]> git.proxmox.com Git - mirror_zfs.git/blob - module/zfs/spa.c
OpenZFS 9235 - rename zpool_rewind_policy_t to zpool_load_policy_t
[mirror_zfs.git] / module / zfs / spa.c
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22 /*
23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright (c) 2011, 2017 by Delphix. All rights reserved.
25 * Copyright (c) 2015, Nexenta Systems, Inc. All rights reserved.
26 * Copyright (c) 2013, 2014, Nexenta Systems, Inc. All rights reserved.
27 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
28 * Copyright 2013 Saso Kiselkov. All rights reserved.
29 * Copyright (c) 2014 Integros [integros.com]
30 * Copyright 2016 Toomas Soome <tsoome@me.com>
31 * Copyright (c) 2016 Actifio, Inc. All rights reserved.
32 * Copyright (c) 2017 Datto Inc.
33 * Copyright 2017 Joyent, Inc.
34 */
35
36 /*
37 * SPA: Storage Pool Allocator
38 *
39 * This file contains all the routines used when modifying on-disk SPA state.
40 * This includes opening, importing, destroying, exporting a pool, and syncing a
41 * pool.
42 */
43
44 #include <sys/zfs_context.h>
45 #include <sys/fm/fs/zfs.h>
46 #include <sys/spa_impl.h>
47 #include <sys/zio.h>
48 #include <sys/zio_checksum.h>
49 #include <sys/dmu.h>
50 #include <sys/dmu_tx.h>
51 #include <sys/zap.h>
52 #include <sys/zil.h>
53 #include <sys/ddt.h>
54 #include <sys/vdev_impl.h>
55 #include <sys/vdev_removal.h>
56 #include <sys/vdev_indirect_mapping.h>
57 #include <sys/vdev_indirect_births.h>
58 #include <sys/vdev_disk.h>
59 #include <sys/metaslab.h>
60 #include <sys/metaslab_impl.h>
61 #include <sys/mmp.h>
62 #include <sys/uberblock_impl.h>
63 #include <sys/txg.h>
64 #include <sys/avl.h>
65 #include <sys/bpobj.h>
66 #include <sys/dmu_traverse.h>
67 #include <sys/dmu_objset.h>
68 #include <sys/unique.h>
69 #include <sys/dsl_pool.h>
70 #include <sys/dsl_dataset.h>
71 #include <sys/dsl_dir.h>
72 #include <sys/dsl_prop.h>
73 #include <sys/dsl_synctask.h>
74 #include <sys/fs/zfs.h>
75 #include <sys/arc.h>
76 #include <sys/callb.h>
77 #include <sys/systeminfo.h>
78 #include <sys/spa_boot.h>
79 #include <sys/zfs_ioctl.h>
80 #include <sys/dsl_scan.h>
81 #include <sys/zfeature.h>
82 #include <sys/dsl_destroy.h>
83 #include <sys/zvol.h>
84
85 #ifdef _KERNEL
86 #include <sys/fm/protocol.h>
87 #include <sys/fm/util.h>
88 #include <sys/callb.h>
89 #include <sys/zone.h>
90 #endif /* _KERNEL */
91
92 #include "zfs_prop.h"
93 #include "zfs_comutil.h"
94
95 /*
96 * The interval, in seconds, at which failed configuration cache file writes
97 * should be retried.
98 */
99 int zfs_ccw_retry_interval = 300;
100
101 typedef enum zti_modes {
102 ZTI_MODE_FIXED, /* value is # of threads (min 1) */
103 ZTI_MODE_BATCH, /* cpu-intensive; value is ignored */
104 ZTI_MODE_NULL, /* don't create a taskq */
105 ZTI_NMODES
106 } zti_modes_t;
107
108 #define ZTI_P(n, q) { ZTI_MODE_FIXED, (n), (q) }
109 #define ZTI_PCT(n) { ZTI_MODE_ONLINE_PERCENT, (n), 1 }
110 #define ZTI_BATCH { ZTI_MODE_BATCH, 0, 1 }
111 #define ZTI_NULL { ZTI_MODE_NULL, 0, 0 }
112
113 #define ZTI_N(n) ZTI_P(n, 1)
114 #define ZTI_ONE ZTI_N(1)
115
116 typedef struct zio_taskq_info {
117 zti_modes_t zti_mode;
118 uint_t zti_value;
119 uint_t zti_count;
120 } zio_taskq_info_t;
121
122 static const char *const zio_taskq_types[ZIO_TASKQ_TYPES] = {
123 "iss", "iss_h", "int", "int_h"
124 };
125
126 /*
127 * This table defines the taskq settings for each ZFS I/O type. When
128 * initializing a pool, we use this table to create an appropriately sized
129 * taskq. Some operations are low volume and therefore have a small, static
130 * number of threads assigned to their taskqs using the ZTI_N(#) or ZTI_ONE
131 * macros. Other operations process a large amount of data; the ZTI_BATCH
132 * macro causes us to create a taskq oriented for throughput. Some operations
133 * are so high frequency and short-lived that the taskq itself can become a a
134 * point of lock contention. The ZTI_P(#, #) macro indicates that we need an
135 * additional degree of parallelism specified by the number of threads per-
136 * taskq and the number of taskqs; when dispatching an event in this case, the
137 * particular taskq is chosen at random.
138 *
139 * The different taskq priorities are to handle the different contexts (issue
140 * and interrupt) and then to reserve threads for ZIO_PRIORITY_NOW I/Os that
141 * need to be handled with minimum delay.
142 */
143 const zio_taskq_info_t zio_taskqs[ZIO_TYPES][ZIO_TASKQ_TYPES] = {
144 /* ISSUE ISSUE_HIGH INTR INTR_HIGH */
145 { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* NULL */
146 { ZTI_N(8), ZTI_NULL, ZTI_P(12, 8), ZTI_NULL }, /* READ */
147 { ZTI_BATCH, ZTI_N(5), ZTI_P(12, 8), ZTI_N(5) }, /* WRITE */
148 { ZTI_P(12, 8), ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* FREE */
149 { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* CLAIM */
150 { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* IOCTL */
151 };
152
153 static void spa_sync_version(void *arg, dmu_tx_t *tx);
154 static void spa_sync_props(void *arg, dmu_tx_t *tx);
155 static boolean_t spa_has_active_shared_spare(spa_t *spa);
156 static int spa_load_impl(spa_t *spa, spa_import_type_t type, char **ereport,
157 boolean_t reloading);
158 static void spa_vdev_resilver_done(spa_t *spa);
159
160 uint_t zio_taskq_batch_pct = 75; /* 1 thread per cpu in pset */
161 boolean_t zio_taskq_sysdc = B_TRUE; /* use SDC scheduling class */
162 uint_t zio_taskq_basedc = 80; /* base duty cycle */
163
164 boolean_t spa_create_process = B_TRUE; /* no process ==> no sysdc */
165
166 /*
167 * Report any spa_load_verify errors found, but do not fail spa_load.
168 * This is used by zdb to analyze non-idle pools.
169 */
170 boolean_t spa_load_verify_dryrun = B_FALSE;
171
172 /*
173 * This (illegal) pool name is used when temporarily importing a spa_t in order
174 * to get the vdev stats associated with the imported devices.
175 */
176 #define TRYIMPORT_NAME "$import"
177
178 /*
179 * For debugging purposes: print out vdev tree during pool import.
180 */
181 int spa_load_print_vdev_tree = B_FALSE;
182
183 /*
184 * A non-zero value for zfs_max_missing_tvds means that we allow importing
185 * pools with missing top-level vdevs. This is strictly intended for advanced
186 * pool recovery cases since missing data is almost inevitable. Pools with
187 * missing devices can only be imported read-only for safety reasons, and their
188 * fail-mode will be automatically set to "continue".
189 *
190 * With 1 missing vdev we should be able to import the pool and mount all
191 * datasets. User data that was not modified after the missing device has been
192 * added should be recoverable. This means that snapshots created prior to the
193 * addition of that device should be completely intact.
194 *
195 * With 2 missing vdevs, some datasets may fail to mount since there are
196 * dataset statistics that are stored as regular metadata. Some data might be
197 * recoverable if those vdevs were added recently.
198 *
199 * With 3 or more missing vdevs, the pool is severely damaged and MOS entries
200 * may be missing entirely. Chances of data recovery are very low. Note that
201 * there are also risks of performing an inadvertent rewind as we might be
202 * missing all the vdevs with the latest uberblocks.
203 */
204 unsigned long zfs_max_missing_tvds = 0;
205
206 /*
207 * The parameters below are similar to zfs_max_missing_tvds but are only
208 * intended for a preliminary open of the pool with an untrusted config which
209 * might be incomplete or out-dated.
210 *
211 * We are more tolerant for pools opened from a cachefile since we could have
212 * an out-dated cachefile where a device removal was not registered.
213 * We could have set the limit arbitrarily high but in the case where devices
214 * are really missing we would want to return the proper error codes; we chose
215 * SPA_DVAS_PER_BP - 1 so that some copies of the MOS would still be available
216 * and we get a chance to retrieve the trusted config.
217 */
218 uint64_t zfs_max_missing_tvds_cachefile = SPA_DVAS_PER_BP - 1;
219 /*
220 * In the case where config was assembled by scanning device paths (/dev/dsks
221 * by default) we are less tolerant since all the existing devices should have
222 * been detected and we want spa_load to return the right error codes.
223 */
224 uint64_t zfs_max_missing_tvds_scan = 0;
225
226 /*
227 * ==========================================================================
228 * SPA properties routines
229 * ==========================================================================
230 */
231
232 /*
233 * Add a (source=src, propname=propval) list to an nvlist.
234 */
235 static void
236 spa_prop_add_list(nvlist_t *nvl, zpool_prop_t prop, char *strval,
237 uint64_t intval, zprop_source_t src)
238 {
239 const char *propname = zpool_prop_to_name(prop);
240 nvlist_t *propval;
241
242 VERIFY(nvlist_alloc(&propval, NV_UNIQUE_NAME, KM_SLEEP) == 0);
243 VERIFY(nvlist_add_uint64(propval, ZPROP_SOURCE, src) == 0);
244
245 if (strval != NULL)
246 VERIFY(nvlist_add_string(propval, ZPROP_VALUE, strval) == 0);
247 else
248 VERIFY(nvlist_add_uint64(propval, ZPROP_VALUE, intval) == 0);
249
250 VERIFY(nvlist_add_nvlist(nvl, propname, propval) == 0);
251 nvlist_free(propval);
252 }
253
254 /*
255 * Get property values from the spa configuration.
256 */
257 static void
258 spa_prop_get_config(spa_t *spa, nvlist_t **nvp)
259 {
260 vdev_t *rvd = spa->spa_root_vdev;
261 dsl_pool_t *pool = spa->spa_dsl_pool;
262 uint64_t size, alloc, cap, version;
263 const zprop_source_t src = ZPROP_SRC_NONE;
264 spa_config_dirent_t *dp;
265 metaslab_class_t *mc = spa_normal_class(spa);
266
267 ASSERT(MUTEX_HELD(&spa->spa_props_lock));
268
269 if (rvd != NULL) {
270 alloc = metaslab_class_get_alloc(spa_normal_class(spa));
271 size = metaslab_class_get_space(spa_normal_class(spa));
272 spa_prop_add_list(*nvp, ZPOOL_PROP_NAME, spa_name(spa), 0, src);
273 spa_prop_add_list(*nvp, ZPOOL_PROP_SIZE, NULL, size, src);
274 spa_prop_add_list(*nvp, ZPOOL_PROP_ALLOCATED, NULL, alloc, src);
275 spa_prop_add_list(*nvp, ZPOOL_PROP_FREE, NULL,
276 size - alloc, src);
277
278 spa_prop_add_list(*nvp, ZPOOL_PROP_FRAGMENTATION, NULL,
279 metaslab_class_fragmentation(mc), src);
280 spa_prop_add_list(*nvp, ZPOOL_PROP_EXPANDSZ, NULL,
281 metaslab_class_expandable_space(mc), src);
282 spa_prop_add_list(*nvp, ZPOOL_PROP_READONLY, NULL,
283 (spa_mode(spa) == FREAD), src);
284
285 cap = (size == 0) ? 0 : (alloc * 100 / size);
286 spa_prop_add_list(*nvp, ZPOOL_PROP_CAPACITY, NULL, cap, src);
287
288 spa_prop_add_list(*nvp, ZPOOL_PROP_DEDUPRATIO, NULL,
289 ddt_get_pool_dedup_ratio(spa), src);
290
291 spa_prop_add_list(*nvp, ZPOOL_PROP_HEALTH, NULL,
292 rvd->vdev_state, src);
293
294 version = spa_version(spa);
295 if (version == zpool_prop_default_numeric(ZPOOL_PROP_VERSION)) {
296 spa_prop_add_list(*nvp, ZPOOL_PROP_VERSION, NULL,
297 version, ZPROP_SRC_DEFAULT);
298 } else {
299 spa_prop_add_list(*nvp, ZPOOL_PROP_VERSION, NULL,
300 version, ZPROP_SRC_LOCAL);
301 }
302 }
303
304 if (pool != NULL) {
305 /*
306 * The $FREE directory was introduced in SPA_VERSION_DEADLISTS,
307 * when opening pools before this version freedir will be NULL.
308 */
309 if (pool->dp_free_dir != NULL) {
310 spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING, NULL,
311 dsl_dir_phys(pool->dp_free_dir)->dd_used_bytes,
312 src);
313 } else {
314 spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING,
315 NULL, 0, src);
316 }
317
318 if (pool->dp_leak_dir != NULL) {
319 spa_prop_add_list(*nvp, ZPOOL_PROP_LEAKED, NULL,
320 dsl_dir_phys(pool->dp_leak_dir)->dd_used_bytes,
321 src);
322 } else {
323 spa_prop_add_list(*nvp, ZPOOL_PROP_LEAKED,
324 NULL, 0, src);
325 }
326 }
327
328 spa_prop_add_list(*nvp, ZPOOL_PROP_GUID, NULL, spa_guid(spa), src);
329
330 if (spa->spa_comment != NULL) {
331 spa_prop_add_list(*nvp, ZPOOL_PROP_COMMENT, spa->spa_comment,
332 0, ZPROP_SRC_LOCAL);
333 }
334
335 if (spa->spa_root != NULL)
336 spa_prop_add_list(*nvp, ZPOOL_PROP_ALTROOT, spa->spa_root,
337 0, ZPROP_SRC_LOCAL);
338
339 if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_BLOCKS)) {
340 spa_prop_add_list(*nvp, ZPOOL_PROP_MAXBLOCKSIZE, NULL,
341 MIN(zfs_max_recordsize, SPA_MAXBLOCKSIZE), ZPROP_SRC_NONE);
342 } else {
343 spa_prop_add_list(*nvp, ZPOOL_PROP_MAXBLOCKSIZE, NULL,
344 SPA_OLD_MAXBLOCKSIZE, ZPROP_SRC_NONE);
345 }
346
347 if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_DNODE)) {
348 spa_prop_add_list(*nvp, ZPOOL_PROP_MAXDNODESIZE, NULL,
349 DNODE_MAX_SIZE, ZPROP_SRC_NONE);
350 } else {
351 spa_prop_add_list(*nvp, ZPOOL_PROP_MAXDNODESIZE, NULL,
352 DNODE_MIN_SIZE, ZPROP_SRC_NONE);
353 }
354
355 if ((dp = list_head(&spa->spa_config_list)) != NULL) {
356 if (dp->scd_path == NULL) {
357 spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
358 "none", 0, ZPROP_SRC_LOCAL);
359 } else if (strcmp(dp->scd_path, spa_config_path) != 0) {
360 spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
361 dp->scd_path, 0, ZPROP_SRC_LOCAL);
362 }
363 }
364 }
365
366 /*
367 * Get zpool property values.
368 */
369 int
370 spa_prop_get(spa_t *spa, nvlist_t **nvp)
371 {
372 objset_t *mos = spa->spa_meta_objset;
373 zap_cursor_t zc;
374 zap_attribute_t za;
375 int err;
376
377 err = nvlist_alloc(nvp, NV_UNIQUE_NAME, KM_SLEEP);
378 if (err)
379 return (err);
380
381 mutex_enter(&spa->spa_props_lock);
382
383 /*
384 * Get properties from the spa config.
385 */
386 spa_prop_get_config(spa, nvp);
387
388 /* If no pool property object, no more prop to get. */
389 if (mos == NULL || spa->spa_pool_props_object == 0) {
390 mutex_exit(&spa->spa_props_lock);
391 goto out;
392 }
393
394 /*
395 * Get properties from the MOS pool property object.
396 */
397 for (zap_cursor_init(&zc, mos, spa->spa_pool_props_object);
398 (err = zap_cursor_retrieve(&zc, &za)) == 0;
399 zap_cursor_advance(&zc)) {
400 uint64_t intval = 0;
401 char *strval = NULL;
402 zprop_source_t src = ZPROP_SRC_DEFAULT;
403 zpool_prop_t prop;
404
405 if ((prop = zpool_name_to_prop(za.za_name)) == ZPOOL_PROP_INVAL)
406 continue;
407
408 switch (za.za_integer_length) {
409 case 8:
410 /* integer property */
411 if (za.za_first_integer !=
412 zpool_prop_default_numeric(prop))
413 src = ZPROP_SRC_LOCAL;
414
415 if (prop == ZPOOL_PROP_BOOTFS) {
416 dsl_pool_t *dp;
417 dsl_dataset_t *ds = NULL;
418
419 dp = spa_get_dsl(spa);
420 dsl_pool_config_enter(dp, FTAG);
421 if ((err = dsl_dataset_hold_obj(dp,
422 za.za_first_integer, FTAG, &ds))) {
423 dsl_pool_config_exit(dp, FTAG);
424 break;
425 }
426
427 strval = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN,
428 KM_SLEEP);
429 dsl_dataset_name(ds, strval);
430 dsl_dataset_rele(ds, FTAG);
431 dsl_pool_config_exit(dp, FTAG);
432 } else {
433 strval = NULL;
434 intval = za.za_first_integer;
435 }
436
437 spa_prop_add_list(*nvp, prop, strval, intval, src);
438
439 if (strval != NULL)
440 kmem_free(strval, ZFS_MAX_DATASET_NAME_LEN);
441
442 break;
443
444 case 1:
445 /* string property */
446 strval = kmem_alloc(za.za_num_integers, KM_SLEEP);
447 err = zap_lookup(mos, spa->spa_pool_props_object,
448 za.za_name, 1, za.za_num_integers, strval);
449 if (err) {
450 kmem_free(strval, za.za_num_integers);
451 break;
452 }
453 spa_prop_add_list(*nvp, prop, strval, 0, src);
454 kmem_free(strval, za.za_num_integers);
455 break;
456
457 default:
458 break;
459 }
460 }
461 zap_cursor_fini(&zc);
462 mutex_exit(&spa->spa_props_lock);
463 out:
464 if (err && err != ENOENT) {
465 nvlist_free(*nvp);
466 *nvp = NULL;
467 return (err);
468 }
469
470 return (0);
471 }
472
473 /*
474 * Validate the given pool properties nvlist and modify the list
475 * for the property values to be set.
476 */
477 static int
478 spa_prop_validate(spa_t *spa, nvlist_t *props)
479 {
480 nvpair_t *elem;
481 int error = 0, reset_bootfs = 0;
482 uint64_t objnum = 0;
483 boolean_t has_feature = B_FALSE;
484
485 elem = NULL;
486 while ((elem = nvlist_next_nvpair(props, elem)) != NULL) {
487 uint64_t intval;
488 char *strval, *slash, *check, *fname;
489 const char *propname = nvpair_name(elem);
490 zpool_prop_t prop = zpool_name_to_prop(propname);
491
492 switch (prop) {
493 case ZPOOL_PROP_INVAL:
494 if (!zpool_prop_feature(propname)) {
495 error = SET_ERROR(EINVAL);
496 break;
497 }
498
499 /*
500 * Sanitize the input.
501 */
502 if (nvpair_type(elem) != DATA_TYPE_UINT64) {
503 error = SET_ERROR(EINVAL);
504 break;
505 }
506
507 if (nvpair_value_uint64(elem, &intval) != 0) {
508 error = SET_ERROR(EINVAL);
509 break;
510 }
511
512 if (intval != 0) {
513 error = SET_ERROR(EINVAL);
514 break;
515 }
516
517 fname = strchr(propname, '@') + 1;
518 if (zfeature_lookup_name(fname, NULL) != 0) {
519 error = SET_ERROR(EINVAL);
520 break;
521 }
522
523 has_feature = B_TRUE;
524 break;
525
526 case ZPOOL_PROP_VERSION:
527 error = nvpair_value_uint64(elem, &intval);
528 if (!error &&
529 (intval < spa_version(spa) ||
530 intval > SPA_VERSION_BEFORE_FEATURES ||
531 has_feature))
532 error = SET_ERROR(EINVAL);
533 break;
534
535 case ZPOOL_PROP_DELEGATION:
536 case ZPOOL_PROP_AUTOREPLACE:
537 case ZPOOL_PROP_LISTSNAPS:
538 case ZPOOL_PROP_AUTOEXPAND:
539 error = nvpair_value_uint64(elem, &intval);
540 if (!error && intval > 1)
541 error = SET_ERROR(EINVAL);
542 break;
543
544 case ZPOOL_PROP_MULTIHOST:
545 error = nvpair_value_uint64(elem, &intval);
546 if (!error && intval > 1)
547 error = SET_ERROR(EINVAL);
548
549 if (!error && !spa_get_hostid())
550 error = SET_ERROR(ENOTSUP);
551
552 break;
553
554 case ZPOOL_PROP_BOOTFS:
555 /*
556 * If the pool version is less than SPA_VERSION_BOOTFS,
557 * or the pool is still being created (version == 0),
558 * the bootfs property cannot be set.
559 */
560 if (spa_version(spa) < SPA_VERSION_BOOTFS) {
561 error = SET_ERROR(ENOTSUP);
562 break;
563 }
564
565 /*
566 * Make sure the vdev config is bootable
567 */
568 if (!vdev_is_bootable(spa->spa_root_vdev)) {
569 error = SET_ERROR(ENOTSUP);
570 break;
571 }
572
573 reset_bootfs = 1;
574
575 error = nvpair_value_string(elem, &strval);
576
577 if (!error) {
578 objset_t *os;
579 uint64_t propval;
580
581 if (strval == NULL || strval[0] == '\0') {
582 objnum = zpool_prop_default_numeric(
583 ZPOOL_PROP_BOOTFS);
584 break;
585 }
586
587 error = dmu_objset_hold(strval, FTAG, &os);
588 if (error)
589 break;
590
591 /*
592 * Must be ZPL, and its property settings
593 * must be supported by GRUB (compression
594 * is not gzip, and large blocks or large
595 * dnodes are not used).
596 */
597
598 if (dmu_objset_type(os) != DMU_OST_ZFS) {
599 error = SET_ERROR(ENOTSUP);
600 } else if ((error =
601 dsl_prop_get_int_ds(dmu_objset_ds(os),
602 zfs_prop_to_name(ZFS_PROP_COMPRESSION),
603 &propval)) == 0 &&
604 !BOOTFS_COMPRESS_VALID(propval)) {
605 error = SET_ERROR(ENOTSUP);
606 } else if ((error =
607 dsl_prop_get_int_ds(dmu_objset_ds(os),
608 zfs_prop_to_name(ZFS_PROP_DNODESIZE),
609 &propval)) == 0 &&
610 propval != ZFS_DNSIZE_LEGACY) {
611 error = SET_ERROR(ENOTSUP);
612 } else {
613 objnum = dmu_objset_id(os);
614 }
615 dmu_objset_rele(os, FTAG);
616 }
617 break;
618
619 case ZPOOL_PROP_FAILUREMODE:
620 error = nvpair_value_uint64(elem, &intval);
621 if (!error && intval > ZIO_FAILURE_MODE_PANIC)
622 error = SET_ERROR(EINVAL);
623
624 /*
625 * This is a special case which only occurs when
626 * the pool has completely failed. This allows
627 * the user to change the in-core failmode property
628 * without syncing it out to disk (I/Os might
629 * currently be blocked). We do this by returning
630 * EIO to the caller (spa_prop_set) to trick it
631 * into thinking we encountered a property validation
632 * error.
633 */
634 if (!error && spa_suspended(spa)) {
635 spa->spa_failmode = intval;
636 error = SET_ERROR(EIO);
637 }
638 break;
639
640 case ZPOOL_PROP_CACHEFILE:
641 if ((error = nvpair_value_string(elem, &strval)) != 0)
642 break;
643
644 if (strval[0] == '\0')
645 break;
646
647 if (strcmp(strval, "none") == 0)
648 break;
649
650 if (strval[0] != '/') {
651 error = SET_ERROR(EINVAL);
652 break;
653 }
654
655 slash = strrchr(strval, '/');
656 ASSERT(slash != NULL);
657
658 if (slash[1] == '\0' || strcmp(slash, "/.") == 0 ||
659 strcmp(slash, "/..") == 0)
660 error = SET_ERROR(EINVAL);
661 break;
662
663 case ZPOOL_PROP_COMMENT:
664 if ((error = nvpair_value_string(elem, &strval)) != 0)
665 break;
666 for (check = strval; *check != '\0'; check++) {
667 if (!isprint(*check)) {
668 error = SET_ERROR(EINVAL);
669 break;
670 }
671 }
672 if (strlen(strval) > ZPROP_MAX_COMMENT)
673 error = SET_ERROR(E2BIG);
674 break;
675
676 case ZPOOL_PROP_DEDUPDITTO:
677 if (spa_version(spa) < SPA_VERSION_DEDUP)
678 error = SET_ERROR(ENOTSUP);
679 else
680 error = nvpair_value_uint64(elem, &intval);
681 if (error == 0 &&
682 intval != 0 && intval < ZIO_DEDUPDITTO_MIN)
683 error = SET_ERROR(EINVAL);
684 break;
685
686 default:
687 break;
688 }
689
690 if (error)
691 break;
692 }
693
694 if (!error && reset_bootfs) {
695 error = nvlist_remove(props,
696 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), DATA_TYPE_STRING);
697
698 if (!error) {
699 error = nvlist_add_uint64(props,
700 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), objnum);
701 }
702 }
703
704 return (error);
705 }
706
707 void
708 spa_configfile_set(spa_t *spa, nvlist_t *nvp, boolean_t need_sync)
709 {
710 char *cachefile;
711 spa_config_dirent_t *dp;
712
713 if (nvlist_lookup_string(nvp, zpool_prop_to_name(ZPOOL_PROP_CACHEFILE),
714 &cachefile) != 0)
715 return;
716
717 dp = kmem_alloc(sizeof (spa_config_dirent_t),
718 KM_SLEEP);
719
720 if (cachefile[0] == '\0')
721 dp->scd_path = spa_strdup(spa_config_path);
722 else if (strcmp(cachefile, "none") == 0)
723 dp->scd_path = NULL;
724 else
725 dp->scd_path = spa_strdup(cachefile);
726
727 list_insert_head(&spa->spa_config_list, dp);
728 if (need_sync)
729 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
730 }
731
732 int
733 spa_prop_set(spa_t *spa, nvlist_t *nvp)
734 {
735 int error;
736 nvpair_t *elem = NULL;
737 boolean_t need_sync = B_FALSE;
738
739 if ((error = spa_prop_validate(spa, nvp)) != 0)
740 return (error);
741
742 while ((elem = nvlist_next_nvpair(nvp, elem)) != NULL) {
743 zpool_prop_t prop = zpool_name_to_prop(nvpair_name(elem));
744
745 if (prop == ZPOOL_PROP_CACHEFILE ||
746 prop == ZPOOL_PROP_ALTROOT ||
747 prop == ZPOOL_PROP_READONLY)
748 continue;
749
750 if (prop == ZPOOL_PROP_VERSION || prop == ZPOOL_PROP_INVAL) {
751 uint64_t ver;
752
753 if (prop == ZPOOL_PROP_VERSION) {
754 VERIFY(nvpair_value_uint64(elem, &ver) == 0);
755 } else {
756 ASSERT(zpool_prop_feature(nvpair_name(elem)));
757 ver = SPA_VERSION_FEATURES;
758 need_sync = B_TRUE;
759 }
760
761 /* Save time if the version is already set. */
762 if (ver == spa_version(spa))
763 continue;
764
765 /*
766 * In addition to the pool directory object, we might
767 * create the pool properties object, the features for
768 * read object, the features for write object, or the
769 * feature descriptions object.
770 */
771 error = dsl_sync_task(spa->spa_name, NULL,
772 spa_sync_version, &ver,
773 6, ZFS_SPACE_CHECK_RESERVED);
774 if (error)
775 return (error);
776 continue;
777 }
778
779 need_sync = B_TRUE;
780 break;
781 }
782
783 if (need_sync) {
784 return (dsl_sync_task(spa->spa_name, NULL, spa_sync_props,
785 nvp, 6, ZFS_SPACE_CHECK_RESERVED));
786 }
787
788 return (0);
789 }
790
791 /*
792 * If the bootfs property value is dsobj, clear it.
793 */
794 void
795 spa_prop_clear_bootfs(spa_t *spa, uint64_t dsobj, dmu_tx_t *tx)
796 {
797 if (spa->spa_bootfs == dsobj && spa->spa_pool_props_object != 0) {
798 VERIFY(zap_remove(spa->spa_meta_objset,
799 spa->spa_pool_props_object,
800 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), tx) == 0);
801 spa->spa_bootfs = 0;
802 }
803 }
804
805 /*ARGSUSED*/
806 static int
807 spa_change_guid_check(void *arg, dmu_tx_t *tx)
808 {
809 ASSERTV(uint64_t *newguid = arg);
810 spa_t *spa = dmu_tx_pool(tx)->dp_spa;
811 vdev_t *rvd = spa->spa_root_vdev;
812 uint64_t vdev_state;
813
814 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
815 vdev_state = rvd->vdev_state;
816 spa_config_exit(spa, SCL_STATE, FTAG);
817
818 if (vdev_state != VDEV_STATE_HEALTHY)
819 return (SET_ERROR(ENXIO));
820
821 ASSERT3U(spa_guid(spa), !=, *newguid);
822
823 return (0);
824 }
825
826 static void
827 spa_change_guid_sync(void *arg, dmu_tx_t *tx)
828 {
829 uint64_t *newguid = arg;
830 spa_t *spa = dmu_tx_pool(tx)->dp_spa;
831 uint64_t oldguid;
832 vdev_t *rvd = spa->spa_root_vdev;
833
834 oldguid = spa_guid(spa);
835
836 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
837 rvd->vdev_guid = *newguid;
838 rvd->vdev_guid_sum += (*newguid - oldguid);
839 vdev_config_dirty(rvd);
840 spa_config_exit(spa, SCL_STATE, FTAG);
841
842 spa_history_log_internal(spa, "guid change", tx, "old=%llu new=%llu",
843 oldguid, *newguid);
844 }
845
846 /*
847 * Change the GUID for the pool. This is done so that we can later
848 * re-import a pool built from a clone of our own vdevs. We will modify
849 * the root vdev's guid, our own pool guid, and then mark all of our
850 * vdevs dirty. Note that we must make sure that all our vdevs are
851 * online when we do this, or else any vdevs that weren't present
852 * would be orphaned from our pool. We are also going to issue a
853 * sysevent to update any watchers.
854 */
855 int
856 spa_change_guid(spa_t *spa)
857 {
858 int error;
859 uint64_t guid;
860
861 mutex_enter(&spa->spa_vdev_top_lock);
862 mutex_enter(&spa_namespace_lock);
863 guid = spa_generate_guid(NULL);
864
865 error = dsl_sync_task(spa->spa_name, spa_change_guid_check,
866 spa_change_guid_sync, &guid, 5, ZFS_SPACE_CHECK_RESERVED);
867
868 if (error == 0) {
869 spa_write_cachefile(spa, B_FALSE, B_TRUE);
870 spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_REGUID);
871 }
872
873 mutex_exit(&spa_namespace_lock);
874 mutex_exit(&spa->spa_vdev_top_lock);
875
876 return (error);
877 }
878
879 /*
880 * ==========================================================================
881 * SPA state manipulation (open/create/destroy/import/export)
882 * ==========================================================================
883 */
884
885 static int
886 spa_error_entry_compare(const void *a, const void *b)
887 {
888 const spa_error_entry_t *sa = (const spa_error_entry_t *)a;
889 const spa_error_entry_t *sb = (const spa_error_entry_t *)b;
890 int ret;
891
892 ret = memcmp(&sa->se_bookmark, &sb->se_bookmark,
893 sizeof (zbookmark_phys_t));
894
895 return (AVL_ISIGN(ret));
896 }
897
898 /*
899 * Utility function which retrieves copies of the current logs and
900 * re-initializes them in the process.
901 */
902 void
903 spa_get_errlists(spa_t *spa, avl_tree_t *last, avl_tree_t *scrub)
904 {
905 ASSERT(MUTEX_HELD(&spa->spa_errlist_lock));
906
907 bcopy(&spa->spa_errlist_last, last, sizeof (avl_tree_t));
908 bcopy(&spa->spa_errlist_scrub, scrub, sizeof (avl_tree_t));
909
910 avl_create(&spa->spa_errlist_scrub,
911 spa_error_entry_compare, sizeof (spa_error_entry_t),
912 offsetof(spa_error_entry_t, se_avl));
913 avl_create(&spa->spa_errlist_last,
914 spa_error_entry_compare, sizeof (spa_error_entry_t),
915 offsetof(spa_error_entry_t, se_avl));
916 }
917
918 static void
919 spa_taskqs_init(spa_t *spa, zio_type_t t, zio_taskq_type_t q)
920 {
921 const zio_taskq_info_t *ztip = &zio_taskqs[t][q];
922 enum zti_modes mode = ztip->zti_mode;
923 uint_t value = ztip->zti_value;
924 uint_t count = ztip->zti_count;
925 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
926 char name[32];
927 uint_t flags = 0;
928 boolean_t batch = B_FALSE;
929
930 if (mode == ZTI_MODE_NULL) {
931 tqs->stqs_count = 0;
932 tqs->stqs_taskq = NULL;
933 return;
934 }
935
936 ASSERT3U(count, >, 0);
937
938 tqs->stqs_count = count;
939 tqs->stqs_taskq = kmem_alloc(count * sizeof (taskq_t *), KM_SLEEP);
940
941 switch (mode) {
942 case ZTI_MODE_FIXED:
943 ASSERT3U(value, >=, 1);
944 value = MAX(value, 1);
945 flags |= TASKQ_DYNAMIC;
946 break;
947
948 case ZTI_MODE_BATCH:
949 batch = B_TRUE;
950 flags |= TASKQ_THREADS_CPU_PCT;
951 value = MIN(zio_taskq_batch_pct, 100);
952 break;
953
954 default:
955 panic("unrecognized mode for %s_%s taskq (%u:%u) in "
956 "spa_activate()",
957 zio_type_name[t], zio_taskq_types[q], mode, value);
958 break;
959 }
960
961 for (uint_t i = 0; i < count; i++) {
962 taskq_t *tq;
963
964 if (count > 1) {
965 (void) snprintf(name, sizeof (name), "%s_%s_%u",
966 zio_type_name[t], zio_taskq_types[q], i);
967 } else {
968 (void) snprintf(name, sizeof (name), "%s_%s",
969 zio_type_name[t], zio_taskq_types[q]);
970 }
971
972 if (zio_taskq_sysdc && spa->spa_proc != &p0) {
973 if (batch)
974 flags |= TASKQ_DC_BATCH;
975
976 tq = taskq_create_sysdc(name, value, 50, INT_MAX,
977 spa->spa_proc, zio_taskq_basedc, flags);
978 } else {
979 pri_t pri = maxclsyspri;
980 /*
981 * The write issue taskq can be extremely CPU
982 * intensive. Run it at slightly less important
983 * priority than the other taskqs. Under Linux this
984 * means incrementing the priority value on platforms
985 * like illumos it should be decremented.
986 */
987 if (t == ZIO_TYPE_WRITE && q == ZIO_TASKQ_ISSUE)
988 pri++;
989
990 tq = taskq_create_proc(name, value, pri, 50,
991 INT_MAX, spa->spa_proc, flags);
992 }
993
994 tqs->stqs_taskq[i] = tq;
995 }
996 }
997
998 static void
999 spa_taskqs_fini(spa_t *spa, zio_type_t t, zio_taskq_type_t q)
1000 {
1001 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
1002
1003 if (tqs->stqs_taskq == NULL) {
1004 ASSERT3U(tqs->stqs_count, ==, 0);
1005 return;
1006 }
1007
1008 for (uint_t i = 0; i < tqs->stqs_count; i++) {
1009 ASSERT3P(tqs->stqs_taskq[i], !=, NULL);
1010 taskq_destroy(tqs->stqs_taskq[i]);
1011 }
1012
1013 kmem_free(tqs->stqs_taskq, tqs->stqs_count * sizeof (taskq_t *));
1014 tqs->stqs_taskq = NULL;
1015 }
1016
1017 /*
1018 * Dispatch a task to the appropriate taskq for the ZFS I/O type and priority.
1019 * Note that a type may have multiple discrete taskqs to avoid lock contention
1020 * on the taskq itself. In that case we choose which taskq at random by using
1021 * the low bits of gethrtime().
1022 */
1023 void
1024 spa_taskq_dispatch_ent(spa_t *spa, zio_type_t t, zio_taskq_type_t q,
1025 task_func_t *func, void *arg, uint_t flags, taskq_ent_t *ent)
1026 {
1027 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
1028 taskq_t *tq;
1029
1030 ASSERT3P(tqs->stqs_taskq, !=, NULL);
1031 ASSERT3U(tqs->stqs_count, !=, 0);
1032
1033 if (tqs->stqs_count == 1) {
1034 tq = tqs->stqs_taskq[0];
1035 } else {
1036 tq = tqs->stqs_taskq[((uint64_t)gethrtime()) % tqs->stqs_count];
1037 }
1038
1039 taskq_dispatch_ent(tq, func, arg, flags, ent);
1040 }
1041
1042 /*
1043 * Same as spa_taskq_dispatch_ent() but block on the task until completion.
