]> git.proxmox.com Git - mirror_zfs.git/blob - module/zfs/spa.c
Illumos 6414 - vdev_config_sync could be simpler
[mirror_zfs.git] / module / zfs / spa.c
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22 /*
23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright (c) 2013 by Delphix. All rights reserved.
25 * Copyright (c) 2013, 2014, Nexenta Systems, Inc. All rights reserved.
26 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
27 */
28
29 /*
30 * SPA: Storage Pool Allocator
31 *
32 * This file contains all the routines used when modifying on-disk SPA state.
33 * This includes opening, importing, destroying, exporting a pool, and syncing a
34 * pool.
35 */
36
37 #include <sys/zfs_context.h>
38 #include <sys/fm/fs/zfs.h>
39 #include <sys/spa_impl.h>
40 #include <sys/zio.h>
41 #include <sys/zio_checksum.h>
42 #include <sys/dmu.h>
43 #include <sys/dmu_tx.h>
44 #include <sys/zap.h>
45 #include <sys/zil.h>
46 #include <sys/ddt.h>
47 #include <sys/vdev_impl.h>
48 #include <sys/vdev_disk.h>
49 #include <sys/metaslab.h>
50 #include <sys/metaslab_impl.h>
51 #include <sys/uberblock_impl.h>
52 #include <sys/txg.h>
53 #include <sys/avl.h>
54 #include <sys/dmu_traverse.h>
55 #include <sys/dmu_objset.h>
56 #include <sys/unique.h>
57 #include <sys/dsl_pool.h>
58 #include <sys/dsl_dataset.h>
59 #include <sys/dsl_dir.h>
60 #include <sys/dsl_prop.h>
61 #include <sys/dsl_synctask.h>
62 #include <sys/fs/zfs.h>
63 #include <sys/arc.h>
64 #include <sys/callb.h>
65 #include <sys/systeminfo.h>
66 #include <sys/spa_boot.h>
67 #include <sys/zfs_ioctl.h>
68 #include <sys/dsl_scan.h>
69 #include <sys/zfeature.h>
70 #include <sys/dsl_destroy.h>
71 #include <sys/zvol.h>
72
73 #ifdef _KERNEL
74 #include <sys/bootprops.h>
75 #include <sys/callb.h>
76 #include <sys/cpupart.h>
77 #include <sys/pool.h>
78 #include <sys/sysdc.h>
79 #include <sys/zone.h>
80 #endif /* _KERNEL */
81
82 #include "zfs_prop.h"
83 #include "zfs_comutil.h"
84
85 /*
86 * The interval, in seconds, at which failed configuration cache file writes
87 * should be retried.
88 */
89 static int zfs_ccw_retry_interval = 300;
90
91 typedef enum zti_modes {
92 ZTI_MODE_FIXED, /* value is # of threads (min 1) */
93 ZTI_MODE_BATCH, /* cpu-intensive; value is ignored */
94 ZTI_MODE_NULL, /* don't create a taskq */
95 ZTI_NMODES
96 } zti_modes_t;
97
98 #define ZTI_P(n, q) { ZTI_MODE_FIXED, (n), (q) }
99 #define ZTI_PCT(n) { ZTI_MODE_ONLINE_PERCENT, (n), 1 }
100 #define ZTI_BATCH { ZTI_MODE_BATCH, 0, 1 }
101 #define ZTI_NULL { ZTI_MODE_NULL, 0, 0 }
102
103 #define ZTI_N(n) ZTI_P(n, 1)
104 #define ZTI_ONE ZTI_N(1)
105
106 typedef struct zio_taskq_info {
107 zti_modes_t zti_mode;
108 uint_t zti_value;
109 uint_t zti_count;
110 } zio_taskq_info_t;
111
112 static const char *const zio_taskq_types[ZIO_TASKQ_TYPES] = {
113 "iss", "iss_h", "int", "int_h"
114 };
115
116 /*
117 * This table defines the taskq settings for each ZFS I/O type. When
118 * initializing a pool, we use this table to create an appropriately sized
119 * taskq. Some operations are low volume and therefore have a small, static
120 * number of threads assigned to their taskqs using the ZTI_N(#) or ZTI_ONE
121 * macros. Other operations process a large amount of data; the ZTI_BATCH
122 * macro causes us to create a taskq oriented for throughput. Some operations
123 * are so high frequency and short-lived that the taskq itself can become a a
124 * point of lock contention. The ZTI_P(#, #) macro indicates that we need an
125 * additional degree of parallelism specified by the number of threads per-
126 * taskq and the number of taskqs; when dispatching an event in this case, the
127 * particular taskq is chosen at random.
128 *
129 * The different taskq priorities are to handle the different contexts (issue
130 * and interrupt) and then to reserve threads for ZIO_PRIORITY_NOW I/Os that
131 * need to be handled with minimum delay.
132 */
133 const zio_taskq_info_t zio_taskqs[ZIO_TYPES][ZIO_TASKQ_TYPES] = {
134 /* ISSUE ISSUE_HIGH INTR INTR_HIGH */
135 { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* NULL */
136 { ZTI_N(8), ZTI_NULL, ZTI_P(12, 8), ZTI_NULL }, /* READ */
137 { ZTI_BATCH, ZTI_N(5), ZTI_P(12, 8), ZTI_N(5) }, /* WRITE */
138 { ZTI_P(12, 8), ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* FREE */
139 { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* CLAIM */
140 { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* IOCTL */
141 };
142
143 static void spa_sync_version(void *arg, dmu_tx_t *tx);
144 static void spa_sync_props(void *arg, dmu_tx_t *tx);
145 static boolean_t spa_has_active_shared_spare(spa_t *spa);
146 static inline int spa_load_impl(spa_t *spa, uint64_t, nvlist_t *config,
147 spa_load_state_t state, spa_import_type_t type, boolean_t mosconfig,
148 char **ereport);
149 static void spa_vdev_resilver_done(spa_t *spa);
150
151 uint_t zio_taskq_batch_pct = 75; /* 1 thread per cpu in pset */
152 id_t zio_taskq_psrset_bind = PS_NONE;
153 boolean_t zio_taskq_sysdc = B_TRUE; /* use SDC scheduling class */
154 uint_t zio_taskq_basedc = 80; /* base duty cycle */
155
156 boolean_t spa_create_process = B_TRUE; /* no process ==> no sysdc */
157
158 /*
159 * This (illegal) pool name is used when temporarily importing a spa_t in order
160 * to get the vdev stats associated with the imported devices.
161 */
162 #define TRYIMPORT_NAME "$import"
163
164 /*
165 * ==========================================================================
166 * SPA properties routines
167 * ==========================================================================
168 */
169
170 /*
171 * Add a (source=src, propname=propval) list to an nvlist.
172 */
173 static void
174 spa_prop_add_list(nvlist_t *nvl, zpool_prop_t prop, char *strval,
175 uint64_t intval, zprop_source_t src)
176 {
177 const char *propname = zpool_prop_to_name(prop);
178 nvlist_t *propval;
179
180 VERIFY(nvlist_alloc(&propval, NV_UNIQUE_NAME, KM_SLEEP) == 0);
181 VERIFY(nvlist_add_uint64(propval, ZPROP_SOURCE, src) == 0);
182
183 if (strval != NULL)
184 VERIFY(nvlist_add_string(propval, ZPROP_VALUE, strval) == 0);
185 else
186 VERIFY(nvlist_add_uint64(propval, ZPROP_VALUE, intval) == 0);
187
188 VERIFY(nvlist_add_nvlist(nvl, propname, propval) == 0);
189 nvlist_free(propval);
190 }
191
192 /*
193 * Get property values from the spa configuration.
194 */
195 static void
196 spa_prop_get_config(spa_t *spa, nvlist_t **nvp)
197 {
198 vdev_t *rvd = spa->spa_root_vdev;
199 dsl_pool_t *pool = spa->spa_dsl_pool;
200 uint64_t size, alloc, cap, version;
201 zprop_source_t src = ZPROP_SRC_NONE;
202 spa_config_dirent_t *dp;
203 metaslab_class_t *mc = spa_normal_class(spa);
204
205 ASSERT(MUTEX_HELD(&spa->spa_props_lock));
206
207 if (rvd != NULL) {
208 alloc = metaslab_class_get_alloc(spa_normal_class(spa));
209 size = metaslab_class_get_space(spa_normal_class(spa));
210 spa_prop_add_list(*nvp, ZPOOL_PROP_NAME, spa_name(spa), 0, src);
211 spa_prop_add_list(*nvp, ZPOOL_PROP_SIZE, NULL, size, src);
212 spa_prop_add_list(*nvp, ZPOOL_PROP_ALLOCATED, NULL, alloc, src);
213 spa_prop_add_list(*nvp, ZPOOL_PROP_FREE, NULL,
214 size - alloc, src);
215
216 spa_prop_add_list(*nvp, ZPOOL_PROP_FRAGMENTATION, NULL,
217 metaslab_class_fragmentation(mc), src);
218 spa_prop_add_list(*nvp, ZPOOL_PROP_EXPANDSZ, NULL,
219 metaslab_class_expandable_space(mc), src);
220 spa_prop_add_list(*nvp, ZPOOL_PROP_READONLY, NULL,
221 (spa_mode(spa) == FREAD), src);
222
223 cap = (size == 0) ? 0 : (alloc * 100 / size);
224 spa_prop_add_list(*nvp, ZPOOL_PROP_CAPACITY, NULL, cap, src);
225
226 spa_prop_add_list(*nvp, ZPOOL_PROP_DEDUPRATIO, NULL,
227 ddt_get_pool_dedup_ratio(spa), src);
228
229 spa_prop_add_list(*nvp, ZPOOL_PROP_HEALTH, NULL,
230 rvd->vdev_state, src);
231
232 version = spa_version(spa);
233 if (version == zpool_prop_default_numeric(ZPOOL_PROP_VERSION))
234 src = ZPROP_SRC_DEFAULT;
235 else
236 src = ZPROP_SRC_LOCAL;
237 spa_prop_add_list(*nvp, ZPOOL_PROP_VERSION, NULL, version, src);
238 }
239
240 if (pool != NULL) {
241 /*
242 * The $FREE directory was introduced in SPA_VERSION_DEADLISTS,
243 * when opening pools before this version freedir will be NULL.
244 */
245 if (pool->dp_free_dir != NULL) {
246 spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING, NULL,
247 dsl_dir_phys(pool->dp_free_dir)->dd_used_bytes,
248 src);
249 } else {
250 spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING,
251 NULL, 0, src);
252 }
253
254 if (pool->dp_leak_dir != NULL) {
255 spa_prop_add_list(*nvp, ZPOOL_PROP_LEAKED, NULL,
256 dsl_dir_phys(pool->dp_leak_dir)->dd_used_bytes,
257 src);
258 } else {
259 spa_prop_add_list(*nvp, ZPOOL_PROP_LEAKED,
260 NULL, 0, src);
261 }
262 }
263
264 spa_prop_add_list(*nvp, ZPOOL_PROP_GUID, NULL, spa_guid(spa), src);
265
266 if (spa->spa_comment != NULL) {
267 spa_prop_add_list(*nvp, ZPOOL_PROP_COMMENT, spa->spa_comment,
268 0, ZPROP_SRC_LOCAL);
269 }
270
271 if (spa->spa_root != NULL)
272 spa_prop_add_list(*nvp, ZPOOL_PROP_ALTROOT, spa->spa_root,
273 0, ZPROP_SRC_LOCAL);
274
275 if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_BLOCKS)) {
276 spa_prop_add_list(*nvp, ZPOOL_PROP_MAXBLOCKSIZE, NULL,
277 MIN(zfs_max_recordsize, SPA_MAXBLOCKSIZE), ZPROP_SRC_NONE);
278 } else {
279 spa_prop_add_list(*nvp, ZPOOL_PROP_MAXBLOCKSIZE, NULL,
280 SPA_OLD_MAXBLOCKSIZE, ZPROP_SRC_NONE);
281 }
282
283 if ((dp = list_head(&spa->spa_config_list)) != NULL) {
284 if (dp->scd_path == NULL) {
285 spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
286 "none", 0, ZPROP_SRC_LOCAL);
287 } else if (strcmp(dp->scd_path, spa_config_path) != 0) {
288 spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
289 dp->scd_path, 0, ZPROP_SRC_LOCAL);
290 }
291 }
292 }
293
294 /*
295 * Get zpool property values.
296 */
297 int
298 spa_prop_get(spa_t *spa, nvlist_t **nvp)
299 {
300 objset_t *mos = spa->spa_meta_objset;
301 zap_cursor_t zc;
302 zap_attribute_t za;
303 int err;
304
305 err = nvlist_alloc(nvp, NV_UNIQUE_NAME, KM_SLEEP);
306 if (err)
307 return (err);
308
309 mutex_enter(&spa->spa_props_lock);
310
311 /*
312 * Get properties from the spa config.
313 */
314 spa_prop_get_config(spa, nvp);
315
316 /* If no pool property object, no more prop to get. */
317 if (mos == NULL || spa->spa_pool_props_object == 0) {
318 mutex_exit(&spa->spa_props_lock);
319 goto out;
320 }
321
322 /*
323 * Get properties from the MOS pool property object.
324 */
325 for (zap_cursor_init(&zc, mos, spa->spa_pool_props_object);
326 (err = zap_cursor_retrieve(&zc, &za)) == 0;
327 zap_cursor_advance(&zc)) {
328 uint64_t intval = 0;
329 char *strval = NULL;
330 zprop_source_t src = ZPROP_SRC_DEFAULT;
331 zpool_prop_t prop;
332
333 if ((prop = zpool_name_to_prop(za.za_name)) == ZPROP_INVAL)
334 continue;
335
336 switch (za.za_integer_length) {
337 case 8:
338 /* integer property */
339 if (za.za_first_integer !=
340 zpool_prop_default_numeric(prop))
341 src = ZPROP_SRC_LOCAL;
342
343 if (prop == ZPOOL_PROP_BOOTFS) {
344 dsl_pool_t *dp;
345 dsl_dataset_t *ds = NULL;
346
347 dp = spa_get_dsl(spa);
348 dsl_pool_config_enter(dp, FTAG);
349 if ((err = dsl_dataset_hold_obj(dp,
350 za.za_first_integer, FTAG, &ds))) {
351 dsl_pool_config_exit(dp, FTAG);
352 break;
353 }
354
355 strval = kmem_alloc(
356 MAXNAMELEN + strlen(MOS_DIR_NAME) + 1,
357 KM_SLEEP);
358 dsl_dataset_name(ds, strval);
359 dsl_dataset_rele(ds, FTAG);
360 dsl_pool_config_exit(dp, FTAG);
361 } else {
362 strval = NULL;
363 intval = za.za_first_integer;
364 }
365
366 spa_prop_add_list(*nvp, prop, strval, intval, src);
367
368 if (strval != NULL)
369 kmem_free(strval,
370 MAXNAMELEN + strlen(MOS_DIR_NAME) + 1);
371
372 break;
373
374 case 1:
375 /* string property */
376 strval = kmem_alloc(za.za_num_integers, KM_SLEEP);
377 err = zap_lookup(mos, spa->spa_pool_props_object,
378 za.za_name, 1, za.za_num_integers, strval);
379 if (err) {
380 kmem_free(strval, za.za_num_integers);
381 break;
382 }
383 spa_prop_add_list(*nvp, prop, strval, 0, src);
384 kmem_free(strval, za.za_num_integers);
385 break;
386
387 default:
388 break;
389 }
390 }
391 zap_cursor_fini(&zc);
392 mutex_exit(&spa->spa_props_lock);
393 out:
394 if (err && err != ENOENT) {
395 nvlist_free(*nvp);
396 *nvp = NULL;
397 return (err);
398 }
399
400 return (0);
401 }
402
403 /*
404 * Validate the given pool properties nvlist and modify the list
405 * for the property values to be set.
406 */
407 static int
408 spa_prop_validate(spa_t *spa, nvlist_t *props)
409 {
410 nvpair_t *elem;
411 int error = 0, reset_bootfs = 0;
412 uint64_t objnum = 0;
413 boolean_t has_feature = B_FALSE;
414
415 elem = NULL;
416 while ((elem = nvlist_next_nvpair(props, elem)) != NULL) {
417 uint64_t intval;
418 char *strval, *slash, *check, *fname;
419 const char *propname = nvpair_name(elem);
420 zpool_prop_t prop = zpool_name_to_prop(propname);
421
422 switch ((int)prop) {
423 case ZPROP_INVAL:
424 if (!zpool_prop_feature(propname)) {
425 error = SET_ERROR(EINVAL);
426 break;
427 }
428
429 /*
430 * Sanitize the input.
431 */
432 if (nvpair_type(elem) != DATA_TYPE_UINT64) {
433 error = SET_ERROR(EINVAL);
434 break;
435 }
436
437 if (nvpair_value_uint64(elem, &intval) != 0) {
438 error = SET_ERROR(EINVAL);
439 break;
440 }
441
442 if (intval != 0) {
443 error = SET_ERROR(EINVAL);
444 break;
445 }
446
447 fname = strchr(propname, '@') + 1;
448 if (zfeature_lookup_name(fname, NULL) != 0) {
449 error = SET_ERROR(EINVAL);
450 break;
451 }
452
453 has_feature = B_TRUE;
454 break;
455
456 case ZPOOL_PROP_VERSION:
457 error = nvpair_value_uint64(elem, &intval);
458 if (!error &&
459 (intval < spa_version(spa) ||
460 intval > SPA_VERSION_BEFORE_FEATURES ||
461 has_feature))
462 error = SET_ERROR(EINVAL);
463 break;
464
465 case ZPOOL_PROP_DELEGATION:
466 case ZPOOL_PROP_AUTOREPLACE:
467 case ZPOOL_PROP_LISTSNAPS:
468 case ZPOOL_PROP_AUTOEXPAND:
469 error = nvpair_value_uint64(elem, &intval);
470 if (!error && intval > 1)
471 error = SET_ERROR(EINVAL);
472 break;
473
474 case ZPOOL_PROP_BOOTFS:
475 /*
476 * If the pool version is less than SPA_VERSION_BOOTFS,
477 * or the pool is still being created (version == 0),
478 * the bootfs property cannot be set.
479 */
480 if (spa_version(spa) < SPA_VERSION_BOOTFS) {
481 error = SET_ERROR(ENOTSUP);
482 break;
483 }
484
485 /*
486 * Make sure the vdev config is bootable
487 */
488 if (!vdev_is_bootable(spa->spa_root_vdev)) {
489 error = SET_ERROR(ENOTSUP);
490 break;
491 }
492
493 reset_bootfs = 1;
494
495 error = nvpair_value_string(elem, &strval);
496
497 if (!error) {
498 objset_t *os;
499 uint64_t propval;
500
501 if (strval == NULL || strval[0] == '\0') {
502 objnum = zpool_prop_default_numeric(
503 ZPOOL_PROP_BOOTFS);
504 break;
505 }
506
507 error = dmu_objset_hold(strval, FTAG, &os);
508 if (error)
509 break;
510
511 /*
512 * Must be ZPL, and its property settings
513 * must be supported by GRUB (compression
514 * is not gzip, and large blocks are not used).
515 */
516
517 if (dmu_objset_type(os) != DMU_OST_ZFS) {
518 error = SET_ERROR(ENOTSUP);
519 } else if ((error =
520 dsl_prop_get_int_ds(dmu_objset_ds(os),
521 zfs_prop_to_name(ZFS_PROP_COMPRESSION),
522 &propval)) == 0 &&
523 !BOOTFS_COMPRESS_VALID(propval)) {
524 error = SET_ERROR(ENOTSUP);
525 } else if ((error =
526 dsl_prop_get_int_ds(dmu_objset_ds(os),
527 zfs_prop_to_name(ZFS_PROP_RECORDSIZE),
528 &propval)) == 0 &&
529 propval > SPA_OLD_MAXBLOCKSIZE) {
530 error = SET_ERROR(ENOTSUP);
531 } else {
532 objnum = dmu_objset_id(os);
533 }
534 dmu_objset_rele(os, FTAG);
535 }
536 break;
537
538 case ZPOOL_PROP_FAILUREMODE:
539 error = nvpair_value_uint64(elem, &intval);
540 if (!error && (intval < ZIO_FAILURE_MODE_WAIT ||
541 intval > ZIO_FAILURE_MODE_PANIC))
542 error = SET_ERROR(EINVAL);
543
544 /*
545 * This is a special case which only occurs when
546 * the pool has completely failed. This allows
547 * the user to change the in-core failmode property
548 * without syncing it out to disk (I/Os might
549 * currently be blocked). We do this by returning
550 * EIO to the caller (spa_prop_set) to trick it
551 * into thinking we encountered a property validation
552 * error.
553 */
554 if (!error && spa_suspended(spa)) {
555 spa->spa_failmode = intval;
556 error = SET_ERROR(EIO);
557 }
558 break;
559
560 case ZPOOL_PROP_CACHEFILE:
561 if ((error = nvpair_value_string(elem, &strval)) != 0)
562 break;
563
564 if (strval[0] == '\0')
565 break;
566
567 if (strcmp(strval, "none") == 0)
568 break;
569
570 if (strval[0] != '/') {
571 error = SET_ERROR(EINVAL);
572 break;
573 }
574
575 slash = strrchr(strval, '/');
576 ASSERT(slash != NULL);
577
578 if (slash[1] == '\0' || strcmp(slash, "/.") == 0 ||
579 strcmp(slash, "/..") == 0)
580 error = SET_ERROR(EINVAL);
581 break;
582
583 case ZPOOL_PROP_COMMENT:
584 if ((error = nvpair_value_string(elem, &strval)) != 0)
585 break;
586 for (check = strval; *check != '\0'; check++) {
587 if (!isprint(*check)) {
588 error = SET_ERROR(EINVAL);
589 break;
590 }
591 check++;
592 }
593 if (strlen(strval) > ZPROP_MAX_COMMENT)
594 error = SET_ERROR(E2BIG);
595 break;
596
597 case ZPOOL_PROP_DEDUPDITTO:
598 if (spa_version(spa) < SPA_VERSION_DEDUP)
599 error = SET_ERROR(ENOTSUP);
600 else
601 error = nvpair_value_uint64(elem, &intval);
602 if (error == 0 &&
603 intval != 0 && intval < ZIO_DEDUPDITTO_MIN)
604 error = SET_ERROR(EINVAL);
605 break;
606
607 default:
608 break;
609 }
610
611 if (error)
612 break;
613 }
614
615 if (!error && reset_bootfs) {
616 error = nvlist_remove(props,
617 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), DATA_TYPE_STRING);
618
619 if (!error) {
620 error = nvlist_add_uint64(props,
621 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), objnum);
622 }
623 }
624
625 return (error);
626 }
627
628 void
629 spa_configfile_set(spa_t *spa, nvlist_t *nvp, boolean_t need_sync)
630 {
631 char *cachefile;
632 spa_config_dirent_t *dp;
633
634 if (nvlist_lookup_string(nvp, zpool_prop_to_name(ZPOOL_PROP_CACHEFILE),
635 &cachefile) != 0)
636 return;
637
638 dp = kmem_alloc(sizeof (spa_config_dirent_t),
639 KM_SLEEP);
640
641 if (cachefile[0] == '\0')
642 dp->scd_path = spa_strdup(spa_config_path);
643 else if (strcmp(cachefile, "none") == 0)
644 dp->scd_path = NULL;
645 else
646 dp->scd_path = spa_strdup(cachefile);
647
648 list_insert_head(&spa->spa_config_list, dp);
649 if (need_sync)
650 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
651 }
652
653 int
654 spa_prop_set(spa_t *spa, nvlist_t *nvp)
655 {
656 int error;
657 nvpair_t *elem = NULL;
658 boolean_t need_sync = B_FALSE;
659
660 if ((error = spa_prop_validate(spa, nvp)) != 0)
661 return (error);
662
663 while ((elem = nvlist_next_nvpair(nvp, elem)) != NULL) {
664 zpool_prop_t prop = zpool_name_to_prop(nvpair_name(elem));
665
666 if (prop == ZPOOL_PROP_CACHEFILE ||
667 prop == ZPOOL_PROP_ALTROOT ||
668 prop == ZPOOL_PROP_READONLY)
669 continue;
670
671 if (prop == ZPOOL_PROP_VERSION || prop == ZPROP_INVAL) {
672 uint64_t ver;
673
674 if (prop == ZPOOL_PROP_VERSION) {
675 VERIFY(nvpair_value_uint64(elem, &ver) == 0);
676 } else {
677 ASSERT(zpool_prop_feature(nvpair_name(elem)));
678 ver = SPA_VERSION_FEATURES;
679 need_sync = B_TRUE;
680 }
681
682 /* Save time if the version is already set. */
683 if (ver == spa_version(spa))
684 continue;
685
686 /*
687 * In addition to the pool directory object, we might
688 * create the pool properties object, the features for
689 * read object, the features for write object, or the
690 * feature descriptions object.
691 */
692 error = dsl_sync_task(spa->spa_name, NULL,
693 spa_sync_version, &ver,
694 6, ZFS_SPACE_CHECK_RESERVED);
695 if (error)
696 return (error);
697 continue;
698 }
699
700 need_sync = B_TRUE;
701 break;
702 }
703
704 if (need_sync) {
705 return (dsl_sync_task(spa->spa_name, NULL, spa_sync_props,
706 nvp, 6, ZFS_SPACE_CHECK_RESERVED));
707 }
708
709 return (0);
710 }
711
712 /*
713 * If the bootfs property value is dsobj, clear it.
714 */
715 void
716 spa_prop_clear_bootfs(spa_t *spa, uint64_t dsobj, dmu_tx_t *tx)
717 {
718 if (spa->spa_bootfs == dsobj && spa->spa_pool_props_object != 0) {
719 VERIFY(zap_remove(spa->spa_meta_objset,
720 spa->spa_pool_props_object,
721 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), tx) == 0);
722 spa->spa_bootfs = 0;
723 }
724 }
725
726 /*ARGSUSED*/
727 static int
728 spa_change_guid_check(void *arg, dmu_tx_t *tx)
729 {
730 spa_t *spa = dmu_tx_pool(tx)->dp_spa;
731 vdev_t *rvd = spa->spa_root_vdev;
732 uint64_t vdev_state;
733 ASSERTV(uint64_t *newguid = arg);
734
735 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
736 vdev_state = rvd->vdev_state;
737 spa_config_exit(spa, SCL_STATE, FTAG);
738
739 if (vdev_state != VDEV_STATE_HEALTHY)
740 return (SET_ERROR(ENXIO));
741
742 ASSERT3U(spa_guid(spa), !=, *newguid);
743
744 return (0);
745 }
746
747 static void
748 spa_change_guid_sync(void *arg, dmu_tx_t *tx)
749 {
750 uint64_t *newguid = arg;
751 spa_t *spa = dmu_tx_pool(tx)->dp_spa;
752 uint64_t oldguid;
753 vdev_t *rvd = spa->spa_root_vdev;
754
755 oldguid = spa_guid(spa);
756
757 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
758 rvd->vdev_guid = *newguid;
759 rvd->vdev_guid_sum += (*newguid - oldguid);
760 vdev_config_dirty(rvd);
761 spa_config_exit(spa, SCL_STATE, FTAG);
762
763 spa_history_log_internal(spa, "guid change", tx, "old=%llu new=%llu",
764 oldguid, *newguid);
765 }
766
767 /*
768 * Change the GUID for the pool. This is done so that we can later
769 * re-import a pool built from a clone of our own vdevs. We will modify
770 * the root vdev's guid, our own pool guid, and then mark all of our
771 * vdevs dirty. Note that we must make sure that all our vdevs are
772 * online when we do this, or else any vdevs that weren't present
773 * would be orphaned from our pool. We are also going to issue a
774 * sysevent to update any watchers.
775 */
776 int
777 spa_change_guid(spa_t *spa)
778 {
779 int error;
780 uint64_t guid;
781
782 mutex_enter(&spa->spa_vdev_top_lock);
783 mutex_enter(&spa_namespace_lock);
784 guid = spa_generate_guid(NULL);
785
786 error = dsl_sync_task(spa->spa_name, spa_change_guid_check,
787 spa_change_guid_sync, &guid, 5, ZFS_SPACE_CHECK_RESERVED);
788
789 if (error == 0) {
790 spa_config_sync(spa, B_FALSE, B_TRUE);
791 spa_event_notify(spa, NULL, FM_EREPORT_ZFS_POOL_REGUID);
792 }
793
794 mutex_exit(&spa_namespace_lock);
795 mutex_exit(&spa->spa_vdev_top_lock);
796
797 return (error);
798 }
799
800 /*
801 * ==========================================================================
802 * SPA state manipulation (open/create/destroy/import/export)
803 * ==========================================================================
804 */
805
806 static int
807 spa_error_entry_compare(const void *a, const void *b)
808 {
809 spa_error_entry_t *sa = (spa_error_entry_t *)a;
810 spa_error_entry_t *sb = (spa_error_entry_t *)b;
811 int ret;
812
813 ret = bcmp(&sa->se_bookmark, &sb->se_bookmark,
814 sizeof (zbookmark_phys_t));
815
816 if (ret < 0)
817 return (-1);
818 else if (ret > 0)
819 return (1);
820 else
821 return (0);
822 }
823
824 /*
825 * Utility function which retrieves copies of the current logs and
826 * re-initializes them in the process.
827 */
828 void
829 spa_get_errlists(spa_t *spa, avl_tree_t *last, avl_tree_t *scrub)
830 {
831 ASSERT(MUTEX_HELD(&spa->spa_errlist_lock));
832
833 bcopy(&spa->spa_errlist_last, last, sizeof (avl_tree_t));
834 bcopy(&spa->spa_errlist_scrub, scrub, sizeof (avl_tree_t));
835
836 avl_create(&spa->spa_errlist_scrub,
837 spa_error_entry_compare, sizeof (spa_error_entry_t),
838 offsetof(spa_error_entry_t, se_avl));
839 avl_create(&spa->spa_errlist_last,
840 spa_error_entry_compare, sizeof (spa_error_entry_t),
841 offsetof(spa_error_entry_t, se_avl));
842 }
843
844 static void
845 spa_taskqs_init(spa_t *spa, zio_type_t t, zio_taskq_type_t q)
846 {
847 const zio_taskq_info_t *ztip = &zio_taskqs[t][q];
848 enum zti_modes mode = ztip->zti_mode;
849 uint_t value = ztip->zti_value;
850 uint_t count = ztip->zti_count;
851 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
852 char name[32];
853 uint_t i, flags = TASKQ_DYNAMIC;
854 boolean_t batch = B_FALSE;
855
856 if (mode == ZTI_MODE_NULL) {
857 tqs->stqs_count = 0;
858 tqs->stqs_taskq = NULL;
859 return;
860 }
861
862 ASSERT3U(count, >, 0);
863
864 tqs->stqs_count = count;
865 tqs->stqs_taskq = kmem_alloc(count * sizeof (taskq_t *), KM_SLEEP);
866
867 switch (mode) {
868 case ZTI_MODE_FIXED:
869 ASSERT3U(value, >=, 1);
870 value = MAX(value, 1);
871 break;
872
873 case ZTI_MODE_BATCH:
874 batch = B_TRUE;
875 flags |= TASKQ_THREADS_CPU_PCT;
876 value = MIN(zio_taskq_batch_pct, 100);
877 break;
878
879 default:
880 panic("unrecognized mode for %s_%s taskq (%u:%u) in "
881 "spa_activate()",
882 zio_type_name[t], zio_taskq_types[q], mode, value);
883 break;
884 }
885
886 for (i = 0; i < count; i++) {
887 taskq_t *tq;
888
889 if (count > 1) {
890 (void) snprintf(name, sizeof (name), "%s_%s_%u",
891 zio_type_name[t], zio_taskq_types[q], i);
892 } else {
893 (void) snprintf(name, sizeof (name), "%s_%s",
894 zio_type_name[t], zio_taskq_types[q]);
895 }
896
897 if (zio_taskq_sysdc && spa->spa_proc != &p0) {
898 if (batch)
899 flags |= TASKQ_DC_BATCH;
900
901 tq = taskq_create_sysdc(name, value, 50, INT_MAX,
902 spa->spa_proc, zio_taskq_basedc, flags);
903 } else {
904 pri_t pri = maxclsyspri;
905 /*
906 * The write issue taskq can be extremely CPU
907 * intensive. Run it at slightly less important
908 * priority than the other taskqs. Under Linux this
909 * means incrementing the priority value on platforms
910 * like illumos it should be decremented.
