]> git.proxmox.com Git - mirror_zfs.git/blob - module/zfs/spa.c
Revert "Illumos 3749 - zfs event processing should work on R/O root filesystems"
[mirror_zfs.git] / module / zfs / spa.c
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22 /*
23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright (c) 2013 by Delphix. All rights reserved.
25 * Copyright (c) 2013, 2014, Nexenta Systems, Inc. All rights reserved.
26 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
27 */
28
29 /*
30 * SPA: Storage Pool Allocator
31 *
32 * This file contains all the routines used when modifying on-disk SPA state.
33 * This includes opening, importing, destroying, exporting a pool, and syncing a
34 * pool.
35 */
36
37 #include <sys/zfs_context.h>
38 #include <sys/fm/fs/zfs.h>
39 #include <sys/spa_impl.h>
40 #include <sys/zio.h>
41 #include <sys/zio_checksum.h>
42 #include <sys/dmu.h>
43 #include <sys/dmu_tx.h>
44 #include <sys/zap.h>
45 #include <sys/zil.h>
46 #include <sys/ddt.h>
47 #include <sys/vdev_impl.h>
48 #include <sys/vdev_disk.h>
49 #include <sys/metaslab.h>
50 #include <sys/metaslab_impl.h>
51 #include <sys/uberblock_impl.h>
52 #include <sys/txg.h>
53 #include <sys/avl.h>
54 #include <sys/dmu_traverse.h>
55 #include <sys/dmu_objset.h>
56 #include <sys/unique.h>
57 #include <sys/dsl_pool.h>
58 #include <sys/dsl_dataset.h>
59 #include <sys/dsl_dir.h>
60 #include <sys/dsl_prop.h>
61 #include <sys/dsl_synctask.h>
62 #include <sys/fs/zfs.h>
63 #include <sys/arc.h>
64 #include <sys/callb.h>
65 #include <sys/systeminfo.h>
66 #include <sys/spa_boot.h>
67 #include <sys/zfs_ioctl.h>
68 #include <sys/dsl_scan.h>
69 #include <sys/zfeature.h>
70 #include <sys/dsl_destroy.h>
71 #include <sys/zvol.h>
72
73 #ifdef _KERNEL
74 #include <sys/bootprops.h>
75 #include <sys/callb.h>
76 #include <sys/cpupart.h>
77 #include <sys/pool.h>
78 #include <sys/sysdc.h>
79 #include <sys/zone.h>
80 #endif /* _KERNEL */
81
82 #include "zfs_prop.h"
83 #include "zfs_comutil.h"
84
85 typedef enum zti_modes {
86 ZTI_MODE_FIXED, /* value is # of threads (min 1) */
87 ZTI_MODE_BATCH, /* cpu-intensive; value is ignored */
88 ZTI_MODE_NULL, /* don't create a taskq */
89 ZTI_NMODES
90 } zti_modes_t;
91
92 #define ZTI_P(n, q) { ZTI_MODE_FIXED, (n), (q) }
93 #define ZTI_PCT(n) { ZTI_MODE_ONLINE_PERCENT, (n), 1 }
94 #define ZTI_BATCH { ZTI_MODE_BATCH, 0, 1 }
95 #define ZTI_NULL { ZTI_MODE_NULL, 0, 0 }
96
97 #define ZTI_N(n) ZTI_P(n, 1)
98 #define ZTI_ONE ZTI_N(1)
99
100 typedef struct zio_taskq_info {
101 zti_modes_t zti_mode;
102 uint_t zti_value;
103 uint_t zti_count;
104 } zio_taskq_info_t;
105
106 static const char *const zio_taskq_types[ZIO_TASKQ_TYPES] = {
107 "iss", "iss_h", "int", "int_h"
108 };
109
110 /*
111 * This table defines the taskq settings for each ZFS I/O type. When
112 * initializing a pool, we use this table to create an appropriately sized
113 * taskq. Some operations are low volume and therefore have a small, static
114 * number of threads assigned to their taskqs using the ZTI_N(#) or ZTI_ONE
115 * macros. Other operations process a large amount of data; the ZTI_BATCH
116 * macro causes us to create a taskq oriented for throughput. Some operations
117 * are so high frequency and short-lived that the taskq itself can become a a
118 * point of lock contention. The ZTI_P(#, #) macro indicates that we need an
119 * additional degree of parallelism specified by the number of threads per-
120 * taskq and the number of taskqs; when dispatching an event in this case, the
121 * particular taskq is chosen at random.
122 *
123 * The different taskq priorities are to handle the different contexts (issue
124 * and interrupt) and then to reserve threads for ZIO_PRIORITY_NOW I/Os that
125 * need to be handled with minimum delay.
126 */
127 const zio_taskq_info_t zio_taskqs[ZIO_TYPES][ZIO_TASKQ_TYPES] = {
128 /* ISSUE ISSUE_HIGH INTR INTR_HIGH */
129 { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* NULL */
130 { ZTI_N(8), ZTI_NULL, ZTI_P(12, 8), ZTI_NULL }, /* READ */
131 { ZTI_BATCH, ZTI_N(5), ZTI_P(12, 8), ZTI_N(5) }, /* WRITE */
132 { ZTI_P(12, 8), ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* FREE */
133 { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* CLAIM */
134 { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* IOCTL */
135 };
136
137 static void spa_sync_version(void *arg, dmu_tx_t *tx);
138 static void spa_sync_props(void *arg, dmu_tx_t *tx);
139 static boolean_t spa_has_active_shared_spare(spa_t *spa);
140 static inline int spa_load_impl(spa_t *spa, uint64_t, nvlist_t *config,
141 spa_load_state_t state, spa_import_type_t type, boolean_t mosconfig,
142 char **ereport);
143 static void spa_vdev_resilver_done(spa_t *spa);
144
145 uint_t zio_taskq_batch_pct = 75; /* 1 thread per cpu in pset */
146 id_t zio_taskq_psrset_bind = PS_NONE;
147 boolean_t zio_taskq_sysdc = B_TRUE; /* use SDC scheduling class */
148 uint_t zio_taskq_basedc = 80; /* base duty cycle */
149
150 boolean_t spa_create_process = B_TRUE; /* no process ==> no sysdc */
151
152 /*
153 * This (illegal) pool name is used when temporarily importing a spa_t in order
154 * to get the vdev stats associated with the imported devices.
155 */
156 #define TRYIMPORT_NAME "$import"
157
158 /*
159 * ==========================================================================
160 * SPA properties routines
161 * ==========================================================================
162 */
163
164 /*
165 * Add a (source=src, propname=propval) list to an nvlist.
166 */
167 static void
168 spa_prop_add_list(nvlist_t *nvl, zpool_prop_t prop, char *strval,
169 uint64_t intval, zprop_source_t src)
170 {
171 const char *propname = zpool_prop_to_name(prop);
172 nvlist_t *propval;
173
174 VERIFY(nvlist_alloc(&propval, NV_UNIQUE_NAME, KM_SLEEP) == 0);
175 VERIFY(nvlist_add_uint64(propval, ZPROP_SOURCE, src) == 0);
176
177 if (strval != NULL)
178 VERIFY(nvlist_add_string(propval, ZPROP_VALUE, strval) == 0);
179 else
180 VERIFY(nvlist_add_uint64(propval, ZPROP_VALUE, intval) == 0);
181
182 VERIFY(nvlist_add_nvlist(nvl, propname, propval) == 0);
183 nvlist_free(propval);
184 }
185
186 /*
187 * Get property values from the spa configuration.
188 */
189 static void
190 spa_prop_get_config(spa_t *spa, nvlist_t **nvp)
191 {
192 vdev_t *rvd = spa->spa_root_vdev;
193 dsl_pool_t *pool = spa->spa_dsl_pool;
194 uint64_t size, alloc, cap, version;
195 zprop_source_t src = ZPROP_SRC_NONE;
196 spa_config_dirent_t *dp;
197 metaslab_class_t *mc = spa_normal_class(spa);
198
199 ASSERT(MUTEX_HELD(&spa->spa_props_lock));
200
201 if (rvd != NULL) {
202 alloc = metaslab_class_get_alloc(spa_normal_class(spa));
203 size = metaslab_class_get_space(spa_normal_class(spa));
204 spa_prop_add_list(*nvp, ZPOOL_PROP_NAME, spa_name(spa), 0, src);
205 spa_prop_add_list(*nvp, ZPOOL_PROP_SIZE, NULL, size, src);
206 spa_prop_add_list(*nvp, ZPOOL_PROP_ALLOCATED, NULL, alloc, src);
207 spa_prop_add_list(*nvp, ZPOOL_PROP_FREE, NULL,
208 size - alloc, src);
209
210 spa_prop_add_list(*nvp, ZPOOL_PROP_FRAGMENTATION, NULL,
211 metaslab_class_fragmentation(mc), src);
212 spa_prop_add_list(*nvp, ZPOOL_PROP_EXPANDSZ, NULL,
213 metaslab_class_expandable_space(mc), src);
214 spa_prop_add_list(*nvp, ZPOOL_PROP_READONLY, NULL,
215 (spa_mode(spa) == FREAD), src);
216
217 cap = (size == 0) ? 0 : (alloc * 100 / size);
218 spa_prop_add_list(*nvp, ZPOOL_PROP_CAPACITY, NULL, cap, src);
219
220 spa_prop_add_list(*nvp, ZPOOL_PROP_DEDUPRATIO, NULL,
221 ddt_get_pool_dedup_ratio(spa), src);
222
223 spa_prop_add_list(*nvp, ZPOOL_PROP_HEALTH, NULL,
224 rvd->vdev_state, src);
225
226 version = spa_version(spa);
227 if (version == zpool_prop_default_numeric(ZPOOL_PROP_VERSION))
228 src = ZPROP_SRC_DEFAULT;
229 else
230 src = ZPROP_SRC_LOCAL;
231 spa_prop_add_list(*nvp, ZPOOL_PROP_VERSION, NULL, version, src);
232 }
233
234 if (pool != NULL) {
235 /*
236 * The $FREE directory was introduced in SPA_VERSION_DEADLISTS,
237 * when opening pools before this version freedir will be NULL.
238 */
239 if (pool->dp_free_dir != NULL) {
240 spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING, NULL,
241 dsl_dir_phys(pool->dp_free_dir)->dd_used_bytes,
242 src);
243 } else {
244 spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING,
245 NULL, 0, src);
246 }
247
248 if (pool->dp_leak_dir != NULL) {
249 spa_prop_add_list(*nvp, ZPOOL_PROP_LEAKED, NULL,
250 dsl_dir_phys(pool->dp_leak_dir)->dd_used_bytes,
251 src);
252 } else {
253 spa_prop_add_list(*nvp, ZPOOL_PROP_LEAKED,
254 NULL, 0, src);
255 }
256 }
257
258 spa_prop_add_list(*nvp, ZPOOL_PROP_GUID, NULL, spa_guid(spa), src);
259
260 if (spa->spa_comment != NULL) {
261 spa_prop_add_list(*nvp, ZPOOL_PROP_COMMENT, spa->spa_comment,
262 0, ZPROP_SRC_LOCAL);
263 }
264
265 if (spa->spa_root != NULL)
266 spa_prop_add_list(*nvp, ZPOOL_PROP_ALTROOT, spa->spa_root,
267 0, ZPROP_SRC_LOCAL);
268
269 if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_BLOCKS)) {
270 spa_prop_add_list(*nvp, ZPOOL_PROP_MAXBLOCKSIZE, NULL,
271 MIN(zfs_max_recordsize, SPA_MAXBLOCKSIZE), ZPROP_SRC_NONE);
272 } else {
273 spa_prop_add_list(*nvp, ZPOOL_PROP_MAXBLOCKSIZE, NULL,
274 SPA_OLD_MAXBLOCKSIZE, ZPROP_SRC_NONE);
275 }
276
277 if ((dp = list_head(&spa->spa_config_list)) != NULL) {
278 if (dp->scd_path == NULL) {
279 spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
280 "none", 0, ZPROP_SRC_LOCAL);
281 } else if (strcmp(dp->scd_path, spa_config_path) != 0) {
282 spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
283 dp->scd_path, 0, ZPROP_SRC_LOCAL);
284 }
285 }
286 }
287
288 /*
289 * Get zpool property values.
290 */
291 int
292 spa_prop_get(spa_t *spa, nvlist_t **nvp)
293 {
294 objset_t *mos = spa->spa_meta_objset;
295 zap_cursor_t zc;
296 zap_attribute_t za;
297 int err;
298
299 err = nvlist_alloc(nvp, NV_UNIQUE_NAME, KM_SLEEP);
300 if (err)
301 return (err);
302
303 mutex_enter(&spa->spa_props_lock);
304
305 /*
306 * Get properties from the spa config.
307 */
308 spa_prop_get_config(spa, nvp);
309
310 /* If no pool property object, no more prop to get. */
311 if (mos == NULL || spa->spa_pool_props_object == 0) {
312 mutex_exit(&spa->spa_props_lock);
313 goto out;
314 }
315
316 /*
317 * Get properties from the MOS pool property object.
318 */
319 for (zap_cursor_init(&zc, mos, spa->spa_pool_props_object);
320 (err = zap_cursor_retrieve(&zc, &za)) == 0;
321 zap_cursor_advance(&zc)) {
322 uint64_t intval = 0;
323 char *strval = NULL;
324 zprop_source_t src = ZPROP_SRC_DEFAULT;
325 zpool_prop_t prop;
326
327 if ((prop = zpool_name_to_prop(za.za_name)) == ZPROP_INVAL)
328 continue;
329
330 switch (za.za_integer_length) {
331 case 8:
332 /* integer property */
333 if (za.za_first_integer !=
334 zpool_prop_default_numeric(prop))
335 src = ZPROP_SRC_LOCAL;
336
337 if (prop == ZPOOL_PROP_BOOTFS) {
338 dsl_pool_t *dp;
339 dsl_dataset_t *ds = NULL;
340
341 dp = spa_get_dsl(spa);
342 dsl_pool_config_enter(dp, FTAG);
343 if ((err = dsl_dataset_hold_obj(dp,
344 za.za_first_integer, FTAG, &ds))) {
345 dsl_pool_config_exit(dp, FTAG);
346 break;
347 }
348
349 strval = kmem_alloc(
350 MAXNAMELEN + strlen(MOS_DIR_NAME) + 1,
351 KM_SLEEP);
352 dsl_dataset_name(ds, strval);
353 dsl_dataset_rele(ds, FTAG);
354 dsl_pool_config_exit(dp, FTAG);
355 } else {
356 strval = NULL;
357 intval = za.za_first_integer;
358 }
359
360 spa_prop_add_list(*nvp, prop, strval, intval, src);
361
362 if (strval != NULL)
363 kmem_free(strval,
364 MAXNAMELEN + strlen(MOS_DIR_NAME) + 1);
365
366 break;
367
368 case 1:
369 /* string property */
370 strval = kmem_alloc(za.za_num_integers, KM_SLEEP);
371 err = zap_lookup(mos, spa->spa_pool_props_object,
372 za.za_name, 1, za.za_num_integers, strval);
373 if (err) {
374 kmem_free(strval, za.za_num_integers);
375 break;
376 }
377 spa_prop_add_list(*nvp, prop, strval, 0, src);
378 kmem_free(strval, za.za_num_integers);
379 break;
380
381 default:
382 break;
383 }
384 }
385 zap_cursor_fini(&zc);
386 mutex_exit(&spa->spa_props_lock);
387 out:
388 if (err && err != ENOENT) {
389 nvlist_free(*nvp);
390 *nvp = NULL;
391 return (err);
392 }
393
394 return (0);
395 }
396
397 /*
398 * Validate the given pool properties nvlist and modify the list
399 * for the property values to be set.
400 */
401 static int
402 spa_prop_validate(spa_t *spa, nvlist_t *props)
403 {
404 nvpair_t *elem;
405 int error = 0, reset_bootfs = 0;
406 uint64_t objnum = 0;
407 boolean_t has_feature = B_FALSE;
408
409 elem = NULL;
410 while ((elem = nvlist_next_nvpair(props, elem)) != NULL) {
411 uint64_t intval;
412 char *strval, *slash, *check, *fname;
413 const char *propname = nvpair_name(elem);
414 zpool_prop_t prop = zpool_name_to_prop(propname);
415
416 switch ((int)prop) {
417 case ZPROP_INVAL:
418 if (!zpool_prop_feature(propname)) {
419 error = SET_ERROR(EINVAL);
420 break;
421 }
422
423 /*
424 * Sanitize the input.
425 */
426 if (nvpair_type(elem) != DATA_TYPE_UINT64) {
427 error = SET_ERROR(EINVAL);
428 break;
429 }
430
431 if (nvpair_value_uint64(elem, &intval) != 0) {
432 error = SET_ERROR(EINVAL);
433 break;
434 }
435
436 if (intval != 0) {
437 error = SET_ERROR(EINVAL);
438 break;
439 }
440
441 fname = strchr(propname, '@') + 1;
442 if (zfeature_lookup_name(fname, NULL) != 0) {
443 error = SET_ERROR(EINVAL);
444 break;
445 }
446
447 has_feature = B_TRUE;
448 break;
449
450 case ZPOOL_PROP_VERSION:
451 error = nvpair_value_uint64(elem, &intval);
452 if (!error &&
453 (intval < spa_version(spa) ||
454 intval > SPA_VERSION_BEFORE_FEATURES ||
455 has_feature))
456 error = SET_ERROR(EINVAL);
457 break;
458
459 case ZPOOL_PROP_DELEGATION:
460 case ZPOOL_PROP_AUTOREPLACE:
461 case ZPOOL_PROP_LISTSNAPS:
462 case ZPOOL_PROP_AUTOEXPAND:
463 error = nvpair_value_uint64(elem, &intval);
464 if (!error && intval > 1)
465 error = SET_ERROR(EINVAL);
466 break;
467
468 case ZPOOL_PROP_BOOTFS:
469 /*
470 * If the pool version is less than SPA_VERSION_BOOTFS,
471 * or the pool is still being created (version == 0),
472 * the bootfs property cannot be set.
473 */
474 if (spa_version(spa) < SPA_VERSION_BOOTFS) {
475 error = SET_ERROR(ENOTSUP);
476 break;
477 }
478
479 /*
480 * Make sure the vdev config is bootable
481 */
482 if (!vdev_is_bootable(spa->spa_root_vdev)) {
483 error = SET_ERROR(ENOTSUP);
484 break;
485 }
486
487 reset_bootfs = 1;
488
489 error = nvpair_value_string(elem, &strval);
490
491 if (!error) {
492 objset_t *os;
493 uint64_t propval;
494
495 if (strval == NULL || strval[0] == '\0') {
496 objnum = zpool_prop_default_numeric(
497 ZPOOL_PROP_BOOTFS);
498 break;
499 }
500
501 error = dmu_objset_hold(strval, FTAG, &os);
502 if (error)
503 break;
504
505 /*
506 * Must be ZPL, and its property settings
507 * must be supported by GRUB (compression
508 * is not gzip, and large blocks are not used).
509 */
510
511 if (dmu_objset_type(os) != DMU_OST_ZFS) {
512 error = SET_ERROR(ENOTSUP);
513 } else if ((error =
514 dsl_prop_get_int_ds(dmu_objset_ds(os),
515 zfs_prop_to_name(ZFS_PROP_COMPRESSION),
516 &propval)) == 0 &&
517 !BOOTFS_COMPRESS_VALID(propval)) {
518 error = SET_ERROR(ENOTSUP);
519 } else if ((error =
520 dsl_prop_get_int_ds(dmu_objset_ds(os),
521 zfs_prop_to_name(ZFS_PROP_RECORDSIZE),
522 &propval)) == 0 &&
523 propval > SPA_OLD_MAXBLOCKSIZE) {
524 error = SET_ERROR(ENOTSUP);
525 } else {
526 objnum = dmu_objset_id(os);
527 }
528 dmu_objset_rele(os, FTAG);
529 }
530 break;
531
532 case ZPOOL_PROP_FAILUREMODE:
533 error = nvpair_value_uint64(elem, &intval);
534 if (!error && (intval < ZIO_FAILURE_MODE_WAIT ||
535 intval > ZIO_FAILURE_MODE_PANIC))
536 error = SET_ERROR(EINVAL);
537
538 /*
539 * This is a special case which only occurs when
540 * the pool has completely failed. This allows
541 * the user to change the in-core failmode property
542 * without syncing it out to disk (I/Os might
543 * currently be blocked). We do this by returning
544 * EIO to the caller (spa_prop_set) to trick it
545 * into thinking we encountered a property validation
546 * error.
547 */
548 if (!error && spa_suspended(spa)) {
549 spa->spa_failmode = intval;
550 error = SET_ERROR(EIO);
551 }
552 break;
553
554 case ZPOOL_PROP_CACHEFILE:
555 if ((error = nvpair_value_string(elem, &strval)) != 0)
556 break;
557
558 if (strval[0] == '\0')
559 break;
560
561 if (strcmp(strval, "none") == 0)
562 break;
563
564 if (strval[0] != '/') {
565 error = SET_ERROR(EINVAL);
566 break;
567 }
568
569 slash = strrchr(strval, '/');
570 ASSERT(slash != NULL);
571
572 if (slash[1] == '\0' || strcmp(slash, "/.") == 0 ||
573 strcmp(slash, "/..") == 0)
574 error = SET_ERROR(EINVAL);
575 break;
576
577 case ZPOOL_PROP_COMMENT:
578 if ((error = nvpair_value_string(elem, &strval)) != 0)
579 break;
580 for (check = strval; *check != '\0'; check++) {
581 if (!isprint(*check)) {
582 error = SET_ERROR(EINVAL);
583 break;
584 }
585 check++;
586 }
587 if (strlen(strval) > ZPROP_MAX_COMMENT)
588 error = SET_ERROR(E2BIG);
589 break;
590
591 case ZPOOL_PROP_DEDUPDITTO:
592 if (spa_version(spa) < SPA_VERSION_DEDUP)
593 error = SET_ERROR(ENOTSUP);
594 else
595 error = nvpair_value_uint64(elem, &intval);
596 if (error == 0 &&
597 intval != 0 && intval < ZIO_DEDUPDITTO_MIN)
598 error = SET_ERROR(EINVAL);
599 break;
600
601 default:
602 break;
603 }
604
605 if (error)
606 break;
607 }
608
609 if (!error && reset_bootfs) {
610 error = nvlist_remove(props,
611 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), DATA_TYPE_STRING);
612
613 if (!error) {
614 error = nvlist_add_uint64(props,
615 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), objnum);
616 }
617 }
618
619 return (error);
620 }
621
622 void
623 spa_configfile_set(spa_t *spa, nvlist_t *nvp, boolean_t need_sync)
624 {
625 char *cachefile;
626 spa_config_dirent_t *dp;
627
628 if (nvlist_lookup_string(nvp, zpool_prop_to_name(ZPOOL_PROP_CACHEFILE),
629 &cachefile) != 0)
630 return;
631
632 dp = kmem_alloc(sizeof (spa_config_dirent_t),
633 KM_SLEEP);
634
635 if (cachefile[0] == '\0')
636 dp->scd_path = spa_strdup(spa_config_path);
637 else if (strcmp(cachefile, "none") == 0)
638 dp->scd_path = NULL;
639 else
640 dp->scd_path = spa_strdup(cachefile);
641
642 list_insert_head(&spa->spa_config_list, dp);
643 if (need_sync)
644 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
645 }
646
647 int
648 spa_prop_set(spa_t *spa, nvlist_t *nvp)
649 {
650 int error;
651 nvpair_t *elem = NULL;
652 boolean_t need_sync = B_FALSE;
653
654 if ((error = spa_prop_validate(spa, nvp)) != 0)
655 return (error);
656
657 while ((elem = nvlist_next_nvpair(nvp, elem)) != NULL) {
658 zpool_prop_t prop = zpool_name_to_prop(nvpair_name(elem));
659
660 if (prop == ZPOOL_PROP_CACHEFILE ||
661 prop == ZPOOL_PROP_ALTROOT ||
662 prop == ZPOOL_PROP_READONLY)
663 continue;
664
665 if (prop == ZPOOL_PROP_VERSION || prop == ZPROP_INVAL) {
666 uint64_t ver;
667
668 if (prop == ZPOOL_PROP_VERSION) {
669 VERIFY(nvpair_value_uint64(elem, &ver) == 0);
670 } else {
671 ASSERT(zpool_prop_feature(nvpair_name(elem)));
672 ver = SPA_VERSION_FEATURES;
673 need_sync = B_TRUE;
674 }
675
676 /* Save time if the version is already set. */
677 if (ver == spa_version(spa))
678 continue;
679
680 /*
681 * In addition to the pool directory object, we might
682 * create the pool properties object, the features for
683 * read object, the features for write object, or the
684 * feature descriptions object.
685 */
686 error = dsl_sync_task(spa->spa_name, NULL,
687 spa_sync_version, &ver,
688 6, ZFS_SPACE_CHECK_RESERVED);
689 if (error)
690 return (error);
691 continue;
692 }
693
694 need_sync = B_TRUE;
695 break;
696 }
697
698 if (need_sync) {
699 return (dsl_sync_task(spa->spa_name, NULL, spa_sync_props,
700 nvp, 6, ZFS_SPACE_CHECK_RESERVED));
701 }
702
703 return (0);
704 }
705
706 /*
707 * If the bootfs property value is dsobj, clear it.
708 */
709 void
710 spa_prop_clear_bootfs(spa_t *spa, uint64_t dsobj, dmu_tx_t *tx)
711 {
712 if (spa->spa_bootfs == dsobj && spa->spa_pool_props_object != 0) {
713 VERIFY(zap_remove(spa->spa_meta_objset,
714 spa->spa_pool_props_object,
715 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), tx) == 0);
716 spa->spa_bootfs = 0;
717 }
718 }
719
720 /*ARGSUSED*/
721 static int
722 spa_change_guid_check(void *arg, dmu_tx_t *tx)
723 {
724 spa_t *spa = dmu_tx_pool(tx)->dp_spa;
725 vdev_t *rvd = spa->spa_root_vdev;
726 uint64_t vdev_state;
727 ASSERTV(uint64_t *newguid = arg);
728
729 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
730 vdev_state = rvd->vdev_state;
731 spa_config_exit(spa, SCL_STATE, FTAG);
732
733 if (vdev_state != VDEV_STATE_HEALTHY)
734 return (SET_ERROR(ENXIO));
735
736 ASSERT3U(spa_guid(spa), !=, *newguid);
737
738 return (0);
739 }
740
741 static void
742 spa_change_guid_sync(void *arg, dmu_tx_t *tx)
743 {
744 uint64_t *newguid = arg;
745 spa_t *spa = dmu_tx_pool(tx)->dp_spa;
746 uint64_t oldguid;
747 vdev_t *rvd = spa->spa_root_vdev;
748
749 oldguid = spa_guid(spa);
750
751 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
752 rvd->vdev_guid = *newguid;
753 rvd->vdev_guid_sum += (*newguid - oldguid);
754 vdev_config_dirty(rvd);
755 spa_config_exit(spa, SCL_STATE, FTAG);
756
757 spa_history_log_internal(spa, "guid change", tx, "old=%llu new=%llu",
758 oldguid, *newguid);
759 }
760
761 /*
762 * Change the GUID for the pool. This is done so that we can later
763 * re-import a pool built from a clone of our own vdevs. We will modify
764 * the root vdev's guid, our own pool guid, and then mark all of our
765 * vdevs dirty. Note that we must make sure that all our vdevs are
766 * online when we do this, or else any vdevs that weren't present
767 * would be orphaned from our pool. We are also going to issue a
768 * sysevent to update any watchers.
769 */
770 int
771 spa_change_guid(spa_t *spa)
772 {
773 int error;
774 uint64_t guid;
775
776 mutex_enter(&spa->spa_vdev_top_lock);
777 mutex_enter(&spa_namespace_lock);
778 guid = spa_generate_guid(NULL);
779
780 error = dsl_sync_task(spa->spa_name, spa_change_guid_check,
781 spa_change_guid_sync, &guid, 5, ZFS_SPACE_CHECK_RESERVED);
782
783 if (error == 0) {
784 spa_config_sync(spa, B_FALSE, B_TRUE);
785 spa_event_notify(spa, NULL, FM_EREPORT_ZFS_POOL_REGUID);
786 }
787
788 mutex_exit(&spa_namespace_lock);
789 mutex_exit(&spa->spa_vdev_top_lock);
790
791 return (error);
792 }
793
794 /*
795 * ==========================================================================
796 * SPA state manipulation (open/create/destroy/import/export)
797 * ==========================================================================
798 */
799
800 static int
801 spa_error_entry_compare(const void *a, const void *b)
802 {
803 spa_error_entry_t *sa = (spa_error_entry_t *)a;
804 spa_error_entry_t *sb = (spa_error_entry_t *)b;
805 int ret;
806
807 ret = bcmp(&sa->se_bookmark, &sb->se_bookmark,
808 sizeof (zbookmark_phys_t));
809
810 if (ret < 0)
811 return (-1);
812 else if (ret > 0)
813 return (1);
814 else
815 return (0);
816 }
817
818 /*
819 * Utility function which retrieves copies of the current logs and
820 * re-initializes them in the process.
821 */
822 void
823 spa_get_errlists(spa_t *spa, avl_tree_t *last, avl_tree_t *scrub)
824 {
825 ASSERT(MUTEX_HELD(&spa->spa_errlist_lock));
826
827 bcopy(&spa->spa_errlist_last, last, sizeof (avl_tree_t));
828 bcopy(&spa->spa_errlist_scrub, scrub, sizeof (avl_tree_t));
829
830 avl_create(&spa->spa_errlist_scrub,
831 spa_error_entry_compare, sizeof (spa_error_entry_t),
832 offsetof(spa_error_entry_t, se_avl));
833 avl_create(&spa->spa_errlist_last,
834 spa_error_entry_compare, sizeof (spa_error_entry_t),
835 offsetof(spa_error_entry_t, se_avl));
836 }
837
838 static void
839 spa_taskqs_init(spa_t *spa, zio_type_t t, zio_taskq_type_t q)
840 {
841 const zio_taskq_info_t *ztip = &zio_taskqs[t][q];
842 enum zti_modes mode = ztip->zti_mode;
843 uint_t value = ztip->zti_value;
844 uint_t count = ztip->zti_count;
845 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
846 char name[32];
847 uint_t i, flags = TASKQ_DYNAMIC;
848 boolean_t batch = B_FALSE;
849
850 if (mode == ZTI_MODE_NULL) {
851 tqs->stqs_count = 0;
852 tqs->stqs_taskq = NULL;
853 return;
854 }
855
856 ASSERT3U(count, >, 0);
857
858 tqs->stqs_count = count;
859 tqs->stqs_taskq = kmem_alloc(count * sizeof (taskq_t *), KM_SLEEP);
860
861 switch (mode) {
862 case ZTI_MODE_FIXED:
863 ASSERT3U(value, >=, 1);
864 value = MAX(value, 1);
865 break;
866
867 case ZTI_MODE_BATCH:
868 batch = B_TRUE;
869 flags |= TASKQ_THREADS_CPU_PCT;
870 value = MIN(zio_taskq_batch_pct, 100);
871 break;
872
873 default:
874 panic("unrecognized mode for %s_%s taskq (%u:%u) in "
875 "spa_activate()",
876 zio_type_name[t], zio_taskq_types[q], mode, value);
877 break;
878 }
879
880 for (i = 0; i < count; i++) {
881 taskq_t *tq;
882
883 if (count > 1) {
884 (void) snprintf(name, sizeof (name), "%s_%s_%u",
885 zio_type_name[t], zio_taskq_types[q], i);
886 } else {
887 (void) snprintf(name, sizeof (name), "%s_%s",
888 zio_type_name[t], zio_taskq_types[q]);
889 }
890
891 if (zio_taskq_sysdc && spa->spa_proc != &p0) {
892 if (batch)
893 flags |= TASKQ_DC_BATCH;
894
895 tq = taskq_create_sysdc(name, value, 50, INT_MAX,
896 spa->spa_proc, zio_taskq_basedc, flags);
897 } else {
898 pri_t pri = maxclsyspri;
899 /*
900 * The write issue taskq can be extremely CPU
901 * intensive. Run it at slightly less important
902 * priority than the other taskqs. Under Linux this
903 * means incrementing the priority value on platforms
904 * like illumos it should be decremented.