1044 */
1045 void
1046 spa_taskq_dispatch_sync(spa_t *spa, zio_type_t t, zio_taskq_type_t q,
1047 task_func_t *func, void *arg, uint_t flags)
1048 {
1049 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
1050 taskq_t *tq;
1051 taskqid_t id;
1052
1053 ASSERT3P(tqs->stqs_taskq, !=, NULL);
1054 ASSERT3U(tqs->stqs_count, !=, 0);
1055
1056 if (tqs->stqs_count == 1) {
1057 tq = tqs->stqs_taskq[0];
1058 } else {
1059 tq = tqs->stqs_taskq[((uint64_t)gethrtime()) % tqs->stqs_count];
1060 }
1061
1062 id = taskq_dispatch(tq, func, arg, flags);
1063 if (id)
1064 taskq_wait_id(tq, id);
1065 }
1066
1067 static void
1068 spa_create_zio_taskqs(spa_t *spa)
1069 {
1070 for (int t = 0; t < ZIO_TYPES; t++) {
1071 for (int q = 0; q < ZIO_TASKQ_TYPES; q++) {
1072 spa_taskqs_init(spa, t, q);
1073 }
1074 }
1075 }
1076
1077 /*
1078 * Disabled until spa_thread() can be adapted for Linux.
1079 */
1080 #undef HAVE_SPA_THREAD
1081
1082 #if defined(_KERNEL) && defined(HAVE_SPA_THREAD)
1083 static void
1084 spa_thread(void *arg)
1085 {
1086 psetid_t zio_taskq_psrset_bind = PS_NONE;
1087 callb_cpr_t cprinfo;
1088
1089 spa_t *spa = arg;
1090 user_t *pu = PTOU(curproc);
1091
1092 CALLB_CPR_INIT(&cprinfo, &spa->spa_proc_lock, callb_generic_cpr,
1093 spa->spa_name);
1094
1095 ASSERT(curproc != &p0);
1096 (void) snprintf(pu->u_psargs, sizeof (pu->u_psargs),
1097 "zpool-%s", spa->spa_name);
1098 (void) strlcpy(pu->u_comm, pu->u_psargs, sizeof (pu->u_comm));
1099
1100 /* bind this thread to the requested psrset */
1101 if (zio_taskq_psrset_bind != PS_NONE) {
1102 pool_lock();
1103 mutex_enter(&cpu_lock);
1104 mutex_enter(&pidlock);
1105 mutex_enter(&curproc->p_lock);
1106
1107 if (cpupart_bind_thread(curthread, zio_taskq_psrset_bind,
1108 0, NULL, NULL) == 0) {
1109 curthread->t_bind_pset = zio_taskq_psrset_bind;
1110 } else {
1111 cmn_err(CE_WARN,
1112 "Couldn't bind process for zfs pool \"%s\" to "
1113 "pset %d\n", spa->spa_name, zio_taskq_psrset_bind);
1114 }
1115
1116 mutex_exit(&curproc->p_lock);
1117 mutex_exit(&pidlock);
1118 mutex_exit(&cpu_lock);
1119 pool_unlock();
1120 }
1121
1122 if (zio_taskq_sysdc) {
1123 sysdc_thread_enter(curthread, 100, 0);
1124 }
1125
1126 spa->spa_proc = curproc;
1127 spa->spa_did = curthread->t_did;
1128
1129 spa_create_zio_taskqs(spa);
1130
1131 mutex_enter(&spa->spa_proc_lock);
1132 ASSERT(spa->spa_proc_state == SPA_PROC_CREATED);
1133
1134 spa->spa_proc_state = SPA_PROC_ACTIVE;
1135 cv_broadcast(&spa->spa_proc_cv);
1136
1137 CALLB_CPR_SAFE_BEGIN(&cprinfo);
1138 while (spa->spa_proc_state == SPA_PROC_ACTIVE)
1139 cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock);
1140 CALLB_CPR_SAFE_END(&cprinfo, &spa->spa_proc_lock);
1141
1142 ASSERT(spa->spa_proc_state == SPA_PROC_DEACTIVATE);
1143 spa->spa_proc_state = SPA_PROC_GONE;
1144 spa->spa_proc = &p0;
1145 cv_broadcast(&spa->spa_proc_cv);
1146 CALLB_CPR_EXIT(&cprinfo); /* drops spa_proc_lock */
1147
1148 mutex_enter(&curproc->p_lock);
1149 lwp_exit();
1150 }
1151 #endif
1152
1153 /*
1154 * Activate an uninitialized pool.
1155 */
1156 static void
1157 spa_activate(spa_t *spa, int mode)
1158 {
1159 ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED);
1160
1161 spa->spa_state = POOL_STATE_ACTIVE;
1162 spa->spa_mode = mode;
1163
1164 spa->spa_normal_class = metaslab_class_create(spa, zfs_metaslab_ops);
1165 spa->spa_log_class = metaslab_class_create(spa, zfs_metaslab_ops);
1166
1167 /* Try to create a covering process */
1168 mutex_enter(&spa->spa_proc_lock);
1169 ASSERT(spa->spa_proc_state == SPA_PROC_NONE);
1170 ASSERT(spa->spa_proc == &p0);
1171 spa->spa_did = 0;
1172
1173 #ifdef HAVE_SPA_THREAD
1174 /* Only create a process if we're going to be around a while. */
1175 if (spa_create_process && strcmp(spa->spa_name, TRYIMPORT_NAME) != 0) {
1176 if (newproc(spa_thread, (caddr_t)spa, syscid, maxclsyspri,
1177 NULL, 0) == 0) {
1178 spa->spa_proc_state = SPA_PROC_CREATED;
1179 while (spa->spa_proc_state == SPA_PROC_CREATED) {
1180 cv_wait(&spa->spa_proc_cv,
1181 &spa->spa_proc_lock);
1182 }
1183 ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE);
1184 ASSERT(spa->spa_proc != &p0);
1185 ASSERT(spa->spa_did != 0);
1186 } else {
1187 #ifdef _KERNEL
1188 cmn_err(CE_WARN,
1189 "Couldn't create process for zfs pool \"%s\"\n",
1190 spa->spa_name);
1191 #endif
1192 }
1193 }
1194 #endif /* HAVE_SPA_THREAD */
1195 mutex_exit(&spa->spa_proc_lock);
1196
1197 /* If we didn't create a process, we need to create our taskqs. */
1198 if (spa->spa_proc == &p0) {
1199 spa_create_zio_taskqs(spa);
1200 }
1201
1202 for (size_t i = 0; i < TXG_SIZE; i++)
1203 spa->spa_txg_zio[i] = zio_root(spa, NULL, NULL, 0);
1204
1205 list_create(&spa->spa_config_dirty_list, sizeof (vdev_t),
1206 offsetof(vdev_t, vdev_config_dirty_node));
1207 list_create(&spa->spa_evicting_os_list, sizeof (objset_t),
1208 offsetof(objset_t, os_evicting_node));
1209 list_create(&spa->spa_state_dirty_list, sizeof (vdev_t),
1210 offsetof(vdev_t, vdev_state_dirty_node));
1211
1212 txg_list_create(&spa->spa_vdev_txg_list, spa,
1213 offsetof(struct vdev, vdev_txg_node));
1214
1215 avl_create(&spa->spa_errlist_scrub,
1216 spa_error_entry_compare, sizeof (spa_error_entry_t),
1217 offsetof(spa_error_entry_t, se_avl));
1218 avl_create(&spa->spa_errlist_last,
1219 spa_error_entry_compare, sizeof (spa_error_entry_t),
1220 offsetof(spa_error_entry_t, se_avl));
1221
1222 spa_keystore_init(&spa->spa_keystore);
1223
1224 /*
1225 * This taskq is used to perform zvol-minor-related tasks
1226 * asynchronously. This has several advantages, including easy
1227 * resolution of various deadlocks (zfsonlinux bug #3681).
1228 *
1229 * The taskq must be single threaded to ensure tasks are always
1230 * processed in the order in which they were dispatched.
1231 *
1232 * A taskq per pool allows one to keep the pools independent.
1233 * This way if one pool is suspended, it will not impact another.
1234 *
1235 * The preferred location to dispatch a zvol minor task is a sync
1236 * task. In this context, there is easy access to the spa_t and minimal
1237 * error handling is required because the sync task must succeed.
1238 */
1239 spa->spa_zvol_taskq = taskq_create("z_zvol", 1, defclsyspri,
1240 1, INT_MAX, 0);
1241
1242 /*
1243 * Taskq dedicated to prefetcher threads: this is used to prevent the
1244 * pool traverse code from monopolizing the global (and limited)
1245 * system_taskq by inappropriately scheduling long running tasks on it.
1246 */
1247 spa->spa_prefetch_taskq = taskq_create("z_prefetch", boot_ncpus,
1248 defclsyspri, 1, INT_MAX, TASKQ_DYNAMIC);
1249
1250 /*
1251 * The taskq to upgrade datasets in this pool. Currently used by
1252 * feature SPA_FEATURE_USEROBJ_ACCOUNTING/SPA_FEATURE_PROJECT_QUOTA.
1253 */
1254 spa->spa_upgrade_taskq = taskq_create("z_upgrade", boot_ncpus,
1255 defclsyspri, 1, INT_MAX, TASKQ_DYNAMIC);
1256 }
1257
1258 /*
1259 * Opposite of spa_activate().
1260 */
1261 static void
1262 spa_deactivate(spa_t *spa)
1263 {
1264 ASSERT(spa->spa_sync_on == B_FALSE);
1265 ASSERT(spa->spa_dsl_pool == NULL);
1266 ASSERT(spa->spa_root_vdev == NULL);
1267 ASSERT(spa->spa_async_zio_root == NULL);
1268 ASSERT(spa->spa_state != POOL_STATE_UNINITIALIZED);
1269
1270 spa_evicting_os_wait(spa);
1271
1272 if (spa->spa_zvol_taskq) {
1273 taskq_destroy(spa->spa_zvol_taskq);
1274 spa->spa_zvol_taskq = NULL;
1275 }
1276
1277 if (spa->spa_prefetch_taskq) {
1278 taskq_destroy(spa->spa_prefetch_taskq);
1279 spa->spa_prefetch_taskq = NULL;
1280 }
1281
1282 if (spa->spa_upgrade_taskq) {
1283 taskq_destroy(spa->spa_upgrade_taskq);
1284 spa->spa_upgrade_taskq = NULL;
1285 }
1286
1287 txg_list_destroy(&spa->spa_vdev_txg_list);
1288
1289 list_destroy(&spa->spa_config_dirty_list);
1290 list_destroy(&spa->spa_evicting_os_list);
1291 list_destroy(&spa->spa_state_dirty_list);
1292
1293 taskq_cancel_id(system_delay_taskq, spa->spa_deadman_tqid);
1294
1295 for (int t = 0; t < ZIO_TYPES; t++) {
1296 for (int q = 0; q < ZIO_TASKQ_TYPES; q++) {
1297 spa_taskqs_fini(spa, t, q);
1298 }
1299 }
1300
1301 for (size_t i = 0; i < TXG_SIZE; i++) {
1302 ASSERT3P(spa->spa_txg_zio[i], !=, NULL);
1303 VERIFY0(zio_wait(spa->spa_txg_zio[i]));
1304 spa->spa_txg_zio[i] = NULL;
1305 }
1306
1307 metaslab_class_destroy(spa->spa_normal_class);
1308 spa->spa_normal_class = NULL;
1309
1310 metaslab_class_destroy(spa->spa_log_class);
1311 spa->spa_log_class = NULL;
1312
1313 /*
1314 * If this was part of an import or the open otherwise failed, we may
1315 * still have errors left in the queues. Empty them just in case.
1316 */
1317 spa_errlog_drain(spa);
1318 avl_destroy(&spa->spa_errlist_scrub);
1319 avl_destroy(&spa->spa_errlist_last);
1320
1321 spa_keystore_fini(&spa->spa_keystore);
1322
1323 spa->spa_state = POOL_STATE_UNINITIALIZED;
1324
1325 mutex_enter(&spa->spa_proc_lock);
1326 if (spa->spa_proc_state != SPA_PROC_NONE) {
1327 ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE);
1328 spa->spa_proc_state = SPA_PROC_DEACTIVATE;
1329 cv_broadcast(&spa->spa_proc_cv);
1330 while (spa->spa_proc_state == SPA_PROC_DEACTIVATE) {
1331 ASSERT(spa->spa_proc != &p0);
1332 cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock);
1333 }
1334 ASSERT(spa->spa_proc_state == SPA_PROC_GONE);
1335 spa->spa_proc_state = SPA_PROC_NONE;
1336 }
1337 ASSERT(spa->spa_proc == &p0);
1338 mutex_exit(&spa->spa_proc_lock);
1339
1340 /*
1341 * We want to make sure spa_thread() has actually exited the ZFS
1342 * module, so that the module can't be unloaded out from underneath
1343 * it.
1344 */
1345 if (spa->spa_did != 0) {
1346 thread_join(spa->spa_did);
1347 spa->spa_did = 0;
1348 }
1349 }
1350
1351 /*
1352 * Verify a pool configuration, and construct the vdev tree appropriately. This
1353 * will create all the necessary vdevs in the appropriate layout, with each vdev
1354 * in the CLOSED state. This will prep the pool before open/creation/import.
1355 * All vdev validation is done by the vdev_alloc() routine.
1356 */
1357 static int
1358 spa_config_parse(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent,
1359 uint_t id, int atype)
1360 {
1361 nvlist_t **child;
1362 uint_t children;
1363 int error;
1364
1365 if ((error = vdev_alloc(spa, vdp, nv, parent, id, atype)) != 0)
1366 return (error);
1367
1368 if ((*vdp)->vdev_ops->vdev_op_leaf)
1369 return (0);
1370
1371 error = nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
1372 &child, &children);
1373
1374 if (error == ENOENT)
1375 return (0);
1376
1377 if (error) {
1378 vdev_free(*vdp);
1379 *vdp = NULL;
1380 return (SET_ERROR(EINVAL));
1381 }
1382
1383 for (int c = 0; c < children; c++) {
1384 vdev_t *vd;
1385 if ((error = spa_config_parse(spa, &vd, child[c], *vdp, c,
1386 atype)) != 0) {
1387 vdev_free(*vdp);
1388 *vdp = NULL;
1389 return (error);
1390 }
1391 }
1392
1393 ASSERT(*vdp != NULL);
1394
1395 return (0);
1396 }
1397
1398 /*
1399 * Opposite of spa_load().
1400 */
1401 static void
1402 spa_unload(spa_t *spa)
1403 {
1404 int i;
1405
1406 ASSERT(MUTEX_HELD(&spa_namespace_lock));
1407
1408 spa_load_note(spa, "UNLOADING");
1409
1410 /*
1411 * Stop async tasks.
1412 */
1413 spa_async_suspend(spa);
1414
1415 /*
1416 * Stop syncing.
1417 */
1418 if (spa->spa_sync_on) {
1419 txg_sync_stop(spa->spa_dsl_pool);
1420 spa->spa_sync_on = B_FALSE;
1421 }
1422
1423 /*
1424 * Even though vdev_free() also calls vdev_metaslab_fini, we need
1425 * to call it earlier, before we wait for async i/o to complete.
1426 * This ensures that there is no async metaslab prefetching, by
1427 * calling taskq_wait(mg_taskq).
1428 */
1429 if (spa->spa_root_vdev != NULL) {
1430 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1431 for (int c = 0; c < spa->spa_root_vdev->vdev_children; c++)
1432 vdev_metaslab_fini(spa->spa_root_vdev->vdev_child[c]);
1433 spa_config_exit(spa, SCL_ALL, FTAG);
1434 }
1435
1436 if (spa->spa_mmp.mmp_thread)
1437 mmp_thread_stop(spa);
1438
1439 /*
1440 * Wait for any outstanding async I/O to complete.
1441 */
1442 if (spa->spa_async_zio_root != NULL) {
1443 for (int i = 0; i < max_ncpus; i++)
1444 (void) zio_wait(spa->spa_async_zio_root[i]);
1445 kmem_free(spa->spa_async_zio_root, max_ncpus * sizeof (void *));
1446 spa->spa_async_zio_root = NULL;
1447 }
1448
1449 if (spa->spa_vdev_removal != NULL) {
1450 spa_vdev_removal_destroy(spa->spa_vdev_removal);
1451 spa->spa_vdev_removal = NULL;
1452 }
1453
1454 if (spa->spa_condense_zthr != NULL) {
1455 ASSERT(!zthr_isrunning(spa->spa_condense_zthr));
1456 zthr_destroy(spa->spa_condense_zthr);
1457 spa->spa_condense_zthr = NULL;
1458 }
1459
1460 spa_condense_fini(spa);
1461
1462 bpobj_close(&spa->spa_deferred_bpobj);
1463
1464 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1465
1466 /*
1467 * Close all vdevs.
1468 */
1469 if (spa->spa_root_vdev)
1470 vdev_free(spa->spa_root_vdev);
1471 ASSERT(spa->spa_root_vdev == NULL);
1472
1473 /*
1474 * Close the dsl pool.
1475 */
1476 if (spa->spa_dsl_pool) {
1477 dsl_pool_close(spa->spa_dsl_pool);
1478 spa->spa_dsl_pool = NULL;
1479 spa->spa_meta_objset = NULL;
1480 }
1481
1482 ddt_unload(spa);
1483
1484 /*
1485 * Drop and purge level 2 cache
1486 */
1487 spa_l2cache_drop(spa);
1488
1489 for (i = 0; i < spa->spa_spares.sav_count; i++)
1490 vdev_free(spa->spa_spares.sav_vdevs[i]);
1491 if (spa->spa_spares.sav_vdevs) {
1492 kmem_free(spa->spa_spares.sav_vdevs,
1493 spa->spa_spares.sav_count * sizeof (void *));
1494 spa->spa_spares.sav_vdevs = NULL;
1495 }
1496 if (spa->spa_spares.sav_config) {
1497 nvlist_free(spa->spa_spares.sav_config);
1498 spa->spa_spares.sav_config = NULL;
1499 }
1500 spa->spa_spares.sav_count = 0;
1501
1502 for (i = 0; i < spa->spa_l2cache.sav_count; i++) {
1503 vdev_clear_stats(spa->spa_l2cache.sav_vdevs[i]);
1504 vdev_free(spa->spa_l2cache.sav_vdevs[i]);
1505 }
1506 if (spa->spa_l2cache.sav_vdevs) {
1507 kmem_free(spa->spa_l2cache.sav_vdevs,
1508 spa->spa_l2cache.sav_count * sizeof (void *));
1509 spa->spa_l2cache.sav_vdevs = NULL;
1510 }
1511 if (spa->spa_l2cache.sav_config) {
1512 nvlist_free(spa->spa_l2cache.sav_config);
1513 spa->spa_l2cache.sav_config = NULL;
1514 }
1515 spa->spa_l2cache.sav_count = 0;
1516
1517 spa->spa_async_suspended = 0;
1518
1519 spa->spa_indirect_vdevs_loaded = B_FALSE;
1520
1521 if (spa->spa_comment != NULL) {
1522 spa_strfree(spa->spa_comment);
1523 spa->spa_comment = NULL;
1524 }
1525
1526 spa_config_exit(spa, SCL_ALL, FTAG);
1527 }
1528
1529 /*
1530 * Load (or re-load) the current list of vdevs describing the active spares for
1531 * this pool. When this is called, we have some form of basic information in
1532 * 'spa_spares.sav_config'. We parse this into vdevs, try to open them, and
1533 * then re-generate a more complete list including status information.
1534 */
1535 void
1536 spa_load_spares(spa_t *spa)
1537 {
1538 nvlist_t **spares;
1539 uint_t nspares;
1540 int i;
1541 vdev_t *vd, *tvd;
1542
1543 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1544
1545 /*
1546 * First, close and free any existing spare vdevs.
1547 */
1548 for (i = 0; i < spa->spa_spares.sav_count; i++) {
1549 vd = spa->spa_spares.sav_vdevs[i];
1550
1551 /* Undo the call to spa_activate() below */
1552 if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
1553 B_FALSE)) != NULL && tvd->vdev_isspare)
1554 spa_spare_remove(tvd);
1555 vdev_close(vd);
1556 vdev_free(vd);
1557 }
1558
1559 if (spa->spa_spares.sav_vdevs)
1560 kmem_free(spa->spa_spares.sav_vdevs,
1561 spa->spa_spares.sav_count * sizeof (void *));
1562
1563 if (spa->spa_spares.sav_config == NULL)
1564 nspares = 0;
1565 else
1566 VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
1567 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
1568
1569 spa->spa_spares.sav_count = (int)nspares;
1570 spa->spa_spares.sav_vdevs = NULL;
1571
1572 if (nspares == 0)
1573 return;
1574
1575 /*
1576 * Construct the array of vdevs, opening them to get status in the
1577 * process. For each spare, there is potentially two different vdev_t
1578 * structures associated with it: one in the list of spares (used only
1579 * for basic validation purposes) and one in the active vdev
1580 * configuration (if it's spared in). During this phase we open and
1581 * validate each vdev on the spare list. If the vdev also exists in the
1582 * active configuration, then we also mark this vdev as an active spare.
1583 */
1584 spa->spa_spares.sav_vdevs = kmem_zalloc(nspares * sizeof (void *),
1585 KM_SLEEP);
1586 for (i = 0; i < spa->spa_spares.sav_count; i++) {
1587 VERIFY(spa_config_parse(spa, &vd, spares[i], NULL, 0,
1588 VDEV_ALLOC_SPARE) == 0);
1589 ASSERT(vd != NULL);
1590
1591 spa->spa_spares.sav_vdevs[i] = vd;
1592
1593 if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
1594 B_FALSE)) != NULL) {
1595 if (!tvd->vdev_isspare)
1596 spa_spare_add(tvd);
1597
1598 /*
1599 * We only mark the spare active if we were successfully
1600 * able to load the vdev. Otherwise, importing a pool
1601 * with a bad active spare would result in strange
1602 * behavior, because multiple pool would think the spare
1603 * is actively in use.
1604 *
1605 * There is a vulnerability here to an equally bizarre
1606 * circumstance, where a dead active spare is later
1607 * brought back to life (onlined or otherwise). Given
1608 * the rarity of this scenario, and the extra complexity
1609 * it adds, we ignore the possibility.
1610 */
1611 if (!vdev_is_dead(tvd))
1612 spa_spare_activate(tvd);
1613 }
1614
1615 vd->vdev_top = vd;
1616 vd->vdev_aux = &spa->spa_spares;
1617
1618 if (vdev_open(vd) != 0)
1619 continue;
1620
1621 if (vdev_validate_aux(vd) == 0)
1622 spa_spare_add(vd);
1623 }
1624
1625 /*
1626 * Recompute the stashed list of spares, with status information
1627 * this time.
1628 */
1629 VERIFY(nvlist_remove(spa->spa_spares.sav_config, ZPOOL_CONFIG_SPARES,
1630 DATA_TYPE_NVLIST_ARRAY) == 0);
1631
1632 spares = kmem_alloc(spa->spa_spares.sav_count * sizeof (void *),
1633 KM_SLEEP);
1634 for (i = 0; i < spa->spa_spares.sav_count; i++)
1635 spares[i] = vdev_config_generate(spa,
1636 spa->spa_spares.sav_vdevs[i], B_TRUE, VDEV_CONFIG_SPARE);
1637 VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
1638 ZPOOL_CONFIG_SPARES, spares, spa->spa_spares.sav_count) == 0);
1639 for (i = 0; i < spa->spa_spares.sav_count; i++)
1640 nvlist_free(spares[i]);
1641 kmem_free(spares, spa->spa_spares.sav_count * sizeof (void *));
1642 }
1643
1644 /*
1645 * Load (or re-load) the current list of vdevs describing the active l2cache for
1646 * this pool. When this is called, we have some form of basic information in
1647 * 'spa_l2cache.sav_config'. We parse this into vdevs, try to open them, and
1648 * then re-generate a more complete list including status information.
1649 * Devices which are already active have their details maintained, and are
1650 * not re-opened.
1651 */
1652 void
1653 spa_load_l2cache(spa_t *spa)
1654 {
1655 nvlist_t **l2cache = NULL;
1656 uint_t nl2cache;
1657 int i, j, oldnvdevs;
1658 uint64_t guid;
1659 vdev_t *vd, **oldvdevs, **newvdevs;
1660 spa_aux_vdev_t *sav = &spa->spa_l2cache;
1661
1662 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1663
1664 oldvdevs = sav->sav_vdevs;
1665 oldnvdevs = sav->sav_count;
1666 sav->sav_vdevs = NULL;
1667 sav->sav_count = 0;
1668
1669 if (sav->sav_config == NULL) {
1670 nl2cache = 0;
1671 newvdevs = NULL;
1672 goto out;
1673 }
1674
1675 VERIFY(nvlist_lookup_nvlist_array(sav->sav_config,
1676 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
1677 newvdevs = kmem_alloc(nl2cache * sizeof (void *), KM_SLEEP);
1678
1679 /*
1680 * Process new nvlist of vdevs.
1681 */
1682 for (i = 0; i < nl2cache; i++) {
1683 VERIFY(nvlist_lookup_uint64(l2cache[i], ZPOOL_CONFIG_GUID,
1684 &guid) == 0);
1685
1686 newvdevs[i] = NULL;
1687 for (j = 0; j < oldnvdevs; j++) {
1688 vd = oldvdevs[j];
1689 if (vd != NULL && guid == vd->vdev_guid) {
1690 /*
1691 * Retain previous vdev for add/remove ops.
1692 */
1693 newvdevs[i] = vd;
1694 oldvdevs[j] = NULL;
1695 break;
1696 }
1697 }
1698
1699 if (newvdevs[i] == NULL) {
1700 /*
1701 * Create new vdev
1702 */
1703 VERIFY(spa_config_parse(spa, &vd, l2cache[i], NULL, 0,
1704 VDEV_ALLOC_L2CACHE) == 0);
1705 ASSERT(vd != NULL);
1706 newvdevs[i] = vd;
1707
1708 /*
1709 * Commit this vdev as an l2cache device,
1710 * even if it fails to open.
1711 */
1712 spa_l2cache_add(vd);
1713
1714 vd->vdev_top = vd;
1715 vd->vdev_aux = sav;
1716
1717 spa_l2cache_activate(vd);
1718
1719 if (vdev_open(vd) != 0)
1720 continue;
1721
1722 (void) vdev_validate_aux(vd);
1723
1724 if (!vdev_is_dead(vd))
1725 l2arc_add_vdev(spa, vd);
1726 }
1727 }
1728
1729 sav->sav_vdevs = newvdevs;
1730 sav->sav_count = (int)nl2cache;
1731
1732 /*
1733 * Recompute the stashed list of l2cache devices, with status
1734 * information this time.
1735 */
1736 VERIFY(nvlist_remove(sav->sav_config, ZPOOL_CONFIG_L2CACHE,
1737 DATA_TYPE_NVLIST_ARRAY) == 0);
1738
1739 if (sav->sav_count > 0)
1740 l2cache = kmem_alloc(sav->sav_count * sizeof (void *),
1741 KM_SLEEP);
1742 for (i = 0; i < sav->sav_count; i++)
1743 l2cache[i] = vdev_config_generate(spa,
1744 sav->sav_vdevs[i], B_TRUE, VDEV_CONFIG_L2CACHE);
1745 VERIFY(nvlist_add_nvlist_array(sav->sav_config,
1746 ZPOOL_CONFIG_L2CACHE, l2cache, sav->sav_count) == 0);
1747
1748 out:
1749 /*
1750 * Purge vdevs that were dropped
1751 */
1752 for (i = 0; i < oldnvdevs; i++) {
1753 uint64_t pool;
1754
1755 vd = oldvdevs[i];
1756 if (vd != NULL) {
1757 ASSERT(vd->vdev_isl2cache);
1758
1759 if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
1760 pool != 0ULL && l2arc_vdev_present(vd))
1761 l2arc_remove_vdev(vd);
1762 vdev_clear_stats(vd);
1763 vdev_free(vd);
1764 }
1765 }
1766
1767 if (oldvdevs)
1768 kmem_free(oldvdevs, oldnvdevs * sizeof (void *));
1769
1770 for (i = 0; i < sav->sav_count; i++)
1771 nvlist_free(l2cache[i]);
1772 if (sav->sav_count)
1773 kmem_free(l2cache, sav->sav_count * sizeof (void *));
1774 }
1775
1776 static int
1777 load_nvlist(spa_t *spa, uint64_t obj, nvlist_t **value)
1778 {
1779 dmu_buf_t *db;
1780 char *packed = NULL;
1781 size_t nvsize = 0;
1782 int error;
1783 *value = NULL;
1784
1785 error = dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db);
1786 if (error)
1787 return (error);
1788
1789 nvsize = *(uint64_t *)db->db_data;
1790 dmu_buf_rele(db, FTAG);
1791
1792 packed = vmem_alloc(nvsize, KM_SLEEP);
1793 error = dmu_read(spa->spa_meta_objset, obj, 0, nvsize, packed,
1794 DMU_READ_PREFETCH);
1795 if (error == 0)
1796 error = nvlist_unpack(packed, nvsize, value, 0);
1797 vmem_free(packed, nvsize);
1798
1799 return (error);
1800 }
1801
1802 /*
1803 * Concrete top-level vdevs that are not missing and are not logs. At every
1804 * spa_sync we write new uberblocks to at least SPA_SYNC_MIN_VDEVS core tvds.
1805 */
1806 static uint64_t
1807 spa_healthy_core_tvds(spa_t *spa)
1808 {
1809 vdev_t *rvd = spa->spa_root_vdev;
1810 uint64_t tvds = 0;
1811
1812 for (uint64_t i = 0; i < rvd->vdev_children; i++) {
1813 vdev_t *vd = rvd->vdev_child[i];
1814 if (vd->vdev_islog)
1815 continue;
1816 if (vdev_is_concrete(vd) && !vdev_is_dead(vd))
1817 tvds++;
1818 }
1819
1820 return (tvds);
1821 }
1822
1823 /*
1824 * Checks to see if the given vdev could not be opened, in which case we post a
1825 * sysevent to notify the autoreplace code that the device has been removed.
1826 */
1827 static void
1828 spa_check_removed(vdev_t *vd)
1829 {
1830 for (uint64_t c = 0; c < vd->vdev_children; c++)
1831 spa_check_removed(vd->vdev_child[c]);
1832
1833 if (vd->vdev_ops->vdev_op_leaf && vdev_is_dead(vd) &&
1834 vdev_is_concrete(vd)) {
1835 zfs_post_autoreplace(vd->vdev_spa, vd);
1836 spa_event_notify(vd->vdev_spa, vd, NULL, ESC_ZFS_VDEV_CHECK);
1837 }
1838 }
1839
1840 static int
1841 spa_check_for_missing_logs(spa_t *spa)
1842 {
1843 vdev_t *rvd = spa->spa_root_vdev;
1844
1845 /*
1846 * If we're doing a normal import, then build up any additional
1847 * diagnostic information about missing log devices.
1848 * We'll pass this up to the user for further processing.
1849 */
1850 if (!(spa->spa_import_flags & ZFS_IMPORT_MISSING_LOG)) {
1851 nvlist_t **child, *nv;
1852 uint64_t idx = 0;
1853
1854 child = kmem_alloc(rvd->vdev_children * sizeof (nvlist_t *),
1855 KM_SLEEP);
1856 VERIFY(nvlist_alloc(&nv, NV_UNIQUE_NAME, KM_SLEEP) == 0);
1857
1858 for (uint64_t c = 0; c < rvd->vdev_children; c++) {
1859 vdev_t *tvd = rvd->vdev_child[c];
1860
1861 /*
1862 * We consider a device as missing only if it failed
1863 * to open (i.e. offline or faulted is not considered
1864 * as missing).
1865 */
1866 if (tvd->vdev_islog &&
1867 tvd->vdev_state == VDEV_STATE_CANT_OPEN) {
1868 child[idx++] = vdev_config_generate(spa, tvd,
1869 B_FALSE, VDEV_CONFIG_MISSING);
1870 }
1871 }
1872
1873 if (idx > 0) {
1874 fnvlist_add_nvlist_array(nv,
1875 ZPOOL_CONFIG_CHILDREN, child, idx);
1876 fnvlist_add_nvlist(spa->spa_load_info,
1877 ZPOOL_CONFIG_MISSING_DEVICES, nv);
1878
1879 for (uint64_t i = 0; i < idx; i++)
1880 nvlist_free(child[i]);
1881 }
1882 nvlist_free(nv);
1883 kmem_free(child, rvd->vdev_children * sizeof (char **));
1884
1885 if (idx > 0) {
1886 spa_load_failed(spa, "some log devices are missing");
1887 vdev_dbgmsg_print_tree(rvd, 2);
1888 return (SET_ERROR(ENXIO));
1889 }
1890 } else {
1891 for (uint64_t c = 0; c < rvd->vdev_children; c++) {
1892 vdev_t *tvd = rvd->vdev_child[c];
1893
1894 if (tvd->vdev_islog &&
1895 tvd->vdev_state == VDEV_STATE_CANT_OPEN) {
1896 spa_set_log_state(spa, SPA_LOG_CLEAR);
1897 spa_load_note(spa, "some log devices are "
1898 "missing, ZIL is dropped.");
1899 vdev_dbgmsg_print_tree(rvd, 2);
1900 break;
1901 }
1902 }
1903 }
1904
1905 return (0);
1906 }
1907
1908 /*
1909 * Check for missing log devices
1910 */
1911 static boolean_t
1912 spa_check_logs(spa_t *spa)
1913 {
1914 boolean_t rv = B_FALSE;
1915 dsl_pool_t *dp = spa_get_dsl(spa);
1916
1917 switch (spa->spa_log_state) {
1918 default:
1919 break;
1920 case SPA_LOG_MISSING:
1921 /* need to recheck in case slog has been restored */
1922 case SPA_LOG_UNKNOWN:
1923 rv = (dmu_objset_find_dp(dp, dp->dp_root_dir_obj,
1924 zil_check_log_chain, NULL, DS_FIND_CHILDREN) != 0);
1925 if (rv)
1926 spa_set_log_state(spa, SPA_LOG_MISSING);
1927 break;
1928 }
1929 return (rv);
1930 }
1931
1932 static boolean_t
1933 spa_passivate_log(spa_t *spa)
1934 {
1935 vdev_t *rvd = spa->spa_root_vdev;
1936 boolean_t slog_found = B_FALSE;
1937
1938 ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER));
1939
1940 if (!spa_has_slogs(spa))
1941 return (B_FALSE);
1942
1943 for (int c = 0; c < rvd->vdev_children; c++) {
1944 vdev_t *tvd = rvd->vdev_child[c];
1945 metaslab_group_t *mg = tvd->vdev_mg;
1946
1947 if (tvd->vdev_islog) {
1948 metaslab_group_passivate(mg);
1949 slog_found = B_TRUE;
1950 }
1951 }
1952
1953 return (slog_found);
1954 }
1955
1956 static void
1957 spa_activate_log(spa_t *spa)
1958 {
1959 vdev_t *rvd = spa->spa_root_vdev;
1960
1961 ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER));
1962
1963 for (int c = 0; c < rvd->vdev_children; c++) {
1964 vdev_t *tvd = rvd->vdev_child[c];
1965 metaslab_group_t *mg = tvd->vdev_mg;
1966
1967 if (tvd->vdev_islog)
1968 metaslab_group_activate(mg);
1969 }
1970 }
1971
1972 int
1973 spa_reset_logs(spa_t *spa)
1974 {
1975 int error;
1976
1977 error = dmu_objset_find(spa_name(spa), zil_reset,
1978 NULL, DS_FIND_CHILDREN);
1979 if (error == 0) {
1980 /*
1981 * We successfully offlined the log device, sync out the
1982 * current txg so that the "stubby" block can be removed
1983 * by zil_sync().
1984 */
1985 txg_wait_synced(spa->spa_dsl_pool, 0);
1986 }
1987 return (error);
1988 }
1989
1990 static void
1991 spa_aux_check_removed(spa_aux_vdev_t *sav)
1992 {
1993 for (int i = 0; i < sav->sav_count; i++)
1994 spa_check_removed(sav->sav_vdevs[i]);
1995 }
1996
1997 void
1998 spa_claim_notify(zio_t *zio)
1999 {
2000 spa_t *spa = zio->io_spa;
2001
2002 if (zio->io_error)
2003 return;
2004
2005 mutex_enter(&spa->spa_props_lock); /* any mutex will do */
2006 if (spa->spa_claim_max_txg < zio->io_bp->blk_birth)
2007 spa->spa_claim_max_txg = zio->io_bp->blk_birth;
2008 mutex_exit(&spa->spa_props_lock);
2009 }
2010
2011 typedef struct spa_load_error {
2012 uint64_t sle_meta_count;
2013 uint64_t sle_data_count;
2014 } spa_load_error_t;
2015
2016 static void
2017 spa_load_verify_done(zio_t *zio)
2018 {
2019 blkptr_t *bp = zio->io_bp;
2020 spa_load_error_t *sle = zio->io_private;
2021 dmu_object_type_t type = BP_GET_TYPE(bp);
2022 int error = zio->io_error;
2023 spa_t *spa = zio->io_spa;
2024
2025 abd_free(zio->io_abd);
2026 if (error) {
2027 if ((BP_GET_LEVEL(bp) != 0 || DMU_OT_IS_METADATA(type)) &&
2028 type != DMU_OT_INTENT_LOG)
2029 atomic_inc_64(&sle->sle_meta_count);
2030 else
2031 atomic_inc_64(&sle->sle_data_count);
2032 }
2033
2034 mutex_enter(&spa->spa_scrub_lock);
2035 spa->spa_load_verify_ios--;
2036 cv_broadcast(&spa->spa_scrub_io_cv);
2037 mutex_exit(&spa->spa_scrub_lock);
2038 }
2039
2040 /*
2041 * Maximum number of concurrent scrub i/os to create while verifying
2042 * a pool while importing it.