911 */
912 if (t == ZIO_TYPE_WRITE && q == ZIO_TASKQ_ISSUE)
913 pri++;
914
915 tq = taskq_create_proc(name, value, pri, 50,
916 INT_MAX, spa->spa_proc, flags);
917 }
918
919 tqs->stqs_taskq[i] = tq;
920 }
921 }
922
923 static void
924 spa_taskqs_fini(spa_t *spa, zio_type_t t, zio_taskq_type_t q)
925 {
926 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
927 uint_t i;
928
929 if (tqs->stqs_taskq == NULL) {
930 ASSERT3U(tqs->stqs_count, ==, 0);
931 return;
932 }
933
934 for (i = 0; i < tqs->stqs_count; i++) {
935 ASSERT3P(tqs->stqs_taskq[i], !=, NULL);
936 taskq_destroy(tqs->stqs_taskq[i]);
937 }
938
939 kmem_free(tqs->stqs_taskq, tqs->stqs_count * sizeof (taskq_t *));
940 tqs->stqs_taskq = NULL;
941 }
942
943 /*
944 * Dispatch a task to the appropriate taskq for the ZFS I/O type and priority.
945 * Note that a type may have multiple discrete taskqs to avoid lock contention
946 * on the taskq itself. In that case we choose which taskq at random by using
947 * the low bits of gethrtime().
948 */
949 void
950 spa_taskq_dispatch_ent(spa_t *spa, zio_type_t t, zio_taskq_type_t q,
951 task_func_t *func, void *arg, uint_t flags, taskq_ent_t *ent)
952 {
953 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
954 taskq_t *tq;
955
956 ASSERT3P(tqs->stqs_taskq, !=, NULL);
957 ASSERT3U(tqs->stqs_count, !=, 0);
958
959 if (tqs->stqs_count == 1) {
960 tq = tqs->stqs_taskq[0];
961 } else {
962 tq = tqs->stqs_taskq[((uint64_t)gethrtime()) % tqs->stqs_count];
963 }
964
965 taskq_dispatch_ent(tq, func, arg, flags, ent);
966 }
967
968 /*
969 * Same as spa_taskq_dispatch_ent() but block on the task until completion.
970 */
971 void
972 spa_taskq_dispatch_sync(spa_t *spa, zio_type_t t, zio_taskq_type_t q,
973 task_func_t *func, void *arg, uint_t flags)
974 {
975 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
976 taskq_t *tq;
977 taskqid_t id;
978
979 ASSERT3P(tqs->stqs_taskq, !=, NULL);
980 ASSERT3U(tqs->stqs_count, !=, 0);
981
982 if (tqs->stqs_count == 1) {
983 tq = tqs->stqs_taskq[0];
984 } else {
985 tq = tqs->stqs_taskq[((uint64_t)gethrtime()) % tqs->stqs_count];
986 }
987
988 id = taskq_dispatch(tq, func, arg, flags);
989 if (id)
990 taskq_wait_id(tq, id);
991 }
992
993 static void
994 spa_create_zio_taskqs(spa_t *spa)
995 {
996 int t, q;
997
998 for (t = 0; t < ZIO_TYPES; t++) {
999 for (q = 0; q < ZIO_TASKQ_TYPES; q++) {
1000 spa_taskqs_init(spa, t, q);
1001 }
1002 }
1003 }
1004
1005 #if defined(_KERNEL) && defined(HAVE_SPA_THREAD)
1006 static void
1007 spa_thread(void *arg)
1008 {
1009 callb_cpr_t cprinfo;
1010
1011 spa_t *spa = arg;
1012 user_t *pu = PTOU(curproc);
1013
1014 CALLB_CPR_INIT(&cprinfo, &spa->spa_proc_lock, callb_generic_cpr,
1015 spa->spa_name);
1016
1017 ASSERT(curproc != &p0);
1018 (void) snprintf(pu->u_psargs, sizeof (pu->u_psargs),
1019 "zpool-%s", spa->spa_name);
1020 (void) strlcpy(pu->u_comm, pu->u_psargs, sizeof (pu->u_comm));
1021
1022 /* bind this thread to the requested psrset */
1023 if (zio_taskq_psrset_bind != PS_NONE) {
1024 pool_lock();
1025 mutex_enter(&cpu_lock);
1026 mutex_enter(&pidlock);
1027 mutex_enter(&curproc->p_lock);
1028
1029 if (cpupart_bind_thread(curthread, zio_taskq_psrset_bind,
1030 0, NULL, NULL) == 0) {
1031 curthread->t_bind_pset = zio_taskq_psrset_bind;
1032 } else {
1033 cmn_err(CE_WARN,
1034 "Couldn't bind process for zfs pool \"%s\" to "
1035 "pset %d\n", spa->spa_name, zio_taskq_psrset_bind);
1036 }
1037
1038 mutex_exit(&curproc->p_lock);
1039 mutex_exit(&pidlock);
1040 mutex_exit(&cpu_lock);
1041 pool_unlock();
1042 }
1043
1044 if (zio_taskq_sysdc) {
1045 sysdc_thread_enter(curthread, 100, 0);
1046 }
1047
1048 spa->spa_proc = curproc;
1049 spa->spa_did = curthread->t_did;
1050
1051 spa_create_zio_taskqs(spa);
1052
1053 mutex_enter(&spa->spa_proc_lock);
1054 ASSERT(spa->spa_proc_state == SPA_PROC_CREATED);
1055
1056 spa->spa_proc_state = SPA_PROC_ACTIVE;
1057 cv_broadcast(&spa->spa_proc_cv);
1058
1059 CALLB_CPR_SAFE_BEGIN(&cprinfo);
1060 while (spa->spa_proc_state == SPA_PROC_ACTIVE)
1061 cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock);
1062 CALLB_CPR_SAFE_END(&cprinfo, &spa->spa_proc_lock);
1063
1064 ASSERT(spa->spa_proc_state == SPA_PROC_DEACTIVATE);
1065 spa->spa_proc_state = SPA_PROC_GONE;
1066 spa->spa_proc = &p0;
1067 cv_broadcast(&spa->spa_proc_cv);
1068 CALLB_CPR_EXIT(&cprinfo); /* drops spa_proc_lock */
1069
1070 mutex_enter(&curproc->p_lock);
1071 lwp_exit();
1072 }
1073 #endif
1074
1075 /*
1076 * Activate an uninitialized pool.
1077 */
1078 static void
1079 spa_activate(spa_t *spa, int mode)
1080 {
1081 ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED);
1082
1083 spa->spa_state = POOL_STATE_ACTIVE;
1084 spa->spa_mode = mode;
1085
1086 spa->spa_normal_class = metaslab_class_create(spa, zfs_metaslab_ops);
1087 spa->spa_log_class = metaslab_class_create(spa, zfs_metaslab_ops);
1088
1089 /* Try to create a covering process */
1090 mutex_enter(&spa->spa_proc_lock);
1091 ASSERT(spa->spa_proc_state == SPA_PROC_NONE);
1092 ASSERT(spa->spa_proc == &p0);
1093 spa->spa_did = 0;
1094
1095 #ifdef HAVE_SPA_THREAD
1096 /* Only create a process if we're going to be around a while. */
1097 if (spa_create_process && strcmp(spa->spa_name, TRYIMPORT_NAME) != 0) {
1098 if (newproc(spa_thread, (caddr_t)spa, syscid, maxclsyspri,
1099 NULL, 0) == 0) {
1100 spa->spa_proc_state = SPA_PROC_CREATED;
1101 while (spa->spa_proc_state == SPA_PROC_CREATED) {
1102 cv_wait(&spa->spa_proc_cv,
1103 &spa->spa_proc_lock);
1104 }
1105 ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE);
1106 ASSERT(spa->spa_proc != &p0);
1107 ASSERT(spa->spa_did != 0);
1108 } else {
1109 #ifdef _KERNEL
1110 cmn_err(CE_WARN,
1111 "Couldn't create process for zfs pool \"%s\"\n",
1112 spa->spa_name);
1113 #endif
1114 }
1115 }
1116 #endif /* HAVE_SPA_THREAD */
1117 mutex_exit(&spa->spa_proc_lock);
1118
1119 /* If we didn't create a process, we need to create our taskqs. */
1120 if (spa->spa_proc == &p0) {
1121 spa_create_zio_taskqs(spa);
1122 }
1123
1124 list_create(&spa->spa_config_dirty_list, sizeof (vdev_t),
1125 offsetof(vdev_t, vdev_config_dirty_node));
1126 list_create(&spa->spa_evicting_os_list, sizeof (objset_t),
1127 offsetof(objset_t, os_evicting_node));
1128 list_create(&spa->spa_state_dirty_list, sizeof (vdev_t),
1129 offsetof(vdev_t, vdev_state_dirty_node));
1130
1131 txg_list_create(&spa->spa_vdev_txg_list,
1132 offsetof(struct vdev, vdev_txg_node));
1133
1134 avl_create(&spa->spa_errlist_scrub,
1135 spa_error_entry_compare, sizeof (spa_error_entry_t),
1136 offsetof(spa_error_entry_t, se_avl));
1137 avl_create(&spa->spa_errlist_last,
1138 spa_error_entry_compare, sizeof (spa_error_entry_t),
1139 offsetof(spa_error_entry_t, se_avl));
1140 }
1141
1142 /*
1143 * Opposite of spa_activate().
1144 */
1145 static void
1146 spa_deactivate(spa_t *spa)
1147 {
1148 int t, q;
1149
1150 ASSERT(spa->spa_sync_on == B_FALSE);
1151 ASSERT(spa->spa_dsl_pool == NULL);
1152 ASSERT(spa->spa_root_vdev == NULL);
1153 ASSERT(spa->spa_async_zio_root == NULL);
1154 ASSERT(spa->spa_state != POOL_STATE_UNINITIALIZED);
1155
1156 spa_evicting_os_wait(spa);
1157
1158 txg_list_destroy(&spa->spa_vdev_txg_list);
1159
1160 list_destroy(&spa->spa_config_dirty_list);
1161 list_destroy(&spa->spa_evicting_os_list);
1162 list_destroy(&spa->spa_state_dirty_list);
1163
1164 taskq_cancel_id(system_taskq, spa->spa_deadman_tqid);
1165
1166 for (t = 0; t < ZIO_TYPES; t++) {
1167 for (q = 0; q < ZIO_TASKQ_TYPES; q++) {
1168 spa_taskqs_fini(spa, t, q);
1169 }
1170 }
1171
1172 metaslab_class_destroy(spa->spa_normal_class);
1173 spa->spa_normal_class = NULL;
1174
1175 metaslab_class_destroy(spa->spa_log_class);
1176 spa->spa_log_class = NULL;
1177
1178 /*
1179 * If this was part of an import or the open otherwise failed, we may
1180 * still have errors left in the queues. Empty them just in case.
1181 */
1182 spa_errlog_drain(spa);
1183
1184 avl_destroy(&spa->spa_errlist_scrub);
1185 avl_destroy(&spa->spa_errlist_last);
1186
1187 spa->spa_state = POOL_STATE_UNINITIALIZED;
1188
1189 mutex_enter(&spa->spa_proc_lock);
1190 if (spa->spa_proc_state != SPA_PROC_NONE) {
1191 ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE);
1192 spa->spa_proc_state = SPA_PROC_DEACTIVATE;
1193 cv_broadcast(&spa->spa_proc_cv);
1194 while (spa->spa_proc_state == SPA_PROC_DEACTIVATE) {
1195 ASSERT(spa->spa_proc != &p0);
1196 cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock);
1197 }
1198 ASSERT(spa->spa_proc_state == SPA_PROC_GONE);
1199 spa->spa_proc_state = SPA_PROC_NONE;
1200 }
1201 ASSERT(spa->spa_proc == &p0);
1202 mutex_exit(&spa->spa_proc_lock);
1203
1204 /*
1205 * We want to make sure spa_thread() has actually exited the ZFS
1206 * module, so that the module can't be unloaded out from underneath
1207 * it.
1208 */
1209 if (spa->spa_did != 0) {
1210 thread_join(spa->spa_did);
1211 spa->spa_did = 0;
1212 }
1213 }
1214
1215 /*
1216 * Verify a pool configuration, and construct the vdev tree appropriately. This
1217 * will create all the necessary vdevs in the appropriate layout, with each vdev
1218 * in the CLOSED state. This will prep the pool before open/creation/import.
1219 * All vdev validation is done by the vdev_alloc() routine.
1220 */
1221 static int
1222 spa_config_parse(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent,
1223 uint_t id, int atype)
1224 {
1225 nvlist_t **child;
1226 uint_t children;
1227 int error;
1228 int c;
1229
1230 if ((error = vdev_alloc(spa, vdp, nv, parent, id, atype)) != 0)
1231 return (error);
1232
1233 if ((*vdp)->vdev_ops->vdev_op_leaf)
1234 return (0);
1235
1236 error = nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
1237 &child, &children);
1238
1239 if (error == ENOENT)
1240 return (0);
1241
1242 if (error) {
1243 vdev_free(*vdp);
1244 *vdp = NULL;
1245 return (SET_ERROR(EINVAL));
1246 }
1247
1248 for (c = 0; c < children; c++) {
1249 vdev_t *vd;
1250 if ((error = spa_config_parse(spa, &vd, child[c], *vdp, c,
1251 atype)) != 0) {
1252 vdev_free(*vdp);
1253 *vdp = NULL;
1254 return (error);
1255 }
1256 }
1257
1258 ASSERT(*vdp != NULL);
1259
1260 return (0);
1261 }
1262
1263 /*
1264 * Opposite of spa_load().
1265 */
1266 static void
1267 spa_unload(spa_t *spa)
1268 {
1269 int i;
1270
1271 ASSERT(MUTEX_HELD(&spa_namespace_lock));
1272
1273 /*
1274 * Stop async tasks.
1275 */
1276 spa_async_suspend(spa);
1277
1278 /*
1279 * Stop syncing.
1280 */
1281 if (spa->spa_sync_on) {
1282 txg_sync_stop(spa->spa_dsl_pool);
1283 spa->spa_sync_on = B_FALSE;
1284 }
1285
1286 /*
1287 * Wait for any outstanding async I/O to complete.
1288 */
1289 if (spa->spa_async_zio_root != NULL) {
1290 for (i = 0; i < max_ncpus; i++)
1291 (void) zio_wait(spa->spa_async_zio_root[i]);
1292 kmem_free(spa->spa_async_zio_root, max_ncpus * sizeof (void *));
1293 spa->spa_async_zio_root = NULL;
1294 }
1295
1296 bpobj_close(&spa->spa_deferred_bpobj);
1297
1298 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1299
1300 /*
1301 * Close all vdevs.
1302 */
1303 if (spa->spa_root_vdev)
1304 vdev_free(spa->spa_root_vdev);
1305 ASSERT(spa->spa_root_vdev == NULL);
1306
1307 /*
1308 * Close the dsl pool.
1309 */
1310 if (spa->spa_dsl_pool) {
1311 dsl_pool_close(spa->spa_dsl_pool);
1312 spa->spa_dsl_pool = NULL;
1313 spa->spa_meta_objset = NULL;
1314 }
1315
1316 ddt_unload(spa);
1317
1318
1319 /*
1320 * Drop and purge level 2 cache
1321 */
1322 spa_l2cache_drop(spa);
1323
1324 for (i = 0; i < spa->spa_spares.sav_count; i++)
1325 vdev_free(spa->spa_spares.sav_vdevs[i]);
1326 if (spa->spa_spares.sav_vdevs) {
1327 kmem_free(spa->spa_spares.sav_vdevs,
1328 spa->spa_spares.sav_count * sizeof (void *));
1329 spa->spa_spares.sav_vdevs = NULL;
1330 }
1331 if (spa->spa_spares.sav_config) {
1332 nvlist_free(spa->spa_spares.sav_config);
1333 spa->spa_spares.sav_config = NULL;
1334 }
1335 spa->spa_spares.sav_count = 0;
1336
1337 for (i = 0; i < spa->spa_l2cache.sav_count; i++) {
1338 vdev_clear_stats(spa->spa_l2cache.sav_vdevs[i]);
1339 vdev_free(spa->spa_l2cache.sav_vdevs[i]);
1340 }
1341 if (spa->spa_l2cache.sav_vdevs) {
1342 kmem_free(spa->spa_l2cache.sav_vdevs,
1343 spa->spa_l2cache.sav_count * sizeof (void *));
1344 spa->spa_l2cache.sav_vdevs = NULL;
1345 }
1346 if (spa->spa_l2cache.sav_config) {
1347 nvlist_free(spa->spa_l2cache.sav_config);
1348 spa->spa_l2cache.sav_config = NULL;
1349 }
1350 spa->spa_l2cache.sav_count = 0;
1351
1352 spa->spa_async_suspended = 0;
1353
1354 if (spa->spa_comment != NULL) {
1355 spa_strfree(spa->spa_comment);
1356 spa->spa_comment = NULL;
1357 }
1358
1359 spa_config_exit(spa, SCL_ALL, FTAG);
1360 }
1361
1362 /*
1363 * Load (or re-load) the current list of vdevs describing the active spares for
1364 * this pool. When this is called, we have some form of basic information in
1365 * 'spa_spares.sav_config'. We parse this into vdevs, try to open them, and
1366 * then re-generate a more complete list including status information.
1367 */
1368 static void
1369 spa_load_spares(spa_t *spa)
1370 {
1371 nvlist_t **spares;
1372 uint_t nspares;
1373 int i;
1374 vdev_t *vd, *tvd;
1375
1376 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1377
1378 /*
1379 * First, close and free any existing spare vdevs.
1380 */
1381 for (i = 0; i < spa->spa_spares.sav_count; i++) {
1382 vd = spa->spa_spares.sav_vdevs[i];
1383
1384 /* Undo the call to spa_activate() below */
1385 if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
1386 B_FALSE)) != NULL && tvd->vdev_isspare)
1387 spa_spare_remove(tvd);
1388 vdev_close(vd);
1389 vdev_free(vd);
1390 }
1391
1392 if (spa->spa_spares.sav_vdevs)
1393 kmem_free(spa->spa_spares.sav_vdevs,
1394 spa->spa_spares.sav_count * sizeof (void *));
1395
1396 if (spa->spa_spares.sav_config == NULL)
1397 nspares = 0;
1398 else
1399 VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
1400 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
1401
1402 spa->spa_spares.sav_count = (int)nspares;
1403 spa->spa_spares.sav_vdevs = NULL;
1404
1405 if (nspares == 0)
1406 return;
1407
1408 /*
1409 * Construct the array of vdevs, opening them to get status in the
1410 * process. For each spare, there is potentially two different vdev_t
1411 * structures associated with it: one in the list of spares (used only
1412 * for basic validation purposes) and one in the active vdev
1413 * configuration (if it's spared in). During this phase we open and
1414 * validate each vdev on the spare list. If the vdev also exists in the
1415 * active configuration, then we also mark this vdev as an active spare.
1416 */
1417 spa->spa_spares.sav_vdevs = kmem_zalloc(nspares * sizeof (void *),
1418 KM_SLEEP);
1419 for (i = 0; i < spa->spa_spares.sav_count; i++) {
1420 VERIFY(spa_config_parse(spa, &vd, spares[i], NULL, 0,
1421 VDEV_ALLOC_SPARE) == 0);
1422 ASSERT(vd != NULL);
1423
1424 spa->spa_spares.sav_vdevs[i] = vd;
1425
1426 if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
1427 B_FALSE)) != NULL) {
1428 if (!tvd->vdev_isspare)
1429 spa_spare_add(tvd);
1430
1431 /*
1432 * We only mark the spare active if we were successfully
1433 * able to load the vdev. Otherwise, importing a pool
1434 * with a bad active spare would result in strange
1435 * behavior, because multiple pool would think the spare
1436 * is actively in use.
1437 *
1438 * There is a vulnerability here to an equally bizarre
1439 * circumstance, where a dead active spare is later
1440 * brought back to life (onlined or otherwise). Given
1441 * the rarity of this scenario, and the extra complexity
1442 * it adds, we ignore the possibility.
1443 */
1444 if (!vdev_is_dead(tvd))
1445 spa_spare_activate(tvd);
1446 }
1447
1448 vd->vdev_top = vd;
1449 vd->vdev_aux = &spa->spa_spares;
1450
1451 if (vdev_open(vd) != 0)
1452 continue;
1453
1454 if (vdev_validate_aux(vd) == 0)
1455 spa_spare_add(vd);
1456 }
1457
1458 /*
1459 * Recompute the stashed list of spares, with status information
1460 * this time.
1461 */
1462 VERIFY(nvlist_remove(spa->spa_spares.sav_config, ZPOOL_CONFIG_SPARES,
1463 DATA_TYPE_NVLIST_ARRAY) == 0);
1464
1465 spares = kmem_alloc(spa->spa_spares.sav_count * sizeof (void *),
1466 KM_SLEEP);
1467 for (i = 0; i < spa->spa_spares.sav_count; i++)
1468 spares[i] = vdev_config_generate(spa,
1469 spa->spa_spares.sav_vdevs[i], B_TRUE, VDEV_CONFIG_SPARE);
1470 VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
1471 ZPOOL_CONFIG_SPARES, spares, spa->spa_spares.sav_count) == 0);
1472 for (i = 0; i < spa->spa_spares.sav_count; i++)
1473 nvlist_free(spares[i]);
1474 kmem_free(spares, spa->spa_spares.sav_count * sizeof (void *));
1475 }
1476
1477 /*
1478 * Load (or re-load) the current list of vdevs describing the active l2cache for
1479 * this pool. When this is called, we have some form of basic information in
1480 * 'spa_l2cache.sav_config'. We parse this into vdevs, try to open them, and
1481 * then re-generate a more complete list including status information.
1482 * Devices which are already active have their details maintained, and are
1483 * not re-opened.
1484 */
1485 static void
1486 spa_load_l2cache(spa_t *spa)
1487 {
1488 nvlist_t **l2cache;
1489 uint_t nl2cache;
1490 int i, j, oldnvdevs;
1491 uint64_t guid;
1492 vdev_t *vd, **oldvdevs, **newvdevs;
1493 spa_aux_vdev_t *sav = &spa->spa_l2cache;
1494
1495 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1496
1497 if (sav->sav_config != NULL) {
1498 VERIFY(nvlist_lookup_nvlist_array(sav->sav_config,
1499 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
1500 newvdevs = kmem_alloc(nl2cache * sizeof (void *), KM_SLEEP);
1501 } else {
1502 nl2cache = 0;
1503 newvdevs = NULL;
1504 }
1505
1506 oldvdevs = sav->sav_vdevs;
1507 oldnvdevs = sav->sav_count;
1508 sav->sav_vdevs = NULL;
1509 sav->sav_count = 0;
1510
1511 /*
1512 * Process new nvlist of vdevs.
1513 */
1514 for (i = 0; i < nl2cache; i++) {
1515 VERIFY(nvlist_lookup_uint64(l2cache[i], ZPOOL_CONFIG_GUID,
1516 &guid) == 0);
1517
1518 newvdevs[i] = NULL;
1519 for (j = 0; j < oldnvdevs; j++) {
1520 vd = oldvdevs[j];
1521 if (vd != NULL && guid == vd->vdev_guid) {
1522 /*
1523 * Retain previous vdev for add/remove ops.
1524 */
1525 newvdevs[i] = vd;
1526 oldvdevs[j] = NULL;
1527 break;
1528 }
1529 }
1530
1531 if (newvdevs[i] == NULL) {
1532 /*
1533 * Create new vdev
1534 */
1535 VERIFY(spa_config_parse(spa, &vd, l2cache[i], NULL, 0,
1536 VDEV_ALLOC_L2CACHE) == 0);
1537 ASSERT(vd != NULL);
1538 newvdevs[i] = vd;
1539
1540 /*
1541 * Commit this vdev as an l2cache device,
1542 * even if it fails to open.
1543 */
1544 spa_l2cache_add(vd);
1545
1546 vd->vdev_top = vd;
1547 vd->vdev_aux = sav;
1548
1549 spa_l2cache_activate(vd);
1550
1551 if (vdev_open(vd) != 0)
1552 continue;
1553
1554 (void) vdev_validate_aux(vd);
1555
1556 if (!vdev_is_dead(vd))
1557 l2arc_add_vdev(spa, vd);
1558 }
1559 }
1560
1561 /*
1562 * Purge vdevs that were dropped
1563 */
1564 for (i = 0; i < oldnvdevs; i++) {
1565 uint64_t pool;
1566
1567 vd = oldvdevs[i];
1568 if (vd != NULL) {
1569 ASSERT(vd->vdev_isl2cache);
1570
1571 if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
1572 pool != 0ULL && l2arc_vdev_present(vd))
1573 l2arc_remove_vdev(vd);
1574 vdev_clear_stats(vd);
1575 vdev_free(vd);
1576 }
1577 }
1578
1579 if (oldvdevs)
1580 kmem_free(oldvdevs, oldnvdevs * sizeof (void *));
1581
1582 if (sav->sav_config == NULL)
1583 goto out;
1584
1585 sav->sav_vdevs = newvdevs;
1586 sav->sav_count = (int)nl2cache;
1587
1588 /*
1589 * Recompute the stashed list of l2cache devices, with status
1590 * information this time.
1591 */
1592 VERIFY(nvlist_remove(sav->sav_config, ZPOOL_CONFIG_L2CACHE,
1593 DATA_TYPE_NVLIST_ARRAY) == 0);
1594
1595 l2cache = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP);
1596 for (i = 0; i < sav->sav_count; i++)
1597 l2cache[i] = vdev_config_generate(spa,
1598 sav->sav_vdevs[i], B_TRUE, VDEV_CONFIG_L2CACHE);
1599 VERIFY(nvlist_add_nvlist_array(sav->sav_config,
1600 ZPOOL_CONFIG_L2CACHE, l2cache, sav->sav_count) == 0);
1601 out:
1602 for (i = 0; i < sav->sav_count; i++)
1603 nvlist_free(l2cache[i]);
1604 if (sav->sav_count)
1605 kmem_free(l2cache, sav->sav_count * sizeof (void *));
1606 }
1607
1608 static int
1609 load_nvlist(spa_t *spa, uint64_t obj, nvlist_t **value)
1610 {
1611 dmu_buf_t *db;
1612 char *packed = NULL;
1613 size_t nvsize = 0;
1614 int error;
1615 *value = NULL;
1616
1617 error = dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db);
1618 if (error)
1619 return (error);
1620
1621 nvsize = *(uint64_t *)db->db_data;
1622 dmu_buf_rele(db, FTAG);
1623
1624 packed = vmem_alloc(nvsize, KM_SLEEP);
1625 error = dmu_read(spa->spa_meta_objset, obj, 0, nvsize, packed,
1626 DMU_READ_PREFETCH);
1627 if (error == 0)
1628 error = nvlist_unpack(packed, nvsize, value, 0);
1629 vmem_free(packed, nvsize);
1630
1631 return (error);
1632 }
1633
1634 /*
1635 * Checks to see if the given vdev could not be opened, in which case we post a
1636 * sysevent to notify the autoreplace code that the device has been removed.
1637 */
1638 static void
1639 spa_check_removed(vdev_t *vd)
1640 {
1641 int c;
1642
1643 for (c = 0; c < vd->vdev_children; c++)
1644 spa_check_removed(vd->vdev_child[c]);
1645
1646 if (vd->vdev_ops->vdev_op_leaf && vdev_is_dead(vd) &&
1647 !vd->vdev_ishole) {
1648 zfs_ereport_post(FM_EREPORT_RESOURCE_AUTOREPLACE,
1649 vd->vdev_spa, vd, NULL, 0, 0);
1650 spa_event_notify(vd->vdev_spa, vd, FM_EREPORT_ZFS_DEVICE_CHECK);
1651 }
1652 }
1653
1654 /*
1655 * Validate the current config against the MOS config
1656 */
1657 static boolean_t
1658 spa_config_valid(spa_t *spa, nvlist_t *config)
1659 {
1660 vdev_t *mrvd, *rvd = spa->spa_root_vdev;
1661 nvlist_t *nv;
1662 int c, i;
1663
1664 VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nv) == 0);
1665
1666 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1667 VERIFY(spa_config_parse(spa, &mrvd, nv, NULL, 0, VDEV_ALLOC_LOAD) == 0);
1668
1669 ASSERT3U(rvd->vdev_children, ==, mrvd->vdev_children);
1670
1671 /*
1672 * If we're doing a normal import, then build up any additional
1673 * diagnostic information about missing devices in this config.
1674 * We'll pass this up to the user for further processing.
1675 */
1676 if (!(spa->spa_import_flags & ZFS_IMPORT_MISSING_LOG)) {
1677 nvlist_t **child, *nv;
1678 uint64_t idx = 0;
1679
1680 child = kmem_alloc(rvd->vdev_children * sizeof (nvlist_t **),
1681 KM_SLEEP);
1682 VERIFY(nvlist_alloc(&nv, NV_UNIQUE_NAME, KM_SLEEP) == 0);
1683
1684 for (c = 0; c < rvd->vdev_children; c++) {
1685 vdev_t *tvd = rvd->vdev_child[c];
1686 vdev_t *mtvd = mrvd->vdev_child[c];
1687
1688 if (tvd->vdev_ops == &vdev_missing_ops &&
1689 mtvd->vdev_ops != &vdev_missing_ops &&
1690 mtvd->vdev_islog)
1691 child[idx++] = vdev_config_generate(spa, mtvd,
1692 B_FALSE, 0);
1693 }
1694
1695 if (idx) {
1696 VERIFY(nvlist_add_nvlist_array(nv,
1697 ZPOOL_CONFIG_CHILDREN, child, idx) == 0);
1698 VERIFY(nvlist_add_nvlist(spa->spa_load_info,
1699 ZPOOL_CONFIG_MISSING_DEVICES, nv) == 0);
1700
1701 for (i = 0; i < idx; i++)
1702 nvlist_free(child[i]);
1703 }
1704 nvlist_free(nv);
1705 kmem_free(child, rvd->vdev_children * sizeof (char **));
1706 }
1707
1708 /*
1709 * Compare the root vdev tree with the information we have
1710 * from the MOS config (mrvd). Check each top-level vdev
1711 * with the corresponding MOS config top-level (mtvd).
1712 */
1713 for (c = 0; c < rvd->vdev_children; c++) {
1714 vdev_t *tvd = rvd->vdev_child[c];
1715 vdev_t *mtvd = mrvd->vdev_child[c];
1716
1717 /*
1718 * Resolve any "missing" vdevs in the current configuration.
1719 * If we find that the MOS config has more accurate information
1720 * about the top-level vdev then use that vdev instead.
1721 */
1722 if (tvd->vdev_ops == &vdev_missing_ops &&
1723 mtvd->vdev_ops != &vdev_missing_ops) {
1724
1725 if (!(spa->spa_import_flags & ZFS_IMPORT_MISSING_LOG))
1726 continue;
1727
1728 /*
1729 * Device specific actions.
1730 */
1731 if (mtvd->vdev_islog) {
1732 spa_set_log_state(spa, SPA_LOG_CLEAR);
1733 } else {
1734 /*
1735 * XXX - once we have 'readonly' pool
1736 * support we should be able to handle
1737 * missing data devices by transitioning
1738 * the pool to readonly.