905 */
906 if (t == ZIO_TYPE_WRITE && q == ZIO_TASKQ_ISSUE)
907 pri++;
908
909 tq = taskq_create_proc(name, value, pri, 50,
910 INT_MAX, spa->spa_proc, flags);
911 }
912
913 tqs->stqs_taskq[i] = tq;
914 }
915 }
916
917 static void
918 spa_taskqs_fini(spa_t *spa, zio_type_t t, zio_taskq_type_t q)
919 {
920 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
921 uint_t i;
922
923 if (tqs->stqs_taskq == NULL) {
924 ASSERT3U(tqs->stqs_count, ==, 0);
925 return;
926 }
927
928 for (i = 0; i < tqs->stqs_count; i++) {
929 ASSERT3P(tqs->stqs_taskq[i], !=, NULL);
930 taskq_destroy(tqs->stqs_taskq[i]);
931 }
932
933 kmem_free(tqs->stqs_taskq, tqs->stqs_count * sizeof (taskq_t *));
934 tqs->stqs_taskq = NULL;
935 }
936
937 /*
938 * Dispatch a task to the appropriate taskq for the ZFS I/O type and priority.
939 * Note that a type may have multiple discrete taskqs to avoid lock contention
940 * on the taskq itself. In that case we choose which taskq at random by using
941 * the low bits of gethrtime().
942 */
943 void
944 spa_taskq_dispatch_ent(spa_t *spa, zio_type_t t, zio_taskq_type_t q,
945 task_func_t *func, void *arg, uint_t flags, taskq_ent_t *ent)
946 {
947 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
948 taskq_t *tq;
949
950 ASSERT3P(tqs->stqs_taskq, !=, NULL);
951 ASSERT3U(tqs->stqs_count, !=, 0);
952
953 if (tqs->stqs_count == 1) {
954 tq = tqs->stqs_taskq[0];
955 } else {
956 tq = tqs->stqs_taskq[((uint64_t)gethrtime()) % tqs->stqs_count];
957 }
958
959 taskq_dispatch_ent(tq, func, arg, flags, ent);
960 }
961
962 /*
963 * Same as spa_taskq_dispatch_ent() but block on the task until completion.
964 */
965 void
966 spa_taskq_dispatch_sync(spa_t *spa, zio_type_t t, zio_taskq_type_t q,
967 task_func_t *func, void *arg, uint_t flags)
968 {
969 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
970 taskq_t *tq;
971 taskqid_t id;
972
973 ASSERT3P(tqs->stqs_taskq, !=, NULL);
974 ASSERT3U(tqs->stqs_count, !=, 0);
975
976 if (tqs->stqs_count == 1) {
977 tq = tqs->stqs_taskq[0];
978 } else {
979 tq = tqs->stqs_taskq[((uint64_t)gethrtime()) % tqs->stqs_count];
980 }
981
982 id = taskq_dispatch(tq, func, arg, flags);
983 if (id)
984 taskq_wait_id(tq, id);
985 }
986
987 static void
988 spa_create_zio_taskqs(spa_t *spa)
989 {
990 int t, q;
991
992 for (t = 0; t < ZIO_TYPES; t++) {
993 for (q = 0; q < ZIO_TASKQ_TYPES; q++) {
994 spa_taskqs_init(spa, t, q);
995 }
996 }
997 }
998
999 #if defined(_KERNEL) && defined(HAVE_SPA_THREAD)
1000 static void
1001 spa_thread(void *arg)
1002 {
1003 callb_cpr_t cprinfo;
1004
1005 spa_t *spa = arg;
1006 user_t *pu = PTOU(curproc);
1007
1008 CALLB_CPR_INIT(&cprinfo, &spa->spa_proc_lock, callb_generic_cpr,
1009 spa->spa_name);
1010
1011 ASSERT(curproc != &p0);
1012 (void) snprintf(pu->u_psargs, sizeof (pu->u_psargs),
1013 "zpool-%s", spa->spa_name);
1014 (void) strlcpy(pu->u_comm, pu->u_psargs, sizeof (pu->u_comm));
1015
1016 /* bind this thread to the requested psrset */
1017 if (zio_taskq_psrset_bind != PS_NONE) {
1018 pool_lock();
1019 mutex_enter(&cpu_lock);
1020 mutex_enter(&pidlock);
1021 mutex_enter(&curproc->p_lock);
1022
1023 if (cpupart_bind_thread(curthread, zio_taskq_psrset_bind,
1024 0, NULL, NULL) == 0) {
1025 curthread->t_bind_pset = zio_taskq_psrset_bind;
1026 } else {
1027 cmn_err(CE_WARN,
1028 "Couldn't bind process for zfs pool \"%s\" to "
1029 "pset %d\n", spa->spa_name, zio_taskq_psrset_bind);
1030 }
1031
1032 mutex_exit(&curproc->p_lock);
1033 mutex_exit(&pidlock);
1034 mutex_exit(&cpu_lock);
1035 pool_unlock();
1036 }
1037
1038 if (zio_taskq_sysdc) {
1039 sysdc_thread_enter(curthread, 100, 0);
1040 }
1041
1042 spa->spa_proc = curproc;
1043 spa->spa_did = curthread->t_did;
1044
1045 spa_create_zio_taskqs(spa);
1046
1047 mutex_enter(&spa->spa_proc_lock);
1048 ASSERT(spa->spa_proc_state == SPA_PROC_CREATED);
1049
1050 spa->spa_proc_state = SPA_PROC_ACTIVE;
1051 cv_broadcast(&spa->spa_proc_cv);
1052
1053 CALLB_CPR_SAFE_BEGIN(&cprinfo);
1054 while (spa->spa_proc_state == SPA_PROC_ACTIVE)
1055 cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock);
1056 CALLB_CPR_SAFE_END(&cprinfo, &spa->spa_proc_lock);
1057
1058 ASSERT(spa->spa_proc_state == SPA_PROC_DEACTIVATE);
1059 spa->spa_proc_state = SPA_PROC_GONE;
1060 spa->spa_proc = &p0;
1061 cv_broadcast(&spa->spa_proc_cv);
1062 CALLB_CPR_EXIT(&cprinfo); /* drops spa_proc_lock */
1063
1064 mutex_enter(&curproc->p_lock);
1065 lwp_exit();
1066 }
1067 #endif
1068
1069 /*
1070 * Activate an uninitialized pool.
1071 */
1072 static void
1073 spa_activate(spa_t *spa, int mode)
1074 {
1075 ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED);
1076
1077 spa->spa_state = POOL_STATE_ACTIVE;
1078 spa->spa_mode = mode;
1079
1080 spa->spa_normal_class = metaslab_class_create(spa, zfs_metaslab_ops);
1081 spa->spa_log_class = metaslab_class_create(spa, zfs_metaslab_ops);
1082
1083 /* Try to create a covering process */
1084 mutex_enter(&spa->spa_proc_lock);
1085 ASSERT(spa->spa_proc_state == SPA_PROC_NONE);
1086 ASSERT(spa->spa_proc == &p0);
1087 spa->spa_did = 0;
1088
1089 #ifdef HAVE_SPA_THREAD
1090 /* Only create a process if we're going to be around a while. */
1091 if (spa_create_process && strcmp(spa->spa_name, TRYIMPORT_NAME) != 0) {
1092 if (newproc(spa_thread, (caddr_t)spa, syscid, maxclsyspri,
1093 NULL, 0) == 0) {
1094 spa->spa_proc_state = SPA_PROC_CREATED;
1095 while (spa->spa_proc_state == SPA_PROC_CREATED) {
1096 cv_wait(&spa->spa_proc_cv,
1097 &spa->spa_proc_lock);
1098 }
1099 ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE);
1100 ASSERT(spa->spa_proc != &p0);
1101 ASSERT(spa->spa_did != 0);
1102 } else {
1103 #ifdef _KERNEL
1104 cmn_err(CE_WARN,
1105 "Couldn't create process for zfs pool \"%s\"\n",
1106 spa->spa_name);
1107 #endif
1108 }
1109 }
1110 #endif /* HAVE_SPA_THREAD */
1111 mutex_exit(&spa->spa_proc_lock);
1112
1113 /* If we didn't create a process, we need to create our taskqs. */
1114 if (spa->spa_proc == &p0) {
1115 spa_create_zio_taskqs(spa);
1116 }
1117
1118 list_create(&spa->spa_config_dirty_list, sizeof (vdev_t),
1119 offsetof(vdev_t, vdev_config_dirty_node));
1120 list_create(&spa->spa_evicting_os_list, sizeof (objset_t),
1121 offsetof(objset_t, os_evicting_node));
1122 list_create(&spa->spa_state_dirty_list, sizeof (vdev_t),
1123 offsetof(vdev_t, vdev_state_dirty_node));
1124
1125 txg_list_create(&spa->spa_vdev_txg_list,
1126 offsetof(struct vdev, vdev_txg_node));
1127
1128 avl_create(&spa->spa_errlist_scrub,
1129 spa_error_entry_compare, sizeof (spa_error_entry_t),
1130 offsetof(spa_error_entry_t, se_avl));
1131 avl_create(&spa->spa_errlist_last,
1132 spa_error_entry_compare, sizeof (spa_error_entry_t),
1133 offsetof(spa_error_entry_t, se_avl));
1134 }
1135
1136 /*
1137 * Opposite of spa_activate().
1138 */
1139 static void
1140 spa_deactivate(spa_t *spa)
1141 {
1142 int t, q;
1143
1144 ASSERT(spa->spa_sync_on == B_FALSE);
1145 ASSERT(spa->spa_dsl_pool == NULL);
1146 ASSERT(spa->spa_root_vdev == NULL);
1147 ASSERT(spa->spa_async_zio_root == NULL);
1148 ASSERT(spa->spa_state != POOL_STATE_UNINITIALIZED);
1149
1150 spa_evicting_os_wait(spa);
1151
1152 txg_list_destroy(&spa->spa_vdev_txg_list);
1153
1154 list_destroy(&spa->spa_config_dirty_list);
1155 list_destroy(&spa->spa_evicting_os_list);
1156 list_destroy(&spa->spa_state_dirty_list);
1157
1158 taskq_cancel_id(system_taskq, spa->spa_deadman_tqid);
1159
1160 for (t = 0; t < ZIO_TYPES; t++) {
1161 for (q = 0; q < ZIO_TASKQ_TYPES; q++) {
1162 spa_taskqs_fini(spa, t, q);
1163 }
1164 }
1165
1166 metaslab_class_destroy(spa->spa_normal_class);
1167 spa->spa_normal_class = NULL;
1168
1169 metaslab_class_destroy(spa->spa_log_class);
1170 spa->spa_log_class = NULL;
1171
1172 /*
1173 * If this was part of an import or the open otherwise failed, we may
1174 * still have errors left in the queues. Empty them just in case.
1175 */
1176 spa_errlog_drain(spa);
1177
1178 avl_destroy(&spa->spa_errlist_scrub);
1179 avl_destroy(&spa->spa_errlist_last);
1180
1181 spa->spa_state = POOL_STATE_UNINITIALIZED;
1182
1183 mutex_enter(&spa->spa_proc_lock);
1184 if (spa->spa_proc_state != SPA_PROC_NONE) {
1185 ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE);
1186 spa->spa_proc_state = SPA_PROC_DEACTIVATE;
1187 cv_broadcast(&spa->spa_proc_cv);
1188 while (spa->spa_proc_state == SPA_PROC_DEACTIVATE) {
1189 ASSERT(spa->spa_proc != &p0);
1190 cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock);
1191 }
1192 ASSERT(spa->spa_proc_state == SPA_PROC_GONE);
1193 spa->spa_proc_state = SPA_PROC_NONE;
1194 }
1195 ASSERT(spa->spa_proc == &p0);
1196 mutex_exit(&spa->spa_proc_lock);
1197
1198 /*
1199 * We want to make sure spa_thread() has actually exited the ZFS
1200 * module, so that the module can't be unloaded out from underneath
1201 * it.
1202 */
1203 if (spa->spa_did != 0) {
1204 thread_join(spa->spa_did);
1205 spa->spa_did = 0;
1206 }
1207 }
1208
1209 /*
1210 * Verify a pool configuration, and construct the vdev tree appropriately. This
1211 * will create all the necessary vdevs in the appropriate layout, with each vdev
1212 * in the CLOSED state. This will prep the pool before open/creation/import.
1213 * All vdev validation is done by the vdev_alloc() routine.
1214 */
1215 static int
1216 spa_config_parse(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent,
1217 uint_t id, int atype)
1218 {
1219 nvlist_t **child;
1220 uint_t children;
1221 int error;
1222 int c;
1223
1224 if ((error = vdev_alloc(spa, vdp, nv, parent, id, atype)) != 0)
1225 return (error);
1226
1227 if ((*vdp)->vdev_ops->vdev_op_leaf)
1228 return (0);
1229
1230 error = nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
1231 &child, &children);
1232
1233 if (error == ENOENT)
1234 return (0);
1235
1236 if (error) {
1237 vdev_free(*vdp);
1238 *vdp = NULL;
1239 return (SET_ERROR(EINVAL));
1240 }
1241
1242 for (c = 0; c < children; c++) {
1243 vdev_t *vd;
1244 if ((error = spa_config_parse(spa, &vd, child[c], *vdp, c,
1245 atype)) != 0) {
1246 vdev_free(*vdp);
1247 *vdp = NULL;
1248 return (error);
1249 }
1250 }
1251
1252 ASSERT(*vdp != NULL);
1253
1254 return (0);
1255 }
1256
1257 /*
1258 * Opposite of spa_load().
1259 */
1260 static void
1261 spa_unload(spa_t *spa)
1262 {
1263 int i;
1264
1265 ASSERT(MUTEX_HELD(&spa_namespace_lock));
1266
1267 /*
1268 * Stop async tasks.
1269 */
1270 spa_async_suspend(spa);
1271
1272 /*
1273 * Stop syncing.
1274 */
1275 if (spa->spa_sync_on) {
1276 txg_sync_stop(spa->spa_dsl_pool);
1277 spa->spa_sync_on = B_FALSE;
1278 }
1279
1280 /*
1281 * Wait for any outstanding async I/O to complete.
1282 */
1283 if (spa->spa_async_zio_root != NULL) {
1284 for (i = 0; i < max_ncpus; i++)
1285 (void) zio_wait(spa->spa_async_zio_root[i]);
1286 kmem_free(spa->spa_async_zio_root, max_ncpus * sizeof (void *));
1287 spa->spa_async_zio_root = NULL;
1288 }
1289
1290 bpobj_close(&spa->spa_deferred_bpobj);
1291
1292 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1293
1294 /*
1295 * Close all vdevs.
1296 */
1297 if (spa->spa_root_vdev)
1298 vdev_free(spa->spa_root_vdev);
1299 ASSERT(spa->spa_root_vdev == NULL);
1300
1301 /*
1302 * Close the dsl pool.
1303 */
1304 if (spa->spa_dsl_pool) {
1305 dsl_pool_close(spa->spa_dsl_pool);
1306 spa->spa_dsl_pool = NULL;
1307 spa->spa_meta_objset = NULL;
1308 }
1309
1310 ddt_unload(spa);
1311
1312
1313 /*
1314 * Drop and purge level 2 cache
1315 */
1316 spa_l2cache_drop(spa);
1317
1318 for (i = 0; i < spa->spa_spares.sav_count; i++)
1319 vdev_free(spa->spa_spares.sav_vdevs[i]);
1320 if (spa->spa_spares.sav_vdevs) {
1321 kmem_free(spa->spa_spares.sav_vdevs,
1322 spa->spa_spares.sav_count * sizeof (void *));
1323 spa->spa_spares.sav_vdevs = NULL;
1324 }
1325 if (spa->spa_spares.sav_config) {
1326 nvlist_free(spa->spa_spares.sav_config);
1327 spa->spa_spares.sav_config = NULL;
1328 }
1329 spa->spa_spares.sav_count = 0;
1330
1331 for (i = 0; i < spa->spa_l2cache.sav_count; i++) {
1332 vdev_clear_stats(spa->spa_l2cache.sav_vdevs[i]);
1333 vdev_free(spa->spa_l2cache.sav_vdevs[i]);
1334 }
1335 if (spa->spa_l2cache.sav_vdevs) {
1336 kmem_free(spa->spa_l2cache.sav_vdevs,
1337 spa->spa_l2cache.sav_count * sizeof (void *));
1338 spa->spa_l2cache.sav_vdevs = NULL;
1339 }
1340 if (spa->spa_l2cache.sav_config) {
1341 nvlist_free(spa->spa_l2cache.sav_config);
1342 spa->spa_l2cache.sav_config = NULL;
1343 }
1344 spa->spa_l2cache.sav_count = 0;
1345
1346 spa->spa_async_suspended = 0;
1347
1348 if (spa->spa_comment != NULL) {
1349 spa_strfree(spa->spa_comment);
1350 spa->spa_comment = NULL;
1351 }
1352
1353 spa_config_exit(spa, SCL_ALL, FTAG);
1354 }
1355
1356 /*
1357 * Load (or re-load) the current list of vdevs describing the active spares for
1358 * this pool. When this is called, we have some form of basic information in
1359 * 'spa_spares.sav_config'. We parse this into vdevs, try to open them, and
1360 * then re-generate a more complete list including status information.
1361 */
1362 static void
1363 spa_load_spares(spa_t *spa)
1364 {
1365 nvlist_t **spares;
1366 uint_t nspares;
1367 int i;
1368 vdev_t *vd, *tvd;
1369
1370 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1371
1372 /*
1373 * First, close and free any existing spare vdevs.
1374 */
1375 for (i = 0; i < spa->spa_spares.sav_count; i++) {
1376 vd = spa->spa_spares.sav_vdevs[i];
1377
1378 /* Undo the call to spa_activate() below */
1379 if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
1380 B_FALSE)) != NULL && tvd->vdev_isspare)
1381 spa_spare_remove(tvd);
1382 vdev_close(vd);
1383 vdev_free(vd);
1384 }
1385
1386 if (spa->spa_spares.sav_vdevs)
1387 kmem_free(spa->spa_spares.sav_vdevs,
1388 spa->spa_spares.sav_count * sizeof (void *));
1389
1390 if (spa->spa_spares.sav_config == NULL)
1391 nspares = 0;
1392 else
1393 VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
1394 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
1395
1396 spa->spa_spares.sav_count = (int)nspares;
1397 spa->spa_spares.sav_vdevs = NULL;
1398
1399 if (nspares == 0)
1400 return;
1401
1402 /*
1403 * Construct the array of vdevs, opening them to get status in the
1404 * process. For each spare, there is potentially two different vdev_t
1405 * structures associated with it: one in the list of spares (used only
1406 * for basic validation purposes) and one in the active vdev
1407 * configuration (if it's spared in). During this phase we open and
1408 * validate each vdev on the spare list. If the vdev also exists in the
1409 * active configuration, then we also mark this vdev as an active spare.
1410 */
1411 spa->spa_spares.sav_vdevs = kmem_zalloc(nspares * sizeof (void *),
1412 KM_SLEEP);
1413 for (i = 0; i < spa->spa_spares.sav_count; i++) {
1414 VERIFY(spa_config_parse(spa, &vd, spares[i], NULL, 0,
1415 VDEV_ALLOC_SPARE) == 0);
1416 ASSERT(vd != NULL);
1417
1418 spa->spa_spares.sav_vdevs[i] = vd;
1419
1420 if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
1421 B_FALSE)) != NULL) {
1422 if (!tvd->vdev_isspare)
1423 spa_spare_add(tvd);
1424
1425 /*
1426 * We only mark the spare active if we were successfully
1427 * able to load the vdev. Otherwise, importing a pool
1428 * with a bad active spare would result in strange
1429 * behavior, because multiple pool would think the spare
1430 * is actively in use.
1431 *
1432 * There is a vulnerability here to an equally bizarre
1433 * circumstance, where a dead active spare is later
1434 * brought back to life (onlined or otherwise). Given
1435 * the rarity of this scenario, and the extra complexity
1436 * it adds, we ignore the possibility.
1437 */
1438 if (!vdev_is_dead(tvd))
1439 spa_spare_activate(tvd);
1440 }
1441
1442 vd->vdev_top = vd;
1443 vd->vdev_aux = &spa->spa_spares;
1444
1445 if (vdev_open(vd) != 0)
1446 continue;
1447
1448 if (vdev_validate_aux(vd) == 0)
1449 spa_spare_add(vd);
1450 }
1451
1452 /*
1453 * Recompute the stashed list of spares, with status information
1454 * this time.
1455 */
1456 VERIFY(nvlist_remove(spa->spa_spares.sav_config, ZPOOL_CONFIG_SPARES,
1457 DATA_TYPE_NVLIST_ARRAY) == 0);
1458
1459 spares = kmem_alloc(spa->spa_spares.sav_count * sizeof (void *),
1460 KM_SLEEP);
1461 for (i = 0; i < spa->spa_spares.sav_count; i++)
1462 spares[i] = vdev_config_generate(spa,
1463 spa->spa_spares.sav_vdevs[i], B_TRUE, VDEV_CONFIG_SPARE);
1464 VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
1465 ZPOOL_CONFIG_SPARES, spares, spa->spa_spares.sav_count) == 0);
1466 for (i = 0; i < spa->spa_spares.sav_count; i++)
1467 nvlist_free(spares[i]);
1468 kmem_free(spares, spa->spa_spares.sav_count * sizeof (void *));
1469 }
1470
1471 /*
1472 * Load (or re-load) the current list of vdevs describing the active l2cache for
1473 * this pool. When this is called, we have some form of basic information in
1474 * 'spa_l2cache.sav_config'. We parse this into vdevs, try to open them, and
1475 * then re-generate a more complete list including status information.
1476 * Devices which are already active have their details maintained, and are
1477 * not re-opened.
1478 */
1479 static void
1480 spa_load_l2cache(spa_t *spa)
1481 {
1482 nvlist_t **l2cache;
1483 uint_t nl2cache;
1484 int i, j, oldnvdevs;
1485 uint64_t guid;
1486 vdev_t *vd, **oldvdevs, **newvdevs;
1487 spa_aux_vdev_t *sav = &spa->spa_l2cache;
1488
1489 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1490
1491 if (sav->sav_config != NULL) {
1492 VERIFY(nvlist_lookup_nvlist_array(sav->sav_config,
1493 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
1494 newvdevs = kmem_alloc(nl2cache * sizeof (void *), KM_SLEEP);
1495 } else {
1496 nl2cache = 0;
1497 newvdevs = NULL;
1498 }
1499
1500 oldvdevs = sav->sav_vdevs;
1501 oldnvdevs = sav->sav_count;
1502 sav->sav_vdevs = NULL;
1503 sav->sav_count = 0;
1504
1505 /*
1506 * Process new nvlist of vdevs.
1507 */
1508 for (i = 0; i < nl2cache; i++) {
1509 VERIFY(nvlist_lookup_uint64(l2cache[i], ZPOOL_CONFIG_GUID,
1510 &guid) == 0);
1511
1512 newvdevs[i] = NULL;
1513 for (j = 0; j < oldnvdevs; j++) {
1514 vd = oldvdevs[j];
1515 if (vd != NULL && guid == vd->vdev_guid) {
1516 /*
1517 * Retain previous vdev for add/remove ops.
1518 */
1519 newvdevs[i] = vd;
1520 oldvdevs[j] = NULL;
1521 break;
1522 }
1523 }
1524
1525 if (newvdevs[i] == NULL) {
1526 /*
1527 * Create new vdev
1528 */
1529 VERIFY(spa_config_parse(spa, &vd, l2cache[i], NULL, 0,
1530 VDEV_ALLOC_L2CACHE) == 0);
1531 ASSERT(vd != NULL);
1532 newvdevs[i] = vd;
1533
1534 /*
1535 * Commit this vdev as an l2cache device,
1536 * even if it fails to open.
1537 */
1538 spa_l2cache_add(vd);
1539
1540 vd->vdev_top = vd;
1541 vd->vdev_aux = sav;
1542
1543 spa_l2cache_activate(vd);
1544
1545 if (vdev_open(vd) != 0)
1546 continue;
1547
1548 (void) vdev_validate_aux(vd);
1549
1550 if (!vdev_is_dead(vd))
1551 l2arc_add_vdev(spa, vd);
1552 }
1553 }
1554
1555 /*
1556 * Purge vdevs that were dropped
1557 */
1558 for (i = 0; i < oldnvdevs; i++) {
1559 uint64_t pool;
1560
1561 vd = oldvdevs[i];
1562 if (vd != NULL) {
1563 ASSERT(vd->vdev_isl2cache);
1564
1565 if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
1566 pool != 0ULL && l2arc_vdev_present(vd))
1567 l2arc_remove_vdev(vd);
1568 vdev_clear_stats(vd);
1569 vdev_free(vd);
1570 }
1571 }
1572
1573 if (oldvdevs)
1574 kmem_free(oldvdevs, oldnvdevs * sizeof (void *));
1575
1576 if (sav->sav_config == NULL)
1577 goto out;
1578
1579 sav->sav_vdevs = newvdevs;
1580 sav->sav_count = (int)nl2cache;
1581
1582 /*
1583 * Recompute the stashed list of l2cache devices, with status
1584 * information this time.
1585 */
1586 VERIFY(nvlist_remove(sav->sav_config, ZPOOL_CONFIG_L2CACHE,
1587 DATA_TYPE_NVLIST_ARRAY) == 0);
1588
1589 l2cache = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP);
1590 for (i = 0; i < sav->sav_count; i++)
1591 l2cache[i] = vdev_config_generate(spa,
1592 sav->sav_vdevs[i], B_TRUE, VDEV_CONFIG_L2CACHE);
1593 VERIFY(nvlist_add_nvlist_array(sav->sav_config,
1594 ZPOOL_CONFIG_L2CACHE, l2cache, sav->sav_count) == 0);
1595 out:
1596 for (i = 0; i < sav->sav_count; i++)
1597 nvlist_free(l2cache[i]);
1598 if (sav->sav_count)
1599 kmem_free(l2cache, sav->sav_count * sizeof (void *));
1600 }
1601
1602 static int
1603 load_nvlist(spa_t *spa, uint64_t obj, nvlist_t **value)
1604 {
1605 dmu_buf_t *db;
1606 char *packed = NULL;
1607 size_t nvsize = 0;
1608 int error;
1609 *value = NULL;
1610
1611 error = dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db);
1612 if (error)
1613 return (error);
1614
1615 nvsize = *(uint64_t *)db->db_data;
1616 dmu_buf_rele(db, FTAG);
1617
1618 packed = vmem_alloc(nvsize, KM_SLEEP);
1619 error = dmu_read(spa->spa_meta_objset, obj, 0, nvsize, packed,
1620 DMU_READ_PREFETCH);
1621 if (error == 0)
1622 error = nvlist_unpack(packed, nvsize, value, 0);
1623 vmem_free(packed, nvsize);
1624
1625 return (error);
1626 }
1627
1628 /*
1629 * Checks to see if the given vdev could not be opened, in which case we post a
1630 * sysevent to notify the autoreplace code that the device has been removed.
1631 */
1632 static void
1633 spa_check_removed(vdev_t *vd)
1634 {
1635 int c;
1636
1637 for (c = 0; c < vd->vdev_children; c++)
1638 spa_check_removed(vd->vdev_child[c]);
1639
1640 if (vd->vdev_ops->vdev_op_leaf && vdev_is_dead(vd) &&
1641 !vd->vdev_ishole) {
1642 zfs_ereport_post(FM_EREPORT_RESOURCE_AUTOREPLACE,
1643 vd->vdev_spa, vd, NULL, 0, 0);
1644 spa_event_notify(vd->vdev_spa, vd, FM_EREPORT_ZFS_DEVICE_CHECK);
1645 }
1646 }
1647
1648 /*
1649 * Validate the current config against the MOS config
1650 */
1651 static boolean_t
1652 spa_config_valid(spa_t *spa, nvlist_t *config)
1653 {
1654 vdev_t *mrvd, *rvd = spa->spa_root_vdev;
1655 nvlist_t *nv;
1656 int c, i;
1657
1658 VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nv) == 0);
1659
1660 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1661 VERIFY(spa_config_parse(spa, &mrvd, nv, NULL, 0, VDEV_ALLOC_LOAD) == 0);
1662
1663 ASSERT3U(rvd->vdev_children, ==, mrvd->vdev_children);
1664
1665 /*
1666 * If we're doing a normal import, then build up any additional
1667 * diagnostic information about missing devices in this config.
1668 * We'll pass this up to the user for further processing.
1669 */
1670 if (!(spa->spa_import_flags & ZFS_IMPORT_MISSING_LOG)) {
1671 nvlist_t **child, *nv;
1672 uint64_t idx = 0;
1673
1674 child = kmem_alloc(rvd->vdev_children * sizeof (nvlist_t **),
1675 KM_SLEEP);
1676 VERIFY(nvlist_alloc(&nv, NV_UNIQUE_NAME, KM_SLEEP) == 0);
1677
1678 for (c = 0; c < rvd->vdev_children; c++) {
1679 vdev_t *tvd = rvd->vdev_child[c];
1680 vdev_t *mtvd = mrvd->vdev_child[c];
1681
1682 if (tvd->vdev_ops == &vdev_missing_ops &&
1683 mtvd->vdev_ops != &vdev_missing_ops &&
1684 mtvd->vdev_islog)
1685 child[idx++] = vdev_config_generate(spa, mtvd,
1686 B_FALSE, 0);
1687 }
1688
1689 if (idx) {
1690 VERIFY(nvlist_add_nvlist_array(nv,
1691 ZPOOL_CONFIG_CHILDREN, child, idx) == 0);
1692 VERIFY(nvlist_add_nvlist(spa->spa_load_info,
1693 ZPOOL_CONFIG_MISSING_DEVICES, nv) == 0);
1694
1695 for (i = 0; i < idx; i++)
1696 nvlist_free(child[i]);
1697 }
1698 nvlist_free(nv);
1699 kmem_free(child, rvd->vdev_children * sizeof (char **));
1700 }
1701
1702 /*
1703 * Compare the root vdev tree with the information we have
1704 * from the MOS config (mrvd). Check each top-level vdev
1705 * with the corresponding MOS config top-level (mtvd).
1706 */
1707 for (c = 0; c < rvd->vdev_children; c++) {
1708 vdev_t *tvd = rvd->vdev_child[c];
1709 vdev_t *mtvd = mrvd->vdev_child[c];
1710
1711 /*
1712 * Resolve any "missing" vdevs in the current configuration.
1713 * If we find that the MOS config has more accurate information
1714 * about the top-level vdev then use that vdev instead.
1715 */
1716 if (tvd->vdev_ops == &vdev_missing_ops &&
1717 mtvd->vdev_ops != &vdev_missing_ops) {
1718
1719 if (!(spa->spa_import_flags & ZFS_IMPORT_MISSING_LOG))
1720 continue;
1721
1722 /*
1723 * Device specific actions.
1724 */
1725 if (mtvd->vdev_islog) {
1726 spa_set_log_state(spa, SPA_LOG_CLEAR);
1727 } else {
1728 /*
1729 * XXX - once we have 'readonly' pool
1730 * support we should be able to handle
1731 * missing data devices by transitioning
1732 * the pool to readonly.