2043 */
2044 int spa_load_verify_maxinflight = 10000;
2045 int spa_load_verify_metadata = B_TRUE;
2046 int spa_load_verify_data = B_TRUE;
2047
2048 /*ARGSUSED*/
2049 static int
2050 spa_load_verify_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp,
2051 const zbookmark_phys_t *zb, const dnode_phys_t *dnp, void *arg)
2052 {
2053 if (bp == NULL || BP_IS_HOLE(bp) || BP_IS_EMBEDDED(bp))
2054 return (0);
2055 /*
2056 * Note: normally this routine will not be called if
2057 * spa_load_verify_metadata is not set. However, it may be useful
2058 * to manually set the flag after the traversal has begun.
2059 */
2060 if (!spa_load_verify_metadata)
2061 return (0);
2062 if (!BP_IS_METADATA(bp) && !spa_load_verify_data)
2063 return (0);
2064
2065 zio_t *rio = arg;
2066 size_t size = BP_GET_PSIZE(bp);
2067
2068 mutex_enter(&spa->spa_scrub_lock);
2069 while (spa->spa_load_verify_ios >= spa_load_verify_maxinflight)
2070 cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock);
2071 spa->spa_load_verify_ios++;
2072 mutex_exit(&spa->spa_scrub_lock);
2073
2074 zio_nowait(zio_read(rio, spa, bp, abd_alloc_for_io(size, B_FALSE), size,
2075 spa_load_verify_done, rio->io_private, ZIO_PRIORITY_SCRUB,
2076 ZIO_FLAG_SPECULATIVE | ZIO_FLAG_CANFAIL |
2077 ZIO_FLAG_SCRUB | ZIO_FLAG_RAW, zb));
2078 return (0);
2079 }
2080
2081 /* ARGSUSED */
2082 int
2083 verify_dataset_name_len(dsl_pool_t *dp, dsl_dataset_t *ds, void *arg)
2084 {
2085 if (dsl_dataset_namelen(ds) >= ZFS_MAX_DATASET_NAME_LEN)
2086 return (SET_ERROR(ENAMETOOLONG));
2087
2088 return (0);
2089 }
2090
2091 static int
2092 spa_load_verify(spa_t *spa)
2093 {
2094 zio_t *rio;
2095 spa_load_error_t sle = { 0 };
2096 zpool_load_policy_t policy;
2097 boolean_t verify_ok = B_FALSE;
2098 int error = 0;
2099
2100 zpool_get_load_policy(spa->spa_config, &policy);
2101
2102 if (policy.zlp_rewind & ZPOOL_NEVER_REWIND)
2103 return (0);
2104
2105 dsl_pool_config_enter(spa->spa_dsl_pool, FTAG);
2106 error = dmu_objset_find_dp(spa->spa_dsl_pool,
2107 spa->spa_dsl_pool->dp_root_dir_obj, verify_dataset_name_len, NULL,
2108 DS_FIND_CHILDREN);
2109 dsl_pool_config_exit(spa->spa_dsl_pool, FTAG);
2110 if (error != 0)
2111 return (error);
2112
2113 rio = zio_root(spa, NULL, &sle,
2114 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE);
2115
2116 if (spa_load_verify_metadata) {
2117 if (spa->spa_extreme_rewind) {
2118 spa_load_note(spa, "performing a complete scan of the "
2119 "pool since extreme rewind is on. This may take "
2120 "a very long time.\n (spa_load_verify_data=%u, "
2121 "spa_load_verify_metadata=%u)",
2122 spa_load_verify_data, spa_load_verify_metadata);
2123 }
2124 error = traverse_pool(spa, spa->spa_verify_min_txg,
2125 TRAVERSE_PRE | TRAVERSE_PREFETCH_METADATA |
2126 TRAVERSE_NO_DECRYPT, spa_load_verify_cb, rio);
2127 }
2128
2129 (void) zio_wait(rio);
2130
2131 spa->spa_load_meta_errors = sle.sle_meta_count;
2132 spa->spa_load_data_errors = sle.sle_data_count;
2133
2134 if (sle.sle_meta_count != 0 || sle.sle_data_count != 0) {
2135 spa_load_note(spa, "spa_load_verify found %llu metadata errors "
2136 "and %llu data errors", (u_longlong_t)sle.sle_meta_count,
2137 (u_longlong_t)sle.sle_data_count);
2138 }
2139
2140 if (spa_load_verify_dryrun ||
2141 (!error && sle.sle_meta_count <= policy.zlp_maxmeta &&
2142 sle.sle_data_count <= policy.zlp_maxdata)) {
2143 int64_t loss = 0;
2144
2145 verify_ok = B_TRUE;
2146 spa->spa_load_txg = spa->spa_uberblock.ub_txg;
2147 spa->spa_load_txg_ts = spa->spa_uberblock.ub_timestamp;
2148
2149 loss = spa->spa_last_ubsync_txg_ts - spa->spa_load_txg_ts;
2150 VERIFY(nvlist_add_uint64(spa->spa_load_info,
2151 ZPOOL_CONFIG_LOAD_TIME, spa->spa_load_txg_ts) == 0);
2152 VERIFY(nvlist_add_int64(spa->spa_load_info,
2153 ZPOOL_CONFIG_REWIND_TIME, loss) == 0);
2154 VERIFY(nvlist_add_uint64(spa->spa_load_info,
2155 ZPOOL_CONFIG_LOAD_DATA_ERRORS, sle.sle_data_count) == 0);
2156 } else {
2157 spa->spa_load_max_txg = spa->spa_uberblock.ub_txg;
2158 }
2159
2160 if (spa_load_verify_dryrun)
2161 return (0);
2162
2163 if (error) {
2164 if (error != ENXIO && error != EIO)
2165 error = SET_ERROR(EIO);
2166 return (error);
2167 }
2168
2169 return (verify_ok ? 0 : EIO);
2170 }
2171
2172 /*
2173 * Find a value in the pool props object.
2174 */
2175 static void
2176 spa_prop_find(spa_t *spa, zpool_prop_t prop, uint64_t *val)
2177 {
2178 (void) zap_lookup(spa->spa_meta_objset, spa->spa_pool_props_object,
2179 zpool_prop_to_name(prop), sizeof (uint64_t), 1, val);
2180 }
2181
2182 /*
2183 * Find a value in the pool directory object.
2184 */
2185 static int
2186 spa_dir_prop(spa_t *spa, const char *name, uint64_t *val, boolean_t log_enoent)
2187 {
2188 int error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
2189 name, sizeof (uint64_t), 1, val);
2190
2191 if (error != 0 && (error != ENOENT || log_enoent)) {
2192 spa_load_failed(spa, "couldn't get '%s' value in MOS directory "
2193 "[error=%d]", name, error);
2194 }
2195
2196 return (error);
2197 }
2198
2199 static int
2200 spa_vdev_err(vdev_t *vdev, vdev_aux_t aux, int err)
2201 {
2202 vdev_set_state(vdev, B_TRUE, VDEV_STATE_CANT_OPEN, aux);
2203 return (SET_ERROR(err));
2204 }
2205
2206 static void
2207 spa_spawn_aux_threads(spa_t *spa)
2208 {
2209 ASSERT(spa_writeable(spa));
2210
2211 ASSERT(MUTEX_HELD(&spa_namespace_lock));
2212
2213 spa_start_indirect_condensing_thread(spa);
2214 }
2215
2216 /*
2217 * Fix up config after a partly-completed split. This is done with the
2218 * ZPOOL_CONFIG_SPLIT nvlist. Both the splitting pool and the split-off
2219 * pool have that entry in their config, but only the splitting one contains
2220 * a list of all the guids of the vdevs that are being split off.
2221 *
2222 * This function determines what to do with that list: either rejoin
2223 * all the disks to the pool, or complete the splitting process. To attempt
2224 * the rejoin, each disk that is offlined is marked online again, and
2225 * we do a reopen() call. If the vdev label for every disk that was
2226 * marked online indicates it was successfully split off (VDEV_AUX_SPLIT_POOL)
2227 * then we call vdev_split() on each disk, and complete the split.
2228 *
2229 * Otherwise we leave the config alone, with all the vdevs in place in
2230 * the original pool.
2231 */
2232 static void
2233 spa_try_repair(spa_t *spa, nvlist_t *config)
2234 {
2235 uint_t extracted;
2236 uint64_t *glist;
2237 uint_t i, gcount;
2238 nvlist_t *nvl;
2239 vdev_t **vd;
2240 boolean_t attempt_reopen;
2241
2242 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT, &nvl) != 0)
2243 return;
2244
2245 /* check that the config is complete */
2246 if (nvlist_lookup_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST,
2247 &glist, &gcount) != 0)
2248 return;
2249
2250 vd = kmem_zalloc(gcount * sizeof (vdev_t *), KM_SLEEP);
2251
2252 /* attempt to online all the vdevs & validate */
2253 attempt_reopen = B_TRUE;
2254 for (i = 0; i < gcount; i++) {
2255 if (glist[i] == 0) /* vdev is hole */
2256 continue;
2257
2258 vd[i] = spa_lookup_by_guid(spa, glist[i], B_FALSE);
2259 if (vd[i] == NULL) {
2260 /*
2261 * Don't bother attempting to reopen the disks;
2262 * just do the split.
2263 */
2264 attempt_reopen = B_FALSE;
2265 } else {
2266 /* attempt to re-online it */
2267 vd[i]->vdev_offline = B_FALSE;
2268 }
2269 }
2270
2271 if (attempt_reopen) {
2272 vdev_reopen(spa->spa_root_vdev);
2273
2274 /* check each device to see what state it's in */
2275 for (extracted = 0, i = 0; i < gcount; i++) {
2276 if (vd[i] != NULL &&
2277 vd[i]->vdev_stat.vs_aux != VDEV_AUX_SPLIT_POOL)
2278 break;
2279 ++extracted;
2280 }
2281 }
2282
2283 /*
2284 * If every disk has been moved to the new pool, or if we never
2285 * even attempted to look at them, then we split them off for
2286 * good.
2287 */
2288 if (!attempt_reopen || gcount == extracted) {
2289 for (i = 0; i < gcount; i++)
2290 if (vd[i] != NULL)
2291 vdev_split(vd[i]);
2292 vdev_reopen(spa->spa_root_vdev);
2293 }
2294
2295 kmem_free(vd, gcount * sizeof (vdev_t *));
2296 }
2297
2298 static int
2299 spa_load(spa_t *spa, spa_load_state_t state, spa_import_type_t type)
2300 {
2301 char *ereport = FM_EREPORT_ZFS_POOL;
2302 int error;
2303
2304 spa->spa_load_state = state;
2305
2306 gethrestime(&spa->spa_loaded_ts);
2307 error = spa_load_impl(spa, type, &ereport, B_FALSE);
2308
2309 /*
2310 * Don't count references from objsets that are already closed
2311 * and are making their way through the eviction process.
2312 */
2313 spa_evicting_os_wait(spa);
2314 spa->spa_minref = refcount_count(&spa->spa_refcount);
2315 if (error) {
2316 if (error != EEXIST) {
2317 spa->spa_loaded_ts.tv_sec = 0;
2318 spa->spa_loaded_ts.tv_nsec = 0;
2319 }
2320 if (error != EBADF) {
2321 zfs_ereport_post(ereport, spa, NULL, NULL, NULL, 0, 0);
2322 }
2323 }
2324 spa->spa_load_state = error ? SPA_LOAD_ERROR : SPA_LOAD_NONE;
2325 spa->spa_ena = 0;
2326
2327 return (error);
2328 }
2329
2330 #ifdef ZFS_DEBUG
2331 /*
2332 * Count the number of per-vdev ZAPs associated with all of the vdevs in the
2333 * vdev tree rooted in the given vd, and ensure that each ZAP is present in the
2334 * spa's per-vdev ZAP list.
2335 */
2336 static uint64_t
2337 vdev_count_verify_zaps(vdev_t *vd)
2338 {
2339 spa_t *spa = vd->vdev_spa;
2340 uint64_t total = 0;
2341
2342 if (vd->vdev_top_zap != 0) {
2343 total++;
2344 ASSERT0(zap_lookup_int(spa->spa_meta_objset,
2345 spa->spa_all_vdev_zaps, vd->vdev_top_zap));
2346 }
2347 if (vd->vdev_leaf_zap != 0) {
2348 total++;
2349 ASSERT0(zap_lookup_int(spa->spa_meta_objset,
2350 spa->spa_all_vdev_zaps, vd->vdev_leaf_zap));
2351 }
2352
2353 for (uint64_t i = 0; i < vd->vdev_children; i++) {
2354 total += vdev_count_verify_zaps(vd->vdev_child[i]);
2355 }
2356
2357 return (total);
2358 }
2359 #endif
2360
2361 /*
2362 * Determine whether the activity check is required.
2363 */
2364 static boolean_t
2365 spa_activity_check_required(spa_t *spa, uberblock_t *ub, nvlist_t *label,
2366 nvlist_t *config)
2367 {
2368 uint64_t state = 0;
2369 uint64_t hostid = 0;
2370 uint64_t tryconfig_txg = 0;
2371 uint64_t tryconfig_timestamp = 0;
2372 nvlist_t *nvinfo;
2373
2374 if (nvlist_exists(config, ZPOOL_CONFIG_LOAD_INFO)) {
2375 nvinfo = fnvlist_lookup_nvlist(config, ZPOOL_CONFIG_LOAD_INFO);
2376 (void) nvlist_lookup_uint64(nvinfo, ZPOOL_CONFIG_MMP_TXG,
2377 &tryconfig_txg);
2378 (void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_TIMESTAMP,
2379 &tryconfig_timestamp);
2380 }
2381
2382 (void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_STATE, &state);
2383
2384 /*
2385 * Disable the MMP activity check - This is used by zdb which
2386 * is intended to be used on potentially active pools.
2387 */
2388 if (spa->spa_import_flags & ZFS_IMPORT_SKIP_MMP)
2389 return (B_FALSE);
2390
2391 /*
2392 * Skip the activity check when the MMP feature is disabled.
2393 */
2394 if (ub->ub_mmp_magic == MMP_MAGIC && ub->ub_mmp_delay == 0)
2395 return (B_FALSE);
2396 /*
2397 * If the tryconfig_* values are nonzero, they are the results of an
2398 * earlier tryimport. If they match the uberblock we just found, then
2399 * the pool has not changed and we return false so we do not test a
2400 * second time.
2401 */
2402 if (tryconfig_txg && tryconfig_txg == ub->ub_txg &&
2403 tryconfig_timestamp && tryconfig_timestamp == ub->ub_timestamp)
2404 return (B_FALSE);
2405
2406 /*
2407 * Allow the activity check to be skipped when importing the pool
2408 * on the same host which last imported it. Since the hostid from
2409 * configuration may be stale use the one read from the label.
2410 */
2411 if (nvlist_exists(label, ZPOOL_CONFIG_HOSTID))
2412 hostid = fnvlist_lookup_uint64(label, ZPOOL_CONFIG_HOSTID);
2413
2414 if (hostid == spa_get_hostid())
2415 return (B_FALSE);
2416
2417 /*
2418 * Skip the activity test when the pool was cleanly exported.
2419 */
2420 if (state != POOL_STATE_ACTIVE)
2421 return (B_FALSE);
2422
2423 return (B_TRUE);
2424 }
2425
2426 /*
2427 * Perform the import activity check. If the user canceled the import or
2428 * we detected activity then fail.
2429 */
2430 static int
2431 spa_activity_check(spa_t *spa, uberblock_t *ub, nvlist_t *config)
2432 {
2433 uint64_t import_intervals = MAX(zfs_multihost_import_intervals, 1);
2434 uint64_t txg = ub->ub_txg;
2435 uint64_t timestamp = ub->ub_timestamp;
2436 uint64_t import_delay = NANOSEC;
2437 hrtime_t import_expire;
2438 nvlist_t *mmp_label = NULL;
2439 vdev_t *rvd = spa->spa_root_vdev;
2440 kcondvar_t cv;
2441 kmutex_t mtx;
2442 int error = 0;
2443
2444 cv_init(&cv, NULL, CV_DEFAULT, NULL);
2445 mutex_init(&mtx, NULL, MUTEX_DEFAULT, NULL);
2446 mutex_enter(&mtx);
2447
2448 /*
2449 * If ZPOOL_CONFIG_MMP_TXG is present an activity check was performed
2450 * during the earlier tryimport. If the txg recorded there is 0 then
2451 * the pool is known to be active on another host.
2452 *
2453 * Otherwise, the pool might be in use on another node. Check for
2454 * changes in the uberblocks on disk if necessary.
2455 */
2456 if (nvlist_exists(config, ZPOOL_CONFIG_LOAD_INFO)) {
2457 nvlist_t *nvinfo = fnvlist_lookup_nvlist(config,
2458 ZPOOL_CONFIG_LOAD_INFO);
2459
2460 if (nvlist_exists(nvinfo, ZPOOL_CONFIG_MMP_TXG) &&
2461 fnvlist_lookup_uint64(nvinfo, ZPOOL_CONFIG_MMP_TXG) == 0) {
2462 vdev_uberblock_load(rvd, ub, &mmp_label);
2463 error = SET_ERROR(EREMOTEIO);
2464 goto out;
2465 }
2466 }
2467
2468 /*
2469 * Preferentially use the zfs_multihost_interval from the node which
2470 * last imported the pool. This value is stored in an MMP uberblock as.
2471 *
2472 * ub_mmp_delay * vdev_count_leaves() == zfs_multihost_interval
2473 */
2474 if (ub->ub_mmp_magic == MMP_MAGIC && ub->ub_mmp_delay)
2475 import_delay = MAX(import_delay, import_intervals *
2476 ub->ub_mmp_delay * MAX(vdev_count_leaves(spa), 1));
2477
2478 /* Apply a floor using the local default values. */
2479 import_delay = MAX(import_delay, import_intervals *
2480 MSEC2NSEC(MAX(zfs_multihost_interval, MMP_MIN_INTERVAL)));
2481
2482 zfs_dbgmsg("import_delay=%llu ub_mmp_delay=%llu import_intervals=%u "
2483 "leaves=%u", import_delay, ub->ub_mmp_delay, import_intervals,
2484 vdev_count_leaves(spa));
2485
2486 /* Add a small random factor in case of simultaneous imports (0-25%) */
2487 import_expire = gethrtime() + import_delay +
2488 (import_delay * spa_get_random(250) / 1000);
2489
2490 while (gethrtime() < import_expire) {
2491 vdev_uberblock_load(rvd, ub, &mmp_label);
2492
2493 if (txg != ub->ub_txg || timestamp != ub->ub_timestamp) {
2494 error = SET_ERROR(EREMOTEIO);
2495 break;
2496 }
2497
2498 if (mmp_label) {
2499 nvlist_free(mmp_label);
2500 mmp_label = NULL;
2501 }
2502
2503 error = cv_timedwait_sig(&cv, &mtx, ddi_get_lbolt() + hz);
2504 if (error != -1) {
2505 error = SET_ERROR(EINTR);
2506 break;
2507 }
2508 error = 0;
2509 }
2510
2511 out:
2512 mutex_exit(&mtx);
2513 mutex_destroy(&mtx);
2514 cv_destroy(&cv);
2515
2516 /*
2517 * If the pool is determined to be active store the status in the
2518 * spa->spa_load_info nvlist. If the remote hostname or hostid are
2519 * available from configuration read from disk store them as well.
2520 * This allows 'zpool import' to generate a more useful message.
2521 *
2522 * ZPOOL_CONFIG_MMP_STATE - observed pool status (mandatory)
2523 * ZPOOL_CONFIG_MMP_HOSTNAME - hostname from the active pool
2524 * ZPOOL_CONFIG_MMP_HOSTID - hostid from the active pool
2525 */
2526 if (error == EREMOTEIO) {
2527 char *hostname = "<unknown>";
2528 uint64_t hostid = 0;
2529
2530 if (mmp_label) {
2531 if (nvlist_exists(mmp_label, ZPOOL_CONFIG_HOSTNAME)) {
2532 hostname = fnvlist_lookup_string(mmp_label,
2533 ZPOOL_CONFIG_HOSTNAME);
2534 fnvlist_add_string(spa->spa_load_info,
2535 ZPOOL_CONFIG_MMP_HOSTNAME, hostname);
2536 }
2537
2538 if (nvlist_exists(mmp_label, ZPOOL_CONFIG_HOSTID)) {
2539 hostid = fnvlist_lookup_uint64(mmp_label,
2540 ZPOOL_CONFIG_HOSTID);
2541 fnvlist_add_uint64(spa->spa_load_info,
2542 ZPOOL_CONFIG_MMP_HOSTID, hostid);
2543 }
2544 }
2545
2546 fnvlist_add_uint64(spa->spa_load_info,
2547 ZPOOL_CONFIG_MMP_STATE, MMP_STATE_ACTIVE);
2548 fnvlist_add_uint64(spa->spa_load_info,
2549 ZPOOL_CONFIG_MMP_TXG, 0);
2550
2551 error = spa_vdev_err(rvd, VDEV_AUX_ACTIVE, EREMOTEIO);
2552 }
2553
2554 if (mmp_label)
2555 nvlist_free(mmp_label);
2556
2557 return (error);
2558 }
2559
2560 static int
2561 spa_verify_host(spa_t *spa, nvlist_t *mos_config)
2562 {
2563 uint64_t hostid;
2564 char *hostname;
2565 uint64_t myhostid = 0;
2566
2567 if (!spa_is_root(spa) && nvlist_lookup_uint64(mos_config,
2568 ZPOOL_CONFIG_HOSTID, &hostid) == 0) {
2569 hostname = fnvlist_lookup_string(mos_config,
2570 ZPOOL_CONFIG_HOSTNAME);
2571
2572 myhostid = zone_get_hostid(NULL);
2573
2574 if (hostid != 0 && myhostid != 0 && hostid != myhostid) {
2575 cmn_err(CE_WARN, "pool '%s' could not be "
2576 "loaded as it was last accessed by "
2577 "another system (host: %s hostid: 0x%llx). "
2578 "See: http://illumos.org/msg/ZFS-8000-EY",
2579 spa_name(spa), hostname, (u_longlong_t)hostid);
2580 spa_load_failed(spa, "hostid verification failed: pool "
2581 "last accessed by host: %s (hostid: 0x%llx)",
2582 hostname, (u_longlong_t)hostid);
2583 return (SET_ERROR(EBADF));
2584 }
2585 }
2586
2587 return (0);
2588 }
2589
2590 static int
2591 spa_ld_parse_config(spa_t *spa, spa_import_type_t type)
2592 {
2593 int error = 0;
2594 nvlist_t *nvtree, *nvl, *config = spa->spa_config;
2595 int parse;
2596 vdev_t *rvd;
2597 uint64_t pool_guid;
2598 char *comment;
2599
2600 /*
2601 * Versioning wasn't explicitly added to the label until later, so if
2602 * it's not present treat it as the initial version.
2603 */
2604 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VERSION,
2605 &spa->spa_ubsync.ub_version) != 0)
2606 spa->spa_ubsync.ub_version = SPA_VERSION_INITIAL;
2607
2608 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, &pool_guid)) {
2609 spa_load_failed(spa, "invalid config provided: '%s' missing",
2610 ZPOOL_CONFIG_POOL_GUID);
2611 return (SET_ERROR(EINVAL));
2612 }
2613
2614 if ((spa->spa_load_state == SPA_LOAD_IMPORT || spa->spa_load_state ==
2615 SPA_LOAD_TRYIMPORT) && spa_guid_exists(pool_guid, 0)) {
2616 spa_load_failed(spa, "a pool with guid %llu is already open",
2617 (u_longlong_t)pool_guid);
2618 return (SET_ERROR(EEXIST));
2619 }
2620
2621 spa->spa_config_guid = pool_guid;
2622
2623 nvlist_free(spa->spa_load_info);
2624 spa->spa_load_info = fnvlist_alloc();
2625
2626 ASSERT(spa->spa_comment == NULL);
2627 if (nvlist_lookup_string(config, ZPOOL_CONFIG_COMMENT, &comment) == 0)
2628 spa->spa_comment = spa_strdup(comment);
2629
2630 (void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG,
2631 &spa->spa_config_txg);
2632
2633 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT, &nvl) == 0)
2634 spa->spa_config_splitting = fnvlist_dup(nvl);
2635
2636 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvtree)) {
2637 spa_load_failed(spa, "invalid config provided: '%s' missing",
2638 ZPOOL_CONFIG_VDEV_TREE);
2639 return (SET_ERROR(EINVAL));
2640 }
2641
2642 /*
2643 * Create "The Godfather" zio to hold all async IOs
2644 */
2645 spa->spa_async_zio_root = kmem_alloc(max_ncpus * sizeof (void *),
2646 KM_SLEEP);
2647 for (int i = 0; i < max_ncpus; i++) {
2648 spa->spa_async_zio_root[i] = zio_root(spa, NULL, NULL,
2649 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
2650 ZIO_FLAG_GODFATHER);
2651 }
2652
2653 /*
2654 * Parse the configuration into a vdev tree. We explicitly set the
2655 * value that will be returned by spa_version() since parsing the
2656 * configuration requires knowing the version number.
2657 */
2658 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2659 parse = (type == SPA_IMPORT_EXISTING ?
2660 VDEV_ALLOC_LOAD : VDEV_ALLOC_SPLIT);
2661 error = spa_config_parse(spa, &rvd, nvtree, NULL, 0, parse);
2662 spa_config_exit(spa, SCL_ALL, FTAG);
2663
2664 if (error != 0) {
2665 spa_load_failed(spa, "unable to parse config [error=%d]",
2666 error);
2667 return (error);
2668 }
2669
2670 ASSERT(spa->spa_root_vdev == rvd);
2671 ASSERT3U(spa->spa_min_ashift, >=, SPA_MINBLOCKSHIFT);
2672 ASSERT3U(spa->spa_max_ashift, <=, SPA_MAXBLOCKSHIFT);
2673
2674 if (type != SPA_IMPORT_ASSEMBLE) {
2675 ASSERT(spa_guid(spa) == pool_guid);
2676 }
2677
2678 return (0);
2679 }
2680
2681 /*
2682 * Recursively open all vdevs in the vdev tree. This function is called twice:
2683 * first with the untrusted config, then with the trusted config.
2684 */
2685 static int
2686 spa_ld_open_vdevs(spa_t *spa)
2687 {
2688 int error = 0;
2689
2690 /*
2691 * spa_missing_tvds_allowed defines how many top-level vdevs can be
2692 * missing/unopenable for the root vdev to be still considered openable.
2693 */
2694 if (spa->spa_trust_config) {
2695 spa->spa_missing_tvds_allowed = zfs_max_missing_tvds;
2696 } else if (spa->spa_config_source == SPA_CONFIG_SRC_CACHEFILE) {
2697 spa->spa_missing_tvds_allowed = zfs_max_missing_tvds_cachefile;
2698 } else if (spa->spa_config_source == SPA_CONFIG_SRC_SCAN) {
2699 spa->spa_missing_tvds_allowed = zfs_max_missing_tvds_scan;
2700 } else {
2701 spa->spa_missing_tvds_allowed = 0;
2702 }
2703
2704 spa->spa_missing_tvds_allowed =
2705 MAX(zfs_max_missing_tvds, spa->spa_missing_tvds_allowed);
2706
2707 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2708 error = vdev_open(spa->spa_root_vdev);
2709 spa_config_exit(spa, SCL_ALL, FTAG);
2710
2711 if (spa->spa_missing_tvds != 0) {
2712 spa_load_note(spa, "vdev tree has %lld missing top-level "
2713 "vdevs.", (u_longlong_t)spa->spa_missing_tvds);
2714 if (spa->spa_trust_config && (spa->spa_mode & FWRITE)) {
2715 /*
2716 * Although theoretically we could allow users to open
2717 * incomplete pools in RW mode, we'd need to add a lot
2718 * of extra logic (e.g. adjust pool space to account
2719 * for missing vdevs).
2720 * This limitation also prevents users from accidentally
2721 * opening the pool in RW mode during data recovery and
2722 * damaging it further.
2723 */
2724 spa_load_note(spa, "pools with missing top-level "
2725 "vdevs can only be opened in read-only mode.");
2726 error = SET_ERROR(ENXIO);
2727 } else {
2728 spa_load_note(spa, "current settings allow for maximum "
2729 "%lld missing top-level vdevs at this stage.",
2730 (u_longlong_t)spa->spa_missing_tvds_allowed);
2731 }
2732 }
2733 if (error != 0) {
2734 spa_load_failed(spa, "unable to open vdev tree [error=%d]",
2735 error);
2736 }
2737 if (spa->spa_missing_tvds != 0 || error != 0)
2738 vdev_dbgmsg_print_tree(spa->spa_root_vdev, 2);
2739
2740 return (error);
2741 }
2742
2743 /*
2744 * We need to validate the vdev labels against the configuration that
2745 * we have in hand. This function is called twice: first with an untrusted
2746 * config, then with a trusted config. The validation is more strict when the
2747 * config is trusted.
2748 */
2749 static int
2750 spa_ld_validate_vdevs(spa_t *spa)
2751 {
2752 int error = 0;
2753 vdev_t *rvd = spa->spa_root_vdev;
2754
2755 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2756 error = vdev_validate(rvd);
2757 spa_config_exit(spa, SCL_ALL, FTAG);
2758
2759 if (error != 0) {
2760 spa_load_failed(spa, "vdev_validate failed [error=%d]", error);
2761 return (error);
2762 }
2763
2764 if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN) {
2765 spa_load_failed(spa, "cannot open vdev tree after invalidating "
2766 "some vdevs");
2767 vdev_dbgmsg_print_tree(rvd, 2);
2768 return (SET_ERROR(ENXIO));
2769 }
2770
2771 return (0);
2772 }
2773
2774 static int
2775 spa_ld_select_uberblock(spa_t *spa, spa_import_type_t type)
2776 {
2777 vdev_t *rvd = spa->spa_root_vdev;
2778 nvlist_t *label;
2779 uberblock_t *ub = &spa->spa_uberblock;
2780 boolean_t activity_check = B_FALSE;
2781
2782 /*
2783 * Find the best uberblock.
2784 */
2785 vdev_uberblock_load(rvd, ub, &label);
2786
2787 /*
2788 * If we weren't able to find a single valid uberblock, return failure.
2789 */
2790 if (ub->ub_txg == 0) {
2791 nvlist_free(label);
2792 spa_load_failed(spa, "no valid uberblock found");
2793 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, ENXIO));
2794 }
2795
2796 spa_load_note(spa, "using uberblock with txg=%llu",
2797 (u_longlong_t)ub->ub_txg);
2798
2799
2800 /*
2801 * For pools which have the multihost property on determine if the
2802 * pool is truly inactive and can be safely imported. Prevent
2803 * hosts which don't have a hostid set from importing the pool.
2804 */
2805 activity_check = spa_activity_check_required(spa, ub, label,
2806 spa->spa_config);
2807 if (activity_check) {
2808 if (ub->ub_mmp_magic == MMP_MAGIC && ub->ub_mmp_delay &&
2809 spa_get_hostid() == 0) {
2810 nvlist_free(label);
2811 fnvlist_add_uint64(spa->spa_load_info,
2812 ZPOOL_CONFIG_MMP_STATE, MMP_STATE_NO_HOSTID);
2813 return (spa_vdev_err(rvd, VDEV_AUX_ACTIVE, EREMOTEIO));
2814 }
2815
2816 int error = spa_activity_check(spa, ub, spa->spa_config);
2817 if (error) {
2818 nvlist_free(label);
2819 return (error);
2820 }
2821
2822 fnvlist_add_uint64(spa->spa_load_info,
2823 ZPOOL_CONFIG_MMP_STATE, MMP_STATE_INACTIVE);
2824 fnvlist_add_uint64(spa->spa_load_info,
2825 ZPOOL_CONFIG_MMP_TXG, ub->ub_txg);
2826 }
2827
2828 /*
2829 * If the pool has an unsupported version we can't open it.
2830 */
2831 if (!SPA_VERSION_IS_SUPPORTED(ub->ub_version)) {
2832 nvlist_free(label);
2833 spa_load_failed(spa, "version %llu is not supported",
2834 (u_longlong_t)ub->ub_version);
2835 return (spa_vdev_err(rvd, VDEV_AUX_VERSION_NEWER, ENOTSUP));
2836 }
2837
2838 if (ub->ub_version >= SPA_VERSION_FEATURES) {
2839 nvlist_t *features;
2840
2841 /*
2842 * If we weren't able to find what's necessary for reading the
2843 * MOS in the label, return failure.
2844 */
2845 if (label == NULL) {
2846 spa_load_failed(spa, "label config unavailable");
2847 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
2848 ENXIO));
2849 }
2850
2851 if (nvlist_lookup_nvlist(label, ZPOOL_CONFIG_FEATURES_FOR_READ,
2852 &features) != 0) {
2853 nvlist_free(label);
2854 spa_load_failed(spa, "invalid label: '%s' missing",
2855 ZPOOL_CONFIG_FEATURES_FOR_READ);
2856 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
2857 ENXIO));
2858 }
2859
2860 /*
2861 * Update our in-core representation with the definitive values
2862 * from the label.
2863 */
2864 nvlist_free(spa->spa_label_features);
2865 VERIFY(nvlist_dup(features, &spa->spa_label_features, 0) == 0);
2866 }
2867
2868 nvlist_free(label);
2869
2870 /*
2871 * Look through entries in the label nvlist's features_for_read. If
2872 * there is a feature listed there which we don't understand then we
2873 * cannot open a pool.
2874 */
2875 if (ub->ub_version >= SPA_VERSION_FEATURES) {
2876 nvlist_t *unsup_feat;
2877
2878 VERIFY(nvlist_alloc(&unsup_feat, NV_UNIQUE_NAME, KM_SLEEP) ==
2879 0);
2880
2881 for (nvpair_t *nvp = nvlist_next_nvpair(spa->spa_label_features,
2882 NULL); nvp != NULL;
2883 nvp = nvlist_next_nvpair(spa->spa_label_features, nvp)) {
2884 if (!zfeature_is_supported(nvpair_name(nvp))) {
2885 VERIFY(nvlist_add_string(unsup_feat,
2886 nvpair_name(nvp), "") == 0);
2887 }
2888 }
2889
2890 if (!nvlist_empty(unsup_feat)) {
2891 VERIFY(nvlist_add_nvlist(spa->spa_load_info,
2892 ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat) == 0);
2893 nvlist_free(unsup_feat);
2894 spa_load_failed(spa, "some features are unsupported");
2895 return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT,
2896 ENOTSUP));
2897 }
2898
2899 nvlist_free(unsup_feat);
2900 }
2901
2902 if (type != SPA_IMPORT_ASSEMBLE && spa->spa_config_splitting) {
2903 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2904 spa_try_repair(spa, spa->spa_config);
2905 spa_config_exit(spa, SCL_ALL, FTAG);
2906 nvlist_free(spa->spa_config_splitting);
2907 spa->spa_config_splitting = NULL;
2908 }
2909
2910 /*
2911 * Initialize internal SPA structures.
2912 */
2913 spa->spa_state = POOL_STATE_ACTIVE;
2914 spa->spa_ubsync = spa->spa_uberblock;
2915 spa->spa_verify_min_txg = spa->spa_extreme_rewind ?
2916 TXG_INITIAL - 1 : spa_last_synced_txg(spa) - TXG_DEFER_SIZE - 1;
2917 spa->spa_first_txg = spa->spa_last_ubsync_txg ?
2918 spa->spa_last_ubsync_txg : spa_last_synced_txg(spa) + 1;
2919 spa->spa_claim_max_txg = spa->spa_first_txg;
2920 spa->spa_prev_software_version = ub->ub_software_version;
2921
2922 return (0);
2923 }
2924
2925 static int
2926 spa_ld_open_rootbp(spa_t *spa)
2927 {
2928 int error = 0;
2929 vdev_t *rvd = spa->spa_root_vdev;
2930
2931 error = dsl_pool_init(spa, spa->spa_first_txg, &spa->spa_dsl_pool);
2932 if (error != 0) {
2933 spa_load_failed(spa, "unable to open rootbp in dsl_pool_init "
2934 "[error=%d]", error);
2935 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2936 }
2937 spa->spa_meta_objset = spa->spa_dsl_pool->dp_meta_objset;
2938
2939 return (0);
2940 }
2941
2942 static int
2943 spa_ld_load_trusted_config(spa_t *spa, spa_import_type_t type,
2944 boolean_t reloading)
2945 {
2946 vdev_t *mrvd, *rvd = spa->spa_root_vdev;
2947 nvlist_t *nv, *mos_config, *policy;
2948 int error = 0, copy_error;
2949 uint64_t healthy_tvds, healthy_tvds_mos;
2950 uint64_t mos_config_txg;
2951
2952 if (spa_dir_prop(spa, DMU_POOL_CONFIG, &spa->spa_config_object, B_TRUE)
2953 != 0)
2954 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2955
2956 /*
2957 * If we're assembling a pool from a split, the config provided is
2958 * already trusted so there is nothing to do.
2959 */
2960 if (type == SPA_IMPORT_ASSEMBLE)
2961 return (0);
2962
2963 healthy_tvds = spa_healthy_core_tvds(spa);
2964
2965 if (load_nvlist(spa, spa->spa_config_object, &mos_config)
2966 != 0) {
2967 spa_load_failed(spa, "unable to retrieve MOS config");
2968 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2969 }
2970
2971 /*
2972 * If we are doing an open, pool owner wasn't verified yet, thus do
2973 * the verification here.
