]> git.proxmox.com Git - mirror_zfs.git/blob - module/zfs/spa_misc.c
Merge branch 'zfsonlinux/merge-spl'
[mirror_zfs.git] / module / zfs / spa_misc.c
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2011, 2017 by Delphix. All rights reserved.
24 * Copyright 2015 Nexenta Systems, Inc. All rights reserved.
25 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
26 * Copyright 2013 Saso Kiselkov. All rights reserved.
27 * Copyright (c) 2017 Datto Inc.
28 */
29
30 #include <sys/zfs_context.h>
31 #include <sys/spa_impl.h>
32 #include <sys/zio.h>
33 #include <sys/zio_checksum.h>
34 #include <sys/zio_compress.h>
35 #include <sys/dmu.h>
36 #include <sys/dmu_tx.h>
37 #include <sys/zap.h>
38 #include <sys/zil.h>
39 #include <sys/vdev_impl.h>
40 #include <sys/vdev_file.h>
41 #include <sys/vdev_raidz.h>
42 #include <sys/metaslab.h>
43 #include <sys/uberblock_impl.h>
44 #include <sys/txg.h>
45 #include <sys/avl.h>
46 #include <sys/unique.h>
47 #include <sys/dsl_pool.h>
48 #include <sys/dsl_dir.h>
49 #include <sys/dsl_prop.h>
50 #include <sys/fm/util.h>
51 #include <sys/dsl_scan.h>
52 #include <sys/fs/zfs.h>
53 #include <sys/metaslab_impl.h>
54 #include <sys/arc.h>
55 #include <sys/ddt.h>
56 #include <sys/kstat.h>
57 #include "zfs_prop.h"
58 #include <sys/zfeature.h>
59 #include "qat.h"
60
61 /*
62 * SPA locking
63 *
64 * There are four basic locks for managing spa_t structures:
65 *
66 * spa_namespace_lock (global mutex)
67 *
68 * This lock must be acquired to do any of the following:
69 *
70 * - Lookup a spa_t by name
71 * - Add or remove a spa_t from the namespace
72 * - Increase spa_refcount from non-zero
73 * - Check if spa_refcount is zero
74 * - Rename a spa_t
75 * - add/remove/attach/detach devices
76 * - Held for the duration of create/destroy/import/export
77 *
78 * It does not need to handle recursion. A create or destroy may
79 * reference objects (files or zvols) in other pools, but by
80 * definition they must have an existing reference, and will never need
81 * to lookup a spa_t by name.
82 *
83 * spa_refcount (per-spa refcount_t protected by mutex)
84 *
85 * This reference count keep track of any active users of the spa_t. The
86 * spa_t cannot be destroyed or freed while this is non-zero. Internally,
87 * the refcount is never really 'zero' - opening a pool implicitly keeps
88 * some references in the DMU. Internally we check against spa_minref, but
89 * present the image of a zero/non-zero value to consumers.
90 *
91 * spa_config_lock[] (per-spa array of rwlocks)
92 *
93 * This protects the spa_t from config changes, and must be held in
94 * the following circumstances:
95 *
96 * - RW_READER to perform I/O to the spa
97 * - RW_WRITER to change the vdev config
98 *
99 * The locking order is fairly straightforward:
100 *
101 * spa_namespace_lock -> spa_refcount
102 *
103 * The namespace lock must be acquired to increase the refcount from 0
104 * or to check if it is zero.
105 *
106 * spa_refcount -> spa_config_lock[]
107 *
108 * There must be at least one valid reference on the spa_t to acquire
109 * the config lock.
110 *
111 * spa_namespace_lock -> spa_config_lock[]
112 *
113 * The namespace lock must always be taken before the config lock.
114 *
115 *
116 * The spa_namespace_lock can be acquired directly and is globally visible.
117 *
118 * The namespace is manipulated using the following functions, all of which
119 * require the spa_namespace_lock to be held.
120 *
121 * spa_lookup() Lookup a spa_t by name.
122 *
123 * spa_add() Create a new spa_t in the namespace.
124 *
125 * spa_remove() Remove a spa_t from the namespace. This also
126 * frees up any memory associated with the spa_t.
127 *
128 * spa_next() Returns the next spa_t in the system, or the
129 * first if NULL is passed.
130 *
131 * spa_evict_all() Shutdown and remove all spa_t structures in
132 * the system.
133 *
134 * spa_guid_exists() Determine whether a pool/device guid exists.