1733 */
1734 continue;
1735 }
1736
1737 /*
1738 * Swap the missing vdev with the data we were
1739 * able to obtain from the MOS config.
1740 */
1741 vdev_remove_child(rvd, tvd);
1742 vdev_remove_child(mrvd, mtvd);
1743
1744 vdev_add_child(rvd, mtvd);
1745 vdev_add_child(mrvd, tvd);
1746
1747 spa_config_exit(spa, SCL_ALL, FTAG);
1748 vdev_load(mtvd);
1749 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1750
1751 vdev_reopen(rvd);
1752 } else if (mtvd->vdev_islog) {
1753 /*
1754 * Load the slog device's state from the MOS config
1755 * since it's possible that the label does not
1756 * contain the most up-to-date information.
1757 */
1758 vdev_load_log_state(tvd, mtvd);
1759 vdev_reopen(tvd);
1760 }
1761 }
1762 vdev_free(mrvd);
1763 spa_config_exit(spa, SCL_ALL, FTAG);
1764
1765 /*
1766 * Ensure we were able to validate the config.
1767 */
1768 return (rvd->vdev_guid_sum == spa->spa_uberblock.ub_guid_sum);
1769 }
1770
1771 /*
1772 * Check for missing log devices
1773 */
1774 static boolean_t
1775 spa_check_logs(spa_t *spa)
1776 {
1777 boolean_t rv = B_FALSE;
1778 dsl_pool_t *dp = spa_get_dsl(spa);
1779
1780 switch (spa->spa_log_state) {
1781 default:
1782 break;
1783 case SPA_LOG_MISSING:
1784 /* need to recheck in case slog has been restored */
1785 case SPA_LOG_UNKNOWN:
1786 rv = (dmu_objset_find_dp(dp, dp->dp_root_dir_obj,
1787 zil_check_log_chain, NULL, DS_FIND_CHILDREN) != 0);
1788 if (rv)
1789 spa_set_log_state(spa, SPA_LOG_MISSING);
1790 break;
1791 }
1792 return (rv);
1793 }
1794
1795 static boolean_t
1796 spa_passivate_log(spa_t *spa)
1797 {
1798 vdev_t *rvd = spa->spa_root_vdev;
1799 boolean_t slog_found = B_FALSE;
1800 int c;
1801
1802 ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER));
1803
1804 if (!spa_has_slogs(spa))
1805 return (B_FALSE);
1806
1807 for (c = 0; c < rvd->vdev_children; c++) {
1808 vdev_t *tvd = rvd->vdev_child[c];
1809 metaslab_group_t *mg = tvd->vdev_mg;
1810
1811 if (tvd->vdev_islog) {
1812 metaslab_group_passivate(mg);
1813 slog_found = B_TRUE;
1814 }
1815 }
1816
1817 return (slog_found);
1818 }
1819
1820 static void
1821 spa_activate_log(spa_t *spa)
1822 {
1823 vdev_t *rvd = spa->spa_root_vdev;
1824 int c;
1825
1826 ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER));
1827
1828 for (c = 0; c < rvd->vdev_children; c++) {
1829 vdev_t *tvd = rvd->vdev_child[c];
1830 metaslab_group_t *mg = tvd->vdev_mg;
1831
1832 if (tvd->vdev_islog)
1833 metaslab_group_activate(mg);
1834 }
1835 }
1836
1837 int
1838 spa_offline_log(spa_t *spa)
1839 {
1840 int error;
1841
1842 error = dmu_objset_find(spa_name(spa), zil_vdev_offline,
1843 NULL, DS_FIND_CHILDREN);
1844 if (error == 0) {
1845 /*
1846 * We successfully offlined the log device, sync out the
1847 * current txg so that the "stubby" block can be removed
1848 * by zil_sync().
1849 */
1850 txg_wait_synced(spa->spa_dsl_pool, 0);
1851 }
1852 return (error);
1853 }
1854
1855 static void
1856 spa_aux_check_removed(spa_aux_vdev_t *sav)
1857 {
1858 int i;
1859
1860 for (i = 0; i < sav->sav_count; i++)
1861 spa_check_removed(sav->sav_vdevs[i]);
1862 }
1863
1864 void
1865 spa_claim_notify(zio_t *zio)
1866 {
1867 spa_t *spa = zio->io_spa;
1868
1869 if (zio->io_error)
1870 return;
1871
1872 mutex_enter(&spa->spa_props_lock); /* any mutex will do */
1873 if (spa->spa_claim_max_txg < zio->io_bp->blk_birth)
1874 spa->spa_claim_max_txg = zio->io_bp->blk_birth;
1875 mutex_exit(&spa->spa_props_lock);
1876 }
1877
1878 typedef struct spa_load_error {
1879 uint64_t sle_meta_count;
1880 uint64_t sle_data_count;
1881 } spa_load_error_t;
1882
1883 static void
1884 spa_load_verify_done(zio_t *zio)
1885 {
1886 blkptr_t *bp = zio->io_bp;
1887 spa_load_error_t *sle = zio->io_private;
1888 dmu_object_type_t type = BP_GET_TYPE(bp);
1889 int error = zio->io_error;
1890 spa_t *spa = zio->io_spa;
1891
1892 if (error) {
1893 if ((BP_GET_LEVEL(bp) != 0 || DMU_OT_IS_METADATA(type)) &&
1894 type != DMU_OT_INTENT_LOG)
1895 atomic_add_64(&sle->sle_meta_count, 1);
1896 else
1897 atomic_add_64(&sle->sle_data_count, 1);
1898 }
1899 zio_data_buf_free(zio->io_data, zio->io_size);
1900
1901 mutex_enter(&spa->spa_scrub_lock);
1902 spa->spa_scrub_inflight--;
1903 cv_broadcast(&spa->spa_scrub_io_cv);
1904 mutex_exit(&spa->spa_scrub_lock);
1905 }
1906
1907 /*
1908 * Maximum number of concurrent scrub i/os to create while verifying
1909 * a pool while importing it.
1910 */
1911 int spa_load_verify_maxinflight = 10000;
1912 int spa_load_verify_metadata = B_TRUE;
1913 int spa_load_verify_data = B_TRUE;
1914
1915 /*ARGSUSED*/
1916 static int
1917 spa_load_verify_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp,
1918 const zbookmark_phys_t *zb, const dnode_phys_t *dnp, void *arg)
1919 {
1920 zio_t *rio;
1921 size_t size;
1922 void *data;
1923
1924 if (bp == NULL || BP_IS_HOLE(bp) || BP_IS_EMBEDDED(bp))
1925 return (0);
1926 /*
1927 * Note: normally this routine will not be called if
1928 * spa_load_verify_metadata is not set. However, it may be useful
1929 * to manually set the flag after the traversal has begun.
1930 */
1931 if (!spa_load_verify_metadata)
1932 return (0);
1933 if (BP_GET_BUFC_TYPE(bp) == ARC_BUFC_DATA && !spa_load_verify_data)
1934 return (0);
1935
1936 rio = arg;
1937 size = BP_GET_PSIZE(bp);
1938 data = zio_data_buf_alloc(size);
1939
1940 mutex_enter(&spa->spa_scrub_lock);
1941 while (spa->spa_scrub_inflight >= spa_load_verify_maxinflight)
1942 cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock);
1943 spa->spa_scrub_inflight++;
1944 mutex_exit(&spa->spa_scrub_lock);
1945
1946 zio_nowait(zio_read(rio, spa, bp, data, size,
1947 spa_load_verify_done, rio->io_private, ZIO_PRIORITY_SCRUB,
1948 ZIO_FLAG_SPECULATIVE | ZIO_FLAG_CANFAIL |
1949 ZIO_FLAG_SCRUB | ZIO_FLAG_RAW, zb));
1950 return (0);
1951 }
1952
1953 static int
1954 spa_load_verify(spa_t *spa)
1955 {
1956 zio_t *rio;
1957 spa_load_error_t sle = { 0 };
1958 zpool_rewind_policy_t policy;
1959 boolean_t verify_ok = B_FALSE;
1960 int error = 0;
1961
1962 zpool_get_rewind_policy(spa->spa_config, &policy);
1963
1964 if (policy.zrp_request & ZPOOL_NEVER_REWIND)
1965 return (0);
1966
1967 rio = zio_root(spa, NULL, &sle,
1968 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE);
1969
1970 if (spa_load_verify_metadata) {
1971 error = traverse_pool(spa, spa->spa_verify_min_txg,
1972 TRAVERSE_PRE | TRAVERSE_PREFETCH_METADATA,
1973 spa_load_verify_cb, rio);
1974 }
1975
1976 (void) zio_wait(rio);
1977
1978 spa->spa_load_meta_errors = sle.sle_meta_count;
1979 spa->spa_load_data_errors = sle.sle_data_count;
1980
1981 if (!error && sle.sle_meta_count <= policy.zrp_maxmeta &&
1982 sle.sle_data_count <= policy.zrp_maxdata) {
1983 int64_t loss = 0;
1984
1985 verify_ok = B_TRUE;
1986 spa->spa_load_txg = spa->spa_uberblock.ub_txg;
1987 spa->spa_load_txg_ts = spa->spa_uberblock.ub_timestamp;
1988
1989 loss = spa->spa_last_ubsync_txg_ts - spa->spa_load_txg_ts;
1990 VERIFY(nvlist_add_uint64(spa->spa_load_info,
1991 ZPOOL_CONFIG_LOAD_TIME, spa->spa_load_txg_ts) == 0);
1992 VERIFY(nvlist_add_int64(spa->spa_load_info,
1993 ZPOOL_CONFIG_REWIND_TIME, loss) == 0);
1994 VERIFY(nvlist_add_uint64(spa->spa_load_info,
1995 ZPOOL_CONFIG_LOAD_DATA_ERRORS, sle.sle_data_count) == 0);
1996 } else {
1997 spa->spa_load_max_txg = spa->spa_uberblock.ub_txg;
1998 }
1999
2000 if (error) {
2001 if (error != ENXIO && error != EIO)
2002 error = SET_ERROR(EIO);
2003 return (error);
2004 }
2005
2006 return (verify_ok ? 0 : EIO);
2007 }
2008
2009 /*
2010 * Find a value in the pool props object.
2011 */
2012 static void
2013 spa_prop_find(spa_t *spa, zpool_prop_t prop, uint64_t *val)
2014 {
2015 (void) zap_lookup(spa->spa_meta_objset, spa->spa_pool_props_object,
2016 zpool_prop_to_name(prop), sizeof (uint64_t), 1, val);
2017 }
2018
2019 /*
2020 * Find a value in the pool directory object.
2021 */
2022 static int
2023 spa_dir_prop(spa_t *spa, const char *name, uint64_t *val)
2024 {
2025 return (zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
2026 name, sizeof (uint64_t), 1, val));
2027 }
2028
2029 static int
2030 spa_vdev_err(vdev_t *vdev, vdev_aux_t aux, int err)
2031 {
2032 vdev_set_state(vdev, B_TRUE, VDEV_STATE_CANT_OPEN, aux);
2033 return (err);
2034 }
2035
2036 /*
2037 * Fix up config after a partly-completed split. This is done with the
2038 * ZPOOL_CONFIG_SPLIT nvlist. Both the splitting pool and the split-off
2039 * pool have that entry in their config, but only the splitting one contains
2040 * a list of all the guids of the vdevs that are being split off.
2041 *
2042 * This function determines what to do with that list: either rejoin
2043 * all the disks to the pool, or complete the splitting process. To attempt
2044 * the rejoin, each disk that is offlined is marked online again, and
2045 * we do a reopen() call. If the vdev label for every disk that was
2046 * marked online indicates it was successfully split off (VDEV_AUX_SPLIT_POOL)
2047 * then we call vdev_split() on each disk, and complete the split.
2048 *
2049 * Otherwise we leave the config alone, with all the vdevs in place in
2050 * the original pool.
2051 */
2052 static void
2053 spa_try_repair(spa_t *spa, nvlist_t *config)
2054 {
2055 uint_t extracted;
2056 uint64_t *glist;
2057 uint_t i, gcount;
2058 nvlist_t *nvl;
2059 vdev_t **vd;
2060 boolean_t attempt_reopen;
2061
2062 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT, &nvl) != 0)
2063 return;
2064
2065 /* check that the config is complete */
2066 if (nvlist_lookup_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST,
2067 &glist, &gcount) != 0)
2068 return;
2069
2070 vd = kmem_zalloc(gcount * sizeof (vdev_t *), KM_SLEEP);
2071
2072 /* attempt to online all the vdevs & validate */
2073 attempt_reopen = B_TRUE;
2074 for (i = 0; i < gcount; i++) {
2075 if (glist[i] == 0) /* vdev is hole */
2076 continue;
2077
2078 vd[i] = spa_lookup_by_guid(spa, glist[i], B_FALSE);
2079 if (vd[i] == NULL) {
2080 /*
2081 * Don't bother attempting to reopen the disks;
2082 * just do the split.
2083 */
2084 attempt_reopen = B_FALSE;
2085 } else {
2086 /* attempt to re-online it */
2087 vd[i]->vdev_offline = B_FALSE;
2088 }
2089 }
2090
2091 if (attempt_reopen) {
2092 vdev_reopen(spa->spa_root_vdev);
2093
2094 /* check each device to see what state it's in */
2095 for (extracted = 0, i = 0; i < gcount; i++) {
2096 if (vd[i] != NULL &&
2097 vd[i]->vdev_stat.vs_aux != VDEV_AUX_SPLIT_POOL)
2098 break;
2099 ++extracted;
2100 }
2101 }
2102
2103 /*
2104 * If every disk has been moved to the new pool, or if we never
2105 * even attempted to look at them, then we split them off for
2106 * good.
2107 */
2108 if (!attempt_reopen || gcount == extracted) {
2109 for (i = 0; i < gcount; i++)
2110 if (vd[i] != NULL)
2111 vdev_split(vd[i]);
2112 vdev_reopen(spa->spa_root_vdev);
2113 }
2114
2115 kmem_free(vd, gcount * sizeof (vdev_t *));
2116 }
2117
2118 static int
2119 spa_load(spa_t *spa, spa_load_state_t state, spa_import_type_t type,
2120 boolean_t mosconfig)
2121 {
2122 nvlist_t *config = spa->spa_config;
2123 char *ereport = FM_EREPORT_ZFS_POOL;
2124 char *comment;
2125 int error;
2126 uint64_t pool_guid;
2127 nvlist_t *nvl;
2128
2129 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, &pool_guid))
2130 return (SET_ERROR(EINVAL));
2131
2132 ASSERT(spa->spa_comment == NULL);
2133 if (nvlist_lookup_string(config, ZPOOL_CONFIG_COMMENT, &comment) == 0)
2134 spa->spa_comment = spa_strdup(comment);
2135
2136 /*
2137 * Versioning wasn't explicitly added to the label until later, so if
2138 * it's not present treat it as the initial version.
2139 */
2140 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VERSION,
2141 &spa->spa_ubsync.ub_version) != 0)
2142 spa->spa_ubsync.ub_version = SPA_VERSION_INITIAL;
2143
2144 (void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG,
2145 &spa->spa_config_txg);
2146
2147 if ((state == SPA_LOAD_IMPORT || state == SPA_LOAD_TRYIMPORT) &&
2148 spa_guid_exists(pool_guid, 0)) {
2149 error = SET_ERROR(EEXIST);
2150 } else {
2151 spa->spa_config_guid = pool_guid;
2152
2153 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT,
2154 &nvl) == 0) {
2155 VERIFY(nvlist_dup(nvl, &spa->spa_config_splitting,
2156 KM_SLEEP) == 0);
2157 }
2158
2159 nvlist_free(spa->spa_load_info);
2160 spa->spa_load_info = fnvlist_alloc();
2161
2162 gethrestime(&spa->spa_loaded_ts);
2163 error = spa_load_impl(spa, pool_guid, config, state, type,
2164 mosconfig, &ereport);
2165 }
2166
2167 /*
2168 * Don't count references from objsets that are already closed
2169 * and are making their way through the eviction process.
2170 */
2171 spa_evicting_os_wait(spa);
2172 spa->spa_minref = refcount_count(&spa->spa_refcount);
2173 if (error) {
2174 if (error != EEXIST) {
2175 spa->spa_loaded_ts.tv_sec = 0;
2176 spa->spa_loaded_ts.tv_nsec = 0;
2177 }
2178 if (error != EBADF) {
2179 zfs_ereport_post(ereport, spa, NULL, NULL, 0, 0);
2180 }
2181 }
2182 spa->spa_load_state = error ? SPA_LOAD_ERROR : SPA_LOAD_NONE;
2183 spa->spa_ena = 0;
2184
2185 return (error);
2186 }
2187
2188 /*
2189 * Load an existing storage pool, using the pool's builtin spa_config as a
2190 * source of configuration information.
2191 */
2192 __attribute__((always_inline))
2193 static inline int
2194 spa_load_impl(spa_t *spa, uint64_t pool_guid, nvlist_t *config,
2195 spa_load_state_t state, spa_import_type_t type, boolean_t mosconfig,
2196 char **ereport)
2197 {
2198 int error = 0;
2199 nvlist_t *nvroot = NULL;
2200 nvlist_t *label;
2201 vdev_t *rvd;
2202 uberblock_t *ub = &spa->spa_uberblock;
2203 uint64_t children, config_cache_txg = spa->spa_config_txg;
2204 int orig_mode = spa->spa_mode;
2205 int parse, i;
2206 uint64_t obj;
2207 boolean_t missing_feat_write = B_FALSE;
2208
2209 /*
2210 * If this is an untrusted config, access the pool in read-only mode.
2211 * This prevents things like resilvering recently removed devices.
2212 */
2213 if (!mosconfig)
2214 spa->spa_mode = FREAD;
2215
2216 ASSERT(MUTEX_HELD(&spa_namespace_lock));
2217
2218 spa->spa_load_state = state;
2219
2220 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvroot))
2221 return (SET_ERROR(EINVAL));
2222
2223 parse = (type == SPA_IMPORT_EXISTING ?
2224 VDEV_ALLOC_LOAD : VDEV_ALLOC_SPLIT);
2225
2226 /*
2227 * Create "The Godfather" zio to hold all async IOs
2228 */
2229 spa->spa_async_zio_root = kmem_alloc(max_ncpus * sizeof (void *),
2230 KM_SLEEP);
2231 for (i = 0; i < max_ncpus; i++) {
2232 spa->spa_async_zio_root[i] = zio_root(spa, NULL, NULL,
2233 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
2234 ZIO_FLAG_GODFATHER);
2235 }
2236
2237 /*
2238 * Parse the configuration into a vdev tree. We explicitly set the
2239 * value that will be returned by spa_version() since parsing the
2240 * configuration requires knowing the version number.
2241 */
2242 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2243 error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, parse);
2244 spa_config_exit(spa, SCL_ALL, FTAG);
2245
2246 if (error != 0)
2247 return (error);
2248
2249 ASSERT(spa->spa_root_vdev == rvd);
2250 ASSERT3U(spa->spa_min_ashift, >=, SPA_MINBLOCKSHIFT);
2251 ASSERT3U(spa->spa_max_ashift, <=, SPA_MAXBLOCKSHIFT);
2252
2253 if (type != SPA_IMPORT_ASSEMBLE) {
2254 ASSERT(spa_guid(spa) == pool_guid);
2255 }
2256
2257 /*
2258 * Try to open all vdevs, loading each label in the process.
2259 */
2260 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2261 error = vdev_open(rvd);
2262 spa_config_exit(spa, SCL_ALL, FTAG);
2263 if (error != 0)
2264 return (error);
2265
2266 /*
2267 * We need to validate the vdev labels against the configuration that
2268 * we have in hand, which is dependent on the setting of mosconfig. If
2269 * mosconfig is true then we're validating the vdev labels based on
2270 * that config. Otherwise, we're validating against the cached config
2271 * (zpool.cache) that was read when we loaded the zfs module, and then
2272 * later we will recursively call spa_load() and validate against
2273 * the vdev config.
2274 *
2275 * If we're assembling a new pool that's been split off from an
2276 * existing pool, the labels haven't yet been updated so we skip
2277 * validation for now.
2278 */
2279 if (type != SPA_IMPORT_ASSEMBLE) {
2280 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2281 error = vdev_validate(rvd, mosconfig);
2282 spa_config_exit(spa, SCL_ALL, FTAG);
2283
2284 if (error != 0)
2285 return (error);
2286
2287 if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN)
2288 return (SET_ERROR(ENXIO));
2289 }
2290
2291 /*
2292 * Find the best uberblock.
2293 */
2294 vdev_uberblock_load(rvd, ub, &label);
2295
2296 /*
2297 * If we weren't able to find a single valid uberblock, return failure.
2298 */
2299 if (ub->ub_txg == 0) {
2300 nvlist_free(label);
2301 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, ENXIO));
2302 }
2303
2304 /*
2305 * If the pool has an unsupported version we can't open it.
2306 */
2307 if (!SPA_VERSION_IS_SUPPORTED(ub->ub_version)) {
2308 nvlist_free(label);
2309 return (spa_vdev_err(rvd, VDEV_AUX_VERSION_NEWER, ENOTSUP));
2310 }
2311
2312 if (ub->ub_version >= SPA_VERSION_FEATURES) {
2313 nvlist_t *features;
2314
2315 /*
2316 * If we weren't able to find what's necessary for reading the
2317 * MOS in the label, return failure.
2318 */
2319 if (label == NULL || nvlist_lookup_nvlist(label,
2320 ZPOOL_CONFIG_FEATURES_FOR_READ, &features) != 0) {
2321 nvlist_free(label);
2322 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
2323 ENXIO));
2324 }
2325
2326 /*
2327 * Update our in-core representation with the definitive values
2328 * from the label.
2329 */
2330 nvlist_free(spa->spa_label_features);
2331 VERIFY(nvlist_dup(features, &spa->spa_label_features, 0) == 0);
2332 }
2333
2334 nvlist_free(label);
2335
2336 /*
2337 * Look through entries in the label nvlist's features_for_read. If
2338 * there is a feature listed there which we don't understand then we
2339 * cannot open a pool.
2340 */
2341 if (ub->ub_version >= SPA_VERSION_FEATURES) {
2342 nvlist_t *unsup_feat;
2343 nvpair_t *nvp;
2344
2345 VERIFY(nvlist_alloc(&unsup_feat, NV_UNIQUE_NAME, KM_SLEEP) ==
2346 0);
2347
2348 for (nvp = nvlist_next_nvpair(spa->spa_label_features, NULL);
2349 nvp != NULL;
2350 nvp = nvlist_next_nvpair(spa->spa_label_features, nvp)) {
2351 if (!zfeature_is_supported(nvpair_name(nvp))) {
2352 VERIFY(nvlist_add_string(unsup_feat,
2353 nvpair_name(nvp), "") == 0);
2354 }
2355 }
2356
2357 if (!nvlist_empty(unsup_feat)) {
2358 VERIFY(nvlist_add_nvlist(spa->spa_load_info,
2359 ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat) == 0);
2360 nvlist_free(unsup_feat);
2361 return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT,
2362 ENOTSUP));
2363 }
2364
2365 nvlist_free(unsup_feat);
2366 }
2367
2368 /*
2369 * If the vdev guid sum doesn't match the uberblock, we have an
2370 * incomplete configuration. We first check to see if the pool
2371 * is aware of the complete config (i.e ZPOOL_CONFIG_VDEV_CHILDREN).
2372 * If it is, defer the vdev_guid_sum check till later so we
2373 * can handle missing vdevs.
2374 */
2375 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VDEV_CHILDREN,
2376 &children) != 0 && mosconfig && type != SPA_IMPORT_ASSEMBLE &&
2377 rvd->vdev_guid_sum != ub->ub_guid_sum)
2378 return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM, ENXIO));
2379
2380 if (type != SPA_IMPORT_ASSEMBLE && spa->spa_config_splitting) {
2381 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2382 spa_try_repair(spa, config);
2383 spa_config_exit(spa, SCL_ALL, FTAG);
2384 nvlist_free(spa->spa_config_splitting);
2385 spa->spa_config_splitting = NULL;
2386 }
2387
2388 /*
2389 * Initialize internal SPA structures.
2390 */
2391 spa->spa_state = POOL_STATE_ACTIVE;
2392 spa->spa_ubsync = spa->spa_uberblock;
2393 spa->spa_verify_min_txg = spa->spa_extreme_rewind ?
2394 TXG_INITIAL - 1 : spa_last_synced_txg(spa) - TXG_DEFER_SIZE - 1;
2395 spa->spa_first_txg = spa->spa_last_ubsync_txg ?
2396 spa->spa_last_ubsync_txg : spa_last_synced_txg(spa) + 1;
2397 spa->spa_claim_max_txg = spa->spa_first_txg;
2398 spa->spa_prev_software_version = ub->ub_software_version;
2399
2400 error = dsl_pool_init(spa, spa->spa_first_txg, &spa->spa_dsl_pool);
2401 if (error)
2402 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2403 spa->spa_meta_objset = spa->spa_dsl_pool->dp_meta_objset;
2404
2405 if (spa_dir_prop(spa, DMU_POOL_CONFIG, &spa->spa_config_object) != 0)
2406 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2407
2408 if (spa_version(spa) >= SPA_VERSION_FEATURES) {
2409 boolean_t missing_feat_read = B_FALSE;
2410 nvlist_t *unsup_feat, *enabled_feat;
2411 spa_feature_t i;
2412
2413 if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_READ,
2414 &spa->spa_feat_for_read_obj) != 0) {
2415 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2416 }
2417
2418 if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_WRITE,
2419 &spa->spa_feat_for_write_obj) != 0) {
2420 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2421 }
2422
2423 if (spa_dir_prop(spa, DMU_POOL_FEATURE_DESCRIPTIONS,
2424 &spa->spa_feat_desc_obj) != 0) {
2425 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2426 }
2427
2428 enabled_feat = fnvlist_alloc();
2429 unsup_feat = fnvlist_alloc();
2430
2431 if (!spa_features_check(spa, B_FALSE,
2432 unsup_feat, enabled_feat))
2433 missing_feat_read = B_TRUE;
2434
2435 if (spa_writeable(spa) || state == SPA_LOAD_TRYIMPORT) {
2436 if (!spa_features_check(spa, B_TRUE,
2437 unsup_feat, enabled_feat)) {
2438 missing_feat_write = B_TRUE;
2439 }
2440 }
2441
2442 fnvlist_add_nvlist(spa->spa_load_info,
2443 ZPOOL_CONFIG_ENABLED_FEAT, enabled_feat);
2444
2445 if (!nvlist_empty(unsup_feat)) {
2446 fnvlist_add_nvlist(spa->spa_load_info,
2447 ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat);
2448 }
2449
2450 fnvlist_free(enabled_feat);
2451 fnvlist_free(unsup_feat);
2452
2453 if (!missing_feat_read) {
2454 fnvlist_add_boolean(spa->spa_load_info,
2455 ZPOOL_CONFIG_CAN_RDONLY);
2456 }
2457
2458 /*
2459 * If the state is SPA_LOAD_TRYIMPORT, our objective is
2460 * twofold: to determine whether the pool is available for
2461 * import in read-write mode and (if it is not) whether the
2462 * pool is available for import in read-only mode. If the pool
2463 * is available for import in read-write mode, it is displayed
2464 * as available in userland; if it is not available for import
2465 * in read-only mode, it is displayed as unavailable in
2466 * userland. If the pool is available for import in read-only
2467 * mode but not read-write mode, it is displayed as unavailable
2468 * in userland with a special note that the pool is actually
2469 * available for open in read-only mode.
2470 *
2471 * As a result, if the state is SPA_LOAD_TRYIMPORT and we are
2472 * missing a feature for write, we must first determine whether
2473 * the pool can be opened read-only before returning to
2474 * userland in order to know whether to display the
2475 * abovementioned note.
2476 */
2477 if (missing_feat_read || (missing_feat_write &&
2478 spa_writeable(spa))) {
2479 return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT,
2480 ENOTSUP));
2481 }
2482
2483 /*
2484 * Load refcounts for ZFS features from disk into an in-memory
2485 * cache during SPA initialization.
2486 */
2487 for (i = 0; i < SPA_FEATURES; i++) {
2488 uint64_t refcount;
2489
2490 error = feature_get_refcount_from_disk(spa,
2491 &spa_feature_table[i], &refcount);
2492 if (error == 0) {
2493 spa->spa_feat_refcount_cache[i] = refcount;
2494 } else if (error == ENOTSUP) {
2495 spa->spa_feat_refcount_cache[i] =
2496 SPA_FEATURE_DISABLED;
2497 } else {
2498 return (spa_vdev_err(rvd,
2499 VDEV_AUX_CORRUPT_DATA, EIO));
2500 }
2501 }
2502 }
2503
2504 if (spa_feature_is_active(spa, SPA_FEATURE_ENABLED_TXG)) {
2505 if (spa_dir_prop(spa, DMU_POOL_FEATURE_ENABLED_TXG,
2506 &spa->spa_feat_enabled_txg_obj) != 0)
2507 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2508 }
2509
2510 spa->spa_is_initializing = B_TRUE;
2511 error = dsl_pool_open(spa->spa_dsl_pool);
2512 spa->spa_is_initializing = B_FALSE;
2513 if (error != 0)
2514 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2515
2516 if (!mosconfig) {
2517 uint64_t hostid;
2518 nvlist_t *policy = NULL, *nvconfig;
2519
2520 if (load_nvlist(spa, spa->spa_config_object, &nvconfig) != 0)
2521 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2522
2523 if (!spa_is_root(spa) && nvlist_lookup_uint64(nvconfig,
2524 ZPOOL_CONFIG_HOSTID, &hostid) == 0) {
2525 char *hostname;
2526 unsigned long myhostid = 0;
2527
2528 VERIFY(nvlist_lookup_string(nvconfig,
2529 ZPOOL_CONFIG_HOSTNAME, &hostname) == 0);
2530
2531 #ifdef _KERNEL
2532 myhostid = zone_get_hostid(NULL);
2533 #else /* _KERNEL */
2534 /*
2535 * We're emulating the system's hostid in userland, so
2536 * we can't use zone_get_hostid().
2537 */
2538 (void) ddi_strtoul(hw_serial, NULL, 10, &myhostid);
2539 #endif /* _KERNEL */
2540 if (hostid != 0 && myhostid != 0 &&
2541 hostid != myhostid) {
2542 nvlist_free(nvconfig);
2543 cmn_err(CE_WARN, "pool '%s' could not be "
2544 "loaded as it was last accessed by another "
2545 "system (host: %s hostid: 0x%lx). See: "
2546 "http://zfsonlinux.org/msg/ZFS-8000-EY",
2547 spa_name(spa), hostname,
2548 (unsigned long)hostid);
2549 return (SET_ERROR(EBADF));
2550 }
2551 }
2552 if (nvlist_lookup_nvlist(spa->spa_config,
2553 ZPOOL_REWIND_POLICY, &policy) == 0)
2554 VERIFY(nvlist_add_nvlist(nvconfig,
2555 ZPOOL_REWIND_POLICY, policy) == 0);
2556
2557 spa_config_set(spa, nvconfig);
2558 spa_unload(spa);
2559 spa_deactivate(spa);
2560 spa_activate(spa, orig_mode);
2561
2562 return (spa_load(spa, state, SPA_IMPORT_EXISTING, B_TRUE));
2563 }
2564
2565 if (spa_dir_prop(spa, DMU_POOL_SYNC_BPOBJ, &obj) != 0)
2566 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2567 error = bpobj_open(&spa->spa_deferred_bpobj, spa->spa_meta_objset, obj);
2568 if (error != 0)
2569 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2570
2571 /*
2572 * Load the bit that tells us to use the new accounting function
2573 * (raid-z deflation). If we have an older pool, this will not
2574 * be present.