2974 */
2975 if (spa->spa_load_state == SPA_LOAD_OPEN) {
2976 error = spa_verify_host(spa, mos_config);
2977 if (error != 0) {
2978 nvlist_free(mos_config);
2979 return (error);
2980 }
2981 }
2982
2983 nv = fnvlist_lookup_nvlist(mos_config, ZPOOL_CONFIG_VDEV_TREE);
2984
2985 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2986
2987 /*
2988 * Build a new vdev tree from the trusted config
2989 */
2990 VERIFY(spa_config_parse(spa, &mrvd, nv, NULL, 0, VDEV_ALLOC_LOAD) == 0);
2991
2992 /*
2993 * Vdev paths in the MOS may be obsolete. If the untrusted config was
2994 * obtained by scanning /dev/dsk, then it will have the right vdev
2995 * paths. We update the trusted MOS config with this information.
2996 * We first try to copy the paths with vdev_copy_path_strict, which
2997 * succeeds only when both configs have exactly the same vdev tree.
2998 * If that fails, we fall back to a more flexible method that has a
2999 * best effort policy.
3000 */
3001 copy_error = vdev_copy_path_strict(rvd, mrvd);
3002 if (copy_error != 0 || spa_load_print_vdev_tree) {
3003 spa_load_note(spa, "provided vdev tree:");
3004 vdev_dbgmsg_print_tree(rvd, 2);
3005 spa_load_note(spa, "MOS vdev tree:");
3006 vdev_dbgmsg_print_tree(mrvd, 2);
3007 }
3008 if (copy_error != 0) {
3009 spa_load_note(spa, "vdev_copy_path_strict failed, falling "
3010 "back to vdev_copy_path_relaxed");
3011 vdev_copy_path_relaxed(rvd, mrvd);
3012 }
3013
3014 vdev_close(rvd);
3015 vdev_free(rvd);
3016 spa->spa_root_vdev = mrvd;
3017 rvd = mrvd;
3018 spa_config_exit(spa, SCL_ALL, FTAG);
3019
3020 /*
3021 * We will use spa_config if we decide to reload the spa or if spa_load
3022 * fails and we rewind. We must thus regenerate the config using the
3023 * MOS information with the updated paths. ZPOOL_LOAD_POLICY is used to
3024 * pass settings on how to load the pool and is not stored in the MOS.
3025 * We copy it over to our new, trusted config.
3026 */
3027 mos_config_txg = fnvlist_lookup_uint64(mos_config,
3028 ZPOOL_CONFIG_POOL_TXG);
3029 nvlist_free(mos_config);
3030 mos_config = spa_config_generate(spa, NULL, mos_config_txg, B_FALSE);
3031 if (nvlist_lookup_nvlist(spa->spa_config, ZPOOL_LOAD_POLICY,
3032 &policy) == 0)
3033 fnvlist_add_nvlist(mos_config, ZPOOL_LOAD_POLICY, policy);
3034 spa_config_set(spa, mos_config);
3035 spa->spa_config_source = SPA_CONFIG_SRC_MOS;
3036
3037 /*
3038 * Now that we got the config from the MOS, we should be more strict
3039 * in checking blkptrs and can make assumptions about the consistency
3040 * of the vdev tree. spa_trust_config must be set to true before opening
3041 * vdevs in order for them to be writeable.
3042 */
3043 spa->spa_trust_config = B_TRUE;
3044
3045 /*
3046 * Open and validate the new vdev tree
3047 */
3048 error = spa_ld_open_vdevs(spa);
3049 if (error != 0)
3050 return (error);
3051
3052 error = spa_ld_validate_vdevs(spa);
3053 if (error != 0)
3054 return (error);
3055
3056 if (copy_error != 0 || spa_load_print_vdev_tree) {
3057 spa_load_note(spa, "final vdev tree:");
3058 vdev_dbgmsg_print_tree(rvd, 2);
3059 }
3060
3061 if (spa->spa_load_state != SPA_LOAD_TRYIMPORT &&
3062 !spa->spa_extreme_rewind && zfs_max_missing_tvds == 0) {
3063 /*
3064 * Sanity check to make sure that we are indeed loading the
3065 * latest uberblock. If we missed SPA_SYNC_MIN_VDEVS tvds
3066 * in the config provided and they happened to be the only ones
3067 * to have the latest uberblock, we could involuntarily perform
3068 * an extreme rewind.
3069 */
3070 healthy_tvds_mos = spa_healthy_core_tvds(spa);
3071 if (healthy_tvds_mos - healthy_tvds >=
3072 SPA_SYNC_MIN_VDEVS) {
3073 spa_load_note(spa, "config provided misses too many "
3074 "top-level vdevs compared to MOS (%lld vs %lld). ",
3075 (u_longlong_t)healthy_tvds,
3076 (u_longlong_t)healthy_tvds_mos);
3077 spa_load_note(spa, "vdev tree:");
3078 vdev_dbgmsg_print_tree(rvd, 2);
3079 if (reloading) {
3080 spa_load_failed(spa, "config was already "
3081 "provided from MOS. Aborting.");
3082 return (spa_vdev_err(rvd,
3083 VDEV_AUX_CORRUPT_DATA, EIO));
3084 }
3085 spa_load_note(spa, "spa must be reloaded using MOS "
3086 "config");
3087 return (SET_ERROR(EAGAIN));
3088 }
3089 }
3090
3091 error = spa_check_for_missing_logs(spa);
3092 if (error != 0)
3093 return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM, ENXIO));
3094
3095 if (rvd->vdev_guid_sum != spa->spa_uberblock.ub_guid_sum) {
3096 spa_load_failed(spa, "uberblock guid sum doesn't match MOS "
3097 "guid sum (%llu != %llu)",
3098 (u_longlong_t)spa->spa_uberblock.ub_guid_sum,
3099 (u_longlong_t)rvd->vdev_guid_sum);
3100 return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM,
3101 ENXIO));
3102 }
3103
3104 return (0);
3105 }
3106
3107 static int
3108 spa_ld_open_indirect_vdev_metadata(spa_t *spa)
3109 {
3110 int error = 0;
3111 vdev_t *rvd = spa->spa_root_vdev;
3112
3113 /*
3114 * Everything that we read before spa_remove_init() must be stored
3115 * on concreted vdevs. Therefore we do this as early as possible.
3116 */
3117 error = spa_remove_init(spa);
3118 if (error != 0) {
3119 spa_load_failed(spa, "spa_remove_init failed [error=%d]",
3120 error);
3121 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3122 }
3123
3124 /*
3125 * Retrieve information needed to condense indirect vdev mappings.
3126 */
3127 error = spa_condense_init(spa);
3128 if (error != 0) {
3129 spa_load_failed(spa, "spa_condense_init failed [error=%d]",
3130 error);
3131 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, error));
3132 }
3133
3134 return (0);
3135 }
3136
3137 static int
3138 spa_ld_check_features(spa_t *spa, boolean_t *missing_feat_writep)
3139 {
3140 int error = 0;
3141 vdev_t *rvd = spa->spa_root_vdev;
3142
3143 if (spa_version(spa) >= SPA_VERSION_FEATURES) {
3144 boolean_t missing_feat_read = B_FALSE;
3145 nvlist_t *unsup_feat, *enabled_feat;
3146
3147 if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_READ,
3148 &spa->spa_feat_for_read_obj, B_TRUE) != 0) {
3149 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3150 }
3151
3152 if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_WRITE,
3153 &spa->spa_feat_for_write_obj, B_TRUE) != 0) {
3154 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3155 }
3156
3157 if (spa_dir_prop(spa, DMU_POOL_FEATURE_DESCRIPTIONS,
3158 &spa->spa_feat_desc_obj, B_TRUE) != 0) {
3159 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3160 }
3161
3162 enabled_feat = fnvlist_alloc();
3163 unsup_feat = fnvlist_alloc();
3164
3165 if (!spa_features_check(spa, B_FALSE,
3166 unsup_feat, enabled_feat))
3167 missing_feat_read = B_TRUE;
3168
3169 if (spa_writeable(spa) ||
3170 spa->spa_load_state == SPA_LOAD_TRYIMPORT) {
3171 if (!spa_features_check(spa, B_TRUE,
3172 unsup_feat, enabled_feat)) {
3173 *missing_feat_writep = B_TRUE;
3174 }
3175 }
3176
3177 fnvlist_add_nvlist(spa->spa_load_info,
3178 ZPOOL_CONFIG_ENABLED_FEAT, enabled_feat);
3179
3180 if (!nvlist_empty(unsup_feat)) {
3181 fnvlist_add_nvlist(spa->spa_load_info,
3182 ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat);
3183 }
3184
3185 fnvlist_free(enabled_feat);
3186 fnvlist_free(unsup_feat);
3187
3188 if (!missing_feat_read) {
3189 fnvlist_add_boolean(spa->spa_load_info,
3190 ZPOOL_CONFIG_CAN_RDONLY);
3191 }
3192
3193 /*
3194 * If the state is SPA_LOAD_TRYIMPORT, our objective is
3195 * twofold: to determine whether the pool is available for
3196 * import in read-write mode and (if it is not) whether the
3197 * pool is available for import in read-only mode. If the pool
3198 * is available for import in read-write mode, it is displayed
3199 * as available in userland; if it is not available for import
3200 * in read-only mode, it is displayed as unavailable in
3201 * userland. If the pool is available for import in read-only
3202 * mode but not read-write mode, it is displayed as unavailable
3203 * in userland with a special note that the pool is actually
3204 * available for open in read-only mode.
3205 *
3206 * As a result, if the state is SPA_LOAD_TRYIMPORT and we are
3207 * missing a feature for write, we must first determine whether
3208 * the pool can be opened read-only before returning to
3209 * userland in order to know whether to display the
3210 * abovementioned note.
3211 */
3212 if (missing_feat_read || (*missing_feat_writep &&
3213 spa_writeable(spa))) {
3214 spa_load_failed(spa, "pool uses unsupported features");
3215 return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT,
3216 ENOTSUP));
3217 }
3218
3219 /*
3220 * Load refcounts for ZFS features from disk into an in-memory
3221 * cache during SPA initialization.
3222 */
3223 for (spa_feature_t i = 0; i < SPA_FEATURES; i++) {
3224 uint64_t refcount;
3225
3226 error = feature_get_refcount_from_disk(spa,
3227 &spa_feature_table[i], &refcount);
3228 if (error == 0) {
3229 spa->spa_feat_refcount_cache[i] = refcount;
3230 } else if (error == ENOTSUP) {
3231 spa->spa_feat_refcount_cache[i] =
3232 SPA_FEATURE_DISABLED;
3233 } else {
3234 spa_load_failed(spa, "error getting refcount "
3235 "for feature %s [error=%d]",
3236 spa_feature_table[i].fi_guid, error);
3237 return (spa_vdev_err(rvd,
3238 VDEV_AUX_CORRUPT_DATA, EIO));
3239 }
3240 }
3241 }
3242
3243 if (spa_feature_is_active(spa, SPA_FEATURE_ENABLED_TXG)) {
3244 if (spa_dir_prop(spa, DMU_POOL_FEATURE_ENABLED_TXG,
3245 &spa->spa_feat_enabled_txg_obj, B_TRUE) != 0)
3246 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3247 }
3248
3249 return (0);
3250 }
3251
3252 static int
3253 spa_ld_load_special_directories(spa_t *spa)
3254 {
3255 int error = 0;
3256 vdev_t *rvd = spa->spa_root_vdev;
3257
3258 spa->spa_is_initializing = B_TRUE;
3259 error = dsl_pool_open(spa->spa_dsl_pool);
3260 spa->spa_is_initializing = B_FALSE;
3261 if (error != 0) {
3262 spa_load_failed(spa, "dsl_pool_open failed [error=%d]", error);
3263 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3264 }
3265
3266 return (0);
3267 }
3268
3269 static int
3270 spa_ld_get_props(spa_t *spa)
3271 {
3272 int error = 0;
3273 uint64_t obj;
3274 vdev_t *rvd = spa->spa_root_vdev;
3275
3276 /* Grab the checksum salt from the MOS. */
3277 error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
3278 DMU_POOL_CHECKSUM_SALT, 1,
3279 sizeof (spa->spa_cksum_salt.zcs_bytes),
3280 spa->spa_cksum_salt.zcs_bytes);
3281 if (error == ENOENT) {
3282 /* Generate a new salt for subsequent use */
3283 (void) random_get_pseudo_bytes(spa->spa_cksum_salt.zcs_bytes,
3284 sizeof (spa->spa_cksum_salt.zcs_bytes));
3285 } else if (error != 0) {
3286 spa_load_failed(spa, "unable to retrieve checksum salt from "
3287 "MOS [error=%d]", error);
3288 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3289 }
3290
3291 if (spa_dir_prop(spa, DMU_POOL_SYNC_BPOBJ, &obj, B_TRUE) != 0)
3292 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3293 error = bpobj_open(&spa->spa_deferred_bpobj, spa->spa_meta_objset, obj);
3294 if (error != 0) {
3295 spa_load_failed(spa, "error opening deferred-frees bpobj "
3296 "[error=%d]", error);
3297 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3298 }
3299
3300 /*
3301 * Load the bit that tells us to use the new accounting function
3302 * (raid-z deflation). If we have an older pool, this will not
3303 * be present.
3304 */
3305 error = spa_dir_prop(spa, DMU_POOL_DEFLATE, &spa->spa_deflate, B_FALSE);
3306 if (error != 0 && error != ENOENT)
3307 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3308
3309 error = spa_dir_prop(spa, DMU_POOL_CREATION_VERSION,
3310 &spa->spa_creation_version, B_FALSE);
3311 if (error != 0 && error != ENOENT)
3312 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3313
3314 /*
3315 * Load the persistent error log. If we have an older pool, this will
3316 * not be present.
3317 */
3318 error = spa_dir_prop(spa, DMU_POOL_ERRLOG_LAST, &spa->spa_errlog_last,
3319 B_FALSE);
3320 if (error != 0 && error != ENOENT)
3321 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3322
3323 error = spa_dir_prop(spa, DMU_POOL_ERRLOG_SCRUB,
3324 &spa->spa_errlog_scrub, B_FALSE);
3325 if (error != 0 && error != ENOENT)
3326 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3327
3328 /*
3329 * Load the history object. If we have an older pool, this
3330 * will not be present.
3331 */
3332 error = spa_dir_prop(spa, DMU_POOL_HISTORY, &spa->spa_history, B_FALSE);
3333 if (error != 0 && error != ENOENT)
3334 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3335
3336 /*
3337 * Load the per-vdev ZAP map. If we have an older pool, this will not
3338 * be present; in this case, defer its creation to a later time to
3339 * avoid dirtying the MOS this early / out of sync context. See
3340 * spa_sync_config_object.
3341 */
3342
3343 /* The sentinel is only available in the MOS config. */
3344 nvlist_t *mos_config;
3345 if (load_nvlist(spa, spa->spa_config_object, &mos_config) != 0) {
3346 spa_load_failed(spa, "unable to retrieve MOS config");
3347 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3348 }
3349
3350 error = spa_dir_prop(spa, DMU_POOL_VDEV_ZAP_MAP,
3351 &spa->spa_all_vdev_zaps, B_FALSE);
3352
3353 if (error == ENOENT) {
3354 VERIFY(!nvlist_exists(mos_config,
3355 ZPOOL_CONFIG_HAS_PER_VDEV_ZAPS));
3356 spa->spa_avz_action = AVZ_ACTION_INITIALIZE;
3357 ASSERT0(vdev_count_verify_zaps(spa->spa_root_vdev));
3358 } else if (error != 0) {
3359 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3360 } else if (!nvlist_exists(mos_config, ZPOOL_CONFIG_HAS_PER_VDEV_ZAPS)) {
3361 /*
3362 * An older version of ZFS overwrote the sentinel value, so
3363 * we have orphaned per-vdev ZAPs in the MOS. Defer their
3364 * destruction to later; see spa_sync_config_object.
3365 */
3366 spa->spa_avz_action = AVZ_ACTION_DESTROY;
3367 /*
3368 * We're assuming that no vdevs have had their ZAPs created
3369 * before this. Better be sure of it.
3370 */
3371 ASSERT0(vdev_count_verify_zaps(spa->spa_root_vdev));
3372 }
3373 nvlist_free(mos_config);
3374
3375 spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
3376
3377 error = spa_dir_prop(spa, DMU_POOL_PROPS, &spa->spa_pool_props_object,
3378 B_FALSE);
3379 if (error && error != ENOENT)
3380 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3381
3382 if (error == 0) {
3383 uint64_t autoreplace;
3384
3385 spa_prop_find(spa, ZPOOL_PROP_BOOTFS, &spa->spa_bootfs);
3386 spa_prop_find(spa, ZPOOL_PROP_AUTOREPLACE, &autoreplace);
3387 spa_prop_find(spa, ZPOOL_PROP_DELEGATION, &spa->spa_delegation);
3388 spa_prop_find(spa, ZPOOL_PROP_FAILUREMODE, &spa->spa_failmode);
3389 spa_prop_find(spa, ZPOOL_PROP_AUTOEXPAND, &spa->spa_autoexpand);
3390 spa_prop_find(spa, ZPOOL_PROP_MULTIHOST, &spa->spa_multihost);
3391 spa_prop_find(spa, ZPOOL_PROP_DEDUPDITTO,
3392 &spa->spa_dedup_ditto);
3393
3394 spa->spa_autoreplace = (autoreplace != 0);
3395 }
3396
3397 /*
3398 * If we are importing a pool with missing top-level vdevs,
3399 * we enforce that the pool doesn't panic or get suspended on
3400 * error since the likelihood of missing data is extremely high.
3401 */
3402 if (spa->spa_missing_tvds > 0 &&
3403 spa->spa_failmode != ZIO_FAILURE_MODE_CONTINUE &&
3404 spa->spa_load_state != SPA_LOAD_TRYIMPORT) {
3405 spa_load_note(spa, "forcing failmode to 'continue' "
3406 "as some top level vdevs are missing");
3407 spa->spa_failmode = ZIO_FAILURE_MODE_CONTINUE;
3408 }
3409
3410 return (0);
3411 }
3412
3413 static int
3414 spa_ld_open_aux_vdevs(spa_t *spa, spa_import_type_t type)
3415 {
3416 int error = 0;
3417 vdev_t *rvd = spa->spa_root_vdev;
3418
3419 /*
3420 * If we're assembling the pool from the split-off vdevs of
3421 * an existing pool, we don't want to attach the spares & cache
3422 * devices.
3423 */
3424
3425 /*
3426 * Load any hot spares for this pool.
3427 */
3428 error = spa_dir_prop(spa, DMU_POOL_SPARES, &spa->spa_spares.sav_object,
3429 B_FALSE);
3430 if (error != 0 && error != ENOENT)
3431 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3432 if (error == 0 && type != SPA_IMPORT_ASSEMBLE) {
3433 ASSERT(spa_version(spa) >= SPA_VERSION_SPARES);
3434 if (load_nvlist(spa, spa->spa_spares.sav_object,
3435 &spa->spa_spares.sav_config) != 0) {
3436 spa_load_failed(spa, "error loading spares nvlist");
3437 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3438 }
3439
3440 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3441 spa_load_spares(spa);
3442 spa_config_exit(spa, SCL_ALL, FTAG);
3443 } else if (error == 0) {
3444 spa->spa_spares.sav_sync = B_TRUE;
3445 }
3446
3447 /*
3448 * Load any level 2 ARC devices for this pool.
3449 */
3450 error = spa_dir_prop(spa, DMU_POOL_L2CACHE,
3451 &spa->spa_l2cache.sav_object, B_FALSE);
3452 if (error != 0 && error != ENOENT)
3453 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3454 if (error == 0 && type != SPA_IMPORT_ASSEMBLE) {
3455 ASSERT(spa_version(spa) >= SPA_VERSION_L2CACHE);
3456 if (load_nvlist(spa, spa->spa_l2cache.sav_object,
3457 &spa->spa_l2cache.sav_config) != 0) {
3458 spa_load_failed(spa, "error loading l2cache nvlist");
3459 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3460 }
3461
3462 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3463 spa_load_l2cache(spa);
3464 spa_config_exit(spa, SCL_ALL, FTAG);
3465 } else if (error == 0) {
3466 spa->spa_l2cache.sav_sync = B_TRUE;
3467 }
3468
3469 return (0);
3470 }
3471
3472 static int
3473 spa_ld_load_vdev_metadata(spa_t *spa)
3474 {
3475 int error = 0;
3476 vdev_t *rvd = spa->spa_root_vdev;
3477
3478 /*
3479 * If the 'multihost' property is set, then never allow a pool to
3480 * be imported when the system hostid is zero. The exception to
3481 * this rule is zdb which is always allowed to access pools.
3482 */
3483 if (spa_multihost(spa) && spa_get_hostid() == 0 &&
3484 (spa->spa_import_flags & ZFS_IMPORT_SKIP_MMP) == 0) {
3485 fnvlist_add_uint64(spa->spa_load_info,
3486 ZPOOL_CONFIG_MMP_STATE, MMP_STATE_NO_HOSTID);
3487 return (spa_vdev_err(rvd, VDEV_AUX_ACTIVE, EREMOTEIO));
3488 }
3489
3490 /*
3491 * If the 'autoreplace' property is set, then post a resource notifying
3492 * the ZFS DE that it should not issue any faults for unopenable
3493 * devices. We also iterate over the vdevs, and post a sysevent for any
3494 * unopenable vdevs so that the normal autoreplace handler can take
3495 * over.
3496 */
3497 if (spa->spa_autoreplace && spa->spa_load_state != SPA_LOAD_TRYIMPORT) {
3498 spa_check_removed(spa->spa_root_vdev);
3499 /*
3500 * For the import case, this is done in spa_import(), because
3501 * at this point we're using the spare definitions from
3502 * the MOS config, not necessarily from the userland config.
3503 */
3504 if (spa->spa_load_state != SPA_LOAD_IMPORT) {
3505 spa_aux_check_removed(&spa->spa_spares);
3506 spa_aux_check_removed(&spa->spa_l2cache);
3507 }
3508 }
3509
3510 /*
3511 * Load the vdev metadata such as metaslabs, DTLs, spacemap object, etc.
3512 */
3513 error = vdev_load(rvd);
3514 if (error != 0) {
3515 spa_load_failed(spa, "vdev_load failed [error=%d]", error);
3516 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, error));
3517 }
3518
3519 /*
3520 * Propagate the leaf DTLs we just loaded all the way up the vdev tree.
3521 */
3522 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3523 vdev_dtl_reassess(rvd, 0, 0, B_FALSE);
3524 spa_config_exit(spa, SCL_ALL, FTAG);
3525
3526 return (0);
3527 }
3528
3529 static int
3530 spa_ld_load_dedup_tables(spa_t *spa)
3531 {
3532 int error = 0;
3533 vdev_t *rvd = spa->spa_root_vdev;
3534
3535 error = ddt_load(spa);
3536 if (error != 0) {
3537 spa_load_failed(spa, "ddt_load failed [error=%d]", error);
3538 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
3539 }
3540
3541 return (0);
3542 }
3543
3544 static int
3545 spa_ld_verify_logs(spa_t *spa, spa_import_type_t type, char **ereport)
3546 {
3547 vdev_t *rvd = spa->spa_root_vdev;
3548
3549 if (type != SPA_IMPORT_ASSEMBLE && spa_writeable(spa)) {
3550 boolean_t missing = spa_check_logs(spa);
3551 if (missing) {
3552 if (spa->spa_missing_tvds != 0) {
3553 spa_load_note(spa, "spa_check_logs failed "
3554 "so dropping the logs");
3555 } else {
3556 *ereport = FM_EREPORT_ZFS_LOG_REPLAY;
3557 spa_load_failed(spa, "spa_check_logs failed");
3558 return (spa_vdev_err(rvd, VDEV_AUX_BAD_LOG,
3559 ENXIO));
3560 }
3561 }
3562 }
3563
3564 return (0);
3565 }
3566
3567 static int
3568 spa_ld_verify_pool_data(spa_t *spa)
3569 {
3570 int error = 0;
3571 vdev_t *rvd = spa->spa_root_vdev;
3572
3573 /*
3574 * We've successfully opened the pool, verify that we're ready
3575 * to start pushing transactions.
3576 */
3577 if (spa->spa_load_state != SPA_LOAD_TRYIMPORT) {
3578 error = spa_load_verify(spa);
3579 if (error != 0) {
3580 spa_load_failed(spa, "spa_load_verify failed "
3581 "[error=%d]", error);
3582 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
3583 error));
3584 }
3585 }
3586
3587 return (0);
3588 }
3589
3590 static void
3591 spa_ld_claim_log_blocks(spa_t *spa)
3592 {
3593 dmu_tx_t *tx;
3594 dsl_pool_t *dp = spa_get_dsl(spa);
3595
3596 /*
3597 * Claim log blocks that haven't been committed yet.
3598 * This must all happen in a single txg.
3599 * Note: spa_claim_max_txg is updated by spa_claim_notify(),
3600 * invoked from zil_claim_log_block()'s i/o done callback.
3601 * Price of rollback is that we abandon the log.
3602 */
3603 spa->spa_claiming = B_TRUE;
3604
3605 tx = dmu_tx_create_assigned(dp, spa_first_txg(spa));
3606 (void) dmu_objset_find_dp(dp, dp->dp_root_dir_obj,
3607 zil_claim, tx, DS_FIND_CHILDREN);
3608 dmu_tx_commit(tx);
3609
3610 spa->spa_claiming = B_FALSE;
3611
3612 spa_set_log_state(spa, SPA_LOG_GOOD);
3613 }
3614
3615 static void
3616 spa_ld_check_for_config_update(spa_t *spa, uint64_t config_cache_txg,
3617 boolean_t reloading)
3618 {
3619 vdev_t *rvd = spa->spa_root_vdev;
3620 int need_update = B_FALSE;
3621
3622 /*
3623 * If the config cache is stale, or we have uninitialized
3624 * metaslabs (see spa_vdev_add()), then update the config.
3625 *
3626 * If this is a verbatim import, trust the current
3627 * in-core spa_config and update the disk labels.
3628 */
3629 if (reloading || config_cache_txg != spa->spa_config_txg ||
3630 spa->spa_load_state == SPA_LOAD_IMPORT ||
3631 spa->spa_load_state == SPA_LOAD_RECOVER ||
3632 (spa->spa_import_flags & ZFS_IMPORT_VERBATIM))
3633 need_update = B_TRUE;
3634
3635 for (int c = 0; c < rvd->vdev_children; c++)
3636 if (rvd->vdev_child[c]->vdev_ms_array == 0)
3637 need_update = B_TRUE;
3638
3639 /*
3640 * Update the config cache asychronously in case we're the
3641 * root pool, in which case the config cache isn't writable yet.
3642 */
3643 if (need_update)
3644 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
3645 }
3646
3647 static void
3648 spa_ld_prepare_for_reload(spa_t *spa)
3649 {
3650 int mode = spa->spa_mode;
3651 int async_suspended = spa->spa_async_suspended;
3652
3653 spa_unload(spa);
3654 spa_deactivate(spa);
3655 spa_activate(spa, mode);
3656
3657 /*
3658 * We save the value of spa_async_suspended as it gets reset to 0 by
3659 * spa_unload(). We want to restore it back to the original value before
3660 * returning as we might be calling spa_async_resume() later.
3661 */
3662 spa->spa_async_suspended = async_suspended;
3663 }
3664
3665 /*
3666 * Load an existing storage pool, using the config provided. This config
3667 * describes which vdevs are part of the pool and is later validated against
3668 * partial configs present in each vdev's label and an entire copy of the
3669 * config stored in the MOS.
3670 */
3671 static int
3672 spa_load_impl(spa_t *spa, spa_import_type_t type, char **ereport,
3673 boolean_t reloading)
3674 {
3675 int error = 0;
3676 boolean_t missing_feat_write = B_FALSE;
3677
3678 ASSERT(MUTEX_HELD(&spa_namespace_lock));
3679 ASSERT(spa->spa_config_source != SPA_CONFIG_SRC_NONE);
3680
3681 /*
3682 * Never trust the config that is provided unless we are assembling
3683 * a pool following a split.
3684 * This means don't trust blkptrs and the vdev tree in general. This
3685 * also effectively puts the spa in read-only mode since
3686 * spa_writeable() checks for spa_trust_config to be true.
3687 * We will later load a trusted config from the MOS.
3688 */
3689 if (type != SPA_IMPORT_ASSEMBLE)
3690 spa->spa_trust_config = B_FALSE;
3691
3692 if (reloading)
3693 spa_load_note(spa, "RELOADING");
3694 else
3695 spa_load_note(spa, "LOADING");
3696
3697 /*
3698 * Parse the config provided to create a vdev tree.
3699 */
3700 error = spa_ld_parse_config(spa, type);
3701 if (error != 0)
3702 return (error);
3703
3704 /*
3705 * Now that we have the vdev tree, try to open each vdev. This involves
3706 * opening the underlying physical device, retrieving its geometry and
3707 * probing the vdev with a dummy I/O. The state of each vdev will be set
3708 * based on the success of those operations. After this we'll be ready
3709 * to read from the vdevs.
3710 */
3711 error = spa_ld_open_vdevs(spa);
3712 if (error != 0)
3713 return (error);
3714
3715 /*
3716 * Read the label of each vdev and make sure that the GUIDs stored
3717 * there match the GUIDs in the config provided.
3718 * If we're assembling a new pool that's been split off from an
3719 * existing pool, the labels haven't yet been updated so we skip
3720 * validation for now.
3721 */
3722 if (type != SPA_IMPORT_ASSEMBLE) {
3723 error = spa_ld_validate_vdevs(spa);
3724 if (error != 0)
3725 return (error);
3726 }
3727
3728 /*
3729 * Read vdev labels to find the best uberblock (i.e. latest, unless
3730 * spa_load_max_txg is set) and store it in spa_uberblock. We get the
3731 * list of features required to read blkptrs in the MOS from the vdev
3732 * label with the best uberblock and verify that our version of zfs
3733 * supports them all.
3734 */
3735 error = spa_ld_select_uberblock(spa, type);
3736 if (error != 0)
3737 return (error);
3738
3739 /*
3740 * Pass that uberblock to the dsl_pool layer which will open the root
3741 * blkptr. This blkptr points to the latest version of the MOS and will
3742 * allow us to read its contents.
3743 */
3744 error = spa_ld_open_rootbp(spa);
3745 if (error != 0)
3746 return (error);
3747
3748 /*
3749 * Retrieve the trusted config stored in the MOS and use it to create
3750 * a new, exact version of the vdev tree, then reopen all vdevs.
3751 */
3752 error = spa_ld_load_trusted_config(spa, type, reloading);
3753 if (error == EAGAIN) {
3754 VERIFY(!reloading);
3755 /*
3756 * Redo the loading process with the trusted config if it is
3757 * too different from the untrusted config.
3758 */
3759 spa_ld_prepare_for_reload(spa);
3760 return (spa_load_impl(spa, type, ereport, B_TRUE));
3761 } else if (error != 0) {
3762 return (error);
3763 }
3764
3765 /*
3766 * Retrieve the mapping of indirect vdevs. Those vdevs were removed
3767 * from the pool and their contents were re-mapped to other vdevs. Note
3768 * that everything that we read before this step must have been
3769 * rewritten on concrete vdevs after the last device removal was
3770 * initiated. Otherwise we could be reading from indirect vdevs before
3771 * we have loaded their mappings.
3772 */
3773 error = spa_ld_open_indirect_vdev_metadata(spa);
3774 if (error != 0)
3775 return (error);
3776
3777 /*
3778 * Retrieve the full list of active features from the MOS and check if
3779 * they are all supported.
3780 */
3781 error = spa_ld_check_features(spa, &missing_feat_write);
3782 if (error != 0)
3783 return (error);
3784
3785 /*
3786 * Load several special directories from the MOS needed by the dsl_pool
3787 * layer.
3788 */
3789 error = spa_ld_load_special_directories(spa);
3790 if (error != 0)
3791 return (error);
3792
3793 /*
3794 * Retrieve pool properties from the MOS.
3795 */
3796 error = spa_ld_get_props(spa);
3797 if (error != 0)
3798 return (error);
3799
3800 /*
3801 * Retrieve the list of auxiliary devices - cache devices and spares -
3802 * and open them.
3803 */
3804 error = spa_ld_open_aux_vdevs(spa, type);
3805 if (error != 0)
3806 return (error);
3807
3808 /*
3809 * Load the metadata for all vdevs. Also check if unopenable devices
3810 * should be autoreplaced.
3811 */
3812 error = spa_ld_load_vdev_metadata(spa);
3813 if (error != 0)
3814 return (error);
3815
3816 error = spa_ld_load_dedup_tables(spa);
3817 if (error != 0)
3818 return (error);
3819
3820 /*
3821 * Verify the logs now to make sure we don't have any unexpected errors
3822 * when we claim log blocks later.
3823 */
3824 error = spa_ld_verify_logs(spa, type, ereport);
3825 if (error != 0)
3826 return (error);
3827
3828 if (missing_feat_write) {
3829 ASSERT(spa->spa_load_state == SPA_LOAD_TRYIMPORT);
3830
3831 /*
3832 * At this point, we know that we can open the pool in
3833 * read-only mode but not read-write mode. We now have enough
3834 * information and can return to userland.
3835 */
3836 return (spa_vdev_err(spa->spa_root_vdev, VDEV_AUX_UNSUP_FEAT,
3837 ENOTSUP));
3838 }
3839
3840 /*
3841 * Traverse the last txgs to make sure the pool was left off in a safe
3842 * state. When performing an extreme rewind, we verify the whole pool,
3843 * which can take a very long time.
3844 */
3845 error = spa_ld_verify_pool_data(spa);
3846 if (error != 0)
3847 return (error);
3848
3849 /*
3850 * Calculate the deflated space for the pool. This must be done before
3851 * we write anything to the pool because we'd need to update the space
3852 * accounting using the deflated sizes.
3853 */
3854 spa_update_dspace(spa);
3855
3856 /*
3857 * We have now retrieved all the information we needed to open the
3858 * pool. If we are importing the pool in read-write mode, a few
3859 * additional steps must be performed to finish the import.
3860 */
3861 if (spa_writeable(spa) && (spa->spa_load_state == SPA_LOAD_RECOVER ||
3862 spa->spa_load_max_txg == UINT64_MAX)) {
3863 uint64_t config_cache_txg = spa->spa_config_txg;
3864
3865 ASSERT(spa->spa_load_state != SPA_LOAD_TRYIMPORT);
3866
3867 /*
3868 * Traverse the ZIL and claim all blocks.
3869 */
3870 spa_ld_claim_log_blocks(spa);
3871
3872 /*
3873 * Kick-off the syncing thread.
3874 */
3875 spa->spa_sync_on = B_TRUE;
3876 txg_sync_start(spa->spa_dsl_pool);
3877 mmp_thread_start(spa);
3878
3879 /*
3880 * Wait for all claims to sync. We sync up to the highest
3881 * claimed log block birth time so that claimed log blocks
3882 * don't appear to be from the future. spa_claim_max_txg
3883 * will have been set for us by ZIL traversal operations
3884 * performed above.
3885 */
3886 txg_wait_synced(spa->spa_dsl_pool, spa->spa_claim_max_txg);
3887
3888 /*
3889 * Check if we need to request an update of the config. On the
3890 * next sync, we would update the config stored in vdev labels
3891 * and the cachefile (by default /etc/zfs/zpool.cache).
3892 */
3893 spa_ld_check_for_config_update(spa, config_cache_txg,
3894 reloading);
3895
3896 /*
3897 * Check all DTLs to see if anything needs resilvering.
3898 */
3899 if (!dsl_scan_resilvering(spa->spa_dsl_pool) &&
3900 vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL))
3901 spa_async_request(spa, SPA_ASYNC_RESILVER);
3902
3903 /*
3904 * Log the fact that we booted up (so that we can detect if
3905 * we rebooted in the middle of an operation).
3906 */
3907 spa_history_log_version(spa, "open", NULL);
3908
3909 /*
3910 * Delete any inconsistent datasets.
3911 */
3912 (void) dmu_objset_find(spa_name(spa),
3913 dsl_destroy_inconsistent, NULL, DS_FIND_CHILDREN);
3914
3915 /*
3916 * Clean up any stale temporary dataset userrefs.
3917 */
3918 dsl_pool_clean_tmp_userrefs(spa->spa_dsl_pool);
3919
3920 spa_restart_removal(spa);
3921
3922 spa_spawn_aux_threads(spa);
3923 }
3924
3925 spa_load_note(spa, "LOADED");
3926
3927 return (0);
3928 }
3929
3930 static int
3931 spa_load_retry(spa_t *spa, spa_load_state_t state)
3932 {
3933 int mode = spa->spa_mode;
3934
3935 spa_unload(spa);
3936 spa_deactivate(spa);
3937
3938 spa->spa_load_max_txg = spa->spa_uberblock.ub_txg - 1;
3939
3940 spa_activate(spa, mode);
3941 spa_async_suspend(spa);
3942
3943 spa_load_note(spa, "spa_load_retry: rewind, max txg: %llu",
3944 (u_longlong_t)spa->spa_load_max_txg);
3945
3946 return (spa_load(spa, state, SPA_IMPORT_EXISTING));
3947 }
3948
3949 /*
3950 * If spa_load() fails this function will try loading prior txg's. If
3951 * 'state' is SPA_LOAD_RECOVER and one of these loads succeeds the pool
3952 * will be rewound to that txg. If 'state' is not SPA_LOAD_RECOVER this
3953 * function will not rewind the pool and will return the same error as
3954 * spa_load().