135 *
136 * The spa_refcount is manipulated using the following functions:
137 *
138 * spa_open_ref() Adds a reference to the given spa_t. Must be
139 * called with spa_namespace_lock held if the
140 * refcount is currently zero.
141 *
142 * spa_close() Remove a reference from the spa_t. This will
143 * not free the spa_t or remove it from the
144 * namespace. No locking is required.
145 *
146 * spa_refcount_zero() Returns true if the refcount is currently
147 * zero. Must be called with spa_namespace_lock
148 * held.
149 *
150 * The spa_config_lock[] is an array of rwlocks, ordered as follows:
151 * SCL_CONFIG > SCL_STATE > SCL_ALLOC > SCL_ZIO > SCL_FREE > SCL_VDEV.
152 * spa_config_lock[] is manipulated with spa_config_{enter,exit,held}().
153 *
154 * To read the configuration, it suffices to hold one of these locks as reader.
155 * To modify the configuration, you must hold all locks as writer. To modify
156 * vdev state without altering the vdev tree's topology (e.g. online/offline),
157 * you must hold SCL_STATE and SCL_ZIO as writer.
158 *
159 * We use these distinct config locks to avoid recursive lock entry.
160 * For example, spa_sync() (which holds SCL_CONFIG as reader) induces
161 * block allocations (SCL_ALLOC), which may require reading space maps
162 * from disk (dmu_read() -> zio_read() -> SCL_ZIO).
163 *
164 * The spa config locks cannot be normal rwlocks because we need the
165 * ability to hand off ownership. For example, SCL_ZIO is acquired
166 * by the issuing thread and later released by an interrupt thread.
167 * They do, however, obey the usual write-wanted semantics to prevent
168 * writer (i.e. system administrator) starvation.
169 *
170 * The lock acquisition rules are as follows:
171 *
172 * SCL_CONFIG
173 * Protects changes to the vdev tree topology, such as vdev
174 * add/remove/attach/detach. Protects the dirty config list
175 * (spa_config_dirty_list) and the set of spares and l2arc devices.
176 *
177 * SCL_STATE
178 * Protects changes to pool state and vdev state, such as vdev
179 * online/offline/fault/degrade/clear. Protects the dirty state list
180 * (spa_state_dirty_list) and global pool state (spa_state).
181 *
182 * SCL_ALLOC
183 * Protects changes to metaslab groups and classes.
184 * Held as reader by metaslab_alloc() and metaslab_claim().
185 *
186 * SCL_ZIO
187 * Held by bp-level zios (those which have no io_vd upon entry)
188 * to prevent changes to the vdev tree. The bp-level zio implicitly
189 * protects all of its vdev child zios, which do not hold SCL_ZIO.
190 *
191 * SCL_FREE
192 * Protects changes to metaslab groups and classes.
193 * Held as reader by metaslab_free(). SCL_FREE is distinct from
194 * SCL_ALLOC, and lower than SCL_ZIO, so that we can safely free
195 * blocks in zio_done() while another i/o that holds either
196 * SCL_ALLOC or SCL_ZIO is waiting for this i/o to complete.
197 *
198 * SCL_VDEV
199 * Held as reader to prevent changes to the vdev tree during trivial
200 * inquiries such as bp_get_dsize(). SCL_VDEV is distinct from the
201 * other locks, and lower than all of them, to ensure that it's safe
202 * to acquire regardless of caller context.
203 *
204 * In addition, the following rules apply:
205 *
206 * (a) spa_props_lock protects pool properties, spa_config and spa_config_list.
207 * The lock ordering is SCL_CONFIG > spa_props_lock.
208 *
209 * (b) I/O operations on leaf vdevs. For any zio operation that takes
210 * an explicit vdev_t argument -- such as zio_ioctl(), zio_read_phys(),
211 * or zio_write_phys() -- the caller must ensure that the config cannot
212 * cannot change in the interim, and that the vdev cannot be reopened.
213 * SCL_STATE as reader suffices for both.
214 *
215 * The vdev configuration is protected by spa_vdev_enter() / spa_vdev_exit().
216 *
217 * spa_vdev_enter() Acquire the namespace lock and the config lock
218 * for writing.
219 *
220 * spa_vdev_exit() Release the config lock, wait for all I/O
221 * to complete, sync the updated configs to the
222 * cache, and release the namespace lock.
223 *
224 * vdev state is protected by spa_vdev_state_enter() / spa_vdev_state_exit().