2575 */
2576 error = spa_dir_prop(spa, DMU_POOL_DEFLATE, &spa->spa_deflate);
2577 if (error != 0 && error != ENOENT)
2578 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2579
2580 error = spa_dir_prop(spa, DMU_POOL_CREATION_VERSION,
2581 &spa->spa_creation_version);
2582 if (error != 0 && error != ENOENT)
2583 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2584
2585 /*
2586 * Load the persistent error log. If we have an older pool, this will
2587 * not be present.
2588 */
2589 error = spa_dir_prop(spa, DMU_POOL_ERRLOG_LAST, &spa->spa_errlog_last);
2590 if (error != 0 && error != ENOENT)
2591 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2592
2593 error = spa_dir_prop(spa, DMU_POOL_ERRLOG_SCRUB,
2594 &spa->spa_errlog_scrub);
2595 if (error != 0 && error != ENOENT)
2596 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2597
2598 /*
2599 * Load the history object. If we have an older pool, this
2600 * will not be present.
2601 */
2602 error = spa_dir_prop(spa, DMU_POOL_HISTORY, &spa->spa_history);
2603 if (error != 0 && error != ENOENT)
2604 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2605
2606 /*
2607 * If we're assembling the pool from the split-off vdevs of
2608 * an existing pool, we don't want to attach the spares & cache
2609 * devices.
2610 */
2611
2612 /*
2613 * Load any hot spares for this pool.
2614 */
2615 error = spa_dir_prop(spa, DMU_POOL_SPARES, &spa->spa_spares.sav_object);
2616 if (error != 0 && error != ENOENT)
2617 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2618 if (error == 0 && type != SPA_IMPORT_ASSEMBLE) {
2619 ASSERT(spa_version(spa) >= SPA_VERSION_SPARES);
2620 if (load_nvlist(spa, spa->spa_spares.sav_object,
2621 &spa->spa_spares.sav_config) != 0)
2622 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2623
2624 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2625 spa_load_spares(spa);
2626 spa_config_exit(spa, SCL_ALL, FTAG);
2627 } else if (error == 0) {
2628 spa->spa_spares.sav_sync = B_TRUE;
2629 }
2630
2631 /*
2632 * Load any level 2 ARC devices for this pool.
2633 */
2634 error = spa_dir_prop(spa, DMU_POOL_L2CACHE,
2635 &spa->spa_l2cache.sav_object);
2636 if (error != 0 && error != ENOENT)
2637 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2638 if (error == 0 && type != SPA_IMPORT_ASSEMBLE) {
2639 ASSERT(spa_version(spa) >= SPA_VERSION_L2CACHE);
2640 if (load_nvlist(spa, spa->spa_l2cache.sav_object,
2641 &spa->spa_l2cache.sav_config) != 0)
2642 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2643
2644 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2645 spa_load_l2cache(spa);
2646 spa_config_exit(spa, SCL_ALL, FTAG);
2647 } else if (error == 0) {
2648 spa->spa_l2cache.sav_sync = B_TRUE;
2649 }
2650
2651 spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
2652
2653 error = spa_dir_prop(spa, DMU_POOL_PROPS, &spa->spa_pool_props_object);
2654 if (error && error != ENOENT)
2655 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2656
2657 if (error == 0) {
2658 uint64_t autoreplace = 0;
2659
2660 spa_prop_find(spa, ZPOOL_PROP_BOOTFS, &spa->spa_bootfs);
2661 spa_prop_find(spa, ZPOOL_PROP_AUTOREPLACE, &autoreplace);
2662 spa_prop_find(spa, ZPOOL_PROP_DELEGATION, &spa->spa_delegation);
2663 spa_prop_find(spa, ZPOOL_PROP_FAILUREMODE, &spa->spa_failmode);
2664 spa_prop_find(spa, ZPOOL_PROP_AUTOEXPAND, &spa->spa_autoexpand);
2665 spa_prop_find(spa, ZPOOL_PROP_DEDUPDITTO,
2666 &spa->spa_dedup_ditto);
2667
2668 spa->spa_autoreplace = (autoreplace != 0);
2669 }
2670
2671 /*
2672 * If the 'autoreplace' property is set, then post a resource notifying
2673 * the ZFS DE that it should not issue any faults for unopenable
2674 * devices. We also iterate over the vdevs, and post a sysevent for any
2675 * unopenable vdevs so that the normal autoreplace handler can take
2676 * over.
2677 */
2678 if (spa->spa_autoreplace && state != SPA_LOAD_TRYIMPORT) {
2679 spa_check_removed(spa->spa_root_vdev);
2680 /*
2681 * For the import case, this is done in spa_import(), because
2682 * at this point we're using the spare definitions from
2683 * the MOS config, not necessarily from the userland config.
2684 */
2685 if (state != SPA_LOAD_IMPORT) {
2686 spa_aux_check_removed(&spa->spa_spares);
2687 spa_aux_check_removed(&spa->spa_l2cache);
2688 }
2689 }
2690
2691 /*
2692 * Load the vdev state for all toplevel vdevs.
2693 */
2694 vdev_load(rvd);
2695
2696 /*
2697 * Propagate the leaf DTLs we just loaded all the way up the tree.
2698 */
2699 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2700 vdev_dtl_reassess(rvd, 0, 0, B_FALSE);
2701 spa_config_exit(spa, SCL_ALL, FTAG);
2702
2703 /*
2704 * Load the DDTs (dedup tables).
2705 */
2706 error = ddt_load(spa);
2707 if (error != 0)
2708 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2709
2710 spa_update_dspace(spa);
2711
2712 /*
2713 * Validate the config, using the MOS config to fill in any
2714 * information which might be missing. If we fail to validate
2715 * the config then declare the pool unfit for use. If we're
2716 * assembling a pool from a split, the log is not transferred
2717 * over.
2718 */
2719 if (type != SPA_IMPORT_ASSEMBLE) {
2720 nvlist_t *nvconfig;
2721
2722 if (load_nvlist(spa, spa->spa_config_object, &nvconfig) != 0)
2723 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2724
2725 if (!spa_config_valid(spa, nvconfig)) {
2726 nvlist_free(nvconfig);
2727 return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM,
2728 ENXIO));
2729 }
2730 nvlist_free(nvconfig);
2731
2732 /*
2733 * Now that we've validated the config, check the state of the
2734 * root vdev. If it can't be opened, it indicates one or
2735 * more toplevel vdevs are faulted.
2736 */
2737 if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN)
2738 return (SET_ERROR(ENXIO));
2739
2740 if (spa_writeable(spa) && spa_check_logs(spa)) {
2741 *ereport = FM_EREPORT_ZFS_LOG_REPLAY;
2742 return (spa_vdev_err(rvd, VDEV_AUX_BAD_LOG, ENXIO));
2743 }
2744 }
2745
2746 if (missing_feat_write) {
2747 ASSERT(state == SPA_LOAD_TRYIMPORT);
2748
2749 /*
2750 * At this point, we know that we can open the pool in
2751 * read-only mode but not read-write mode. We now have enough
2752 * information and can return to userland.
2753 */
2754 return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT, ENOTSUP));
2755 }
2756
2757 /*
2758 * We've successfully opened the pool, verify that we're ready
2759 * to start pushing transactions.
2760 */
2761 if (state != SPA_LOAD_TRYIMPORT) {
2762 if ((error = spa_load_verify(spa)))
2763 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
2764 error));
2765 }
2766
2767 if (spa_writeable(spa) && (state == SPA_LOAD_RECOVER ||
2768 spa->spa_load_max_txg == UINT64_MAX)) {
2769 dmu_tx_t *tx;
2770 int need_update = B_FALSE;
2771 dsl_pool_t *dp = spa_get_dsl(spa);
2772 int c;
2773
2774 ASSERT(state != SPA_LOAD_TRYIMPORT);
2775
2776 /*
2777 * Claim log blocks that haven't been committed yet.
2778 * This must all happen in a single txg.
2779 * Note: spa_claim_max_txg is updated by spa_claim_notify(),
2780 * invoked from zil_claim_log_block()'s i/o done callback.
2781 * Price of rollback is that we abandon the log.
2782 */
2783 spa->spa_claiming = B_TRUE;
2784
2785 tx = dmu_tx_create_assigned(dp, spa_first_txg(spa));
2786 (void) dmu_objset_find_dp(dp, dp->dp_root_dir_obj,
2787 zil_claim, tx, DS_FIND_CHILDREN);
2788 dmu_tx_commit(tx);
2789
2790 spa->spa_claiming = B_FALSE;
2791
2792 spa_set_log_state(spa, SPA_LOG_GOOD);
2793 spa->spa_sync_on = B_TRUE;
2794 txg_sync_start(spa->spa_dsl_pool);
2795
2796 /*
2797 * Wait for all claims to sync. We sync up to the highest
2798 * claimed log block birth time so that claimed log blocks
2799 * don't appear to be from the future. spa_claim_max_txg
2800 * will have been set for us by either zil_check_log_chain()
2801 * (invoked from spa_check_logs()) or zil_claim() above.
2802 */
2803 txg_wait_synced(spa->spa_dsl_pool, spa->spa_claim_max_txg);
2804
2805 /*
2806 * If the config cache is stale, or we have uninitialized
2807 * metaslabs (see spa_vdev_add()), then update the config.
2808 *
2809 * If this is a verbatim import, trust the current
2810 * in-core spa_config and update the disk labels.
2811 */
2812 if (config_cache_txg != spa->spa_config_txg ||
2813 state == SPA_LOAD_IMPORT ||
2814 state == SPA_LOAD_RECOVER ||
2815 (spa->spa_import_flags & ZFS_IMPORT_VERBATIM))
2816 need_update = B_TRUE;
2817
2818 for (c = 0; c < rvd->vdev_children; c++)
2819 if (rvd->vdev_child[c]->vdev_ms_array == 0)
2820 need_update = B_TRUE;
2821
2822 /*
2823 * Update the config cache asychronously in case we're the
2824 * root pool, in which case the config cache isn't writable yet.
2825 */
2826 if (need_update)
2827 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
2828
2829 /*
2830 * Check all DTLs to see if anything needs resilvering.
2831 */
2832 if (!dsl_scan_resilvering(spa->spa_dsl_pool) &&
2833 vdev_resilver_needed(rvd, NULL, NULL))
2834 spa_async_request(spa, SPA_ASYNC_RESILVER);
2835
2836 /*
2837 * Log the fact that we booted up (so that we can detect if
2838 * we rebooted in the middle of an operation).
2839 */
2840 spa_history_log_version(spa, "open");
2841
2842 /*
2843 * Delete any inconsistent datasets.
2844 */
2845 (void) dmu_objset_find(spa_name(spa),
2846 dsl_destroy_inconsistent, NULL, DS_FIND_CHILDREN);
2847
2848 /*
2849 * Clean up any stale temporary dataset userrefs.
2850 */
2851 dsl_pool_clean_tmp_userrefs(spa->spa_dsl_pool);
2852 }
2853
2854 return (0);
2855 }
2856
2857 static int
2858 spa_load_retry(spa_t *spa, spa_load_state_t state, int mosconfig)
2859 {
2860 int mode = spa->spa_mode;
2861
2862 spa_unload(spa);
2863 spa_deactivate(spa);
2864
2865 spa->spa_load_max_txg = spa->spa_uberblock.ub_txg - 1;
2866
2867 spa_activate(spa, mode);
2868 spa_async_suspend(spa);
2869
2870 return (spa_load(spa, state, SPA_IMPORT_EXISTING, mosconfig));
2871 }
2872
2873 /*
2874 * If spa_load() fails this function will try loading prior txg's. If
2875 * 'state' is SPA_LOAD_RECOVER and one of these loads succeeds the pool
2876 * will be rewound to that txg. If 'state' is not SPA_LOAD_RECOVER this
2877 * function will not rewind the pool and will return the same error as
2878 * spa_load().
2879 */
2880 static int
2881 spa_load_best(spa_t *spa, spa_load_state_t state, int mosconfig,
2882 uint64_t max_request, int rewind_flags)
2883 {
2884 nvlist_t *loadinfo = NULL;
2885 nvlist_t *config = NULL;
2886 int load_error, rewind_error;
2887 uint64_t safe_rewind_txg;
2888 uint64_t min_txg;
2889
2890 if (spa->spa_load_txg && state == SPA_LOAD_RECOVER) {
2891 spa->spa_load_max_txg = spa->spa_load_txg;
2892 spa_set_log_state(spa, SPA_LOG_CLEAR);
2893 } else {
2894 spa->spa_load_max_txg = max_request;
2895 if (max_request != UINT64_MAX)
2896 spa->spa_extreme_rewind = B_TRUE;
2897 }
2898
2899 load_error = rewind_error = spa_load(spa, state, SPA_IMPORT_EXISTING,
2900 mosconfig);
2901 if (load_error == 0)
2902 return (0);
2903
2904 if (spa->spa_root_vdev != NULL)
2905 config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
2906
2907 spa->spa_last_ubsync_txg = spa->spa_uberblock.ub_txg;
2908 spa->spa_last_ubsync_txg_ts = spa->spa_uberblock.ub_timestamp;
2909
2910 if (rewind_flags & ZPOOL_NEVER_REWIND) {
2911 nvlist_free(config);
2912 return (load_error);
2913 }
2914
2915 if (state == SPA_LOAD_RECOVER) {
2916 /* Price of rolling back is discarding txgs, including log */
2917 spa_set_log_state(spa, SPA_LOG_CLEAR);
2918 } else {
2919 /*
2920 * If we aren't rolling back save the load info from our first
2921 * import attempt so that we can restore it after attempting
2922 * to rewind.
2923 */
2924 loadinfo = spa->spa_load_info;
2925 spa->spa_load_info = fnvlist_alloc();
2926 }
2927
2928 spa->spa_load_max_txg = spa->spa_last_ubsync_txg;
2929 safe_rewind_txg = spa->spa_last_ubsync_txg - TXG_DEFER_SIZE;
2930 min_txg = (rewind_flags & ZPOOL_EXTREME_REWIND) ?
2931 TXG_INITIAL : safe_rewind_txg;
2932
2933 /*
2934 * Continue as long as we're finding errors, we're still within
2935 * the acceptable rewind range, and we're still finding uberblocks
2936 */
2937 while (rewind_error && spa->spa_uberblock.ub_txg >= min_txg &&
2938 spa->spa_uberblock.ub_txg <= spa->spa_load_max_txg) {
2939 if (spa->spa_load_max_txg < safe_rewind_txg)
2940 spa->spa_extreme_rewind = B_TRUE;
2941 rewind_error = spa_load_retry(spa, state, mosconfig);
2942 }
2943
2944 spa->spa_extreme_rewind = B_FALSE;
2945 spa->spa_load_max_txg = UINT64_MAX;
2946
2947 if (config && (rewind_error || state != SPA_LOAD_RECOVER))
2948 spa_config_set(spa, config);
2949
2950 if (state == SPA_LOAD_RECOVER) {
2951 ASSERT3P(loadinfo, ==, NULL);
2952 return (rewind_error);
2953 } else {
2954 /* Store the rewind info as part of the initial load info */
2955 fnvlist_add_nvlist(loadinfo, ZPOOL_CONFIG_REWIND_INFO,
2956 spa->spa_load_info);
2957
2958 /* Restore the initial load info */
2959 fnvlist_free(spa->spa_load_info);
2960 spa->spa_load_info = loadinfo;
2961
2962 return (load_error);
2963 }
2964 }
2965
2966 /*
2967 * Pool Open/Import
2968 *
2969 * The import case is identical to an open except that the configuration is sent
2970 * down from userland, instead of grabbed from the configuration cache. For the
2971 * case of an open, the pool configuration will exist in the
2972 * POOL_STATE_UNINITIALIZED state.
2973 *
2974 * The stats information (gen/count/ustats) is used to gather vdev statistics at
2975 * the same time open the pool, without having to keep around the spa_t in some
2976 * ambiguous state.
2977 */
2978 static int
2979 spa_open_common(const char *pool, spa_t **spapp, void *tag, nvlist_t *nvpolicy,
2980 nvlist_t **config)
2981 {
2982 spa_t *spa;
2983 spa_load_state_t state = SPA_LOAD_OPEN;
2984 int error;
2985 int locked = B_FALSE;
2986 int firstopen = B_FALSE;
2987
2988 *spapp = NULL;
2989
2990 /*
2991 * As disgusting as this is, we need to support recursive calls to this
2992 * function because dsl_dir_open() is called during spa_load(), and ends
2993 * up calling spa_open() again. The real fix is to figure out how to
2994 * avoid dsl_dir_open() calling this in the first place.
2995 */
2996 if (mutex_owner(&spa_namespace_lock) != curthread) {
2997 mutex_enter(&spa_namespace_lock);
2998 locked = B_TRUE;
2999 }
3000
3001 if ((spa = spa_lookup(pool)) == NULL) {
3002 if (locked)
3003 mutex_exit(&spa_namespace_lock);
3004 return (SET_ERROR(ENOENT));
3005 }
3006
3007 if (spa->spa_state == POOL_STATE_UNINITIALIZED) {
3008 zpool_rewind_policy_t policy;
3009
3010 firstopen = B_TRUE;
3011
3012 zpool_get_rewind_policy(nvpolicy ? nvpolicy : spa->spa_config,
3013 &policy);
3014 if (policy.zrp_request & ZPOOL_DO_REWIND)
3015 state = SPA_LOAD_RECOVER;
3016
3017 spa_activate(spa, spa_mode_global);
3018
3019 if (state != SPA_LOAD_RECOVER)
3020 spa->spa_last_ubsync_txg = spa->spa_load_txg = 0;
3021
3022 error = spa_load_best(spa, state, B_FALSE, policy.zrp_txg,
3023 policy.zrp_request);
3024
3025 if (error == EBADF) {
3026 /*
3027 * If vdev_validate() returns failure (indicated by
3028 * EBADF), it indicates that one of the vdevs indicates
3029 * that the pool has been exported or destroyed. If
3030 * this is the case, the config cache is out of sync and
3031 * we should remove the pool from the namespace.
3032 */
3033 spa_unload(spa);
3034 spa_deactivate(spa);
3035 spa_config_sync(spa, B_TRUE, B_TRUE);
3036 spa_remove(spa);
3037 if (locked)
3038 mutex_exit(&spa_namespace_lock);
3039 return (SET_ERROR(ENOENT));
3040 }
3041
3042 if (error) {
3043 /*
3044 * We can't open the pool, but we still have useful
3045 * information: the state of each vdev after the
3046 * attempted vdev_open(). Return this to the user.
3047 */
3048 if (config != NULL && spa->spa_config) {
3049 VERIFY(nvlist_dup(spa->spa_config, config,
3050 KM_SLEEP) == 0);
3051 VERIFY(nvlist_add_nvlist(*config,
3052 ZPOOL_CONFIG_LOAD_INFO,
3053 spa->spa_load_info) == 0);
3054 }
3055 spa_unload(spa);
3056 spa_deactivate(spa);
3057 spa->spa_last_open_failed = error;
3058 if (locked)
3059 mutex_exit(&spa_namespace_lock);
3060 *spapp = NULL;
3061 return (error);
3062 }
3063 }
3064
3065 spa_open_ref(spa, tag);
3066
3067 if (config != NULL)
3068 *config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
3069
3070 /*
3071 * If we've recovered the pool, pass back any information we
3072 * gathered while doing the load.
3073 */
3074 if (state == SPA_LOAD_RECOVER) {
3075 VERIFY(nvlist_add_nvlist(*config, ZPOOL_CONFIG_LOAD_INFO,
3076 spa->spa_load_info) == 0);
3077 }
3078
3079 if (locked) {
3080 spa->spa_last_open_failed = 0;
3081 spa->spa_last_ubsync_txg = 0;
3082 spa->spa_load_txg = 0;
3083 mutex_exit(&spa_namespace_lock);
3084 }
3085
3086 #ifdef _KERNEL
3087 if (firstopen)
3088 zvol_create_minors(spa->spa_name);
3089 #endif
3090
3091 *spapp = spa;
3092
3093 return (0);
3094 }
3095
3096 int
3097 spa_open_rewind(const char *name, spa_t **spapp, void *tag, nvlist_t *policy,
3098 nvlist_t **config)
3099 {
3100 return (spa_open_common(name, spapp, tag, policy, config));
3101 }
3102
3103 int
3104 spa_open(const char *name, spa_t **spapp, void *tag)
3105 {
3106 return (spa_open_common(name, spapp, tag, NULL, NULL));
3107 }
3108
3109 /*
3110 * Lookup the given spa_t, incrementing the inject count in the process,
3111 * preventing it from being exported or destroyed.
3112 */
3113 spa_t *
3114 spa_inject_addref(char *name)
3115 {
3116 spa_t *spa;
3117
3118 mutex_enter(&spa_namespace_lock);
3119 if ((spa = spa_lookup(name)) == NULL) {
3120 mutex_exit(&spa_namespace_lock);
3121 return (NULL);
3122 }
3123 spa->spa_inject_ref++;
3124 mutex_exit(&spa_namespace_lock);
3125
3126 return (spa);
3127 }
3128
3129 void
3130 spa_inject_delref(spa_t *spa)
3131 {
3132 mutex_enter(&spa_namespace_lock);
3133 spa->spa_inject_ref--;
3134 mutex_exit(&spa_namespace_lock);
3135 }
3136
3137 /*
3138 * Add spares device information to the nvlist.
3139 */
3140 static void
3141 spa_add_spares(spa_t *spa, nvlist_t *config)
3142 {
3143 nvlist_t **spares;
3144 uint_t i, nspares;
3145 nvlist_t *nvroot;
3146 uint64_t guid;
3147 vdev_stat_t *vs;
3148 uint_t vsc;
3149 uint64_t pool;
3150
3151 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
3152
3153 if (spa->spa_spares.sav_count == 0)
3154 return;
3155
3156 VERIFY(nvlist_lookup_nvlist(config,
3157 ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
3158 VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
3159 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
3160 if (nspares != 0) {
3161 VERIFY(nvlist_add_nvlist_array(nvroot,
3162 ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
3163 VERIFY(nvlist_lookup_nvlist_array(nvroot,
3164 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
3165
3166 /*
3167 * Go through and find any spares which have since been
3168 * repurposed as an active spare. If this is the case, update
3169 * their status appropriately.
3170 */
3171 for (i = 0; i < nspares; i++) {
3172 VERIFY(nvlist_lookup_uint64(spares[i],
3173 ZPOOL_CONFIG_GUID, &guid) == 0);
3174 if (spa_spare_exists(guid, &pool, NULL) &&
3175 pool != 0ULL) {
3176 VERIFY(nvlist_lookup_uint64_array(
3177 spares[i], ZPOOL_CONFIG_VDEV_STATS,
3178 (uint64_t **)&vs, &vsc) == 0);
3179 vs->vs_state = VDEV_STATE_CANT_OPEN;
3180 vs->vs_aux = VDEV_AUX_SPARED;
3181 }
3182 }
3183 }
3184 }
3185
3186 /*
3187 * Add l2cache device information to the nvlist, including vdev stats.
3188 */
3189 static void
3190 spa_add_l2cache(spa_t *spa, nvlist_t *config)
3191 {
3192 nvlist_t **l2cache;
3193 uint_t i, j, nl2cache;
3194 nvlist_t *nvroot;
3195 uint64_t guid;
3196 vdev_t *vd;
3197 vdev_stat_t *vs;
3198 uint_t vsc;
3199
3200 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
3201
3202 if (spa->spa_l2cache.sav_count == 0)
3203 return;
3204
3205 VERIFY(nvlist_lookup_nvlist(config,
3206 ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
3207 VERIFY(nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config,
3208 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
3209 if (nl2cache != 0) {
3210 VERIFY(nvlist_add_nvlist_array(nvroot,
3211 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
3212 VERIFY(nvlist_lookup_nvlist_array(nvroot,
3213 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
3214
3215 /*
3216 * Update level 2 cache device stats.
3217 */
3218
3219 for (i = 0; i < nl2cache; i++) {
3220 VERIFY(nvlist_lookup_uint64(l2cache[i],
3221 ZPOOL_CONFIG_GUID, &guid) == 0);
3222
3223 vd = NULL;
3224 for (j = 0; j < spa->spa_l2cache.sav_count; j++) {
3225 if (guid ==
3226 spa->spa_l2cache.sav_vdevs[j]->vdev_guid) {
3227 vd = spa->spa_l2cache.sav_vdevs[j];
3228 break;
3229 }
3230 }
3231 ASSERT(vd != NULL);
3232
3233 VERIFY(nvlist_lookup_uint64_array(l2cache[i],
3234 ZPOOL_CONFIG_VDEV_STATS, (uint64_t **)&vs, &vsc)
3235 == 0);
3236 vdev_get_stats(vd, vs);
3237 }
3238 }
3239 }
3240
3241 static void
3242 spa_feature_stats_from_disk(spa_t *spa, nvlist_t *features)
3243 {
3244 zap_cursor_t zc;
3245 zap_attribute_t za;
3246
3247 if (spa->spa_feat_for_read_obj != 0) {
3248 for (zap_cursor_init(&zc, spa->spa_meta_objset,
3249 spa->spa_feat_for_read_obj);
3250 zap_cursor_retrieve(&zc, &za) == 0;
3251 zap_cursor_advance(&zc)) {
3252 ASSERT(za.za_integer_length == sizeof (uint64_t) &&
3253 za.za_num_integers == 1);
3254 VERIFY0(nvlist_add_uint64(features, za.za_name,
3255 za.za_first_integer));
3256 }
3257 zap_cursor_fini(&zc);
3258 }
3259
3260 if (spa->spa_feat_for_write_obj != 0) {
3261 for (zap_cursor_init(&zc, spa->spa_meta_objset,
3262 spa->spa_feat_for_write_obj);
3263 zap_cursor_retrieve(&zc, &za) == 0;
3264 zap_cursor_advance(&zc)) {
3265 ASSERT(za.za_integer_length == sizeof (uint64_t) &&
3266 za.za_num_integers == 1);
3267 VERIFY0(nvlist_add_uint64(features, za.za_name,
3268 za.za_first_integer));
3269 }
3270 zap_cursor_fini(&zc);
3271 }
3272 }
3273
3274 static void
3275 spa_feature_stats_from_cache(spa_t *spa, nvlist_t *features)
3276 {
3277 int i;
3278
3279 for (i = 0; i < SPA_FEATURES; i++) {
3280 zfeature_info_t feature = spa_feature_table[i];
3281 uint64_t refcount;
3282
3283 if (feature_get_refcount(spa, &feature, &refcount) != 0)
3284 continue;
3285
3286 VERIFY0(nvlist_add_uint64(features, feature.fi_guid, refcount));
3287 }
3288 }
3289
3290 /*
3291 * Store a list of pool features and their reference counts in the
3292 * config.
3293 *
3294 * The first time this is called on a spa, allocate a new nvlist, fetch
3295 * the pool features and reference counts from disk, then save the list
3296 * in the spa. In subsequent calls on the same spa use the saved nvlist
3297 * and refresh its values from the cached reference counts. This
3298 * ensures we don't block here on I/O on a suspended pool so 'zpool
3299 * clear' can resume the pool.
3300 */
3301 static void
3302 spa_add_feature_stats(spa_t *spa, nvlist_t *config)
3303 {
3304 nvlist_t *features;
3305
3306 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
3307
3308 mutex_enter(&spa->spa_feat_stats_lock);
3309 features = spa->spa_feat_stats;
3310
3311 if (features != NULL) {
3312 spa_feature_stats_from_cache(spa, features);
3313 } else {
3314 VERIFY0(nvlist_alloc(&features, NV_UNIQUE_NAME, KM_SLEEP));
3315 spa->spa_feat_stats = features;
3316 spa_feature_stats_from_disk(spa, features);
3317 }
3318
3319 VERIFY0(nvlist_add_nvlist(config, ZPOOL_CONFIG_FEATURE_STATS,
3320 features));
3321
3322 mutex_exit(&spa->spa_feat_stats_lock);
3323 }
3324
3325 int
3326 spa_get_stats(const char *name, nvlist_t **config,
3327 char *altroot, size_t buflen)
3328 {
3329 int error;
3330 spa_t *spa;
3331
3332 *config = NULL;
3333 error = spa_open_common(name, &spa, FTAG, NULL, config);
3334
3335 if (spa != NULL) {
3336 /*
3337 * This still leaves a window of inconsistency where the spares
3338 * or l2cache devices could change and the config would be
3339 * self-inconsistent.
3340 */
3341 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
3342
3343 if (*config != NULL) {
3344 uint64_t loadtimes[2];
3345
3346 loadtimes[0] = spa->spa_loaded_ts.tv_sec;
3347 loadtimes[1] = spa->spa_loaded_ts.tv_nsec;
3348 VERIFY(nvlist_add_uint64_array(*config,
3349 ZPOOL_CONFIG_LOADED_TIME, loadtimes, 2) == 0);
3350
3351 VERIFY(nvlist_add_uint64(*config,
3352 ZPOOL_CONFIG_ERRCOUNT,
3353 spa_get_errlog_size(spa)) == 0);
3354
3355 if (spa_suspended(spa))
3356 VERIFY(nvlist_add_uint64(*config,
3357 ZPOOL_CONFIG_SUSPENDED,
3358 spa->spa_failmode) == 0);
3359
3360 spa_add_spares(spa, *config);
3361 spa_add_l2cache(spa, *config);
3362 spa_add_feature_stats(spa, *config);
3363 }
3364 }
3365
3366 /*
3367 * We want to get the alternate root even for faulted pools, so we cheat
3368 * and call spa_lookup() directly.
3369 */
3370 if (altroot) {
3371 if (spa == NULL) {
3372 mutex_enter(&spa_namespace_lock);
3373 spa = spa_lookup(name);
3374 if (spa)
3375 spa_altroot(spa, altroot, buflen);
3376 else
3377 altroot[0] = '\0';
3378 spa = NULL;
3379 mutex_exit(&spa_namespace_lock);
3380 } else {
3381 spa_altroot(spa, altroot, buflen);
3382 }
3383 }
3384
3385 if (spa != NULL) {
3386 spa_config_exit(spa, SCL_CONFIG, FTAG);
3387 spa_close(spa, FTAG);
3388 }
3389
3390 return (error);
3391 }
3392
3393 /*
3394 * Validate that the auxiliary device array is well formed. We must have an
3395 * array of nvlists, each which describes a valid leaf vdev. If this is an
3396 * import (mode is VDEV_ALLOC_SPARE), then we allow corrupted spares to be
3397 * specified, as long as they are well-formed.
3398 */
3399 static int
3400 spa_validate_aux_devs(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode,
3401 spa_aux_vdev_t *sav, const char *config, uint64_t version,
3402 vdev_labeltype_t label)
3403 {
3404 nvlist_t **dev;
3405 uint_t i, ndev;
3406 vdev_t *vd;
3407 int error;
3408
3409 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
3410
3411 /*
3412 * It's acceptable to have no devs specified.
3413 */
3414 if (nvlist_lookup_nvlist_array(nvroot, config, &dev, &ndev) != 0)
3415 return (0);
3416
3417 if (ndev == 0)
3418 return (SET_ERROR(EINVAL));
3419
3420 /*
3421 * Make sure the pool is formatted with a version that supports this
3422 * device type.
3423 */
3424 if (spa_version(spa) < version)
3425 return (SET_ERROR(ENOTSUP));
3426
3427 /*
3428 * Set the pending device list so we correctly handle device in-use
3429 * checking.
3430 */
3431 sav->sav_pending = dev;
3432 sav->sav_npending = ndev;
3433
3434 for (i = 0; i < ndev; i++) {
3435 if ((error = spa_config_parse(spa, &vd, dev[i], NULL, 0,
3436 mode)) != 0)
3437 goto out;
3438
3439 if (!vd->vdev_ops->vdev_op_leaf) {
3440 vdev_free(vd);
3441 error = SET_ERROR(EINVAL);
3442 goto out;
3443 }
3444
3445 /*
3446 * The L2ARC currently only supports disk devices in
3447 * kernel context. For user-level testing, we allow it.