1739 */
1740 continue;
1741 }
1742
1743 /*
1744 * Swap the missing vdev with the data we were
1745 * able to obtain from the MOS config.
1746 */
1747 vdev_remove_child(rvd, tvd);
1748 vdev_remove_child(mrvd, mtvd);
1749
1750 vdev_add_child(rvd, mtvd);
1751 vdev_add_child(mrvd, tvd);
1752
1753 spa_config_exit(spa, SCL_ALL, FTAG);
1754 vdev_load(mtvd);
1755 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1756
1757 vdev_reopen(rvd);
1758 } else if (mtvd->vdev_islog) {
1759 /*
1760 * Load the slog device's state from the MOS config
1761 * since it's possible that the label does not
1762 * contain the most up-to-date information.
1763 */
1764 vdev_load_log_state(tvd, mtvd);
1765 vdev_reopen(tvd);
1766 }
1767 }
1768 vdev_free(mrvd);
1769 spa_config_exit(spa, SCL_ALL, FTAG);
1770
1771 /*
1772 * Ensure we were able to validate the config.
1773 */
1774 return (rvd->vdev_guid_sum == spa->spa_uberblock.ub_guid_sum);
1775 }
1776
1777 /*
1778 * Check for missing log devices
1779 */
1780 static boolean_t
1781 spa_check_logs(spa_t *spa)
1782 {
1783 boolean_t rv = B_FALSE;
1784 dsl_pool_t *dp = spa_get_dsl(spa);
1785
1786 switch (spa->spa_log_state) {
1787 default:
1788 break;
1789 case SPA_LOG_MISSING:
1790 /* need to recheck in case slog has been restored */
1791 case SPA_LOG_UNKNOWN:
1792 rv = (dmu_objset_find_dp(dp, dp->dp_root_dir_obj,
1793 zil_check_log_chain, NULL, DS_FIND_CHILDREN) != 0);
1794 if (rv)
1795 spa_set_log_state(spa, SPA_LOG_MISSING);
1796 break;
1797 }
1798 return (rv);
1799 }
1800
1801 static boolean_t
1802 spa_passivate_log(spa_t *spa)
1803 {
1804 vdev_t *rvd = spa->spa_root_vdev;
1805 boolean_t slog_found = B_FALSE;
1806 int c;
1807
1808 ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER));
1809
1810 if (!spa_has_slogs(spa))
1811 return (B_FALSE);
1812
1813 for (c = 0; c < rvd->vdev_children; c++) {
1814 vdev_t *tvd = rvd->vdev_child[c];
1815 metaslab_group_t *mg = tvd->vdev_mg;
1816
1817 if (tvd->vdev_islog) {
1818 metaslab_group_passivate(mg);
1819 slog_found = B_TRUE;
1820 }
1821 }
1822
1823 return (slog_found);
1824 }
1825
1826 static void
1827 spa_activate_log(spa_t *spa)
1828 {
1829 vdev_t *rvd = spa->spa_root_vdev;
1830 int c;
1831
1832 ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER));
1833
1834 for (c = 0; c < rvd->vdev_children; c++) {
1835 vdev_t *tvd = rvd->vdev_child[c];
1836 metaslab_group_t *mg = tvd->vdev_mg;
1837
1838 if (tvd->vdev_islog)
1839 metaslab_group_activate(mg);
1840 }
1841 }
1842
1843 int
1844 spa_offline_log(spa_t *spa)
1845 {
1846 int error;
1847
1848 error = dmu_objset_find(spa_name(spa), zil_vdev_offline,
1849 NULL, DS_FIND_CHILDREN);
1850 if (error == 0) {
1851 /*
1852 * We successfully offlined the log device, sync out the
1853 * current txg so that the "stubby" block can be removed
1854 * by zil_sync().
1855 */
1856 txg_wait_synced(spa->spa_dsl_pool, 0);
1857 }
1858 return (error);
1859 }
1860
1861 static void
1862 spa_aux_check_removed(spa_aux_vdev_t *sav)
1863 {
1864 int i;
1865
1866 for (i = 0; i < sav->sav_count; i++)
1867 spa_check_removed(sav->sav_vdevs[i]);
1868 }
1869
1870 void
1871 spa_claim_notify(zio_t *zio)
1872 {
1873 spa_t *spa = zio->io_spa;
1874
1875 if (zio->io_error)
1876 return;
1877
1878 mutex_enter(&spa->spa_props_lock); /* any mutex will do */
1879 if (spa->spa_claim_max_txg < zio->io_bp->blk_birth)
1880 spa->spa_claim_max_txg = zio->io_bp->blk_birth;
1881 mutex_exit(&spa->spa_props_lock);
1882 }
1883
1884 typedef struct spa_load_error {
1885 uint64_t sle_meta_count;
1886 uint64_t sle_data_count;
1887 } spa_load_error_t;
1888
1889 static void
1890 spa_load_verify_done(zio_t *zio)
1891 {
1892 blkptr_t *bp = zio->io_bp;
1893 spa_load_error_t *sle = zio->io_private;
1894 dmu_object_type_t type = BP_GET_TYPE(bp);
1895 int error = zio->io_error;
1896 spa_t *spa = zio->io_spa;
1897
1898 if (error) {
1899 if ((BP_GET_LEVEL(bp) != 0 || DMU_OT_IS_METADATA(type)) &&
1900 type != DMU_OT_INTENT_LOG)
1901 atomic_inc_64(&sle->sle_meta_count);
1902 else
1903 atomic_inc_64(&sle->sle_data_count);
1904 }
1905 zio_data_buf_free(zio->io_data, zio->io_size);
1906
1907 mutex_enter(&spa->spa_scrub_lock);
1908 spa->spa_scrub_inflight--;
1909 cv_broadcast(&spa->spa_scrub_io_cv);
1910 mutex_exit(&spa->spa_scrub_lock);
1911 }
1912
1913 /*
1914 * Maximum number of concurrent scrub i/os to create while verifying
1915 * a pool while importing it.
1916 */
1917 int spa_load_verify_maxinflight = 10000;
1918 int spa_load_verify_metadata = B_TRUE;
1919 int spa_load_verify_data = B_TRUE;
1920
1921 /*ARGSUSED*/
1922 static int
1923 spa_load_verify_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp,
1924 const zbookmark_phys_t *zb, const dnode_phys_t *dnp, void *arg)
1925 {
1926 zio_t *rio;
1927 size_t size;
1928 void *data;
1929
1930 if (bp == NULL || BP_IS_HOLE(bp) || BP_IS_EMBEDDED(bp))
1931 return (0);
1932 /*
1933 * Note: normally this routine will not be called if
1934 * spa_load_verify_metadata is not set. However, it may be useful
1935 * to manually set the flag after the traversal has begun.
1936 */
1937 if (!spa_load_verify_metadata)
1938 return (0);
1939 if (BP_GET_BUFC_TYPE(bp) == ARC_BUFC_DATA && !spa_load_verify_data)
1940 return (0);
1941
1942 rio = arg;
1943 size = BP_GET_PSIZE(bp);
1944 data = zio_data_buf_alloc(size);
1945
1946 mutex_enter(&spa->spa_scrub_lock);
1947 while (spa->spa_scrub_inflight >= spa_load_verify_maxinflight)
1948 cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock);
1949 spa->spa_scrub_inflight++;
1950 mutex_exit(&spa->spa_scrub_lock);
1951
1952 zio_nowait(zio_read(rio, spa, bp, data, size,
1953 spa_load_verify_done, rio->io_private, ZIO_PRIORITY_SCRUB,
1954 ZIO_FLAG_SPECULATIVE | ZIO_FLAG_CANFAIL |
1955 ZIO_FLAG_SCRUB | ZIO_FLAG_RAW, zb));
1956 return (0);
1957 }
1958
1959 static int
1960 spa_load_verify(spa_t *spa)
1961 {
1962 zio_t *rio;
1963 spa_load_error_t sle = { 0 };
1964 zpool_rewind_policy_t policy;
1965 boolean_t verify_ok = B_FALSE;
1966 int error = 0;
1967
1968 zpool_get_rewind_policy(spa->spa_config, &policy);
1969
1970 if (policy.zrp_request & ZPOOL_NEVER_REWIND)
1971 return (0);
1972
1973 rio = zio_root(spa, NULL, &sle,
1974 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE);
1975
1976 if (spa_load_verify_metadata) {
1977 error = traverse_pool(spa, spa->spa_verify_min_txg,
1978 TRAVERSE_PRE | TRAVERSE_PREFETCH_METADATA,
1979 spa_load_verify_cb, rio);
1980 }
1981
1982 (void) zio_wait(rio);
1983
1984 spa->spa_load_meta_errors = sle.sle_meta_count;
1985 spa->spa_load_data_errors = sle.sle_data_count;
1986
1987 if (!error && sle.sle_meta_count <= policy.zrp_maxmeta &&
1988 sle.sle_data_count <= policy.zrp_maxdata) {
1989 int64_t loss = 0;
1990
1991 verify_ok = B_TRUE;
1992 spa->spa_load_txg = spa->spa_uberblock.ub_txg;
1993 spa->spa_load_txg_ts = spa->spa_uberblock.ub_timestamp;
1994
1995 loss = spa->spa_last_ubsync_txg_ts - spa->spa_load_txg_ts;
1996 VERIFY(nvlist_add_uint64(spa->spa_load_info,
1997 ZPOOL_CONFIG_LOAD_TIME, spa->spa_load_txg_ts) == 0);
1998 VERIFY(nvlist_add_int64(spa->spa_load_info,
1999 ZPOOL_CONFIG_REWIND_TIME, loss) == 0);
2000 VERIFY(nvlist_add_uint64(spa->spa_load_info,
2001 ZPOOL_CONFIG_LOAD_DATA_ERRORS, sle.sle_data_count) == 0);
2002 } else {
2003 spa->spa_load_max_txg = spa->spa_uberblock.ub_txg;
2004 }
2005
2006 if (error) {
2007 if (error != ENXIO && error != EIO)
2008 error = SET_ERROR(EIO);
2009 return (error);
2010 }
2011
2012 return (verify_ok ? 0 : EIO);
2013 }
2014
2015 /*
2016 * Find a value in the pool props object.
2017 */
2018 static void
2019 spa_prop_find(spa_t *spa, zpool_prop_t prop, uint64_t *val)
2020 {
2021 (void) zap_lookup(spa->spa_meta_objset, spa->spa_pool_props_object,
2022 zpool_prop_to_name(prop), sizeof (uint64_t), 1, val);
2023 }
2024
2025 /*
2026 * Find a value in the pool directory object.
2027 */
2028 static int
2029 spa_dir_prop(spa_t *spa, const char *name, uint64_t *val)
2030 {
2031 return (zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
2032 name, sizeof (uint64_t), 1, val));
2033 }
2034
2035 static int
2036 spa_vdev_err(vdev_t *vdev, vdev_aux_t aux, int err)
2037 {
2038 vdev_set_state(vdev, B_TRUE, VDEV_STATE_CANT_OPEN, aux);
2039 return (err);
2040 }
2041
2042 /*
2043 * Fix up config after a partly-completed split. This is done with the
2044 * ZPOOL_CONFIG_SPLIT nvlist. Both the splitting pool and the split-off
2045 * pool have that entry in their config, but only the splitting one contains
2046 * a list of all the guids of the vdevs that are being split off.
2047 *
2048 * This function determines what to do with that list: either rejoin
2049 * all the disks to the pool, or complete the splitting process. To attempt
2050 * the rejoin, each disk that is offlined is marked online again, and
2051 * we do a reopen() call. If the vdev label for every disk that was
2052 * marked online indicates it was successfully split off (VDEV_AUX_SPLIT_POOL)
2053 * then we call vdev_split() on each disk, and complete the split.
2054 *
2055 * Otherwise we leave the config alone, with all the vdevs in place in
2056 * the original pool.
2057 */
2058 static void
2059 spa_try_repair(spa_t *spa, nvlist_t *config)
2060 {
2061 uint_t extracted;
2062 uint64_t *glist;
2063 uint_t i, gcount;
2064 nvlist_t *nvl;
2065 vdev_t **vd;
2066 boolean_t attempt_reopen;
2067
2068 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT, &nvl) != 0)
2069 return;
2070
2071 /* check that the config is complete */
2072 if (nvlist_lookup_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST,
2073 &glist, &gcount) != 0)
2074 return;
2075
2076 vd = kmem_zalloc(gcount * sizeof (vdev_t *), KM_SLEEP);
2077
2078 /* attempt to online all the vdevs & validate */
2079 attempt_reopen = B_TRUE;
2080 for (i = 0; i < gcount; i++) {
2081 if (glist[i] == 0) /* vdev is hole */
2082 continue;
2083
2084 vd[i] = spa_lookup_by_guid(spa, glist[i], B_FALSE);
2085 if (vd[i] == NULL) {
2086 /*
2087 * Don't bother attempting to reopen the disks;
2088 * just do the split.
2089 */
2090 attempt_reopen = B_FALSE;
2091 } else {
2092 /* attempt to re-online it */
2093 vd[i]->vdev_offline = B_FALSE;
2094 }
2095 }
2096
2097 if (attempt_reopen) {
2098 vdev_reopen(spa->spa_root_vdev);
2099
2100 /* check each device to see what state it's in */
2101 for (extracted = 0, i = 0; i < gcount; i++) {
2102 if (vd[i] != NULL &&
2103 vd[i]->vdev_stat.vs_aux != VDEV_AUX_SPLIT_POOL)
2104 break;
2105 ++extracted;
2106 }
2107 }
2108
2109 /*
2110 * If every disk has been moved to the new pool, or if we never
2111 * even attempted to look at them, then we split them off for
2112 * good.
2113 */
2114 if (!attempt_reopen || gcount == extracted) {
2115 for (i = 0; i < gcount; i++)
2116 if (vd[i] != NULL)
2117 vdev_split(vd[i]);
2118 vdev_reopen(spa->spa_root_vdev);
2119 }
2120
2121 kmem_free(vd, gcount * sizeof (vdev_t *));
2122 }
2123
2124 static int
2125 spa_load(spa_t *spa, spa_load_state_t state, spa_import_type_t type,
2126 boolean_t mosconfig)
2127 {
2128 nvlist_t *config = spa->spa_config;
2129 char *ereport = FM_EREPORT_ZFS_POOL;
2130 char *comment;
2131 int error;
2132 uint64_t pool_guid;
2133 nvlist_t *nvl;
2134
2135 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, &pool_guid))
2136 return (SET_ERROR(EINVAL));
2137
2138 ASSERT(spa->spa_comment == NULL);
2139 if (nvlist_lookup_string(config, ZPOOL_CONFIG_COMMENT, &comment) == 0)
2140 spa->spa_comment = spa_strdup(comment);
2141
2142 /*
2143 * Versioning wasn't explicitly added to the label until later, so if
2144 * it's not present treat it as the initial version.
2145 */
2146 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VERSION,
2147 &spa->spa_ubsync.ub_version) != 0)
2148 spa->spa_ubsync.ub_version = SPA_VERSION_INITIAL;
2149
2150 (void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG,
2151 &spa->spa_config_txg);
2152
2153 if ((state == SPA_LOAD_IMPORT || state == SPA_LOAD_TRYIMPORT) &&
2154 spa_guid_exists(pool_guid, 0)) {
2155 error = SET_ERROR(EEXIST);
2156 } else {
2157 spa->spa_config_guid = pool_guid;
2158
2159 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT,
2160 &nvl) == 0) {
2161 VERIFY(nvlist_dup(nvl, &spa->spa_config_splitting,
2162 KM_SLEEP) == 0);
2163 }
2164
2165 nvlist_free(spa->spa_load_info);
2166 spa->spa_load_info = fnvlist_alloc();
2167
2168 gethrestime(&spa->spa_loaded_ts);
2169 error = spa_load_impl(spa, pool_guid, config, state, type,
2170 mosconfig, &ereport);
2171 }
2172
2173 /*
2174 * Don't count references from objsets that are already closed
2175 * and are making their way through the eviction process.
2176 */
2177 spa_evicting_os_wait(spa);
2178 spa->spa_minref = refcount_count(&spa->spa_refcount);
2179 if (error) {
2180 if (error != EEXIST) {
2181 spa->spa_loaded_ts.tv_sec = 0;
2182 spa->spa_loaded_ts.tv_nsec = 0;
2183 }
2184 if (error != EBADF) {
2185 zfs_ereport_post(ereport, spa, NULL, NULL, 0, 0);
2186 }
2187 }
2188 spa->spa_load_state = error ? SPA_LOAD_ERROR : SPA_LOAD_NONE;
2189 spa->spa_ena = 0;
2190
2191 return (error);
2192 }
2193
2194 /*
2195 * Load an existing storage pool, using the pool's builtin spa_config as a
2196 * source of configuration information.
2197 */
2198 __attribute__((always_inline))
2199 static inline int
2200 spa_load_impl(spa_t *spa, uint64_t pool_guid, nvlist_t *config,
2201 spa_load_state_t state, spa_import_type_t type, boolean_t mosconfig,
2202 char **ereport)
2203 {
2204 int error = 0;
2205 nvlist_t *nvroot = NULL;
2206 nvlist_t *label;
2207 vdev_t *rvd;
2208 uberblock_t *ub = &spa->spa_uberblock;
2209 uint64_t children, config_cache_txg = spa->spa_config_txg;
2210 int orig_mode = spa->spa_mode;
2211 int parse, i;
2212 uint64_t obj;
2213 boolean_t missing_feat_write = B_FALSE;
2214
2215 /*
2216 * If this is an untrusted config, access the pool in read-only mode.
2217 * This prevents things like resilvering recently removed devices.
2218 */
2219 if (!mosconfig)
2220 spa->spa_mode = FREAD;
2221
2222 ASSERT(MUTEX_HELD(&spa_namespace_lock));
2223
2224 spa->spa_load_state = state;
2225
2226 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvroot))
2227 return (SET_ERROR(EINVAL));
2228
2229 parse = (type == SPA_IMPORT_EXISTING ?
2230 VDEV_ALLOC_LOAD : VDEV_ALLOC_SPLIT);
2231
2232 /*
2233 * Create "The Godfather" zio to hold all async IOs
2234 */
2235 spa->spa_async_zio_root = kmem_alloc(max_ncpus * sizeof (void *),
2236 KM_SLEEP);
2237 for (i = 0; i < max_ncpus; i++) {
2238 spa->spa_async_zio_root[i] = zio_root(spa, NULL, NULL,
2239 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
2240 ZIO_FLAG_GODFATHER);
2241 }
2242
2243 /*
2244 * Parse the configuration into a vdev tree. We explicitly set the
2245 * value that will be returned by spa_version() since parsing the
2246 * configuration requires knowing the version number.
2247 */
2248 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2249 error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, parse);
2250 spa_config_exit(spa, SCL_ALL, FTAG);
2251
2252 if (error != 0)
2253 return (error);
2254
2255 ASSERT(spa->spa_root_vdev == rvd);
2256 ASSERT3U(spa->spa_min_ashift, >=, SPA_MINBLOCKSHIFT);
2257 ASSERT3U(spa->spa_max_ashift, <=, SPA_MAXBLOCKSHIFT);
2258
2259 if (type != SPA_IMPORT_ASSEMBLE) {
2260 ASSERT(spa_guid(spa) == pool_guid);
2261 }
2262
2263 /*
2264 * Try to open all vdevs, loading each label in the process.
2265 */
2266 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2267 error = vdev_open(rvd);
2268 spa_config_exit(spa, SCL_ALL, FTAG);
2269 if (error != 0)
2270 return (error);
2271
2272 /*
2273 * We need to validate the vdev labels against the configuration that
2274 * we have in hand, which is dependent on the setting of mosconfig. If
2275 * mosconfig is true then we're validating the vdev labels based on
2276 * that config. Otherwise, we're validating against the cached config
2277 * (zpool.cache) that was read when we loaded the zfs module, and then
2278 * later we will recursively call spa_load() and validate against
2279 * the vdev config.
2280 *
2281 * If we're assembling a new pool that's been split off from an
2282 * existing pool, the labels haven't yet been updated so we skip
2283 * validation for now.
2284 */
2285 if (type != SPA_IMPORT_ASSEMBLE) {
2286 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2287 error = vdev_validate(rvd, mosconfig);
2288 spa_config_exit(spa, SCL_ALL, FTAG);
2289
2290 if (error != 0)
2291 return (error);
2292
2293 if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN)
2294 return (SET_ERROR(ENXIO));
2295 }
2296
2297 /*
2298 * Find the best uberblock.
2299 */
2300 vdev_uberblock_load(rvd, ub, &label);
2301
2302 /*
2303 * If we weren't able to find a single valid uberblock, return failure.
2304 */
2305 if (ub->ub_txg == 0) {
2306 nvlist_free(label);
2307 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, ENXIO));
2308 }
2309
2310 /*
2311 * If the pool has an unsupported version we can't open it.
2312 */
2313 if (!SPA_VERSION_IS_SUPPORTED(ub->ub_version)) {
2314 nvlist_free(label);
2315 return (spa_vdev_err(rvd, VDEV_AUX_VERSION_NEWER, ENOTSUP));
2316 }
2317
2318 if (ub->ub_version >= SPA_VERSION_FEATURES) {
2319 nvlist_t *features;
2320
2321 /*
2322 * If we weren't able to find what's necessary for reading the
2323 * MOS in the label, return failure.
2324 */
2325 if (label == NULL || nvlist_lookup_nvlist(label,
2326 ZPOOL_CONFIG_FEATURES_FOR_READ, &features) != 0) {
2327 nvlist_free(label);
2328 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
2329 ENXIO));
2330 }
2331
2332 /*
2333 * Update our in-core representation with the definitive values
2334 * from the label.
2335 */
2336 nvlist_free(spa->spa_label_features);
2337 VERIFY(nvlist_dup(features, &spa->spa_label_features, 0) == 0);
2338 }
2339
2340 nvlist_free(label);
2341
2342 /*
2343 * Look through entries in the label nvlist's features_for_read. If
2344 * there is a feature listed there which we don't understand then we
2345 * cannot open a pool.
2346 */
2347 if (ub->ub_version >= SPA_VERSION_FEATURES) {
2348 nvlist_t *unsup_feat;
2349 nvpair_t *nvp;
2350
2351 VERIFY(nvlist_alloc(&unsup_feat, NV_UNIQUE_NAME, KM_SLEEP) ==
2352 0);
2353
2354 for (nvp = nvlist_next_nvpair(spa->spa_label_features, NULL);
2355 nvp != NULL;
2356 nvp = nvlist_next_nvpair(spa->spa_label_features, nvp)) {
2357 if (!zfeature_is_supported(nvpair_name(nvp))) {
2358 VERIFY(nvlist_add_string(unsup_feat,
2359 nvpair_name(nvp), "") == 0);
2360 }
2361 }
2362
2363 if (!nvlist_empty(unsup_feat)) {
2364 VERIFY(nvlist_add_nvlist(spa->spa_load_info,
2365 ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat) == 0);
2366 nvlist_free(unsup_feat);
2367 return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT,
2368 ENOTSUP));
2369 }
2370
2371 nvlist_free(unsup_feat);
2372 }
2373
2374 /*
2375 * If the vdev guid sum doesn't match the uberblock, we have an
2376 * incomplete configuration. We first check to see if the pool
2377 * is aware of the complete config (i.e ZPOOL_CONFIG_VDEV_CHILDREN).
2378 * If it is, defer the vdev_guid_sum check till later so we
2379 * can handle missing vdevs.
2380 */
2381 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VDEV_CHILDREN,
2382 &children) != 0 && mosconfig && type != SPA_IMPORT_ASSEMBLE &&
2383 rvd->vdev_guid_sum != ub->ub_guid_sum)
2384 return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM, ENXIO));
2385
2386 if (type != SPA_IMPORT_ASSEMBLE && spa->spa_config_splitting) {
2387 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2388 spa_try_repair(spa, config);
2389 spa_config_exit(spa, SCL_ALL, FTAG);
2390 nvlist_free(spa->spa_config_splitting);
2391 spa->spa_config_splitting = NULL;
2392 }
2393
2394 /*
2395 * Initialize internal SPA structures.
2396 */
2397 spa->spa_state = POOL_STATE_ACTIVE;
2398 spa->spa_ubsync = spa->spa_uberblock;
2399 spa->spa_verify_min_txg = spa->spa_extreme_rewind ?
2400 TXG_INITIAL - 1 : spa_last_synced_txg(spa) - TXG_DEFER_SIZE - 1;
2401 spa->spa_first_txg = spa->spa_last_ubsync_txg ?
2402 spa->spa_last_ubsync_txg : spa_last_synced_txg(spa) + 1;
2403 spa->spa_claim_max_txg = spa->spa_first_txg;
2404 spa->spa_prev_software_version = ub->ub_software_version;
2405
2406 error = dsl_pool_init(spa, spa->spa_first_txg, &spa->spa_dsl_pool);
2407 if (error)
2408 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2409 spa->spa_meta_objset = spa->spa_dsl_pool->dp_meta_objset;
2410
2411 if (spa_dir_prop(spa, DMU_POOL_CONFIG, &spa->spa_config_object) != 0)
2412 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2413
2414 if (spa_version(spa) >= SPA_VERSION_FEATURES) {
2415 boolean_t missing_feat_read = B_FALSE;
2416 nvlist_t *unsup_feat, *enabled_feat;
2417 spa_feature_t i;
2418
2419 if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_READ,
2420 &spa->spa_feat_for_read_obj) != 0) {
2421 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2422 }
2423
2424 if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_WRITE,
2425 &spa->spa_feat_for_write_obj) != 0) {
2426 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2427 }
2428
2429 if (spa_dir_prop(spa, DMU_POOL_FEATURE_DESCRIPTIONS,
2430 &spa->spa_feat_desc_obj) != 0) {
2431 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2432 }
2433
2434 enabled_feat = fnvlist_alloc();
2435 unsup_feat = fnvlist_alloc();
2436
2437 if (!spa_features_check(spa, B_FALSE,
2438 unsup_feat, enabled_feat))
2439 missing_feat_read = B_TRUE;
2440
2441 if (spa_writeable(spa) || state == SPA_LOAD_TRYIMPORT) {
2442 if (!spa_features_check(spa, B_TRUE,
2443 unsup_feat, enabled_feat)) {
2444 missing_feat_write = B_TRUE;
2445 }
2446 }
2447
2448 fnvlist_add_nvlist(spa->spa_load_info,
2449 ZPOOL_CONFIG_ENABLED_FEAT, enabled_feat);
2450
2451 if (!nvlist_empty(unsup_feat)) {
2452 fnvlist_add_nvlist(spa->spa_load_info,
2453 ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat);
2454 }
2455
2456 fnvlist_free(enabled_feat);
2457 fnvlist_free(unsup_feat);
2458
2459 if (!missing_feat_read) {
2460 fnvlist_add_boolean(spa->spa_load_info,
2461 ZPOOL_CONFIG_CAN_RDONLY);
2462 }
2463
2464 /*
2465 * If the state is SPA_LOAD_TRYIMPORT, our objective is
2466 * twofold: to determine whether the pool is available for
2467 * import in read-write mode and (if it is not) whether the
2468 * pool is available for import in read-only mode. If the pool
2469 * is available for import in read-write mode, it is displayed
2470 * as available in userland; if it is not available for import
2471 * in read-only mode, it is displayed as unavailable in
2472 * userland. If the pool is available for import in read-only
2473 * mode but not read-write mode, it is displayed as unavailable
2474 * in userland with a special note that the pool is actually
2475 * available for open in read-only mode.
2476 *
2477 * As a result, if the state is SPA_LOAD_TRYIMPORT and we are
2478 * missing a feature for write, we must first determine whether
2479 * the pool can be opened read-only before returning to
2480 * userland in order to know whether to display the
2481 * abovementioned note.
2482 */
2483 if (missing_feat_read || (missing_feat_write &&
2484 spa_writeable(spa))) {
2485 return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT,
2486 ENOTSUP));
2487 }
2488
2489 /*
2490 * Load refcounts for ZFS features from disk into an in-memory
2491 * cache during SPA initialization.
2492 */
2493 for (i = 0; i < SPA_FEATURES; i++) {
2494 uint64_t refcount;
2495
2496 error = feature_get_refcount_from_disk(spa,
2497 &spa_feature_table[i], &refcount);
2498 if (error == 0) {
2499 spa->spa_feat_refcount_cache[i] = refcount;
2500 } else if (error == ENOTSUP) {
2501 spa->spa_feat_refcount_cache[i] =
2502 SPA_FEATURE_DISABLED;
2503 } else {
2504 return (spa_vdev_err(rvd,
2505 VDEV_AUX_CORRUPT_DATA, EIO));
2506 }
2507 }
2508 }
2509
2510 if (spa_feature_is_active(spa, SPA_FEATURE_ENABLED_TXG)) {
2511 if (spa_dir_prop(spa, DMU_POOL_FEATURE_ENABLED_TXG,
2512 &spa->spa_feat_enabled_txg_obj) != 0)
2513 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2514 }
2515
2516 spa->spa_is_initializing = B_TRUE;
2517 error = dsl_pool_open(spa->spa_dsl_pool);
2518 spa->spa_is_initializing = B_FALSE;
2519 if (error != 0)
2520 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2521
2522 if (!mosconfig) {
2523 uint64_t hostid;
2524 nvlist_t *policy = NULL, *nvconfig;
2525
2526 if (load_nvlist(spa, spa->spa_config_object, &nvconfig) != 0)
2527 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2528
2529 if (!spa_is_root(spa) && nvlist_lookup_uint64(nvconfig,
2530 ZPOOL_CONFIG_HOSTID, &hostid) == 0) {
2531 char *hostname;
2532 unsigned long myhostid = 0;
2533
2534 VERIFY(nvlist_lookup_string(nvconfig,
2535 ZPOOL_CONFIG_HOSTNAME, &hostname) == 0);
2536
2537 #ifdef _KERNEL
2538 myhostid = zone_get_hostid(NULL);
2539 #else /* _KERNEL */
2540 /*
2541 * We're emulating the system's hostid in userland, so
2542 * we can't use zone_get_hostid().
2543 */
2544 (void) ddi_strtoul(hw_serial, NULL, 10, &myhostid);
2545 #endif /* _KERNEL */
2546 if (hostid != 0 && myhostid != 0 &&
2547 hostid != myhostid) {
2548 nvlist_free(nvconfig);
2549 cmn_err(CE_WARN, "pool '%s' could not be "
2550 "loaded as it was last accessed by another "
2551 "system (host: %s hostid: 0x%lx). See: "
2552 "http://zfsonlinux.org/msg/ZFS-8000-EY",
2553 spa_name(spa), hostname,
2554 (unsigned long)hostid);
2555 return (SET_ERROR(EBADF));
2556 }
2557 }
2558 if (nvlist_lookup_nvlist(spa->spa_config,
2559 ZPOOL_REWIND_POLICY, &policy) == 0)
2560 VERIFY(nvlist_add_nvlist(nvconfig,
2561 ZPOOL_REWIND_POLICY, policy) == 0);
2562
2563 spa_config_set(spa, nvconfig);
2564 spa_unload(spa);
2565 spa_deactivate(spa);
2566 spa_activate(spa, orig_mode);
2567
2568 return (spa_load(spa, state, SPA_IMPORT_EXISTING, B_TRUE));
2569 }
2570
2571 if (spa_dir_prop(spa, DMU_POOL_SYNC_BPOBJ, &obj) != 0)
2572 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2573 error = bpobj_open(&spa->spa_deferred_bpobj, spa->spa_meta_objset, obj);
2574 if (error != 0)
2575 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2576
2577 /*
2578 * Load the bit that tells us to use the new accounting function
2579 * (raid-z deflation). If we have an older pool, this will not
2580 * be present.