225 * Like spa_vdev_enter/exit, these are convenience wrappers -- the actual
226 * locking is, always, based on spa_namespace_lock and spa_config_lock[].
227 *
228 * spa_rename() is also implemented within this file since it requires
229 * manipulation of the namespace.
230 */
231
232 static avl_tree_t spa_namespace_avl;
233 kmutex_t spa_namespace_lock;
234 static kcondvar_t spa_namespace_cv;
235 int spa_max_replication_override = SPA_DVAS_PER_BP;
236
237 static kmutex_t spa_spare_lock;
238 static avl_tree_t spa_spare_avl;
239 static kmutex_t spa_l2cache_lock;
240 static avl_tree_t spa_l2cache_avl;
241
242 kmem_cache_t *spa_buffer_pool;
243 int spa_mode_global;
244
245 #ifdef ZFS_DEBUG
246 /*
247 * Everything except dprintf, set_error, spa, and indirect_remap is on
248 * by default in debug builds.
249 */
250 int zfs_flags = ~(ZFS_DEBUG_DPRINTF | ZFS_DEBUG_SET_ERROR |
251 ZFS_DEBUG_INDIRECT_REMAP);
252 #else
253 int zfs_flags = 0;
254 #endif
255
256 /*
257 * zfs_recover can be set to nonzero to attempt to recover from
258 * otherwise-fatal errors, typically caused by on-disk corruption. When
259 * set, calls to zfs_panic_recover() will turn into warning messages.
260 * This should only be used as a last resort, as it typically results
261 * in leaked space, or worse.
262 */
263 int zfs_recover = B_FALSE;
264
265 /*
266 * If destroy encounters an EIO while reading metadata (e.g. indirect
267 * blocks), space referenced by the missing metadata can not be freed.
268 * Normally this causes the background destroy to become "stalled", as
269 * it is unable to make forward progress. While in this stalled state,
270 * all remaining space to free from the error-encountering filesystem is
271 * "temporarily leaked". Set this flag to cause it to ignore the EIO,
272 * permanently leak the space from indirect blocks that can not be read,
273 * and continue to free everything else that it can.
274 *
275 * The default, "stalling" behavior is useful if the storage partially
276 * fails (i.e. some but not all i/os fail), and then later recovers. In
277 * this case, we will be able to continue pool operations while it is
278 * partially failed, and when it recovers, we can continue to free the
279 * space, with no leaks. However, note that this case is actually
280 * fairly rare.
281 *
282 * Typically pools either (a) fail completely (but perhaps temporarily,
283 * e.g. a top-level vdev going offline), or (b) have localized,
284 * permanent errors (e.g. disk returns the wrong data due to bit flip or
285 * firmware bug). In case (a), this setting does not matter because the
286 * pool will be suspended and the sync thread will not be able to make
287 * forward progress regardless. In case (b), because the error is
288 * permanent, the best we can do is leak the minimum amount of space,
289 * which is what setting this flag will do. Therefore, it is reasonable
290 * for this flag to normally be set, but we chose the more conservative
291 * approach of not setting it, so that there is no possibility of
292 * leaking space in the "partial temporary" failure case.
293 */
294 int zfs_free_leak_on_eio = B_FALSE;
295
296 /*
297 * Expiration time in milliseconds. This value has two meanings. First it is
298 * used to determine when the spa_deadman() logic should fire. By default the
299 * spa_deadman() will fire if spa_sync() has not completed in 600 seconds.
300 * Secondly, the value determines if an I/O is considered "hung". Any I/O that
301 * has not completed in zfs_deadman_synctime_ms is considered "hung" resulting
302 * in one of three behaviors controlled by zfs_deadman_failmode.
303 */
304 unsigned long zfs_deadman_synctime_ms = 600000ULL;
305
306 /*
307 * This value controls the maximum amount of time zio_wait() will block for an
308 * outstanding IO. By default this is 300 seconds at which point the "hung"
309 * behavior will be applied as described for zfs_deadman_synctime_ms.
310 */
311 unsigned long zfs_deadman_ziotime_ms = 300000ULL;
312
313 /*
314 * Check time in milliseconds. This defines the frequency at which we check
315 * for hung I/O.
316 */
317 unsigned long zfs_deadman_checktime_ms = 60000ULL;
318
319 /*
320 * By default the deadman is enabled.