3448 */
3449 #ifdef _KERNEL
3450 if ((strcmp(config, ZPOOL_CONFIG_L2CACHE) == 0) &&
3451 strcmp(vd->vdev_ops->vdev_op_type, VDEV_TYPE_DISK) != 0) {
3452 error = SET_ERROR(ENOTBLK);
3453 vdev_free(vd);
3454 goto out;
3455 }
3456 #endif
3457 vd->vdev_top = vd;
3458
3459 if ((error = vdev_open(vd)) == 0 &&
3460 (error = vdev_label_init(vd, crtxg, label)) == 0) {
3461 VERIFY(nvlist_add_uint64(dev[i], ZPOOL_CONFIG_GUID,
3462 vd->vdev_guid) == 0);
3463 }
3464
3465 vdev_free(vd);
3466
3467 if (error &&
3468 (mode != VDEV_ALLOC_SPARE && mode != VDEV_ALLOC_L2CACHE))
3469 goto out;
3470 else
3471 error = 0;
3472 }
3473
3474 out:
3475 sav->sav_pending = NULL;
3476 sav->sav_npending = 0;
3477 return (error);
3478 }
3479
3480 static int
3481 spa_validate_aux(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode)
3482 {
3483 int error;
3484
3485 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
3486
3487 if ((error = spa_validate_aux_devs(spa, nvroot, crtxg, mode,
3488 &spa->spa_spares, ZPOOL_CONFIG_SPARES, SPA_VERSION_SPARES,
3489 VDEV_LABEL_SPARE)) != 0) {
3490 return (error);
3491 }
3492
3493 return (spa_validate_aux_devs(spa, nvroot, crtxg, mode,
3494 &spa->spa_l2cache, ZPOOL_CONFIG_L2CACHE, SPA_VERSION_L2CACHE,
3495 VDEV_LABEL_L2CACHE));
3496 }
3497
3498 static void
3499 spa_set_aux_vdevs(spa_aux_vdev_t *sav, nvlist_t **devs, int ndevs,
3500 const char *config)
3501 {
3502 int i;
3503
3504 if (sav->sav_config != NULL) {
3505 nvlist_t **olddevs;
3506 uint_t oldndevs;
3507 nvlist_t **newdevs;
3508
3509 /*
3510 * Generate new dev list by concatentating with the
3511 * current dev list.
3512 */
3513 VERIFY(nvlist_lookup_nvlist_array(sav->sav_config, config,
3514 &olddevs, &oldndevs) == 0);
3515
3516 newdevs = kmem_alloc(sizeof (void *) *
3517 (ndevs + oldndevs), KM_SLEEP);
3518 for (i = 0; i < oldndevs; i++)
3519 VERIFY(nvlist_dup(olddevs[i], &newdevs[i],
3520 KM_SLEEP) == 0);
3521 for (i = 0; i < ndevs; i++)
3522 VERIFY(nvlist_dup(devs[i], &newdevs[i + oldndevs],
3523 KM_SLEEP) == 0);
3524
3525 VERIFY(nvlist_remove(sav->sav_config, config,
3526 DATA_TYPE_NVLIST_ARRAY) == 0);
3527
3528 VERIFY(nvlist_add_nvlist_array(sav->sav_config,
3529 config, newdevs, ndevs + oldndevs) == 0);
3530 for (i = 0; i < oldndevs + ndevs; i++)
3531 nvlist_free(newdevs[i]);
3532 kmem_free(newdevs, (oldndevs + ndevs) * sizeof (void *));
3533 } else {
3534 /*
3535 * Generate a new dev list.
3536 */
3537 VERIFY(nvlist_alloc(&sav->sav_config, NV_UNIQUE_NAME,
3538 KM_SLEEP) == 0);
3539 VERIFY(nvlist_add_nvlist_array(sav->sav_config, config,
3540 devs, ndevs) == 0);
3541 }
3542 }
3543
3544 /*
3545 * Stop and drop level 2 ARC devices
3546 */
3547 void
3548 spa_l2cache_drop(spa_t *spa)
3549 {
3550 vdev_t *vd;
3551 int i;
3552 spa_aux_vdev_t *sav = &spa->spa_l2cache;
3553
3554 for (i = 0; i < sav->sav_count; i++) {
3555 uint64_t pool;
3556
3557 vd = sav->sav_vdevs[i];
3558 ASSERT(vd != NULL);
3559
3560 if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
3561 pool != 0ULL && l2arc_vdev_present(vd))
3562 l2arc_remove_vdev(vd);
3563 }
3564 }
3565
3566 /*
3567 * Pool Creation
3568 */
3569 int
3570 spa_create(const char *pool, nvlist_t *nvroot, nvlist_t *props,
3571 nvlist_t *zplprops)
3572 {
3573 spa_t *spa;
3574 char *altroot = NULL;
3575 vdev_t *rvd;
3576 dsl_pool_t *dp;
3577 dmu_tx_t *tx;
3578 int error = 0;
3579 uint64_t txg = TXG_INITIAL;
3580 nvlist_t **spares, **l2cache;
3581 uint_t nspares, nl2cache;
3582 uint64_t version, obj;
3583 boolean_t has_features;
3584 nvpair_t *elem;
3585 int c, i;
3586 char *poolname;
3587 nvlist_t *nvl;
3588
3589 if (nvlist_lookup_string(props, "tname", &poolname) != 0)
3590 poolname = (char *)pool;
3591
3592 /*
3593 * If this pool already exists, return failure.
3594 */
3595 mutex_enter(&spa_namespace_lock);
3596 if (spa_lookup(poolname) != NULL) {
3597 mutex_exit(&spa_namespace_lock);
3598 return (SET_ERROR(EEXIST));
3599 }
3600
3601 /*
3602 * Allocate a new spa_t structure.
3603 */
3604 nvl = fnvlist_alloc();
3605 fnvlist_add_string(nvl, ZPOOL_CONFIG_POOL_NAME, pool);
3606 (void) nvlist_lookup_string(props,
3607 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
3608 spa = spa_add(poolname, nvl, altroot);
3609 fnvlist_free(nvl);
3610 spa_activate(spa, spa_mode_global);
3611
3612 if (props && (error = spa_prop_validate(spa, props))) {
3613 spa_deactivate(spa);
3614 spa_remove(spa);
3615 mutex_exit(&spa_namespace_lock);
3616 return (error);
3617 }
3618
3619 /*
3620 * Temporary pool names should never be written to disk.
3621 */
3622 if (poolname != pool)
3623 spa->spa_import_flags |= ZFS_IMPORT_TEMP_NAME;
3624
3625 has_features = B_FALSE;
3626 for (elem = nvlist_next_nvpair(props, NULL);
3627 elem != NULL; elem = nvlist_next_nvpair(props, elem)) {
3628 if (zpool_prop_feature(nvpair_name(elem)))
3629 has_features = B_TRUE;
3630 }
3631
3632 if (has_features || nvlist_lookup_uint64(props,
3633 zpool_prop_to_name(ZPOOL_PROP_VERSION), &version) != 0) {
3634 version = SPA_VERSION;
3635 }
3636 ASSERT(SPA_VERSION_IS_SUPPORTED(version));
3637
3638 spa->spa_first_txg = txg;
3639 spa->spa_uberblock.ub_txg = txg - 1;
3640 spa->spa_uberblock.ub_version = version;
3641 spa->spa_ubsync = spa->spa_uberblock;
3642
3643 /*
3644 * Create "The Godfather" zio to hold all async IOs
3645 */
3646 spa->spa_async_zio_root = kmem_alloc(max_ncpus * sizeof (void *),
3647 KM_SLEEP);
3648 for (i = 0; i < max_ncpus; i++) {
3649 spa->spa_async_zio_root[i] = zio_root(spa, NULL, NULL,
3650 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
3651 ZIO_FLAG_GODFATHER);
3652 }
3653
3654 /*
3655 * Create the root vdev.
3656 */
3657 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3658
3659 error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, VDEV_ALLOC_ADD);
3660
3661 ASSERT(error != 0 || rvd != NULL);
3662 ASSERT(error != 0 || spa->spa_root_vdev == rvd);
3663
3664 if (error == 0 && !zfs_allocatable_devs(nvroot))
3665 error = SET_ERROR(EINVAL);
3666
3667 if (error == 0 &&
3668 (error = vdev_create(rvd, txg, B_FALSE)) == 0 &&
3669 (error = spa_validate_aux(spa, nvroot, txg,
3670 VDEV_ALLOC_ADD)) == 0) {
3671 for (c = 0; c < rvd->vdev_children; c++) {
3672 vdev_metaslab_set_size(rvd->vdev_child[c]);
3673 vdev_expand(rvd->vdev_child[c], txg);
3674 }
3675 }
3676
3677 spa_config_exit(spa, SCL_ALL, FTAG);
3678
3679 if (error != 0) {
3680 spa_unload(spa);
3681 spa_deactivate(spa);
3682 spa_remove(spa);
3683 mutex_exit(&spa_namespace_lock);
3684 return (error);
3685 }
3686
3687 /*
3688 * Get the list of spares, if specified.
3689 */
3690 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
3691 &spares, &nspares) == 0) {
3692 VERIFY(nvlist_alloc(&spa->spa_spares.sav_config, NV_UNIQUE_NAME,
3693 KM_SLEEP) == 0);
3694 VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
3695 ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
3696 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3697 spa_load_spares(spa);
3698 spa_config_exit(spa, SCL_ALL, FTAG);
3699 spa->spa_spares.sav_sync = B_TRUE;
3700 }
3701
3702 /*
3703 * Get the list of level 2 cache devices, if specified.
3704 */
3705 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
3706 &l2cache, &nl2cache) == 0) {
3707 VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config,
3708 NV_UNIQUE_NAME, KM_SLEEP) == 0);
3709 VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
3710 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
3711 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3712 spa_load_l2cache(spa);
3713 spa_config_exit(spa, SCL_ALL, FTAG);
3714 spa->spa_l2cache.sav_sync = B_TRUE;
3715 }
3716
3717 spa->spa_is_initializing = B_TRUE;
3718 spa->spa_dsl_pool = dp = dsl_pool_create(spa, zplprops, txg);
3719 spa->spa_meta_objset = dp->dp_meta_objset;
3720 spa->spa_is_initializing = B_FALSE;
3721
3722 /*
3723 * Create DDTs (dedup tables).
3724 */
3725 ddt_create(spa);
3726
3727 spa_update_dspace(spa);
3728
3729 tx = dmu_tx_create_assigned(dp, txg);
3730
3731 /*
3732 * Create the pool config object.
3733 */
3734 spa->spa_config_object = dmu_object_alloc(spa->spa_meta_objset,
3735 DMU_OT_PACKED_NVLIST, SPA_CONFIG_BLOCKSIZE,
3736 DMU_OT_PACKED_NVLIST_SIZE, sizeof (uint64_t), tx);
3737
3738 if (zap_add(spa->spa_meta_objset,
3739 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CONFIG,
3740 sizeof (uint64_t), 1, &spa->spa_config_object, tx) != 0) {
3741 cmn_err(CE_PANIC, "failed to add pool config");
3742 }
3743
3744 if (spa_version(spa) >= SPA_VERSION_FEATURES)
3745 spa_feature_create_zap_objects(spa, tx);
3746
3747 if (zap_add(spa->spa_meta_objset,
3748 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CREATION_VERSION,
3749 sizeof (uint64_t), 1, &version, tx) != 0) {
3750 cmn_err(CE_PANIC, "failed to add pool version");
3751 }
3752
3753 /* Newly created pools with the right version are always deflated. */
3754 if (version >= SPA_VERSION_RAIDZ_DEFLATE) {
3755 spa->spa_deflate = TRUE;
3756 if (zap_add(spa->spa_meta_objset,
3757 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
3758 sizeof (uint64_t), 1, &spa->spa_deflate, tx) != 0) {
3759 cmn_err(CE_PANIC, "failed to add deflate");
3760 }
3761 }
3762
3763 /*
3764 * Create the deferred-free bpobj. Turn off compression
3765 * because sync-to-convergence takes longer if the blocksize
3766 * keeps changing.
3767 */
3768 obj = bpobj_alloc(spa->spa_meta_objset, 1 << 14, tx);
3769 dmu_object_set_compress(spa->spa_meta_objset, obj,
3770 ZIO_COMPRESS_OFF, tx);
3771 if (zap_add(spa->spa_meta_objset,
3772 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SYNC_BPOBJ,
3773 sizeof (uint64_t), 1, &obj, tx) != 0) {
3774 cmn_err(CE_PANIC, "failed to add bpobj");
3775 }
3776 VERIFY3U(0, ==, bpobj_open(&spa->spa_deferred_bpobj,
3777 spa->spa_meta_objset, obj));
3778
3779 /*
3780 * Create the pool's history object.
3781 */
3782 if (version >= SPA_VERSION_ZPOOL_HISTORY)
3783 spa_history_create_obj(spa, tx);
3784
3785 /*
3786 * Set pool properties.
3787 */
3788 spa->spa_bootfs = zpool_prop_default_numeric(ZPOOL_PROP_BOOTFS);
3789 spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
3790 spa->spa_failmode = zpool_prop_default_numeric(ZPOOL_PROP_FAILUREMODE);
3791 spa->spa_autoexpand = zpool_prop_default_numeric(ZPOOL_PROP_AUTOEXPAND);
3792
3793 if (props != NULL) {
3794 spa_configfile_set(spa, props, B_FALSE);
3795 spa_sync_props(props, tx);
3796 }
3797
3798 dmu_tx_commit(tx);
3799
3800 spa->spa_sync_on = B_TRUE;
3801 txg_sync_start(spa->spa_dsl_pool);
3802
3803 /*
3804 * We explicitly wait for the first transaction to complete so that our
3805 * bean counters are appropriately updated.
3806 */
3807 txg_wait_synced(spa->spa_dsl_pool, txg);
3808
3809 spa_config_sync(spa, B_FALSE, B_TRUE);
3810
3811 spa_history_log_version(spa, "create");
3812
3813 /*
3814 * Don't count references from objsets that are already closed
3815 * and are making their way through the eviction process.
3816 */
3817 spa_evicting_os_wait(spa);
3818 spa->spa_minref = refcount_count(&spa->spa_refcount);
3819
3820 mutex_exit(&spa_namespace_lock);
3821
3822 return (0);
3823 }
3824
3825 #ifdef _KERNEL
3826 /*
3827 * Get the root pool information from the root disk, then import the root pool
3828 * during the system boot up time.
3829 */
3830 extern int vdev_disk_read_rootlabel(char *, char *, nvlist_t **);
3831
3832 static nvlist_t *
3833 spa_generate_rootconf(char *devpath, char *devid, uint64_t *guid)
3834 {
3835 nvlist_t *config;
3836 nvlist_t *nvtop, *nvroot;
3837 uint64_t pgid;
3838
3839 if (vdev_disk_read_rootlabel(devpath, devid, &config) != 0)
3840 return (NULL);
3841
3842 /*
3843 * Add this top-level vdev to the child array.
3844 */
3845 VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
3846 &nvtop) == 0);
3847 VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID,
3848 &pgid) == 0);
3849 VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID, guid) == 0);
3850
3851 /*
3852 * Put this pool's top-level vdevs into a root vdev.
3853 */
3854 VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0);
3855 VERIFY(nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE,
3856 VDEV_TYPE_ROOT) == 0);
3857 VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_ID, 0ULL) == 0);
3858 VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_GUID, pgid) == 0);
3859 VERIFY(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN,
3860 &nvtop, 1) == 0);
3861
3862 /*
3863 * Replace the existing vdev_tree with the new root vdev in
3864 * this pool's configuration (remove the old, add the new).
3865 */
3866 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, nvroot) == 0);
3867 nvlist_free(nvroot);
3868 return (config);
3869 }
3870
3871 /*
3872 * Walk the vdev tree and see if we can find a device with "better"
3873 * configuration. A configuration is "better" if the label on that
3874 * device has a more recent txg.
3875 */
3876 static void
3877 spa_alt_rootvdev(vdev_t *vd, vdev_t **avd, uint64_t *txg)
3878 {
3879 int c;
3880
3881 for (c = 0; c < vd->vdev_children; c++)
3882 spa_alt_rootvdev(vd->vdev_child[c], avd, txg);
3883
3884 if (vd->vdev_ops->vdev_op_leaf) {
3885 nvlist_t *label;
3886 uint64_t label_txg;
3887
3888 if (vdev_disk_read_rootlabel(vd->vdev_physpath, vd->vdev_devid,
3889 &label) != 0)
3890 return;
3891
3892 VERIFY(nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_TXG,
3893 &label_txg) == 0);
3894
3895 /*
3896 * Do we have a better boot device?
3897 */
3898 if (label_txg > *txg) {
3899 *txg = label_txg;
3900 *avd = vd;
3901 }
3902 nvlist_free(label);
3903 }
3904 }
3905
3906 /*
3907 * Import a root pool.
3908 *
3909 * For x86. devpath_list will consist of devid and/or physpath name of
3910 * the vdev (e.g. "id1,sd@SSEAGATE..." or "/pci@1f,0/ide@d/disk@0,0:a").
3911 * The GRUB "findroot" command will return the vdev we should boot.
3912 *
3913 * For Sparc, devpath_list consists the physpath name of the booting device
3914 * no matter the rootpool is a single device pool or a mirrored pool.
3915 * e.g.
3916 * "/pci@1f,0/ide@d/disk@0,0:a"
3917 */
3918 int
3919 spa_import_rootpool(char *devpath, char *devid)
3920 {
3921 spa_t *spa;
3922 vdev_t *rvd, *bvd, *avd = NULL;
3923 nvlist_t *config, *nvtop;
3924 uint64_t guid, txg;
3925 char *pname;
3926 int error;
3927
3928 /*
3929 * Read the label from the boot device and generate a configuration.
3930 */
3931 config = spa_generate_rootconf(devpath, devid, &guid);
3932 #if defined(_OBP) && defined(_KERNEL)
3933 if (config == NULL) {
3934 if (strstr(devpath, "/iscsi/ssd") != NULL) {
3935 /* iscsi boot */
3936 get_iscsi_bootpath_phy(devpath);
3937 config = spa_generate_rootconf(devpath, devid, &guid);
3938 }
3939 }
3940 #endif
3941 if (config == NULL) {
3942 cmn_err(CE_NOTE, "Cannot read the pool label from '%s'",
3943 devpath);
3944 return (SET_ERROR(EIO));
3945 }
3946
3947 VERIFY(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME,
3948 &pname) == 0);
3949 VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG, &txg) == 0);
3950
3951 mutex_enter(&spa_namespace_lock);
3952 if ((spa = spa_lookup(pname)) != NULL) {
3953 /*
3954 * Remove the existing root pool from the namespace so that we
3955 * can replace it with the correct config we just read in.
3956 */
3957 spa_remove(spa);
3958 }
3959
3960 spa = spa_add(pname, config, NULL);
3961 spa->spa_is_root = B_TRUE;
3962 spa->spa_import_flags = ZFS_IMPORT_VERBATIM;
3963
3964 /*
3965 * Build up a vdev tree based on the boot device's label config.
3966 */
3967 VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
3968 &nvtop) == 0);
3969 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3970 error = spa_config_parse(spa, &rvd, nvtop, NULL, 0,
3971 VDEV_ALLOC_ROOTPOOL);
3972 spa_config_exit(spa, SCL_ALL, FTAG);
3973 if (error) {
3974 mutex_exit(&spa_namespace_lock);
3975 nvlist_free(config);
3976 cmn_err(CE_NOTE, "Can not parse the config for pool '%s'",
3977 pname);
3978 return (error);
3979 }
3980
3981 /*
3982 * Get the boot vdev.
3983 */
3984 if ((bvd = vdev_lookup_by_guid(rvd, guid)) == NULL) {
3985 cmn_err(CE_NOTE, "Can not find the boot vdev for guid %llu",
3986 (u_longlong_t)guid);
3987 error = SET_ERROR(ENOENT);
3988 goto out;
3989 }
3990
3991 /*
3992 * Determine if there is a better boot device.
3993 */
3994 avd = bvd;
3995 spa_alt_rootvdev(rvd, &avd, &txg);
3996 if (avd != bvd) {
3997 cmn_err(CE_NOTE, "The boot device is 'degraded'. Please "
3998 "try booting from '%s'", avd->vdev_path);
3999 error = SET_ERROR(EINVAL);
4000 goto out;
4001 }
4002
4003 /*
4004 * If the boot device is part of a spare vdev then ensure that
4005 * we're booting off the active spare.
4006 */
4007 if (bvd->vdev_parent->vdev_ops == &vdev_spare_ops &&
4008 !bvd->vdev_isspare) {
4009 cmn_err(CE_NOTE, "The boot device is currently spared. Please "
4010 "try booting from '%s'",
4011 bvd->vdev_parent->
4012 vdev_child[bvd->vdev_parent->vdev_children - 1]->vdev_path);
4013 error = SET_ERROR(EINVAL);
4014 goto out;
4015 }
4016
4017 error = 0;
4018 out:
4019 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4020 vdev_free(rvd);
4021 spa_config_exit(spa, SCL_ALL, FTAG);
4022 mutex_exit(&spa_namespace_lock);
4023
4024 nvlist_free(config);
4025 return (error);
4026 }
4027
4028 #endif
4029
4030 /*
4031 * Import a non-root pool into the system.
4032 */
4033 int
4034 spa_import(char *pool, nvlist_t *config, nvlist_t *props, uint64_t flags)
4035 {
4036 spa_t *spa;
4037 char *altroot = NULL;
4038 spa_load_state_t state = SPA_LOAD_IMPORT;
4039 zpool_rewind_policy_t policy;
4040 uint64_t mode = spa_mode_global;
4041 uint64_t readonly = B_FALSE;
4042 int error;
4043 nvlist_t *nvroot;
4044 nvlist_t **spares, **l2cache;
4045 uint_t nspares, nl2cache;
4046
4047 /*
4048 * If a pool with this name exists, return failure.
4049 */
4050 mutex_enter(&spa_namespace_lock);
4051 if (spa_lookup(pool) != NULL) {
4052 mutex_exit(&spa_namespace_lock);
4053 return (SET_ERROR(EEXIST));
4054 }
4055
4056 /*
4057 * Create and initialize the spa structure.
4058 */
4059 (void) nvlist_lookup_string(props,
4060 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
4061 (void) nvlist_lookup_uint64(props,
4062 zpool_prop_to_name(ZPOOL_PROP_READONLY), &readonly);
4063 if (readonly)
4064 mode = FREAD;
4065 spa = spa_add(pool, config, altroot);
4066 spa->spa_import_flags = flags;
4067
4068 /*
4069 * Verbatim import - Take a pool and insert it into the namespace
4070 * as if it had been loaded at boot.
4071 */
4072 if (spa->spa_import_flags & ZFS_IMPORT_VERBATIM) {
4073 if (props != NULL)
4074 spa_configfile_set(spa, props, B_FALSE);
4075
4076 spa_config_sync(spa, B_FALSE, B_TRUE);
4077
4078 mutex_exit(&spa_namespace_lock);
4079 return (0);
4080 }
4081
4082 spa_activate(spa, mode);
4083
4084 /*
4085 * Don't start async tasks until we know everything is healthy.
4086 */
4087 spa_async_suspend(spa);
4088
4089 zpool_get_rewind_policy(config, &policy);
4090 if (policy.zrp_request & ZPOOL_DO_REWIND)
4091 state = SPA_LOAD_RECOVER;
4092
4093 /*
4094 * Pass off the heavy lifting to spa_load(). Pass TRUE for mosconfig
4095 * because the user-supplied config is actually the one to trust when
4096 * doing an import.
4097 */
4098 if (state != SPA_LOAD_RECOVER)
4099 spa->spa_last_ubsync_txg = spa->spa_load_txg = 0;
4100
4101 error = spa_load_best(spa, state, B_TRUE, policy.zrp_txg,
4102 policy.zrp_request);
4103
4104 /*
4105 * Propagate anything learned while loading the pool and pass it
4106 * back to caller (i.e. rewind info, missing devices, etc).
4107 */
4108 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO,
4109 spa->spa_load_info) == 0);
4110
4111 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4112 /*
4113 * Toss any existing sparelist, as it doesn't have any validity
4114 * anymore, and conflicts with spa_has_spare().
4115 */
4116 if (spa->spa_spares.sav_config) {
4117 nvlist_free(spa->spa_spares.sav_config);
4118 spa->spa_spares.sav_config = NULL;
4119 spa_load_spares(spa);
4120 }
4121 if (spa->spa_l2cache.sav_config) {
4122 nvlist_free(spa->spa_l2cache.sav_config);
4123 spa->spa_l2cache.sav_config = NULL;
4124 spa_load_l2cache(spa);
4125 }
4126
4127 VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
4128 &nvroot) == 0);
4129 if (error == 0)
4130 error = spa_validate_aux(spa, nvroot, -1ULL,
4131 VDEV_ALLOC_SPARE);
4132 if (error == 0)
4133 error = spa_validate_aux(spa, nvroot, -1ULL,
4134 VDEV_ALLOC_L2CACHE);
4135 spa_config_exit(spa, SCL_ALL, FTAG);
4136
4137 if (props != NULL)
4138 spa_configfile_set(spa, props, B_FALSE);
4139
4140 if (error != 0 || (props && spa_writeable(spa) &&
4141 (error = spa_prop_set(spa, props)))) {
4142 spa_unload(spa);
4143 spa_deactivate(spa);
4144 spa_remove(spa);
4145 mutex_exit(&spa_namespace_lock);
4146 return (error);
4147 }
4148
4149 spa_async_resume(spa);
4150
4151 /*
4152 * Override any spares and level 2 cache devices as specified by
4153 * the user, as these may have correct device names/devids, etc.
4154 */
4155 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
4156 &spares, &nspares) == 0) {
4157 if (spa->spa_spares.sav_config)
4158 VERIFY(nvlist_remove(spa->spa_spares.sav_config,
4159 ZPOOL_CONFIG_SPARES, DATA_TYPE_NVLIST_ARRAY) == 0);
4160 else
4161 VERIFY(nvlist_alloc(&spa->spa_spares.sav_config,
4162 NV_UNIQUE_NAME, KM_SLEEP) == 0);
4163 VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
4164 ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
4165 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4166 spa_load_spares(spa);
4167 spa_config_exit(spa, SCL_ALL, FTAG);
4168 spa->spa_spares.sav_sync = B_TRUE;
4169 }
4170 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
4171 &l2cache, &nl2cache) == 0) {
4172 if (spa->spa_l2cache.sav_config)
4173 VERIFY(nvlist_remove(spa->spa_l2cache.sav_config,
4174 ZPOOL_CONFIG_L2CACHE, DATA_TYPE_NVLIST_ARRAY) == 0);
4175 else
4176 VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config,
4177 NV_UNIQUE_NAME, KM_SLEEP) == 0);
4178 VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
4179 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
4180 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4181 spa_load_l2cache(spa);
4182 spa_config_exit(spa, SCL_ALL, FTAG);
4183 spa->spa_l2cache.sav_sync = B_TRUE;
4184 }
4185
4186 /*
4187 * Check for any removed devices.
4188 */
4189 if (spa->spa_autoreplace) {
4190 spa_aux_check_removed(&spa->spa_spares);
4191 spa_aux_check_removed(&spa->spa_l2cache);
4192 }
4193
4194 if (spa_writeable(spa)) {
4195 /*
4196 * Update the config cache to include the newly-imported pool.
4197 */
4198 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
4199 }
4200
4201 /*
4202 * It's possible that the pool was expanded while it was exported.
4203 * We kick off an async task to handle this for us.
4204 */
4205 spa_async_request(spa, SPA_ASYNC_AUTOEXPAND);
4206
4207 mutex_exit(&spa_namespace_lock);
4208 spa_history_log_version(spa, "import");
4209
4210 #ifdef _KERNEL
4211 zvol_create_minors(pool);
4212 #endif
4213
4214 return (0);
4215 }
4216
4217 nvlist_t *
4218 spa_tryimport(nvlist_t *tryconfig)
4219 {
4220 nvlist_t *config = NULL;
4221 char *poolname;
4222 spa_t *spa;
4223 uint64_t state;
4224 int error;
4225
4226 if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_POOL_NAME, &poolname))
4227 return (NULL);
4228
4229 if (nvlist_lookup_uint64(tryconfig, ZPOOL_CONFIG_POOL_STATE, &state))
4230 return (NULL);
4231
4232 /*
4233 * Create and initialize the spa structure.
4234 */
4235 mutex_enter(&spa_namespace_lock);
4236 spa = spa_add(TRYIMPORT_NAME, tryconfig, NULL);
4237 spa_activate(spa, FREAD);
4238
4239 /*
4240 * Pass off the heavy lifting to spa_load().
4241 * Pass TRUE for mosconfig because the user-supplied config
4242 * is actually the one to trust when doing an import.
4243 */
4244 error = spa_load(spa, SPA_LOAD_TRYIMPORT, SPA_IMPORT_EXISTING, B_TRUE);
4245
4246 /*
4247 * If 'tryconfig' was at least parsable, return the current config.
4248 */
4249 if (spa->spa_root_vdev != NULL) {
4250 config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
4251 VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME,
4252 poolname) == 0);
4253 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
4254 state) == 0);
4255 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_TIMESTAMP,
4256 spa->spa_uberblock.ub_timestamp) == 0);
4257 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO,
4258 spa->spa_load_info) == 0);
4259 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_ERRATA,
4260 spa->spa_errata) == 0);
4261
4262 /*
4263 * If the bootfs property exists on this pool then we
4264 * copy it out so that external consumers can tell which
4265 * pools are bootable.
4266 */
4267 if ((!error || error == EEXIST) && spa->spa_bootfs) {
4268 char *tmpname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
4269
4270 /*
4271 * We have to play games with the name since the
4272 * pool was opened as TRYIMPORT_NAME.
4273 */
4274 if (dsl_dsobj_to_dsname(spa_name(spa),
4275 spa->spa_bootfs, tmpname) == 0) {
4276 char *cp;
4277 char *dsname;
4278
4279 dsname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
4280
4281 cp = strchr(tmpname, '/');
4282 if (cp == NULL) {
4283 (void) strlcpy(dsname, tmpname,
4284 MAXPATHLEN);
4285 } else {
4286 (void) snprintf(dsname, MAXPATHLEN,
4287 "%s/%s", poolname, ++cp);
4288 }
4289 VERIFY(nvlist_add_string(config,
4290 ZPOOL_CONFIG_BOOTFS, dsname) == 0);
4291 kmem_free(dsname, MAXPATHLEN);
4292 }
4293 kmem_free(tmpname, MAXPATHLEN);
4294 }
4295
4296 /*
4297 * Add the list of hot spares and level 2 cache devices.
4298 */
4299 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
4300 spa_add_spares(spa, config);
4301 spa_add_l2cache(spa, config);
4302 spa_config_exit(spa, SCL_CONFIG, FTAG);
4303 }
4304
4305 spa_unload(spa);
4306 spa_deactivate(spa);
4307 spa_remove(spa);
4308 mutex_exit(&spa_namespace_lock);
4309
4310 return (config);
4311 }
4312
4313 /*
4314 * Pool export/destroy
4315 *
4316 * The act of destroying or exporting a pool is very simple. We make sure there
4317 * is no more pending I/O and any references to the pool are gone. Then, we
4318 * update the pool state and sync all the labels to disk, removing the
4319 * configuration from the cache afterwards. If the 'hardforce' flag is set, then
4320 * we don't sync the labels or remove the configuration cache.