2581 */
2582 error = spa_dir_prop(spa, DMU_POOL_DEFLATE, &spa->spa_deflate);
2583 if (error != 0 && error != ENOENT)
2584 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2585
2586 error = spa_dir_prop(spa, DMU_POOL_CREATION_VERSION,
2587 &spa->spa_creation_version);
2588 if (error != 0 && error != ENOENT)
2589 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2590
2591 /*
2592 * Load the persistent error log. If we have an older pool, this will
2593 * not be present.
2594 */
2595 error = spa_dir_prop(spa, DMU_POOL_ERRLOG_LAST, &spa->spa_errlog_last);
2596 if (error != 0 && error != ENOENT)
2597 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2598
2599 error = spa_dir_prop(spa, DMU_POOL_ERRLOG_SCRUB,
2600 &spa->spa_errlog_scrub);
2601 if (error != 0 && error != ENOENT)
2602 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2603
2604 /*
2605 * Load the history object. If we have an older pool, this
2606 * will not be present.
2607 */
2608 error = spa_dir_prop(spa, DMU_POOL_HISTORY, &spa->spa_history);
2609 if (error != 0 && error != ENOENT)
2610 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2611
2612 /*
2613 * If we're assembling the pool from the split-off vdevs of
2614 * an existing pool, we don't want to attach the spares & cache
2615 * devices.
2616 */
2617
2618 /*
2619 * Load any hot spares for this pool.
2620 */
2621 error = spa_dir_prop(spa, DMU_POOL_SPARES, &spa->spa_spares.sav_object);
2622 if (error != 0 && error != ENOENT)
2623 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2624 if (error == 0 && type != SPA_IMPORT_ASSEMBLE) {
2625 ASSERT(spa_version(spa) >= SPA_VERSION_SPARES);
2626 if (load_nvlist(spa, spa->spa_spares.sav_object,
2627 &spa->spa_spares.sav_config) != 0)
2628 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2629
2630 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2631 spa_load_spares(spa);
2632 spa_config_exit(spa, SCL_ALL, FTAG);
2633 } else if (error == 0) {
2634 spa->spa_spares.sav_sync = B_TRUE;
2635 }
2636
2637 /*
2638 * Load any level 2 ARC devices for this pool.
2639 */
2640 error = spa_dir_prop(spa, DMU_POOL_L2CACHE,
2641 &spa->spa_l2cache.sav_object);
2642 if (error != 0 && error != ENOENT)
2643 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2644 if (error == 0 && type != SPA_IMPORT_ASSEMBLE) {
2645 ASSERT(spa_version(spa) >= SPA_VERSION_L2CACHE);
2646 if (load_nvlist(spa, spa->spa_l2cache.sav_object,
2647 &spa->spa_l2cache.sav_config) != 0)
2648 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2649
2650 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2651 spa_load_l2cache(spa);
2652 spa_config_exit(spa, SCL_ALL, FTAG);
2653 } else if (error == 0) {
2654 spa->spa_l2cache.sav_sync = B_TRUE;
2655 }
2656
2657 spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
2658
2659 error = spa_dir_prop(spa, DMU_POOL_PROPS, &spa->spa_pool_props_object);
2660 if (error && error != ENOENT)
2661 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2662
2663 if (error == 0) {
2664 uint64_t autoreplace = 0;
2665
2666 spa_prop_find(spa, ZPOOL_PROP_BOOTFS, &spa->spa_bootfs);
2667 spa_prop_find(spa, ZPOOL_PROP_AUTOREPLACE, &autoreplace);
2668 spa_prop_find(spa, ZPOOL_PROP_DELEGATION, &spa->spa_delegation);
2669 spa_prop_find(spa, ZPOOL_PROP_FAILUREMODE, &spa->spa_failmode);
2670 spa_prop_find(spa, ZPOOL_PROP_AUTOEXPAND, &spa->spa_autoexpand);
2671 spa_prop_find(spa, ZPOOL_PROP_DEDUPDITTO,
2672 &spa->spa_dedup_ditto);
2673
2674 spa->spa_autoreplace = (autoreplace != 0);
2675 }
2676
2677 /*
2678 * If the 'autoreplace' property is set, then post a resource notifying
2679 * the ZFS DE that it should not issue any faults for unopenable
2680 * devices. We also iterate over the vdevs, and post a sysevent for any
2681 * unopenable vdevs so that the normal autoreplace handler can take
2682 * over.
2683 */
2684 if (spa->spa_autoreplace && state != SPA_LOAD_TRYIMPORT) {
2685 spa_check_removed(spa->spa_root_vdev);
2686 /*
2687 * For the import case, this is done in spa_import(), because
2688 * at this point we're using the spare definitions from
2689 * the MOS config, not necessarily from the userland config.
2690 */
2691 if (state != SPA_LOAD_IMPORT) {
2692 spa_aux_check_removed(&spa->spa_spares);
2693 spa_aux_check_removed(&spa->spa_l2cache);
2694 }
2695 }
2696
2697 /*
2698 * Load the vdev state for all toplevel vdevs.
2699 */
2700 vdev_load(rvd);
2701
2702 /*
2703 * Propagate the leaf DTLs we just loaded all the way up the tree.
2704 */
2705 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2706 vdev_dtl_reassess(rvd, 0, 0, B_FALSE);
2707 spa_config_exit(spa, SCL_ALL, FTAG);
2708
2709 /*
2710 * Load the DDTs (dedup tables).
2711 */
2712 error = ddt_load(spa);
2713 if (error != 0)
2714 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2715
2716 spa_update_dspace(spa);
2717
2718 /*
2719 * Validate the config, using the MOS config to fill in any
2720 * information which might be missing. If we fail to validate
2721 * the config then declare the pool unfit for use. If we're
2722 * assembling a pool from a split, the log is not transferred
2723 * over.
2724 */
2725 if (type != SPA_IMPORT_ASSEMBLE) {
2726 nvlist_t *nvconfig;
2727
2728 if (load_nvlist(spa, spa->spa_config_object, &nvconfig) != 0)
2729 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2730
2731 if (!spa_config_valid(spa, nvconfig)) {
2732 nvlist_free(nvconfig);
2733 return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM,
2734 ENXIO));
2735 }
2736 nvlist_free(nvconfig);
2737
2738 /*
2739 * Now that we've validated the config, check the state of the
2740 * root vdev. If it can't be opened, it indicates one or
2741 * more toplevel vdevs are faulted.
2742 */
2743 if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN)
2744 return (SET_ERROR(ENXIO));
2745
2746 if (spa_writeable(spa) && spa_check_logs(spa)) {
2747 *ereport = FM_EREPORT_ZFS_LOG_REPLAY;
2748 return (spa_vdev_err(rvd, VDEV_AUX_BAD_LOG, ENXIO));
2749 }
2750 }
2751
2752 if (missing_feat_write) {
2753 ASSERT(state == SPA_LOAD_TRYIMPORT);
2754
2755 /*
2756 * At this point, we know that we can open the pool in
2757 * read-only mode but not read-write mode. We now have enough
2758 * information and can return to userland.
2759 */
2760 return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT, ENOTSUP));
2761 }
2762
2763 /*
2764 * We've successfully opened the pool, verify that we're ready
2765 * to start pushing transactions.
2766 */
2767 if (state != SPA_LOAD_TRYIMPORT) {
2768 if ((error = spa_load_verify(spa)))
2769 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
2770 error));
2771 }
2772
2773 if (spa_writeable(spa) && (state == SPA_LOAD_RECOVER ||
2774 spa->spa_load_max_txg == UINT64_MAX)) {
2775 dmu_tx_t *tx;
2776 int need_update = B_FALSE;
2777 dsl_pool_t *dp = spa_get_dsl(spa);
2778 int c;
2779
2780 ASSERT(state != SPA_LOAD_TRYIMPORT);
2781
2782 /*
2783 * Claim log blocks that haven't been committed yet.
2784 * This must all happen in a single txg.
2785 * Note: spa_claim_max_txg is updated by spa_claim_notify(),
2786 * invoked from zil_claim_log_block()'s i/o done callback.
2787 * Price of rollback is that we abandon the log.
2788 */
2789 spa->spa_claiming = B_TRUE;
2790
2791 tx = dmu_tx_create_assigned(dp, spa_first_txg(spa));
2792 (void) dmu_objset_find_dp(dp, dp->dp_root_dir_obj,
2793 zil_claim, tx, DS_FIND_CHILDREN);
2794 dmu_tx_commit(tx);
2795
2796 spa->spa_claiming = B_FALSE;
2797
2798 spa_set_log_state(spa, SPA_LOG_GOOD);
2799 spa->spa_sync_on = B_TRUE;
2800 txg_sync_start(spa->spa_dsl_pool);
2801
2802 /*
2803 * Wait for all claims to sync. We sync up to the highest
2804 * claimed log block birth time so that claimed log blocks
2805 * don't appear to be from the future. spa_claim_max_txg
2806 * will have been set for us by either zil_check_log_chain()
2807 * (invoked from spa_check_logs()) or zil_claim() above.
2808 */
2809 txg_wait_synced(spa->spa_dsl_pool, spa->spa_claim_max_txg);
2810
2811 /*
2812 * If the config cache is stale, or we have uninitialized
2813 * metaslabs (see spa_vdev_add()), then update the config.
2814 *
2815 * If this is a verbatim import, trust the current
2816 * in-core spa_config and update the disk labels.
2817 */
2818 if (config_cache_txg != spa->spa_config_txg ||
2819 state == SPA_LOAD_IMPORT ||
2820 state == SPA_LOAD_RECOVER ||
2821 (spa->spa_import_flags & ZFS_IMPORT_VERBATIM))
2822 need_update = B_TRUE;
2823
2824 for (c = 0; c < rvd->vdev_children; c++)
2825 if (rvd->vdev_child[c]->vdev_ms_array == 0)
2826 need_update = B_TRUE;
2827
2828 /*
2829 * Update the config cache asychronously in case we're the
2830 * root pool, in which case the config cache isn't writable yet.
2831 */
2832 if (need_update)
2833 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
2834
2835 /*
2836 * Check all DTLs to see if anything needs resilvering.
2837 */
2838 if (!dsl_scan_resilvering(spa->spa_dsl_pool) &&
2839 vdev_resilver_needed(rvd, NULL, NULL))
2840 spa_async_request(spa, SPA_ASYNC_RESILVER);
2841
2842 /*
2843 * Log the fact that we booted up (so that we can detect if
2844 * we rebooted in the middle of an operation).
2845 */
2846 spa_history_log_version(spa, "open");
2847
2848 /*
2849 * Delete any inconsistent datasets.
2850 */
2851 (void) dmu_objset_find(spa_name(spa),
2852 dsl_destroy_inconsistent, NULL, DS_FIND_CHILDREN);
2853
2854 /*
2855 * Clean up any stale temporary dataset userrefs.
2856 */
2857 dsl_pool_clean_tmp_userrefs(spa->spa_dsl_pool);
2858 }
2859
2860 return (0);
2861 }
2862
2863 static int
2864 spa_load_retry(spa_t *spa, spa_load_state_t state, int mosconfig)
2865 {
2866 int mode = spa->spa_mode;
2867
2868 spa_unload(spa);
2869 spa_deactivate(spa);
2870
2871 spa->spa_load_max_txg = spa->spa_uberblock.ub_txg - 1;
2872
2873 spa_activate(spa, mode);
2874 spa_async_suspend(spa);
2875
2876 return (spa_load(spa, state, SPA_IMPORT_EXISTING, mosconfig));
2877 }
2878
2879 /*
2880 * If spa_load() fails this function will try loading prior txg's. If
2881 * 'state' is SPA_LOAD_RECOVER and one of these loads succeeds the pool
2882 * will be rewound to that txg. If 'state' is not SPA_LOAD_RECOVER this
2883 * function will not rewind the pool and will return the same error as
2884 * spa_load().
2885 */
2886 static int
2887 spa_load_best(spa_t *spa, spa_load_state_t state, int mosconfig,
2888 uint64_t max_request, int rewind_flags)
2889 {
2890 nvlist_t *loadinfo = NULL;
2891 nvlist_t *config = NULL;
2892 int load_error, rewind_error;
2893 uint64_t safe_rewind_txg;
2894 uint64_t min_txg;
2895
2896 if (spa->spa_load_txg && state == SPA_LOAD_RECOVER) {
2897 spa->spa_load_max_txg = spa->spa_load_txg;
2898 spa_set_log_state(spa, SPA_LOG_CLEAR);
2899 } else {
2900 spa->spa_load_max_txg = max_request;
2901 if (max_request != UINT64_MAX)
2902 spa->spa_extreme_rewind = B_TRUE;
2903 }
2904
2905 load_error = rewind_error = spa_load(spa, state, SPA_IMPORT_EXISTING,
2906 mosconfig);
2907 if (load_error == 0)
2908 return (0);
2909
2910 if (spa->spa_root_vdev != NULL)
2911 config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
2912
2913 spa->spa_last_ubsync_txg = spa->spa_uberblock.ub_txg;
2914 spa->spa_last_ubsync_txg_ts = spa->spa_uberblock.ub_timestamp;
2915
2916 if (rewind_flags & ZPOOL_NEVER_REWIND) {
2917 nvlist_free(config);
2918 return (load_error);
2919 }
2920
2921 if (state == SPA_LOAD_RECOVER) {
2922 /* Price of rolling back is discarding txgs, including log */
2923 spa_set_log_state(spa, SPA_LOG_CLEAR);
2924 } else {
2925 /*
2926 * If we aren't rolling back save the load info from our first
2927 * import attempt so that we can restore it after attempting
2928 * to rewind.
2929 */
2930 loadinfo = spa->spa_load_info;
2931 spa->spa_load_info = fnvlist_alloc();
2932 }
2933
2934 spa->spa_load_max_txg = spa->spa_last_ubsync_txg;
2935 safe_rewind_txg = spa->spa_last_ubsync_txg - TXG_DEFER_SIZE;
2936 min_txg = (rewind_flags & ZPOOL_EXTREME_REWIND) ?
2937 TXG_INITIAL : safe_rewind_txg;
2938
2939 /*
2940 * Continue as long as we're finding errors, we're still within
2941 * the acceptable rewind range, and we're still finding uberblocks
2942 */
2943 while (rewind_error && spa->spa_uberblock.ub_txg >= min_txg &&
2944 spa->spa_uberblock.ub_txg <= spa->spa_load_max_txg) {
2945 if (spa->spa_load_max_txg < safe_rewind_txg)
2946 spa->spa_extreme_rewind = B_TRUE;
2947 rewind_error = spa_load_retry(spa, state, mosconfig);
2948 }
2949
2950 spa->spa_extreme_rewind = B_FALSE;
2951 spa->spa_load_max_txg = UINT64_MAX;
2952
2953 if (config && (rewind_error || state != SPA_LOAD_RECOVER))
2954 spa_config_set(spa, config);
2955
2956 if (state == SPA_LOAD_RECOVER) {
2957 ASSERT3P(loadinfo, ==, NULL);
2958 return (rewind_error);
2959 } else {
2960 /* Store the rewind info as part of the initial load info */
2961 fnvlist_add_nvlist(loadinfo, ZPOOL_CONFIG_REWIND_INFO,
2962 spa->spa_load_info);
2963
2964 /* Restore the initial load info */
2965 fnvlist_free(spa->spa_load_info);
2966 spa->spa_load_info = loadinfo;
2967
2968 return (load_error);
2969 }
2970 }
2971
2972 /*
2973 * Pool Open/Import
2974 *
2975 * The import case is identical to an open except that the configuration is sent
2976 * down from userland, instead of grabbed from the configuration cache. For the
2977 * case of an open, the pool configuration will exist in the
2978 * POOL_STATE_UNINITIALIZED state.
2979 *
2980 * The stats information (gen/count/ustats) is used to gather vdev statistics at
2981 * the same time open the pool, without having to keep around the spa_t in some
2982 * ambiguous state.
2983 */
2984 static int
2985 spa_open_common(const char *pool, spa_t **spapp, void *tag, nvlist_t *nvpolicy,
2986 nvlist_t **config)
2987 {
2988 spa_t *spa;
2989 spa_load_state_t state = SPA_LOAD_OPEN;
2990 int error;
2991 int locked = B_FALSE;
2992 int firstopen = B_FALSE;
2993
2994 *spapp = NULL;
2995
2996 /*
2997 * As disgusting as this is, we need to support recursive calls to this
2998 * function because dsl_dir_open() is called during spa_load(), and ends
2999 * up calling spa_open() again. The real fix is to figure out how to
3000 * avoid dsl_dir_open() calling this in the first place.
3001 */
3002 if (mutex_owner(&spa_namespace_lock) != curthread) {
3003 mutex_enter(&spa_namespace_lock);
3004 locked = B_TRUE;
3005 }
3006
3007 if ((spa = spa_lookup(pool)) == NULL) {
3008 if (locked)
3009 mutex_exit(&spa_namespace_lock);
3010 return (SET_ERROR(ENOENT));
3011 }
3012
3013 if (spa->spa_state == POOL_STATE_UNINITIALIZED) {
3014 zpool_rewind_policy_t policy;
3015
3016 firstopen = B_TRUE;
3017
3018 zpool_get_rewind_policy(nvpolicy ? nvpolicy : spa->spa_config,
3019 &policy);
3020 if (policy.zrp_request & ZPOOL_DO_REWIND)
3021 state = SPA_LOAD_RECOVER;
3022
3023 spa_activate(spa, spa_mode_global);
3024
3025 if (state != SPA_LOAD_RECOVER)
3026 spa->spa_last_ubsync_txg = spa->spa_load_txg = 0;
3027
3028 error = spa_load_best(spa, state, B_FALSE, policy.zrp_txg,
3029 policy.zrp_request);
3030
3031 if (error == EBADF) {
3032 /*
3033 * If vdev_validate() returns failure (indicated by
3034 * EBADF), it indicates that one of the vdevs indicates
3035 * that the pool has been exported or destroyed. If
3036 * this is the case, the config cache is out of sync and
3037 * we should remove the pool from the namespace.
3038 */
3039 spa_unload(spa);
3040 spa_deactivate(spa);
3041 spa_config_sync(spa, B_TRUE, B_TRUE);
3042 spa_remove(spa);
3043 if (locked)
3044 mutex_exit(&spa_namespace_lock);
3045 return (SET_ERROR(ENOENT));
3046 }
3047
3048 if (error) {
3049 /*
3050 * We can't open the pool, but we still have useful
3051 * information: the state of each vdev after the
3052 * attempted vdev_open(). Return this to the user.
3053 */
3054 if (config != NULL && spa->spa_config) {
3055 VERIFY(nvlist_dup(spa->spa_config, config,
3056 KM_SLEEP) == 0);
3057 VERIFY(nvlist_add_nvlist(*config,
3058 ZPOOL_CONFIG_LOAD_INFO,
3059 spa->spa_load_info) == 0);
3060 }
3061 spa_unload(spa);
3062 spa_deactivate(spa);
3063 spa->spa_last_open_failed = error;
3064 if (locked)
3065 mutex_exit(&spa_namespace_lock);
3066 *spapp = NULL;
3067 return (error);
3068 }
3069 }
3070
3071 spa_open_ref(spa, tag);
3072
3073 if (config != NULL)
3074 *config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
3075
3076 /*
3077 * If we've recovered the pool, pass back any information we
3078 * gathered while doing the load.
3079 */
3080 if (state == SPA_LOAD_RECOVER) {
3081 VERIFY(nvlist_add_nvlist(*config, ZPOOL_CONFIG_LOAD_INFO,
3082 spa->spa_load_info) == 0);
3083 }
3084
3085 if (locked) {
3086 spa->spa_last_open_failed = 0;
3087 spa->spa_last_ubsync_txg = 0;
3088 spa->spa_load_txg = 0;
3089 mutex_exit(&spa_namespace_lock);
3090 }
3091
3092 #ifdef _KERNEL
3093 if (firstopen)
3094 zvol_create_minors(spa->spa_name);
3095 #endif
3096
3097 *spapp = spa;
3098
3099 return (0);
3100 }
3101
3102 int
3103 spa_open_rewind(const char *name, spa_t **spapp, void *tag, nvlist_t *policy,
3104 nvlist_t **config)
3105 {
3106 return (spa_open_common(name, spapp, tag, policy, config));
3107 }
3108
3109 int
3110 spa_open(const char *name, spa_t **spapp, void *tag)
3111 {
3112 return (spa_open_common(name, spapp, tag, NULL, NULL));
3113 }
3114
3115 /*
3116 * Lookup the given spa_t, incrementing the inject count in the process,
3117 * preventing it from being exported or destroyed.
3118 */
3119 spa_t *
3120 spa_inject_addref(char *name)
3121 {
3122 spa_t *spa;
3123
3124 mutex_enter(&spa_namespace_lock);
3125 if ((spa = spa_lookup(name)) == NULL) {
3126 mutex_exit(&spa_namespace_lock);
3127 return (NULL);
3128 }
3129 spa->spa_inject_ref++;
3130 mutex_exit(&spa_namespace_lock);
3131
3132 return (spa);
3133 }
3134
3135 void
3136 spa_inject_delref(spa_t *spa)
3137 {
3138 mutex_enter(&spa_namespace_lock);
3139 spa->spa_inject_ref--;
3140 mutex_exit(&spa_namespace_lock);
3141 }
3142
3143 /*
3144 * Add spares device information to the nvlist.
3145 */
3146 static void
3147 spa_add_spares(spa_t *spa, nvlist_t *config)
3148 {
3149 nvlist_t **spares;
3150 uint_t i, nspares;
3151 nvlist_t *nvroot;
3152 uint64_t guid;
3153 vdev_stat_t *vs;
3154 uint_t vsc;
3155 uint64_t pool;
3156
3157 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
3158
3159 if (spa->spa_spares.sav_count == 0)
3160 return;
3161
3162 VERIFY(nvlist_lookup_nvlist(config,
3163 ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
3164 VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
3165 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
3166 if (nspares != 0) {
3167 VERIFY(nvlist_add_nvlist_array(nvroot,
3168 ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
3169 VERIFY(nvlist_lookup_nvlist_array(nvroot,
3170 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
3171
3172 /*
3173 * Go through and find any spares which have since been
3174 * repurposed as an active spare. If this is the case, update
3175 * their status appropriately.
3176 */
3177 for (i = 0; i < nspares; i++) {
3178 VERIFY(nvlist_lookup_uint64(spares[i],
3179 ZPOOL_CONFIG_GUID, &guid) == 0);
3180 if (spa_spare_exists(guid, &pool, NULL) &&
3181 pool != 0ULL) {
3182 VERIFY(nvlist_lookup_uint64_array(
3183 spares[i], ZPOOL_CONFIG_VDEV_STATS,
3184 (uint64_t **)&vs, &vsc) == 0);
3185 vs->vs_state = VDEV_STATE_CANT_OPEN;
3186 vs->vs_aux = VDEV_AUX_SPARED;
3187 }
3188 }
3189 }
3190 }
3191
3192 /*
3193 * Add l2cache device information to the nvlist, including vdev stats.
3194 */
3195 static void
3196 spa_add_l2cache(spa_t *spa, nvlist_t *config)
3197 {
3198 nvlist_t **l2cache;
3199 uint_t i, j, nl2cache;
3200 nvlist_t *nvroot;
3201 uint64_t guid;
3202 vdev_t *vd;
3203 vdev_stat_t *vs;
3204 uint_t vsc;
3205
3206 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
3207
3208 if (spa->spa_l2cache.sav_count == 0)
3209 return;
3210
3211 VERIFY(nvlist_lookup_nvlist(config,
3212 ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
3213 VERIFY(nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config,
3214 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
3215 if (nl2cache != 0) {
3216 VERIFY(nvlist_add_nvlist_array(nvroot,
3217 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
3218 VERIFY(nvlist_lookup_nvlist_array(nvroot,
3219 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
3220
3221 /*
3222 * Update level 2 cache device stats.
3223 */
3224
3225 for (i = 0; i < nl2cache; i++) {
3226 VERIFY(nvlist_lookup_uint64(l2cache[i],
3227 ZPOOL_CONFIG_GUID, &guid) == 0);
3228
3229 vd = NULL;
3230 for (j = 0; j < spa->spa_l2cache.sav_count; j++) {
3231 if (guid ==
3232 spa->spa_l2cache.sav_vdevs[j]->vdev_guid) {
3233 vd = spa->spa_l2cache.sav_vdevs[j];
3234 break;
3235 }
3236 }
3237 ASSERT(vd != NULL);
3238
3239 VERIFY(nvlist_lookup_uint64_array(l2cache[i],
3240 ZPOOL_CONFIG_VDEV_STATS, (uint64_t **)&vs, &vsc)
3241 == 0);
3242 vdev_get_stats(vd, vs);
3243 }
3244 }
3245 }
3246
3247 static void
3248 spa_feature_stats_from_disk(spa_t *spa, nvlist_t *features)
3249 {
3250 zap_cursor_t zc;
3251 zap_attribute_t za;
3252
3253 if (spa->spa_feat_for_read_obj != 0) {
3254 for (zap_cursor_init(&zc, spa->spa_meta_objset,
3255 spa->spa_feat_for_read_obj);
3256 zap_cursor_retrieve(&zc, &za) == 0;
3257 zap_cursor_advance(&zc)) {
3258 ASSERT(za.za_integer_length == sizeof (uint64_t) &&
3259 za.za_num_integers == 1);
3260 VERIFY0(nvlist_add_uint64(features, za.za_name,
3261 za.za_first_integer));
3262 }
3263 zap_cursor_fini(&zc);
3264 }
3265
3266 if (spa->spa_feat_for_write_obj != 0) {
3267 for (zap_cursor_init(&zc, spa->spa_meta_objset,
3268 spa->spa_feat_for_write_obj);
3269 zap_cursor_retrieve(&zc, &za) == 0;
3270 zap_cursor_advance(&zc)) {
3271 ASSERT(za.za_integer_length == sizeof (uint64_t) &&
3272 za.za_num_integers == 1);
3273 VERIFY0(nvlist_add_uint64(features, za.za_name,
3274 za.za_first_integer));
3275 }
3276 zap_cursor_fini(&zc);
3277 }
3278 }
3279
3280 static void
3281 spa_feature_stats_from_cache(spa_t *spa, nvlist_t *features)
3282 {
3283 int i;
3284
3285 for (i = 0; i < SPA_FEATURES; i++) {
3286 zfeature_info_t feature = spa_feature_table[i];
3287 uint64_t refcount;
3288
3289 if (feature_get_refcount(spa, &feature, &refcount) != 0)
3290 continue;
3291
3292 VERIFY0(nvlist_add_uint64(features, feature.fi_guid, refcount));
3293 }
3294 }
3295
3296 /*
3297 * Store a list of pool features and their reference counts in the
3298 * config.
3299 *
3300 * The first time this is called on a spa, allocate a new nvlist, fetch
3301 * the pool features and reference counts from disk, then save the list
3302 * in the spa. In subsequent calls on the same spa use the saved nvlist
3303 * and refresh its values from the cached reference counts. This
3304 * ensures we don't block here on I/O on a suspended pool so 'zpool
3305 * clear' can resume the pool.
3306 */
3307 static void
3308 spa_add_feature_stats(spa_t *spa, nvlist_t *config)
3309 {
3310 nvlist_t *features;
3311
3312 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
3313
3314 mutex_enter(&spa->spa_feat_stats_lock);
3315 features = spa->spa_feat_stats;
3316
3317 if (features != NULL) {
3318 spa_feature_stats_from_cache(spa, features);
3319 } else {
3320 VERIFY0(nvlist_alloc(&features, NV_UNIQUE_NAME, KM_SLEEP));
3321 spa->spa_feat_stats = features;
3322 spa_feature_stats_from_disk(spa, features);
3323 }
3324
3325 VERIFY0(nvlist_add_nvlist(config, ZPOOL_CONFIG_FEATURE_STATS,
3326 features));
3327
3328 mutex_exit(&spa->spa_feat_stats_lock);
3329 }
3330
3331 int
3332 spa_get_stats(const char *name, nvlist_t **config,
3333 char *altroot, size_t buflen)
3334 {
3335 int error;
3336 spa_t *spa;
3337
3338 *config = NULL;
3339 error = spa_open_common(name, &spa, FTAG, NULL, config);
3340
3341 if (spa != NULL) {
3342 /*
3343 * This still leaves a window of inconsistency where the spares
3344 * or l2cache devices could change and the config would be
3345 * self-inconsistent.
3346 */
3347 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
3348
3349 if (*config != NULL) {
3350 uint64_t loadtimes[2];
3351
3352 loadtimes[0] = spa->spa_loaded_ts.tv_sec;
3353 loadtimes[1] = spa->spa_loaded_ts.tv_nsec;
3354 VERIFY(nvlist_add_uint64_array(*config,
3355 ZPOOL_CONFIG_LOADED_TIME, loadtimes, 2) == 0);
3356
3357 VERIFY(nvlist_add_uint64(*config,
3358 ZPOOL_CONFIG_ERRCOUNT,
3359 spa_get_errlog_size(spa)) == 0);
3360
3361 if (spa_suspended(spa))
3362 VERIFY(nvlist_add_uint64(*config,
3363 ZPOOL_CONFIG_SUSPENDED,
3364 spa->spa_failmode) == 0);
3365
3366 spa_add_spares(spa, *config);
3367 spa_add_l2cache(spa, *config);
3368 spa_add_feature_stats(spa, *config);
3369 }
3370 }
3371
3372 /*
3373 * We want to get the alternate root even for faulted pools, so we cheat
3374 * and call spa_lookup() directly.
3375 */
3376 if (altroot) {
3377 if (spa == NULL) {
3378 mutex_enter(&spa_namespace_lock);
3379 spa = spa_lookup(name);
3380 if (spa)
3381 spa_altroot(spa, altroot, buflen);
3382 else
3383 altroot[0] = '\0';
3384 spa = NULL;
3385 mutex_exit(&spa_namespace_lock);
3386 } else {
3387 spa_altroot(spa, altroot, buflen);
3388 }
3389 }
3390
3391 if (spa != NULL) {
3392 spa_config_exit(spa, SCL_CONFIG, FTAG);
3393 spa_close(spa, FTAG);
3394 }
3395
3396 return (error);
3397 }
3398
3399 /*
3400 * Validate that the auxiliary device array is well formed. We must have an
3401 * array of nvlists, each which describes a valid leaf vdev. If this is an
3402 * import (mode is VDEV_ALLOC_SPARE), then we allow corrupted spares to be
3403 * specified, as long as they are well-formed.
3404 */
3405 static int
3406 spa_validate_aux_devs(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode,
3407 spa_aux_vdev_t *sav, const char *config, uint64_t version,
3408 vdev_labeltype_t label)
3409 {
3410 nvlist_t **dev;
3411 uint_t i, ndev;
3412 vdev_t *vd;
3413 int error;
3414
3415 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
3416
3417 /*
3418 * It's acceptable to have no devs specified.
3419 */
3420 if (nvlist_lookup_nvlist_array(nvroot, config, &dev, &ndev) != 0)
3421 return (0);
3422
3423 if (ndev == 0)
3424 return (SET_ERROR(EINVAL));
3425
3426 /*
3427 * Make sure the pool is formatted with a version that supports this
3428 * device type.
3429 */
3430 if (spa_version(spa) < version)
3431 return (SET_ERROR(ENOTSUP));
3432
3433 /*
3434 * Set the pending device list so we correctly handle device in-use
3435 * checking.
3436 */
3437 sav->sav_pending = dev;
3438 sav->sav_npending = ndev;
3439
3440 for (i = 0; i < ndev; i++) {
3441 if ((error = spa_config_parse(spa, &vd, dev[i], NULL, 0,
3442 mode)) != 0)
3443 goto out;
3444
3445 if (!vd->vdev_ops->vdev_op_leaf) {
3446 vdev_free(vd);
3447 error = SET_ERROR(EINVAL);
3448 goto out;
3449 }
3450
3451 /*
3452 * The L2ARC currently only supports disk devices in
3453 * kernel context. For user-level testing, we allow it.