321 */
322 int zfs_deadman_enabled = 1;
323
324 /*
325 * Controls the behavior of the deadman when it detects a "hung" I/O.
326 * Valid values are zfs_deadman_failmode=<wait|continue|panic>.
327 *
328 * wait - Wait for the "hung" I/O (default)
329 * continue - Attempt to recover from a "hung" I/O
330 * panic - Panic the system
331 */
332 char *zfs_deadman_failmode = "wait";
333
334 /*
335 * The worst case is single-sector max-parity RAID-Z blocks, in which
336 * case the space requirement is exactly (VDEV_RAIDZ_MAXPARITY + 1)
337 * times the size; so just assume that. Add to this the fact that
338 * we can have up to 3 DVAs per bp, and one more factor of 2 because
339 * the block may be dittoed with up to 3 DVAs by ddt_sync(). All together,
340 * the worst case is:
341 * (VDEV_RAIDZ_MAXPARITY + 1) * SPA_DVAS_PER_BP * 2 == 24
342 */
343 int spa_asize_inflation = 24;
344
345 /*
346 * Normally, we don't allow the last 3.2% (1/(2^spa_slop_shift)) of space in
347 * the pool to be consumed. This ensures that we don't run the pool
348 * completely out of space, due to unaccounted changes (e.g. to the MOS).
349 * It also limits the worst-case time to allocate space. If we have
350 * less than this amount of free space, most ZPL operations (e.g. write,
351 * create) will return ENOSPC.
352 *
353 * Certain operations (e.g. file removal, most administrative actions) can
354 * use half the slop space. They will only return ENOSPC if less than half
355 * the slop space is free. Typically, once the pool has less than the slop
356 * space free, the user will use these operations to free up space in the pool.
357 * These are the operations that call dsl_pool_adjustedsize() with the netfree
358 * argument set to TRUE.
359 *
360 * A very restricted set of operations are always permitted, regardless of
361 * the amount of free space. These are the operations that call
362 * dsl_sync_task(ZFS_SPACE_CHECK_NONE), e.g. "zfs destroy". If these
363 * operations result in a net increase in the amount of space used,
364 * it is possible to run the pool completely out of space, causing it to
365 * be permanently read-only.
366 *
367 * Note that on very small pools, the slop space will be larger than
368 * 3.2%, in an effort to have it be at least spa_min_slop (128MB),
369 * but we never allow it to be more than half the pool size.
370 *
371 * See also the comments in zfs_space_check_t.
372 */
373 int spa_slop_shift = 5;
374 uint64_t spa_min_slop = 128 * 1024 * 1024;
375
376 /*PRINTFLIKE2*/
377 void
378 spa_load_failed(spa_t *spa, const char *fmt, ...)
379 {
380 va_list adx;
381 char buf[256];
382
383 va_start(adx, fmt);
384 (void) vsnprintf(buf, sizeof (buf), fmt, adx);
385 va_end(adx);
386
387 zfs_dbgmsg("spa_load(%s, config %s): FAILED: %s", spa->spa_name,
388 spa->spa_trust_config ? "trusted" : "untrusted", buf);
389 }
390
391 /*PRINTFLIKE2*/
392 void
393 spa_load_note(spa_t *spa, const char *fmt, ...)
