid;
8333 spa_aux_vdev_t *sav = &spa->spa_spares;
8334
8335 for (i = 0; i < sav->sav_count; i++)
8336 if (sav->sav_vdevs[i]->vdev_guid == guid)
8337 return (B_TRUE);
8338
8339 for (i = 0; i < sav->sav_npending; i++) {
8340 if (nvlist_lookup_uint64(sav->sav_pending[i], ZPOOL_CONFIG_GUID,
8341 &spareguid) == 0 && spareguid == guid)
8342 return (B_TRUE);
8343 }
8344
8345 return (B_FALSE);
8346 }
8347
8348 /*
8349 * Check if a pool has an active shared spare device.
8350 * Note: reference count of an active spare is 2, as a spare and as a replace
8351 */
8352 static boolean_t
8353 spa_has_active_shared_spare(spa_t *spa)
8354 {
8355 int i, refcnt;
8356 uint64_t pool;
8357 spa_aux_vdev_t *sav = &spa->spa_spares;
8358
8359 for (i = 0; i < sav->sav_count; i++) {
8360 if (spa_spare_exists(sav->sav_vdevs[i]->vdev_guid, &pool,
8361 &refcnt) && pool != 0ULL && pool == spa_guid(spa) &&
8362 refcnt > 2)
8363 return (B_TRUE);
8364 }
8365
8366 return (B_FALSE);
8367 }
8368
8369 sysevent_t *
8370 spa_event_create(spa_t *spa, vdev_t *vd, nvlist_t *hist_nvl, const char *name)
8371 {
8372 sysevent_t *ev = NULL;
8373 #ifdef _KERNEL
8374 nvlist_t *resource;
8375
8376 resource = zfs_event_create(spa, vd, FM_SYSEVENT_CLASS, name, hist_nvl);
8377 if (resource) {
8378 ev = kmem_alloc(sizeof (sysevent_t), KM_SLEEP);
8379 ev->resource = resource;
8380 }
8381 #endif
8382 return (ev);
8383 }
8384
8385 void
8386 spa_event_post(sysevent_t *ev)
8387 {
8388 #ifdef _KERNEL
8389 if (ev) {
8390 zfs_zevent_post(ev->resource, NULL, zfs_zevent_post_cb);
8391 kmem_free(ev, sizeof (*ev));
8392 }
8393 #endif
8394 }
8395
8396 /*
8397 * Post a zevent corresponding to the given sysevent. The 'name' must be one
8398 * of the event definitions in sys/sysevent/eventdefs.h. The payload will be
8399 * filled in from the spa and (optionally) the vdev. This doesn't do anything
8400 * in the userland libzpool, as we don't want consumers to misinterpret ztest
8401 * or zdb as real changes.
8402 */
8403 void
8404 spa_event_notify(spa_t *spa, vdev_t *vd, nvlist_t *hist_nvl, const char *name)
8405 {
8406 spa_event_post(spa_event_create(spa, vd, hist_nvl, name));
8407 }
8408
8409 #if defined(_KERNEL)
8410 /* state manipulation functions */
8411 EXPORT_SYMBOL(spa_open);
8412 EXPORT_SYMBOL(spa_open_rewind);
8413 EXPORT_SYMBOL(spa_get_stats);
8414 EXPORT_SYMBOL(spa_create);
8415 EXPORT_SYMBOL(spa_import);
8416 EXPORT_SYMBOL(spa_tryimport);
8417 EXPORT_SYMBOL(spa_destroy);
8418 EXPORT_SYMBOL(spa_export);
8419 EXPORT_SYMBOL(spa_reset);
8420 EXPORT_SYMBOL(spa_async_request);
8421 EXPORT_SYMBOL(spa_async_suspend);
8422 EXPORT_SYMBOL(spa_async_resume);
8423 EXPORT_SYMBOL(spa_inject_addref);
8424 EXPORT_SYMBOL(spa_inject_delref);
8425 EXPORT_SYMBOL(spa_scan_stat_init);
8426 EXPORT_SYMBOL(spa_scan_get_stats);
8427
8428 /* device maniion */
8429 EXPORT_SYMBOL(spa_vdev_add);
8430 EXPORT_SYMBOL(spa_vdev_attach);
8431 EXPORT_SYMBOL(spa_vdev_detach);
8432 EXPORT_SYMBOL(spa_vdev_setpath);
8433 EXPORT_SYMBOL(spa_vdev_setfru);
8434 EXPORT_SYMBOL(spa_vdev_split_mirror);
8435
8436 /* spare statech is global across all pools) */
8437 EXPORT_SYMBOL(spa_spare_add);
8438 EXPORT_SYMBOL(spa_spare_remove);
8439 EXPORT_SYMBOL(spa_spare_exists);
8440 EXPORT_SYMBOL(spa_spare_activate);
8441
8442 /* L2ARC statech is global across all pools) */
8443 EXPORT_SYMBOL(spa_l2cache_add);
8444 EXPORT_SYMBOL(spa_l2cache_remove);
8445 EXPORT_SYMBOL(spa_l2cache_exists);
8446 EXPORT_SYMBOL(spa_l2cache_activate);
8447 EXPORT_SYMBOL(spa_l2cache_drop);
8448
8449 /* scanning */
8450 EXPORT_SYMBOL(spa_scan);
8451 EXPORT_SYMBOL(spa_scan_stop);
8452
8453 /* spa syncing */
8454 EXPORT_SYMBOL(spa_sync); /* only for DMU use */
8455 EXPORT_SYMBOL(spa_sync_allpools);
8456
8457 /* properties */
8458 EXPORT_SYMBOL(spa_prop_set);
8459 EXPORT_SYMBOL(spa_prop_get);
8460 EXPORT_SYMBOL(spa_prop_clear_bootfs);
8461
8462 /* asynchronous event notification */
8463 EXPORT_SYMBOL(spa_event_notify);
8464 #endif
8465
8466 #if defined(_KERNEL)
8467 module_param(spa_load_verify_maxinflight, int, 0644);
8468 MODULE_PARM_DESC(spa_load_verify_maxinflight,
8469 "Max concurrent traversal I/Os while verifying pool during import -X");
8470
8471 module_param(spa_load_verify_metadata, int, 0644);
8472 MODULE_PARM_DESC(spa_load_verify_metadata,
8473 "Set to traverse metadata on pool import");
8474
8475 module_param(spa_load_verify_data, int, 0644);
8476 MODULE_PARM_DESC(spa_load_verify_data,
8477 "Set to traverse data on pool import");
8478
8479 module_param(spa_load_print_vdev_tree, int, 0644);
8480 MODULE_PARM_DESC(spa_load_print_vdev_tree,
8481 "Print vdev tree to zfs_dbgmsg during pool import");
8482
8483 /* CSTYLED */
8484 module_param(zio_taskq_batch_pct, uint, 0444);
8485 MODULE_PARM_DESC(zio_taskq_batch_pct,
8486 "Percentage of CPUs to run an IO worker thread");
8487
8488 /* BEGIN CSTYLED */
8489 module_param(zfs_max_missing_tvds, ulong, 0644);
8490 MODULE_PARM_DESC(zfs_max_missing_tvds,
8491 "Allow importing pool with up to this number of missing top-level vdevs"
8492 " (in read-only mode)");
8493 /* END CSTYLED */
8494
8495 #endif