4321 */
4322 static int
4323 spa_export_common(char *pool, int new_state, nvlist_t **oldconfig,
4324 boolean_t force, boolean_t hardforce)
4325 {
4326 spa_t *spa;
4327
4328 if (oldconfig)
4329 *oldconfig = NULL;
4330
4331 if (!(spa_mode_global & FWRITE))
4332 return (SET_ERROR(EROFS));
4333
4334 mutex_enter(&spa_namespace_lock);
4335 if ((spa = spa_lookup(pool)) == NULL) {
4336 mutex_exit(&spa_namespace_lock);
4337 return (SET_ERROR(ENOENT));
4338 }
4339
4340 /*
4341 * Put a hold on the pool, drop the namespace lock, stop async tasks,
4342 * reacquire the namespace lock, and see if we can export.
4343 */
4344 spa_open_ref(spa, FTAG);
4345 mutex_exit(&spa_namespace_lock);
4346 spa_async_suspend(spa);
4347 mutex_enter(&spa_namespace_lock);
4348 spa_close(spa, FTAG);
4349
4350 if (spa->spa_state == POOL_STATE_UNINITIALIZED)
4351 goto export_spa;
4352 /*
4353 * The pool will be in core if it's openable, in which case we can
4354 * modify its state. Objsets may be open only because they're dirty,
4355 * so we have to force it to sync before checking spa_refcnt.
4356 */
4357 if (spa->spa_sync_on) {
4358 txg_wait_synced(spa->spa_dsl_pool, 0);
4359 spa_evicting_os_wait(spa);
4360 }
4361
4362 /*
4363 * A pool cannot be exported or destroyed if there are active
4364 * references. If we are resetting a pool, allow references by
4365 * fault injection handlers.
4366 */
4367 if (!spa_refcount_zero(spa) ||
4368 (spa->spa_inject_ref != 0 &&
4369 new_state != POOL_STATE_UNINITIALIZED)) {
4370 spa_async_resume(spa);
4371 mutex_exit(&spa_namespace_lock);
4372 return (SET_ERROR(EBUSY));
4373 }
4374
4375 if (spa->spa_sync_on) {
4376 /*
4377 * A pool cannot be exported if it has an active shared spare.
4378 * This is to prevent other pools stealing the active spare
4379 * from an exported pool. At user's own will, such pool can
4380 * be forcedly exported.
4381 */
4382 if (!force && new_state == POOL_STATE_EXPORTED &&
4383 spa_has_active_shared_spare(spa)) {
4384 spa_async_resume(spa);
4385 mutex_exit(&spa_namespace_lock);
4386 return (SET_ERROR(EXDEV));
4387 }
4388
4389 /*
4390 * We want this to be reflected on every label,
4391 * so mark them all dirty. spa_unload() will do the
4392 * final sync that pushes these changes out.
4393 */
4394 if (new_state != POOL_STATE_UNINITIALIZED && !hardforce) {
4395 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4396 spa->spa_state = new_state;
4397 spa->spa_final_txg = spa_last_synced_txg(spa) +
4398 TXG_DEFER_SIZE + 1;
4399 vdev_config_dirty(spa->spa_root_vdev);
4400 spa_config_exit(spa, SCL_ALL, FTAG);
4401 }
4402 }
4403
4404 export_spa:
4405 spa_event_notify(spa, NULL, FM_EREPORT_ZFS_POOL_DESTROY);
4406
4407 if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
4408 spa_unload(spa);
4409 spa_deactivate(spa);
4410 }
4411
4412 if (oldconfig && spa->spa_config)
4413 VERIFY(nvlist_dup(spa->spa_config, oldconfig, 0) == 0);
4414
4415 if (new_state != POOL_STATE_UNINITIALIZED) {
4416 if (!hardforce)
4417 spa_config_sync(spa, B_TRUE, B_TRUE);
4418 spa_remove(spa);
4419 }
4420 mutex_exit(&spa_namespace_lock);
4421
4422 return (0);
4423 }
4424
4425 /*
4426 * Destroy a storage pool.
4427 */
4428 int
4429 spa_destroy(char *pool)
4430 {
4431 return (spa_export_common(pool, POOL_STATE_DESTROYED, NULL,
4432 B_FALSE, B_FALSE));
4433 }
4434
4435 /*
4436 * Export a storage pool.
4437 */
4438 int
4439 spa_export(char *pool, nvlist_t **oldconfig, boolean_t force,
4440 boolean_t hardforce)
4441 {
4442 return (spa_export_common(pool, POOL_STATE_EXPORTED, oldconfig,
4443 force, hardforce));
4444 }
4445
4446 /*
4447 * Similar to spa_export(), this unloads the spa_t without actually removing it
4448 * from the namespace in any way.
4449 */
4450 int
4451 spa_reset(char *pool)
4452 {
4453 return (spa_export_common(pool, POOL_STATE_UNINITIALIZED, NULL,
4454 B_FALSE, B_FALSE));
4455 }
4456
4457 /*
4458 * ==========================================================================
4459 * Device manipulation
4460 * ==========================================================================
4461 */
4462
4463 /*
4464 * Add a device to a storage pool.
4465 */
4466 int
4467 spa_vdev_add(spa_t *spa, nvlist_t *nvroot)
4468 {
4469 uint64_t txg, id;
4470 int error;
4471 vdev_t *rvd = spa->spa_root_vdev;
4472 vdev_t *vd, *tvd;
4473 nvlist_t **spares, **l2cache;
4474 uint_t nspares, nl2cache;
4475 int c;
4476
4477 ASSERT(spa_writeable(spa));
4478
4479 txg = spa_vdev_enter(spa);
4480
4481 if ((error = spa_config_parse(spa, &vd, nvroot, NULL, 0,
4482 VDEV_ALLOC_ADD)) != 0)
4483 return (spa_vdev_exit(spa, NULL, txg, error));
4484
4485 spa->spa_pending_vdev = vd; /* spa_vdev_exit() will clear this */
4486
4487 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, &spares,
4488 &nspares) != 0)
4489 nspares = 0;
4490
4491 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, &l2cache,
4492 &nl2cache) != 0)
4493 nl2cache = 0;
4494
4495 if (vd->vdev_children == 0 && nspares == 0 && nl2cache == 0)
4496 return (spa_vdev_exit(spa, vd, txg, EINVAL));
4497
4498 if (vd->vdev_children != 0 &&
4499 (error = vdev_create(vd, txg, B_FALSE)) != 0)
4500 return (spa_vdev_exit(spa, vd, txg, error));
4501
4502 /*
4503 * We must validate the spares and l2cache devices after checking the
4504 * children. Otherwise, vdev_inuse() will blindly overwrite the spare.
4505 */
4506 if ((error = spa_validate_aux(spa, nvroot, txg, VDEV_ALLOC_ADD)) != 0)
4507 return (spa_vdev_exit(spa, vd, txg, error));
4508
4509 /*
4510 * Transfer each new top-level vdev from vd to rvd.
4511 */
4512 for (c = 0; c < vd->vdev_children; c++) {
4513
4514 /*
4515 * Set the vdev id to the first hole, if one exists.
4516 */
4517 for (id = 0; id < rvd->vdev_children; id++) {
4518 if (rvd->vdev_child[id]->vdev_ishole) {
4519 vdev_free(rvd->vdev_child[id]);
4520 break;
4521 }
4522 }
4523 tvd = vd->vdev_child[c];
4524 vdev_remove_child(vd, tvd);
4525 tvd->vdev_id = id;
4526 vdev_add_child(rvd, tvd);
4527 vdev_config_dirty(tvd);
4528 }
4529
4530 if (nspares != 0) {
4531 spa_set_aux_vdevs(&spa->spa_spares, spares, nspares,
4532 ZPOOL_CONFIG_SPARES);
4533 spa_load_spares(spa);
4534 spa->spa_spares.sav_sync = B_TRUE;
4535 }
4536
4537 if (nl2cache != 0) {
4538 spa_set_aux_vdevs(&spa->spa_l2cache, l2cache, nl2cache,
4539 ZPOOL_CONFIG_L2CACHE);
4540 spa_load_l2cache(spa);
4541 spa->spa_l2cache.sav_sync = B_TRUE;
4542 }
4543
4544 /*
4545 * We have to be careful when adding new vdevs to an existing pool.
4546 * If other threads start allocating from these vdevs before we
4547 * sync the config cache, and we lose power, then upon reboot we may
4548 * fail to open the pool because there are DVAs that the config cache
4549 * can't translate. Therefore, we first add the vdevs without
4550 * initializing metaslabs; sync the config cache (via spa_vdev_exit());
4551 * and then let spa_config_update() initialize the new metaslabs.
4552 *
4553 * spa_load() checks for added-but-not-initialized vdevs, so that
4554 * if we lose power at any point in this sequence, the remaining
4555 * steps will be completed the next time we load the pool.
4556 */
4557 (void) spa_vdev_exit(spa, vd, txg, 0);
4558
4559 mutex_enter(&spa_namespace_lock);
4560 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
4561 mutex_exit(&spa_namespace_lock);
4562
4563 return (0);
4564 }
4565
4566 /*
4567 * Attach a device to a mirror. The arguments are the path to any device
4568 * in the mirror, and the nvroot for the new device. If the path specifies
4569 * a device that is not mirrored, we automatically insert the mirror vdev.
4570 *
4571 * If 'replacing' is specified, the new device is intended to replace the
4572 * existing device; in this case the two devices are made into their own
4573 * mirror using the 'replacing' vdev, which is functionally identical to
4574 * the mirror vdev (it actually reuses all the same ops) but has a few
4575 * extra rules: you can't attach to it after it's been created, and upon
4576 * completion of resilvering, the first disk (the one being replaced)
4577 * is automatically detached.
4578 */
4579 int
4580 spa_vdev_attach(spa_t *spa, uint64_t guid, nvlist_t *nvroot, int replacing)
4581 {
4582 uint64_t txg, dtl_max_txg;
4583 vdev_t *oldvd, *newvd, *newrootvd, *pvd, *tvd;
4584 vdev_ops_t *pvops;
4585 char *oldvdpath, *newvdpath;
4586 int newvd_isspare;
4587 int error;
4588 ASSERTV(vdev_t *rvd = spa->spa_root_vdev);
4589
4590 ASSERT(spa_writeable(spa));
4591
4592 txg = spa_vdev_enter(spa);
4593
4594 oldvd = spa_lookup_by_guid(spa, guid, B_FALSE);
4595
4596 if (oldvd == NULL)
4597 return (spa_vdev_exit(spa, NULL, txg, ENODEV));
4598
4599 if (!oldvd->vdev_ops->vdev_op_leaf)
4600 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
4601
4602 pvd = oldvd->vdev_parent;
4603
4604 if ((error = spa_config_parse(spa, &newrootvd, nvroot, NULL, 0,
4605 VDEV_ALLOC_ATTACH)) != 0)
4606 return (spa_vdev_exit(spa, NULL, txg, EINVAL));
4607
4608 if (newrootvd->vdev_children != 1)
4609 return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
4610
4611 newvd = newrootvd->vdev_child[0];
4612
4613 if (!newvd->vdev_ops->vdev_op_leaf)
4614 return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
4615
4616 if ((error = vdev_create(newrootvd, txg, replacing)) != 0)
4617 return (spa_vdev_exit(spa, newrootvd, txg, error));
4618
4619 /*
4620 * Spares can't replace logs
4621 */
4622 if (oldvd->vdev_top->vdev_islog && newvd->vdev_isspare)
4623 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4624
4625 if (!replacing) {
4626 /*
4627 * For attach, the only allowable parent is a mirror or the root
4628 * vdev.
4629 */
4630 if (pvd->vdev_ops != &vdev_mirror_ops &&
4631 pvd->vdev_ops != &vdev_root_ops)
4632 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4633
4634 pvops = &vdev_mirror_ops;
4635 } else {
4636 /*
4637 * Active hot spares can only be replaced by inactive hot
4638 * spares.
4639 */
4640 if (pvd->vdev_ops == &vdev_spare_ops &&
4641 oldvd->vdev_isspare &&
4642 !spa_has_spare(spa, newvd->vdev_guid))
4643 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4644
4645 /*
4646 * If the source is a hot spare, and the parent isn't already a
4647 * spare, then we want to create a new hot spare. Otherwise, we
4648 * want to create a replacing vdev. The user is not allowed to
4649 * attach to a spared vdev child unless the 'isspare' state is
4650 * the same (spare replaces spare, non-spare replaces
4651 * non-spare).
4652 */
4653 if (pvd->vdev_ops == &vdev_replacing_ops &&
4654 spa_version(spa) < SPA_VERSION_MULTI_REPLACE) {
4655 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4656 } else if (pvd->vdev_ops == &vdev_spare_ops &&
4657 newvd->vdev_isspare != oldvd->vdev_isspare) {
4658 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4659 }
4660
4661 if (newvd->vdev_isspare)
4662 pvops = &vdev_spare_ops;
4663 else
4664 pvops = &vdev_replacing_ops;
4665 }
4666
4667 /*
4668 * Make sure the new device is big enough.
4669 */
4670 if (newvd->vdev_asize < vdev_get_min_asize(oldvd))
4671 return (spa_vdev_exit(spa, newrootvd, txg, EOVERFLOW));
4672
4673 /*
4674 * The new device cannot have a higher alignment requirement
4675 * than the top-level vdev.
4676 */
4677 if (newvd->vdev_ashift > oldvd->vdev_top->vdev_ashift)
4678 return (spa_vdev_exit(spa, newrootvd, txg, EDOM));
4679
4680 /*
4681 * If this is an in-place replacement, update oldvd's path and devid
4682 * to make it distinguishable from newvd, and unopenable from now on.
4683 */
4684 if (strcmp(oldvd->vdev_path, newvd->vdev_path) == 0) {
4685 spa_strfree(oldvd->vdev_path);
4686 oldvd->vdev_path = kmem_alloc(strlen(newvd->vdev_path) + 5,
4687 KM_SLEEP);
4688 (void) sprintf(oldvd->vdev_path, "%s/%s",
4689 newvd->vdev_path, "old");
4690 if (oldvd->vdev_devid != NULL) {
4691 spa_strfree(oldvd->vdev_devid);
4692 oldvd->vdev_devid = NULL;
4693 }
4694 }
4695
4696 /* mark the device being resilvered */
4697 newvd->vdev_resilver_txg = txg;
4698
4699 /*
4700 * If the parent is not a mirror, or if we're replacing, insert the new
4701 * mirror/replacing/spare vdev above oldvd.
4702 */
4703 if (pvd->vdev_ops != pvops)
4704 pvd = vdev_add_parent(oldvd, pvops);
4705
4706 ASSERT(pvd->vdev_top->vdev_parent == rvd);
4707 ASSERT(pvd->vdev_ops == pvops);
4708 ASSERT(oldvd->vdev_parent == pvd);
4709
4710 /*
4711 * Extract the new device from its root and add it to pvd.
4712 */
4713 vdev_remove_child(newrootvd, newvd);
4714 newvd->vdev_id = pvd->vdev_children;
4715 newvd->vdev_crtxg = oldvd->vdev_crtxg;
4716 vdev_add_child(pvd, newvd);
4717
4718 tvd = newvd->vdev_top;
4719 ASSERT(pvd->vdev_top == tvd);
4720 ASSERT(tvd->vdev_parent == rvd);
4721
4722 vdev_config_dirty(tvd);
4723
4724 /*
4725 * Set newvd's DTL to [TXG_INITIAL, dtl_max_txg) so that we account
4726 * for any dmu_sync-ed blocks. It will propagate upward when
4727 * spa_vdev_exit() calls vdev_dtl_reassess().
4728 */
4729 dtl_max_txg = txg + TXG_CONCURRENT_STATES;
4730
4731 vdev_dtl_dirty(newvd, DTL_MISSING, TXG_INITIAL,
4732 dtl_max_txg - TXG_INITIAL);
4733
4734 if (newvd->vdev_isspare) {
4735 spa_spare_activate(newvd);
4736 spa_event_notify(spa, newvd, FM_EREPORT_ZFS_DEVICE_SPARE);
4737 }
4738
4739 oldvdpath = spa_strdup(oldvd->vdev_path);
4740 newvdpath = spa_strdup(newvd->vdev_path);
4741 newvd_isspare = newvd->vdev_isspare;
4742
4743 /*
4744 * Mark newvd's DTL dirty in this txg.
4745 */
4746 vdev_dirty(tvd, VDD_DTL, newvd, txg);
4747
4748 /*
4749 * Schedule the resilver to restart in the future. We do this to
4750 * ensure that dmu_sync-ed blocks have been stitched into the
4751 * respective datasets.
4752 */
4753 dsl_resilver_restart(spa->spa_dsl_pool, dtl_max_txg);
4754
4755 /*
4756 * Commit the config
4757 */
4758 (void) spa_vdev_exit(spa, newrootvd, dtl_max_txg, 0);
4759
4760 spa_history_log_internal(spa, "vdev attach", NULL,
4761 "%s vdev=%s %s vdev=%s",
4762 replacing && newvd_isspare ? "spare in" :
4763 replacing ? "replace" : "attach", newvdpath,
4764 replacing ? "for" : "to", oldvdpath);
4765
4766 spa_strfree(oldvdpath);
4767 spa_strfree(newvdpath);
4768
4769 if (spa->spa_bootfs)
4770 spa_event_notify(spa, newvd, FM_EREPORT_ZFS_BOOTFS_VDEV_ATTACH);
4771
4772 return (0);
4773 }
4774
4775 /*
4776 * Detach a device from a mirror or replacing vdev.
4777 *
4778 * If 'replace_done' is specified, only detach if the parent
4779 * is a replacing vdev.
4780 */
4781 int
4782 spa_vdev_detach(spa_t *spa, uint64_t guid, uint64_t pguid, int replace_done)
4783 {
4784 uint64_t txg;
4785 int error;
4786 vdev_t *vd, *pvd, *cvd, *tvd;
4787 boolean_t unspare = B_FALSE;
4788 uint64_t unspare_guid = 0;
4789 char *vdpath;
4790 int c, t;
4791 ASSERTV(vdev_t *rvd = spa->spa_root_vdev);
4792 ASSERT(spa_writeable(spa));
4793
4794 txg = spa_vdev_enter(spa);
4795
4796 vd = spa_lookup_by_guid(spa, guid, B_FALSE);
4797
4798 if (vd == NULL)
4799 return (spa_vdev_exit(spa, NULL, txg, ENODEV));
4800
4801 if (!vd->vdev_ops->vdev_op_leaf)
4802 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
4803
4804 pvd = vd->vdev_parent;
4805
4806 /*
4807 * If the parent/child relationship is not as expected, don't do it.
4808 * Consider M(A,R(B,C)) -- that is, a mirror of A with a replacing
4809 * vdev that's replacing B with C. The user's intent in replacing
4810 * is to go from M(A,B) to M(A,C). If the user decides to cancel
4811 * the replace by detaching C, the expected behavior is to end up
4812 * M(A,B). But suppose that right after deciding to detach C,
4813 * the replacement of B completes. We would have M(A,C), and then
4814 * ask to detach C, which would leave us with just A -- not what
4815 * the user wanted. To prevent this, we make sure that the
4816 * parent/child relationship hasn't changed -- in this example,
4817 * that C's parent is still the replacing vdev R.
4818 */
4819 if (pvd->vdev_guid != pguid && pguid != 0)
4820 return (spa_vdev_exit(spa, NULL, txg, EBUSY));
4821
4822 /*
4823 * Only 'replacing' or 'spare' vdevs can be replaced.
4824 */
4825 if (replace_done && pvd->vdev_ops != &vdev_replacing_ops &&
4826 pvd->vdev_ops != &vdev_spare_ops)
4827 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
4828
4829 ASSERT(pvd->vdev_ops != &vdev_spare_ops ||
4830 spa_version(spa) >= SPA_VERSION_SPARES);
4831
4832 /*
4833 * Only mirror, replacing, and spare vdevs support detach.
4834 */
4835 if (pvd->vdev_ops != &vdev_replacing_ops &&
4836 pvd->vdev_ops != &vdev_mirror_ops &&
4837 pvd->vdev_ops != &vdev_spare_ops)
4838 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
4839
4840 /*
4841 * If this device has the only valid copy of some data,
4842 * we cannot safely detach it.
4843 */
4844 if (vdev_dtl_required(vd))
4845 return (spa_vdev_exit(spa, NULL, txg, EBUSY));
4846
4847 ASSERT(pvd->vdev_children >= 2);
4848
4849 /*
4850 * If we are detaching the second disk from a replacing vdev, then
4851 * check to see if we changed the original vdev's path to have "/old"
4852 * at the end in spa_vdev_attach(). If so, undo that change now.
4853 */
4854 if (pvd->vdev_ops == &vdev_replacing_ops && vd->vdev_id > 0 &&
4855 vd->vdev_path != NULL) {
4856 size_t len = strlen(vd->vdev_path);
4857
4858 for (c = 0; c < pvd->vdev_children; c++) {
4859 cvd = pvd->vdev_child[c];
4860
4861 if (cvd == vd || cvd->vdev_path == NULL)
4862 continue;
4863
4864 if (strncmp(cvd->vdev_path, vd->vdev_path, len) == 0 &&
4865 strcmp(cvd->vdev_path + len, "/old") == 0) {
4866 spa_strfree(cvd->vdev_path);
4867 cvd->vdev_path = spa_strdup(vd->vdev_path);
4868 break;
4869 }
4870 }
4871 }
4872
4873 /*
4874 * If we are detaching the original disk from a spare, then it implies
4875 * that the spare should become a real disk, and be removed from the
4876 * active spare list for the pool.
4877 */
4878 if (pvd->vdev_ops == &vdev_spare_ops &&
4879 vd->vdev_id == 0 &&
4880 pvd->vdev_child[pvd->vdev_children - 1]->vdev_isspare)
4881 unspare = B_TRUE;
4882
4883 /*
4884 * Erase the disk labels so the disk can be used for other things.
4885 * This must be done after all other error cases are handled,
4886 * but before we disembowel vd (so we can still do I/O to it).
4887 * But if we can't do it, don't treat the error as fatal --
4888 * it may be that the unwritability of the disk is the reason
4889 * it's being detached!
4890 */
4891 error = vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
4892
4893 /*
4894 * Remove vd from its parent and compact the parent's children.
4895 */
4896 vdev_remove_child(pvd, vd);
4897 vdev_compact_children(pvd);
4898
4899 /*
4900 * Remember one of the remaining children so we can get tvd below.
4901 */
4902 cvd = pvd->vdev_child[pvd->vdev_children - 1];
4903
4904 /*
4905 * If we need to remove the remaining child from the list of hot spares,
4906 * do it now, marking the vdev as no longer a spare in the process.
4907 * We must do this before vdev_remove_parent(), because that can
4908 * change the GUID if it creates a new toplevel GUID. For a similar
4909 * reason, we must remove the spare now, in the same txg as the detach;
4910 * otherwise someone could attach a new sibling, change the GUID, and
4911 * the subsequent attempt to spa_vdev_remove(unspare_guid) would fail.
4912 */
4913 if (unspare) {
4914 ASSERT(cvd->vdev_isspare);
4915 spa_spare_remove(cvd);
4916 unspare_guid = cvd->vdev_guid;
4917 (void) spa_vdev_remove(spa, unspare_guid, B_TRUE);
4918 cvd->vdev_unspare = B_TRUE;
4919 }
4920
4921 /*
4922 * If the parent mirror/replacing vdev only has one child,
4923 * the parent is no longer needed. Remove it from the tree.
4924 */
4925 if (pvd->vdev_children == 1) {
4926 if (pvd->vdev_ops == &vdev_spare_ops)
4927 cvd->vdev_unspare = B_FALSE;
4928 vdev_remove_parent(cvd);
4929 }
4930
4931
4932 /*
4933 * We don't set tvd until now because the parent we just removed
4934 * may have been the previous top-level vdev.
4935 */
4936 tvd = cvd->vdev_top;
4937 ASSERT(tvd->vdev_parent == rvd);
4938
4939 /*
4940 * Reevaluate the parent vdev state.
4941 */
4942 vdev_propagate_state(cvd);
4943
4944 /*
4945 * If the 'autoexpand' property is set on the pool then automatically
4946 * try to expand the size of the pool. For example if the device we
4947 * just detached was smaller than the others, it may be possible to
4948 * add metaslabs (i.e. grow the pool). We need to reopen the vdev
4949 * first so that we can obtain the updated sizes of the leaf vdevs.
4950 */
4951 if (spa->spa_autoexpand) {
4952 vdev_reopen(tvd);
4953 vdev_expand(tvd, txg);
4954 }
4955
4956 vdev_config_dirty(tvd);
4957
4958 /*
4959 * Mark vd's DTL as dirty in this txg. vdev_dtl_sync() will see that
4960 * vd->vdev_detached is set and free vd's DTL object in syncing context.
4961 * But first make sure we're not on any *other* txg's DTL list, to
4962 * prevent vd from being accessed after it's freed.
4963 */
4964 vdpath = spa_strdup(vd->vdev_path);
4965 for (t = 0; t < TXG_SIZE; t++)
4966 (void) txg_list_remove_this(&tvd->vdev_dtl_list, vd, t);
4967 vd->vdev_detached = B_TRUE;
4968 vdev_dirty(tvd, VDD_DTL, vd, txg);
4969
4970 spa_event_notify(spa, vd, FM_EREPORT_ZFS_DEVICE_REMOVE);
4971
4972 /* hang on to the spa before we release the lock */
4973 spa_open_ref(spa, FTAG);
4974
4975 error = spa_vdev_exit(spa, vd, txg, 0);
4976
4977 spa_history_log_internal(spa, "detach", NULL,
4978 "vdev=%s", vdpath);
4979 spa_strfree(vdpath);
4980
4981 /*
4982 * If this was the removal of the original device in a hot spare vdev,
4983 * then we want to go through and remove the device from the hot spare
4984 * list of every other pool.
4985 */
4986 if (unspare) {
4987 spa_t *altspa = NULL;
4988
4989 mutex_enter(&spa_namespace_lock);
4990 while ((altspa = spa_next(altspa)) != NULL) {
4991 if (altspa->spa_state != POOL_STATE_ACTIVE ||
4992 altspa == spa)
4993 continue;
4994
4995 spa_open_ref(altspa, FTAG);
4996 mutex_exit(&spa_namespace_lock);
4997 (void) spa_vdev_remove(altspa, unspare_guid, B_TRUE);
4998 mutex_enter(&spa_namespace_lock);
4999 spa_close(altspa, FTAG);
5000 }
5001 mutex_exit(&spa_namespace_lock);
5002
5003 /* search the rest of the vdevs for spares to remove */
5004 spa_vdev_resilver_done(spa);
5005 }
5006
5007 /* all done with the spa; OK to release */
5008 mutex_enter(&spa_namespace_lock);
5009 spa_close(spa, FTAG);
5010 mutex_exit(&spa_namespace_lock);
5011
5012 return (error);
5013 }
5014
5015 /*
5016 * Split a set of devices from their mirrors, and create a new pool from them.
5017 */
5018 int
5019 spa_vdev_split_mirror(spa_t *spa, char *newname, nvlist_t *config,
5020 nvlist_t *props, boolean_t exp)
5021 {
5022 int error = 0;
5023 uint64_t txg, *glist;
5024 spa_t *newspa;
5025 uint_t c, children, lastlog;
5026 nvlist_t **child, *nvl, *tmp;
5027 dmu_tx_t *tx;
5028 char *altroot = NULL;
5029 vdev_t *rvd, **vml = NULL; /* vdev modify list */
5030 boolean_t activate_slog;
5031
5032 ASSERT(spa_writeable(spa));
5033
5034 txg = spa_vdev_enter(spa);
5035
5036 /* clear the log and flush everything up to now */
5037 activate_slog = spa_passivate_log(spa);
5038 (void) spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
5039 error = spa_offline_log(spa);
5040 txg = spa_vdev_config_enter(spa);
5041
5042 if (activate_slog)
5043 spa_activate_log(spa);
5044
5045 if (error != 0)
5046 return (spa_vdev_exit(spa, NULL, txg, error));
5047
5048 /* check new spa name before going any further */
5049 if (spa_lookup(newname) != NULL)
5050 return (spa_vdev_exit(spa, NULL, txg, EEXIST));
5051
5052 /*
5053 * scan through all the children to ensure they're all mirrors
5054 */
5055 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvl) != 0 ||
5056 nvlist_lookup_nvlist_array(nvl, ZPOOL_CONFIG_CHILDREN, &child,
5057 &children) != 0)
5058 return (spa_vdev_exit(spa, NULL, txg, EINVAL));
5059
5060 /* first, check to ensure we've got the right child count */
5061 rvd = spa->spa_root_vdev;
5062 lastlog = 0;
5063 for (c = 0; c < rvd->vdev_children; c++) {
5064 vdev_t *vd = rvd->vdev_child[c];
5065
5066 /* don't count the holes & logs as children */
5067 if (vd->vdev_islog || vd->vdev_ishole) {
5068 if (lastlog == 0)
5069 lastlog = c;
5070 continue;
5071 }
5072
5073 lastlog = 0;
5074 }
5075 if (children != (lastlog != 0 ? lastlog : rvd->vdev_children))
5076 return (spa_vdev_exit(spa, NULL, txg, EINVAL));
5077
5078 /* next, ensure no spare or cache devices are part of the split */
5079 if (nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_SPARES, &tmp) == 0 ||
5080 nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_L2CACHE, &tmp) == 0)
5081 return (spa_vdev_exit(spa, NULL, txg, EINVAL));
5082
5083 vml = kmem_zalloc(children * sizeof (vdev_t *), KM_SLEEP);
5084 glist = kmem_zalloc(children * sizeof (uint64_t), KM_SLEEP);
5085
5086 /* then, loop over each vdev and validate it */
5087 for (c = 0; c < children; c++) {
5088 uint64_t is_hole = 0;
5089
5090 (void) nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_IS_HOLE,
5091 &is_hole);
5092
5093 if (is_hole != 0) {
5094 if (spa->spa_root_vdev->vdev_child[c]->vdev_ishole ||
5095 spa->spa_root_vdev->vdev_child[c]->vdev_islog) {
5096 continue;
5097 } else {
5098 error = SET_ERROR(EINVAL);
5099 break;
5100 }
5101 }
5102
5103 /* which disk is going to be split? */
5104 if (nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_GUID,
5105 &glist[c]) != 0) {
5106 error = SET_ERROR(EINVAL);
5107 break;
5108 }
5109
5110 /* look it up in the spa */
5111 vml[c] = spa_lookup_by_guid(spa, glist[c], B_FALSE);
5112 if (vml[c] == NULL) {
5113 error = SET_ERROR(ENODEV);
5114 break;
5115 }
5116
5117 /* make sure there's nothing stopping the split */
5118 if (vml[c]->vdev_parent->vdev_ops != &vdev_mirror_ops ||
5119 vml[c]->vdev_islog ||
5120 vml[c]->vdev_ishole ||
5121 vml[c]->vdev_isspare ||
5122 vml[c]->vdev_isl2cache ||
5123 !vdev_writeable(vml[c]) ||
5124 vml[c]->vdev_children != 0 ||
5125 vml[c]->vdev_state != VDEV_STATE_HEALTHY ||
5126 c != spa->spa_root_vdev->vdev_child[c]->vdev_id) {
5127 error = SET_ERROR(EINVAL);
5128 break;
5129 }
5130
5131 if (vdev_dtl_required(vml[c])) {
5132 error = SET_ERROR(EBUSY);
5133 break;
5134 }
5135
5136 /* we need certain info from the top level */
5137 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_ARRAY,
5138 vml[c]->vdev_top->vdev_ms_array) == 0);
5139 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_SHIFT,
5140 vml[c]->vdev_top->vdev_ms_shift) == 0);
5141 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASIZE,
5142 vml[c]->vdev_top->vdev_asize) == 0);
5143 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASHIFT,
5144 vml[c]->vdev_top->vdev_ashift) == 0);
5145 }
5146
5147 if (error != 0) {
5148 kmem_free(vml, children * sizeof (vdev_t *));
5149 kmem_free(glist, children * sizeof (uint64_t));
5150 return (spa_vdev_exit(spa, NULL, txg, error));
5151 }
5152
5153 /* stop writers from using the disks */
5154 for (c = 0; c < children; c++) {
5155 if (vml[c] != NULL)
5156 vml[c]->vdev_offline = B_TRUE;
5157 }
5158 vdev_reopen(spa->spa_root_vdev);
5159
5160 /*
5161 * Temporarily record the splitting vdevs in the spa config. This
5162 * will disappear once the config is regenerated.