394 {
395 va_list adx;
396 char buf[256];
397
398 va_start(adx, fmt);
399 (void) vsnprintf(buf, sizeof (buf), fmt, adx);
400 va_end(adx);
401
402 zfs_dbgmsg("spa_load(%s, config %s): %s", spa->spa_name,
403 spa->spa_trust_config ? "trusted" : "untrusted", buf);
404 }
405
406 /*
407 * ==========================================================================
408 * SPA config locking
409 * ==========================================================================
410 */
411 static void
412 spa_config_lock_init(spa_t *spa)
413 {
414 for (int i = 0; i < SCL_LOCKS; i++) {
415 spa_config_lock_t *scl = &spa->spa_config_lock[i];
416 mutex_init(&scl->scl_lock, NULL, MUTEX_DEFAULT, NULL);
417 cv_init(&scl->scl_cv, NULL, CV_DEFAULT, NULL);
418 refcount_create_untracked(&scl->scl_count);
419 scl->scl_writer = NULL;
420 scl->scl_write_wanted = 0;
421 }
422 }
423
424 static void
425 spa_config_lock_destroy(spa_t *spa)
426 {
427 for (int i = 0; i < SCL_LOCKS; i++) {
428 spa_config_lock_t *scl = &spa->spa_config_lock[i];
429 mutex_destroy(&scl->scl_lock);
430 cv_destroy(&scl->scl_cv);
431 refcount_destroy(&scl->scl_count);
432 ASSERT(scl->scl_writer == NULL);
433 ASSERT(scl->scl_write_wanted == 0);
434 }
435 }
436
437 int
438 spa_config_tryenter(spa_t *spa, int locks, void *tag, krw_t rw)
439 {
440 for (int i = 0; i < SCL_LOCKS; i++) {
441 spa_config_lock_t *scl = &spa->spa_config_lock[i];
442 if (!(locks & (1 << i)))
443 continue;
444 mutex_enter(&scl->scl_lock);
445 if (rw == RW_READER) {
446 if (scl->scl_writer || scl->scl_write_wanted) {
447 mutex_exit(&scl->scl_lock);
448 spa_config_exit(spa, locks & ((1 << i) - 1),
449 tag);
450 return (0);
451 }
452 } else {
453 ASSERT(scl->scl_writer != curthread);
454 if (!refcount_is_zero(&scl->scl_count)) {
455 mutex_exit(&scl->scl_lock);
456 spa_config_exit(spa, locks & ((1 << i) - 1),
457 tag);
458 return (0);
459 }
460 scl->scl_writer = curthread;
461 }
462 (void) refcount_add(&scl->scl_count, tag);
463 mutex_exit(&scl->scl_lock);
464 }
465 return (1);
466 }
467
468 void
469 spa_config_enter(spa_t *spa, int locks, void *tag, krw_t rw)
470 {
471 int wlocks_held = 0;
472
473 ASSERT3U(SCL_LOCKS, <, sizeof (wlocks_held) * NBBY);
474
475 for (int i = 0; i < SCL_LOCKS; i++) {
476 spa_config_lock_t *scl = &spa->spa_config_lock[i];
477 if (scl->scl_writer == curthread)
478 wlocks_held |= (1 << i);
479 if (!(locks & (1 << i)))
480 continue;
481 mutex_enter(&scl->scl_lock);
482 if (rw == RW_READER) {
483 while (scl->scl_writer || scl->scl_write_wanted) {
484 cv_wait(&scl->scl_cv, &scl->scl_lock);
485 }
486 } else {
487 ASSERT(scl->scl_writer != curthread);
488 while (!refcount_is_zero(&scl->scl_count)) {
489 scl->scl_write_wanted++;
490 cv_wait(&scl->scl_cv, &scl->scl_lock);
491 scl->scl_write_wanted--;
492 }
493 scl->scl_writer = curthread;
494 }
495 (void) refcount_add(&scl->scl_count, tag);
496 mutex_exit(&scl->scl_lock);
497 }
498 ASSERT3U(wlocks_held, <=, locks);
499 }
500
501 void
502 spa_config_exit(spa_t *spa, int locks, void *tag)
503 {
504 for (int i = SCL_LOCKS - 1; i >= 0; i--) {
505 spa_config_lock_t *scl = &spa->spa_config_lock[i];
506 if (!(locks & (1 << i)))
507 continue;
508 mutex_enter(&scl->scl_lock);
509 ASSERT(!refcount_is_zero(&scl->scl_count));
510 if (refcount_remove(&scl->scl_count, tag) == 0) {
511 ASSERT(scl->scl_writer == NULL ||
512 scl->scl_writer == curthread);
513 scl->scl_writer = NULL; /* OK in either case */
514 cv_broadcast(&scl->scl_cv);
515 }
516 mutex_exit(&scl->scl_lock);
517 }
518 }
519
520 int
521 spa_config_held(spa_t *spa, int locks, krw_t rw)
522 {
523 int locks_held = 0;
524
525 for (int i = 0; i < SCL_LOCKS; i++) {
526 spa_config_lock_t *scl = &spa->spa_config_lock[i];
527 if (!(locks & (1 << i)))
528 continue;
529 if ((rw == RW_READER && !refcount_is_zero(&scl->scl_count)) ||
530 (rw == RW_WRITER && scl->scl_writer == curthread))
531 locks_held |= 1 << i;
532 }
533
534 return (locks_held);
535 }
536
537 /*
538 * ==========================================================================
539 * SPA namespace functions
540 * ==========================================================================
541 */
542
543 /*
544 * Lookup the named spa_t in the AVL tree. The spa_namespace_lock must be held.