3955 */
3956 static int
3957 spa_load_best(spa_t *spa, spa_load_state_t state, uint64_t max_request,
3958 int rewind_flags)
3959 {
3960 nvlist_t *loadinfo = NULL;
3961 nvlist_t *config = NULL;
3962 int load_error, rewind_error;
3963 uint64_t safe_rewind_txg;
3964 uint64_t min_txg;
3965
3966 if (spa->spa_load_txg && state == SPA_LOAD_RECOVER) {
3967 spa->spa_load_max_txg = spa->spa_load_txg;
3968 spa_set_log_state(spa, SPA_LOG_CLEAR);
3969 } else {
3970 spa->spa_load_max_txg = max_request;
3971 if (max_request != UINT64_MAX)
3972 spa->spa_extreme_rewind = B_TRUE;
3973 }
3974
3975 load_error = rewind_error = spa_load(spa, state, SPA_IMPORT_EXISTING);
3976 if (load_error == 0)
3977 return (0);
3978
3979 if (spa->spa_root_vdev != NULL)
3980 config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
3981
3982 spa->spa_last_ubsync_txg = spa->spa_uberblock.ub_txg;
3983 spa->spa_last_ubsync_txg_ts = spa->spa_uberblock.ub_timestamp;
3984
3985 if (rewind_flags & ZPOOL_NEVER_REWIND) {
3986 nvlist_free(config);
3987 return (load_error);
3988 }
3989
3990 if (state == SPA_LOAD_RECOVER) {
3991 /* Price of rolling back is discarding txgs, including log */
3992 spa_set_log_state(spa, SPA_LOG_CLEAR);
3993 } else {
3994 /*
3995 * If we aren't rolling back save the load info from our first
3996 * import attempt so that we can restore it after attempting
3997 * to rewind.
3998 */
3999 loadinfo = spa->spa_load_info;
4000 spa->spa_load_info = fnvlist_alloc();
4001 }
4002
4003 spa->spa_load_max_txg = spa->spa_last_ubsync_txg;
4004 safe_rewind_txg = spa->spa_last_ubsync_txg - TXG_DEFER_SIZE;
4005 min_txg = (rewind_flags & ZPOOL_EXTREME_REWIND) ?
4006 TXG_INITIAL : safe_rewind_txg;
4007
4008 /*
4009 * Continue as long as we're finding errors, we're still within
4010 * the acceptable rewind range, and we're still finding uberblocks
4011 */
4012 while (rewind_error && spa->spa_uberblock.ub_txg >= min_txg &&
4013 spa->spa_uberblock.ub_txg <= spa->spa_load_max_txg) {
4014 if (spa->spa_load_max_txg < safe_rewind_txg)
4015 spa->spa_extreme_rewind = B_TRUE;
4016 rewind_error = spa_load_retry(spa, state);
4017 }
4018
4019 spa->spa_extreme_rewind = B_FALSE;
4020 spa->spa_load_max_txg = UINT64_MAX;
4021
4022 if (config && (rewind_error || state != SPA_LOAD_RECOVER))
4023 spa_config_set(spa, config);
4024 else
4025 nvlist_free(config);
4026
4027 if (state == SPA_LOAD_RECOVER) {
4028 ASSERT3P(loadinfo, ==, NULL);
4029 return (rewind_error);
4030 } else {
4031 /* Store the rewind info as part of the initial load info */
4032 fnvlist_add_nvlist(loadinfo, ZPOOL_CONFIG_REWIND_INFO,
4033 spa->spa_load_info);
4034
4035 /* Restore the initial load info */
4036 fnvlist_free(spa->spa_load_info);
4037 spa->spa_load_info = loadinfo;
4038
4039 return (load_error);
4040 }
4041 }
4042
4043 /*
4044 * Pool Open/Import
4045 *
4046 * The import case is identical to an open except that the configuration is sent
4047 * down from userland, instead of grabbed from the configuration cache. For the
4048 * case of an open, the pool configuration will exist in the
4049 * POOL_STATE_UNINITIALIZED state.
4050 *
4051 * The stats information (gen/count/ustats) is used to gather vdev statistics at
4052 * the same time open the pool, without having to keep around the spa_t in some
4053 * ambiguous state.
4054 */
4055 static int
4056 spa_open_common(const char *pool, spa_t **spapp, void *tag, nvlist_t *nvpolicy,
4057 nvlist_t **config)
4058 {
4059 spa_t *spa;
4060 spa_load_state_t state = SPA_LOAD_OPEN;
4061 int error;
4062 int locked = B_FALSE;
4063 int firstopen = B_FALSE;
4064
4065 *spapp = NULL;
4066
4067 /*
4068 * As disgusting as this is, we need to support recursive calls to this
4069 * function because dsl_dir_open() is called during spa_load(), and ends
4070 * up calling spa_open() again. The real fix is to figure out how to
4071 * avoid dsl_dir_open() calling this in the first place.
4072 */
4073 if (MUTEX_NOT_HELD(&spa_namespace_lock)) {
4074 mutex_enter(&spa_namespace_lock);
4075 locked = B_TRUE;
4076 }
4077
4078 if ((spa = spa_lookup(pool)) == NULL) {
4079 if (locked)
4080 mutex_exit(&spa_namespace_lock);
4081 return (SET_ERROR(ENOENT));
4082 }
4083
4084 if (spa->spa_state == POOL_STATE_UNINITIALIZED) {
4085 zpool_load_policy_t policy;
4086
4087 firstopen = B_TRUE;
4088
4089 zpool_get_load_policy(nvpolicy ? nvpolicy : spa->spa_config,
4090 &policy);
4091 if (policy.zlp_rewind & ZPOOL_DO_REWIND)
4092 state = SPA_LOAD_RECOVER;
4093
4094 spa_activate(spa, spa_mode_global);
4095
4096 if (state != SPA_LOAD_RECOVER)
4097 spa->spa_last_ubsync_txg = spa->spa_load_txg = 0;
4098 spa->spa_config_source = SPA_CONFIG_SRC_CACHEFILE;
4099
4100 zfs_dbgmsg("spa_open_common: opening %s", pool);
4101 error = spa_load_best(spa, state, policy.zlp_txg,
4102 policy.zlp_rewind);
4103
4104 if (error == EBADF) {
4105 /*
4106 * If vdev_validate() returns failure (indicated by
4107 * EBADF), it indicates that one of the vdevs indicates
4108 * that the pool has been exported or destroyed. If
4109 * this is the case, the config cache is out of sync and
4110 * we should remove the pool from the namespace.
4111 */
4112 spa_unload(spa);
4113 spa_deactivate(spa);
4114 spa_write_cachefile(spa, B_TRUE, B_TRUE);
4115 spa_remove(spa);
4116 if (locked)
4117 mutex_exit(&spa_namespace_lock);
4118 return (SET_ERROR(ENOENT));
4119 }
4120
4121 if (error) {
4122 /*
4123 * We can't open the pool, but we still have useful
4124 * information: the state of each vdev after the
4125 * attempted vdev_open(). Return this to the user.
4126 */
4127 if (config != NULL && spa->spa_config) {
4128 VERIFY(nvlist_dup(spa->spa_config, config,
4129 KM_SLEEP) == 0);
4130 VERIFY(nvlist_add_nvlist(*config,
4131 ZPOOL_CONFIG_LOAD_INFO,
4132 spa->spa_load_info) == 0);
4133 }
4134 spa_unload(spa);
4135 spa_deactivate(spa);
4136 spa->spa_last_open_failed = error;
4137 if (locked)
4138 mutex_exit(&spa_namespace_lock);
4139 *spapp = NULL;
4140 return (error);
4141 }
4142 }
4143
4144 spa_open_ref(spa, tag);
4145
4146 if (config != NULL)
4147 *config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
4148
4149 /*
4150 * If we've recovered the pool, pass back any information we
4151 * gathered while doing the load.
4152 */
4153 if (state == SPA_LOAD_RECOVER) {
4154 VERIFY(nvlist_add_nvlist(*config, ZPOOL_CONFIG_LOAD_INFO,
4155 spa->spa_load_info) == 0);
4156 }
4157
4158 if (locked) {
4159 spa->spa_last_open_failed = 0;
4160 spa->spa_last_ubsync_txg = 0;
4161 spa->spa_load_txg = 0;
4162 mutex_exit(&spa_namespace_lock);
4163 }
4164
4165 if (firstopen)
4166 zvol_create_minors(spa, spa_name(spa), B_TRUE);
4167
4168 *spapp = spa;
4169
4170 return (0);
4171 }
4172
4173 int
4174 spa_open_rewind(const char *name, spa_t **spapp, void *tag, nvlist_t *policy,
4175 nvlist_t **config)
4176 {
4177 return (spa_open_common(name, spapp, tag, policy, config));
4178 }
4179
4180 int
4181 spa_open(const char *name, spa_t **spapp, void *tag)
4182 {
4183 return (spa_open_common(name, spapp, tag, NULL, NULL));
4184 }
4185
4186 /*
4187 * Lookup the given spa_t, incrementing the inject count in the process,
4188 * preventing it from being exported or destroyed.
4189 */
4190 spa_t *
4191 spa_inject_addref(char *name)
4192 {
4193 spa_t *spa;
4194
4195 mutex_enter(&spa_namespace_lock);
4196 if ((spa = spa_lookup(name)) == NULL) {
4197 mutex_exit(&spa_namespace_lock);
4198 return (NULL);
4199 }
4200 spa->spa_inject_ref++;
4201 mutex_exit(&spa_namespace_lock);
4202
4203 return (spa);
4204 }
4205
4206 void
4207 spa_inject_delref(spa_t *spa)
4208 {
4209 mutex_enter(&spa_namespace_lock);
4210 spa->spa_inject_ref--;
4211 mutex_exit(&spa_namespace_lock);
4212 }
4213
4214 /*
4215 * Add spares device information to the nvlist.
4216 */
4217 static void
4218 spa_add_spares(spa_t *spa, nvlist_t *config)
4219 {
4220 nvlist_t **spares;
4221 uint_t i, nspares;
4222 nvlist_t *nvroot;
4223 uint64_t guid;
4224 vdev_stat_t *vs;
4225 uint_t vsc;
4226 uint64_t pool;
4227
4228 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
4229
4230 if (spa->spa_spares.sav_count == 0)
4231 return;
4232
4233 VERIFY(nvlist_lookup_nvlist(config,
4234 ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
4235 VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
4236 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
4237 if (nspares != 0) {
4238 VERIFY(nvlist_add_nvlist_array(nvroot,
4239 ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
4240 VERIFY(nvlist_lookup_nvlist_array(nvroot,
4241 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
4242
4243 /*
4244 * Go through and find any spares which have since been
4245 * repurposed as an active spare. If this is the case, update
4246 * their status appropriately.
4247 */
4248 for (i = 0; i < nspares; i++) {
4249 VERIFY(nvlist_lookup_uint64(spares[i],
4250 ZPOOL_CONFIG_GUID, &guid) == 0);
4251 if (spa_spare_exists(guid, &pool, NULL) &&
4252 pool != 0ULL) {
4253 VERIFY(nvlist_lookup_uint64_array(
4254 spares[i], ZPOOL_CONFIG_VDEV_STATS,
4255 (uint64_t **)&vs, &vsc) == 0);
4256 vs->vs_state = VDEV_STATE_CANT_OPEN;
4257 vs->vs_aux = VDEV_AUX_SPARED;
4258 }
4259 }
4260 }
4261 }
4262
4263 /*
4264 * Add l2cache device information to the nvlist, including vdev stats.
4265 */
4266 static void
4267 spa_add_l2cache(spa_t *spa, nvlist_t *config)
4268 {
4269 nvlist_t **l2cache;
4270 uint_t i, j, nl2cache;
4271 nvlist_t *nvroot;
4272 uint64_t guid;
4273 vdev_t *vd;
4274 vdev_stat_t *vs;
4275 uint_t vsc;
4276
4277 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
4278
4279 if (spa->spa_l2cache.sav_count == 0)
4280 return;
4281
4282 VERIFY(nvlist_lookup_nvlist(config,
4283 ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
4284 VERIFY(nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config,
4285 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
4286 if (nl2cache != 0) {
4287 VERIFY(nvlist_add_nvlist_array(nvroot,
4288 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
4289 VERIFY(nvlist_lookup_nvlist_array(nvroot,
4290 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
4291
4292 /*
4293 * Update level 2 cache device stats.
4294 */
4295
4296 for (i = 0; i < nl2cache; i++) {
4297 VERIFY(nvlist_lookup_uint64(l2cache[i],
4298 ZPOOL_CONFIG_GUID, &guid) == 0);
4299
4300 vd = NULL;
4301 for (j = 0; j < spa->spa_l2cache.sav_count; j++) {
4302 if (guid ==
4303 spa->spa_l2cache.sav_vdevs[j]->vdev_guid) {
4304 vd = spa->spa_l2cache.sav_vdevs[j];
4305 break;
4306 }
4307 }
4308 ASSERT(vd != NULL);
4309
4310 VERIFY(nvlist_lookup_uint64_array(l2cache[i],
4311 ZPOOL_CONFIG_VDEV_STATS, (uint64_t **)&vs, &vsc)
4312 == 0);
4313 vdev_get_stats(vd, vs);
4314 vdev_config_generate_stats(vd, l2cache[i]);
4315
4316 }
4317 }
4318 }
4319
4320 static void
4321 spa_feature_stats_from_disk(spa_t *spa, nvlist_t *features)
4322 {
4323 zap_cursor_t zc;
4324 zap_attribute_t za;
4325
4326 if (spa->spa_feat_for_read_obj != 0) {
4327 for (zap_cursor_init(&zc, spa->spa_meta_objset,
4328 spa->spa_feat_for_read_obj);
4329 zap_cursor_retrieve(&zc, &za) == 0;
4330 zap_cursor_advance(&zc)) {
4331 ASSERT(za.za_integer_length == sizeof (uint64_t) &&
4332 za.za_num_integers == 1);
4333 VERIFY0(nvlist_add_uint64(features, za.za_name,
4334 za.za_first_integer));
4335 }
4336 zap_cursor_fini(&zc);
4337 }
4338
4339 if (spa->spa_feat_for_write_obj != 0) {
4340 for (zap_cursor_init(&zc, spa->spa_meta_objset,
4341 spa->spa_feat_for_write_obj);
4342 zap_cursor_retrieve(&zc, &za) == 0;
4343 zap_cursor_advance(&zc)) {
4344 ASSERT(za.za_integer_length == sizeof (uint64_t) &&
4345 za.za_num_integers == 1);
4346 VERIFY0(nvlist_add_uint64(features, za.za_name,
4347 za.za_first_integer));
4348 }
4349 zap_cursor_fini(&zc);
4350 }
4351 }
4352
4353 static void
4354 spa_feature_stats_from_cache(spa_t *spa, nvlist_t *features)
4355 {
4356 int i;
4357
4358 for (i = 0; i < SPA_FEATURES; i++) {
4359 zfeature_info_t feature = spa_feature_table[i];
4360 uint64_t refcount;
4361
4362 if (feature_get_refcount(spa, &feature, &refcount) != 0)
4363 continue;
4364
4365 VERIFY0(nvlist_add_uint64(features, feature.fi_guid, refcount));
4366 }
4367 }
4368
4369 /*
4370 * Store a list of pool features and their reference counts in the
4371 * config.
4372 *
4373 * The first time this is called on a spa, allocate a new nvlist, fetch
4374 * the pool features and reference counts from disk, then save the list
4375 * in the spa. In subsequent calls on the same spa use the saved nvlist
4376 * and refresh its values from the cached reference counts. This
4377 * ensures we don't block here on I/O on a suspended pool so 'zpool
4378 * clear' can resume the pool.
4379 */
4380 static void
4381 spa_add_feature_stats(spa_t *spa, nvlist_t *config)
4382 {
4383 nvlist_t *features;
4384
4385 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
4386
4387 mutex_enter(&spa->spa_feat_stats_lock);
4388 features = spa->spa_feat_stats;
4389
4390 if (features != NULL) {
4391 spa_feature_stats_from_cache(spa, features);
4392 } else {
4393 VERIFY0(nvlist_alloc(&features, NV_UNIQUE_NAME, KM_SLEEP));
4394 spa->spa_feat_stats = features;
4395 spa_feature_stats_from_disk(spa, features);
4396 }
4397
4398 VERIFY0(nvlist_add_nvlist(config, ZPOOL_CONFIG_FEATURE_STATS,
4399 features));
4400
4401 mutex_exit(&spa->spa_feat_stats_lock);
4402 }
4403
4404 int
4405 spa_get_stats(const char *name, nvlist_t **config,
4406 char *altroot, size_t buflen)
4407 {
4408 int error;
4409 spa_t *spa;
4410
4411 *config = NULL;
4412 error = spa_open_common(name, &spa, FTAG, NULL, config);
4413
4414 if (spa != NULL) {
4415 /*
4416 * This still leaves a window of inconsistency where the spares
4417 * or l2cache devices could change and the config would be
4418 * self-inconsistent.
4419 */
4420 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
4421
4422 if (*config != NULL) {
4423 uint64_t loadtimes[2];
4424
4425 loadtimes[0] = spa->spa_loaded_ts.tv_sec;
4426 loadtimes[1] = spa->spa_loaded_ts.tv_nsec;
4427 VERIFY(nvlist_add_uint64_array(*config,
4428 ZPOOL_CONFIG_LOADED_TIME, loadtimes, 2) == 0);
4429
4430 VERIFY(nvlist_add_uint64(*config,
4431 ZPOOL_CONFIG_ERRCOUNT,
4432 spa_get_errlog_size(spa)) == 0);
4433
4434 if (spa_suspended(spa)) {
4435 VERIFY(nvlist_add_uint64(*config,
4436 ZPOOL_CONFIG_SUSPENDED,
4437 spa->spa_failmode) == 0);
4438 VERIFY(nvlist_add_uint64(*config,
4439 ZPOOL_CONFIG_SUSPENDED_REASON,
4440 spa->spa_suspended) == 0);
4441 }
4442
4443 spa_add_spares(spa, *config);
4444 spa_add_l2cache(spa, *config);
4445 spa_add_feature_stats(spa, *config);
4446 }
4447 }
4448
4449 /*
4450 * We want to get the alternate root even for faulted pools, so we cheat
4451 * and call spa_lookup() directly.
4452 */
4453 if (altroot) {
4454 if (spa == NULL) {
4455 mutex_enter(&spa_namespace_lock);
4456 spa = spa_lookup(name);
4457 if (spa)
4458 spa_altroot(spa, altroot, buflen);
4459 else
4460 altroot[0] = '\0';
4461 spa = NULL;
4462 mutex_exit(&spa_namespace_lock);
4463 } else {
4464 spa_altroot(spa, altroot, buflen);
4465 }
4466 }
4467
4468 if (spa != NULL) {
4469 spa_config_exit(spa, SCL_CONFIG, FTAG);
4470 spa_close(spa, FTAG);
4471 }
4472
4473 return (error);
4474 }
4475
4476 /*
4477 * Validate that the auxiliary device array is well formed. We must have an
4478 * array of nvlists, each which describes a valid leaf vdev. If this is an
4479 * import (mode is VDEV_ALLOC_SPARE), then we allow corrupted spares to be
4480 * specified, as long as they are well-formed.
4481 */
4482 static int
4483 spa_validate_aux_devs(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode,
4484 spa_aux_vdev_t *sav, const char *config, uint64_t version,
4485 vdev_labeltype_t label)
4486 {
4487 nvlist_t **dev;
4488 uint_t i, ndev;
4489 vdev_t *vd;
4490 int error;
4491
4492 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
4493
4494 /*
4495 * It's acceptable to have no devs specified.
4496 */
4497 if (nvlist_lookup_nvlist_array(nvroot, config, &dev, &ndev) != 0)
4498 return (0);
4499
4500 if (ndev == 0)
4501 return (SET_ERROR(EINVAL));
4502
4503 /*
4504 * Make sure the pool is formatted with a version that supports this
4505 * device type.
4506 */
4507 if (spa_version(spa) < version)
4508 return (SET_ERROR(ENOTSUP));
4509
4510 /*
4511 * Set the pending device list so we correctly handle device in-use
4512 * checking.
4513 */
4514 sav->sav_pending = dev;
4515 sav->sav_npending = ndev;
4516
4517 for (i = 0; i < ndev; i++) {
4518 if ((error = spa_config_parse(spa, &vd, dev[i], NULL, 0,
4519 mode)) != 0)
4520 goto out;
4521
4522 if (!vd->vdev_ops->vdev_op_leaf) {
4523 vdev_free(vd);
4524 error = SET_ERROR(EINVAL);
4525 goto out;
4526 }
4527
4528 vd->vdev_top = vd;
4529
4530 if ((error = vdev_open(vd)) == 0 &&
4531 (error = vdev_label_init(vd, crtxg, label)) == 0) {
4532 VERIFY(nvlist_add_uint64(dev[i], ZPOOL_CONFIG_GUID,
4533 vd->vdev_guid) == 0);
4534 }
4535
4536 vdev_free(vd);
4537
4538 if (error &&
4539 (mode != VDEV_ALLOC_SPARE && mode != VDEV_ALLOC_L2CACHE))
4540 goto out;
4541 else
4542 error = 0;
4543 }
4544
4545 out:
4546 sav->sav_pending = NULL;
4547 sav->sav_npending = 0;
4548 return (error);
4549 }
4550
4551 static int
4552 spa_validate_aux(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode)
4553 {
4554 int error;
4555
4556 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
4557
4558 if ((error = spa_validate_aux_devs(spa, nvroot, crtxg, mode,
4559 &spa->spa_spares, ZPOOL_CONFIG_SPARES, SPA_VERSION_SPARES,
4560 VDEV_LABEL_SPARE)) != 0) {
4561 return (error);
4562 }
4563
4564 return (spa_validate_aux_devs(spa, nvroot, crtxg, mode,
4565 &spa->spa_l2cache, ZPOOL_CONFIG_L2CACHE, SPA_VERSION_L2CACHE,
4566 VDEV_LABEL_L2CACHE));
4567 }
4568
4569 static void
4570 spa_set_aux_vdevs(spa_aux_vdev_t *sav, nvlist_t **devs, int ndevs,
4571 const char *config)
4572 {
4573 int i;
4574
4575 if (sav->sav_config != NULL) {
4576 nvlist_t **olddevs;
4577 uint_t oldndevs;
4578 nvlist_t **newdevs;
4579
4580 /*
4581 * Generate new dev list by concatenating with the
4582 * current dev list.
4583 */
4584 VERIFY(nvlist_lookup_nvlist_array(sav->sav_config, config,
4585 &olddevs, &oldndevs) == 0);
4586
4587 newdevs = kmem_alloc(sizeof (void *) *
4588 (ndevs + oldndevs), KM_SLEEP);
4589 for (i = 0; i < oldndevs; i++)
4590 VERIFY(nvlist_dup(olddevs[i], &newdevs[i],
4591 KM_SLEEP) == 0);
4592 for (i = 0; i < ndevs; i++)
4593 VERIFY(nvlist_dup(devs[i], &newdevs[i + oldndevs],
4594 KM_SLEEP) == 0);
4595
4596 VERIFY(nvlist_remove(sav->sav_config, config,
4597 DATA_TYPE_NVLIST_ARRAY) == 0);
4598
4599 VERIFY(nvlist_add_nvlist_array(sav->sav_config,
4600 config, newdevs, ndevs + oldndevs) == 0);
4601 for (i = 0; i < oldndevs + ndevs; i++)
4602 nvlist_free(newdevs[i]);
4603 kmem_free(newdevs, (oldndevs + ndevs) * sizeof (void *));
4604 } else {
4605 /*
4606 * Generate a new dev list.
4607 */
4608 VERIFY(nvlist_alloc(&sav->sav_config, NV_UNIQUE_NAME,
4609 KM_SLEEP) == 0);
4610 VERIFY(nvlist_add_nvlist_array(sav->sav_config, config,
4611 devs, ndevs) == 0);
4612 }
4613 }
4614
4615 /*
4616 * Stop and drop level 2 ARC devices
4617 */
4618 void
4619 spa_l2cache_drop(spa_t *spa)
4620 {
4621 vdev_t *vd;
4622 int i;
4623 spa_aux_vdev_t *sav = &spa->spa_l2cache;
4624
4625 for (i = 0; i < sav->sav_count; i++) {
4626 uint64_t pool;
4627
4628 vd = sav->sav_vdevs[i];
4629 ASSERT(vd != NULL);
4630
4631 if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
4632 pool != 0ULL && l2arc_vdev_present(vd))
4633 l2arc_remove_vdev(vd);
4634 }
4635 }
4636
4637 /*
4638 * Verify encryption parameters for spa creation. If we are encrypting, we must
4639 * have the encryption feature flag enabled.
4640 */
4641 static int
4642 spa_create_check_encryption_params(dsl_crypto_params_t *dcp,
4643 boolean_t has_encryption)
4644 {
4645 if (dcp->cp_crypt != ZIO_CRYPT_OFF &&
4646 dcp->cp_crypt != ZIO_CRYPT_INHERIT &&
4647 !has_encryption)
4648 return (SET_ERROR(ENOTSUP));
4649
4650 return (dmu_objset_create_crypt_check(NULL, dcp));
4651 }
4652
4653 /*
4654 * Pool Creation
4655 */
4656 int
4657 spa_create(const char *pool, nvlist_t *nvroot, nvlist_t *props,
4658 nvlist_t *zplprops, dsl_crypto_params_t *dcp)
4659 {
4660 spa_t *spa;
4661 char *altroot = NULL;
4662 vdev_t *rvd;
4663 dsl_pool_t *dp;
4664 dmu_tx_t *tx;
4665 int error = 0;
4666 uint64_t txg = TXG_INITIAL;
4667 nvlist_t **spares, **l2cache;
4668 uint_t nspares, nl2cache;
4669 uint64_t version, obj, root_dsobj = 0;
4670 boolean_t has_features;
4671 boolean_t has_encryption;
4672 spa_feature_t feat;
4673 char *feat_name;
4674 char *poolname;
4675 nvlist_t *nvl;
4676
4677 if (nvlist_lookup_string(props, "tname", &poolname) != 0)
4678 poolname = (char *)pool;
4679
4680 /*
4681 * If this pool already exists, return failure.
4682 */
4683 mutex_enter(&spa_namespace_lock);
4684 if (spa_lookup(poolname) != NULL) {
4685 mutex_exit(&spa_namespace_lock);
4686 return (SET_ERROR(EEXIST));
4687 }
4688
4689 /*
4690 * Allocate a new spa_t structure.
4691 */
4692 nvl = fnvlist_alloc();
4693 fnvlist_add_string(nvl, ZPOOL_CONFIG_POOL_NAME, pool);
4694 (void) nvlist_lookup_string(props,
4695 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
4696 spa = spa_add(poolname, nvl, altroot);
4697 fnvlist_free(nvl);
4698 spa_activate(spa, spa_mode_global);
4699
4700 if (props && (error = spa_prop_validate(spa, props))) {
4701 spa_deactivate(spa);
4702 spa_remove(spa);
4703 mutex_exit(&spa_namespace_lock);
4704 return (error);
4705 }
4706
4707 /*
4708 * Temporary pool names should never be written to disk.
4709 */
4710 if (poolname != pool)
4711 spa->spa_import_flags |= ZFS_IMPORT_TEMP_NAME;
4712
4713 has_features = B_FALSE;
4714 has_encryption = B_FALSE;
4715 for (nvpair_t *elem = nvlist_next_nvpair(props, NULL);
4716 elem != NULL; elem = nvlist_next_nvpair(props, elem)) {
4717 if (zpool_prop_feature(nvpair_name(elem))) {
4718 has_features = B_TRUE;
4719
4720 feat_name = strchr(nvpair_name(elem), '@') + 1;
4721 VERIFY0(zfeature_lookup_name(feat_name, &feat));
4722 if (feat == SPA_FEATURE_ENCRYPTION)
4723 has_encryption = B_TRUE;
4724 }
4725 }
4726
4727 /* verify encryption params, if they were provided */
4728 if (dcp != NULL) {
4729 error = spa_create_check_encryption_params(dcp, has_encryption);
4730 if (error != 0) {
4731 spa_deactivate(spa);
4732 spa_remove(spa);
4733 mutex_exit(&spa_namespace_lock);
4734 return (error);
4735 }
4736 }
4737
4738 if (has_features || nvlist_lookup_uint64(props,
4739 zpool_prop_to_name(ZPOOL_PROP_VERSION), &version) != 0) {
4740 version = SPA_VERSION;
4741 }
4742 ASSERT(SPA_VERSION_IS_SUPPORTED(version));
4743
4744 spa->spa_first_txg = txg;
4745 spa->spa_uberblock.ub_txg = txg - 1;
4746 spa->spa_uberblock.ub_version = version;
4747 spa->spa_ubsync = spa->spa_uberblock;
4748 spa->spa_load_state = SPA_LOAD_CREATE;
4749 spa->spa_removing_phys.sr_state = DSS_NONE;
4750 spa->spa_removing_phys.sr_removing_vdev = -1;
4751 spa->spa_removing_phys.sr_prev_indirect_vdev = -1;
4752
4753 /*
4754 * Create "The Godfather" zio to hold all async IOs
4755 */
4756 spa->spa_async_zio_root = kmem_alloc(max_ncpus * sizeof (void *),
4757 KM_SLEEP);
4758 for (int i = 0; i < max_ncpus; i++) {
4759 spa->spa_async_zio_root[i] = zio_root(spa, NULL, NULL,
4760 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
4761 ZIO_FLAG_GODFATHER);
4762 }
4763
4764 /*
4765 * Create the root vdev.
4766 */
4767 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4768
4769 error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, VDEV_ALLOC_ADD);
4770
4771 ASSERT(error != 0 || rvd != NULL);
4772 ASSERT(error != 0 || spa->spa_root_vdev == rvd);
4773
4774 if (error == 0 && !zfs_allocatable_devs(nvroot))
4775 error = SET_ERROR(EINVAL);
4776
4777 if (error == 0 &&
4778 (error = vdev_create(rvd, txg, B_FALSE)) == 0 &&
4779 (error = spa_validate_aux(spa, nvroot, txg,
4780 VDEV_ALLOC_ADD)) == 0) {
4781 for (int c = 0; c < rvd->vdev_children; c++) {
4782 vdev_metaslab_set_size(rvd->vdev_child[c]);
4783 vdev_expand(rvd->vdev_child[c], txg);
4784 }
4785 }
4786
4787 spa_config_exit(spa, SCL_ALL, FTAG);
4788
4789 if (error != 0) {
4790 spa_unload(spa);
4791 spa_deactivate(spa);
4792 spa_remove(spa);
4793 mutex_exit(&spa_namespace_lock);
4794 return (error);
4795 }
4796
4797 /*
4798 * Get the list of spares, if specified.
4799 */
4800 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
4801 &spares, &nspares) == 0) {
4802 VERIFY(nvlist_alloc(&spa->spa_spares.sav_config, NV_UNIQUE_NAME,
4803 KM_SLEEP) == 0);
4804 VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
4805 ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
4806 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4807 spa_load_spares(spa);
4808 spa_config_exit(spa, SCL_ALL, FTAG);
4809 spa->spa_spares.sav_sync = B_TRUE;
4810 }
4811
4812 /*
4813 * Get the list of level 2 cache devices, if specified.
4814 */
4815 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
4816 &l2cache, &nl2cache) == 0) {
4817 VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config,
4818 NV_UNIQUE_NAME, KM_SLEEP) == 0);
4819 VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
4820 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
4821 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4822 spa_load_l2cache(spa);
4823 spa_config_exit(spa, SCL_ALL, FTAG);
4824 spa->spa_l2cache.sav_sync = B_TRUE;
4825 }
4826
4827 spa->spa_is_initializing = B_TRUE;
4828 spa->spa_dsl_pool = dp = dsl_pool_create(spa, zplprops, dcp, txg);
4829 spa->spa_is_initializing = B_FALSE;
4830
4831 /*
4832 * Create DDTs (dedup tables).
4833 */
4834 ddt_create(spa);
4835
4836 spa_update_dspace(spa);
4837
4838 tx = dmu_tx_create_assigned(dp, txg);
4839
4840 /*
4841 * Create the pool's history object.
4842 */
4843 if (version >= SPA_VERSION_ZPOOL_HISTORY && !spa->spa_history)
4844 spa_history_create_obj(spa, tx);
4845
4846 spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_CREATE);
4847 spa_history_log_version(spa, "create", tx);
4848
4849 /*
4850 * Create the pool config object.
4851 */
4852 spa->spa_config_object = dmu_object_alloc(spa->spa_meta_objset,
4853 DMU_OT_PACKED_NVLIST, SPA_CONFIG_BLOCKSIZE,
4854 DMU_OT_PACKED_NVLIST_SIZE, sizeof (uint64_t), tx);
4855
4856 if (zap_add(spa->spa_meta_objset,
4857 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CONFIG,
4858 sizeof (uint64_t), 1, &spa->spa_config_object, tx) != 0) {
4859 cmn_err(CE_PANIC, "failed to add pool config");
4860 }
4861
4862 if (zap_add(spa->spa_meta_objset,
4863 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CREATION_VERSION,
4864 sizeof (uint64_t), 1, &version, tx) != 0) {
4865 cmn_err(CE_PANIC, "failed to add pool version");
4866 }
4867
4868 /* Newly created pools with the right version are always deflated. */
4869 if (version >= SPA_VERSION_RAIDZ_DEFLATE) {
4870 spa->spa_deflate = TRUE;
4871 if (zap_add(spa->spa_meta_objset,
4872 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
4873 sizeof (uint64_t), 1, &spa->spa_deflate, tx) != 0) {
4874 cmn_err(CE_PANIC, "failed to add deflate");
4875 }
4876 }
4877
4878 /*
4879 * Create the deferred-free bpobj. Turn off compression
4880 * because sync-to-convergence takes longer if the blocksize
4881 * keeps changing.
4882 */
4883 obj = bpobj_alloc(spa->spa_meta_objset, 1 << 14, tx);
4884 dmu_object_set_compress(spa->spa_meta_objset, obj,
4885 ZIO_COMPRESS_OFF, tx);
4886 if (zap_add(spa->spa_meta_objset,
4887 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SYNC_BPOBJ,
4888 sizeof (uint64_t), 1, &obj, tx) != 0) {
4889 cmn_err(CE_PANIC, "failed to add bpobj");
4890 }
4891 VERIFY3U(0, ==, bpobj_open(&spa->spa_deferred_bpobj,
4892 spa->spa_meta_objset, obj));
4893
4894 /*
4895 * Generate some random noise for salted checksums to operate on.
4896 */
4897 (void) random_get_pseudo_bytes(spa->spa_cksum_salt.zcs_bytes,
4898 sizeof (spa->spa_cksum_salt.zcs_bytes));
4899
4900 /*
4901 * Set pool properties.
4902 */
4903 spa->spa_bootfs = zpool_prop_default_numeric(ZPOOL_PROP_BOOTFS);
4904 spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
4905 spa->spa_failmode = zpool_prop_default_numeric(ZPOOL_PROP_FAILUREMODE);
4906 spa->spa_autoexpand = zpool_prop_default_numeric(ZPOOL_PROP_AUTOEXPAND);
4907 spa->spa_multihost = zpool_prop_default_numeric(ZPOOL_PROP_MULTIHOST);
4908
4909 if (props != NULL) {
4910 spa_configfile_set(spa, props, B_FALSE);
4911 spa_sync_props(props, tx);
4912 }
4913
4914 dmu_tx_commit(tx);
4915
4916 /*
4917 * If the root dataset is encrypted we will need to create key mappings
4918 * for the zio layer before we start to write any data to disk and hold
4919 * them until after the first txg has been synced. Waiting for the first
4920 * transaction to complete also ensures that our bean counters are
4921 * appropriately updated.
4922 */
4923 if (dp->dp_root_dir->dd_crypto_obj != 0) {
4924 root_dsobj = dsl_dir_phys(dp->dp_root_dir)->dd_head_dataset_obj;
4925 VERIFY0(spa_keystore_create_mapping_impl(spa, root_dsobj,
4926 dp->dp_root_dir, FTAG));
4927 }
4928
4929 spa->spa_sync_on = B_TRUE;
4930 txg_sync_start(dp);
4931 mmp_thread_start(spa);
4932 txg_wait_synced(dp, txg);
4933
4934 if (dp->dp_root_dir->dd_crypto_obj != 0)
4935 VERIFY0(spa_keystore_remove_mapping(spa, root_dsobj, FTAG));
4936
4937 spa_spawn_aux_threads(spa);
4938
4939 spa_write_cachefile(spa, B_FALSE, B_TRUE);
4940
4941 /*
4942 * Don't count references from objsets that are already closed
4943 * and are making their way through the eviction process.
4944 */
4945 spa_evicting_os_wait(spa);
4946 spa->spa_minref = refcount_count(&spa->spa_refcount);
4947 spa->spa_load_state = SPA_LOAD_NONE;
4948
4949 mutex_exit(&spa_namespace_lock);
4950
4951 return (0);
4952 }
4953
4954 /*
4955 * Import a non-root pool into the system.
4956 */
4957 int
4958 spa_import(char *pool, nvlist_t *config, nvlist_t *props, uint64_t flags)
4959 {
4960 spa_t *spa;
4961 char *altroot = NULL;
4962 spa_load_state_t state = SPA_LOAD_IMPORT;
4963 zpool_load_policy_t policy;
4964 uint64_t mode = spa_mode_global;
4965 uint64_t readonly = B_FALSE;
4966 int error;
4967 nvlist_t *nvroot;
4968 nvlist_t **spares, **l2cache;
4969 uint_t nspares, nl2cache;
4970
4971 /*
4972 * If a pool with this name exists, return failure.
4973 */
4974 mutex_enter(&spa_namespace_lock);
4975 if (spa_lookup(pool) != NULL) {
4976 mutex_exit(&spa_namespace_lock);
4977 return (SET_ERROR(EEXIST));
4978 }
4979
4980 /*
4981 * Create and initialize the spa structure.
4982 */
4983 (void) nvlist_lookup_string(props,
4984 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
4985 (void) nvlist_lookup_uint64(props,
4986 zpool_prop_to_name(ZPOOL_PROP_READONLY), &readonly);
4987 if (readonly)
4988 mode = FREAD;
4989 spa = spa_add(pool, config, altroot);
4990 spa->spa_import_flags = flags;
4991
4992 /*
4993 * Verbatim import - Take a pool and insert it into the namespace
4994 * as if it had been loaded at boot.