5163 */
5164 VERIFY(nvlist_alloc(&nvl, NV_UNIQUE_NAME, KM_SLEEP) == 0);
5165 VERIFY(nvlist_add_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST,
5166 glist, children) == 0);
5167 kmem_free(glist, children * sizeof (uint64_t));
5168
5169 mutex_enter(&spa->spa_props_lock);
5170 VERIFY(nvlist_add_nvlist(spa->spa_config, ZPOOL_CONFIG_SPLIT,
5171 nvl) == 0);
5172 mutex_exit(&spa->spa_props_lock);
5173 spa->spa_config_splitting = nvl;
5174 vdev_config_dirty(spa->spa_root_vdev);
5175
5176 /* configure and create the new pool */
5177 VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME, newname) == 0);
5178 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
5179 exp ? POOL_STATE_EXPORTED : POOL_STATE_ACTIVE) == 0);
5180 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_VERSION,
5181 spa_version(spa)) == 0);
5182 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_TXG,
5183 spa->spa_config_txg) == 0);
5184 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_GUID,
5185 spa_generate_guid(NULL)) == 0);
5186 (void) nvlist_lookup_string(props,
5187 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
5188
5189 /* add the new pool to the namespace */
5190 newspa = spa_add(newname, config, altroot);
5191 newspa->spa_config_txg = spa->spa_config_txg;
5192 spa_set_log_state(newspa, SPA_LOG_CLEAR);
5193
5194 /* release the spa config lock, retaining the namespace lock */
5195 spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
5196
5197 if (zio_injection_enabled)
5198 zio_handle_panic_injection(spa, FTAG, 1);
5199
5200 spa_activate(newspa, spa_mode_global);
5201 spa_async_suspend(newspa);
5202
5203 /* create the new pool from the disks of the original pool */
5204 error = spa_load(newspa, SPA_LOAD_IMPORT, SPA_IMPORT_ASSEMBLE, B_TRUE);
5205 if (error)
5206 goto out;
5207
5208 /* if that worked, generate a real config for the new pool */
5209 if (newspa->spa_root_vdev != NULL) {
5210 VERIFY(nvlist_alloc(&newspa->spa_config_splitting,
5211 NV_UNIQUE_NAME, KM_SLEEP) == 0);
5212 VERIFY(nvlist_add_uint64(newspa->spa_config_splitting,
5213 ZPOOL_CONFIG_SPLIT_GUID, spa_guid(spa)) == 0);
5214 spa_config_set(newspa, spa_config_generate(newspa, NULL, -1ULL,
5215 B_TRUE));
5216 }
5217
5218 /* set the props */
5219 if (props != NULL) {
5220 spa_configfile_set(newspa, props, B_FALSE);
5221 error = spa_prop_set(newspa, props);
5222 if (error)
5223 goto out;
5224 }
5225
5226 /* flush everything */
5227 txg = spa_vdev_config_enter(newspa);
5228 vdev_config_dirty(newspa->spa_root_vdev);
5229 (void) spa_vdev_config_exit(newspa, NULL, txg, 0, FTAG);
5230
5231 if (zio_injection_enabled)
5232 zio_handle_panic_injection(spa, FTAG, 2);
5233
5234 spa_async_resume(newspa);
5235
5236 /* finally, update the original pool's config */
5237 txg = spa_vdev_config_enter(spa);
5238 tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
5239 error = dmu_tx_assign(tx, TXG_WAIT);
5240 if (error != 0)
5241 dmu_tx_abort(tx);
5242 for (c = 0; c < children; c++) {
5243 if (vml[c] != NULL) {
5244 vdev_split(vml[c]);
5245 if (error == 0)
5246 spa_history_log_internal(spa, "detach", tx,
5247 "vdev=%s", vml[c]->vdev_path);
5248 vdev_free(vml[c]);
5249 }
5250 }
5251 vdev_config_dirty(spa->spa_root_vdev);
5252 spa->spa_config_splitting = NULL;
5253 nvlist_free(nvl);
5254 if (error == 0)
5255 dmu_tx_commit(tx);
5256 (void) spa_vdev_exit(spa, NULL, txg, 0);
5257
5258 if (zio_injection_enabled)
5259 zio_handle_panic_injection(spa, FTAG, 3);
5260
5261 /* split is complete; log a history record */
5262 spa_history_log_internal(newspa, "split", NULL,
5263 "from pool %s", spa_name(spa));
5264
5265 kmem_free(vml, children * sizeof (vdev_t *));
5266
5267 /* if we're not going to mount the filesystems in userland, export */
5268 if (exp)
5269 error = spa_export_common(newname, POOL_STATE_EXPORTED, NULL,
5270 B_FALSE, B_FALSE);
5271
5272 return (error);
5273
5274 out:
5275 spa_unload(newspa);
5276 spa_deactivate(newspa);
5277 spa_remove(newspa);
5278
5279 txg = spa_vdev_config_enter(spa);
5280
5281 /* re-online all offlined disks */
5282 for (c = 0; c < children; c++) {
5283 if (vml[c] != NULL)
5284 vml[c]->vdev_offline = B_FALSE;
5285 }
5286 vdev_reopen(spa->spa_root_vdev);
5287
5288 nvlist_free(spa->spa_config_splitting);
5289 spa->spa_config_splitting = NULL;
5290 (void) spa_vdev_exit(spa, NULL, txg, error);
5291
5292 kmem_free(vml, children * sizeof (vdev_t *));
5293 return (error);
5294 }
5295
5296 static nvlist_t *
5297 spa_nvlist_lookup_by_guid(nvlist_t **nvpp, int count, uint64_t target_guid)
5298 {
5299 int i;
5300
5301 for (i = 0; i < count; i++) {
5302 uint64_t guid;
5303
5304 VERIFY(nvlist_lookup_uint64(nvpp[i], ZPOOL_CONFIG_GUID,
5305 &guid) == 0);
5306
5307 if (guid == target_guid)
5308 return (nvpp[i]);
5309 }
5310
5311 return (NULL);
5312 }
5313
5314 static void
5315 spa_vdev_remove_aux(nvlist_t *config, char *name, nvlist_t **dev, int count,
5316 nvlist_t *dev_to_remove)
5317 {
5318 nvlist_t **newdev = NULL;
5319 int i, j;
5320
5321 if (count > 1)
5322 newdev = kmem_alloc((count - 1) * sizeof (void *), KM_SLEEP);
5323
5324 for (i = 0, j = 0; i < count; i++) {
5325 if (dev[i] == dev_to_remove)
5326 continue;
5327 VERIFY(nvlist_dup(dev[i], &newdev[j++], KM_SLEEP) == 0);
5328 }
5329
5330 VERIFY(nvlist_remove(config, name, DATA_TYPE_NVLIST_ARRAY) == 0);
5331 VERIFY(nvlist_add_nvlist_array(config, name, newdev, count - 1) == 0);
5332
5333 for (i = 0; i < count - 1; i++)
5334 nvlist_free(newdev[i]);
5335
5336 if (count > 1)
5337 kmem_free(newdev, (count - 1) * sizeof (void *));
5338 }
5339
5340 /*
5341 * Evacuate the device.
5342 */
5343 static int
5344 spa_vdev_remove_evacuate(spa_t *spa, vdev_t *vd)
5345 {
5346 uint64_t txg;
5347 int error = 0;
5348
5349 ASSERT(MUTEX_HELD(&spa_namespace_lock));
5350 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
5351 ASSERT(vd == vd->vdev_top);
5352
5353 /*
5354 * Evacuate the device. We don't hold the config lock as writer
5355 * since we need to do I/O but we do keep the
5356 * spa_namespace_lock held. Once this completes the device
5357 * should no longer have any blocks allocated on it.
5358 */
5359 if (vd->vdev_islog) {
5360 if (vd->vdev_stat.vs_alloc != 0)
5361 error = spa_offline_log(spa);
5362 } else {
5363 error = SET_ERROR(ENOTSUP);
5364 }
5365
5366 if (error)
5367 return (error);
5368
5369 /*
5370 * The evacuation succeeded. Remove any remaining MOS metadata
5371 * associated with this vdev, and wait for these changes to sync.
5372 */
5373 ASSERT0(vd->vdev_stat.vs_alloc);
5374 txg = spa_vdev_config_enter(spa);
5375 vd->vdev_removing = B_TRUE;
5376 vdev_dirty_leaves(vd, VDD_DTL, txg);
5377 vdev_config_dirty(vd);
5378 spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
5379
5380 return (0);
5381 }
5382
5383 /*
5384 * Complete the removal by cleaning up the namespace.
5385 */
5386 static void
5387 spa_vdev_remove_from_namespace(spa_t *spa, vdev_t *vd)
5388 {
5389 vdev_t *rvd = spa->spa_root_vdev;
5390 uint64_t id = vd->vdev_id;
5391 boolean_t last_vdev = (id == (rvd->vdev_children - 1));
5392
5393 ASSERT(MUTEX_HELD(&spa_namespace_lock));
5394 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
5395 ASSERT(vd == vd->vdev_top);
5396
5397 /*
5398 * Only remove any devices which are empty.
5399 */
5400 if (vd->vdev_stat.vs_alloc != 0)
5401 return;
5402
5403 (void) vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
5404
5405 if (list_link_active(&vd->vdev_state_dirty_node))
5406 vdev_state_clean(vd);
5407 if (list_link_active(&vd->vdev_config_dirty_node))
5408 vdev_config_clean(vd);
5409
5410 vdev_free(vd);
5411
5412 if (last_vdev) {
5413 vdev_compact_children(rvd);
5414 } else {
5415 vd = vdev_alloc_common(spa, id, 0, &vdev_hole_ops);
5416 vdev_add_child(rvd, vd);
5417 }
5418 vdev_config_dirty(rvd);
5419
5420 /*
5421 * Reassess the health of our root vdev.
5422 */
5423 vdev_reopen(rvd);
5424 }
5425
5426 /*
5427 * Remove a device from the pool -
5428 *
5429 * Removing a device from the vdev namespace requires several steps
5430 * and can take a significant amount of time. As a result we use
5431 * the spa_vdev_config_[enter/exit] functions which allow us to
5432 * grab and release the spa_config_lock while still holding the namespace
5433 * lock. During each step the configuration is synced out.
5434 *
5435 * Currently, this supports removing only hot spares, slogs, and level 2 ARC
5436 * devices.
5437 */
5438 int
5439 spa_vdev_remove(spa_t *spa, uint64_t guid, boolean_t unspare)
5440 {
5441 vdev_t *vd;
5442 metaslab_group_t *mg;
5443 nvlist_t **spares, **l2cache, *nv;
5444 uint64_t txg = 0;
5445 uint_t nspares, nl2cache;
5446 int error = 0;
5447 boolean_t locked = MUTEX_HELD(&spa_namespace_lock);
5448
5449 ASSERT(spa_writeable(spa));
5450
5451 if (!locked)
5452 txg = spa_vdev_enter(spa);
5453
5454 vd = spa_lookup_by_guid(spa, guid, B_FALSE);
5455
5456 if (spa->spa_spares.sav_vdevs != NULL &&
5457 nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
5458 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0 &&
5459 (nv = spa_nvlist_lookup_by_guid(spares, nspares, guid)) != NULL) {
5460 /*
5461 * Only remove the hot spare if it's not currently in use
5462 * in this pool.
5463 */
5464 if (vd == NULL || unspare) {
5465 spa_vdev_remove_aux(spa->spa_spares.sav_config,
5466 ZPOOL_CONFIG_SPARES, spares, nspares, nv);
5467 spa_load_spares(spa);
5468 spa->spa_spares.sav_sync = B_TRUE;
5469 } else {
5470 error = SET_ERROR(EBUSY);
5471 }
5472 } else if (spa->spa_l2cache.sav_vdevs != NULL &&
5473 nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config,
5474 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0 &&
5475 (nv = spa_nvlist_lookup_by_guid(l2cache, nl2cache, guid)) != NULL) {
5476 /*
5477 * Cache devices can always be removed.
5478 */
5479 spa_vdev_remove_aux(spa->spa_l2cache.sav_config,
5480 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache, nv);
5481 spa_load_l2cache(spa);
5482 spa->spa_l2cache.sav_sync = B_TRUE;
5483 } else if (vd != NULL && vd->vdev_islog) {
5484 ASSERT(!locked);
5485 ASSERT(vd == vd->vdev_top);
5486
5487 mg = vd->vdev_mg;
5488
5489 /*
5490 * Stop allocating from this vdev.
5491 */
5492 metaslab_group_passivate(mg);
5493
5494 /*
5495 * Wait for the youngest allocations and frees to sync,
5496 * and then wait for the deferral of those frees to finish.
5497 */
5498 spa_vdev_config_exit(spa, NULL,
5499 txg + TXG_CONCURRENT_STATES + TXG_DEFER_SIZE, 0, FTAG);
5500
5501 /*
5502 * Attempt to evacuate the vdev.
5503 */
5504 error = spa_vdev_remove_evacuate(spa, vd);
5505
5506 txg = spa_vdev_config_enter(spa);
5507
5508 /*
5509 * If we couldn't evacuate the vdev, unwind.
5510 */
5511 if (error) {
5512 metaslab_group_activate(mg);
5513 return (spa_vdev_exit(spa, NULL, txg, error));
5514 }
5515
5516 /*
5517 * Clean up the vdev namespace.
5518 */
5519 spa_vdev_remove_from_namespace(spa, vd);
5520
5521 } else if (vd != NULL) {
5522 /*
5523 * Normal vdevs cannot be removed (yet).
5524 */
5525 error = SET_ERROR(ENOTSUP);
5526 } else {
5527 /*
5528 * There is no vdev of any kind with the specified guid.
5529 */
5530 error = SET_ERROR(ENOENT);
5531 }
5532
5533 if (!locked)
5534 return (spa_vdev_exit(spa, NULL, txg, error));
5535
5536 return (error);
5537 }
5538
5539 /*
5540 * Find any device that's done replacing, or a vdev marked 'unspare' that's
5541 * currently spared, so we can detach it.
5542 */
5543 static vdev_t *
5544 spa_vdev_resilver_done_hunt(vdev_t *vd)
5545 {
5546 vdev_t *newvd, *oldvd;
5547 int c;
5548
5549 for (c = 0; c < vd->vdev_children; c++) {
5550 oldvd = spa_vdev_resilver_done_hunt(vd->vdev_child[c]);
5551 if (oldvd != NULL)
5552 return (oldvd);
5553 }
5554
5555 /*
5556 * Check for a completed replacement. We always consider the first
5557 * vdev in the list to be the oldest vdev, and the last one to be
5558 * the newest (see spa_vdev_attach() for how that works). In
5559 * the case where the newest vdev is faulted, we will not automatically
5560 * remove it after a resilver completes. This is OK as it will require
5561 * user intervention to determine which disk the admin wishes to keep.
5562 */
5563 if (vd->vdev_ops == &vdev_replacing_ops) {
5564 ASSERT(vd->vdev_children > 1);
5565
5566 newvd = vd->vdev_child[vd->vdev_children - 1];
5567 oldvd = vd->vdev_child[0];
5568
5569 if (vdev_dtl_empty(newvd, DTL_MISSING) &&
5570 vdev_dtl_empty(newvd, DTL_OUTAGE) &&
5571 !vdev_dtl_required(oldvd))
5572 return (oldvd);
5573 }
5574
5575 /*
5576 * Check for a completed resilver with the 'unspare' flag set.
5577 */
5578 if (vd->vdev_ops == &vdev_spare_ops) {
5579 vdev_t *first = vd->vdev_child[0];
5580 vdev_t *last = vd->vdev_child[vd->vdev_children - 1];
5581
5582 if (last->vdev_unspare) {
5583 oldvd = first;
5584 newvd = last;
5585 } else if (first->vdev_unspare) {
5586 oldvd = last;
5587 newvd = first;
5588 } else {
5589 oldvd = NULL;
5590 }
5591
5592 if (oldvd != NULL &&
5593 vdev_dtl_empty(newvd, DTL_MISSING) &&
5594 vdev_dtl_empty(newvd, DTL_OUTAGE) &&
5595 !vdev_dtl_required(oldvd))
5596 return (oldvd);
5597
5598 /*
5599 * If there are more than two spares attached to a disk,
5600 * and those spares are not required, then we want to
5601 * attempt to free them up now so that they can be used
5602 * by other pools. Once we're back down to a single
5603 * disk+spare, we stop removing them.
5604 */
5605 if (vd->vdev_children > 2) {
5606 newvd = vd->vdev_child[1];
5607
5608 if (newvd->vdev_isspare && last->vdev_isspare &&
5609 vdev_dtl_empty(last, DTL_MISSING) &&
5610 vdev_dtl_empty(last, DTL_OUTAGE) &&
5611 !vdev_dtl_required(newvd))
5612 return (newvd);
5613 }
5614 }
5615
5616 return (NULL);
5617 }
5618
5619 static void
5620 spa_vdev_resilver_done(spa_t *spa)
5621 {
5622 vdev_t *vd, *pvd, *ppvd;
5623 uint64_t guid, sguid, pguid, ppguid;
5624
5625 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5626
5627 while ((vd = spa_vdev_resilver_done_hunt(spa->spa_root_vdev)) != NULL) {
5628 pvd = vd->vdev_parent;
5629 ppvd = pvd->vdev_parent;
5630 guid = vd->vdev_guid;
5631 pguid = pvd->vdev_guid;
5632 ppguid = ppvd->vdev_guid;
5633 sguid = 0;
5634 /*
5635 * If we have just finished replacing a hot spared device, then
5636 * we need to detach the parent's first child (the original hot
5637 * spare) as well.
5638 */
5639 if (ppvd->vdev_ops == &vdev_spare_ops && pvd->vdev_id == 0 &&
5640 ppvd->vdev_children == 2) {
5641 ASSERT(pvd->vdev_ops == &vdev_replacing_ops);
5642 sguid = ppvd->vdev_child[1]->vdev_guid;
5643 }
5644 ASSERT(vd->vdev_resilver_txg == 0 || !vdev_dtl_required(vd));
5645
5646 spa_config_exit(spa, SCL_ALL, FTAG);
5647 if (spa_vdev_detach(spa, guid, pguid, B_TRUE) != 0)
5648 return;
5649 if (sguid && spa_vdev_detach(spa, sguid, ppguid, B_TRUE) != 0)
5650 return;
5651 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5652 }
5653
5654 spa_config_exit(spa, SCL_ALL, FTAG);
5655 }
5656
5657 /*
5658 * Update the stored path or FRU for this vdev.
5659 */
5660 int
5661 spa_vdev_set_common(spa_t *spa, uint64_t guid, const char *value,
5662 boolean_t ispath)
5663 {
5664 vdev_t *vd;
5665 boolean_t sync = B_FALSE;
5666
5667 ASSERT(spa_writeable(spa));
5668
5669 spa_vdev_state_enter(spa, SCL_ALL);
5670
5671 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
5672 return (spa_vdev_state_exit(spa, NULL, ENOENT));
5673
5674 if (!vd->vdev_ops->vdev_op_leaf)
5675 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
5676
5677 if (ispath) {
5678 if (strcmp(value, vd->vdev_path) != 0) {
5679 spa_strfree(vd->vdev_path);
5680 vd->vdev_path = spa_strdup(value);
5681 sync = B_TRUE;
5682 }
5683 } else {
5684 if (vd->vdev_fru == NULL) {
5685 vd->vdev_fru = spa_strdup(value);
5686 sync = B_TRUE;
5687 } else if (strcmp(value, vd->vdev_fru) != 0) {
5688 spa_strfree(vd->vdev_fru);
5689 vd->vdev_fru = spa_strdup(value);
5690 sync = B_TRUE;
5691 }
5692 }
5693
5694 return (spa_vdev_state_exit(spa, sync ? vd : NULL, 0));
5695 }
5696
5697 int
5698 spa_vdev_setpath(spa_t *spa, uint64_t guid, const char *newpath)
5699 {
5700 return (spa_vdev_set_common(spa, guid, newpath, B_TRUE));
5701 }
5702
5703 int
5704 spa_vdev_setfru(spa_t *spa, uint64_t guid, const char *newfru)
5705 {
5706 return (spa_vdev_set_common(spa, guid, newfru, B_FALSE));
5707 }
5708
5709 /*
5710 * ==========================================================================
5711 * SPA Scanning
5712 * ==========================================================================
5713 */
5714
5715 int
5716 spa_scan_stop(spa_t *spa)
5717 {
5718 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
5719 if (dsl_scan_resilvering(spa->spa_dsl_pool))
5720 return (SET_ERROR(EBUSY));
5721 return (dsl_scan_cancel(spa->spa_dsl_pool));
5722 }
5723
5724 int
5725 spa_scan(spa_t *spa, pool_scan_func_t func)
5726 {
5727 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
5728
5729 if (func >= POOL_SCAN_FUNCS || func == POOL_SCAN_NONE)
5730 return (SET_ERROR(ENOTSUP));
5731
5732 /*
5733 * If a resilver was requested, but there is no DTL on a
5734 * writeable leaf device, we have nothing to do.
5735 */
5736 if (func == POOL_SCAN_RESILVER &&
5737 !vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL)) {
5738 spa_async_request(spa, SPA_ASYNC_RESILVER_DONE);
5739 return (0);
5740 }
5741
5742 return (dsl_scan(spa->spa_dsl_pool, func));
5743 }
5744
5745 /*
5746 * ==========================================================================
5747 * SPA async task processing
5748 * ==========================================================================
5749 */
5750
5751 static void
5752 spa_async_remove(spa_t *spa, vdev_t *vd)
5753 {
5754 int c;
5755
5756 if (vd->vdev_remove_wanted) {
5757 vd->vdev_remove_wanted = B_FALSE;
5758 vd->vdev_delayed_close = B_FALSE;
5759 vdev_set_state(vd, B_FALSE, VDEV_STATE_REMOVED, VDEV_AUX_NONE);
5760
5761 /*
5762 * We want to clear the stats, but we don't want to do a full
5763 * vdev_clear() as that will cause us to throw away
5764 * degraded/faulted state as well as attempt to reopen the
5765 * device, all of which is a waste.
5766 */
5767 vd->vdev_stat.vs_read_errors = 0;
5768 vd->vdev_stat.vs_write_errors = 0;
5769 vd->vdev_stat.vs_checksum_errors = 0;
5770
5771 vdev_state_dirty(vd->vdev_top);
5772 }
5773
5774 for (c = 0; c < vd->vdev_children; c++)
5775 spa_async_remove(spa, vd->vdev_child[c]);
5776 }
5777
5778 static void
5779 spa_async_probe(spa_t *spa, vdev_t *vd)
5780 {
5781 int c;
5782
5783 if (vd->vdev_probe_wanted) {
5784 vd->vdev_probe_wanted = B_FALSE;
5785 vdev_reopen(vd); /* vdev_open() does the actual probe */
5786 }
5787
5788 for (c = 0; c < vd->vdev_children; c++)
5789 spa_async_probe(spa, vd->vdev_child[c]);
5790 }
5791
5792 static void
5793 spa_async_autoexpand(spa_t *spa, vdev_t *vd)
5794 {
5795 int c;
5796
5797 if (!spa->spa_autoexpand)
5798 return;
5799
5800 for (c = 0; c < vd->vdev_children; c++) {
5801 vdev_t *cvd = vd->vdev_child[c];
5802 spa_async_autoexpand(spa, cvd);
5803 }
5804
5805 if (!vd->vdev_ops->vdev_op_leaf || vd->vdev_physpath == NULL)
5806 return;
5807
5808 spa_event_notify(vd->vdev_spa, vd, FM_EREPORT_ZFS_DEVICE_AUTOEXPAND);
5809 }
5810
5811 static void
5812 spa_async_thread(spa_t *spa)
5813 {
5814 int tasks, i;
5815
5816 ASSERT(spa->spa_sync_on);
5817
5818 mutex_enter(&spa->spa_async_lock);
5819 tasks = spa->spa_async_tasks;
5820 spa->spa_async_tasks = 0;
5821 mutex_exit(&spa->spa_async_lock);
5822
5823 /*
5824 * See if the config needs to be updated.
5825 */
5826 if (tasks & SPA_ASYNC_CONFIG_UPDATE) {
5827 uint64_t old_space, new_space;
5828
5829 mutex_enter(&spa_namespace_lock);
5830 old_space = metaslab_class_get_space(spa_normal_class(spa));
5831 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
5832 new_space = metaslab_class_get_space(spa_normal_class(spa));
5833 mutex_exit(&spa_namespace_lock);
5834
5835 /*
5836 * If the pool grew as a result of the config update,
5837 * then log an internal history event.
5838 */
5839 if (new_space != old_space) {
5840 spa_history_log_internal(spa, "vdev online", NULL,
5841 "pool '%s' size: %llu(+%llu)",
5842 spa_name(spa), new_space, new_space - old_space);
5843 }
5844 }
5845
5846 /*
5847 * See if any devices need to be marked REMOVED.
5848 */
5849 if (tasks & SPA_ASYNC_REMOVE) {
5850 spa_vdev_state_enter(spa, SCL_NONE);
5851 spa_async_remove(spa, spa->spa_root_vdev);
5852 for (i = 0; i < spa->spa_l2cache.sav_count; i++)
5853 spa_async_remove(spa, spa->spa_l2cache.sav_vdevs[i]);
5854 for (i = 0; i < spa->spa_spares.sav_count; i++)
5855 spa_async_remove(spa, spa->spa_spares.sav_vdevs[i]);
5856 (void) spa_vdev_state_exit(spa, NULL, 0);
5857 }
5858
5859 if ((tasks & SPA_ASYNC_AUTOEXPAND) && !spa_suspended(spa)) {
5860 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
5861 spa_async_autoexpand(spa, spa->spa_root_vdev);
5862 spa_config_exit(spa, SCL_CONFIG, FTAG);
5863 }
5864
5865 /*
5866 * See if any devices need to be probed.
5867 */
5868 if (tasks & SPA_ASYNC_PROBE) {
5869 spa_vdev_state_enter(spa, SCL_NONE);
5870 spa_async_probe(spa, spa->spa_root_vdev);
5871 (void) spa_vdev_state_exit(spa, NULL, 0);
5872 }
5873
5874 /*
5875 * If any devices are done replacing, detach them.
5876 */
5877 if (tasks & SPA_ASYNC_RESILVER_DONE)
5878 spa_vdev_resilver_done(spa);
5879
5880 /*
5881 * Kick off a resilver.
5882 */
5883 if (tasks & SPA_ASYNC_RESILVER)
5884 dsl_resilver_restart(spa->spa_dsl_pool, 0);
5885
5886 /*
5887 * Let the world know that we're done.
5888 */
5889 mutex_enter(&spa->spa_async_lock);
5890 spa->spa_async_thread = NULL;
5891 cv_broadcast(&spa->spa_async_cv);
5892 mutex_exit(&spa->spa_async_lock);
5893 thread_exit();
5894 }
5895
5896 void
5897 spa_async_suspend(spa_t *spa)
5898 {
5899 mutex_enter(&spa->spa_async_lock);
5900 spa->spa_async_suspended++;
5901 while (spa->spa_async_thread != NULL)
5902 cv_wait(&spa->spa_async_cv, &spa->spa_async_lock);
5903 mutex_exit(&spa->spa_async_lock);
5904 }
5905
5906 void
5907 spa_async_resume(spa_t *spa)
5908 {
5909 mutex_enter(&spa->spa_async_lock);
5910 ASSERT(spa->spa_async_suspended != 0);
5911 spa->spa_async_suspended--;
5912 mutex_exit(&spa->spa_async_lock);
5913 }
5914
5915 static void
5916 spa_async_dispatch(spa_t *spa)
5917 {
5918 mutex_enter(&spa->spa_async_lock);
5919 if (spa->spa_async_tasks && !spa->spa_async_suspended &&
5920 spa->spa_async_thread == NULL &&
5921 rootdir != NULL && !vn_is_readonly(rootdir))
5922 spa->spa_async_thread = thread_create(NULL, 0,
5923 spa_async_thread, spa, 0, &p0, TS_RUN, maxclsyspri);
5924 mutex_exit(&spa->spa_async_lock);
5925 }
5926
5927 void
5928 spa_async_request(spa_t *spa, int task)
5929 {
5930 zfs_dbgmsg("spa=%s async request task=%u", spa->spa_name, task);
5931 mutex_enter(&spa->spa_async_lock);
5932 spa->spa_async_tasks |= task;
5933 mutex_exit(&spa->spa_async_lock);
5934 }
5935
5936 /*
5937 * ==========================================================================
5938 * SPA syncing routines
5939 * ==========================================================================
5940 */
5941
5942 static int
5943 bpobj_enqueue_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
5944 {
5945 bpobj_t *bpo = arg;
5946 bpobj_enqueue(bpo, bp, tx);
5947 return (0);
5948 }
5949
5950 static int
5951 spa_free_sync_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
5952 {
5953 zio_t *zio = arg;
5954
5955 zio_nowait(zio_free_sync(zio, zio->io_spa, dmu_tx_get_txg(tx), bp,
5956 zio->io_flags));
5957 return (0);
5958 }
5959
5960 /*
5961 * Note: this simple function is not inlined to make it easier to dtrace the
5962 * amount of time spent syncing frees.
5963 */
5964 static void
5965 spa_sync_frees(spa_t *spa, bplist_t *bpl, dmu_tx_t *tx)
5966 {
5967 zio_t *zio = zio_root(spa, NULL, NULL, 0);
5968 bplist_iterate(bpl, spa_free_sync_cb, zio, tx);
5969 VERIFY(zio_wait(zio) == 0);
5970 }
5971
5972 /*
5973 * Note: this simple function is not inlined to make it easier to dtrace the
5974 * amount of time spent syncing deferred frees.
5975 */
5976 static void
5977 spa_sync_deferred_frees(spa_t *spa, dmu_tx_t *tx)
5978 {
5979 zio_t *zio = zio_root(spa, NULL, NULL, 0);
5980 VERIFY3U(bpobj_iterate(&spa->spa_deferred_bpobj,
5981 spa_free_sync_cb, zio, tx), ==, 0);
5982 VERIFY0(zio_wait(zio));
5983 }
5984
5985 static void
5986 spa_sync_nvlist(spa_t *spa, uint64_t obj, nvlist_t *nv, dmu_tx_t *tx)
5987 {
5988 char *packed = NULL;
5989 size_t bufsize;
5990 size_t nvsize = 0;
5991 dmu_buf_t *db;
5992
5993 VERIFY(nvlist_size(nv, &nvsize, NV_ENCODE_XDR) == 0);
5994
5995 /*
5996 * Write full (SPA_CONFIG_BLOCKSIZE) blocks of configuration
5997 * information. This avoids the dmu_buf_will_dirty() path and
5998 * saves us a pre-read to get data we don't actually care about.