545 * Returns NULL if no matching spa_t is found.
546 */
547 spa_t *
548 spa_lookup(const char *name)
549 {
550 static spa_t search; /* spa_t is large; don't allocate on stack */
551 spa_t *spa;
552 avl_index_t where;
553 char *cp;
554
555 ASSERT(MUTEX_HELD(&spa_namespace_lock));
556
557 (void) strlcpy(search.spa_name, name, sizeof (search.spa_name));
558
559 /*
560 * If it's a full dataset name, figure out the pool name and
561 * just use that.
562 */
563 cp = strpbrk(search.spa_name, "/@#");
564 if (cp != NULL)
565 *cp = '\0';
566
567 spa = avl_find(&spa_namespace_avl, &search, &where);
568
569 return (spa);
570 }
571
572 /*
573 * Fires when spa_sync has not completed within zfs_deadman_synctime_ms.
574 * If the zfs_deadman_enabled flag is set then it inspects all vdev queues
575 * looking for potentially hung I/Os.
576 */
577 void
578 spa_deadman(void *arg)
579 {
580 spa_t *spa = arg;
581
582 /* Disable the deadman if the pool is suspended. */
583 if (spa_suspended(spa))
584 return;
585
586 zfs_dbgmsg("slow spa_sync: started %llu seconds ago, calls %llu",
587 (gethrtime() - spa->spa_sync_starttime) / NANOSEC,
588 ++spa->spa_deadman_calls);
589 if (zfs_deadman_enabled)
590 vdev_deadman(spa->spa_root_vdev, FTAG);
591
592 spa->spa_deadman_tqid = taskq_dispatch_delay(system_delay_taskq,
593 spa_deadman, spa, TQ_SLEEP, ddi_get_lbolt() +
594 MSEC_TO_TICK(zfs_deadman_checktime_ms));
595 }
596
597 /*
598 * Create an uninitialized spa_t with the given name. Requires
599 * spa_namespace_lock. The caller must ensure that the spa_t doesn't already
600 * exist by calling spa_lookup() first.
601 */
602 spa_t *
603 spa_add(const char *name, nvlist_t *config, const char *altroot)
604 {
605 spa_t *spa;
606 spa_config_dirent_t *dp;
607
608 ASSERT(MUTEX_HELD(&spa_namespace_lock));
609
610 spa = kmem_zalloc(sizeof (spa_t), KM_SLEEP);
611
612 mutex_init(&spa->spa_async_lock, NULL, MUTEX_DEFAULT, NULL);
613 mutex_init(&spa->spa_errlist_lock, NULL, MUTEX_DEFAULT, NULL);
614 mutex_init(&spa->spa_errlog_lock, NULL, MUTEX_DEFAULT, NULL);
615 mutex_init(&spa->spa_evicting_os_lock, NULL, MUTEX_DEFAULT, NULL);
616 mutex_init(&spa->spa_history_lock, NULL, MUTEX_DEFAULT, NULL);
617 mutex_init(&spa->spa_proc_lock, NULL, MUTEX_DEFAULT, NULL);
618 mutex_init(&spa->spa_props_lock, NULL, MUTEX_DEFAULT, NULL);
619 mutex_init(&spa->spa_cksum_tmpls_lock, NULL, MUTEX_DEFAULT, NULL);
620 mutex_init(&spa->spa_scrub_lock, NULL, MUTEX_DEFAULT, NULL);
621 mutex_init(&spa->spa_suspend_lock, NULL, MUTEX_DEFAULT, NULL);
622 mutex_init(&spa->spa_vdev_top_lock, NULL, MUTEX_DEFAULT, NULL);
623 mutex_init(&spa->spa_feat_stats_lock, NULL, MUTEX_DEFAULT, NULL);
624 mutex_init(&spa->spa_alloc_lock, NULL, MUTEX_DEFAULT, NULL);
625
626 cv_init(&spa->spa_async_cv, NULL, CV_DEFAULT, NULL);
627 cv_init(&spa->spa_evicting_os_cv, NULL, CV_DEFAULT, NULL);
628 cv_init(&spa->spa_proc_cv, NULL, CV_DEFAULT, NULL);
629 cv_init(&spa->spa_scrub_io_cv, NULL, CV_DEFAULT, NULL);
630 cv_init(&spa->spa_suspend_cv, NULL, CV_DEFAULT, NULL);
631
632 for (int t = 0; t < TXG_SIZE; t++)
633 bplist_create(&spa->spa_free_bplist[t]);
634
635 (void) strlcpy(spa->spa_name, name, sizeof (spa->spa_name));
636 spa->spa_state = POOL_STATE_UNINITIALIZED;
637 spa->spa_freeze_txg = UINT64_MAX;
638 spa->spa_final_txg = UINT64_MAX;
639 spa->spa_load_max_txg = UINT64_MAX;
640 spa->spa_proc = &p0;
641 spa->spa_proc_state = SPA_PROC_NONE;
642 spa->spa_trust_config = B_TRUE;
643
644 spa->spa_deadman_synctime = MSEC2NSEC(zfs_deadman_synctime_ms);
645 spa->spa_deadman_ziotime = MSEC2NSEC(zfs_deadman_ziotime_ms);
646 spa_set_deadman_failmode(spa, zfs_deadman_failmode);
647
648 refcount_create(&spa->spa_refcount);
649 spa_config_lock_init(spa);
650 spa_stats_init(spa);
651
652 avl_add(&spa_namespace_avl, spa);
653
654 /*
655 * Set the alternate root, if there is one.