4995 */
4996 if (spa->spa_import_flags & ZFS_IMPORT_VERBATIM) {
4997 if (props != NULL)
4998 spa_configfile_set(spa, props, B_FALSE);
4999
5000 spa_write_cachefile(spa, B_FALSE, B_TRUE);
5001 spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_IMPORT);
5002 zfs_dbgmsg("spa_import: verbatim import of %s", pool);
5003 mutex_exit(&spa_namespace_lock);
5004 return (0);
5005 }
5006
5007 spa_activate(spa, mode);
5008
5009 /*
5010 * Don't start async tasks until we know everything is healthy.
5011 */
5012 spa_async_suspend(spa);
5013
5014 zpool_get_load_policy(config, &policy);
5015 if (policy.zlp_rewind & ZPOOL_DO_REWIND)
5016 state = SPA_LOAD_RECOVER;
5017
5018 spa->spa_config_source = SPA_CONFIG_SRC_TRYIMPORT;
5019
5020 if (state != SPA_LOAD_RECOVER) {
5021 spa->spa_last_ubsync_txg = spa->spa_load_txg = 0;
5022 zfs_dbgmsg("spa_import: importing %s", pool);
5023 } else {
5024 zfs_dbgmsg("spa_import: importing %s, max_txg=%lld "
5025 "(RECOVERY MODE)", pool, (longlong_t)policy.zlp_txg);
5026 }
5027 error = spa_load_best(spa, state, policy.zlp_txg, policy.zlp_rewind);
5028
5029 /*
5030 * Propagate anything learned while loading the pool and pass it
5031 * back to caller (i.e. rewind info, missing devices, etc).
5032 */
5033 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO,
5034 spa->spa_load_info) == 0);
5035
5036 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5037 /*
5038 * Toss any existing sparelist, as it doesn't have any validity
5039 * anymore, and conflicts with spa_has_spare().
5040 */
5041 if (spa->spa_spares.sav_config) {
5042 nvlist_free(spa->spa_spares.sav_config);
5043 spa->spa_spares.sav_config = NULL;
5044 spa_load_spares(spa);
5045 }
5046 if (spa->spa_l2cache.sav_config) {
5047 nvlist_free(spa->spa_l2cache.sav_config);
5048 spa->spa_l2cache.sav_config = NULL;
5049 spa_load_l2cache(spa);
5050 }
5051
5052 VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
5053 &nvroot) == 0);
5054 spa_config_exit(spa, SCL_ALL, FTAG);
5055
5056 if (props != NULL)
5057 spa_configfile_set(spa, props, B_FALSE);
5058
5059 if (error != 0 || (props && spa_writeable(spa) &&
5060 (error = spa_prop_set(spa, props)))) {
5061 spa_unload(spa);
5062 spa_deactivate(spa);
5063 spa_remove(spa);
5064 mutex_exit(&spa_namespace_lock);
5065 return (error);
5066 }
5067
5068 spa_async_resume(spa);
5069
5070 /*
5071 * Override any spares and level 2 cache devices as specified by
5072 * the user, as these may have correct device names/devids, etc.
5073 */
5074 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
5075 &spares, &nspares) == 0) {
5076 if (spa->spa_spares.sav_config)
5077 VERIFY(nvlist_remove(spa->spa_spares.sav_config,
5078 ZPOOL_CONFIG_SPARES, DATA_TYPE_NVLIST_ARRAY) == 0);
5079 else
5080 VERIFY(nvlist_alloc(&spa->spa_spares.sav_config,
5081 NV_UNIQUE_NAME, KM_SLEEP) == 0);
5082 VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
5083 ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
5084 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5085 spa_load_spares(spa);
5086 spa_config_exit(spa, SCL_ALL, FTAG);
5087 spa->spa_spares.sav_sync = B_TRUE;
5088 }
5089 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
5090 &l2cache, &nl2cache) == 0) {
5091 if (spa->spa_l2cache.sav_config)
5092 VERIFY(nvlist_remove(spa->spa_l2cache.sav_config,
5093 ZPOOL_CONFIG_L2CACHE, DATA_TYPE_NVLIST_ARRAY) == 0);
5094 else
5095 VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config,
5096 NV_UNIQUE_NAME, KM_SLEEP) == 0);
5097 VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
5098 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
5099 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5100 spa_load_l2cache(spa);
5101 spa_config_exit(spa, SCL_ALL, FTAG);
5102 spa->spa_l2cache.sav_sync = B_TRUE;
5103 }
5104
5105 /*
5106 * Check for any removed devices.
5107 */
5108 if (spa->spa_autoreplace) {
5109 spa_aux_check_removed(&spa->spa_spares);
5110 spa_aux_check_removed(&spa->spa_l2cache);
5111 }
5112
5113 if (spa_writeable(spa)) {
5114 /*
5115 * Update the config cache to include the newly-imported pool.
5116 */
5117 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
5118 }
5119
5120 /*
5121 * It's possible that the pool was expanded while it was exported.
5122 * We kick off an async task to handle this for us.
5123 */
5124 spa_async_request(spa, SPA_ASYNC_AUTOEXPAND);
5125
5126 spa_history_log_version(spa, "import", NULL);
5127
5128 spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_IMPORT);
5129
5130 zvol_create_minors(spa, pool, B_TRUE);
5131
5132 mutex_exit(&spa_namespace_lock);
5133
5134 return (0);
5135 }
5136
5137 nvlist_t *
5138 spa_tryimport(nvlist_t *tryconfig)
5139 {
5140 nvlist_t *config = NULL;
5141 char *poolname, *cachefile;
5142 spa_t *spa;
5143 uint64_t state;
5144 int error;
5145 zpool_load_policy_t policy;
5146
5147 if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_POOL_NAME, &poolname))
5148 return (NULL);
5149
5150 if (nvlist_lookup_uint64(tryconfig, ZPOOL_CONFIG_POOL_STATE, &state))
5151 return (NULL);
5152
5153 /*
5154 * Create and initialize the spa structure.
5155 */
5156 mutex_enter(&spa_namespace_lock);
5157 spa = spa_add(TRYIMPORT_NAME, tryconfig, NULL);
5158 spa_activate(spa, FREAD);
5159
5160 /*
5161 * Rewind pool if a max txg was provided.
5162 */
5163 zpool_get_load_policy(spa->spa_config, &policy);
5164 if (policy.zlp_txg != UINT64_MAX) {
5165 spa->spa_load_max_txg = policy.zlp_txg;
5166 spa->spa_extreme_rewind = B_TRUE;
5167 zfs_dbgmsg("spa_tryimport: importing %s, max_txg=%lld",
5168 poolname, (longlong_t)policy.zlp_txg);
5169 } else {
5170 zfs_dbgmsg("spa_tryimport: importing %s", poolname);
5171 }
5172
5173 if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_CACHEFILE, &cachefile)
5174 == 0) {
5175 zfs_dbgmsg("spa_tryimport: using cachefile '%s'", cachefile);
5176 spa->spa_config_source = SPA_CONFIG_SRC_CACHEFILE;
5177 } else {
5178 spa->spa_config_source = SPA_CONFIG_SRC_SCAN;
5179 }
5180
5181 error = spa_load(spa, SPA_LOAD_TRYIMPORT, SPA_IMPORT_EXISTING);
5182
5183 /*
5184 * If 'tryconfig' was at least parsable, return the current config.
5185 */
5186 if (spa->spa_root_vdev != NULL) {
5187 config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
5188 VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME,
5189 poolname) == 0);
5190 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
5191 state) == 0);
5192 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_TIMESTAMP,
5193 spa->spa_uberblock.ub_timestamp) == 0);
5194 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO,
5195 spa->spa_load_info) == 0);
5196 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_ERRATA,
5197 spa->spa_errata) == 0);
5198
5199 /*
5200 * If the bootfs property exists on this pool then we
5201 * copy it out so that external consumers can tell which
5202 * pools are bootable.
5203 */
5204 if ((!error || error == EEXIST) && spa->spa_bootfs) {
5205 char *tmpname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
5206
5207 /*
5208 * We have to play games with the name since the
5209 * pool was opened as TRYIMPORT_NAME.
5210 */
5211 if (dsl_dsobj_to_dsname(spa_name(spa),
5212 spa->spa_bootfs, tmpname) == 0) {
5213 char *cp;
5214 char *dsname;
5215
5216 dsname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
5217
5218 cp = strchr(tmpname, '/');
5219 if (cp == NULL) {
5220 (void) strlcpy(dsname, tmpname,
5221 MAXPATHLEN);
5222 } else {
5223 (void) snprintf(dsname, MAXPATHLEN,
5224 "%s/%s", poolname, ++cp);
5225 }
5226 VERIFY(nvlist_add_string(config,
5227 ZPOOL_CONFIG_BOOTFS, dsname) == 0);
5228 kmem_free(dsname, MAXPATHLEN);
5229 }
5230 kmem_free(tmpname, MAXPATHLEN);
5231 }
5232
5233 /*
5234 * Add the list of hot spares and level 2 cache devices.
5235 */
5236 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
5237 spa_add_spares(spa, config);
5238 spa_add_l2cache(spa, config);
5239 spa_config_exit(spa, SCL_CONFIG, FTAG);
5240 }
5241
5242 spa_unload(spa);
5243 spa_deactivate(spa);
5244 spa_remove(spa);
5245 mutex_exit(&spa_namespace_lock);
5246
5247 return (config);
5248 }
5249
5250 /*
5251 * Pool export/destroy
5252 *
5253 * The act of destroying or exporting a pool is very simple. We make sure there
5254 * is no more pending I/O and any references to the pool are gone. Then, we
5255 * update the pool state and sync all the labels to disk, removing the
5256 * configuration from the cache afterwards. If the 'hardforce' flag is set, then
5257 * we don't sync the labels or remove the configuration cache.
5258 */
5259 static int
5260 spa_export_common(char *pool, int new_state, nvlist_t **oldconfig,
5261 boolean_t force, boolean_t hardforce)
5262 {
5263 spa_t *spa;
5264
5265 if (oldconfig)
5266 *oldconfig = NULL;
5267
5268 if (!(spa_mode_global & FWRITE))
5269 return (SET_ERROR(EROFS));
5270
5271 mutex_enter(&spa_namespace_lock);
5272 if ((spa = spa_lookup(pool)) == NULL) {
5273 mutex_exit(&spa_namespace_lock);
5274 return (SET_ERROR(ENOENT));
5275 }
5276
5277 /*
5278 * Put a hold on the pool, drop the namespace lock, stop async tasks,
5279 * reacquire the namespace lock, and see if we can export.
5280 */
5281 spa_open_ref(spa, FTAG);
5282 mutex_exit(&spa_namespace_lock);
5283 spa_async_suspend(spa);
5284 if (spa->spa_zvol_taskq) {
5285 zvol_remove_minors(spa, spa_name(spa), B_TRUE);
5286 taskq_wait(spa->spa_zvol_taskq);
5287 }
5288 mutex_enter(&spa_namespace_lock);
5289 spa_close(spa, FTAG);
5290
5291 if (spa->spa_state == POOL_STATE_UNINITIALIZED)
5292 goto export_spa;
5293 /*
5294 * The pool will be in core if it's openable, in which case we can
5295 * modify its state. Objsets may be open only because they're dirty,
5296 * so we have to force it to sync before checking spa_refcnt.
5297 */
5298 if (spa->spa_sync_on) {
5299 txg_wait_synced(spa->spa_dsl_pool, 0);
5300 spa_evicting_os_wait(spa);
5301 }
5302
5303 /*
5304 * A pool cannot be exported or destroyed if there are active
5305 * references. If we are resetting a pool, allow references by
5306 * fault injection handlers.
5307 */
5308 if (!spa_refcount_zero(spa) ||
5309 (spa->spa_inject_ref != 0 &&
5310 new_state != POOL_STATE_UNINITIALIZED)) {
5311 spa_async_resume(spa);
5312 mutex_exit(&spa_namespace_lock);
5313 return (SET_ERROR(EBUSY));
5314 }
5315
5316 if (spa->spa_sync_on) {
5317 /*
5318 * A pool cannot be exported if it has an active shared spare.
5319 * This is to prevent other pools stealing the active spare
5320 * from an exported pool. At user's own will, such pool can
5321 * be forcedly exported.
5322 */
5323 if (!force && new_state == POOL_STATE_EXPORTED &&
5324 spa_has_active_shared_spare(spa)) {
5325 spa_async_resume(spa);
5326 mutex_exit(&spa_namespace_lock);
5327 return (SET_ERROR(EXDEV));
5328 }
5329
5330 /*
5331 * We want this to be reflected on every label,
5332 * so mark them all dirty. spa_unload() will do the
5333 * final sync that pushes these changes out.
5334 */
5335 if (new_state != POOL_STATE_UNINITIALIZED && !hardforce) {
5336 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5337 spa->spa_state = new_state;
5338 spa->spa_final_txg = spa_last_synced_txg(spa) +
5339 TXG_DEFER_SIZE + 1;
5340 vdev_config_dirty(spa->spa_root_vdev);
5341 spa_config_exit(spa, SCL_ALL, FTAG);
5342 }
5343 }
5344
5345 export_spa:
5346 if (new_state == POOL_STATE_DESTROYED)
5347 spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_DESTROY);
5348 else if (new_state == POOL_STATE_EXPORTED)
5349 spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_EXPORT);
5350
5351 if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
5352 spa_unload(spa);
5353 spa_deactivate(spa);
5354 }
5355
5356 if (oldconfig && spa->spa_config)
5357 VERIFY(nvlist_dup(spa->spa_config, oldconfig, 0) == 0);
5358
5359 if (new_state != POOL_STATE_UNINITIALIZED) {
5360 if (!hardforce)
5361 spa_write_cachefile(spa, B_TRUE, B_TRUE);
5362 spa_remove(spa);
5363 }
5364 mutex_exit(&spa_namespace_lock);
5365
5366 return (0);
5367 }
5368
5369 /*
5370 * Destroy a storage pool.
5371 */
5372 int
5373 spa_destroy(char *pool)
5374 {
5375 return (spa_export_common(pool, POOL_STATE_DESTROYED, NULL,
5376 B_FALSE, B_FALSE));
5377 }
5378
5379 /*
5380 * Export a storage pool.
5381 */
5382 int
5383 spa_export(char *pool, nvlist_t **oldconfig, boolean_t force,
5384 boolean_t hardforce)
5385 {
5386 return (spa_export_common(pool, POOL_STATE_EXPORTED, oldconfig,
5387 force, hardforce));
5388 }
5389
5390 /*
5391 * Similar to spa_export(), this unloads the spa_t without actually removing it
5392 * from the namespace in any way.
5393 */
5394 int
5395 spa_reset(char *pool)
5396 {
5397 return (spa_export_common(pool, POOL_STATE_UNINITIALIZED, NULL,
5398 B_FALSE, B_FALSE));
5399 }
5400
5401 /*
5402 * ==========================================================================
5403 * Device manipulation
5404 * ==========================================================================
5405 */
5406
5407 /*
5408 * Add a device to a storage pool.
5409 */
5410 int
5411 spa_vdev_add(spa_t *spa, nvlist_t *nvroot)
5412 {
5413 uint64_t txg, id;
5414 int error;
5415 vdev_t *rvd = spa->spa_root_vdev;
5416 vdev_t *vd, *tvd;
5417 nvlist_t **spares, **l2cache;
5418 uint_t nspares, nl2cache;
5419
5420 ASSERT(spa_writeable(spa));
5421
5422 txg = spa_vdev_enter(spa);
5423
5424 if ((error = spa_config_parse(spa, &vd, nvroot, NULL, 0,
5425 VDEV_ALLOC_ADD)) != 0)
5426 return (spa_vdev_exit(spa, NULL, txg, error));
5427
5428 spa->spa_pending_vdev = vd; /* spa_vdev_exit() will clear this */
5429
5430 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, &spares,
5431 &nspares) != 0)
5432 nspares = 0;
5433
5434 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, &l2cache,
5435 &nl2cache) != 0)
5436 nl2cache = 0;
5437
5438 if (vd->vdev_children == 0 && nspares == 0 && nl2cache == 0)
5439 return (spa_vdev_exit(spa, vd, txg, EINVAL));
5440
5441 if (vd->vdev_children != 0 &&
5442 (error = vdev_create(vd, txg, B_FALSE)) != 0)
5443 return (spa_vdev_exit(spa, vd, txg, error));
5444
5445 /*
5446 * We must validate the spares and l2cache devices after checking the
5447 * children. Otherwise, vdev_inuse() will blindly overwrite the spare.
5448 */
5449 if ((error = spa_validate_aux(spa, nvroot, txg, VDEV_ALLOC_ADD)) != 0)
5450 return (spa_vdev_exit(spa, vd, txg, error));
5451
5452 /*
5453 * If we are in the middle of a device removal, we can only add
5454 * devices which match the existing devices in the pool.
5455 * If we are in the middle of a removal, or have some indirect
5456 * vdevs, we can not add raidz toplevels.
5457 */
5458 if (spa->spa_vdev_removal != NULL ||
5459 spa->spa_removing_phys.sr_prev_indirect_vdev != -1) {
5460 for (int c = 0; c < vd->vdev_children; c++) {
5461 tvd = vd->vdev_child[c];
5462 if (spa->spa_vdev_removal != NULL &&
5463 tvd->vdev_ashift != spa->spa_max_ashift) {
5464 return (spa_vdev_exit(spa, vd, txg, EINVAL));
5465 }
5466 /* Fail if top level vdev is raidz */
5467 if (tvd->vdev_ops == &vdev_raidz_ops) {
5468 return (spa_vdev_exit(spa, vd, txg, EINVAL));
5469 }
5470 /*
5471 * Need the top level mirror to be
5472 * a mirror of leaf vdevs only
5473 */
5474 if (tvd->vdev_ops == &vdev_mirror_ops) {
5475 for (uint64_t cid = 0;
5476 cid < tvd->vdev_children; cid++) {
5477 vdev_t *cvd = tvd->vdev_child[cid];
5478 if (!cvd->vdev_ops->vdev_op_leaf) {
5479 return (spa_vdev_exit(spa, vd,
5480 txg, EINVAL));
5481 }
5482 }
5483 }
5484 }
5485 }
5486
5487 for (int c = 0; c < vd->vdev_children; c++) {
5488
5489 /*
5490 * Set the vdev id to the first hole, if one exists.
5491 */
5492 for (id = 0; id < rvd->vdev_children; id++) {
5493 if (rvd->vdev_child[id]->vdev_ishole) {
5494 vdev_free(rvd->vdev_child[id]);
5495 break;
5496 }
5497 }
5498 tvd = vd->vdev_child[c];
5499 vdev_remove_child(vd, tvd);
5500 tvd->vdev_id = id;
5501 vdev_add_child(rvd, tvd);
5502 vdev_config_dirty(tvd);
5503 }
5504
5505 if (nspares != 0) {
5506 spa_set_aux_vdevs(&spa->spa_spares, spares, nspares,
5507 ZPOOL_CONFIG_SPARES);
5508 spa_load_spares(spa);
5509 spa->spa_spares.sav_sync = B_TRUE;
5510 }
5511
5512 if (nl2cache != 0) {
5513 spa_set_aux_vdevs(&spa->spa_l2cache, l2cache, nl2cache,
5514 ZPOOL_CONFIG_L2CACHE);
5515 spa_load_l2cache(spa);
5516 spa->spa_l2cache.sav_sync = B_TRUE;
5517 }
5518
5519 /*
5520 * We have to be careful when adding new vdevs to an existing pool.
5521 * If other threads start allocating from these vdevs before we
5522 * sync the config cache, and we lose power, then upon reboot we may
5523 * fail to open the pool because there are DVAs that the config cache
5524 * can't translate. Therefore, we first add the vdevs without
5525 * initializing metaslabs; sync the config cache (via spa_vdev_exit());
5526 * and then let spa_config_update() initialize the new metaslabs.
5527 *
5528 * spa_load() checks for added-but-not-initialized vdevs, so that
5529 * if we lose power at any point in this sequence, the remaining
5530 * steps will be completed the next time we load the pool.
5531 */
5532 (void) spa_vdev_exit(spa, vd, txg, 0);
5533
5534 mutex_enter(&spa_namespace_lock);
5535 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
5536 spa_event_notify(spa, NULL, NULL, ESC_ZFS_VDEV_ADD);
5537 mutex_exit(&spa_namespace_lock);
5538
5539 return (0);
5540 }
5541
5542 /*
5543 * Attach a device to a mirror. The arguments are the path to any device
5544 * in the mirror, and the nvroot for the new device. If the path specifies
5545 * a device that is not mirrored, we automatically insert the mirror vdev.
5546 *
5547 * If 'replacing' is specified, the new device is intended to replace the
5548 * existing device; in this case the two devices are made into their own
5549 * mirror using the 'replacing' vdev, which is functionally identical to
5550 * the mirror vdev (it actually reuses all the same ops) but has a few
5551 * extra rules: you can't attach to it after it's been created, and upon
5552 * completion of resilvering, the first disk (the one being replaced)
5553 * is automatically detached.
5554 */
5555 int
5556 spa_vdev_attach(spa_t *spa, uint64_t guid, nvlist_t *nvroot, int replacing)
5557 {
5558 uint64_t txg, dtl_max_txg;
5559 ASSERTV(vdev_t *rvd = spa->spa_root_vdev);
5560 vdev_t *oldvd, *newvd, *newrootvd, *pvd, *tvd;
5561 vdev_ops_t *pvops;
5562 char *oldvdpath, *newvdpath;
5563 int newvd_isspare;
5564 int error;
5565
5566 ASSERT(spa_writeable(spa));
5567
5568 txg = spa_vdev_enter(spa);
5569
5570 oldvd = spa_lookup_by_guid(spa, guid, B_FALSE);
5571
5572 if (spa->spa_vdev_removal != NULL)
5573 return (spa_vdev_exit(spa, NULL, txg, EBUSY));
5574
5575 if (oldvd == NULL)
5576 return (spa_vdev_exit(spa, NULL, txg, ENODEV));
5577
5578 if (!oldvd->vdev_ops->vdev_op_leaf)
5579 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
5580
5581 pvd = oldvd->vdev_parent;
5582
5583 if ((error = spa_config_parse(spa, &newrootvd, nvroot, NULL, 0,
5584 VDEV_ALLOC_ATTACH)) != 0)
5585 return (spa_vdev_exit(spa, NULL, txg, EINVAL));
5586
5587 if (newrootvd->vdev_children != 1)
5588 return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
5589
5590 newvd = newrootvd->vdev_child[0];
5591
5592 if (!newvd->vdev_ops->vdev_op_leaf)
5593 return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
5594
5595 if ((error = vdev_create(newrootvd, txg, replacing)) != 0)
5596 return (spa_vdev_exit(spa, newrootvd, txg, error));
5597
5598 /*
5599 * Spares can't replace logs
5600 */
5601 if (oldvd->vdev_top->vdev_islog && newvd->vdev_isspare)
5602 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
5603
5604 if (!replacing) {
5605 /*
5606 * For attach, the only allowable parent is a mirror or the root
5607 * vdev.
5608 */
5609 if (pvd->vdev_ops != &vdev_mirror_ops &&
5610 pvd->vdev_ops != &vdev_root_ops)
5611 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
5612
5613 pvops = &vdev_mirror_ops;
5614 } else {
5615 /*
5616 * Active hot spares can only be replaced by inactive hot
5617 * spares.
5618 */
5619 if (pvd->vdev_ops == &vdev_spare_ops &&
5620 oldvd->vdev_isspare &&
5621 !spa_has_spare(spa, newvd->vdev_guid))
5622 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
5623
5624 /*
5625 * If the source is a hot spare, and the parent isn't already a
5626 * spare, then we want to create a new hot spare. Otherwise, we
5627 * want to create a replacing vdev. The user is not allowed to
5628 * attach to a spared vdev child unless the 'isspare' state is
5629 * the same (spare replaces spare, non-spare replaces
5630 * non-spare).
5631 */
5632 if (pvd->vdev_ops == &vdev_replacing_ops &&
5633 spa_version(spa) < SPA_VERSION_MULTI_REPLACE) {
5634 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
5635 } else if (pvd->vdev_ops == &vdev_spare_ops &&
5636 newvd->vdev_isspare != oldvd->vdev_isspare) {
5637 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
5638 }
5639
5640 if (newvd->vdev_isspare)
5641 pvops = &vdev_spare_ops;
5642 else
5643 pvops = &vdev_replacing_ops;
5644 }
5645
5646 /*
5647 * Make sure the new device is big enough.
5648 */
5649 if (newvd->vdev_asize < vdev_get_min_asize(oldvd))
5650 return (spa_vdev_exit(spa, newrootvd, txg, EOVERFLOW));
5651
5652 /*
5653 * The new device cannot have a higher alignment requirement
5654 * than the top-level vdev.
5655 */
5656 if (newvd->vdev_ashift > oldvd->vdev_top->vdev_ashift)
5657 return (spa_vdev_exit(spa, newrootvd, txg, EDOM));
5658
5659 /*
5660 * If this is an in-place replacement, update oldvd's path and devid
5661 * to make it distinguishable from newvd, and unopenable from now on.
5662 */
5663 if (strcmp(oldvd->vdev_path, newvd->vdev_path) == 0) {
5664 spa_strfree(oldvd->vdev_path);
5665 oldvd->vdev_path = kmem_alloc(strlen(newvd->vdev_path) + 5,
5666 KM_SLEEP);
5667 (void) sprintf(oldvd->vdev_path, "%s/%s",
5668 newvd->vdev_path, "old");
5669 if (oldvd->vdev_devid != NULL) {
5670 spa_strfree(oldvd->vdev_devid);
5671 oldvd->vdev_devid = NULL;
5672 }
5673 }
5674
5675 /* mark the device being resilvered */
5676 newvd->vdev_resilver_txg = txg;
5677
5678 /*
5679 * If the parent is not a mirror, or if we're replacing, insert the new
5680 * mirror/replacing/spare vdev above oldvd.
5681 */
5682 if (pvd->vdev_ops != pvops)
5683 pvd = vdev_add_parent(oldvd, pvops);
5684
5685 ASSERT(pvd->vdev_top->vdev_parent == rvd);
5686 ASSERT(pvd->vdev_ops == pvops);
5687 ASSERT(oldvd->vdev_parent == pvd);
5688
5689 /*
5690 * Extract the new device from its root and add it to pvd.
5691 */
5692 vdev_remove_child(newrootvd, newvd);
5693 newvd->vdev_id = pvd->vdev_children;
5694 newvd->vdev_crtxg = oldvd->vdev_crtxg;
5695 vdev_add_child(pvd, newvd);
5696
5697 /*
5698 * Reevaluate the parent vdev state.
5699 */
5700 vdev_propagate_state(pvd);
5701
5702 tvd = newvd->vdev_top;
5703 ASSERT(pvd->vdev_top == tvd);
5704 ASSERT(tvd->vdev_parent == rvd);
5705
5706 vdev_config_dirty(tvd);
5707
5708 /*
5709 * Set newvd's DTL to [TXG_INITIAL, dtl_max_txg) so that we account
5710 * for any dmu_sync-ed blocks. It will propagate upward when
5711 * spa_vdev_exit() calls vdev_dtl_reassess().
5712 */
5713 dtl_max_txg = txg + TXG_CONCURRENT_STATES;
5714
5715 vdev_dtl_dirty(newvd, DTL_MISSING, TXG_INITIAL,
5716 dtl_max_txg - TXG_INITIAL);
5717
5718 if (newvd->vdev_isspare) {
5719 spa_spare_activate(newvd);
5720 spa_event_notify(spa, newvd, NULL, ESC_ZFS_VDEV_SPARE);
5721 }
5722
5723 oldvdpath = spa_strdup(oldvd->vdev_path);
5724 newvdpath = spa_strdup(newvd->vdev_path);
5725 newvd_isspare = newvd->vdev_isspare;
5726
5727 /*
5728 * Mark newvd's DTL dirty in this txg.
5729 */
5730 vdev_dirty(tvd, VDD_DTL, newvd, txg);
5731
5732 /*
5733 * Schedule the resilver to restart in the future. We do this to
5734 * ensure that dmu_sync-ed blocks have been stitched into the
5735 * respective datasets.
5736 */
5737 dsl_resilver_restart(spa->spa_dsl_pool, dtl_max_txg);
5738
5739 if (spa->spa_bootfs)
5740 spa_event_notify(spa, newvd, NULL, ESC_ZFS_BOOTFS_VDEV_ATTACH);
5741
5742 spa_event_notify(spa, newvd, NULL, ESC_ZFS_VDEV_ATTACH);
5743
5744 /*
5745 * Commit the config
5746 */
5747 (void) spa_vdev_exit(spa, newrootvd, dtl_max_txg, 0);
5748
5749 spa_history_log_internal(spa, "vdev attach", NULL,
5750 "%s vdev=%s %s vdev=%s",
5751 replacing && newvd_isspare ? "spare in" :
5752 replacing ? "replace" : "attach", newvdpath,
5753 replacing ? "for" : "to", oldvdpath);
5754
5755 spa_strfree(oldvdpath);
5756 spa_strfree(newvdpath);
5757
5758 return (0);
5759 }
5760
5761 /*
5762 * Detach a device from a mirror or replacing vdev.
5763 *
5764 * If 'replace_done' is specified, only detach if the parent
5765 * is a replacing vdev.
5766 */
5767 int
5768 spa_vdev_detach(spa_t *spa, uint64_t guid, uint64_t pguid, int replace_done)
5769 {
5770 uint64_t txg;
5771 int error;
5772 ASSERTV(vdev_t *rvd = spa->spa_root_vdev);
5773 vdev_t *vd, *pvd, *cvd, *tvd;
5774 boolean_t unspare = B_FALSE;
5775 uint64_t unspare_guid = 0;
5776 char *vdpath;
5777
5778 ASSERT(spa_writeable(spa));
5779
5780 txg = spa_vdev_enter(spa);
5781
5782 vd = spa_lookup_by_guid(spa, guid, B_FALSE);
5783
5784 if (vd == NULL)
5785 return (spa_vdev_exit(spa, NULL, txg, ENODEV));
5786
5787 if (!vd->vdev_ops->vdev_op_leaf)
5788 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
5789
5790 pvd = vd->vdev_parent;
5791
5792 /*
5793 * If the parent/child relationship is not as expected, don't do it.
5794 * Consider M(A,R(B,C)) -- that is, a mirror of A with a replacing
5795 * vdev that's replacing B with C. The user's intent in replacing
5796 * is to go from M(A,B) to M(A,C). If the user decides to cancel
5797 * the replace by detaching C, the expected behavior is to end up
5798 * M(A,B). But suppose that right after deciding to detach C,
5799 * the replacement of B completes. We would have M(A,C), and then
5800 * ask to detach C, which would leave us with just A -- not what
5801 * the user wanted. To prevent this, we make sure that the
5802 * parent/child relationship hasn't changed -- in this example,
5803 * that C's parent is still the replacing vdev R.
5804 */
5805 if (pvd->vdev_guid != pguid && pguid != 0)
5806 return (spa_vdev_exit(spa, NULL, txg, EBUSY));
5807
5808 /*
5809 * Only 'replacing' or 'spare' vdevs can be replaced.
5810 */
5811 if (replace_done && pvd->vdev_ops != &vdev_replacing_ops &&
5812 pvd->vdev_ops != &vdev_spare_ops)
5813 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
5814
5815 ASSERT(pvd->vdev_ops != &vdev_spare_ops ||
5816 spa_version(spa) >= SPA_VERSION_SPARES);
5817
5818 /*
5819 * Only mirror, replacing, and spare vdevs support detach.
5820 */
5821 if (pvd->vdev_ops != &vdev_replacing_ops &&
5822 pvd->vdev_ops != &vdev_mirror_ops &&
5823 pvd->vdev_ops != &vdev_spare_ops)
5824 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
5825
5826 /*
5827 * If this device has the only valid copy of some data,
5828 * we cannot safely detach it.
5829 */
5830 if (vdev_dtl_required(vd))
5831 return (spa_vdev_exit(spa, NULL, txg, EBUSY));
5832
5833 ASSERT(pvd->vdev_children >= 2);
5834
5835 /*
5836 * If we are detaching the second disk from a replacing vdev, then
5837 * check to see if we changed the original vdev's path to have "/old"
5838 * at the end in spa_vdev_attach(). If so, undo that change now.
5839 */
5840 if (pvd->vdev_ops == &vdev_replacing_ops && vd->vdev_id > 0 &&
5841 vd->vdev_path != NULL) {
5842 size_t len = strlen(vd->vdev_path);
5843
5844 for (int c = 0; c < pvd->vdev_children; c++) {
5845 cvd = pvd->vdev_child[c];
5846
5847 if (cvd == vd || cvd->vdev_path == NULL)
5848 continue;
5849
5850 if (strncmp(cvd->vdev_path, vd->vdev_path, len) == 0 &&
5851 strcmp(cvd->vdev_path + len, "/old") == 0) {
5852 spa_strfree(cvd->vdev_path);
5853 cvd->vdev_path = spa_strdup(vd->vdev_path);
5854 break;
5855 }
5856 }
5857 }
5858
5859 /*
5860 * If we are detaching the original disk from a spare, then it implies
5861 * that the spare should become a real disk, and be removed from the
5862 * active spare list for the pool.
5863 */
5864 if (pvd->vdev_ops == &vdev_spare_ops &&
5865 vd->vdev_id == 0 &&
5866 pvd->vdev_child[pvd->vdev_children - 1]->vdev_isspare)
5867 unspare = B_TRUE;
5868
5869 /*
5870 * Erase the disk labels so the disk can be used for other things.
5871 * This must be done after all other error cases are handled,
5872 * but before we disembowel vd (so we can still do I/O to it).
5873 * But if we can't do it, don't treat the error as fatal --
5874 * it may be that the unwritability of the disk is the reason
5875 * it's being detached!
5876 */
5877 error = vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
5878
5879 /*
5880 * Remove vd from its parent and compact the parent's children.
5881 */
5882 vdev_remove_child(pvd, vd);
5883 vdev_compact_children(pvd);
5884
5885 /*
5886 * Remember one of the remaining children so we can get tvd below.
5887 */
5888 cvd = pvd->vdev_child[pvd->vdev_children - 1];
5889
5890 /*
5891 * If we need to remove the remaining child from the list of hot spares,
5892 * do it now, marking the vdev as no longer a spare in the process.
5893 * We must do this before vdev_remove_parent(), because that can
5894 * change the GUID if it creates a new toplevel GUID. For a similar
5895 * reason, we must remove the spare now, in the same txg as the detach;
5896 * otherwise someone could attach a new sibling, change the GUID, and
5897 * the subsequent attempt to spa_vdev_remove(unspare_guid) would fail.
5898 */
5899 if (unspare) {
5900 ASSERT(cvd->vdev_isspare);
5901 spa_spare_remove(cvd);
5902 unspare_guid = cvd->vdev_guid;
5903 (void) spa_vdev_remove(spa, unspare_guid, B_TRUE);
5904 cvd->vdev_unspare = B_TRUE;
5905 }
5906
5907 /*
5908 * If the parent mirror/replacing vdev only has one child,
5909 * the parent is no longer needed. Remove it from the tree.
5910 */
5911 if (pvd->vdev_children == 1) {
5912 if (pvd->vdev_ops == &vdev_spare_ops)
5913 cvd->vdev_unspare = B_FALSE;
5914 vdev_remove_parent(cvd);
5915 }
5916
5917
5918 /*
5919 * We don't set tvd until now because the parent we just removed
5920 * may have been the previous top-level vdev.
5921 */
5922 tvd = cvd->vdev_top;
5923 ASSERT(tvd->vdev_parent == rvd);
5924
5925 /*
5926 * Reevaluate the parent vdev state.
5927 */
5928 vdev_propagate_state(cvd);
5929
5930 /*
5931 * If the 'autoexpand' property is set on the pool then automatically
5932 * try to expand the size of the pool. For example if the device we
5933 * just detached was smaller than the others, it may be possible to
5934 * add metaslabs (i.e. grow the pool). We need to reopen the vdev
5935 * first so that we can obtain the updated sizes of the leaf vdevs.
5936 */
5937 if (spa->spa_autoexpand) {
5938 vdev_reopen(tvd);
5939 vdev_expand(tvd, txg);
5940 }
5941
5942 vdev_config_dirty(tvd);
5943
5944 /*
5945 * Mark vd's DTL as dirty in this txg. vdev_dtl_sync() will see that
5946 * vd->vdev_detached is set and free vd's DTL object in syncing context.
5947 * But first make sure we're not on any *other* txg's DTL list, to
5948 * prevent vd from being accessed after it's freed.
5949 */
5950 vdpath = spa_strdup(vd->vdev_path ? vd->vdev_path : "none");
5951 for (int t = 0; t < TXG_SIZE; t++)
5952 (void) txg_list_remove_this(&tvd->vdev_dtl_list, vd, t);
5953 vd->vdev_detached = B_TRUE;
5954 vdev_dirty(tvd, VDD_DTL, vd, txg);
5955
5956 spa_event_notify(spa, vd, NULL, ESC_ZFS_VDEV_REMOVE);
5957
5958 /* hang on to the spa before we release the lock */
5959 spa_open_ref(spa, FTAG);
5960
5961 error = spa_vdev_exit(spa, vd, txg, 0);
5962
5963 spa_history_log_internal(spa, "detach", NULL,
5964 "vdev=%s", vdpath);
5965 spa_strfree(vdpath);
5966
5967 /*
5968 * If this was the removal of the original device in a hot spare vdev,
5969 * then we want to go through and remove the device from the hot spare
5970 * list of every other pool.