5999 */
6000 bufsize = P2ROUNDUP((uint64_t)nvsize, SPA_CONFIG_BLOCKSIZE);
6001 packed = vmem_alloc(bufsize, KM_SLEEP);
6002
6003 VERIFY(nvlist_pack(nv, &packed, &nvsize, NV_ENCODE_XDR,
6004 KM_SLEEP) == 0);
6005 bzero(packed + nvsize, bufsize - nvsize);
6006
6007 dmu_write(spa->spa_meta_objset, obj, 0, bufsize, packed, tx);
6008
6009 vmem_free(packed, bufsize);
6010
6011 VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db));
6012 dmu_buf_will_dirty(db, tx);
6013 *(uint64_t *)db->db_data = nvsize;
6014 dmu_buf_rele(db, FTAG);
6015 }
6016
6017 static void
6018 spa_sync_aux_dev(spa_t *spa, spa_aux_vdev_t *sav, dmu_tx_t *tx,
6019 const char *config, const char *entry)
6020 {
6021 nvlist_t *nvroot;
6022 nvlist_t **list;
6023 int i;
6024
6025 if (!sav->sav_sync)
6026 return;
6027
6028 /*
6029 * Update the MOS nvlist describing the list of available devices.
6030 * spa_validate_aux() will have already made sure this nvlist is
6031 * valid and the vdevs are labeled appropriately.
6032 */
6033 if (sav->sav_object == 0) {
6034 sav->sav_object = dmu_object_alloc(spa->spa_meta_objset,
6035 DMU_OT_PACKED_NVLIST, 1 << 14, DMU_OT_PACKED_NVLIST_SIZE,
6036 sizeof (uint64_t), tx);
6037 VERIFY(zap_update(spa->spa_meta_objset,
6038 DMU_POOL_DIRECTORY_OBJECT, entry, sizeof (uint64_t), 1,
6039 &sav->sav_object, tx) == 0);
6040 }
6041
6042 VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0);
6043 if (sav->sav_count == 0) {
6044 VERIFY(nvlist_add_nvlist_array(nvroot, config, NULL, 0) == 0);
6045 } else {
6046 list = kmem_alloc(sav->sav_count*sizeof (void *), KM_SLEEP);
6047 for (i = 0; i < sav->sav_count; i++)
6048 list[i] = vdev_config_generate(spa, sav->sav_vdevs[i],
6049 B_FALSE, VDEV_CONFIG_L2CACHE);
6050 VERIFY(nvlist_add_nvlist_array(nvroot, config, list,
6051 sav->sav_count) == 0);
6052 for (i = 0; i < sav->sav_count; i++)
6053 nvlist_free(list[i]);
6054 kmem_free(list, sav->sav_count * sizeof (void *));
6055 }
6056
6057 spa_sync_nvlist(spa, sav->sav_object, nvroot, tx);
6058 nvlist_free(nvroot);
6059
6060 sav->sav_sync = B_FALSE;
6061 }
6062
6063 static void
6064 spa_sync_config_object(spa_t *spa, dmu_tx_t *tx)
6065 {
6066 nvlist_t *config;
6067
6068 if (list_is_empty(&spa->spa_config_dirty_list))
6069 return;
6070
6071 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
6072
6073 config = spa_config_generate(spa, spa->spa_root_vdev,
6074 dmu_tx_get_txg(tx), B_FALSE);
6075
6076 /*
6077 * If we're upgrading the spa version then make sure that
6078 * the config object gets updated with the correct version.
6079 */
6080 if (spa->spa_ubsync.ub_version < spa->spa_uberblock.ub_version)
6081 fnvlist_add_uint64(config, ZPOOL_CONFIG_VERSION,
6082 spa->spa_uberblock.ub_version);
6083
6084 spa_config_exit(spa, SCL_STATE, FTAG);
6085
6086 if (spa->spa_config_syncing)
6087 nvlist_free(spa->spa_config_syncing);
6088 spa->spa_config_syncing = config;
6089
6090 spa_sync_nvlist(spa, spa->spa_config_object, config, tx);
6091 }
6092
6093 static void
6094 spa_sync_version(void *arg, dmu_tx_t *tx)
6095 {
6096 uint64_t *versionp = arg;
6097 uint64_t version = *versionp;
6098 spa_t *spa = dmu_tx_pool(tx)->dp_spa;
6099
6100 /*
6101 * Setting the version is special cased when first creating the pool.
6102 */
6103 ASSERT(tx->tx_txg != TXG_INITIAL);
6104
6105 ASSERT(SPA_VERSION_IS_SUPPORTED(version));
6106 ASSERT(version >= spa_version(spa));
6107
6108 spa->spa_uberblock.ub_version = version;
6109 vdev_config_dirty(spa->spa_root_vdev);
6110 spa_history_log_internal(spa, "set", tx, "version=%lld", version);
6111 }
6112
6113 /*
6114 * Set zpool properties.
6115 */
6116 static void
6117 spa_sync_props(void *arg, dmu_tx_t *tx)
6118 {
6119 nvlist_t *nvp = arg;
6120 spa_t *spa = dmu_tx_pool(tx)->dp_spa;
6121 objset_t *mos = spa->spa_meta_objset;
6122 nvpair_t *elem = NULL;
6123
6124 mutex_enter(&spa->spa_props_lock);
6125
6126 while ((elem = nvlist_next_nvpair(nvp, elem))) {
6127 uint64_t intval;
6128 char *strval, *fname;
6129 zpool_prop_t prop;
6130 const char *propname;
6131 zprop_type_t proptype;
6132 spa_feature_t fid;
6133
6134 prop = zpool_name_to_prop(nvpair_name(elem));
6135 switch ((int)prop) {
6136 case ZPROP_INVAL:
6137 /*
6138 * We checked this earlier in spa_prop_validate().
6139 */
6140 ASSERT(zpool_prop_feature(nvpair_name(elem)));
6141
6142 fname = strchr(nvpair_name(elem), '@') + 1;
6143 VERIFY0(zfeature_lookup_name(fname, &fid));
6144
6145 spa_feature_enable(spa, fid, tx);
6146 spa_history_log_internal(spa, "set", tx,
6147 "%s=enabled", nvpair_name(elem));
6148 break;
6149
6150 case ZPOOL_PROP_VERSION:
6151 intval = fnvpair_value_uint64(elem);
6152 /*
6153 * The version is synced seperatly before other
6154 * properties and should be correct by now.
6155 */
6156 ASSERT3U(spa_version(spa), >=, intval);
6157 break;
6158
6159 case ZPOOL_PROP_ALTROOT:
6160 /*
6161 * 'altroot' is a non-persistent property. It should
6162 * have been set temporarily at creation or import time.
6163 */
6164 ASSERT(spa->spa_root != NULL);
6165 break;
6166
6167 case ZPOOL_PROP_READONLY:
6168 case ZPOOL_PROP_CACHEFILE:
6169 /*
6170 * 'readonly' and 'cachefile' are also non-persisitent
6171 * properties.
6172 */
6173 break;
6174 case ZPOOL_PROP_COMMENT:
6175 strval = fnvpair_value_string(elem);
6176 if (spa->spa_comment != NULL)
6177 spa_strfree(spa->spa_comment);
6178 spa->spa_comment = spa_strdup(strval);
6179 /*
6180 * We need to dirty the configuration on all the vdevs
6181 * so that their labels get updated. It's unnecessary
6182 * to do this for pool creation since the vdev's
6183 * configuratoin has already been dirtied.
6184 */
6185 if (tx->tx_txg != TXG_INITIAL)
6186 vdev_config_dirty(spa->spa_root_vdev);
6187 spa_history_log_internal(spa, "set", tx,
6188 "%s=%s", nvpair_name(elem), strval);
6189 break;
6190 default:
6191 /*
6192 * Set pool property values in the poolprops mos object.
6193 */
6194 if (spa->spa_pool_props_object == 0) {
6195 spa->spa_pool_props_object =
6196 zap_create_link(mos, DMU_OT_POOL_PROPS,
6197 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_PROPS,
6198 tx);
6199 }
6200
6201 /* normalize the property name */
6202 propname = zpool_prop_to_name(prop);
6203 proptype = zpool_prop_get_type(prop);
6204
6205 if (nvpair_type(elem) == DATA_TYPE_STRING) {
6206 ASSERT(proptype == PROP_TYPE_STRING);
6207 strval = fnvpair_value_string(elem);
6208 VERIFY0(zap_update(mos,
6209 spa->spa_pool_props_object, propname,
6210 1, strlen(strval) + 1, strval, tx));
6211 spa_history_log_internal(spa, "set", tx,
6212 "%s=%s", nvpair_name(elem), strval);
6213 } else if (nvpair_type(elem) == DATA_TYPE_UINT64) {
6214 intval = fnvpair_value_uint64(elem);
6215
6216 if (proptype == PROP_TYPE_INDEX) {
6217 const char *unused;
6218 VERIFY0(zpool_prop_index_to_string(
6219 prop, intval, &unused));
6220 }
6221 VERIFY0(zap_update(mos,
6222 spa->spa_pool_props_object, propname,
6223 8, 1, &intval, tx));
6224 spa_history_log_internal(spa, "set", tx,
6225 "%s=%lld", nvpair_name(elem), intval);
6226 } else {
6227 ASSERT(0); /* not allowed */
6228 }
6229
6230 switch (prop) {
6231 case ZPOOL_PROP_DELEGATION:
6232 spa->spa_delegation = intval;
6233 break;
6234 case ZPOOL_PROP_BOOTFS:
6235 spa->spa_bootfs = intval;
6236 break;
6237 case ZPOOL_PROP_FAILUREMODE:
6238 spa->spa_failmode = intval;
6239 break;
6240 case ZPOOL_PROP_AUTOEXPAND:
6241 spa->spa_autoexpand = intval;
6242 if (tx->tx_txg != TXG_INITIAL)
6243 spa_async_request(spa,
6244 SPA_ASYNC_AUTOEXPAND);
6245 break;
6246 case ZPOOL_PROP_DEDUPDITTO:
6247 spa->spa_dedup_ditto = intval;
6248 break;
6249 default:
6250 break;
6251 }
6252 }
6253
6254 }
6255
6256 mutex_exit(&spa->spa_props_lock);
6257 }
6258
6259 /*
6260 * Perform one-time upgrade on-disk changes. spa_version() does not
6261 * reflect the new version this txg, so there must be no changes this
6262 * txg to anything that the upgrade code depends on after it executes.
6263 * Therefore this must be called after dsl_pool_sync() does the sync
6264 * tasks.
6265 */
6266 static void
6267 spa_sync_upgrades(spa_t *spa, dmu_tx_t *tx)
6268 {
6269 dsl_pool_t *dp = spa->spa_dsl_pool;
6270
6271 ASSERT(spa->spa_sync_pass == 1);
6272
6273 rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG);
6274
6275 if (spa->spa_ubsync.ub_version < SPA_VERSION_ORIGIN &&
6276 spa->spa_uberblock.ub_version >= SPA_VERSION_ORIGIN) {
6277 dsl_pool_create_origin(dp, tx);
6278
6279 /* Keeping the origin open increases spa_minref */
6280 spa->spa_minref += 3;
6281 }
6282
6283 if (spa->spa_ubsync.ub_version < SPA_VERSION_NEXT_CLONES &&
6284 spa->spa_uberblock.ub_version >= SPA_VERSION_NEXT_CLONES) {
6285 dsl_pool_upgrade_clones(dp, tx);
6286 }
6287
6288 if (spa->spa_ubsync.ub_version < SPA_VERSION_DIR_CLONES &&
6289 spa->spa_uberblock.ub_version >= SPA_VERSION_DIR_CLONES) {
6290 dsl_pool_upgrade_dir_clones(dp, tx);
6291
6292 /* Keeping the freedir open increases spa_minref */
6293 spa->spa_minref += 3;
6294 }
6295
6296 if (spa->spa_ubsync.ub_version < SPA_VERSION_FEATURES &&
6297 spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) {
6298 spa_feature_create_zap_objects(spa, tx);
6299 }
6300
6301 /*
6302 * LZ4_COMPRESS feature's behaviour was changed to activate_on_enable
6303 * when possibility to use lz4 compression for metadata was added
6304 * Old pools that have this feature enabled must be upgraded to have
6305 * this feature active
6306 */
6307 if (spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) {
6308 boolean_t lz4_en = spa_feature_is_enabled(spa,
6309 SPA_FEATURE_LZ4_COMPRESS);
6310 boolean_t lz4_ac = spa_feature_is_active(spa,
6311 SPA_FEATURE_LZ4_COMPRESS);
6312
6313 if (lz4_en && !lz4_ac)
6314 spa_feature_incr(spa, SPA_FEATURE_LZ4_COMPRESS, tx);
6315 }
6316 rrw_exit(&dp->dp_config_rwlock, FTAG);
6317 }
6318
6319 /*
6320 * Sync the specified transaction group. New blocks may be dirtied as
6321 * part of the process, so we iterate until it converges.
6322 */
6323 void
6324 spa_sync(spa_t *spa, uint64_t txg)
6325 {
6326 dsl_pool_t *dp = spa->spa_dsl_pool;
6327 objset_t *mos = spa->spa_meta_objset;
6328 bplist_t *free_bpl = &spa->spa_free_bplist[txg & TXG_MASK];
6329 vdev_t *rvd = spa->spa_root_vdev;
6330 vdev_t *vd;
6331 dmu_tx_t *tx;
6332 int error;
6333 int c;
6334
6335 VERIFY(spa_writeable(spa));
6336
6337 /*
6338 * Lock out configuration changes.
6339 */
6340 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
6341
6342 spa->spa_syncing_txg = txg;
6343 spa->spa_sync_pass = 0;
6344
6345 /*
6346 * If there are any pending vdev state changes, convert them
6347 * into config changes that go out with this transaction group.
6348 */
6349 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
6350 while (list_head(&spa->spa_state_dirty_list) != NULL) {
6351 /*
6352 * We need the write lock here because, for aux vdevs,
6353 * calling vdev_config_dirty() modifies sav_config.
6354 * This is ugly and will become unnecessary when we
6355 * eliminate the aux vdev wart by integrating all vdevs
6356 * into the root vdev tree.
6357 */
6358 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
6359 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_WRITER);
6360 while ((vd = list_head(&spa->spa_state_dirty_list)) != NULL) {
6361 vdev_state_clean(vd);
6362 vdev_config_dirty(vd);
6363 }
6364 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
6365 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
6366 }
6367 spa_config_exit(spa, SCL_STATE, FTAG);
6368
6369 tx = dmu_tx_create_assigned(dp, txg);
6370
6371 spa->spa_sync_starttime = gethrtime();
6372 taskq_cancel_id(system_taskq, spa->spa_deadman_tqid);
6373 spa->spa_deadman_tqid = taskq_dispatch_delay(system_taskq,
6374 spa_deadman, spa, TQ_SLEEP, ddi_get_lbolt() +
6375 NSEC_TO_TICK(spa->spa_deadman_synctime));
6376
6377 /*
6378 * If we are upgrading to SPA_VERSION_RAIDZ_DEFLATE this txg,
6379 * set spa_deflate if we have no raid-z vdevs.
6380 */
6381 if (spa->spa_ubsync.ub_version < SPA_VERSION_RAIDZ_DEFLATE &&
6382 spa->spa_uberblock.ub_version >= SPA_VERSION_RAIDZ_DEFLATE) {
6383 int i;
6384
6385 for (i = 0; i < rvd->vdev_children; i++) {
6386 vd = rvd->vdev_child[i];
6387 if (vd->vdev_deflate_ratio != SPA_MINBLOCKSIZE)
6388 break;
6389 }
6390 if (i == rvd->vdev_children) {
6391 spa->spa_deflate = TRUE;
6392 VERIFY(0 == zap_add(spa->spa_meta_objset,
6393 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
6394 sizeof (uint64_t), 1, &spa->spa_deflate, tx));
6395 }
6396 }
6397
6398 /*
6399 * Iterate to convergence.
6400 */
6401 do {
6402 int pass = ++spa->spa_sync_pass;
6403
6404 spa_sync_config_object(spa, tx);
6405 spa_sync_aux_dev(spa, &spa->spa_spares, tx,
6406 ZPOOL_CONFIG_SPARES, DMU_POOL_SPARES);
6407 spa_sync_aux_dev(spa, &spa->spa_l2cache, tx,
6408 ZPOOL_CONFIG_L2CACHE, DMU_POOL_L2CACHE);
6409 spa_errlog_sync(spa, txg);
6410 dsl_pool_sync(dp, txg);
6411
6412 if (pass < zfs_sync_pass_deferred_free) {
6413 spa_sync_frees(spa, free_bpl, tx);
6414 } else {
6415 /*
6416 * We can not defer frees in pass 1, because
6417 * we sync the deferred frees later in pass 1.
6418 */
6419 ASSERT3U(pass, >, 1);
6420 bplist_iterate(free_bpl, bpobj_enqueue_cb,
6421 &spa->spa_deferred_bpobj, tx);
6422 }
6423
6424 ddt_sync(spa, txg);
6425 dsl_scan_sync(dp, tx);
6426
6427 while ((vd = txg_list_remove(&spa->spa_vdev_txg_list, txg)))
6428 vdev_sync(vd, txg);
6429
6430 if (pass == 1) {
6431 spa_sync_upgrades(spa, tx);
6432 ASSERT3U(txg, >=,
6433 spa->spa_uberblock.ub_rootbp.blk_birth);
6434 /*
6435 * Note: We need to check if the MOS is dirty
6436 * because we could have marked the MOS dirty
6437 * without updating the uberblock (e.g. if we
6438 * have sync tasks but no dirty user data). We
6439 * need to check the uberblock's rootbp because
6440 * it is updated if we have synced out dirty
6441 * data (though in this case the MOS will most
6442 * likely also be dirty due to second order
6443 * effects, we don't want to rely on that here).
6444 */
6445 if (spa->spa_uberblock.ub_rootbp.blk_birth < txg &&
6446 !dmu_objset_is_dirty(mos, txg)) {
6447 /*
6448 * Nothing changed on the first pass,
6449 * therefore this TXG is a no-op. Avoid
6450 * syncing deferred frees, so that we
6451 * can keep this TXG as a no-op.
6452 */
6453 ASSERT(txg_list_empty(&dp->dp_dirty_datasets,
6454 txg));
6455 ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg));
6456 ASSERT(txg_list_empty(&dp->dp_sync_tasks, txg));
6457 break;
6458 }
6459 spa_sync_deferred_frees(spa, tx);
6460 }
6461
6462 } while (dmu_objset_is_dirty(mos, txg));
6463
6464 /*
6465 * Rewrite the vdev configuration (which includes the uberblock)
6466 * to commit the transaction group.
6467 *
6468 * If there are no dirty vdevs, we sync the uberblock to a few
6469 * random top-level vdevs that are known to be visible in the
6470 * config cache (see spa_vdev_add() for a complete description).
6471 * If there *are* dirty vdevs, sync the uberblock to all vdevs.
6472 */
6473 for (;;) {
6474 /*
6475 * We hold SCL_STATE to prevent vdev open/close/etc.
6476 * while we're attempting to write the vdev labels.
6477 */
6478 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
6479
6480 if (list_is_empty(&spa->spa_config_dirty_list)) {
6481 vdev_t *svd[SPA_DVAS_PER_BP];
6482 int svdcount = 0;
6483 int children = rvd->vdev_children;
6484 int c0 = spa_get_random(children);
6485
6486 for (c = 0; c < children; c++) {
6487 vd = rvd->vdev_child[(c0 + c) % children];
6488 if (vd->vdev_ms_array == 0 || vd->vdev_islog)
6489 continue;
6490 svd[svdcount++] = vd;
6491 if (svdcount == SPA_DVAS_PER_BP)
6492 break;
6493 }
6494 error = vdev_config_sync(svd, svdcount, txg, B_FALSE);
6495 if (error != 0)
6496 error = vdev_config_sync(svd, svdcount, txg,
6497 B_TRUE);
6498 } else {
6499 error = vdev_config_sync(rvd->vdev_child,
6500 rvd->vdev_children, txg, B_FALSE);
6501 if (error != 0)
6502 error = vdev_config_sync(rvd->vdev_child,
6503 rvd->vdev_children, txg, B_TRUE);
6504 }
6505
6506 if (error == 0)
6507 spa->spa_last_synced_guid = rvd->vdev_guid;
6508
6509 spa_config_exit(spa, SCL_STATE, FTAG);
6510
6511 if (error == 0)
6512 break;
6513 zio_suspend(spa, NULL);
6514 zio_resume_wait(spa);
6515 }
6516 dmu_tx_commit(tx);
6517
6518 taskq_cancel_id(system_taskq, spa->spa_deadman_tqid);
6519 spa->spa_deadman_tqid = 0;
6520
6521 /*
6522 * Clear the dirty config list.
6523 */
6524 while ((vd = list_head(&spa->spa_config_dirty_list)) != NULL)
6525 vdev_config_clean(vd);
6526
6527 /*
6528 * Now that the new config has synced transactionally,
6529 * let it become visible to the config cache.
6530 */
6531 if (spa->spa_config_syncing != NULL) {
6532 spa_config_set(spa, spa->spa_config_syncing);
6533 spa->spa_config_txg = txg;
6534 spa->spa_config_syncing = NULL;
6535 }
6536
6537 spa->spa_ubsync = spa->spa_uberblock;
6538
6539 dsl_pool_sync_done(dp, txg);
6540
6541 /*
6542 * Update usable space statistics.
6543 */
6544 while ((vd = txg_list_remove(&spa->spa_vdev_txg_list, TXG_CLEAN(txg))))
6545 vdev_sync_done(vd, txg);
6546
6547 spa_update_dspace(spa);
6548
6549 /*
6550 * It had better be the case that we didn't dirty anything
6551 * since vdev_config_sync().
6552 */
6553 ASSERT(txg_list_empty(&dp->dp_dirty_datasets, txg));
6554 ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg));
6555 ASSERT(txg_list_empty(&spa->spa_vdev_txg_list, txg));
6556
6557 spa->spa_sync_pass = 0;
6558
6559 spa_config_exit(spa, SCL_CONFIG, FTAG);
6560
6561 spa_handle_ignored_writes(spa);
6562
6563 /*
6564 * If any async tasks have been requested, kick them off.
6565 */
6566 spa_async_dispatch(spa);
6567 }
6568
6569 /*
6570 * Sync all pools. We don't want to hold the namespace lock across these
6571 * operations, so we take a reference on the spa_t and drop the lock during the
6572 * sync.
6573 */
6574 void
6575 spa_sync_allpools(void)
6576 {
6577 spa_t *spa = NULL;
6578 mutex_enter(&spa_namespace_lock);
6579 while ((spa = spa_next(spa)) != NULL) {
6580 if (spa_state(spa) != POOL_STATE_ACTIVE ||
6581 !spa_writeable(spa) || spa_suspended(spa))
6582 continue;
6583 spa_open_ref(spa, FTAG);
6584 mutex_exit(&spa_namespace_lock);
6585 txg_wait_synced(spa_get_dsl(spa), 0);
6586 mutex_enter(&spa_namespace_lock);
6587 spa_close(spa, FTAG);
6588 }
6589 mutex_exit(&spa_namespace_lock);
6590 }
6591
6592 /*
6593 * ==========================================================================
6594 * Miscellaneous routines
6595 * ==========================================================================
6596 */
6597
6598 /*
6599 * Remove all pools in the system.
6600 */
6601 void
6602 spa_evict_all(void)
6603 {
6604 spa_t *spa;
6605
6606 /*
6607 * Remove all cached state. All pools should be closed now,
6608 * so every spa in the AVL tree should be unreferenced.
6609 */
6610 mutex_enter(&spa_namespace_lock);
6611 while ((spa = spa_next(NULL)) != NULL) {
6612 /*
6613 * Stop async tasks. The async thread may need to detach
6614 * a device that's been replaced, which requires grabbing
6615 * spa_namespace_lock, so we must drop it here.
6616 */
6617 spa_open_ref(spa, FTAG);
6618 mutex_exit(&spa_namespace_lock);
6619 spa_async_suspend(spa);
6620 mutex_enter(&spa_namespace_lock);
6621 spa_close(spa, FTAG);
6622
6623 if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
6624 spa_unload(spa);
6625 spa_deactivate(spa);
6626 }
6627 spa_remove(spa);
6628 }
6629 mutex_exit(&spa_namespace_lock);
6630 }
6631
6632 vdev_t *
6633 spa_lookup_by_guid(spa_t *spa, uint64_t guid, boolean_t aux)
6634 {
6635 vdev_t *vd;
6636 int i;
6637
6638 if ((vd = vdev_lookup_by_guid(spa->spa_root_vdev, guid)) != NULL)
6639 return (vd);
6640
6641 if (aux) {
6642 for (i = 0; i < spa->spa_l2cache.sav_count; i++) {
6643 vd = spa->spa_l2cache.sav_vdevs[i];
6644 if (vd->vdev_guid == guid)
6645 return (vd);
6646 }
6647
6648 for (i = 0; i < spa->spa_spares.sav_count; i++) {
6649 vd = spa->spa_spares.sav_vdevs[i];
6650 if (vd->vdev_guid == guid)
6651 return (vd);
6652 }
6653 }
6654
6655 return (NULL);
6656 }
6657
6658 void
6659 spa_upgrade(spa_t *spa, uint64_t version)
6660 {
6661 ASSERT(spa_writeable(spa));
6662
6663 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
6664
6665 /*
6666 * This should only be called for a non-faulted pool, and since a
6667 * future version would result in an unopenable pool, this shouldn't be
6668 * possible.
6669 */
6670 ASSERT(SPA_VERSION_IS_SUPPORTED(spa->spa_uberblock.ub_version));
6671 ASSERT3U(version, >=, spa->spa_uberblock.ub_version);
6672
6673 spa->spa_uberblock.ub_version = version;
6674 vdev_config_dirty(spa->spa_root_vdev);
6675
6676 spa_config_exit(spa, SCL_ALL, FTAG);
6677
6678 txg_wait_synced(spa_get_dsl(spa), 0);
6679 }
6680
6681 boolean_t
6682 spa_has_spare(spa_t *spa, uint64_t guid)
6683 {
6684 int i;
6685 uint64_t spareguid;
6686 spa_aux_vdev_t *sav = &spa->spa_spares;
6687
6688 for (i = 0; i < sav->sav_count; i++)
6689 if (sav->sav_vdevs[i]->vdev_guid == guid)
6690 return (B_TRUE);
6691
6692 for (i = 0; i < sav->sav_npending; i++) {
6693 if (nvlist_lookup_uint64(sav->sav_pending[i], ZPOOL_CONFIG_GUID,
6694 &spareguid) == 0 && spareguid == guid)
6695 return (B_TRUE);
6696 }
6697
6698 return (B_FALSE);
6699 }
6700
6701 /*
6702 * Check if a pool has an active shared spare device.
6703 * Note: reference count of an active spare is 2, as a spare and as a replace
6704 */
6705 static boolean_t
6706 spa_has_active_shared_spare(spa_t *spa)
6707 {
6708 int i, refcnt;
6709 uint64_t pool;
6710 spa_aux_vdev_t *sav = &spa->spa_spares;
6711
6712 for (i = 0; i < sav->sav_count; i++) {
6713 if (spa_spare_exists(sav->sav_vdevs[i]->vdev_guid, &pool,
6714 &refcnt) && pool != 0ULL && pool == spa_guid(spa) &&
6715 refcnt > 2)
6716 return (B_TRUE);
6717 }
6718
6719 return (B_FALSE);
6720 }
6721
6722 /*
6723 * Post a FM_EREPORT_ZFS_* event from sys/fm/fs/zfs.h. The payload will be
6724 * filled in from the spa and (optionally) the vdev. This doesn't do anything
6725 * in the userland libzpool, as we don't want consumers to misinterpret ztest
6726 * or zdb as real changes.
6727 */
6728 void
6729 spa_event_notify(spa_t *spa, vdev_t *vd, const char *name)
6730 {
6731 #ifdef _KERNEL
6732 zfs_ereport_post(name, spa, vd, NULL, 0, 0);
6733 #endif
6734 }
6735
6736 #if defined(_KERNEL) && defined(HAVE_SPL)
6737 /* state manipulation functions */
6738 EXPORT_SYMBOL(spa_open);
6739 EXPORT_SYMBOL(spa_open_rewind);
6740 EXPORT_SYMBOL(spa_get_stats);
6741 EXPORT_SYMBOL(spa_create);
6742 EXPORT_SYMBOL(spa_import_rootpool);
6743 EXPORT_SYMBOL(spa_import);
6744 EXPORT_SYMBOL(spa_tryimport);
6745 EXPORT_SYMBOL(spa_destroy);
6746 EXPORT_SYMBOL(spa_export);
6747 EXPORT_SYMBOL(spa_reset);
6748 EXPORT_SYMBOL(spa_async_request);
6749 EXPORT_SYMBOL(spa_async_suspend);
6750 EXPORT_SYMBOL(spa_async_resume);
6751 EXPORT_SYMBOL(spa_inject_addref);
6752 EXPORT_SYMBOL(spa_inject_delref);
6753 EXPORT_SYMBOL(spa_scan_stat_init);
6754 EXPORT_SYMBOL(spa_scan_get_stats);
6755
6756 /* device maniion */
6757 EXPORT_SYMBOL(spa_vdev_add);
6758 EXPORT_SYMBOL(spa_vdev_attach);
6759 EXPORT_SYMBOL(spa_vdev_detach);
6760 EXPORT_SYMBOL(spa_vdev_remove);
6761 EXPORT_SYMBOL(spa_vdev_setpath);
6762 EXPORT_SYMBOL(spa_vdev_setfru);
6763 EXPORT_SYMBOL(spa_vdev_split_mirror);
6764
6765 /* spare statech is global across all pools) */
6766 EXPORT_SYMBOL(spa_spare_add);
6767 EXPORT_SYMBOL(spa_spare_remove);
6768 EXPORT_SYMBOL(spa_spare_exists);
6769 EXPORT_SYMBOL(spa_spare_activate);
6770
6771 /* L2ARC statech is global across all pools) */
6772 EXPORT_SYMBOL(spa_l2cache_add);
6773 EXPORT_SYMBOL(spa_l2cache_remove);
6774 EXPORT_SYMBOL(spa_l2cache_exists);
6775 EXPORT_SYMBOL(spa_l2cache_activate);
6776 EXPORT_SYMBOL(spa_l2cache_drop);
6777
6778 /* scanning */
6779 EXPORT_SYMBOL(spa_scan);
6780 EXPORT_SYMBOL(spa_scan_stop);
6781
6782 /* spa syncing */
6783 EXPORT_SYMBOL(spa_sync); /* only for DMU use */
6784 EXPORT_SYMBOL(spa_sync_allpools);
6785
6786 /* properties */
6787 EXPORT_SYMBOL(spa_prop_set);
6788 EXPORT_SYMBOL(spa_prop_get);
6789 EXPORT_SYMBOL(spa_prop_clear_bootfs);
6790
6791 /* asynchronous event notification */
6792 EXPORT_SYMBOL(spa_event_notify);
6793 #endif
6794
6795 #if defined(_KERNEL) && defined(HAVE_SPL)
6796 module_param(spa_load_verify_maxinflight, int, 0644);
6797 MODULE_PARM_DESC(spa_load_verify_maxinflight,
6798 "Max concurrent traversal I/Os while verifying pool during import -X");
6799
6800 module_param(spa_load_verify_metadata, int, 0644);
6801 MODULE_PARM_DESC(spa_load_verify_metadata,
6802 "Set to traverse metadata on pool import");
6803
6804 module_param(spa_load_verify_data, int, 0644);
6805 MODULE_PARM_DESC(spa_load_verify_data,
6806 "Set to traverse data on pool import");
6807
6808 module_param(zio_taskq_batch_pct, uint, 0444);
6809 MODULE_PARM_DESC(zio_taskq_batch_pct,
6810 "Percentage of CPUs to run an IO worker thread");
6811
6812 #endif