656 */
657 if (altroot)
658 spa->spa_root = spa_strdup(altroot);
659
660 avl_create(&spa->spa_alloc_tree, zio_bookmark_compare,
661 sizeof (zio_t), offsetof(zio_t, io_alloc_node));
662
663 /*
664 * Every pool starts with the default cachefile
665 */
666 list_create(&spa->spa_config_list, sizeof (spa_config_dirent_t),
667 offsetof(spa_config_dirent_t, scd_link));
668
669 dp = kmem_zalloc(sizeof (spa_config_dirent_t), KM_SLEEP);
670 dp->scd_path = altroot ? NULL : spa_strdup(spa_config_path);
671 list_insert_head(&spa->spa_config_list, dp);
672
673 VERIFY(nvlist_alloc(&spa->spa_load_info, NV_UNIQUE_NAME,
674 KM_SLEEP) == 0);
675
676 if (config != NULL) {
677 nvlist_t *features;
678
679 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_FEATURES_FOR_READ,
680 &features) == 0) {
681 VERIFY(nvlist_dup(features, &spa->spa_label_features,
682 0) == 0);
683 }
684
685 VERIFY(nvlist_dup(config, &spa->spa_config, 0) == 0);
686 }
687
688 if (spa->spa_label_features == NULL) {
689 VERIFY(nvlist_alloc(&spa->spa_label_features, NV_UNIQUE_NAME,
690 KM_SLEEP) == 0);
691 }
692
693 spa->spa_min_ashift = INT_MAX;
694 spa->spa_max_ashift = 0;
695
696 /* Reset cached value */
697 spa->spa_dedup_dspace = ~0ULL;
698
699 /*
700 * As a pool is being created, treat all features as disabled by
701 * setting SPA_FEATURE_DISABLED for all entries in the feature
702 * refcount cache.
703 */
704 for (int i = 0; i < SPA_FEATURES; i++) {
705 spa->spa_feat_refcount_cache[i] = SPA_FEATURE_DISABLED;
706 }
707
708 return (spa);
709 }
710
711 /*
712 * Removes a spa_t from the namespace, freeing up any memory used. Requires
713 * spa_namespace_lock. This is called only after the spa_t has been closed and
714 * deactivated.