5971 */
5972 if (unspare) {
5973 spa_t *altspa = NULL;
5974
5975 mutex_enter(&spa_namespace_lock);
5976 while ((altspa = spa_next(altspa)) != NULL) {
5977 if (altspa->spa_state != POOL_STATE_ACTIVE ||
5978 altspa == spa)
5979 continue;
5980
5981 spa_open_ref(altspa, FTAG);
5982 mutex_exit(&spa_namespace_lock);
5983 (void) spa_vdev_remove(altspa, unspare_guid, B_TRUE);
5984 mutex_enter(&spa_namespace_lock);
5985 spa_close(altspa, FTAG);
5986 }
5987 mutex_exit(&spa_namespace_lock);
5988
5989 /* search the rest of the vdevs for spares to remove */
5990 spa_vdev_resilver_done(spa);
5991 }
5992
5993 /* all done with the spa; OK to release */
5994 mutex_enter(&spa_namespace_lock);
5995 spa_close(spa, FTAG);
5996 mutex_exit(&spa_namespace_lock);
5997
5998 return (error);
5999 }
6000
6001 /*
6002 * Split a set of devices from their mirrors, and create a new pool from them.
6003 */
6004 int
6005 spa_vdev_split_mirror(spa_t *spa, char *newname, nvlist_t *config,
6006 nvlist_t *props, boolean_t exp)
6007 {
6008 int error = 0;
6009 uint64_t txg, *glist;
6010 spa_t *newspa;
6011 uint_t c, children, lastlog;
6012 nvlist_t **child, *nvl, *tmp;
6013 dmu_tx_t *tx;
6014 char *altroot = NULL;
6015 vdev_t *rvd, **vml = NULL; /* vdev modify list */
6016 boolean_t activate_slog;
6017
6018 ASSERT(spa_writeable(spa));
6019
6020 txg = spa_vdev_enter(spa);
6021
6022 /* clear the log and flush everything up to now */
6023 activate_slog = spa_passivate_log(spa);
6024 (void) spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
6025 error = spa_reset_logs(spa);
6026 txg = spa_vdev_config_enter(spa);
6027
6028 if (activate_slog)
6029 spa_activate_log(spa);
6030
6031 if (error != 0)
6032 return (spa_vdev_exit(spa, NULL, txg, error));
6033
6034 /* check new spa name before going any further */
6035 if (spa_lookup(newname) != NULL)
6036 return (spa_vdev_exit(spa, NULL, txg, EEXIST));
6037
6038 /*
6039 * scan through all the children to ensure they're all mirrors
6040 */
6041 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvl) != 0 ||
6042 nvlist_lookup_nvlist_array(nvl, ZPOOL_CONFIG_CHILDREN, &child,
6043 &children) != 0)
6044 return (spa_vdev_exit(spa, NULL, txg, EINVAL));
6045
6046 /* first, check to ensure we've got the right child count */
6047 rvd = spa->spa_root_vdev;
6048 lastlog = 0;
6049 for (c = 0; c < rvd->vdev_children; c++) {
6050 vdev_t *vd = rvd->vdev_child[c];
6051
6052 /* don't count the holes & logs as children */
6053 if (vd->vdev_islog || !vdev_is_concrete(vd)) {
6054 if (lastlog == 0)
6055 lastlog = c;
6056 continue;
6057 }
6058
6059 lastlog = 0;
6060 }
6061 if (children != (lastlog != 0 ? lastlog : rvd->vdev_children))
6062 return (spa_vdev_exit(spa, NULL, txg, EINVAL));
6063
6064 /* next, ensure no spare or cache devices are part of the split */
6065 if (nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_SPARES, &tmp) == 0 ||
6066 nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_L2CACHE, &tmp) == 0)
6067 return (spa_vdev_exit(spa, NULL, txg, EINVAL));
6068
6069 vml = kmem_zalloc(children * sizeof (vdev_t *), KM_SLEEP);
6070 glist = kmem_zalloc(children * sizeof (uint64_t), KM_SLEEP);
6071
6072 /* then, loop over each vdev and validate it */
6073 for (c = 0; c < children; c++) {
6074 uint64_t is_hole = 0;
6075
6076 (void) nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_IS_HOLE,
6077 &is_hole);
6078
6079 if (is_hole != 0) {
6080 if (spa->spa_root_vdev->vdev_child[c]->vdev_ishole ||
6081 spa->spa_root_vdev->vdev_child[c]->vdev_islog) {
6082 continue;
6083 } else {
6084 error = SET_ERROR(EINVAL);
6085 break;
6086 }
6087 }
6088
6089 /* which disk is going to be split? */
6090 if (nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_GUID,
6091 &glist[c]) != 0) {
6092 error = SET_ERROR(EINVAL);
6093 break;
6094 }
6095
6096 /* look it up in the spa */
6097 vml[c] = spa_lookup_by_guid(spa, glist[c], B_FALSE);
6098 if (vml[c] == NULL) {
6099 error = SET_ERROR(ENODEV);
6100 break;
6101 }
6102
6103 /* make sure there's nothing stopping the split */
6104 if (vml[c]->vdev_parent->vdev_ops != &vdev_mirror_ops ||
6105 vml[c]->vdev_islog ||
6106 !vdev_is_concrete(vml[c]) ||
6107 vml[c]->vdev_isspare ||
6108 vml[c]->vdev_isl2cache ||
6109 !vdev_writeable(vml[c]) ||
6110 vml[c]->vdev_children != 0 ||
6111 vml[c]->vdev_state != VDEV_STATE_HEALTHY ||
6112 c != spa->spa_root_vdev->vdev_child[c]->vdev_id) {
6113 error = SET_ERROR(EINVAL);
6114 break;
6115 }
6116
6117 if (vdev_dtl_required(vml[c])) {
6118 error = SET_ERROR(EBUSY);
6119 break;
6120 }
6121
6122 /* we need certain info from the top level */
6123 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_ARRAY,
6124 vml[c]->vdev_top->vdev_ms_array) == 0);
6125 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_SHIFT,
6126 vml[c]->vdev_top->vdev_ms_shift) == 0);
6127 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASIZE,
6128 vml[c]->vdev_top->vdev_asize) == 0);
6129 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASHIFT,
6130 vml[c]->vdev_top->vdev_ashift) == 0);
6131
6132 /* transfer per-vdev ZAPs */
6133 ASSERT3U(vml[c]->vdev_leaf_zap, !=, 0);
6134 VERIFY0(nvlist_add_uint64(child[c],
6135 ZPOOL_CONFIG_VDEV_LEAF_ZAP, vml[c]->vdev_leaf_zap));
6136
6137 ASSERT3U(vml[c]->vdev_top->vdev_top_zap, !=, 0);
6138 VERIFY0(nvlist_add_uint64(child[c],
6139 ZPOOL_CONFIG_VDEV_TOP_ZAP,
6140 vml[c]->vdev_parent->vdev_top_zap));
6141 }
6142
6143 if (error != 0) {
6144 kmem_free(vml, children * sizeof (vdev_t *));
6145 kmem_free(glist, children * sizeof (uint64_t));
6146 return (spa_vdev_exit(spa, NULL, txg, error));
6147 }
6148
6149 /* stop writers from using the disks */
6150 for (c = 0; c < children; c++) {
6151 if (vml[c] != NULL)
6152 vml[c]->vdev_offline = B_TRUE;
6153 }
6154 vdev_reopen(spa->spa_root_vdev);
6155
6156 /*
6157 * Temporarily record the splitting vdevs in the spa config. This
6158 * will disappear once the config is regenerated.
6159 */
6160 VERIFY(nvlist_alloc(&nvl, NV_UNIQUE_NAME, KM_SLEEP) == 0);
6161 VERIFY(nvlist_add_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST,
6162 glist, children) == 0);
6163 kmem_free(glist, children * sizeof (uint64_t));
6164
6165 mutex_enter(&spa->spa_props_lock);
6166 VERIFY(nvlist_add_nvlist(spa->spa_config, ZPOOL_CONFIG_SPLIT,
6167 nvl) == 0);
6168 mutex_exit(&spa->spa_props_lock);
6169 spa->spa_config_splitting = nvl;
6170 vdev_config_dirty(spa->spa_root_vdev);
6171
6172 /* configure and create the new pool */
6173 VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME, newname) == 0);
6174 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
6175 exp ? POOL_STATE_EXPORTED : POOL_STATE_ACTIVE) == 0);
6176 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_VERSION,
6177 spa_version(spa)) == 0);
6178 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_TXG,
6179 spa->spa_config_txg) == 0);
6180 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_GUID,
6181 spa_generate_guid(NULL)) == 0);
6182 VERIFY0(nvlist_add_boolean(config, ZPOOL_CONFIG_HAS_PER_VDEV_ZAPS));
6183 (void) nvlist_lookup_string(props,
6184 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
6185
6186 /* add the new pool to the namespace */
6187 newspa = spa_add(newname, config, altroot);
6188 newspa->spa_avz_action = AVZ_ACTION_REBUILD;
6189 newspa->spa_config_txg = spa->spa_config_txg;
6190 spa_set_log_state(newspa, SPA_LOG_CLEAR);
6191
6192 /* release the spa config lock, retaining the namespace lock */
6193 spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
6194
6195 if (zio_injection_enabled)
6196 zio_handle_panic_injection(spa, FTAG, 1);
6197
6198 spa_activate(newspa, spa_mode_global);
6199 spa_async_suspend(newspa);
6200
6201 newspa->spa_config_source = SPA_CONFIG_SRC_SPLIT;
6202
6203 /* create the new pool from the disks of the original pool */
6204 error = spa_load(newspa, SPA_LOAD_IMPORT, SPA_IMPORT_ASSEMBLE);
6205 if (error)
6206 goto out;
6207
6208 /* if that worked, generate a real config for the new pool */
6209 if (newspa->spa_root_vdev != NULL) {
6210 VERIFY(nvlist_alloc(&newspa->spa_config_splitting,
6211 NV_UNIQUE_NAME, KM_SLEEP) == 0);
6212 VERIFY(nvlist_add_uint64(newspa->spa_config_splitting,
6213 ZPOOL_CONFIG_SPLIT_GUID, spa_guid(spa)) == 0);
6214 spa_config_set(newspa, spa_config_generate(newspa, NULL, -1ULL,
6215 B_TRUE));
6216 }
6217
6218 /* set the props */
6219 if (props != NULL) {
6220 spa_configfile_set(newspa, props, B_FALSE);
6221 error = spa_prop_set(newspa, props);
6222 if (error)
6223 goto out;
6224 }
6225
6226 /* flush everything */
6227 txg = spa_vdev_config_enter(newspa);
6228 vdev_config_dirty(newspa->spa_root_vdev);
6229 (void) spa_vdev_config_exit(newspa, NULL, txg, 0, FTAG);
6230
6231 if (zio_injection_enabled)
6232 zio_handle_panic_injection(spa, FTAG, 2);
6233
6234 spa_async_resume(newspa);
6235
6236 /* finally, update the original pool's config */
6237 txg = spa_vdev_config_enter(spa);
6238 tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
6239 error = dmu_tx_assign(tx, TXG_WAIT);
6240 if (error != 0)
6241 dmu_tx_abort(tx);
6242 for (c = 0; c < children; c++) {
6243 if (vml[c] != NULL) {
6244 vdev_split(vml[c]);
6245 if (error == 0)
6246 spa_history_log_internal(spa, "detach", tx,
6247 "vdev=%s", vml[c]->vdev_path);
6248
6249 vdev_free(vml[c]);
6250 }
6251 }
6252 spa->spa_avz_action = AVZ_ACTION_REBUILD;
6253 vdev_config_dirty(spa->spa_root_vdev);
6254 spa->spa_config_splitting = NULL;
6255 nvlist_free(nvl);
6256 if (error == 0)
6257 dmu_tx_commit(tx);
6258 (void) spa_vdev_exit(spa, NULL, txg, 0);
6259
6260 if (zio_injection_enabled)
6261 zio_handle_panic_injection(spa, FTAG, 3);
6262
6263 /* split is complete; log a history record */
6264 spa_history_log_internal(newspa, "split", NULL,
6265 "from pool %s", spa_name(spa));
6266
6267 kmem_free(vml, children * sizeof (vdev_t *));
6268
6269 /* if we're not going to mount the filesystems in userland, export */
6270 if (exp)
6271 error = spa_export_common(newname, POOL_STATE_EXPORTED, NULL,
6272 B_FALSE, B_FALSE);
6273
6274 return (error);
6275
6276 out:
6277 spa_unload(newspa);
6278 spa_deactivate(newspa);
6279 spa_remove(newspa);
6280
6281 txg = spa_vdev_config_enter(spa);
6282
6283 /* re-online all offlined disks */
6284 for (c = 0; c < children; c++) {
6285 if (vml[c] != NULL)
6286 vml[c]->vdev_offline = B_FALSE;
6287 }
6288 vdev_reopen(spa->spa_root_vdev);
6289
6290 nvlist_free(spa->spa_config_splitting);
6291 spa->spa_config_splitting = NULL;
6292 (void) spa_vdev_exit(spa, NULL, txg, error);
6293
6294 kmem_free(vml, children * sizeof (vdev_t *));
6295 return (error);
6296 }
6297
6298 /*
6299 * Find any device that's done replacing, or a vdev marked 'unspare' that's
6300 * currently spared, so we can detach it.
6301 */
6302 static vdev_t *
6303 spa_vdev_resilver_done_hunt(vdev_t *vd)
6304 {
6305 vdev_t *newvd, *oldvd;
6306
6307 for (int c = 0; c < vd->vdev_children; c++) {
6308 oldvd = spa_vdev_resilver_done_hunt(vd->vdev_child[c]);
6309 if (oldvd != NULL)
6310 return (oldvd);
6311 }
6312
6313 /*
6314 * Check for a completed replacement. We always consider the first
6315 * vdev in the list to be the oldest vdev, and the last one to be
6316 * the newest (see spa_vdev_attach() for how that works). In
6317 * the case where the newest vdev is faulted, we will not automatically
6318 * remove it after a resilver completes. This is OK as it will require
6319 * user intervention to determine which disk the admin wishes to keep.
6320 */
6321 if (vd->vdev_ops == &vdev_replacing_ops) {
6322 ASSERT(vd->vdev_children > 1);
6323
6324 newvd = vd->vdev_child[vd->vdev_children - 1];
6325 oldvd = vd->vdev_child[0];
6326
6327 if (vdev_dtl_empty(newvd, DTL_MISSING) &&
6328 vdev_dtl_empty(newvd, DTL_OUTAGE) &&
6329 !vdev_dtl_required(oldvd))
6330 return (oldvd);
6331 }
6332
6333 /*
6334 * Check for a completed resilver with the 'unspare' flag set.
6335 */
6336 if (vd->vdev_ops == &vdev_spare_ops) {
6337 vdev_t *first = vd->vdev_child[0];
6338 vdev_t *last = vd->vdev_child[vd->vdev_children - 1];
6339
6340 if (last->vdev_unspare) {
6341 oldvd = first;
6342 newvd = last;
6343 } else if (first->vdev_unspare) {
6344 oldvd = last;
6345 newvd = first;
6346 } else {
6347 oldvd = NULL;
6348 }
6349
6350 if (oldvd != NULL &&
6351 vdev_dtl_empty(newvd, DTL_MISSING) &&
6352 vdev_dtl_empty(newvd, DTL_OUTAGE) &&
6353 !vdev_dtl_required(oldvd))
6354 return (oldvd);
6355
6356 /*
6357 * If there are more than two spares attached to a disk,
6358 * and those spares are not required, then we want to
6359 * attempt to free them up now so that they can be used
6360 * by other pools. Once we're back down to a single
6361 * disk+spare, we stop removing them.
6362 */
6363 if (vd->vdev_children > 2) {
6364 newvd = vd->vdev_child[1];
6365
6366 if (newvd->vdev_isspare && last->vdev_isspare &&
6367 vdev_dtl_empty(last, DTL_MISSING) &&
6368 vdev_dtl_empty(last, DTL_OUTAGE) &&
6369 !vdev_dtl_required(newvd))
6370 return (newvd);
6371 }
6372 }
6373
6374 return (NULL);
6375 }
6376
6377 static void
6378 spa_vdev_resilver_done(spa_t *spa)
6379 {
6380 vdev_t *vd, *pvd, *ppvd;
6381 uint64_t guid, sguid, pguid, ppguid;
6382
6383 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
6384
6385 while ((vd = spa_vdev_resilver_done_hunt(spa->spa_root_vdev)) != NULL) {
6386 pvd = vd->vdev_parent;
6387 ppvd = pvd->vdev_parent;
6388 guid = vd->vdev_guid;
6389 pguid = pvd->vdev_guid;
6390 ppguid = ppvd->vdev_guid;
6391 sguid = 0;
6392 /*
6393 * If we have just finished replacing a hot spared device, then
6394 * we need to detach the parent's first child (the original hot
6395 * spare) as well.
6396 */
6397 if (ppvd->vdev_ops == &vdev_spare_ops && pvd->vdev_id == 0 &&
6398 ppvd->vdev_children == 2) {
6399 ASSERT(pvd->vdev_ops == &vdev_replacing_ops);
6400 sguid = ppvd->vdev_child[1]->vdev_guid;
6401 }
6402 ASSERT(vd->vdev_resilver_txg == 0 || !vdev_dtl_required(vd));
6403
6404 spa_config_exit(spa, SCL_ALL, FTAG);
6405 if (spa_vdev_detach(spa, guid, pguid, B_TRUE) != 0)
6406 return;
6407 if (sguid && spa_vdev_detach(spa, sguid, ppguid, B_TRUE) != 0)
6408 return;
6409 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
6410 }
6411
6412 spa_config_exit(spa, SCL_ALL, FTAG);
6413 }
6414
6415 /*
6416 * Update the stored path or FRU for this vdev.
6417 */
6418 int
6419 spa_vdev_set_common(spa_t *spa, uint64_t guid, const char *value,
6420 boolean_t ispath)
6421 {
6422 vdev_t *vd;
6423 boolean_t sync = B_FALSE;
6424
6425 ASSERT(spa_writeable(spa));
6426
6427 spa_vdev_state_enter(spa, SCL_ALL);
6428
6429 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
6430 return (spa_vdev_state_exit(spa, NULL, ENOENT));
6431
6432 if (!vd->vdev_ops->vdev_op_leaf)
6433 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
6434
6435 if (ispath) {
6436 if (strcmp(value, vd->vdev_path) != 0) {
6437 spa_strfree(vd->vdev_path);
6438 vd->vdev_path = spa_strdup(value);
6439 sync = B_TRUE;
6440 }
6441 } else {
6442 if (vd->vdev_fru == NULL) {
6443 vd->vdev_fru = spa_strdup(value);
6444 sync = B_TRUE;
6445 } else if (strcmp(value, vd->vdev_fru) != 0) {
6446 spa_strfree(vd->vdev_fru);
6447 vd->vdev_fru = spa_strdup(value);
6448 sync = B_TRUE;
6449 }
6450 }
6451
6452 return (spa_vdev_state_exit(spa, sync ? vd : NULL, 0));
6453 }
6454
6455 int
6456 spa_vdev_setpath(spa_t *spa, uint64_t guid, const char *newpath)
6457 {
6458 return (spa_vdev_set_common(spa, guid, newpath, B_TRUE));
6459 }
6460
6461 int
6462 spa_vdev_setfru(spa_t *spa, uint64_t guid, const char *newfru)
6463 {
6464 return (spa_vdev_set_common(spa, guid, newfru, B_FALSE));
6465 }
6466
6467 /*
6468 * ==========================================================================
6469 * SPA Scanning
6470 * ==========================================================================
6471 */
6472 int
6473 spa_scrub_pause_resume(spa_t *spa, pool_scrub_cmd_t cmd)
6474 {
6475 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
6476
6477 if (dsl_scan_resilvering(spa->spa_dsl_pool))
6478 return (SET_ERROR(EBUSY));
6479
6480 return (dsl_scrub_set_pause_resume(spa->spa_dsl_pool, cmd));
6481 }
6482
6483 int
6484 spa_scan_stop(spa_t *spa)
6485 {
6486 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
6487 if (dsl_scan_resilvering(spa->spa_dsl_pool))
6488 return (SET_ERROR(EBUSY));
6489 return (dsl_scan_cancel(spa->spa_dsl_pool));
6490 }
6491
6492 int
6493 spa_scan(spa_t *spa, pool_scan_func_t func)
6494 {
6495 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
6496
6497 if (func >= POOL_SCAN_FUNCS || func == POOL_SCAN_NONE)
6498 return (SET_ERROR(ENOTSUP));
6499
6500 /*
6501 * If a resilver was requested, but there is no DTL on a
6502 * writeable leaf device, we have nothing to do.
6503 */
6504 if (func == POOL_SCAN_RESILVER &&
6505 !vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL)) {
6506 spa_async_request(spa, SPA_ASYNC_RESILVER_DONE);
6507 return (0);
6508 }
6509
6510 return (dsl_scan(spa->spa_dsl_pool, func));
6511 }
6512
6513 /*
6514 * ==========================================================================
6515 * SPA async task processing
6516 * ==========================================================================
6517 */
6518
6519 static void
6520 spa_async_remove(spa_t *spa, vdev_t *vd)
6521 {
6522 if (vd->vdev_remove_wanted) {
6523 vd->vdev_remove_wanted = B_FALSE;
6524 vd->vdev_delayed_close = B_FALSE;
6525 vdev_set_state(vd, B_FALSE, VDEV_STATE_REMOVED, VDEV_AUX_NONE);
6526
6527 /*
6528 * We want to clear the stats, but we don't want to do a full
6529 * vdev_clear() as that will cause us to throw away
6530 * degraded/faulted state as well as attempt to reopen the
6531 * device, all of which is a waste.
6532 */
6533 vd->vdev_stat.vs_read_errors = 0;
6534 vd->vdev_stat.vs_write_errors = 0;
6535 vd->vdev_stat.vs_checksum_errors = 0;
6536
6537 vdev_state_dirty(vd->vdev_top);
6538 }
6539
6540 for (int c = 0; c < vd->vdev_children; c++)
6541 spa_async_remove(spa, vd->vdev_child[c]);
6542 }
6543
6544 static void
6545 spa_async_probe(spa_t *spa, vdev_t *vd)
6546 {
6547 if (vd->vdev_probe_wanted) {
6548 vd->vdev_probe_wanted = B_FALSE;
6549 vdev_reopen(vd); /* vdev_open() does the actual probe */
6550 }
6551
6552 for (int c = 0; c < vd->vdev_children; c++)
6553 spa_async_probe(spa, vd->vdev_child[c]);
6554 }
6555
6556 static void
6557 spa_async_autoexpand(spa_t *spa, vdev_t *vd)
6558 {
6559 if (!spa->spa_autoexpand)
6560 return;
6561
6562 for (int c = 0; c < vd->vdev_children; c++) {
6563 vdev_t *cvd = vd->vdev_child[c];
6564 spa_async_autoexpand(spa, cvd);
6565 }
6566
6567 if (!vd->vdev_ops->vdev_op_leaf || vd->vdev_physpath == NULL)
6568 return;
6569
6570 spa_event_notify(vd->vdev_spa, vd, NULL, ESC_ZFS_VDEV_AUTOEXPAND);
6571 }
6572
6573 static void
6574 spa_async_thread(void *arg)
6575 {
6576 spa_t *spa = (spa_t *)arg;
6577 int tasks;
6578
6579 ASSERT(spa->spa_sync_on);
6580
6581 mutex_enter(&spa->spa_async_lock);
6582 tasks = spa->spa_async_tasks;
6583 spa->spa_async_tasks = 0;
6584 mutex_exit(&spa->spa_async_lock);
6585
6586 /*
6587 * See if the config needs to be updated.
6588 */
6589 if (tasks & SPA_ASYNC_CONFIG_UPDATE) {
6590 uint64_t old_space, new_space;
6591
6592 mutex_enter(&spa_namespace_lock);
6593 old_space = metaslab_class_get_space(spa_normal_class(spa));
6594 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
6595 new_space = metaslab_class_get_space(spa_normal_class(spa));
6596 mutex_exit(&spa_namespace_lock);
6597
6598 /*
6599 * If the pool grew as a result of the config update,
6600 * then log an internal history event.
6601 */
6602 if (new_space != old_space) {
6603 spa_history_log_internal(spa, "vdev online", NULL,
6604 "pool '%s' size: %llu(+%llu)",
6605 spa_name(spa), new_space, new_space - old_space);
6606 }
6607 }
6608
6609 /*
6610 * See if any devices need to be marked REMOVED.
6611 */
6612 if (tasks & SPA_ASYNC_REMOVE) {
6613 spa_vdev_state_enter(spa, SCL_NONE);
6614 spa_async_remove(spa, spa->spa_root_vdev);
6615 for (int i = 0; i < spa->spa_l2cache.sav_count; i++)
6616 spa_async_remove(spa, spa->spa_l2cache.sav_vdevs[i]);
6617 for (int i = 0; i < spa->spa_spares.sav_count; i++)
6618 spa_async_remove(spa, spa->spa_spares.sav_vdevs[i]);
6619 (void) spa_vdev_state_exit(spa, NULL, 0);
6620 }
6621
6622 if ((tasks & SPA_ASYNC_AUTOEXPAND) && !spa_suspended(spa)) {
6623 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
6624 spa_async_autoexpand(spa, spa->spa_root_vdev);
6625 spa_config_exit(spa, SCL_CONFIG, FTAG);
6626 }
6627
6628 /*
6629 * See if any devices need to be probed.
6630 */
6631 if (tasks & SPA_ASYNC_PROBE) {
6632 spa_vdev_state_enter(spa, SCL_NONE);
6633 spa_async_probe(spa, spa->spa_root_vdev);
6634 (void) spa_vdev_state_exit(spa, NULL, 0);
6635 }
6636
6637 /*
6638 * If any devices are done replacing, detach them.
6639 */
6640 if (tasks & SPA_ASYNC_RESILVER_DONE)
6641 spa_vdev_resilver_done(spa);
6642
6643 /*
6644 * Kick off a resilver.
6645 */
6646 if (tasks & SPA_ASYNC_RESILVER)
6647 dsl_resilver_restart(spa->spa_dsl_pool, 0);
6648
6649 /*
6650 * Let the world know that we're done.
6651 */
6652 mutex_enter(&spa->spa_async_lock);
6653 spa->spa_async_thread = NULL;
6654 cv_broadcast(&spa->spa_async_cv);
6655 mutex_exit(&spa->spa_async_lock);
6656 thread_exit();
6657 }
6658
6659 void
6660 spa_async_suspend(spa_t *spa)
6661 {
6662 mutex_enter(&spa->spa_async_lock);
6663 spa->spa_async_suspended++;
6664 while (spa->spa_async_thread != NULL)
6665 cv_wait(&spa->spa_async_cv, &spa->spa_async_lock);
6666 mutex_exit(&spa->spa_async_lock);
6667
6668 spa_vdev_remove_suspend(spa);
6669
6670 zthr_t *condense_thread = spa->spa_condense_zthr;
6671 if (condense_thread != NULL && zthr_isrunning(condense_thread))
6672 VERIFY0(zthr_cancel(condense_thread));
6673 }
6674
6675 void
6676 spa_async_resume(spa_t *spa)
6677 {
6678 mutex_enter(&spa->spa_async_lock);
6679 ASSERT(spa->spa_async_suspended != 0);
6680 spa->spa_async_suspended--;
6681 mutex_exit(&spa->spa_async_lock);
6682 spa_restart_removal(spa);
6683
6684 zthr_t *condense_thread = spa->spa_condense_zthr;
6685 if (condense_thread != NULL && !zthr_isrunning(condense_thread))
6686 zthr_resume(condense_thread);
6687 }
6688
6689 static boolean_t
6690 spa_async_tasks_pending(spa_t *spa)
6691 {
6692 uint_t non_config_tasks;
6693 uint_t config_task;
6694 boolean_t config_task_suspended;
6695
6696 non_config_tasks = spa->spa_async_tasks & ~SPA_ASYNC_CONFIG_UPDATE;
6697 config_task = spa->spa_async_tasks & SPA_ASYNC_CONFIG_UPDATE;
6698 if (spa->spa_ccw_fail_time == 0) {
6699 config_task_suspended = B_FALSE;
6700 } else {
6701 config_task_suspended =
6702 (gethrtime() - spa->spa_ccw_fail_time) <
6703 ((hrtime_t)zfs_ccw_retry_interval * NANOSEC);
6704 }
6705
6706 return (non_config_tasks || (config_task && !config_task_suspended));
6707 }
6708
6709 static void
6710 spa_async_dispatch(spa_t *spa)
6711 {
6712 mutex_enter(&spa->spa_async_lock);
6713 if (spa_async_tasks_pending(spa) &&
6714 !spa->spa_async_suspended &&
6715 spa->spa_async_thread == NULL &&
6716 rootdir != NULL)
6717 spa->spa_async_thread = thread_create(NULL, 0,
6718 spa_async_thread, spa, 0, &p0, TS_RUN, maxclsyspri);
6719 mutex_exit(&spa->spa_async_lock);
6720 }
6721
6722 void
6723 spa_async_request(spa_t *spa, int task)
6724 {
6725 zfs_dbgmsg("spa=%s async request task=%u", spa->spa_name, task);
6726 mutex_enter(&spa->spa_async_lock);
6727 spa->spa_async_tasks |= task;
6728 mutex_exit(&spa->spa_async_lock);
6729 }
6730
6731 /*
6732 * ==========================================================================
6733 * SPA syncing routines
6734 * ==========================================================================
6735 */
6736
6737 static int
6738 bpobj_enqueue_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
6739 {
6740 bpobj_t *bpo = arg;
6741 bpobj_enqueue(bpo, bp, tx);
6742 return (0);
6743 }
6744
6745 static int
6746 spa_free_sync_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
6747 {
6748 zio_t *zio = arg;
6749
6750 zio_nowait(zio_free_sync(zio, zio->io_spa, dmu_tx_get_txg(tx), bp,
6751 zio->io_flags));
6752 return (0);
6753 }
6754
6755 /*
6756 * Note: this simple function is not inlined to make it easier to dtrace the
6757 * amount of time spent syncing frees.
6758 */
6759 static void
6760 spa_sync_frees(spa_t *spa, bplist_t *bpl, dmu_tx_t *tx)
6761 {
6762 zio_t *zio = zio_root(spa, NULL, NULL, 0);
6763 bplist_iterate(bpl, spa_free_sync_cb, zio, tx);
6764 VERIFY(zio_wait(zio) == 0);
6765 }
6766
6767 /*
6768 * Note: this simple function is not inlined to make it easier to dtrace the
6769 * amount of time spent syncing deferred frees.
6770 */
6771 static void
6772 spa_sync_deferred_frees(spa_t *spa, dmu_tx_t *tx)
6773 {
6774 zio_t *zio = zio_root(spa, NULL, NULL, 0);
6775 VERIFY3U(bpobj_iterate(&spa->spa_deferred_bpobj,
6776 spa_free_sync_cb, zio, tx), ==, 0);
6777 VERIFY0(zio_wait(zio));
6778 }
6779
6780 static void
6781 spa_sync_nvlist(spa_t *spa, uint64_t obj, nvlist_t *nv, dmu_tx_t *tx)
6782 {
6783 char *packed = NULL;
6784 size_t bufsize;
6785 size_t nvsize = 0;
6786 dmu_buf_t *db;
6787
6788 VERIFY(nvlist_size(nv, &nvsize, NV_ENCODE_XDR) == 0);
6789
6790 /*
6791 * Write full (SPA_CONFIG_BLOCKSIZE) blocks of configuration
6792 * information. This avoids the dmu_buf_will_dirty() path and
6793 * saves us a pre-read to get data we don't actually care about.
6794 */
6795 bufsize = P2ROUNDUP((uint64_t)nvsize, SPA_CONFIG_BLOCKSIZE);
6796 packed = vmem_alloc(bufsize, KM_SLEEP);
6797
6798 VERIFY(nvlist_pack(nv, &packed, &nvsize, NV_ENCODE_XDR,
6799 KM_SLEEP) == 0);
6800 bzero(packed + nvsize, bufsize - nvsize);
6801
6802 dmu_write(spa->spa_meta_objset, obj, 0, bufsize, packed, tx);
6803
6804 vmem_free(packed, bufsize);
6805
6806 VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db));
6807 dmu_buf_will_dirty(db, tx);
6808 *(uint64_t *)db->db_data = nvsize;
6809 dmu_buf_rele(db, FTAG);
6810 }
6811
6812 static void
6813 spa_sync_aux_dev(spa_t *spa, spa_aux_vdev_t *sav, dmu_tx_t *tx,
6814 const char *config, const char *entry)
6815 {
6816 nvlist_t *nvroot;
6817 nvlist_t **list;
6818 int i;
6819
6820 if (!sav->sav_sync)
6821 return;
6822
6823 /*
6824 * Update the MOS nvlist describing the list of available devices.
6825 * spa_validate_aux() will have already made sure this nvlist is
6826 * valid and the vdevs are labeled appropriately.
6827 */
6828 if (sav->sav_object == 0) {
6829 sav->sav_object = dmu_object_alloc(spa->spa_meta_objset,
6830 DMU_OT_PACKED_NVLIST, 1 << 14, DMU_OT_PACKED_NVLIST_SIZE,
6831 sizeof (uint64_t), tx);
6832 VERIFY(zap_update(spa->spa_meta_objset,
6833 DMU_POOL_DIRECTORY_OBJECT, entry, sizeof (uint64_t), 1,
6834 &sav->sav_object, tx) == 0);
6835 }
6836
6837 VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0);
6838 if (sav->sav_count == 0) {
6839 VERIFY(nvlist_add_nvlist_array(nvroot, config, NULL, 0) == 0);
6840 } else {
6841 list = kmem_alloc(sav->sav_count*sizeof (void *), KM_SLEEP);
6842 for (i = 0; i < sav->sav_count; i++)
6843 list[i] = vdev_config_generate(spa, sav->sav_vdevs[i],
6844 B_FALSE, VDEV_CONFIG_L2CACHE);
6845 VERIFY(nvlist_add_nvlist_array(nvroot, config, list,
6846 sav->sav_count) == 0);
6847 for (i = 0; i < sav->sav_count; i++)
6848 nvlist_free(list[i]);
6849 kmem_free(list, sav->sav_count * sizeof (void *));
6850 }
6851
6852 spa_sync_nvlist(spa, sav->sav_object, nvroot, tx);
6853 nvlist_free(nvroot);
6854
6855 sav->sav_sync = B_FALSE;
6856 }
6857
6858 /*
6859 * Rebuild spa's all-vdev ZAP from the vdev ZAPs indicated in each vdev_t.
6860 * The all-vdev ZAP must be empty.
6861 */
6862 static void
6863 spa_avz_build(vdev_t *vd, uint64_t avz, dmu_tx_t *tx)
6864 {
6865 spa_t *spa = vd->vdev_spa;
6866
6867 if (vd->vdev_top_zap != 0) {
6868 VERIFY0(zap_add_int(spa->spa_meta_objset, avz,
6869 vd->vdev_top_zap, tx));
6870 }
6871 if (vd->vdev_leaf_zap != 0) {
6872 VERIFY0(zap_add_int(spa->spa_meta_objset, avz,
6873 vd->vdev_leaf_zap, tx));
6874 }
6875 for (uint64_t i = 0; i < vd->vdev_children; i++) {
6876 spa_avz_build(vd->vdev_child[i], avz, tx);
6877 }
6878 }
6879
6880 static void
6881 spa_sync_config_object(spa_t *spa, dmu_tx_t *tx)
6882 {
6883 nvlist_t *config;
6884
6885 /*
6886 * If the pool is being imported from a pre-per-vdev-ZAP version of ZFS,
6887 * its config may not be dirty but we still need to build per-vdev ZAPs.
6888 * Similarly, if the pool is being assembled (e.g. after a split), we
6889 * need to rebuild the AVZ although the config may not be dirty.
6890 */
6891 if (list_is_empty(&spa->spa_config_dirty_list) &&
6892 spa->spa_avz_action == AVZ_ACTION_NONE)
6893 return;
6894
6895 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
6896
6897 ASSERT(spa->spa_avz_action == AVZ_ACTION_NONE ||
6898 spa->spa_avz_action == AVZ_ACTION_INITIALIZE ||
6899 spa->spa_all_vdev_zaps != 0);
6900
6901 if (spa->spa_avz_action == AVZ_ACTION_REBUILD) {
6902 /* Make and build the new AVZ */
6903 uint64_t new_avz = zap_create(spa->spa_meta_objset,
6904 DMU_OTN_ZAP_METADATA, DMU_OT_NONE, 0, tx);
6905 spa_avz_build(spa->spa_root_vdev, new_avz, tx);
6906
6907 /* Diff old AVZ with new one */
6908 zap_cursor_t zc;
6909 zap_attribute_t za;
6910
6911 for (zap_cursor_init(&zc, spa->spa_meta_objset,
6912 spa->spa_all_vdev_zaps);
6913 zap_cursor_retrieve(&zc, &za) == 0;
6914 zap_cursor_advance(&zc)) {
6915 uint64_t vdzap = za.za_first_integer;
6916 if (zap_lookup_int(spa->spa_meta_objset, new_avz,
6917 vdzap) == ENOENT) {
6918 /*
6919 * ZAP is listed in old AVZ but not in new one;
6920 * destroy it
6921 */
6922 VERIFY0(zap_destroy(spa->spa_meta_objset, vdzap,
6923 tx));
6924 }
6925 }
6926
6927 zap_cursor_fini(&zc);
6928
6929 /* Destroy the old AVZ */
6930 VERIFY0(zap_destroy(spa->spa_meta_objset,
6931 spa->spa_all_vdev_zaps, tx));
6932
6933 /* Replace the old AVZ in the dir obj with the new one */
6934 VERIFY0(zap_update(spa->spa_meta_objset,
6935 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_VDEV_ZAP_MAP,
6936 sizeof (new_avz), 1, &new_avz, tx));
6937
6938 spa->spa_all_vdev_zaps = new_avz;
6939 } else if (spa->spa_avz_action == AVZ_ACTION_DESTROY) {
6940 zap_cursor_t zc;
6941 zap_attribute_t za;
6942
6943 /* Walk through the AVZ and destroy all listed ZAPs */
6944 for (zap_cursor_init(&zc, spa->spa_meta_objset,
6945 spa->spa_all_vdev_zaps);
6946 zap_cursor_retrieve(&zc, &za) == 0;
6947 zap_cursor_advance(&zc)) {
6948 uint64_t zap = za.za_first_integer;
6949 VERIFY0(zap_destroy(spa->spa_meta_objset, zap, tx));
6950 }
6951
6952 zap_cursor_fini(&zc);
6953
6954 /* Destroy and unlink the AVZ itself */
6955 VERIFY0(zap_destroy(spa->spa_meta_objset,
6956 spa->spa_all_vdev_zaps, tx));
6957 VERIFY0(zap_remove(spa->spa_meta_objset,
6958 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_VDEV_ZAP_MAP, tx));
6959 spa->spa_all_vdev_zaps = 0;
6960 }
6961
6962 if (spa->spa_all_vdev_zaps == 0) {
6963 spa->spa_all_vdev_zaps = zap_create_link(spa->spa_meta_objset,
6964 DMU_OTN_ZAP_METADATA, DMU_POOL_DIRECTORY_OBJECT,
6965 DMU_POOL_VDEV_ZAP_MAP, tx);
6966 }
6967 spa->spa_avz_action = AVZ_ACTION_NONE;
6968
6969 /* Create ZAPs for vdevs that don't have them. */
6970 vdev_construct_zaps(spa->spa_root_vdev, tx);
6971
6972 config = spa_config_generate(spa, spa->spa_root_vdev,
6973 dmu_tx_get_txg(tx), B_FALSE);
6974
6975 /*
6976 * If we're upgrading the spa version then make sure that
6977 * the config object gets updated with the correct version.