3454 */
3455 #ifdef _KERNEL
3456 if ((strcmp(config, ZPOOL_CONFIG_L2CACHE) == 0) &&
3457 strcmp(vd->vdev_ops->vdev_op_type, VDEV_TYPE_DISK) != 0) {
3458 error = SET_ERROR(ENOTBLK);
3459 vdev_free(vd);
3460 goto out;
3461 }
3462 #endif
3463 vd->vdev_top = vd;
3464
3465 if ((error = vdev_open(vd)) == 0 &&
3466 (error = vdev_label_init(vd, crtxg, label)) == 0) {
3467 VERIFY(nvlist_add_uint64(dev[i], ZPOOL_CONFIG_GUID,
3468 vd->vdev_guid) == 0);
3469 }
3470
3471 vdev_free(vd);
3472
3473 if (error &&
3474 (mode != VDEV_ALLOC_SPARE && mode != VDEV_ALLOC_L2CACHE))
3475 goto out;
3476 else
3477 error = 0;
3478 }
3479
3480 out:
3481 sav->sav_pending = NULL;
3482 sav->sav_npending = 0;
3483 return (error);
3484 }
3485
3486 static int
3487 spa_validate_aux(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode)
3488 {
3489 int error;
3490
3491 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
3492
3493 if ((error = spa_validate_aux_devs(spa, nvroot, crtxg, mode,
3494 &spa->spa_spares, ZPOOL_CONFIG_SPARES, SPA_VERSION_SPARES,
3495 VDEV_LABEL_SPARE)) != 0) {
3496 return (error);
3497 }
3498
3499 return (spa_validate_aux_devs(spa, nvroot, crtxg, mode,
3500 &spa->spa_l2cache, ZPOOL_CONFIG_L2CACHE, SPA_VERSION_L2CACHE,
3501 VDEV_LABEL_L2CACHE));
3502 }
3503
3504 static void
3505 spa_set_aux_vdevs(spa_aux_vdev_t *sav, nvlist_t **devs, int ndevs,
3506 const char *config)
3507 {
3508 int i;
3509
3510 if (sav->sav_config != NULL) {
3511 nvlist_t **olddevs;
3512 uint_t oldndevs;
3513 nvlist_t **newdevs;
3514
3515 /*
3516 * Generate new dev list by concatentating with the
3517 * current dev list.
3518 */
3519 VERIFY(nvlist_lookup_nvlist_array(sav->sav_config, config,
3520 &olddevs, &oldndevs) == 0);
3521
3522 newdevs = kmem_alloc(sizeof (void *) *
3523 (ndevs + oldndevs), KM_SLEEP);
3524 for (i = 0; i < oldndevs; i++)
3525 VERIFY(nvlist_dup(olddevs[i], &newdevs[i],
3526 KM_SLEEP) == 0);
3527 for (i = 0; i < ndevs; i++)
3528 VERIFY(nvlist_dup(devs[i], &newdevs[i + oldndevs],
3529 KM_SLEEP) == 0);
3530
3531 VERIFY(nvlist_remove(sav->sav_config, config,
3532 DATA_TYPE_NVLIST_ARRAY) == 0);
3533
3534 VERIFY(nvlist_add_nvlist_array(sav->sav_config,
3535 config, newdevs, ndevs + oldndevs) == 0);
3536 for (i = 0; i < oldndevs + ndevs; i++)
3537 nvlist_free(newdevs[i]);
3538 kmem_free(newdevs, (oldndevs + ndevs) * sizeof (void *));
3539 } else {
3540 /*
3541 * Generate a new dev list.
3542 */
3543 VERIFY(nvlist_alloc(&sav->sav_config, NV_UNIQUE_NAME,
3544 KM_SLEEP) == 0);
3545 VERIFY(nvlist_add_nvlist_array(sav->sav_config, config,
3546 devs, ndevs) == 0);
3547 }
3548 }
3549
3550 /*
3551 * Stop and drop level 2 ARC devices
3552 */
3553 void
3554 spa_l2cache_drop(spa_t *spa)
3555 {
3556 vdev_t *vd;
3557 int i;
3558 spa_aux_vdev_t *sav = &spa->spa_l2cache;
3559
3560 for (i = 0; i < sav->sav_count; i++) {
3561 uint64_t pool;
3562
3563 vd = sav->sav_vdevs[i];
3564 ASSERT(vd != NULL);
3565
3566 if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
3567 pool != 0ULL && l2arc_vdev_present(vd))
3568 l2arc_remove_vdev(vd);
3569 }
3570 }
3571
3572 /*
3573 * Pool Creation
3574 */
3575 int
3576 spa_create(const char *pool, nvlist_t *nvroot, nvlist_t *props,
3577 nvlist_t *zplprops)
3578 {
3579 spa_t *spa;
3580 char *altroot = NULL;
3581 vdev_t *rvd;
3582 dsl_pool_t *dp;
3583 dmu_tx_t *tx;
3584 int error = 0;
3585 uint64_t txg = TXG_INITIAL;
3586 nvlist_t **spares, **l2cache;
3587 uint_t nspares, nl2cache;
3588 uint64_t version, obj;
3589 boolean_t has_features;
3590 nvpair_t *elem;
3591 int c, i;
3592 char *poolname;
3593 nvlist_t *nvl;
3594
3595 if (nvlist_lookup_string(props, "tname", &poolname) != 0)
3596 poolname = (char *)pool;
3597
3598 /*
3599 * If this pool already exists, return failure.
3600 */
3601 mutex_enter(&spa_namespace_lock);
3602 if (spa_lookup(poolname) != NULL) {
3603 mutex_exit(&spa_namespace_lock);
3604 return (SET_ERROR(EEXIST));
3605 }
3606
3607 /*
3608 * Allocate a new spa_t structure.
3609 */
3610 nvl = fnvlist_alloc();
3611 fnvlist_add_string(nvl, ZPOOL_CONFIG_POOL_NAME, pool);
3612 (void) nvlist_lookup_string(props,
3613 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
3614 spa = spa_add(poolname, nvl, altroot);
3615 fnvlist_free(nvl);
3616 spa_activate(spa, spa_mode_global);
3617
3618 if (props && (error = spa_prop_validate(spa, props))) {
3619 spa_deactivate(spa);
3620 spa_remove(spa);
3621 mutex_exit(&spa_namespace_lock);
3622 return (error);
3623 }
3624
3625 /*
3626 * Temporary pool names should never be written to disk.
3627 */
3628 if (poolname != pool)
3629 spa->spa_import_flags |= ZFS_IMPORT_TEMP_NAME;
3630
3631 has_features = B_FALSE;
3632 for (elem = nvlist_next_nvpair(props, NULL);
3633 elem != NULL; elem = nvlist_next_nvpair(props, elem)) {
3634 if (zpool_prop_feature(nvpair_name(elem)))
3635 has_features = B_TRUE;
3636 }
3637
3638 if (has_features || nvlist_lookup_uint64(props,
3639 zpool_prop_to_name(ZPOOL_PROP_VERSION), &version) != 0) {
3640 version = SPA_VERSION;
3641 }
3642 ASSERT(SPA_VERSION_IS_SUPPORTED(version));
3643
3644 spa->spa_first_txg = txg;
3645 spa->spa_uberblock.ub_txg = txg - 1;
3646 spa->spa_uberblock.ub_version = version;
3647 spa->spa_ubsync = spa->spa_uberblock;
3648
3649 /*
3650 * Create "The Godfather" zio to hold all async IOs
3651 */
3652 spa->spa_async_zio_root = kmem_alloc(max_ncpus * sizeof (void *),
3653 KM_SLEEP);
3654 for (i = 0; i < max_ncpus; i++) {
3655 spa->spa_async_zio_root[i] = zio_root(spa, NULL, NULL,
3656 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
3657 ZIO_FLAG_GODFATHER);
3658 }
3659
3660 /*
3661 * Create the root vdev.
3662 */
3663 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3664
3665 error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, VDEV_ALLOC_ADD);
3666
3667 ASSERT(error != 0 || rvd != NULL);
3668 ASSERT(error != 0 || spa->spa_root_vdev == rvd);
3669
3670 if (error == 0 && !zfs_allocatable_devs(nvroot))
3671 error = SET_ERROR(EINVAL);
3672
3673 if (error == 0 &&
3674 (error = vdev_create(rvd, txg, B_FALSE)) == 0 &&
3675 (error = spa_validate_aux(spa, nvroot, txg,
3676 VDEV_ALLOC_ADD)) == 0) {
3677 for (c = 0; c < rvd->vdev_children; c++) {
3678 vdev_metaslab_set_size(rvd->vdev_child[c]);
3679 vdev_expand(rvd->vdev_child[c], txg);
3680 }
3681 }
3682
3683 spa_config_exit(spa, SCL_ALL, FTAG);
3684
3685 if (error != 0) {
3686 spa_unload(spa);
3687 spa_deactivate(spa);
3688 spa_remove(spa);
3689 mutex_exit(&spa_namespace_lock);
3690 return (error);
3691 }
3692
3693 /*
3694 * Get the list of spares, if specified.
3695 */
3696 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
3697 &spares, &nspares) == 0) {
3698 VERIFY(nvlist_alloc(&spa->spa_spares.sav_config, NV_UNIQUE_NAME,
3699 KM_SLEEP) == 0);
3700 VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
3701 ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
3702 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3703 spa_load_spares(spa);
3704 spa_config_exit(spa, SCL_ALL, FTAG);
3705 spa->spa_spares.sav_sync = B_TRUE;
3706 }
3707
3708 /*
3709 * Get the list of level 2 cache devices, if specified.
3710 */
3711 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
3712 &l2cache, &nl2cache) == 0) {
3713 VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config,
3714 NV_UNIQUE_NAME, KM_SLEEP) == 0);
3715 VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
3716 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
3717 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3718 spa_load_l2cache(spa);
3719 spa_config_exit(spa, SCL_ALL, FTAG);
3720 spa->spa_l2cache.sav_sync = B_TRUE;
3721 }
3722
3723 spa->spa_is_initializing = B_TRUE;
3724 spa->spa_dsl_pool = dp = dsl_pool_create(spa, zplprops, txg);
3725 spa->spa_meta_objset = dp->dp_meta_objset;
3726 spa->spa_is_initializing = B_FALSE;
3727
3728 /*
3729 * Create DDTs (dedup tables).
3730 */
3731 ddt_create(spa);
3732
3733 spa_update_dspace(spa);
3734
3735 tx = dmu_tx_create_assigned(dp, txg);
3736
3737 /*
3738 * Create the pool config object.
3739 */
3740 spa->spa_config_object = dmu_object_alloc(spa->spa_meta_objset,
3741 DMU_OT_PACKED_NVLIST, SPA_CONFIG_BLOCKSIZE,
3742 DMU_OT_PACKED_NVLIST_SIZE, sizeof (uint64_t), tx);
3743
3744 if (zap_add(spa->spa_meta_objset,
3745 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CONFIG,
3746 sizeof (uint64_t), 1, &spa->spa_config_object, tx) != 0) {
3747 cmn_err(CE_PANIC, "failed to add pool config");
3748 }
3749
3750 if (spa_version(spa) >= SPA_VERSION_FEATURES)
3751 spa_feature_create_zap_objects(spa, tx);
3752
3753 if (zap_add(spa->spa_meta_objset,
3754 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CREATION_VERSION,
3755 sizeof (uint64_t), 1, &version, tx) != 0) {
3756 cmn_err(CE_PANIC, "failed to add pool version");
3757 }
3758
3759 /* Newly created pools with the right version are always deflated. */
3760 if (version >= SPA_VERSION_RAIDZ_DEFLATE) {
3761 spa->spa_deflate = TRUE;
3762 if (zap_add(spa->spa_meta_objset,
3763 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
3764 sizeof (uint64_t), 1, &spa->spa_deflate, tx) != 0) {
3765 cmn_err(CE_PANIC, "failed to add deflate");
3766 }
3767 }
3768
3769 /*
3770 * Create the deferred-free bpobj. Turn off compression
3771 * because sync-to-convergence takes longer if the blocksize
3772 * keeps changing.
3773 */
3774 obj = bpobj_alloc(spa->spa_meta_objset, 1 << 14, tx);
3775 dmu_object_set_compress(spa->spa_meta_objset, obj,
3776 ZIO_COMPRESS_OFF, tx);
3777 if (zap_add(spa->spa_meta_objset,
3778 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SYNC_BPOBJ,
3779 sizeof (uint64_t), 1, &obj, tx) != 0) {
3780 cmn_err(CE_PANIC, "failed to add bpobj");
3781 }
3782 VERIFY3U(0, ==, bpobj_open(&spa->spa_deferred_bpobj,
3783 spa->spa_meta_objset, obj));
3784
3785 /*
3786 * Create the pool's history object.
3787 */
3788 if (version >= SPA_VERSION_ZPOOL_HISTORY)
3789 spa_history_create_obj(spa, tx);
3790
3791 /*
3792 * Set pool properties.
3793 */
3794 spa->spa_bootfs = zpool_prop_default_numeric(ZPOOL_PROP_BOOTFS);
3795 spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
3796 spa->spa_failmode = zpool_prop_default_numeric(ZPOOL_PROP_FAILUREMODE);
3797 spa->spa_autoexpand = zpool_prop_default_numeric(ZPOOL_PROP_AUTOEXPAND);
3798
3799 if (props != NULL) {
3800 spa_configfile_set(spa, props, B_FALSE);
3801 spa_sync_props(props, tx);
3802 }
3803
3804 dmu_tx_commit(tx);
3805
3806 spa->spa_sync_on = B_TRUE;
3807 txg_sync_start(spa->spa_dsl_pool);
3808
3809 /*
3810 * We explicitly wait for the first transaction to complete so that our
3811 * bean counters are appropriately updated.
3812 */
3813 txg_wait_synced(spa->spa_dsl_pool, txg);
3814
3815 spa_config_sync(spa, B_FALSE, B_TRUE);
3816
3817 spa_history_log_version(spa, "create");
3818
3819 /*
3820 * Don't count references from objsets that are already closed
3821 * and are making their way through the eviction process.
3822 */
3823 spa_evicting_os_wait(spa);
3824 spa->spa_minref = refcount_count(&spa->spa_refcount);
3825
3826 mutex_exit(&spa_namespace_lock);
3827
3828 return (0);
3829 }
3830
3831 #ifdef _KERNEL
3832 /*
3833 * Get the root pool information from the root disk, then import the root pool
3834 * during the system boot up time.
3835 */
3836 extern int vdev_disk_read_rootlabel(char *, char *, nvlist_t **);
3837
3838 static nvlist_t *
3839 spa_generate_rootconf(char *devpath, char *devid, uint64_t *guid)
3840 {
3841 nvlist_t *config;
3842 nvlist_t *nvtop, *nvroot;
3843 uint64_t pgid;
3844
3845 if (vdev_disk_read_rootlabel(devpath, devid, &config) != 0)
3846 return (NULL);
3847
3848 /*
3849 * Add this top-level vdev to the child array.
3850 */
3851 VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
3852 &nvtop) == 0);
3853 VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID,
3854 &pgid) == 0);
3855 VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID, guid) == 0);
3856
3857 /*
3858 * Put this pool's top-level vdevs into a root vdev.
3859 */
3860 VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0);
3861 VERIFY(nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE,
3862 VDEV_TYPE_ROOT) == 0);
3863 VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_ID, 0ULL) == 0);
3864 VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_GUID, pgid) == 0);
3865 VERIFY(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN,
3866 &nvtop, 1) == 0);
3867
3868 /*
3869 * Replace the existing vdev_tree with the new root vdev in
3870 * this pool's configuration (remove the old, add the new).
3871 */
3872 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, nvroot) == 0);
3873 nvlist_free(nvroot);
3874 return (config);
3875 }
3876
3877 /*
3878 * Walk the vdev tree and see if we can find a device with "better"
3879 * configuration. A configuration is "better" if the label on that
3880 * device has a more recent txg.
3881 */
3882 static void
3883 spa_alt_rootvdev(vdev_t *vd, vdev_t **avd, uint64_t *txg)
3884 {
3885 int c;
3886
3887 for (c = 0; c < vd->vdev_children; c++)
3888 spa_alt_rootvdev(vd->vdev_child[c], avd, txg);
3889
3890 if (vd->vdev_ops->vdev_op_leaf) {
3891 nvlist_t *label;
3892 uint64_t label_txg;
3893
3894 if (vdev_disk_read_rootlabel(vd->vdev_physpath, vd->vdev_devid,
3895 &label) != 0)
3896 return;
3897
3898 VERIFY(nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_TXG,
3899 &label_txg) == 0);
3900
3901 /*
3902 * Do we have a better boot device?
3903 */
3904 if (label_txg > *txg) {
3905 *txg = label_txg;
3906 *avd = vd;
3907 }
3908 nvlist_free(label);
3909 }
3910 }
3911
3912 /*
3913 * Import a root pool.
3914 *
3915 * For x86. devpath_list will consist of devid and/or physpath name of
3916 * the vdev (e.g. "id1,sd@SSEAGATE..." or "/pci@1f,0/ide@d/disk@0,0:a").
3917 * The GRUB "findroot" command will return the vdev we should boot.
3918 *
3919 * For Sparc, devpath_list consists the physpath name of the booting device
3920 * no matter the rootpool is a single device pool or a mirrored pool.
3921 * e.g.
3922 * "/pci@1f,0/ide@d/disk@0,0:a"
3923 */
3924 int
3925 spa_import_rootpool(char *devpath, char *devid)
3926 {
3927 spa_t *spa;
3928 vdev_t *rvd, *bvd, *avd = NULL;
3929 nvlist_t *config, *nvtop;
3930 uint64_t guid, txg;
3931 char *pname;
3932 int error;
3933
3934 /*
3935 * Read the label from the boot device and generate a configuration.
3936 */
3937 config = spa_generate_rootconf(devpath, devid, &guid);
3938 #if defined(_OBP) && defined(_KERNEL)
3939 if (config == NULL) {
3940 if (strstr(devpath, "/iscsi/ssd") != NULL) {
3941 /* iscsi boot */
3942 get_iscsi_bootpath_phy(devpath);
3943 config = spa_generate_rootconf(devpath, devid, &guid);
3944 }
3945 }
3946 #endif
3947 if (config == NULL) {
3948 cmn_err(CE_NOTE, "Cannot read the pool label from '%s'",
3949 devpath);
3950 return (SET_ERROR(EIO));
3951 }
3952
3953 VERIFY(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME,
3954 &pname) == 0);
3955 VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG, &txg) == 0);
3956
3957 mutex_enter(&spa_namespace_lock);
3958 if ((spa = spa_lookup(pname)) != NULL) {
3959 /*
3960 * Remove the existing root pool from the namespace so that we
3961 * can replace it with the correct config we just read in.
3962 */
3963 spa_remove(spa);
3964 }
3965
3966 spa = spa_add(pname, config, NULL);
3967 spa->spa_is_root = B_TRUE;
3968 spa->spa_import_flags = ZFS_IMPORT_VERBATIM;
3969
3970 /*
3971 * Build up a vdev tree based on the boot device's label config.
3972 */
3973 VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
3974 &nvtop) == 0);
3975 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3976 error = spa_config_parse(spa, &rvd, nvtop, NULL, 0,
3977 VDEV_ALLOC_ROOTPOOL);
3978 spa_config_exit(spa, SCL_ALL, FTAG);
3979 if (error) {
3980 mutex_exit(&spa_namespace_lock);
3981 nvlist_free(config);
3982 cmn_err(CE_NOTE, "Can not parse the config for pool '%s'",
3983 pname);
3984 return (error);
3985 }
3986
3987 /*
3988 * Get the boot vdev.
3989 */
3990 if ((bvd = vdev_lookup_by_guid(rvd, guid)) == NULL) {
3991 cmn_err(CE_NOTE, "Can not find the boot vdev for guid %llu",
3992 (u_longlong_t)guid);
3993 error = SET_ERROR(ENOENT);
3994 goto out;
3995 }
3996
3997 /*
3998 * Determine if there is a better boot device.
3999 */
4000 avd = bvd;
4001 spa_alt_rootvdev(rvd, &avd, &txg);
4002 if (avd != bvd) {
4003 cmn_err(CE_NOTE, "The boot device is 'degraded'. Please "
4004 "try booting from '%s'", avd->vdev_path);
4005 error = SET_ERROR(EINVAL);
4006 goto out;
4007 }
4008
4009 /*
4010 * If the boot device is part of a spare vdev then ensure that
4011 * we're booting off the active spare.
4012 */
4013 if (bvd->vdev_parent->vdev_ops == &vdev_spare_ops &&
4014 !bvd->vdev_isspare) {
4015 cmn_err(CE_NOTE, "The boot device is currently spared. Please "
4016 "try booting from '%s'",
4017 bvd->vdev_parent->
4018 vdev_child[bvd->vdev_parent->vdev_children - 1]->vdev_path);
4019 error = SET_ERROR(EINVAL);
4020 goto out;
4021 }
4022
4023 error = 0;
4024 out:
4025 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4026 vdev_free(rvd);
4027 spa_config_exit(spa, SCL_ALL, FTAG);
4028 mutex_exit(&spa_namespace_lock);
4029
4030 nvlist_free(config);
4031 return (error);
4032 }
4033
4034 #endif
4035
4036 /*
4037 * Import a non-root pool into the system.
4038 */
4039 int
4040 spa_import(char *pool, nvlist_t *config, nvlist_t *props, uint64_t flags)
4041 {
4042 spa_t *spa;
4043 char *altroot = NULL;
4044 spa_load_state_t state = SPA_LOAD_IMPORT;
4045 zpool_rewind_policy_t policy;
4046 uint64_t mode = spa_mode_global;
4047 uint64_t readonly = B_FALSE;
4048 int error;
4049 nvlist_t *nvroot;
4050 nvlist_t **spares, **l2cache;
4051 uint_t nspares, nl2cache;
4052
4053 /*
4054 * If a pool with this name exists, return failure.
4055 */
4056 mutex_enter(&spa_namespace_lock);
4057 if (spa_lookup(pool) != NULL) {
4058 mutex_exit(&spa_namespace_lock);
4059 return (SET_ERROR(EEXIST));
4060 }
4061
4062 /*
4063 * Create and initialize the spa structure.
4064 */
4065 (void) nvlist_lookup_string(props,
4066 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
4067 (void) nvlist_lookup_uint64(props,
4068 zpool_prop_to_name(ZPOOL_PROP_READONLY), &readonly);
4069 if (readonly)
4070 mode = FREAD;
4071 spa = spa_add(pool, config, altroot);
4072 spa->spa_import_flags = flags;
4073
4074 /*
4075 * Verbatim import - Take a pool and insert it into the namespace
4076 * as if it had been loaded at boot.
4077 */
4078 if (spa->spa_import_flags & ZFS_IMPORT_VERBATIM) {
4079 if (props != NULL)
4080 spa_configfile_set(spa, props, B_FALSE);
4081
4082 spa_config_sync(spa, B_FALSE, B_TRUE);
4083
4084 mutex_exit(&spa_namespace_lock);
4085 return (0);
4086 }
4087
4088 spa_activate(spa, mode);
4089
4090 /*
4091 * Don't start async tasks until we know everything is healthy.
4092 */
4093 spa_async_suspend(spa);
4094
4095 zpool_get_rewind_policy(config, &policy);
4096 if (policy.zrp_request & ZPOOL_DO_REWIND)
4097 state = SPA_LOAD_RECOVER;
4098
4099 /*
4100 * Pass off the heavy lifting to spa_load(). Pass TRUE for mosconfig
4101 * because the user-supplied config is actually the one to trust when
4102 * doing an import.
4103 */
4104 if (state != SPA_LOAD_RECOVER)
4105 spa->spa_last_ubsync_txg = spa->spa_load_txg = 0;
4106
4107 error = spa_load_best(spa, state, B_TRUE, policy.zrp_txg,
4108 policy.zrp_request);
4109
4110 /*
4111 * Propagate anything learned while loading the pool and pass it
4112 * back to caller (i.e. rewind info, missing devices, etc).
4113 */
4114 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO,
4115 spa->spa_load_info) == 0);
4116
4117 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4118 /*
4119 * Toss any existing sparelist, as it doesn't have any validity
4120 * anymore, and conflicts with spa_has_spare().
4121 */
4122 if (spa->spa_spares.sav_config) {
4123 nvlist_free(spa->spa_spares.sav_config);
4124 spa->spa_spares.sav_config = NULL;
4125 spa_load_spares(spa);
4126 }
4127 if (spa->spa_l2cache.sav_config) {
4128 nvlist_free(spa->spa_l2cache.sav_config);
4129 spa->spa_l2cache.sav_config = NULL;
4130 spa_load_l2cache(spa);
4131 }
4132
4133 VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
4134 &nvroot) == 0);
4135 if (error == 0)
4136 error = spa_validate_aux(spa, nvroot, -1ULL,
4137 VDEV_ALLOC_SPARE);
4138 if (error == 0)
4139 error = spa_validate_aux(spa, nvroot, -1ULL,
4140 VDEV_ALLOC_L2CACHE);
4141 spa_config_exit(spa, SCL_ALL, FTAG);
4142
4143 if (props != NULL)
4144 spa_configfile_set(spa, props, B_FALSE);
4145
4146 if (error != 0 || (props && spa_writeable(spa) &&
4147 (error = spa_prop_set(spa, props)))) {
4148 spa_unload(spa);
4149 spa_deactivate(spa);
4150 spa_remove(spa);
4151 mutex_exit(&spa_namespace_lock);
4152 return (error);
4153 }
4154
4155 spa_async_resume(spa);
4156
4157 /*
4158 * Override any spares and level 2 cache devices as specified by
4159 * the user, as these may have correct device names/devids, etc.
4160 */
4161 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
4162 &spares, &nspares) == 0) {
4163 if (spa->spa_spares.sav_config)
4164 VERIFY(nvlist_remove(spa->spa_spares.sav_config,
4165 ZPOOL_CONFIG_SPARES, DATA_TYPE_NVLIST_ARRAY) == 0);
4166 else
4167 VERIFY(nvlist_alloc(&spa->spa_spares.sav_config,
4168 NV_UNIQUE_NAME, KM_SLEEP) == 0);
4169 VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
4170 ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
4171 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4172 spa_load_spares(spa);
4173 spa_config_exit(spa, SCL_ALL, FTAG);
4174 spa->spa_spares.sav_sync = B_TRUE;
4175 }
4176 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
4177 &l2cache, &nl2cache) == 0) {
4178 if (spa->spa_l2cache.sav_config)
4179 VERIFY(nvlist_remove(spa->spa_l2cache.sav_config,
4180 ZPOOL_CONFIG_L2CACHE, DATA_TYPE_NVLIST_ARRAY) == 0);
4181 else
4182 VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config,
4183 NV_UNIQUE_NAME, KM_SLEEP) == 0);
4184 VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
4185 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
4186 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4187 spa_load_l2cache(spa);
4188 spa_config_exit(spa, SCL_ALL, FTAG);
4189 spa->spa_l2cache.sav_sync = B_TRUE;
4190 }
4191
4192 /*
4193 * Check for any removed devices.
4194 */
4195 if (spa->spa_autoreplace) {
4196 spa_aux_check_removed(&spa->spa_spares);
4197 spa_aux_check_removed(&spa->spa_l2cache);
4198 }
4199
4200 if (spa_writeable(spa)) {
4201 /*
4202 * Update the config cache to include the newly-imported pool.
4203 */
4204 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
4205 }
4206
4207 /*
4208 * It's possible that the pool was expanded while it was exported.
4209 * We kick off an async task to handle this for us.
4210 */
4211 spa_async_request(spa, SPA_ASYNC_AUTOEXPAND);
4212
4213 mutex_exit(&spa_namespace_lock);
4214 spa_history_log_version(spa, "import");
4215
4216 #ifdef _KERNEL
4217 zvol_create_minors(pool);
4218 #endif
4219
4220 return (0);
4221 }
4222
4223 nvlist_t *
4224 spa_tryimport(nvlist_t *tryconfig)
4225 {
4226 nvlist_t *config = NULL;
4227 char *poolname;
4228 spa_t *spa;
4229 uint64_t state;
4230 int error;
4231
4232 if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_POOL_NAME, &poolname))
4233 return (NULL);
4234
4235 if (nvlist_lookup_uint64(tryconfig, ZPOOL_CONFIG_POOL_STATE, &state))
4236 return (NULL);
4237
4238 /*
4239 * Create and initialize the spa structure.
4240 */
4241 mutex_enter(&spa_namespace_lock);
4242 spa = spa_add(TRYIMPORT_NAME, tryconfig, NULL);
4243 spa_activate(spa, FREAD);
4244
4245 /*
4246 * Pass off the heavy lifting to spa_load().
4247 * Pass TRUE for mosconfig because the user-supplied config
4248 * is actually the one to trust when doing an import.
4249 */
4250 error = spa_load(spa, SPA_LOAD_TRYIMPORT, SPA_IMPORT_EXISTING, B_TRUE);
4251
4252 /*
4253 * If 'tryconfig' was at least parsable, return the current config.
4254 */
4255 if (spa->spa_root_vdev != NULL) {
4256 config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
4257 VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME,
4258 poolname) == 0);
4259 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
4260 state) == 0);
4261 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_TIMESTAMP,
4262 spa->spa_uberblock.ub_timestamp) == 0);
4263 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO,
4264 spa->spa_load_info) == 0);
4265 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_ERRATA,
4266 spa->spa_errata) == 0);
4267
4268 /*
4269 * If the bootfs property exists on this pool then we
4270 * copy it out so that external consumers can tell which
4271 * pools are bootable.
4272 */
4273 if ((!error || error == EEXIST) && spa->spa_bootfs) {
4274 char *tmpname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
4275
4276 /*
4277 * We have to play games with the name since the
4278 * pool was opened as TRYIMPORT_NAME.
4279 */
4280 if (dsl_dsobj_to_dsname(spa_name(spa),
4281 spa->spa_bootfs, tmpname) == 0) {
4282 char *cp;
4283 char *dsname;
4284
4285 dsname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
4286
4287 cp = strchr(tmpname, '/');
4288 if (cp == NULL) {
4289 (void) strlcpy(dsname, tmpname,
4290 MAXPATHLEN);
4291 } else {
4292 (void) snprintf(dsname, MAXPATHLEN,
4293 "%s/%s", poolname, ++cp);
4294 }
4295 VERIFY(nvlist_add_string(config,
4296 ZPOOL_CONFIG_BOOTFS, dsname) == 0);
4297 kmem_free(dsname, MAXPATHLEN);
4298 }
4299 kmem_free(tmpname, MAXPATHLEN);
4300 }
4301
4302 /*
4303 * Add the list of hot spares and level 2 cache devices.
4304 */
4305 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
4306 spa_add_spares(spa, config);
4307 spa_add_l2cache(spa, config);
4308 spa_config_exit(spa, SCL_CONFIG, FTAG);
4309 }
4310
4311 spa_unload(spa);
4312 spa_deactivate(spa);
4313 spa_remove(spa);
4314 mutex_exit(&spa_namespace_lock);
4315
4316 return (config);
4317 }
4318
4319 /*
4320 * Pool export/destroy
4321 *
4322 * The act of destroying or exporting a pool is very simple. We make sure there
4323 * is no more pending I/O and any references to the pool are gone. Then, we
4324 * update the pool state and sync all the labels to disk, removing the
4325 * configuration from the cache afterwards. If the 'hardforce' flag is set, then
4326 * we don't sync the labels or remove the configuration cache.