6978 */
6979 if (spa->spa_ubsync.ub_version < spa->spa_uberblock.ub_version)
6980 fnvlist_add_uint64(config, ZPOOL_CONFIG_VERSION,
6981 spa->spa_uberblock.ub_version);
6982
6983 spa_config_exit(spa, SCL_STATE, FTAG);
6984
6985 nvlist_free(spa->spa_config_syncing);
6986 spa->spa_config_syncing = config;
6987
6988 spa_sync_nvlist(spa, spa->spa_config_object, config, tx);
6989 }
6990
6991 static void
6992 spa_sync_version(void *arg, dmu_tx_t *tx)
6993 {
6994 uint64_t *versionp = arg;
6995 uint64_t version = *versionp;
6996 spa_t *spa = dmu_tx_pool(tx)->dp_spa;
6997
6998 /*
6999 * Setting the version is special cased when first creating the pool.
7000 */
7001 ASSERT(tx->tx_txg != TXG_INITIAL);
7002
7003 ASSERT(SPA_VERSION_IS_SUPPORTED(version));
7004 ASSERT(version >= spa_version(spa));
7005
7006 spa->spa_uberblock.ub_version = version;
7007 vdev_config_dirty(spa->spa_root_vdev);
7008 spa_history_log_internal(spa, "set", tx, "version=%lld", version);
7009 }
7010
7011 /*
7012 * Set zpool properties.
7013 */
7014 static void
7015 spa_sync_props(void *arg, dmu_tx_t *tx)
7016 {
7017 nvlist_t *nvp = arg;
7018 spa_t *spa = dmu_tx_pool(tx)->dp_spa;
7019 objset_t *mos = spa->spa_meta_objset;
7020 nvpair_t *elem = NULL;
7021
7022 mutex_enter(&spa->spa_props_lock);
7023
7024 while ((elem = nvlist_next_nvpair(nvp, elem))) {
7025 uint64_t intval;
7026 char *strval, *fname;
7027 zpool_prop_t prop;
7028 const char *propname;
7029 zprop_type_t proptype;
7030 spa_feature_t fid;
7031
7032 switch (prop = zpool_name_to_prop(nvpair_name(elem))) {
7033 case ZPOOL_PROP_INVAL:
7034 /*
7035 * We checked this earlier in spa_prop_validate().
7036 */
7037 ASSERT(zpool_prop_feature(nvpair_name(elem)));
7038
7039 fname = strchr(nvpair_name(elem), '@') + 1;
7040 VERIFY0(zfeature_lookup_name(fname, &fid));
7041
7042 spa_feature_enable(spa, fid, tx);
7043 spa_history_log_internal(spa, "set", tx,
7044 "%s=enabled", nvpair_name(elem));
7045 break;
7046
7047 case ZPOOL_PROP_VERSION:
7048 intval = fnvpair_value_uint64(elem);
7049 /*
7050 * The version is synced separately before other
7051 * properties and should be correct by now.
7052 */
7053 ASSERT3U(spa_version(spa), >=, intval);
7054 break;
7055
7056 case ZPOOL_PROP_ALTROOT:
7057 /*
7058 * 'altroot' is a non-persistent property. It should
7059 * have been set temporarily at creation or import time.
7060 */
7061 ASSERT(spa->spa_root != NULL);
7062 break;
7063
7064 case ZPOOL_PROP_READONLY:
7065 case ZPOOL_PROP_CACHEFILE:
7066 /*
7067 * 'readonly' and 'cachefile' are also non-persisitent
7068 * properties.
7069 */
7070 break;
7071 case ZPOOL_PROP_COMMENT:
7072 strval = fnvpair_value_string(elem);
7073 if (spa->spa_comment != NULL)
7074 spa_strfree(spa->spa_comment);
7075 spa->spa_comment = spa_strdup(strval);
7076 /*
7077 * We need to dirty the configuration on all the vdevs
7078 * so that their labels get updated. It's unnecessary
7079 * to do this for pool creation since the vdev's
7080 * configuration has already been dirtied.
7081 */
7082 if (tx->tx_txg != TXG_INITIAL)
7083 vdev_config_dirty(spa->spa_root_vdev);
7084 spa_history_log_internal(spa, "set", tx,
7085 "%s=%s", nvpair_name(elem), strval);
7086 break;
7087 default:
7088 /*
7089 * Set pool property values in the poolprops mos object.
7090 */
7091 if (spa->spa_pool_props_object == 0) {
7092 spa->spa_pool_props_object =
7093 zap_create_link(mos, DMU_OT_POOL_PROPS,
7094 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_PROPS,
7095 tx);
7096 }
7097
7098 /* normalize the property name */
7099 propname = zpool_prop_to_name(prop);
7100 proptype = zpool_prop_get_type(prop);
7101
7102 if (nvpair_type(elem) == DATA_TYPE_STRING) {
7103 ASSERT(proptype == PROP_TYPE_STRING);
7104 strval = fnvpair_value_string(elem);
7105 VERIFY0(zap_update(mos,
7106 spa->spa_pool_props_object, propname,
7107 1, strlen(strval) + 1, strval, tx));
7108 spa_history_log_internal(spa, "set", tx,
7109 "%s=%s", nvpair_name(elem), strval);
7110 } else if (nvpair_type(elem) == DATA_TYPE_UINT64) {
7111 intval = fnvpair_value_uint64(elem);
7112
7113 if (proptype == PROP_TYPE_INDEX) {
7114 const char *unused;
7115 VERIFY0(zpool_prop_index_to_string(
7116 prop, intval, &unused));
7117 }
7118 VERIFY0(zap_update(mos,
7119 spa->spa_pool_props_object, propname,
7120 8, 1, &intval, tx));
7121 spa_history_log_internal(spa, "set", tx,
7122 "%s=%lld", nvpair_name(elem), intval);
7123 } else {
7124 ASSERT(0); /* not allowed */
7125 }
7126
7127 switch (prop) {
7128 case ZPOOL_PROP_DELEGATION:
7129 spa->spa_delegation = intval;
7130 break;
7131 case ZPOOL_PROP_BOOTFS:
7132 spa->spa_bootfs = intval;
7133 break;
7134 case ZPOOL_PROP_FAILUREMODE:
7135 spa->spa_failmode = intval;
7136 break;
7137 case ZPOOL_PROP_AUTOEXPAND:
7138 spa->spa_autoexpand = intval;
7139 if (tx->tx_txg != TXG_INITIAL)
7140 spa_async_request(spa,
7141 SPA_ASYNC_AUTOEXPAND);
7142 break;
7143 case ZPOOL_PROP_MULTIHOST:
7144 spa->spa_multihost = intval;
7145 break;
7146 case ZPOOL_PROP_DEDUPDITTO:
7147 spa->spa_dedup_ditto = intval;
7148 break;
7149 default:
7150 break;
7151 }
7152 }
7153
7154 }
7155
7156 mutex_exit(&spa->spa_props_lock);
7157 }
7158
7159 /*
7160 * Perform one-time upgrade on-disk changes. spa_version() does not
7161 * reflect the new version this txg, so there must be no changes this
7162 * txg to anything that the upgrade code depends on after it executes.
7163 * Therefore this must be called after dsl_pool_sync() does the sync
7164 * tasks.
7165 */
7166 static void
7167 spa_sync_upgrades(spa_t *spa, dmu_tx_t *tx)
7168 {
7169 dsl_pool_t *dp = spa->spa_dsl_pool;
7170
7171 ASSERT(spa->spa_sync_pass == 1);
7172
7173 rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG);
7174
7175 if (spa->spa_ubsync.ub_version < SPA_VERSION_ORIGIN &&
7176 spa->spa_uberblock.ub_version >= SPA_VERSION_ORIGIN) {
7177 dsl_pool_create_origin(dp, tx);
7178
7179 /* Keeping the origin open increases spa_minref */
7180 spa->spa_minref += 3;
7181 }
7182
7183 if (spa->spa_ubsync.ub_version < SPA_VERSION_NEXT_CLONES &&
7184 spa->spa_uberblock.ub_version >= SPA_VERSION_NEXT_CLONES) {
7185 dsl_pool_upgrade_clones(dp, tx);
7186 }
7187
7188 if (spa->spa_ubsync.ub_version < SPA_VERSION_DIR_CLONES &&
7189 spa->spa_uberblock.ub_version >= SPA_VERSION_DIR_CLONES) {
7190 dsl_pool_upgrade_dir_clones(dp, tx);
7191
7192 /* Keeping the freedir open increases spa_minref */
7193 spa->spa_minref += 3;
7194 }
7195
7196 if (spa->spa_ubsync.ub_version < SPA_VERSION_FEATURES &&
7197 spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) {
7198 spa_feature_create_zap_objects(spa, tx);
7199 }
7200
7201 /*
7202 * LZ4_COMPRESS feature's behaviour was changed to activate_on_enable
7203 * when possibility to use lz4 compression for metadata was added
7204 * Old pools that have this feature enabled must be upgraded to have
7205 * this feature active
7206 */
7207 if (spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) {
7208 boolean_t lz4_en = spa_feature_is_enabled(spa,
7209 SPA_FEATURE_LZ4_COMPRESS);
7210 boolean_t lz4_ac = spa_feature_is_active(spa,
7211 SPA_FEATURE_LZ4_COMPRESS);
7212
7213 if (lz4_en && !lz4_ac)
7214 spa_feature_incr(spa, SPA_FEATURE_LZ4_COMPRESS, tx);
7215 }
7216
7217 /*
7218 * If we haven't written the salt, do so now. Note that the
7219 * feature may not be activated yet, but that's fine since
7220 * the presence of this ZAP entry is backwards compatible.
7221 */
7222 if (zap_contains(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
7223 DMU_POOL_CHECKSUM_SALT) == ENOENT) {
7224 VERIFY0(zap_add(spa->spa_meta_objset,
7225 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CHECKSUM_SALT, 1,
7226 sizeof (spa->spa_cksum_salt.zcs_bytes),
7227 spa->spa_cksum_salt.zcs_bytes, tx));
7228 }
7229
7230 rrw_exit(&dp->dp_config_rwlock, FTAG);
7231 }
7232
7233 static void
7234 vdev_indirect_state_sync_verify(vdev_t *vd)
7235 {
7236 ASSERTV(vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping);
7237 ASSERTV(vdev_indirect_births_t *vib = vd->vdev_indirect_births);
7238
7239 if (vd->vdev_ops == &vdev_indirect_ops) {
7240 ASSERT(vim != NULL);
7241 ASSERT(vib != NULL);
7242 }
7243
7244 if (vdev_obsolete_sm_object(vd) != 0) {
7245 ASSERT(vd->vdev_obsolete_sm != NULL);
7246 ASSERT(vd->vdev_removing ||
7247 vd->vdev_ops == &vdev_indirect_ops);
7248 ASSERT(vdev_indirect_mapping_num_entries(vim) > 0);
7249 ASSERT(vdev_indirect_mapping_bytes_mapped(vim) > 0);
7250
7251 ASSERT3U(vdev_obsolete_sm_object(vd), ==,
7252 space_map_object(vd->vdev_obsolete_sm));
7253 ASSERT3U(vdev_indirect_mapping_bytes_mapped(vim), >=,
7254 space_map_allocated(vd->vdev_obsolete_sm));
7255 }
7256 ASSERT(vd->vdev_obsolete_segments != NULL);
7257
7258 /*
7259 * Since frees / remaps to an indirect vdev can only
7260 * happen in syncing context, the obsolete segments
7261 * tree must be empty when we start syncing.
7262 */
7263 ASSERT0(range_tree_space(vd->vdev_obsolete_segments));
7264 }
7265
7266 /*
7267 * Sync the specified transaction group. New blocks may be dirtied as
7268 * part of the process, so we iterate until it converges.
7269 */
7270 void
7271 spa_sync(spa_t *spa, uint64_t txg)
7272 {
7273 dsl_pool_t *dp = spa->spa_dsl_pool;
7274 objset_t *mos = spa->spa_meta_objset;
7275 bplist_t *free_bpl = &spa->spa_free_bplist[txg & TXG_MASK];
7276 vdev_t *rvd = spa->spa_root_vdev;
7277 vdev_t *vd;
7278 dmu_tx_t *tx;
7279 int error;
7280 uint32_t max_queue_depth = zfs_vdev_async_write_max_active *
7281 zfs_vdev_queue_depth_pct / 100;
7282
7283 VERIFY(spa_writeable(spa));
7284
7285 /*
7286 * Wait for i/os issued in open context that need to complete
7287 * before this txg syncs.
7288 */
7289 VERIFY0(zio_wait(spa->spa_txg_zio[txg & TXG_MASK]));
7290 spa->spa_txg_zio[txg & TXG_MASK] = zio_root(spa, NULL, NULL, 0);
7291
7292 /*
7293 * Lock out configuration changes.
7294 */
7295 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
7296
7297 spa->spa_syncing_txg = txg;
7298 spa->spa_sync_pass = 0;
7299
7300 mutex_enter(&spa->spa_alloc_lock);
7301 VERIFY0(avl_numnodes(&spa->spa_alloc_tree));
7302 mutex_exit(&spa->spa_alloc_lock);
7303
7304 /*
7305 * If there are any pending vdev state changes, convert them
7306 * into config changes that go out with this transaction group.
7307 */
7308 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
7309 while (list_head(&spa->spa_state_dirty_list) != NULL) {
7310 /*
7311 * We need the write lock here because, for aux vdevs,
7312 * calling vdev_config_dirty() modifies sav_config.
7313 * This is ugly and will become unnecessary when we
7314 * eliminate the aux vdev wart by integrating all vdevs
7315 * into the root vdev tree.
7316 */
7317 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
7318 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_WRITER);
7319 while ((vd = list_head(&spa->spa_state_dirty_list)) != NULL) {
7320 vdev_state_clean(vd);
7321 vdev_config_dirty(vd);
7322 }
7323 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
7324 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
7325 }
7326 spa_config_exit(spa, SCL_STATE, FTAG);
7327
7328 tx = dmu_tx_create_assigned(dp, txg);
7329
7330 spa->spa_sync_starttime = gethrtime();
7331 taskq_cancel_id(system_delay_taskq, spa->spa_deadman_tqid);
7332 spa->spa_deadman_tqid = taskq_dispatch_delay(system_delay_taskq,
7333 spa_deadman, spa, TQ_SLEEP, ddi_get_lbolt() +
7334 NSEC_TO_TICK(spa->spa_deadman_synctime));
7335
7336 /*
7337 * If we are upgrading to SPA_VERSION_RAIDZ_DEFLATE this txg,
7338 * set spa_deflate if we have no raid-z vdevs.
7339 */
7340 if (spa->spa_ubsync.ub_version < SPA_VERSION_RAIDZ_DEFLATE &&
7341 spa->spa_uberblock.ub_version >= SPA_VERSION_RAIDZ_DEFLATE) {
7342 int i;
7343
7344 for (i = 0; i < rvd->vdev_children; i++) {
7345 vd = rvd->vdev_child[i];
7346 if (vd->vdev_deflate_ratio != SPA_MINBLOCKSIZE)
7347 break;
7348 }
7349 if (i == rvd->vdev_children) {
7350 spa->spa_deflate = TRUE;
7351 VERIFY(0 == zap_add(spa->spa_meta_objset,
7352 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
7353 sizeof (uint64_t), 1, &spa->spa_deflate, tx));
7354 }
7355 }
7356
7357 /*
7358 * Set the top-level vdev's max queue depth. Evaluate each
7359 * top-level's async write queue depth in case it changed.
7360 * The max queue depth will not change in the middle of syncing
7361 * out this txg.
7362 */
7363 uint64_t queue_depth_total = 0;
7364 for (int c = 0; c < rvd->vdev_children; c++) {
7365 vdev_t *tvd = rvd->vdev_child[c];
7366 metaslab_group_t *mg = tvd->vdev_mg;
7367
7368 if (mg == NULL || mg->mg_class != spa_normal_class(spa) ||
7369 !metaslab_group_initialized(mg))
7370 continue;
7371
7372 /*
7373 * It is safe to do a lock-free check here because only async
7374 * allocations look at mg_max_alloc_queue_depth, and async
7375 * allocations all happen from spa_sync().
7376 */
7377 ASSERT0(refcount_count(&mg->mg_alloc_queue_depth));
7378 mg->mg_max_alloc_queue_depth = max_queue_depth;
7379 queue_depth_total += mg->mg_max_alloc_queue_depth;
7380 }
7381 metaslab_class_t *mc = spa_normal_class(spa);
7382 ASSERT0(refcount_count(&mc->mc_alloc_slots));
7383 mc->mc_alloc_max_slots = queue_depth_total;
7384 mc->mc_alloc_throttle_enabled = zio_dva_throttle_enabled;
7385
7386 ASSERT3U(mc->mc_alloc_max_slots, <=,
7387 max_queue_depth * rvd->vdev_children);
7388
7389 for (int c = 0; c < rvd->vdev_children; c++) {
7390 vdev_t *vd = rvd->vdev_child[c];
7391 vdev_indirect_state_sync_verify(vd);
7392
7393 if (vdev_indirect_should_condense(vd)) {
7394 spa_condense_indirect_start_sync(vd, tx);
7395 break;
7396 }
7397 }
7398
7399 /*
7400 * Iterate to convergence.
7401 */
7402 do {
7403 int pass = ++spa->spa_sync_pass;
7404
7405 spa_sync_config_object(spa, tx);
7406 spa_sync_aux_dev(spa, &spa->spa_spares, tx,
7407 ZPOOL_CONFIG_SPARES, DMU_POOL_SPARES);
7408 spa_sync_aux_dev(spa, &spa->spa_l2cache, tx,
7409 ZPOOL_CONFIG_L2CACHE, DMU_POOL_L2CACHE);
7410 spa_errlog_sync(spa, txg);
7411 dsl_pool_sync(dp, txg);
7412
7413 if (pass < zfs_sync_pass_deferred_free) {
7414 spa_sync_frees(spa, free_bpl, tx);
7415 } else {
7416 /*
7417 * We can not defer frees in pass 1, because
7418 * we sync the deferred frees later in pass 1.
7419 */
7420 ASSERT3U(pass, >, 1);
7421 bplist_iterate(free_bpl, bpobj_enqueue_cb,
7422 &spa->spa_deferred_bpobj, tx);
7423 }
7424
7425 ddt_sync(spa, txg);
7426 dsl_scan_sync(dp, tx);
7427
7428 if (spa->spa_vdev_removal != NULL)
7429 svr_sync(spa, tx);
7430
7431 while ((vd = txg_list_remove(&spa->spa_vdev_txg_list, txg))
7432 != NULL)
7433 vdev_sync(vd, txg);
7434
7435 if (pass == 1) {
7436 spa_sync_upgrades(spa, tx);
7437 ASSERT3U(txg, >=,
7438 spa->spa_uberblock.ub_rootbp.blk_birth);
7439 /*
7440 * Note: We need to check if the MOS is dirty
7441 * because we could have marked the MOS dirty
7442 * without updating the uberblock (e.g. if we
7443 * have sync tasks but no dirty user data). We
7444 * need to check the uberblock's rootbp because
7445 * it is updated if we have synced out dirty
7446 * data (though in this case the MOS will most
7447 * likely also be dirty due to second order
7448 * effects, we don't want to rely on that here).
7449 */
7450 if (spa->spa_uberblock.ub_rootbp.blk_birth < txg &&
7451 !dmu_objset_is_dirty(mos, txg)) {
7452 /*
7453 * Nothing changed on the first pass,
7454 * therefore this TXG is a no-op. Avoid
7455 * syncing deferred frees, so that we
7456 * can keep this TXG as a no-op.
7457 */
7458 ASSERT(txg_list_empty(&dp->dp_dirty_datasets,
7459 txg));
7460 ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg));
7461 ASSERT(txg_list_empty(&dp->dp_sync_tasks, txg));
7462 break;
7463 }
7464 spa_sync_deferred_frees(spa, tx);
7465 }
7466
7467 } while (dmu_objset_is_dirty(mos, txg));
7468
7469 #ifdef ZFS_DEBUG
7470 if (!list_is_empty(&spa->spa_config_dirty_list)) {
7471 /*
7472 * Make sure that the number of ZAPs for all the vdevs matches
7473 * the number of ZAPs in the per-vdev ZAP list. This only gets
7474 * called if the config is dirty; otherwise there may be
7475 * outstanding AVZ operations that weren't completed in
7476 * spa_sync_config_object.
7477 */
7478 uint64_t all_vdev_zap_entry_count;
7479 ASSERT0(zap_count(spa->spa_meta_objset,
7480 spa->spa_all_vdev_zaps, &all_vdev_zap_entry_count));
7481 ASSERT3U(vdev_count_verify_zaps(spa->spa_root_vdev), ==,
7482 all_vdev_zap_entry_count);
7483 }
7484 #endif
7485
7486 if (spa->spa_vdev_removal != NULL) {
7487 ASSERT0(spa->spa_vdev_removal->svr_bytes_done[txg & TXG_MASK]);
7488 }
7489
7490 /*
7491 * Rewrite the vdev configuration (which includes the uberblock)
7492 * to commit the transaction group.
7493 *
7494 * If there are no dirty vdevs, we sync the uberblock to a few
7495 * random top-level vdevs that are known to be visible in the
7496 * config cache (see spa_vdev_add() for a complete description).
7497 * If there *are* dirty vdevs, sync the uberblock to all vdevs.
7498 */
7499 for (;;) {
7500 /*
7501 * We hold SCL_STATE to prevent vdev open/close/etc.
7502 * while we're attempting to write the vdev labels.
7503 */
7504 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
7505
7506 if (list_is_empty(&spa->spa_config_dirty_list)) {
7507 vdev_t *svd[SPA_SYNC_MIN_VDEVS];
7508 int svdcount = 0;
7509 int children = rvd->vdev_children;
7510 int c0 = spa_get_random(children);
7511
7512 for (int c = 0; c < children; c++) {
7513 vd = rvd->vdev_child[(c0 + c) % children];
7514 if (vd->vdev_ms_array == 0 || vd->vdev_islog ||
7515 !vdev_is_concrete(vd))
7516 continue;
7517 svd[svdcount++] = vd;
7518 if (svdcount == SPA_SYNC_MIN_VDEVS)
7519 break;
7520 }
7521 error = vdev_config_sync(svd, svdcount, txg);
7522 } else {
7523 error = vdev_config_sync(rvd->vdev_child,
7524 rvd->vdev_children, txg);
7525 }
7526
7527 if (error == 0)
7528 spa->spa_last_synced_guid = rvd->vdev_guid;
7529
7530 spa_config_exit(spa, SCL_STATE, FTAG);
7531
7532 if (error == 0)
7533 break;
7534 zio_suspend(spa, NULL, ZIO_SUSPEND_IOERR);
7535 zio_resume_wait(spa);
7536 }
7537 dmu_tx_commit(tx);
7538
7539 taskq_cancel_id(system_delay_taskq, spa->spa_deadman_tqid);
7540 spa->spa_deadman_tqid = 0;
7541
7542 /*
7543 * Clear the dirty config list.
7544 */
7545 while ((vd = list_head(&spa->spa_config_dirty_list)) != NULL)
7546 vdev_config_clean(vd);
7547
7548 /*
7549 * Now that the new config has synced transactionally,
7550 * let it become visible to the config cache.
7551 */
7552 if (spa->spa_config_syncing != NULL) {
7553 spa_config_set(spa, spa->spa_config_syncing);
7554 spa->spa_config_txg = txg;
7555 spa->spa_config_syncing = NULL;
7556 }
7557
7558 dsl_pool_sync_done(dp, txg);
7559
7560 mutex_enter(&spa->spa_alloc_lock);
7561 VERIFY0(avl_numnodes(&spa->spa_alloc_tree));
7562 mutex_exit(&spa->spa_alloc_lock);
7563
7564 /*
7565 * Update usable space statistics.
7566 */
7567 while ((vd = txg_list_remove(&spa->spa_vdev_txg_list, TXG_CLEAN(txg))))
7568 vdev_sync_done(vd, txg);
7569
7570 spa_update_dspace(spa);
7571
7572 /*
7573 * It had better be the case that we didn't dirty anything
7574 * since vdev_config_sync().
7575 */
7576 ASSERT(txg_list_empty(&dp->dp_dirty_datasets, txg));
7577 ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg));
7578 ASSERT(txg_list_empty(&spa->spa_vdev_txg_list, txg));
7579
7580 spa->spa_sync_pass = 0;
7581
7582 /*
7583 * Update the last synced uberblock here. We want to do this at
7584 * the end of spa_sync() so that consumers of spa_last_synced_txg()
7585 * will be guaranteed that all the processing associated with
7586 * that txg has been completed.
7587 */
7588 spa->spa_ubsync = spa->spa_uberblock;
7589 spa_config_exit(spa, SCL_CONFIG, FTAG);
7590
7591 spa_handle_ignored_writes(spa);
7592
7593 /*
7594 * If any async tasks have been requested, kick them off.
7595 */
7596 spa_async_dispatch(spa);
7597 }
7598
7599 /*
7600 * Sync all pools. We don't want to hold the namespace lock across these
7601 * operations, so we take a reference on the spa_t and drop the lock during the
7602 * sync.
7603 */
7604 void
7605 spa_sync_allpools(void)
7606 {
7607 spa_t *spa = NULL;
7608 mutex_enter(&spa_namespace_lock);
7609 while ((spa = spa_next(spa)) != NULL) {
7610 if (spa_state(spa) != POOL_STATE_ACTIVE ||
7611 !spa_writeable(spa) || spa_suspended(spa))
7612 continue;
7613 spa_open_ref(spa, FTAG);
7614 mutex_exit(&spa_namespace_lock);
7615 txg_wait_synced(spa_get_dsl(spa), 0);
7616 mutex_enter(&spa_namespace_lock);
7617 spa_close(spa, FTAG);
7618 }
7619 mutex_exit(&spa_namespace_lock);
7620 }
7621
7622 /*
7623 * ==========================================================================
7624 * Miscellaneous routines
7625 * ==========================================================================
7626 */
7627
7628 /*
7629 * Remove all pools in the system.
7630 */
7631 void
7632 spa_evict_all(void)
7633 {
7634 spa_t *spa;
7635
7636 /*
7637 * Remove all cached state. All pools should be closed now,
7638 * so every spa in the AVL tree should be unreferenced.
7639 */
7640 mutex_enter(&spa_namespace_lock);
7641 while ((spa = spa_next(NULL)) != NULL) {
7642 /*
7643 * Stop async tasks. The async thread may need to detach
7644 * a device that's been replaced, which requires grabbing
7645 * spa_namespace_lock, so we must drop it here.
7646 */
7647 spa_open_ref(spa, FTAG);
7648 mutex_exit(&spa_namespace_lock);
7649 spa_async_suspend(spa);
7650 mutex_enter(&spa_namespace_lock);
7651 spa_close(spa, FTAG);
7652
7653 if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
7654 spa_unload(spa);
7655 spa_deactivate(spa);
7656 }
7657 spa_remove(spa);
7658 }
7659 mutex_exit(&spa_namespace_lock);
7660 }
7661
7662 vdev_t *
7663 spa_lookup_by_guid(spa_t *spa, uint64_t guid, boolean_t aux)
7664 {
7665 vdev_t *vd;
7666 int i;
7667
7668 if ((vd = vdev_lookup_by_guid(spa->spa_root_vdev, guid)) != NULL)
7669 return (vd);
7670
7671 if (aux) {
7672 for (i = 0; i < spa->spa_l2cache.sav_count; i++) {
7673 vd = spa->spa_l2cache.sav_vdevs[i];
7674 if (vd->vdev_guid == guid)
7675 return (vd);
7676 }
7677
7678 for (i = 0; i < spa->spa_spares.sav_count; i++) {
7679 vd = spa->spa_spares.sav_vdevs[i];
7680 if (vd->vdev_guid == guid)
7681 return (vd);
7682 }
7683 }
7684
7685 return (NULL);
7686 }
7687
7688 void
7689 spa_upgrade(spa_t *spa, uint64_t version)
7690 {
7691 ASSERT(spa_writeable(spa));
7692
7693 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
7694
7695 /*
7696 * This should only be called for a non-faulted pool, and since a
7697 * future version would result in an unopenable pool, this shouldn't be
7698 * possible.
7699 */
7700 ASSERT(SPA_VERSION_IS_SUPPORTED(spa->spa_uberblock.ub_version));
7701 ASSERT3U(version, >=, spa->spa_uberblock.ub_version);
7702
7703 spa->spa_uberblock.ub_version = version;
7704 vdev_config_dirty(spa->spa_root_vdev);
7705
7706 spa_config_exit(spa, SCL_ALL, FTAG);
7707
7708 txg_wait_synced(spa_get_dsl(spa), 0);
7709 }
7710
7711 boolean_t
7712 spa_has_spare(spa_t *spa, uint64_t guid)
7713 {
7714 int i;
7715 uint64_t spareguid;
7716 spa_aux_vdev_t *sav = &spa->spa_spares;
7717
7718 for (i = 0; i < sav->sav_count; i++)
7719 if (sav->sav_vdevs[i]->vdev_guid == guid)
7720 return (B_TRUE);
7721
7722 for (i = 0; i < sav->sav_npending; i++) {
7723 if (nvlist_lookup_uint64(sav->sav_pending[i], ZPOOL_CONFIG_GUID,
7724 &spareguid) == 0 && spareguid == guid)
7725 return (B_TRUE);
7726 }
7727
7728 return (B_FALSE);
7729 }
7730
7731 /*
7732 * Check if a pool has an active shared spare device.
7733 * Note: reference count of an active spare is 2, as a spare and as a replace
7734 */
7735 static boolean_t
7736 spa_has_active_shared_spare(spa_t *spa)
7737 {
7738 int i, refcnt;
7739 uint64_t pool;
7740 spa_aux_vdev_t *sav = &spa->spa_spares;
7741
7742 for (i = 0; i < sav->sav_count; i++) {
7743 if (spa_spare_exists(sav->sav_vdevs[i]->vdev_guid, &pool,
7744 &refcnt) && pool != 0ULL && pool == spa_guid(spa) &&
7745 refcnt > 2)
7746 return (B_TRUE);
7747 }
7748
7749 return (B_FALSE);
7750 }
7751
7752 sysevent_t *
7753 spa_event_create(spa_t *spa, vdev_t *vd, nvlist_t *hist_nvl, const char *name)
7754 {
7755 sysevent_t *ev = NULL;
7756 #ifdef _KERNEL
7757 nvlist_t *resource;
7758
7759 resource = zfs_event_create(spa, vd, FM_SYSEVENT_CLASS, name, hist_nvl);
7760 if (resource) {
7761 ev = kmem_alloc(sizeof (sysevent_t), KM_SLEEP);
7762 ev->resource = resource;
7763 }
7764 #endif
7765 return (ev);
7766 }
7767
7768 void
7769 spa_event_post(sysevent_t *ev)
7770 {
7771 #ifdef _KERNEL
7772 if (ev) {
7773 zfs_zevent_post(ev->resource, NULL, zfs_zevent_post_cb);
7774 kmem_free(ev, sizeof (*ev));
7775 }
7776 #endif
7777 }
7778
7779 /*
7780 * Post a zevent corresponding to the given sysevent. The 'name' must be one
7781 * of the event definitions in sys/sysevent/eventdefs.h. The payload will be
7782 * filled in from the spa and (optionally) the vdev. This doesn't do anything
7783 * in the userland libzpool, as we don't want consumers to misinterpret ztest
7784 * or zdb as real changes.
7785 */
7786 void
7787 spa_event_notify(spa_t *spa, vdev_t *vd, nvlist_t *hist_nvl, const char *name)
7788 {
7789 spa_event_post(spa_event_create(spa, vd, hist_nvl, name));
7790 }
7791
7792 #if defined(_KERNEL)
7793 /* state manipulation functions */
7794 EXPORT_SYMBOL(spa_open);
7795 EXPORT_SYMBOL(spa_open_rewind);
7796 EXPORT_SYMBOL(spa_get_stats);
7797 EXPORT_SYMBOL(spa_create);
7798 EXPORT_SYMBOL(spa_import);
7799 EXPORT_SYMBOL(spa_tryimport);
7800 EXPORT_SYMBOL(spa_destroy);
7801 EXPORT_SYMBOL(spa_export);
7802 EXPORT_SYMBOL(spa_reset);
7803 EXPORT_SYMBOL(spa_async_request);
7804 EXPORT_SYMBOL(spa_async_suspend);
7805 EXPORT_SYMBOL(spa_async_resume);
7806 EXPORT_SYMBOL(spa_inject_addref);
7807 EXPORT_SYMBOL(spa_inject_delref);
7808 EXPORT_SYMBOL(spa_scan_stat_init);
7809 EXPORT_SYMBOL(spa_scan_get_stats);
7810
7811 /* device maniion */
7812 EXPORT_SYMBOL(spa_vdev_add);
7813 EXPORT_SYMBOL(spa_vdev_attach);
7814 EXPORT_SYMBOL(spa_vdev_detach);
7815 EXPORT_SYMBOL(spa_vdev_setpath);
7816 EXPORT_SYMBOL(spa_vdev_setfru);
7817 EXPORT_SYMBOL(spa_vdev_split_mirror);
7818
7819 /* spare statech is global across all pools) */
7820 EXPORT_SYMBOL(spa_spare_add);
7821 EXPORT_SYMBOL(spa_spare_remove);
7822 EXPORT_SYMBOL(spa_spare_exists);
7823 EXPORT_SYMBOL(spa_spare_activate);
7824
7825 /* L2ARC statech is global across all pools) */
7826 EXPORT_SYMBOL(spa_l2cache_add);
7827 EXPORT_SYMBOL(spa_l2cache_remove);
7828 EXPORT_SYMBOL(spa_l2cache_exists);
7829 EXPORT_SYMBOL(spa_l2cache_activate);
7830 EXPORT_SYMBOL(spa_l2cache_drop);
7831
7832 /* scanning */
7833 EXPORT_SYMBOL(spa_scan);
7834 EXPORT_SYMBOL(spa_scan_stop);
7835
7836 /* spa syncing */
7837 EXPORT_SYMBOL(spa_sync); /* only for DMU use */
7838 EXPORT_SYMBOL(spa_sync_allpools);
7839
7840 /* properties */
7841 EXPORT_SYMBOL(spa_prop_set);
7842 EXPORT_SYMBOL(spa_prop_get);
7843 EXPORT_SYMBOL(spa_prop_clear_bootfs);
7844
7845 /* asynchronous event notification */
7846 EXPORT_SYMBOL(spa_event_notify);
7847 #endif
7848
7849 #if defined(_KERNEL)
7850 module_param(spa_load_verify_maxinflight, int, 0644);
7851 MODULE_PARM_DESC(spa_load_verify_maxinflight,
7852 "Max concurrent traversal I/Os while verifying pool during import -X");
7853
7854 module_param(spa_load_verify_metadata, int, 0644);
7855 MODULE_PARM_DESC(spa_load_verify_metadata,
7856 "Set to traverse metadata on pool import");
7857
7858 module_param(spa_load_verify_data, int, 0644);
7859 MODULE_PARM_DESC(spa_load_verify_data,
7860 "Set to traverse data on pool import");
7861
7862 module_param(spa_load_print_vdev_tree, int, 0644);
7863 MODULE_PARM_DESC(spa_load_print_vdev_tree,
7864 "Print vdev tree to zfs_dbgmsg during pool import");
7865
7866 /* CSTYLED */
7867 module_param(zio_taskq_batch_pct, uint, 0444);
7868 MODULE_PARM_DESC(zio_taskq_batch_pct,
7869 "Percentage of CPUs to run an IO worker thread");
7870
7871 /* BEGIN CSTYLED */
7872 module_param(zfs_max_missing_tvds, ulong, 0644);
7873 MODULE_PARM_DESC(zfs_max_missing_tvds,
7874 "Allow importing pool with up to this number of missing top-level vdevs"
7875 " (in read-only mode)");
7876 /* END CSTYLED */
7877
7878 #endif