4327 */
4328 static int
4329 spa_export_common(char *pool, int new_state, nvlist_t **oldconfig,
4330 boolean_t force, boolean_t hardforce)
4331 {
4332 spa_t *spa;
4333
4334 if (oldconfig)
4335 *oldconfig = NULL;
4336
4337 if (!(spa_mode_global & FWRITE))
4338 return (SET_ERROR(EROFS));
4339
4340 mutex_enter(&spa_namespace_lock);
4341 if ((spa = spa_lookup(pool)) == NULL) {
4342 mutex_exit(&spa_namespace_lock);
4343 return (SET_ERROR(ENOENT));
4344 }
4345
4346 /*
4347 * Put a hold on the pool, drop the namespace lock, stop async tasks,
4348 * reacquire the namespace lock, and see if we can export.
4349 */
4350 spa_open_ref(spa, FTAG);
4351 mutex_exit(&spa_namespace_lock);
4352 spa_async_suspend(spa);
4353 mutex_enter(&spa_namespace_lock);
4354 spa_close(spa, FTAG);
4355
4356 if (spa->spa_state == POOL_STATE_UNINITIALIZED)
4357 goto export_spa;
4358 /*
4359 * The pool will be in core if it's openable, in which case we can
4360 * modify its state. Objsets may be open only because they're dirty,
4361 * so we have to force it to sync before checking spa_refcnt.
4362 */
4363 if (spa->spa_sync_on) {
4364 txg_wait_synced(spa->spa_dsl_pool, 0);
4365 spa_evicting_os_wait(spa);
4366 }
4367
4368 /*
4369 * A pool cannot be exported or destroyed if there are active
4370 * references. If we are resetting a pool, allow references by
4371 * fault injection handlers.
4372 */
4373 if (!spa_refcount_zero(spa) ||
4374 (spa->spa_inject_ref != 0 &&
4375 new_state != POOL_STATE_UNINITIALIZED)) {
4376 spa_async_resume(spa);
4377 mutex_exit(&spa_namespace_lock);
4378 return (SET_ERROR(EBUSY));
4379 }
4380
4381 if (spa->spa_sync_on) {
4382 /*
4383 * A pool cannot be exported if it has an active shared spare.
4384 * This is to prevent other pools stealing the active spare
4385 * from an exported pool. At user's own will, such pool can
4386 * be forcedly exported.
4387 */
4388 if (!force && new_state == POOL_STATE_EXPORTED &&
4389 spa_has_active_shared_spare(spa)) {
4390 spa_async_resume(spa);
4391 mutex_exit(&spa_namespace_lock);
4392 return (SET_ERROR(EXDEV));
4393 }
4394
4395 /*
4396 * We want this to be reflected on every label,
4397 * so mark them all dirty. spa_unload() will do the
4398 * final sync that pushes these changes out.
4399 */
4400 if (new_state != POOL_STATE_UNINITIALIZED && !hardforce) {
4401 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4402 spa->spa_state = new_state;
4403 spa->spa_final_txg = spa_last_synced_txg(spa) +
4404 TXG_DEFER_SIZE + 1;
4405 vdev_config_dirty(spa->spa_root_vdev);
4406 spa_config_exit(spa, SCL_ALL, FTAG);
4407 }
4408 }
4409
4410 export_spa:
4411 spa_event_notify(spa, NULL, FM_EREPORT_ZFS_POOL_DESTROY);
4412
4413 if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
4414 spa_unload(spa);
4415 spa_deactivate(spa);
4416 }
4417
4418 if (oldconfig && spa->spa_config)
4419 VERIFY(nvlist_dup(spa->spa_config, oldconfig, 0) == 0);
4420
4421 if (new_state != POOL_STATE_UNINITIALIZED) {
4422 if (!hardforce)
4423 spa_config_sync(spa, B_TRUE, B_TRUE);
4424 spa_remove(spa);
4425 }
4426 mutex_exit(&spa_namespace_lock);
4427
4428 return (0);
4429 }
4430
4431 /*
4432 * Destroy a storage pool.
4433 */
4434 int
4435 spa_destroy(char *pool)
4436 {
4437 return (spa_export_common(pool, POOL_STATE_DESTROYED, NULL,
4438 B_FALSE, B_FALSE));
4439 }
4440
4441 /*
4442 * Export a storage pool.
4443 */
4444 int
4445 spa_export(char *pool, nvlist_t **oldconfig, boolean_t force,
4446 boolean_t hardforce)
4447 {
4448 return (spa_export_common(pool, POOL_STATE_EXPORTED, oldconfig,
4449 force, hardforce));
4450 }
4451
4452 /*
4453 * Similar to spa_export(), this unloads the spa_t without actually removing it
4454 * from the namespace in any way.
4455 */
4456 int
4457 spa_reset(char *pool)
4458 {
4459 return (spa_export_common(pool, POOL_STATE_UNINITIALIZED, NULL,
4460 B_FALSE, B_FALSE));
4461 }
4462
4463 /*
4464 * ==========================================================================
4465 * Device manipulation
4466 * ==========================================================================
4467 */
4468
4469 /*
4470 * Add a device to a storage pool.
4471 */
4472 int
4473 spa_vdev_add(spa_t *spa, nvlist_t *nvroot)
4474 {
4475 uint64_t txg, id;
4476 int error;
4477 vdev_t *rvd = spa->spa_root_vdev;
4478 vdev_t *vd, *tvd;
4479 nvlist_t **spares, **l2cache;
4480 uint_t nspares, nl2cache;
4481 int c;
4482
4483 ASSERT(spa_writeable(spa));
4484
4485 txg = spa_vdev_enter(spa);
4486
4487 if ((error = spa_config_parse(spa, &vd, nvroot, NULL, 0,
4488 VDEV_ALLOC_ADD)) != 0)
4489 return (spa_vdev_exit(spa, NULL, txg, error));
4490
4491 spa->spa_pending_vdev = vd; /* spa_vdev_exit() will clear this */
4492
4493 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, &spares,
4494 &nspares) != 0)
4495 nspares = 0;
4496
4497 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, &l2cache,
4498 &nl2cache) != 0)
4499 nl2cache = 0;
4500
4501 if (vd->vdev_children == 0 && nspares == 0 && nl2cache == 0)
4502 return (spa_vdev_exit(spa, vd, txg, EINVAL));
4503
4504 if (vd->vdev_children != 0 &&
4505 (error = vdev_create(vd, txg, B_FALSE)) != 0)
4506 return (spa_vdev_exit(spa, vd, txg, error));
4507
4508 /*
4509 * We must validate the spares and l2cache devices after checking the
4510 * children. Otherwise, vdev_inuse() will blindly overwrite the spare.
4511 */
4512 if ((error = spa_validate_aux(spa, nvroot, txg, VDEV_ALLOC_ADD)) != 0)
4513 return (spa_vdev_exit(spa, vd, txg, error));
4514
4515 /*
4516 * Transfer each new top-level vdev from vd to rvd.
4517 */
4518 for (c = 0; c < vd->vdev_children; c++) {
4519
4520 /*
4521 * Set the vdev id to the first hole, if one exists.
4522 */
4523 for (id = 0; id < rvd->vdev_children; id++) {
4524 if (rvd->vdev_child[id]->vdev_ishole) {
4525 vdev_free(rvd->vdev_child[id]);
4526 break;
4527 }
4528 }
4529 tvd = vd->vdev_child[c];
4530 vdev_remove_child(vd, tvd);
4531 tvd->vdev_id = id;
4532 vdev_add_child(rvd, tvd);
4533 vdev_config_dirty(tvd);
4534 }
4535
4536 if (nspares != 0) {
4537 spa_set_aux_vdevs(&spa->spa_spares, spares, nspares,
4538 ZPOOL_CONFIG_SPARES);
4539 spa_load_spares(spa);
4540 spa->spa_spares.sav_sync = B_TRUE;
4541 }
4542
4543 if (nl2cache != 0) {
4544 spa_set_aux_vdevs(&spa->spa_l2cache, l2cache, nl2cache,
4545 ZPOOL_CONFIG_L2CACHE);
4546 spa_load_l2cache(spa);
4547 spa->spa_l2cache.sav_sync = B_TRUE;
4548 }
4549
4550 /*
4551 * We have to be careful when adding new vdevs to an existing pool.
4552 * If other threads start allocating from these vdevs before we
4553 * sync the config cache, and we lose power, then upon reboot we may
4554 * fail to open the pool because there are DVAs that the config cache
4555 * can't translate. Therefore, we first add the vdevs without
4556 * initializing metaslabs; sync the config cache (via spa_vdev_exit());
4557 * and then let spa_config_update() initialize the new metaslabs.
4558 *
4559 * spa_load() checks for added-but-not-initialized vdevs, so that
4560 * if we lose power at any point in this sequence, the remaining
4561 * steps will be completed the next time we load the pool.
4562 */
4563 (void) spa_vdev_exit(spa, vd, txg, 0);
4564
4565 mutex_enter(&spa_namespace_lock);
4566 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
4567 mutex_exit(&spa_namespace_lock);
4568
4569 return (0);
4570 }
4571
4572 /*
4573 * Attach a device to a mirror. The arguments are the path to any device
4574 * in the mirror, and the nvroot for the new device. If the path specifies
4575 * a device that is not mirrored, we automatically insert the mirror vdev.
4576 *
4577 * If 'replacing' is specified, the new device is intended to replace the
4578 * existing device; in this case the two devices are made into their own
4579 * mirror using the 'replacing' vdev, which is functionally identical to
4580 * the mirror vdev (it actually reuses all the same ops) but has a few
4581 * extra rules: you can't attach to it after it's been created, and upon
4582 * completion of resilvering, the first disk (the one being replaced)
4583 * is automatically detached.
4584 */
4585 int
4586 spa_vdev_attach(spa_t *spa, uint64_t guid, nvlist_t *nvroot, int replacing)
4587 {
4588 uint64_t txg, dtl_max_txg;
4589 vdev_t *oldvd, *newvd, *newrootvd, *pvd, *tvd;
4590 vdev_ops_t *pvops;
4591 char *oldvdpath, *newvdpath;
4592 int newvd_isspare;
4593 int error;
4594 ASSERTV(vdev_t *rvd = spa->spa_root_vdev);
4595
4596 ASSERT(spa_writeable(spa));
4597
4598 txg = spa_vdev_enter(spa);
4599
4600 oldvd = spa_lookup_by_guid(spa, guid, B_FALSE);
4601
4602 if (oldvd == NULL)
4603 return (spa_vdev_exit(spa, NULL, txg, ENODEV));
4604
4605 if (!oldvd->vdev_ops->vdev_op_leaf)
4606 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
4607
4608 pvd = oldvd->vdev_parent;
4609
4610 if ((error = spa_config_parse(spa, &newrootvd, nvroot, NULL, 0,
4611 VDEV_ALLOC_ATTACH)) != 0)
4612 return (spa_vdev_exit(spa, NULL, txg, EINVAL));
4613
4614 if (newrootvd->vdev_children != 1)
4615 return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
4616
4617 newvd = newrootvd->vdev_child[0];
4618
4619 if (!newvd->vdev_ops->vdev_op_leaf)
4620 return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
4621
4622 if ((error = vdev_create(newrootvd, txg, replacing)) != 0)
4623 return (spa_vdev_exit(spa, newrootvd, txg, error));
4624
4625 /*
4626 * Spares can't replace logs
4627 */
4628 if (oldvd->vdev_top->vdev_islog && newvd->vdev_isspare)
4629 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4630
4631 if (!replacing) {
4632 /*
4633 * For attach, the only allowable parent is a mirror or the root
4634 * vdev.
4635 */
4636 if (pvd->vdev_ops != &vdev_mirror_ops &&
4637 pvd->vdev_ops != &vdev_root_ops)
4638 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4639
4640 pvops = &vdev_mirror_ops;
4641 } else {
4642 /*
4643 * Active hot spares can only be replaced by inactive hot
4644 * spares.
4645 */
4646 if (pvd->vdev_ops == &vdev_spare_ops &&
4647 oldvd->vdev_isspare &&
4648 !spa_has_spare(spa, newvd->vdev_guid))
4649 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4650
4651 /*
4652 * If the source is a hot spare, and the parent isn't already a
4653 * spare, then we want to create a new hot spare. Otherwise, we
4654 * want to create a replacing vdev. The user is not allowed to
4655 * attach to a spared vdev child unless the 'isspare' state is
4656 * the same (spare replaces spare, non-spare replaces
4657 * non-spare).
4658 */
4659 if (pvd->vdev_ops == &vdev_replacing_ops &&
4660 spa_version(spa) < SPA_VERSION_MULTI_REPLACE) {
4661 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4662 } else if (pvd->vdev_ops == &vdev_spare_ops &&
4663 newvd->vdev_isspare != oldvd->vdev_isspare) {
4664 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4665 }
4666
4667 if (newvd->vdev_isspare)
4668 pvops = &vdev_spare_ops;
4669 else
4670 pvops = &vdev_replacing_ops;
4671 }
4672
4673 /*
4674 * Make sure the new device is big enough.
4675 */
4676 if (newvd->vdev_asize < vdev_get_min_asize(oldvd))
4677 return (spa_vdev_exit(spa, newrootvd, txg, EOVERFLOW));
4678
4679 /*
4680 * The new device cannot have a higher alignment requirement
4681 * than the top-level vdev.
4682 */
4683 if (newvd->vdev_ashift > oldvd->vdev_top->vdev_ashift)
4684 return (spa_vdev_exit(spa, newrootvd, txg, EDOM));
4685
4686 /*
4687 * If this is an in-place replacement, update oldvd's path and devid
4688 * to make it distinguishable from newvd, and unopenable from now on.
4689 */
4690 if (strcmp(oldvd->vdev_path, newvd->vdev_path) == 0) {
4691 spa_strfree(oldvd->vdev_path);
4692 oldvd->vdev_path = kmem_alloc(strlen(newvd->vdev_path) + 5,
4693 KM_SLEEP);
4694 (void) sprintf(oldvd->vdev_path, "%s/%s",
4695 newvd->vdev_path, "old");
4696 if (oldvd->vdev_devid != NULL) {
4697 spa_strfree(oldvd->vdev_devid);
4698 oldvd->vdev_devid = NULL;
4699 }
4700 }
4701
4702 /* mark the device being resilvered */
4703 newvd->vdev_resilver_txg = txg;
4704
4705 /*
4706 * If the parent is not a mirror, or if we're replacing, insert the new
4707 * mirror/replacing/spare vdev above oldvd.
4708 */
4709 if (pvd->vdev_ops != pvops)
4710 pvd = vdev_add_parent(oldvd, pvops);
4711
4712 ASSERT(pvd->vdev_top->vdev_parent == rvd);
4713 ASSERT(pvd->vdev_ops == pvops);
4714 ASSERT(oldvd->vdev_parent == pvd);
4715
4716 /*
4717 * Extract the new device from its root and add it to pvd.
4718 */
4719 vdev_remove_child(newrootvd, newvd);
4720 newvd->vdev_id = pvd->vdev_children;
4721 newvd->vdev_crtxg = oldvd->vdev_crtxg;
4722 vdev_add_child(pvd, newvd);
4723
4724 tvd = newvd->vdev_top;
4725 ASSERT(pvd->vdev_top == tvd);
4726 ASSERT(tvd->vdev_parent == rvd);
4727
4728 vdev_config_dirty(tvd);
4729
4730 /*
4731 * Set newvd's DTL to [TXG_INITIAL, dtl_max_txg) so that we account
4732 * for any dmu_sync-ed blocks. It will propagate upward when
4733 * spa_vdev_exit() calls vdev_dtl_reassess().
4734 */
4735 dtl_max_txg = txg + TXG_CONCURRENT_STATES;
4736
4737 vdev_dtl_dirty(newvd, DTL_MISSING, TXG_INITIAL,
4738 dtl_max_txg - TXG_INITIAL);
4739
4740 if (newvd->vdev_isspare) {
4741 spa_spare_activate(newvd);
4742 spa_event_notify(spa, newvd, FM_EREPORT_ZFS_DEVICE_SPARE);
4743 }
4744
4745 oldvdpath = spa_strdup(oldvd->vdev_path);
4746 newvdpath = spa_strdup(newvd->vdev_path);
4747 newvd_isspare = newvd->vdev_isspare;
4748
4749 /*
4750 * Mark newvd's DTL dirty in this txg.
4751 */
4752 vdev_dirty(tvd, VDD_DTL, newvd, txg);
4753
4754 /*
4755 * Schedule the resilver to restart in the future. We do this to
4756 * ensure that dmu_sync-ed blocks have been stitched into the
4757 * respective datasets.
4758 */
4759 dsl_resilver_restart(spa->spa_dsl_pool, dtl_max_txg);
4760
4761 /*
4762 * Commit the config
4763 */
4764 (void) spa_vdev_exit(spa, newrootvd, dtl_max_txg, 0);
4765
4766 spa_history_log_internal(spa, "vdev attach", NULL,
4767 "%s vdev=%s %s vdev=%s",
4768 replacing && newvd_isspare ? "spare in" :
4769 replacing ? "replace" : "attach", newvdpath,
4770 replacing ? "for" : "to", oldvdpath);
4771
4772 spa_strfree(oldvdpath);
4773 spa_strfree(newvdpath);
4774
4775 if (spa->spa_bootfs)
4776 spa_event_notify(spa, newvd, FM_EREPORT_ZFS_BOOTFS_VDEV_ATTACH);
4777
4778 return (0);
4779 }
4780
4781 /*
4782 * Detach a device from a mirror or replacing vdev.
4783 *
4784 * If 'replace_done' is specified, only detach if the parent
4785 * is a replacing vdev.
4786 */
4787 int
4788 spa_vdev_detach(spa_t *spa, uint64_t guid, uint64_t pguid, int replace_done)
4789 {
4790 uint64_t txg;
4791 int error;
4792 vdev_t *vd, *pvd, *cvd, *tvd;
4793 boolean_t unspare = B_FALSE;
4794 uint64_t unspare_guid = 0;
4795 char *vdpath;
4796 int c, t;
4797 ASSERTV(vdev_t *rvd = spa->spa_root_vdev);
4798 ASSERT(spa_writeable(spa));
4799
4800 txg = spa_vdev_enter(spa);
4801
4802 vd = spa_lookup_by_guid(spa, guid, B_FALSE);
4803
4804 if (vd == NULL)
4805 return (spa_vdev_exit(spa, NULL, txg, ENODEV));
4806
4807 if (!vd->vdev_ops->vdev_op_leaf)
4808 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
4809
4810 pvd = vd->vdev_parent;
4811
4812 /*
4813 * If the parent/child relationship is not as expected, don't do it.
4814 * Consider M(A,R(B,C)) -- that is, a mirror of A with a replacing
4815 * vdev that's replacing B with C. The user's intent in replacing
4816 * is to go from M(A,B) to M(A,C). If the user decides to cancel
4817 * the replace by detaching C, the expected behavior is to end up
4818 * M(A,B). But suppose that right after deciding to detach C,
4819 * the replacement of B completes. We would have M(A,C), and then
4820 * ask to detach C, which would leave us with just A -- not what
4821 * the user wanted. To prevent this, we make sure that the
4822 * parent/child relationship hasn't changed -- in this example,
4823 * that C's parent is still the replacing vdev R.
4824 */
4825 if (pvd->vdev_guid != pguid && pguid != 0)
4826 return (spa_vdev_exit(spa, NULL, txg, EBUSY));
4827
4828 /*
4829 * Only 'replacing' or 'spare' vdevs can be replaced.
4830 */
4831 if (replace_done && pvd->vdev_ops != &vdev_replacing_ops &&
4832 pvd->vdev_ops != &vdev_spare_ops)
4833 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
4834
4835 ASSERT(pvd->vdev_ops != &vdev_spare_ops ||
4836 spa_version(spa) >= SPA_VERSION_SPARES);
4837
4838 /*
4839 * Only mirror, replacing, and spare vdevs support detach.
4840 */
4841 if (pvd->vdev_ops != &vdev_replacing_ops &&
4842 pvd->vdev_ops != &vdev_mirror_ops &&
4843 pvd->vdev_ops != &vdev_spare_ops)
4844 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
4845
4846 /*
4847 * If this device has the only valid copy of some data,
4848 * we cannot safely detach it.
4849 */
4850 if (vdev_dtl_required(vd))
4851 return (spa_vdev_exit(spa, NULL, txg, EBUSY));
4852
4853 ASSERT(pvd->vdev_children >= 2);
4854
4855 /*
4856 * If we are detaching the second disk from a replacing vdev, then
4857 * check to see if we changed the original vdev's path to have "/old"
4858 * at the end in spa_vdev_attach(). If so, undo that change now.
4859 */
4860 if (pvd->vdev_ops == &vdev_replacing_ops && vd->vdev_id > 0 &&
4861 vd->vdev_path != NULL) {
4862 size_t len = strlen(vd->vdev_path);
4863
4864 for (c = 0; c < pvd->vdev_children; c++) {
4865 cvd = pvd->vdev_child[c];
4866
4867 if (cvd == vd || cvd->vdev_path == NULL)
4868 continue;
4869
4870 if (strncmp(cvd->vdev_path, vd->vdev_path, len) == 0 &&
4871 strcmp(cvd->vdev_path + len, "/old") == 0) {
4872 spa_strfree(cvd->vdev_path);
4873 cvd->vdev_path = spa_strdup(vd->vdev_path);
4874 break;
4875 }
4876 }
4877 }
4878
4879 /*
4880 * If we are detaching the original disk from a spare, then it implies
4881 * that the spare should become a real disk, and be removed from the
4882 * active spare list for the pool.
4883 */
4884 if (pvd->vdev_ops == &vdev_spare_ops &&
4885 vd->vdev_id == 0 &&
4886 pvd->vdev_child[pvd->vdev_children - 1]->vdev_isspare)
4887 unspare = B_TRUE;
4888
4889 /*
4890 * Erase the disk labels so the disk can be used for other things.
4891 * This must be done after all other error cases are handled,
4892 * but before we disembowel vd (so we can still do I/O to it).
4893 * But if we can't do it, don't treat the error as fatal --
4894 * it may be that the unwritability of the disk is the reason
4895 * it's being detached!
4896 */
4897 error = vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
4898
4899 /*
4900 * Remove vd from its parent and compact the parent's children.
4901 */
4902 vdev_remove_child(pvd, vd);
4903 vdev_compact_children(pvd);
4904
4905 /*
4906 * Remember one of the remaining children so we can get tvd below.
4907 */
4908 cvd = pvd->vdev_child[pvd->vdev_children - 1];
4909
4910 /*
4911 * If we need to remove the remaining child from the list of hot spares,
4912 * do it now, marking the vdev as no longer a spare in the process.
4913 * We must do this before vdev_remove_parent(), because that can
4914 * change the GUID if it creates a new toplevel GUID. For a similar
4915 * reason, we must remove the spare now, in the same txg as the detach;
4916 * otherwise someone could attach a new sibling, change the GUID, and
4917 * the subsequent attempt to spa_vdev_remove(unspare_guid) would fail.
4918 */
4919 if (unspare) {
4920 ASSERT(cvd->vdev_isspare);
4921 spa_spare_remove(cvd);
4922 unspare_guid = cvd->vdev_guid;
4923 (void) spa_vdev_remove(spa, unspare_guid, B_TRUE);
4924 cvd->vdev_unspare = B_TRUE;
4925 }
4926
4927 /*
4928 * If the parent mirror/replacing vdev only has one child,
4929 * the parent is no longer needed. Remove it from the tree.
4930 */
4931 if (pvd->vdev_children == 1) {
4932 if (pvd->vdev_ops == &vdev_spare_ops)
4933 cvd->vdev_unspare = B_FALSE;
4934 vdev_remove_parent(cvd);
4935 }
4936
4937
4938 /*
4939 * We don't set tvd until now because the parent we just removed
4940 * may have been the previous top-level vdev.
4941 */
4942 tvd = cvd->vdev_top;
4943 ASSERT(tvd->vdev_parent == rvd);
4944
4945 /*
4946 * Reevaluate the parent vdev state.
4947 */
4948 vdev_propagate_state(cvd);
4949
4950 /*
4951 * If the 'autoexpand' property is set on the pool then automatically
4952 * try to expand the size of the pool. For example if the device we
4953 * just detached was smaller than the others, it may be possible to
4954 * add metaslabs (i.e. grow the pool). We need to reopen the vdev
4955 * first so that we can obtain the updated sizes of the leaf vdevs.
4956 */
4957 if (spa->spa_autoexpand) {
4958 vdev_reopen(tvd);
4959 vdev_expand(tvd, txg);
4960 }
4961
4962 vdev_config_dirty(tvd);
4963
4964 /*
4965 * Mark vd's DTL as dirty in this txg. vdev_dtl_sync() will see that
4966 * vd->vdev_detached is set and free vd's DTL object in syncing context.
4967 * But first make sure we're not on any *other* txg's DTL list, to
4968 * prevent vd from being accessed after it's freed.
4969 */
4970 vdpath = spa_strdup(vd->vdev_path);
4971 for (t = 0; t < TXG_SIZE; t++)
4972 (void) txg_list_remove_this(&tvd->vdev_dtl_list, vd, t);
4973 vd->vdev_detached = B_TRUE;
4974 vdev_dirty(tvd, VDD_DTL, vd, txg);
4975
4976 spa_event_notify(spa, vd, FM_EREPORT_ZFS_DEVICE_REMOVE);
4977
4978 /* hang on to the spa before we release the lock */
4979 spa_open_ref(spa, FTAG);
4980
4981 error = spa_vdev_exit(spa, vd, txg, 0);
4982
4983 spa_history_log_internal(spa, "detach", NULL,
4984 "vdev=%s", vdpath);
4985 spa_strfree(vdpath);
4986
4987 /*
4988 * If this was the removal of the original device in a hot spare vdev,
4989 * then we want to go through and remove the device from the hot spare
4990 * list of every other pool.
4991 */
4992 if (unspare) {
4993 spa_t *altspa = NULL;
4994
4995 mutex_enter(&spa_namespace_lock);
4996 while ((altspa = spa_next(altspa)) != NULL) {
4997 if (altspa->spa_state != POOL_STATE_ACTIVE ||
4998 altspa == spa)
4999 continue;
5000
5001 spa_open_ref(altspa, FTAG);
5002 mutex_exit(&spa_namespace_lock);
5003 (void) spa_vdev_remove(altspa, unspare_guid, B_TRUE);
5004 mutex_enter(&spa_namespace_lock);
5005 spa_close(altspa, FTAG);
5006 }
5007 mutex_exit(&spa_namespace_lock);
5008
5009 /* search the rest of the vdevs for spares to remove */
5010 spa_vdev_resilver_done(spa);
5011 }
5012
5013 /* all done with the spa; OK to release */
5014 mutex_enter(&spa_namespace_lock);
5015 spa_close(spa, FTAG);
5016 mutex_exit(&spa_namespace_lock);
5017
5018 return (error);
5019 }
5020
5021 /*
5022 * Split a set of devices from their mirrors, and create a new pool from them.
5023 */
5024 int
5025 spa_vdev_split_mirror(spa_t *spa, char *newname, nvlist_t *config,
5026 nvlist_t *props, boolean_t exp)
5027 {
5028 int error = 0;
5029 uint64_t txg, *glist;
5030 spa_t *newspa;
5031 uint_t c, children, lastlog;
5032 nvlist_t **child, *nvl, *tmp;
5033 dmu_tx_t *tx;
5034 char *altroot = NULL;
5035 vdev_t *rvd, **vml = NULL; /* vdev modify list */
5036 boolean_t activate_slog;
5037
5038 ASSERT(spa_writeable(spa));
5039
5040 txg = spa_vdev_enter(spa);
5041
5042 /* clear the log and flush everything up to now */
5043 activate_slog = spa_passivate_log(spa);
5044 (void) spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
5045 error = spa_offline_log(spa);
5046 txg = spa_vdev_config_enter(spa);
5047
5048 if (activate_slog)
5049 spa_activate_log(spa);
5050
5051 if (error != 0)
5052 return (spa_vdev_exit(spa, NULL, txg, error));
5053
5054 /* check new spa name before going any further */
5055 if (spa_lookup(newname) != NULL)
5056 return (spa_vdev_exit(spa, NULL, txg, EEXIST));
5057
5058 /*
5059 * scan through all the children to ensure they're all mirrors
5060 */
5061 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvl) != 0 ||
5062 nvlist_lookup_nvlist_array(nvl, ZPOOL_CONFIG_CHILDREN, &child,
5063 &children) != 0)
5064 return (spa_vdev_exit(spa, NULL, txg, EINVAL));
5065
5066 /* first, check to ensure we've got the right child count */
5067 rvd = spa->spa_root_vdev;
5068 lastlog = 0;
5069 for (c = 0; c < rvd->vdev_children; c++) {
5070 vdev_t *vd = rvd->vdev_child[c];
5071
5072 /* don't count the holes & logs as children */
5073 if (vd->vdev_islog || vd->vdev_ishole) {
5074 if (lastlog == 0)
5075 lastlog = c;
5076 continue;
5077 }
5078
5079 lastlog = 0;
5080 }
5081 if (children != (lastlog != 0 ? lastlog : rvd->vdev_children))
5082 return (spa_vdev_exit(spa, NULL, txg, EINVAL));
5083
5084 /* next, ensure no spare or cache devices are part of the split */
5085 if (nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_SPARES, &tmp) == 0 ||
5086 nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_L2CACHE, &tmp) == 0)
5087 return (spa_vdev_exit(spa, NULL, txg, EINVAL));
5088
5089 vml = kmem_zalloc(children * sizeof (vdev_t *), KM_SLEEP);
5090 glist = kmem_zalloc(children * sizeof (uint64_t), KM_SLEEP);
5091
5092 /* then, loop over each vdev and validate it */
5093 for (c = 0; c < children; c++) {
5094 uint64_t is_hole = 0;
5095
5096 (void) nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_IS_HOLE,
5097 &is_hole);
5098
5099 if (is_hole != 0) {
5100 if (spa->spa_root_vdev->vdev_child[c]->vdev_ishole ||
5101 spa->spa_root_vdev->vdev_child[c]->vdev_islog) {
5102 continue;
5103 } else {
5104 error = SET_ERROR(EINVAL);
5105 break;
5106 }
5107 }
5108
5109 /* which disk is going to be split? */
5110 if (nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_GUID,
5111 &glist[c]) != 0) {
5112 error = SET_ERROR(EINVAL);
5113 break;
5114 }
5115
5116 /* look it up in the spa */
5117 vml[c] = spa_lookup_by_guid(spa, glist[c], B_FALSE);
5118 if (vml[c] == NULL) {
5119 error = SET_ERROR(ENODEV);
5120 break;
5121 }
5122
5123 /* make sure there's nothing stopping the split */
5124 if (vml[c]->vdev_parent->vdev_ops != &vdev_mirror_ops ||
5125 vml[c]->vdev_islog ||
5126 vml[c]->vdev_ishole ||
5127 vml[c]->vdev_isspare ||
5128 vml[c]->vdev_isl2cache ||
5129 !vdev_writeable(vml[c]) ||
5130 vml[c]->vdev_children != 0 ||
5131 vml[c]->vdev_state != VDEV_STATE_HEALTHY ||
5132 c != spa->spa_root_vdev->vdev_child[c]->vdev_id) {
5133 error = SET_ERROR(EINVAL);
5134 break;
5135 }
5136
5137 if (vdev_dtl_required(vml[c])) {
5138 error = SET_ERROR(EBUSY);
5139 break;
5140 }
5141
5142 /* we need certain info from the top level */
5143 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_ARRAY,
5144 vml[c]->vdev_top->vdev_ms_array) == 0);
5145 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_SHIFT,
5146 vml[c]->vdev_top->vdev_ms_shift) == 0);
5147 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASIZE,
5148 vml[c]->vdev_top->vdev_asize) == 0);
5149 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASHIFT,
5150 vml[c]->vdev_top->vdev_ashift) == 0);
5151 }
5152
5153 if (error != 0) {
5154 kmem_free(vml, children * sizeof (vdev_t *));
5155 kmem_free(glist, children * sizeof (uint64_t));
5156 return (spa_vdev_exit(spa, NULL, txg, error));
5157 }
5158
5159 /* stop writers from using the disks */
5160 for (c = 0; c < children; c++) {
5161 if (vml[c] != NULL)
5162 vml[c]->vdev_offline = B_TRUE;
5163 }
5164 vdev_reopen(spa->spa_root_vdev);
5165
5166 /*
5167 * Temporarily record the splitting vdevs in the spa config. This
5168 * will disappear once the config is regenerated.
5169 */
5170 VERIFY(nvlist_alloc(&nvl, NV_UNIQUE_NAME, KM_SLEEP) == 0);
5171 VERIFY(nvlist_add_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST,
5172 glist, children) == 0);
5173 kmem_free(glist, children * sizeof (uint64_t));
5174
5175 mutex_enter(&spa->spa_props_lock);
5176 VERIFY(nvlist_add_nvlist(spa->spa_config, ZPOOL_CONFIG_SPLIT,
5177 nvl) == 0);
5178 mutex_exit(&spa->spa_props_lock);
5179 spa->spa_config_splitting = nvl;
5180 vdev_config_dirty(spa->spa_root_vdev);
5181
5182 /* configure and create the new pool */
5183 VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME, newname) == 0);
5184 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
5185 exp ? POOL_STATE_EXPORTED : POOL_STATE_ACTIVE) == 0);
5186 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_VERSION,
5187 spa_version(spa)) == 0);
5188 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_TXG,
5189 spa->spa_config_txg) == 0);
5190 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_GUID,
5191 spa_generate_guid(NULL)) == 0);
5192 (void) nvlist_lookup_string(props,
5193 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
5194
5195 /* add the new pool to the namespace */
5196 newspa = spa_add(newname, config, altroot);
5197 newspa->spa_config_txg = spa->spa_config_txg;
5198 spa_set_log_state(newspa, SPA_LOG_CLEAR);
5199
5200 /* release the spa config lock, retaining the namespace lock */
5201 spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
5202
5203 if (zio_injection_enabled)
5204 zio_handle_panic_injection(spa, FTAG, 1);
5205
5206 spa_activate(newspa, spa_mode_global);
5207 spa_async_suspend(newspa);
5208
5209 /* create the new pool from the disks of the original pool */
5210 error = spa_load(newspa, SPA_LOAD_IMPORT, SPA_IMPORT_ASSEMBLE, B_TRUE);
5211 if (error)
5212 goto out;
5213
5214 /* if that worked, generate a real config for the new pool */
5215 if (newspa->spa_root_vdev != NULL) {
5216 VERIFY(nvlist_alloc(&newspa->spa_config_splitting,
5217 NV_UNIQUE_NAME, KM_SLEEP) == 0);
5218 VERIFY(nvlist_add_uint64(newspa->spa_config_splitting,
5219 ZPOOL_CONFIG_SPLIT_GUID, spa_guid(spa)) == 0);
5220 spa_config_set(newspa, spa_config_generate(newspa, NULL, -1ULL,
5221 B_TRUE));
5222 }
5223
5224 /* set the props */
5225 if (props != NULL) {
5226 spa_configfile_set(newspa, props, B_FALSE);
5227 error = spa_prop_set(newspa, props);
5228 if (error)
5229 goto out;
5230 }
5231
5232 /* flush everything */
5233 txg = spa_vdev_config_enter(newspa);
5234 vdev_config_dirty(newspa->spa_root_vdev);
5235 (void) spa_vdev_config_exit(newspa, NULL, txg, 0, FTAG);
5236
5237 if (zio_injection_enabled)
5238 zio_handle_panic_injection(spa, FTAG, 2);
5239
5240 spa_async_resume(newspa);
5241
5242 /* finally, update the original pool's config */
5243 txg = spa_vdev_config_enter(spa);
5244 tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
5245 error = dmu_tx_assign(tx, TXG_WAIT);
5246 if (error != 0)
5247 dmu_tx_abort(tx);
5248 for (c = 0; c < children; c++) {
5249 if (vml[c] != NULL) {
5250 vdev_split(vml[c]);
5251 if (error == 0)
5252 spa_history_log_internal(spa, "detach", tx,
5253 "vdev=%s", vml[c]->vdev_path);
5254 vdev_free(vml[c]);
5255 }
5256 }
5257 vdev_config_dirty(spa->spa_root_vdev);
5258 spa->spa_config_splitting = NULL;
5259 nvlist_free(nvl);
5260 if (error == 0)
5261 dmu_tx_commit(tx);
5262 (void) spa_vdev_exit(spa, NULL, txg, 0);
5263
5264 if (zio_injection_enabled)
5265 zio_handle_panic_injection(spa, FTAG, 3);
5266
5267 /* split is complete; log a history record */
5268 spa_history_log_internal(newspa, "split", NULL,
5269 "from pool %s", spa_name(spa));
5270
5271 kmem_free(vml, children * sizeof (vdev_t *));
5272
5273 /* if we're not going to mount the filesystems in userland, export */
5274 if (exp)
5275 error = spa_export_common(newname, POOL_STATE_EXPORTED, NULL,
5276 B_FALSE, B_FALSE);
5277
5278 return (error);
5279
5280 out:
5281 spa_unload(newspa);
5282 spa_deactivate(newspa);
5283 spa_remove(newspa);
5284
5285 txg = spa_vdev_config_enter(spa);
5286
5287 /* re-online all offlined disks */
5288 for (c = 0; c < children; c++) {
5289 if (vml[c] != NULL)
5290 vml[c]->vdev_offline = B_FALSE;
5291 }
5292 vdev_reopen(spa->spa_root_vdev);
5293
5294 nvlist_free(spa->spa_config_splitting);
5295 spa->spa_config_splitting = NULL;
5296 (void) spa_vdev_exit(spa, NULL, txg, error);
5297
5298 kmem_free(vml, children * sizeof (vdev_t *));
5299 return (error);
5300 }
5301
5302 static nvlist_t *
5303 spa_nvlist_lookup_by_guid(nvlist_t **nvpp, int count, uint64_t target_guid)
5304 {
5305 int i;
5306
5307 for (i = 0; i < count; i++) {
5308 uint64_t guid;
5309
5310 VERIFY(nvlist_lookup_uint64(nvpp[i], ZPOOL_CONFIG_GUID,
5311 &guid) == 0);
5312
5313 if (guid == target_guid)
5314 return (nvpp[i]);
5315 }
5316
5317 return (NULL);
5318 }
5319
5320 static void
5321 spa_vdev_remove_aux(nvlist_t *config, char *name, nvlist_t **dev, int count,
5322 nvlist_t *dev_to_remove)
5323 {
5324 nvlist_t **newdev = NULL;
5325 int i, j;
5326
5327 if (count > 1)
5328 newdev = kmem_alloc((count - 1) * sizeof (void *), KM_SLEEP);
5329
5330 for (i = 0, j = 0; i < count; i++) {
5331 if (dev[i] == dev_to_remove)
5332 continue;
5333 VERIFY(nvlist_dup(dev[i], &newdev[j++], KM_SLEEP) == 0);
5334 }
5335
5336 VERIFY(nvlist_remove(config, name, DATA_TYPE_NVLIST_ARRAY) == 0);
5337 VERIFY(nvlist_add_nvlist_array(config, name, newdev, count - 1) == 0);
5338
5339 for (i = 0; i < count - 1; i++)
5340 nvlist_free(newdev[i]);
5341
5342 if (count > 1)
5343 kmem_free(newdev, (count - 1) * sizeof (void *));
5344 }
5345
5346 /*
5347 * Evacuate the device.
5348 */
5349 static int
5350 spa_vdev_remove_evacuate(spa_t *spa, vdev_t *vd)
5351 {
5352 uint64_t txg;
5353 int error = 0;
5354
5355 ASSERT(MUTEX_HELD(&spa_namespace_lock));
5356 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
5357 ASSERT(vd == vd->vdev_top);
5358
5359 /*
5360 * Evacuate the device. We don't hold the config lock as writer
5361 * since we need to do I/O but we do keep the
5362 * spa_namespace_lock held. Once this completes the device
5363 * should no longer have any blocks allocated on it.
5364 */
5365 if (vd->vdev_islog) {
5366 if (vd->vdev_stat.vs_alloc != 0)
5367 error = spa_offline_log(spa);
5368 } else {
5369 error = SET_ERROR(ENOTSUP);
5370 }
5371
5372 if (error)
5373 return (error);
5374
5375 /*
5376 * The evacuation succeeded. Remove any remaining MOS metadata
5377 * associated with this vdev, and wait for these changes to sync.
5378 */
5379 ASSERT0(vd->vdev_stat.vs_alloc);
5380 txg = spa_vdev_config_enter(spa);
5381 vd->vdev_removing = B_TRUE;
5382 vdev_dirty_leaves(vd, VDD_DTL, txg);
5383 vdev_config_dirty(vd);
5384 spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
5385
5386 return (0);
5387 }
5388
5389 /*
5390 * Complete the removal by cleaning up the namespace.
5391 */
5392 static void
5393 spa_vdev_remove_from_namespace(spa_t *spa, vdev_t *vd)
5394 {
5395 vdev_t *rvd = spa->spa_root_vdev;
5396 uint64_t id = vd->vdev_id;
5397 boolean_t last_vdev = (id == (rvd->vdev_children - 1));
5398
5399 ASSERT(MUTEX_HELD(&spa_namespace_lock));
5400 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
5401 ASSERT(vd == vd->vdev_top);
5402
5403 /*
5404 * Only remove any devices which are empty.
5405 */
5406 if (vd->vdev_stat.vs_alloc != 0)
5407 return;
5408
5409 (void) vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
5410
5411 if (list_link_active(&vd->vdev_state_dirty_node))
5412 vdev_state_clean(vd);
5413 if (list_link_active(&vd->vdev_config_dirty_node))
5414 vdev_config_clean(vd);
5415
5416 vdev_free(vd);
5417
5418 if (last_vdev) {
5419 vdev_compact_children(rvd);
5420 } else {
5421 vd = vdev_alloc_common(spa, id, 0, &vdev_hole_ops);
5422 vdev_add_child(rvd, vd);
5423 }
5424 vdev_config_dirty(rvd);
5425
5426 /*
5427 * Reassess the health of our root vdev.
5428 */
5429 vdev_reopen(rvd);
5430 }
5431
5432 /*
5433 * Remove a device from the pool -
5434 *
5435 * Removing a device from the vdev namespace requires several steps
5436 * and can take a significant amount of time. As a result we use
5437 * the spa_vdev_config_[enter/exit] functions which allow us to
5438 * grab and release the spa_config_lock while still holding the namespace
5439 * lock. During each step the configuration is synced out.
5440 *
5441 * Currently, this supports removing only hot spares, slogs, and level 2 ARC
5442 * devices.
5443 */
5444 int
5445 spa_vdev_remove(spa_t *spa, uint64_t guid, boolean_t unspare)
5446 {
5447 vdev_t *vd;
5448 metaslab_group_t *mg;
5449 nvlist_t **spares, **l2cache, *nv;
5450 uint64_t txg = 0;
5451 uint_t nspares, nl2cache;
5452 int error = 0;
5453 boolean_t locked = MUTEX_HELD(&spa_namespace_lock);
5454
5455 ASSERT(spa_writeable(spa));
5456
5457 if (!locked)
5458 txg = spa_vdev_enter(spa);
5459
5460 vd = spa_lookup_by_guid(spa, guid, B_FALSE);
5461
5462 if (spa->spa_spares.sav_vdevs != NULL &&
5463 nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
5464 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0 &&
5465 (nv = spa_nvlist_lookup_by_guid(spares, nspares, guid)) != NULL) {
5466 /*
5467 * Only remove the hot spare if it's not currently in use
5468 * in this pool.
5469 */
5470 if (vd == NULL || unspare) {
5471 spa_vdev_remove_aux(spa->spa_spares.sav_config,
5472 ZPOOL_CONFIG_SPARES, spares, nspares, nv);
5473 spa_load_spares(spa);
5474 spa->spa_spares.sav_sync = B_TRUE;
5475 } else {
5476 error = SET_ERROR(EBUSY);
5477 }
5478 } else if (spa->spa_l2cache.sav_vdevs != NULL &&
5479 nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config,
5480 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0 &&
5481 (nv = spa_nvlist_lookup_by_guid(l2cache, nl2cache, guid)) != NULL) {
5482 /*
5483 * Cache devices can always be removed.
5484 */
5485 spa_vdev_remove_aux(spa->spa_l2cache.sav_config,
5486 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache, nv);
5487 spa_load_l2cache(spa);
5488 spa->spa_l2cache.sav_sync = B_TRUE;
5489 } else if (vd != NULL && vd->vdev_islog) {
5490 ASSERT(!locked);
5491 ASSERT(vd == vd->vdev_top);
5492
5493 mg = vd->vdev_mg;
5494
5495 /*
5496 * Stop allocating from this vdev.
5497 */
5498 metaslab_group_passivate(mg);
5499
5500 /*
5501 * Wait for the youngest allocations and frees to sync,
5502 * and then wait for the deferral of those frees to finish.
5503 */
5504 spa_vdev_config_exit(spa, NULL,
5505 txg + TXG_CONCURRENT_STATES + TXG_DEFER_SIZE, 0, FTAG);
5506
5507 /*
5508 * Attempt to evacuate the vdev.
5509 */
5510 error = spa_vdev_remove_evacuate(spa, vd);
5511
5512 txg = spa_vdev_config_enter(spa);
5513
5514 /*
5515 * If we couldn't evacuate the vdev, unwind.
5516 */
5517 if (error) {
5518 metaslab_group_activate(mg);
5519 return (spa_vdev_exit(spa, NULL, txg, error));
5520 }
5521
5522 /*
5523 * Clean up the vdev namespace.
5524 */
5525 spa_vdev_remove_from_namespace(spa, vd);
5526
5527 } else if (vd != NULL) {
5528 /*
5529 * Normal vdevs cannot be removed (yet).
5530 */
5531 error = SET_ERROR(ENOTSUP);
5532 } else {
5533 /*
5534 * There is no vdev of any kind with the specified guid.
5535 */
5536 error = SET_ERROR(ENOENT);
5537 }
5538
5539 if (!locked)
5540 return (spa_vdev_exit(spa, NULL, txg, error));
5541
5542 return (error);
5543 }
5544
5545 /*
5546 * Find any device that's done replacing, or a vdev marked 'unspare' that's
5547 * currently spared, so we can detach it.
5548 */
5549 static vdev_t *
5550 spa_vdev_resilver_done_hunt(vdev_t *vd)
5551 {
5552 vdev_t *newvd, *oldvd;
5553 int c;
5554
5555 for (c = 0; c < vd->vdev_children; c++) {
5556 oldvd = spa_vdev_resilver_done_hunt(vd->vdev_child[c]);
5557 if (oldvd != NULL)
5558 return (oldvd);
5559 }
5560
5561 /*
5562 * Check for a completed replacement. We always consider the first
5563 * vdev in the list to be the oldest vdev, and the last one to be
5564 * the newest (see spa_vdev_attach() for how that works). In
5565 * the case where the newest vdev is faulted, we will not automatically
5566 * remove it after a resilver completes. This is OK as it will require
5567 * user intervention to determine which disk the admin wishes to keep.
5568 */
5569 if (vd->vdev_ops == &vdev_replacing_ops) {
5570 ASSERT(vd->vdev_children > 1);
5571
5572 newvd = vd->vdev_child[vd->vdev_children - 1];
5573 oldvd = vd->vdev_child[0];
5574
5575 if (vdev_dtl_empty(newvd, DTL_MISSING) &&
5576 vdev_dtl_empty(newvd, DTL_OUTAGE) &&
5577 !vdev_dtl_required(oldvd))
5578 return (oldvd);
5579 }
5580
5581 /*
5582 * Check for a completed resilver with the 'unspare' flag set.
5583 */
5584 if (vd->vdev_ops == &vdev_spare_ops) {
5585 vdev_t *first = vd->vdev_child[0];
5586 vdev_t *last = vd->vdev_child[vd->vdev_children - 1];
5587
5588 if (last->vdev_unspare) {
5589 oldvd = first;
5590 newvd = last;
5591 } else if (first->vdev_unspare) {
5592 oldvd = last;
5593 newvd = first;
5594 } else {
5595 oldvd = NULL;
5596 }
5597
5598 if (oldvd != NULL &&
5599 vdev_dtl_empty(newvd, DTL_MISSING) &&
5600 vdev_dtl_empty(newvd, DTL_OUTAGE) &&
5601 !vdev_dtl_required(oldvd))
5602 return (oldvd);
5603
5604 /*
5605 * If there are more than two spares attached to a disk,
5606 * and those spares are not required, then we want to
5607 * attempt to free them up now so that they can be used
5608 * by other pools. Once we're back down to a single
5609 * disk+spare, we stop removing them.
5610 */
5611 if (vd->vdev_children > 2) {
5612 newvd = vd->vdev_child[1];
5613
5614 if (newvd->vdev_isspare && last->vdev_isspare &&
5615 vdev_dtl_empty(last, DTL_MISSING) &&
5616 vdev_dtl_empty(last, DTL_OUTAGE) &&
5617 !vdev_dtl_required(newvd))
5618 return (newvd);
5619 }
5620 }
5621
5622 return (NULL);
5623 }
5624
5625 static void
5626 spa_vdev_resilver_done(spa_t *spa)
5627 {
5628 vdev_t *vd, *pvd, *ppvd;
5629 uint64_t guid, sguid, pguid, ppguid;
5630
5631 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5632
5633 while ((vd = spa_vdev_resilver_done_hunt(spa->spa_root_vdev)) != NULL) {
5634 pvd = vd->vdev_parent;
5635 ppvd = pvd->vdev_parent;
5636 guid = vd->vdev_guid;
5637 pguid = pvd->vdev_guid;
5638 ppguid = ppvd->vdev_guid;
5639 sguid = 0;
5640 /*
5641 * If we have just finished replacing a hot spared device, then
5642 * we need to detach the parent's first child (the original hot
5643 * spare) as well.
5644 */
5645 if (ppvd->vdev_ops == &vdev_spare_ops && pvd->vdev_id == 0 &&
5646 ppvd->vdev_children == 2) {
5647 ASSERT(pvd->vdev_ops == &vdev_replacing_ops);
5648 sguid = ppvd->vdev_child[1]->vdev_guid;
5649 }
5650 ASSERT(vd->vdev_resilver_txg == 0 || !vdev_dtl_required(vd));
5651
5652 spa_config_exit(spa, SCL_ALL, FTAG);
5653 if (spa_vdev_detach(spa, guid, pguid, B_TRUE) != 0)
5654 return;
5655 if (sguid && spa_vdev_detach(spa, sguid, ppguid, B_TRUE) != 0)
5656 return;
5657 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5658 }
5659
5660 spa_config_exit(spa, SCL_ALL, FTAG);
5661 }
5662
5663 /*
5664 * Update the stored path or FRU for this vdev.
5665 */
5666 int
5667 spa_vdev_set_common(spa_t *spa, uint64_t guid, const char *value,
5668 boolean_t ispath)
5669 {
5670 vdev_t *vd;
5671 boolean_t sync = B_FALSE;
5672
5673 ASSERT(spa_writeable(spa));
5674
5675 spa_vdev_state_enter(spa, SCL_ALL);
5676
5677 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
5678 return (spa_vdev_state_exit(spa, NULL, ENOENT));
5679
5680 if (!vd->vdev_ops->vdev_op_leaf)
5681 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
5682
5683 if (ispath) {
5684 if (strcmp(value, vd->vdev_path) != 0) {
5685 spa_strfree(vd->vdev_path);
5686 vd->vdev_path = spa_strdup(value);
5687 sync = B_TRUE;
5688 }
5689 } else {
5690 if (vd->vdev_fru == NULL) {
5691 vd->vdev_fru = spa_strdup(value);
5692 sync = B_TRUE;
5693 } else if (strcmp(value, vd->vdev_fru) != 0) {
5694 spa_strfree(vd->vdev_fru);
5695 vd->vdev_fru = spa_strdup(value);
5696 sync = B_TRUE;
5697 }
5698 }
5699
5700 return (spa_vdev_state_exit(spa, sync ? vd : NULL, 0));
5701 }
5702
5703 int
5704 spa_vdev_setpath(spa_t *spa, uint64_t guid, const char *newpath)
5705 {
5706 return (spa_vdev_set_common(spa, guid, newpath, B_TRUE));
5707 }
5708
5709 int
5710 spa_vdev_setfru(spa_t *spa, uint64_t guid, const char *newfru)
5711 {
5712 return (spa_vdev_set_common(spa, guid, newfru, B_FALSE));
5713 }
5714
5715 /*
5716 * ==========================================================================
5717 * SPA Scanning
5718 * ==========================================================================
5719 */
5720
5721 int
5722 spa_scan_stop(spa_t *spa)
5723 {
5724 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
5725 if (dsl_scan_resilvering(spa->spa_dsl_pool))
5726 return (SET_ERROR(EBUSY));
5727 return (dsl_scan_cancel(spa->spa_dsl_pool));
5728 }
5729
5730 int
5731 spa_scan(spa_t *spa, pool_scan_func_t func)
5732 {
5733 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
5734
5735 if (func >= POOL_SCAN_FUNCS || func == POOL_SCAN_NONE)
5736 return (SET_ERROR(ENOTSUP));
5737
5738 /*
5739 * If a resilver was requested, but there is no DTL on a
5740 * writeable leaf device, we have nothing to do.
5741 */
5742 if (func == POOL_SCAN_RESILVER &&
5743 !vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL)) {
5744 spa_async_request(spa, SPA_ASYNC_RESILVER_DONE);
5745 return (0);
5746 }
5747
5748 return (dsl_scan(spa->spa_dsl_pool, func));
5749 }
5750
5751 /*
5752 * ==========================================================================
5753 * SPA async task processing
5754 * ==========================================================================
5755 */
5756
5757 static void
5758 spa_async_remove(spa_t *spa, vdev_t *vd)
5759 {
5760 int c;
5761
5762 if (vd->vdev_remove_wanted) {
5763 vd->vdev_remove_wanted = B_FALSE;
5764 vd->vdev_delayed_close = B_FALSE;
5765 vdev_set_state(vd, B_FALSE, VDEV_STATE_REMOVED, VDEV_AUX_NONE);
5766
5767 /*
5768 * We want to clear the stats, but we don't want to do a full
5769 * vdev_clear() as that will cause us to throw away
5770 * degraded/faulted state as well as attempt to reopen the
5771 * device, all of which is a waste.
5772 */
5773 vd->vdev_stat.vs_read_errors = 0;
5774 vd->vdev_stat.vs_write_errors = 0;
5775 vd->vdev_stat.vs_checksum_errors = 0;
5776
5777 vdev_state_dirty(vd->vdev_top);
5778 }
5779
5780 for (c = 0; c < vd->vdev_children; c++)
5781 spa_async_remove(spa, vd->vdev_child[c]);
5782 }
5783
5784 static void
5785 spa_async_probe(spa_t *spa, vdev_t *vd)
5786 {
5787 int c;
5788
5789 if (vd->vdev_probe_wanted) {
5790 vd->vdev_probe_wanted = B_FALSE;
5791 vdev_reopen(vd); /* vdev_open() does the actual probe */
5792 }
5793
5794 for (c = 0; c < vd->vdev_children; c++)
5795 spa_async_probe(spa, vd->vdev_child[c]);
5796 }
5797
5798 static void
5799 spa_async_autoexpand(spa_t *spa, vdev_t *vd)
5800 {
5801 int c;
5802
5803 if (!spa->spa_autoexpand)
5804 return;
5805
5806 for (c = 0; c < vd->vdev_children; c++) {
5807 vdev_t *cvd = vd->vdev_child[c];
5808 spa_async_autoexpand(spa, cvd);
5809 }
5810
5811 if (!vd->vdev_ops->vdev_op_leaf || vd->vdev_physpath == NULL)
5812 return;
5813
5814 spa_event_notify(vd->vdev_spa, vd, FM_EREPORT_ZFS_DEVICE_AUTOEXPAND);
5815 }
5816
5817 static void
5818 spa_async_thread(spa_t *spa)
5819 {
5820 int tasks, i;
5821
5822 ASSERT(spa->spa_sync_on);
5823
5824 mutex_enter(&spa->spa_async_lock);
5825 tasks = spa->spa_async_tasks;
5826 spa->spa_async_tasks = 0;
5827 mutex_exit(&spa->spa_async_lock);
5828
5829 /*
5830 * See if the config needs to be updated.
5831 */
5832 if (tasks & SPA_ASYNC_CONFIG_UPDATE) {
5833 uint64_t old_space, new_space;
5834
5835 mutex_enter(&spa_namespace_lock);
5836 old_space = metaslab_class_get_space(spa_normal_class(spa));
5837 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
5838 new_space = metaslab_class_get_space(spa_normal_class(spa));
5839 mutex_exit(&spa_namespace_lock);
5840
5841 /*
5842 * If the pool grew as a result of the config update,
5843 * then log an internal history event.
5844 */
5845 if (new_space != old_space) {
5846 spa_history_log_internal(spa, "vdev online", NULL,
5847 "pool '%s' size: %llu(+%llu)",
5848 spa_name(spa), new_space, new_space - old_space);
5849 }
5850 }
5851
5852 /*
5853 * See if any devices need to be marked REMOVED.
5854 */
5855 if (tasks & SPA_ASYNC_REMOVE) {
5856 spa_vdev_state_enter(spa, SCL_NONE);
5857 spa_async_remove(spa, spa->spa_root_vdev);
5858 for (i = 0; i < spa->spa_l2cache.sav_count; i++)
5859 spa_async_remove(spa, spa->spa_l2cache.sav_vdevs[i]);
5860 for (i = 0; i < spa->spa_spares.sav_count; i++)
5861 spa_async_remove(spa, spa->spa_spares.sav_vdevs[i]);
5862 (void) spa_vdev_state_exit(spa, NULL, 0);
5863 }
5864
5865 if ((tasks & SPA_ASYNC_AUTOEXPAND) && !spa_suspended(spa)) {
5866 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
5867 spa_async_autoexpand(spa, spa->spa_root_vdev);
5868 spa_config_exit(spa, SCL_CONFIG, FTAG);
5869 }
5870
5871 /*
5872 * See if any devices need to be probed.
5873 */
5874 if (tasks & SPA_ASYNC_PROBE) {
5875 spa_vdev_state_enter(spa, SCL_NONE);
5876 spa_async_probe(spa, spa->spa_root_vdev);
5877 (void) spa_vdev_state_exit(spa, NULL, 0);
5878 }
5879
5880 /*
5881 * If any devices are done replacing, detach them.
5882 */
5883 if (tasks & SPA_ASYNC_RESILVER_DONE)
5884 spa_vdev_resilver_done(spa);
5885
5886 /*
5887 * Kick off a resilver.
5888 */
5889 if (tasks & SPA_ASYNC_RESILVER)
5890 dsl_resilver_restart(spa->spa_dsl_pool, 0);
5891
5892 /*
5893 * Let the world know that we're done.
5894 */
5895 mutex_enter(&spa->spa_async_lock);
5896 spa->spa_async_thread = NULL;
5897 cv_broadcast(&spa->spa_async_cv);
5898 mutex_exit(&spa->spa_async_lock);
5899 thread_exit();
5900 }
5901
5902 void
5903 spa_async_suspend(spa_t *spa)
5904 {
5905 mutex_enter(&spa->spa_async_lock);
5906 spa->spa_async_suspended++;
5907 while (spa->spa_async_thread != NULL)
5908 cv_wait(&spa->spa_async_cv, &spa->spa_async_lock);
5909 mutex_exit(&spa->spa_async_lock);
5910 }
5911
5912 void
5913 spa_async_resume(spa_t *spa)
5914 {
5915 mutex_enter(&spa->spa_async_lock);
5916 ASSERT(spa->spa_async_suspended != 0);
5917 spa->spa_async_suspended--;
5918 mutex_exit(&spa->spa_async_lock);
5919 }
5920
5921 static boolean_t
5922 spa_async_tasks_pending(spa_t *spa)
5923 {
5924 uint_t non_config_tasks;
5925 uint_t config_task;
5926 boolean_t config_task_suspended;
5927
5928 non_config_tasks = spa->spa_async_tasks & ~SPA_ASYNC_CONFIG_UPDATE;
5929 config_task = spa->spa_async_tasks & SPA_ASYNC_CONFIG_UPDATE;
5930 if (spa->spa_ccw_fail_time == 0) {
5931 config_task_suspended = B_FALSE;
5932 } else {
5933 config_task_suspended =
5934 (gethrtime() - spa->spa_ccw_fail_time) <
5935 (zfs_ccw_retry_interval * NANOSEC);
5936 }
5937
5938 return (non_config_tasks || (config_task && !config_task_suspended));
5939 }
5940
5941 static void
5942 spa_async_dispatch(spa_t *spa)
5943 {
5944 mutex_enter(&spa->spa_async_lock);
5945 if (spa_async_tasks_pending(spa) &&
5946 !spa->spa_async_suspended &&
5947 spa->spa_async_thread == NULL &&
5948 rootdir != NULL)
5949 spa->spa_async_thread = thread_create(NULL, 0,
5950 spa_async_thread, spa, 0, &p0, TS_RUN, maxclsyspri);
5951 mutex_exit(&spa->spa_async_lock);
5952 }
5953
5954 void
5955 spa_async_request(spa_t *spa, int task)
5956 {
5957 zfs_dbgmsg("spa=%s async request task=%u", spa->spa_name, task);
5958 mutex_enter(&spa->spa_async_lock);
5959 spa->spa_async_tasks |= task;
5960 mutex_exit(&spa->spa_async_lock);
5961 }
5962
5963 /*
5964 * ==========================================================================
5965 * SPA syncing routines
5966 * ==========================================================================
5967 */
5968
5969 static int
5970 bpobj_enqueue_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
5971 {
5972 bpobj_t *bpo = arg;
5973 bpobj_enqueue(bpo, bp, tx);
5974 return (0);
5975 }
5976
5977 static int
5978 spa_free_sync_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
5979 {
5980 zio_t *zio = arg;
5981
5982 zio_nowait(zio_free_sync(zio, zio->io_spa, dmu_tx_get_txg(tx), bp,
5983 zio->io_flags));
5984 return (0);
5985 }
5986
5987 /*
5988 * Note: this simple function is not inlined to make it easier to dtrace the
5989 * amount of time spent syncing frees.
5990 */
5991 static void
5992 spa_sync_frees(spa_t *spa, bplist_t *bpl, dmu_tx_t *tx)
5993 {
5994 zio_t *zio = zio_root(spa, NULL, NULL, 0);
5995 bplist_iterate(bpl, spa_free_sync_cb, zio, tx);
5996 VERIFY(zio_wait(zio) == 0);
5997 }
5998
5999 /*
6000 * Note: this simple function is not inlined to make it easier to dtrace the
6001 * amount of time spent syncing deferred frees.
6002 */
6003 static void
6004 spa_sync_deferred_frees(spa_t *spa, dmu_tx_t *tx)
6005 {
6006 zio_t *zio = zio_root(spa, NULL, NULL, 0);
6007 VERIFY3U(bpobj_iterate(&spa->spa_deferred_bpobj,
6008 spa_free_sync_cb, zio, tx), ==, 0);
6009 VERIFY0(zio_wait(zio));
6010 }
6011
6012 static void
6013 spa_sync_nvlist(spa_t *spa, uint64_t obj, nvlist_t *nv, dmu_tx_t *tx)
6014 {
6015 char *packed = NULL;
6016 size_t bufsize;
6017 size_t nvsize = 0;
6018 dmu_buf_t *db;
6019
6020 VERIFY(nvlist_size(nv, &nvsize, NV_ENCODE_XDR) == 0);
6021
6022 /*
6023 * Write full (SPA_CONFIG_BLOCKSIZE) blocks of configuration
6024 * information. This avoids the dmu_buf_will_dirty() path and
6025 * saves us a pre-read to get data we don't actually care about.
6026 */
6027 bufsize = P2ROUNDUP((uint64_t)nvsize, SPA_CONFIG_BLOCKSIZE);
6028 packed = vmem_alloc(bufsize, KM_SLEEP);
6029
6030 VERIFY(nvlist_pack(nv, &packed, &nvsize, NV_ENCODE_XDR,
6031 KM_SLEEP) == 0);
6032 bzero(packed + nvsize, bufsize - nvsize);
6033
6034 dmu_write(spa->spa_meta_objset, obj, 0, bufsize, packed, tx);
6035
6036 vmem_free(packed, bufsize);
6037
6038 VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db));
6039 dmu_buf_will_dirty(db, tx);
6040 *(uint64_t *)db->db_data = nvsize;
6041 dmu_buf_rele(db, FTAG);
6042 }
6043
6044 static void
6045 spa_sync_aux_dev(spa_t *spa, spa_aux_vdev_t *sav, dmu_tx_t *tx,
6046 const char *config, const char *entry)
6047 {
6048 nvlist_t *nvroot;
6049 nvlist_t **list;
6050 int i;
6051
6052 if (!sav->sav_sync)
6053 return;
6054
6055 /*
6056 * Update the MOS nvlist describing the list of available devices.
6057 * spa_validate_aux() will have already made sure this nvlist is
6058 * valid and the vdevs are labeled appropriately.
6059 */
6060 if (sav->sav_object == 0) {
6061 sav->sav_object = dmu_object_alloc(spa->spa_meta_objset,
6062 DMU_OT_PACKED_NVLIST, 1 << 14, DMU_OT_PACKED_NVLIST_SIZE,
6063 sizeof (uint64_t), tx);
6064 VERIFY(zap_update(spa->spa_meta_objset,
6065 DMU_POOL_DIRECTORY_OBJECT, entry, sizeof (uint64_t), 1,
6066 &sav->sav_object, tx) == 0);
6067 }
6068
6069 VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0);
6070 if (sav->sav_count == 0) {
6071 VERIFY(nvlist_add_nvlist_array(nvroot, config, NULL, 0) == 0);
6072 } else {
6073 list = kmem_alloc(sav->sav_count*sizeof (void *), KM_SLEEP);
6074 for (i = 0; i < sav->sav_count; i++)
6075 list[i] = vdev_config_generate(spa, sav->sav_vdevs[i],
6076 B_FALSE, VDEV_CONFIG_L2CACHE);
6077 VERIFY(nvlist_add_nvlist_array(nvroot, config, list,
6078 sav->sav_count) == 0);
6079 for (i = 0; i < sav->sav_count; i++)
6080 nvlist_free(list[i]);
6081 kmem_free(list, sav->sav_count * sizeof (void *));
6082 }
6083
6084 spa_sync_nvlist(spa, sav->sav_object, nvroot, tx);
6085 nvlist_free(nvroot);
6086
6087 sav->sav_sync = B_FALSE;
6088 }
6089
6090 static void
6091 spa_sync_config_object(spa_t *spa, dmu_tx_t *tx)
6092 {
6093 nvlist_t *config;
6094
6095 if (list_is_empty(&spa->spa_config_dirty_list))
6096 return;
6097
6098 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
6099
6100 config = spa_config_generate(spa, spa->spa_root_vdev,
6101 dmu_tx_get_txg(tx), B_FALSE);
6102
6103 /*
6104 * If we're upgrading the spa version then make sure that
6105 * the config object gets updated with the correct version.
6106 */
6107 if (spa->spa_ubsync.ub_version < spa->spa_uberblock.ub_version)
6108 fnvlist_add_uint64(config, ZPOOL_CONFIG_VERSION,
6109 spa->spa_uberblock.ub_version);
6110
6111 spa_config_exit(spa, SCL_STATE, FTAG);
6112
6113 if (spa->spa_config_syncing)
6114 nvlist_free(spa->spa_config_syncing);
6115 spa->spa_config_syncing = config;
6116
6117 spa_sync_nvlist(spa, spa->spa_config_object, config, tx);
6118 }
6119
6120 static void
6121 spa_sync_version(void *arg, dmu_tx_t *tx)
6122 {
6123 uint64_t *versionp = arg;
6124 uint64_t version = *versionp;
6125 spa_t *spa = dmu_tx_pool(tx)->dp_spa;
6126
6127 /*
6128 * Setting the version is special cased when first creating the pool.
6129 */
6130 ASSERT(tx->tx_txg != TXG_INITIAL);
6131
6132 ASSERT(SPA_VERSION_IS_SUPPORTED(version));
6133 ASSERT(version >= spa_version(spa));
6134
6135 spa->spa_uberblock.ub_version = version;
6136 vdev_config_dirty(spa->spa_root_vdev);
6137 spa_history_log_internal(spa, "set", tx, "version=%lld", version);
6138 }
6139
6140 /*
6141 * Set zpool properties.
6142 */
6143 static void
6144 spa_sync_props(void *arg, dmu_tx_t *tx)
6145 {
6146 nvlist_t *nvp = arg;
6147 spa_t *spa = dmu_tx_pool(tx)->dp_spa;
6148 objset_t *mos = spa->spa_meta_objset;
6149 nvpair_t *elem = NULL;
6150
6151 mutex_enter(&spa->spa_props_lock);
6152
6153 while ((elem = nvlist_next_nvpair(nvp, elem))) {
6154 uint64_t intval;
6155 char *strval, *fname;
6156 zpool_prop_t prop;
6157 const char *propname;
6158 zprop_type_t proptype;
6159 spa_feature_t fid;
6160
6161 prop = zpool_name_to_prop(nvpair_name(elem));
6162 switch ((int)prop) {
6163 case ZPROP_INVAL:
6164 /*
6165 * We checked this earlier in spa_prop_validate().
6166 */
6167 ASSERT(zpool_prop_feature(nvpair_name(elem)));
6168
6169 fname = strchr(nvpair_name(elem), '@') + 1;
6170 VERIFY0(zfeature_lookup_name(fname, &fid));
6171
6172 spa_feature_enable(spa, fid, tx);
6173 spa_history_log_internal(spa, "set", tx,
6174 "%s=enabled", nvpair_name(elem));
6175 break;
6176
6177 case ZPOOL_PROP_VERSION:
6178 intval = fnvpair_value_uint64(elem);
6179 /*
6180 * The version is synced seperatly before other
6181 * properties and should be correct by now.
6182 */
6183 ASSERT3U(spa_version(spa), >=, intval);
6184 break;
6185
6186 case ZPOOL_PROP_ALTROOT:
6187 /*
6188 * 'altroot' is a non-persistent property. It should
6189 * have been set temporarily at creation or import time.
6190 */
6191 ASSERT(spa->spa_root != NULL);
6192 break;
6193
6194 case ZPOOL_PROP_READONLY:
6195 case ZPOOL_PROP_CACHEFILE:
6196 /*
6197 * 'readonly' and 'cachefile' are also non-persisitent
6198 * properties.
6199 */
6200 break;
6201 case ZPOOL_PROP_COMMENT:
6202 strval = fnvpair_value_string(elem);
6203 if (spa->spa_comment != NULL)
6204 spa_strfree(spa->spa_comment);
6205 spa->spa_comment = spa_strdup(strval);
6206 /*
6207 * We need to dirty the configuration on all the vdevs
6208 * so that their labels get updated. It's unnecessary
6209 * to do this for pool creation since the vdev's
6210 * configuratoin has already been dirtied.
6211 */
6212 if (tx->tx_txg != TXG_INITIAL)
6213 vdev_config_dirty(spa->spa_root_vdev);
6214 spa_history_log_internal(spa, "set", tx,
6215 "%s=%s", nvpair_name(elem), strval);
6216 break;
6217 default:
6218 /*
6219 * Set pool property values in the poolprops mos object.
6220 */
6221 if (spa->spa_pool_props_object == 0) {
6222 spa->spa_pool_props_object =
6223 zap_create_link(mos, DMU_OT_POOL_PROPS,
6224 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_PROPS,
6225 tx);
6226 }
6227
6228 /* normalize the property name */
6229 propname = zpool_prop_to_name(prop);
6230 proptype = zpool_prop_get_type(prop);
6231
6232 if (nvpair_type(elem) == DATA_TYPE_STRING) {
6233 ASSERT(proptype == PROP_TYPE_STRING);
6234 strval = fnvpair_value_string(elem);
6235 VERIFY0(zap_update(mos,
6236 spa->spa_pool_props_object, propname,
6237 1, strlen(strval) + 1, strval, tx));
6238 spa_history_log_internal(spa, "set", tx,
6239 "%s=%s", nvpair_name(elem), strval);
6240 } else if (nvpair_type(elem) == DATA_TYPE_UINT64) {
6241 intval = fnvpair_value_uint64(elem);
6242
6243 if (proptype == PROP_TYPE_INDEX) {
6244 const char *unused;
6245 VERIFY0(zpool_prop_index_to_string(
6246 prop, intval, &unused));
6247 }
6248 VERIFY0(zap_update(mos,
6249 spa->spa_pool_props_object, propname,
6250 8, 1, &intval, tx));
6251 spa_history_log_internal(spa, "set", tx,
6252 "%s=%lld", nvpair_name(elem), intval);
6253 } else {
6254 ASSERT(0); /* not allowed */
6255 }
6256
6257 switch (prop) {
6258 case ZPOOL_PROP_DELEGATION:
6259 spa->spa_delegation = intval;
6260 break;
6261 case ZPOOL_PROP_BOOTFS:
6262 spa->spa_bootfs = intval;
6263 break;
6264 case ZPOOL_PROP_FAILUREMODE:
6265 spa->spa_failmode = intval;
6266 break;
6267 case ZPOOL_PROP_AUTOEXPAND:
6268 spa->spa_autoexpand = intval;
6269 if (tx->tx_txg != TXG_INITIAL)
6270 spa_async_request(spa,
6271 SPA_ASYNC_AUTOEXPAND);
6272 break;
6273 case ZPOOL_PROP_DEDUPDITTO:
6274 spa->spa_dedup_ditto = intval;
6275 break;
6276 default:
6277 break;
6278 }
6279 }
6280
6281 }
6282
6283 mutex_exit(&spa->spa_props_lock);
6284 }
6285
6286 /*
6287 * Perform one-time upgrade on-disk changes. spa_version() does not
6288 * reflect the new version this txg, so there must be no changes this
6289 * txg to anything that the upgrade code depends on after it executes.
6290 * Therefore this must be called after dsl_pool_sync() does the sync
6291 * tasks.
6292 */
6293 static void
6294 spa_sync_upgrades(spa_t *spa, dmu_tx_t *tx)
6295 {
6296 dsl_pool_t *dp = spa->spa_dsl_pool;
6297
6298 ASSERT(spa->spa_sync_pass == 1);
6299
6300 rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG);
6301
6302 if (spa->spa_ubsync.ub_version < SPA_VERSION_ORIGIN &&
6303 spa->spa_uberblock.ub_version >= SPA_VERSION_ORIGIN) {
6304 dsl_pool_create_origin(dp, tx);
6305
6306 /* Keeping the origin open increases spa_minref */
6307 spa->spa_minref += 3;
6308 }
6309
6310 if (spa->spa_ubsync.ub_version < SPA_VERSION_NEXT_CLONES &&
6311 spa->spa_uberblock.ub_version >= SPA_VERSION_NEXT_CLONES) {
6312 dsl_pool_upgrade_clones(dp, tx);
6313 }
6314
6315 if (spa->spa_ubsync.ub_version < SPA_VERSION_DIR_CLONES &&
6316 spa->spa_uberblock.ub_version >= SPA_VERSION_DIR_CLONES) {
6317 dsl_pool_upgrade_dir_clones(dp, tx);
6318
6319 /* Keeping the freedir open increases spa_minref */
6320 spa->spa_minref += 3;
6321 }
6322
6323 if (spa->spa_ubsync.ub_version < SPA_VERSION_FEATURES &&
6324 spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) {
6325 spa_feature_create_zap_objects(spa, tx);
6326 }
6327
6328 /*
6329 * LZ4_COMPRESS feature's behaviour was changed to activate_on_enable
6330 * when possibility to use lz4 compression for metadata was added
6331 * Old pools that have this feature enabled must be upgraded to have
6332 * this feature active
6333 */
6334 if (spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) {
6335 boolean_t lz4_en = spa_feature_is_enabled(spa,
6336 SPA_FEATURE_LZ4_COMPRESS);
6337 boolean_t lz4_ac = spa_feature_is_active(spa,
6338 SPA_FEATURE_LZ4_COMPRESS);
6339
6340 if (lz4_en && !lz4_ac)
6341 spa_feature_incr(spa, SPA_FEATURE_LZ4_COMPRESS, tx);
6342 }
6343 rrw_exit(&dp->dp_config_rwlock, FTAG);
6344 }
6345
6346 /*
6347 * Sync the specified transaction group. New blocks may be dirtied as
6348 * part of the process, so we iterate until it converges.
6349 */
6350 void
6351 spa_sync(spa_t *spa, uint64_t txg)
6352 {
6353 dsl_pool_t *dp = spa->spa_dsl_pool;
6354 objset_t *mos = spa->spa_meta_objset;
6355 bplist_t *free_bpl = &spa->spa_free_bplist[txg & TXG_MASK];
6356 vdev_t *rvd = spa->spa_root_vdev;
6357 vdev_t *vd;
6358 dmu_tx_t *tx;
6359 int error;
6360 int c;
6361
6362 VERIFY(spa_writeable(spa));
6363
6364 /*
6365 * Lock out configuration changes.
6366 */
6367 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
6368
6369 spa->spa_syncing_txg = txg;
6370 spa->spa_sync_pass = 0;
6371
6372 /*
6373 * If there are any pending vdev state changes, convert them
6374 * into config changes that go out with this transaction group.
6375 */
6376 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
6377 while (list_head(&spa->spa_state_dirty_list) != NULL) {
6378 /*
6379 * We need the write lock here because, for aux vdevs,
6380 * calling vdev_config_dirty() modifies sav_config.
6381 * This is ugly and will become unnecessary when we
6382 * eliminate the aux vdev wart by integrating all vdevs
6383 * into the root vdev tree.
6384 */
6385 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
6386 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_WRITER);
6387 while ((vd = list_head(&spa->spa_state_dirty_list)) != NULL) {
6388 vdev_state_clean(vd);
6389 vdev_config_dirty(vd);
6390 }
6391 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
6392 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
6393 }
6394 spa_config_exit(spa, SCL_STATE, FTAG);
6395
6396 tx = dmu_tx_create_assigned(dp, txg);
6397
6398 spa->spa_sync_starttime = gethrtime();
6399 taskq_cancel_id(system_taskq, spa->spa_deadman_tqid);
6400 spa->spa_deadman_tqid = taskq_dispatch_delay(system_taskq,
6401 spa_deadman, spa, TQ_SLEEP, ddi_get_lbolt() +
6402 NSEC_TO_TICK(spa->spa_deadman_synctime));
6403
6404 /*
6405 * If we are upgrading to SPA_VERSION_RAIDZ_DEFLATE this txg,
6406 * set spa_deflate if we have no raid-z vdevs.
6407 */
6408 if (spa->spa_ubsync.ub_version < SPA_VERSION_RAIDZ_DEFLATE &&
6409 spa->spa_uberblock.ub_version >= SPA_VERSION_RAIDZ_DEFLATE) {
6410 int i;
6411
6412 for (i = 0; i < rvd->vdev_children; i++) {
6413 vd = rvd->vdev_child[i];
6414 if (vd->vdev_deflate_ratio != SPA_MINBLOCKSIZE)
6415 break;
6416 }
6417 if (i == rvd->vdev_children) {
6418 spa->spa_deflate = TRUE;
6419 VERIFY(0 == zap_add(spa->spa_meta_objset,
6420 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
6421 sizeof (uint64_t), 1, &spa->spa_deflate, tx));
6422 }
6423 }
6424
6425 /*
6426 * Iterate to convergence.
6427 */
6428 do {
6429 int pass = ++spa->spa_sync_pass;
6430
6431 spa_sync_config_object(spa, tx);
6432 spa_sync_aux_dev(spa, &spa->spa_spares, tx,
6433 ZPOOL_CONFIG_SPARES, DMU_POOL_SPARES);
6434 spa_sync_aux_dev(spa, &spa->spa_l2cache, tx,
6435 ZPOOL_CONFIG_L2CACHE, DMU_POOL_L2CACHE);
6436 spa_errlog_sync(spa, txg);
6437 dsl_pool_sync(dp, txg);
6438
6439 if (pass < zfs_sync_pass_deferred_free) {
6440 spa_sync_frees(spa, free_bpl, tx);
6441 } else {
6442 /*
6443 * We can not defer frees in pass 1, because
6444 * we sync the deferred frees later in pass 1.
6445 */
6446 ASSERT3U(pass, >, 1);
6447 bplist_iterate(free_bpl, bpobj_enqueue_cb,
6448 &spa->spa_deferred_bpobj, tx);
6449 }
6450
6451 ddt_sync(spa, txg);
6452 dsl_scan_sync(dp, tx);
6453
6454 while ((vd = txg_list_remove(&spa->spa_vdev_txg_list, txg)))
6455 vdev_sync(vd, txg);
6456
6457 if (pass == 1) {
6458 spa_sync_upgrades(spa, tx);
6459 ASSERT3U(txg, >=,
6460 spa->spa_uberblock.ub_rootbp.blk_birth);
6461 /*
6462 * Note: We need to check if the MOS is dirty
6463 * because we could have marked the MOS dirty
6464 * without updating the uberblock (e.g. if we
6465 * have sync tasks but no dirty user data). We
6466 * need to check the uberblock's rootbp because
6467 * it is updated if we have synced out dirty
6468 * data (though in this case the MOS will most
6469 * likely also be dirty due to second order
6470 * effects, we don't want to rely on that here).
6471 */
6472 if (spa->spa_uberblock.ub_rootbp.blk_birth < txg &&
6473 !dmu_objset_is_dirty(mos, txg)) {
6474 /*
6475 * Nothing changed on the first pass,
6476 * therefore this TXG is a no-op. Avoid
6477 * syncing deferred frees, so that we
6478 * can keep this TXG as a no-op.
6479 */
6480 ASSERT(txg_list_empty(&dp->dp_dirty_datasets,
6481 txg));
6482 ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg));
6483 ASSERT(txg_list_empty(&dp->dp_sync_tasks, txg));
6484 break;
6485 }
6486 spa_sync_deferred_frees(spa, tx);
6487 }
6488
6489 } while (dmu_objset_is_dirty(mos, txg));
6490
6491 /*
6492 * Rewrite the vdev configuration (which includes the uberblock)
6493 * to commit the transaction group.
6494 *
6495 * If there are no dirty vdevs, we sync the uberblock to a few
6496 * random top-level vdevs that are known to be visible in the
6497 * config cache (see spa_vdev_add() for a complete description).
6498 * If there *are* dirty vdevs, sync the uberblock to all vdevs.
6499 */
6500 for (;;) {
6501 /*
6502 * We hold SCL_STATE to prevent vdev open/close/etc.
6503 * while we're attempting to write the vdev labels.
6504 */
6505 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
6506
6507 if (list_is_empty(&spa->spa_config_dirty_list)) {
6508 vdev_t *svd[SPA_DVAS_PER_BP];
6509 int svdcount = 0;
6510 int children = rvd->vdev_children;
6511 int c0 = spa_get_random(children);
6512
6513 for (c = 0; c < children; c++) {
6514 vd = rvd->vdev_child[(c0 + c) % children];
6515 if (vd->vdev_ms_array == 0 || vd->vdev_islog)
6516 continue;
6517 svd[svdcount++] = vd;
6518 if (svdcount == SPA_DVAS_PER_BP)
6519 break;
6520 }
6521 error = vdev_config_sync(svd, svdcount, txg);
6522 } else {
6523 error = vdev_config_sync(rvd->vdev_child,
6524 rvd->vdev_children, txg);
6525 }
6526
6527 if (error == 0)
6528 spa->spa_last_synced_guid = rvd->vdev_guid;
6529
6530 spa_config_exit(spa, SCL_STATE, FTAG);
6531
6532 if (error == 0)
6533 break;
6534 zio_suspend(spa, NULL);
6535 zio_resume_wait(spa);
6536 }
6537 dmu_tx_commit(tx);
6538
6539 taskq_cancel_id(system_taskq, spa->spa_deadman_tqid);
6540 spa->spa_deadman_tqid = 0;
6541
6542 /*
6543 * Clear the dirty config list.
6544 */
6545 while ((vd = list_head(&spa->spa_config_dirty_list)) != NULL)
6546 vdev_config_clean(vd);
6547
6548 /*
6549 * Now that the new config has synced transactionally,
6550 * let it become visible to the config cache.
6551 */
6552 if (spa->spa_config_syncing != NULL) {
6553 spa_config_set(spa, spa->spa_config_syncing);
6554 spa->spa_config_txg = txg;
6555 spa->spa_config_syncing = NULL;
6556 }
6557
6558 spa->spa_ubsync = spa->spa_uberblock;
6559
6560 dsl_pool_sync_done(dp, txg);
6561
6562 /*
6563 * Update usable space statistics.
6564 */
6565 while ((vd = txg_list_remove(&spa->spa_vdev_txg_list, TXG_CLEAN(txg))))
6566 vdev_sync_done(vd, txg);
6567
6568 spa_update_dspace(spa);
6569
6570 /*
6571 * It had better be the case that we didn't dirty anything
6572 * since vdev_config_sync().
6573 */
6574 ASSERT(txg_list_empty(&dp->dp_dirty_datasets, txg));
6575 ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg));
6576 ASSERT(txg_list_empty(&spa->spa_vdev_txg_list, txg));
6577
6578 spa->spa_sync_pass = 0;
6579
6580 spa_config_exit(spa, SCL_CONFIG, FTAG);
6581
6582 spa_handle_ignored_writes(spa);
6583
6584 /*
6585 * If any async tasks have been requested, kick them off.
6586 */
6587 spa_async_dispatch(spa);
6588 }
6589
6590 /*
6591 * Sync all pools. We don't want to hold the namespace lock across these
6592 * operations, so we take a reference on the spa_t and drop the lock during the
6593 * sync.
6594 */
6595 void
6596 spa_sync_allpools(void)
6597 {
6598 spa_t *spa = NULL;
6599 mutex_enter(&spa_namespace_lock);
6600 while ((spa = spa_next(spa)) != NULL) {
6601 if (spa_state(spa) != POOL_STATE_ACTIVE ||
6602 !spa_writeable(spa) || spa_suspended(spa))
6603 continue;
6604 spa_open_ref(spa, FTAG);
6605 mutex_exit(&spa_namespace_lock);
6606 txg_wait_synced(spa_get_dsl(spa), 0);
6607 mutex_enter(&spa_namespace_lock);
6608 spa_close(spa, FTAG);
6609 }
6610 mutex_exit(&spa_namespace_lock);
6611 }
6612
6613 /*
6614 * ==========================================================================
6615 * Miscellaneous routines
6616 * ==========================================================================
6617 */
6618
6619 /*
6620 * Remove all pools in the system.
6621 */
6622 void
6623 spa_evict_all(void)
6624 {
6625 spa_t *spa;
6626
6627 /*
6628 * Remove all cached state. All pools should be closed now,
6629 * so every spa in the AVL tree should be unreferenced.
6630 */
6631 mutex_enter(&spa_namespace_lock);
6632 while ((spa = spa_next(NULL)) != NULL) {
6633 /*
6634 * Stop async tasks. The async thread may need to detach
6635 * a device that's been replaced, which requires grabbing
6636 * spa_namespace_lock, so we must drop it here.
6637 */
6638 spa_open_ref(spa, FTAG);
6639 mutex_exit(&spa_namespace_lock);
6640 spa_async_suspend(spa);
6641 mutex_enter(&spa_namespace_lock);
6642 spa_close(spa, FTAG);
6643
6644 if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
6645 spa_unload(spa);
6646 spa_deactivate(spa);
6647 }
6648 spa_remove(spa);
6649 }
6650 mutex_exit(&spa_namespace_lock);
6651 }
6652
6653 vdev_t *
6654 spa_lookup_by_guid(spa_t *spa, uint64_t guid, boolean_t aux)
6655 {
6656 vdev_t *vd;
6657 int i;
6658
6659 if ((vd = vdev_lookup_by_guid(spa->spa_root_vdev, guid)) != NULL)
6660 return (vd);
6661
6662 if (aux) {
6663 for (i = 0; i < spa->spa_l2cache.sav_count; i++) {
6664 vd = spa->spa_l2cache.sav_vdevs[i];
6665 if (vd->vdev_guid == guid)
6666 return (vd);
6667 }
6668
6669 for (i = 0; i < spa->spa_spares.sav_count; i++) {
6670 vd = spa->spa_spares.sav_vdevs[i];
6671 if (vd->vdev_guid == guid)
6672 return (vd);
6673 }
6674 }
6675
6676 return (NULL);
6677 }
6678
6679 void
6680 spa_upgrade(spa_t *spa, uint64_t version)
6681 {
6682 ASSERT(spa_writeable(spa));
6683
6684 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
6685
6686 /*
6687 * This should only be called for a non-faulted pool, and since a
6688 * future version would result in an unopenable pool, this shouldn't be
6689 * possible.
6690 */
6691 ASSERT(SPA_VERSION_IS_SUPPORTED(spa->spa_uberblock.ub_version));
6692 ASSERT3U(version, >=, spa->spa_uberblock.ub_version);
6693
6694 spa->spa_uberblock.ub_version = version;
6695 vdev_config_dirty(spa->spa_root_vdev);
6696
6697 spa_config_exit(spa, SCL_ALL, FTAG);
6698
6699 txg_wait_synced(spa_get_dsl(spa), 0);
6700 }
6701
6702 boolean_t
6703 spa_has_spare(spa_t *spa, uint64_t guid)
6704 {
6705 int i;
6706 uint64_t spareguid;
6707 spa_aux_vdev_t *sav = &spa->spa_spares;
6708
6709 for (i = 0; i < sav->sav_count; i++)
6710 if (sav->sav_vdevs[i]->vdev_guid == guid)
6711 return (B_TRUE);
6712
6713 for (i = 0; i < sav->sav_npending; i++) {
6714 if (nvlist_lookup_uint64(sav->sav_pending[i], ZPOOL_CONFIG_GUID,
6715 &spareguid) == 0 && spareguid == guid)
6716 return (B_TRUE);
6717 }
6718
6719 return (B_FALSE);
6720 }
6721
6722 /*
6723 * Check if a pool has an active shared spare device.
6724 * Note: reference count of an active spare is 2, as a spare and as a replace
6725 */
6726 static boolean_t
6727 spa_has_active_shared_spare(spa_t *spa)
6728 {
6729 int i, refcnt;
6730 uint64_t pool;
6731 spa_aux_vdev_t *sav = &spa->spa_spares;
6732
6733 for (i = 0; i < sav->sav_count; i++) {
6734 if (spa_spare_exists(sav->sav_vdevs[i]->vdev_guid, &pool,
6735 &refcnt) && pool != 0ULL && pool == spa_guid(spa) &&
6736 refcnt > 2)
6737 return (B_TRUE);
6738 }
6739
6740 return (B_FALSE);
6741 }
6742
6743 /*
6744 * Post a FM_EREPORT_ZFS_* event from sys/fm/fs/zfs.h. The payload will be
6745 * filled in from the spa and (optionally) the vdev. This doesn't do anything
6746 * in the userland libzpool, as we don't want consumers to misinterpret ztest
6747 * or zdb as real changes.
6748 */
6749 void
6750 spa_event_notify(spa_t *spa, vdev_t *vd, const char *name)
6751 {
6752 #ifdef _KERNEL
6753 zfs_ereport_post(name, spa, vd, NULL, 0, 0);
6754 #endif
6755 }
6756
6757 #if defined(_KERNEL) && defined(HAVE_SPL)
6758 /* state manipulation functions */
6759 EXPORT_SYMBOL(spa_open);
6760 EXPORT_SYMBOL(spa_open_rewind);
6761 EXPORT_SYMBOL(spa_get_stats);
6762 EXPORT_SYMBOL(spa_create);
6763 EXPORT_SYMBOL(spa_import_rootpool);
6764 EXPORT_SYMBOL(spa_import);
6765 EXPORT_SYMBOL(spa_tryimport);
6766 EXPORT_SYMBOL(spa_destroy);
6767 EXPORT_SYMBOL(spa_export);
6768 EXPORT_SYMBOL(spa_reset);
6769 EXPORT_SYMBOL(spa_async_request);
6770 EXPORT_SYMBOL(spa_async_suspend);
6771 EXPORT_SYMBOL(spa_async_resume);
6772 EXPORT_SYMBOL(spa_inject_addref);
6773 EXPORT_SYMBOL(spa_inject_delref);
6774 EXPORT_SYMBOL(spa_scan_stat_init);
6775 EXPORT_SYMBOL(spa_scan_get_stats);
6776
6777 /* device maniion */
6778 EXPORT_SYMBOL(spa_vdev_add);
6779 EXPORT_SYMBOL(spa_vdev_attach);
6780 EXPORT_SYMBOL(spa_vdev_detach);
6781 EXPORT_SYMBOL(spa_vdev_remove);
6782 EXPORT_SYMBOL(spa_vdev_setpath);
6783 EXPORT_SYMBOL(spa_vdev_setfru);
6784 EXPORT_SYMBOL(spa_vdev_split_mirror);
6785
6786 /* spare statech is global across all pools) */
6787 EXPORT_SYMBOL(spa_spare_add);
6788 EXPORT_SYMBOL(spa_spare_remove);
6789 EXPORT_SYMBOL(spa_spare_exists);
6790 EXPORT_SYMBOL(spa_spare_activate);
6791
6792 /* L2ARC statech is global across all pools) */
6793 EXPORT_SYMBOL(spa_l2cache_add);
6794 EXPORT_SYMBOL(spa_l2cache_remove);
6795 EXPORT_SYMBOL(spa_l2cache_exists);
6796 EXPORT_SYMBOL(spa_l2cache_activate);
6797 EXPORT_SYMBOL(spa_l2cache_drop);
6798
6799 /* scanning */
6800 EXPORT_SYMBOL(spa_scan);
6801 EXPORT_SYMBOL(spa_scan_stop);
6802
6803 /* spa syncing */
6804 EXPORT_SYMBOL(spa_sync); /* only for DMU use */
6805 EXPORT_SYMBOL(spa_sync_allpools);
6806
6807 /* properties */
6808 EXPORT_SYMBOL(spa_prop_set);
6809 EXPORT_SYMBOL(spa_prop_get);
6810 EXPORT_SYMBOL(spa_prop_clear_bootfs);
6811
6812 /* asynchronous event notification */
6813 EXPORT_SYMBOL(spa_event_notify);
6814 #endif
6815
6816 #if defined(_KERNEL) && defined(HAVE_SPL)
6817 module_param(spa_load_verify_maxinflight, int, 0644);
6818 MODULE_PARM_DESC(spa_load_verify_maxinflight,
6819 "Max concurrent traversal I/Os while verifying pool during import -X");
6820
6821 module_param(spa_load_verify_metadata, int, 0644);
6822 MODULE_PARM_DESC(spa_load_verify_metadata,
6823 "Set to traverse metadata on pool import");
6824
6825 module_param(spa_load_verify_data, int, 0644);
6826 MODULE_PARM_DESC(spa_load_verify_data,
6827 "Set to traverse data on pool import");
6828
6829 module_param(zio_taskq_batch_pct, uint, 0444);
6830 MODULE_PARM_DESC(zio_taskq_batch_pct,
6831 "Percentage of CPUs to run an IO worker thread");
6832
6833 #endif