715 */
716 void
717 spa_remove(spa_t *spa)
718 {
719 spa_config_dirent_t *dp;
720
721 ASSERT(MUTEX_HELD(&spa_namespace_lock));
722 ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED);
723 ASSERT3U(refcount_count(&spa->spa_refcount), ==, 0);
724
725 nvlist_free(spa->spa_config_splitting);
726
727 avl_remove(&spa_namespace_avl, spa);
728 cv_broadcast(&spa_namespace_cv);
729
730 if (spa->spa_root)
731 spa_strfree(spa->spa_root);
732
733 while ((dp = list_head(&spa->spa_config_list)) != NULL) {
734 list_remove(&spa->spa_config_list, dp);
735 if (dp->scd_path != NULL)
736 spa_strfree(dp->scd_path);
737 kmem_free(dp, sizeof (spa_config_dirent_t));
738 }
739
740 avl_destroy(&spa->spa_alloc_tree);
741 list_destroy(&spa->spa_config_list);
742
743 nvlist_free(spa->spa_label_features);
744 nvlist_free(spa->spa_load_info);
745 nvlist_free(spa->spa_feat_stats);
746 spa_config_set(spa, NULL);
747
748 refcount_destroy(&spa->spa_refcount);
749
750 spa_stats_destroy(spa);
751 spa_config_lock_destroy(spa);
752
753 for (int t = 0; t < TXG_SIZE; t++)
754 bplist_destroy(&spa->spa_free_bplist[t]);
755
756 zio_checksum_templates_free(spa);
757
758 cv_destroy(&spa->spa_async_cv);
759 cv_destroy(&spa->spa_evicting_os_cv);
760 cv_destroy(&spa->spa_proc_cv);
761 cv_destroy(&spa->spa_scrub_io_cv);
762 cv_destroy(&spa->spa_suspend_cv);
763
764 mutex_destroy(&spa->spa_alloc_lock);
765 mutex_destroy(&spa->spa_async_lock);
766 mutex_destroy(&spa->spa_errlist_lock);
767 mutex_destroy(&spa->spa_errlog_lock);
768 mutex_destroy(&spa->spa_evicting_os_lock);
769 mutex_destroy(&spa->spa_history_lock);
770 mutex_destroy(&spa->spa_proc_lock);
771 mutex_destroy(&spa->spa_props_lock);
772 mutex_destroy(&spa->spa_cksum_tmpls_lock);
773 mutex_destroy(&spa->spa_scrub_lock);
774 mutex_destroy(&spa->spa_suspend_lock);
775 mutex_destroy(&spa->spa_vdev_top_lock);
776 mutex_destroy(&spa->spa_feat_stats_lock);
777
778 kmem_free(spa, sizeof (spa_t));
779 }
780
781 /*
782 * Given a pool, return the next pool in the namespace, or NULL if there is
783 * none. If 'prev' is NULL, return the first pool.
784 */
785 spa_t *
786 spa_next(spa_t *prev)
787 {
788 ASSERT(MUTEX_HELD(&spa_namespace_lock));
789
790 if (prev)
791 return (AVL_NEXT(&spa_namespace_avl, prev));
792 else
793 return (avl_first(&spa_namespace_avl));
794 }
795
796 /*
797 * ==========================================================================
798 * SPA refcount functions
799 * ==========================================================================
800 */
801
802 /*
803 * Add a reference to the given spa_t. Must have at least one reference, or
804 * have the namespace lock held.
805 */
806 void
807 spa_open_ref(spa_t *spa, void *tag)
808 {
809 ASSERT(refcount_count(&spa->spa_refcount) >= spa->spa_minref ||
810 MUTEX_HELD(&spa_namespace_lock));
811 (void) refcount_add(&spa->spa_refcount, tag);
812 }
813
814 /*
815 * Remove a reference to the given spa_t. Must have at least one reference, or
816 * have the namespace lock held.
817 */
818 void
819 spa_close(spa_t *spa, void *tag)
820 {
821 ASSERT(refcount_count(&spa->spa_refcount) > spa->spa_minref ||
822 MUTEX_HELD(&spa_namespace_lock));
823 (void) refcount_remove(&spa->spa_refcount, tag);
824 }
825
826 /*
827 * Remove a reference to the given spa_t held by a dsl dir that is
828 * being asynchronously released. Async releases occur from a taskq
829 * performing eviction of dsl datasets and dirs. The namespace lock
830 * isn't held and the hold by the object being evicted may contribute to
831 * spa_minref (e.g. dataset or directory released during pool export),
832 * so the asserts in spa_close() do not apply.
833 */
834 void
835 spa_async_close(spa_t *spa, void *tag)
836 {
837 (void) refcount_remove(&spa->spa_refcount, tag);
838 }
839
840 /*
841 * Check to see if the spa refcount is zero. Must be called with
842 * spa_namespace_lock held. We really compare against spa_minref, which is the
843 * number of references acquired when opening a pool
844 */
845 boolean_t
846 spa_refcount_zero(spa_t *spa)
847 {
848 ASSERT(MUTEX_HELD(&spa_namespace_lock));
849
850 return (refcount_count(&spa->spa_refcount) == spa->spa_minref);
851 }
852
853 /*
854 * ==========================================================================
855 * SPA spare and l2cache tracking
856 * ==========================================================================
857 */
858
859 /*
860 * Hot spares and cache devices are tracked using the same code below,
861 * for 'auxiliary' devices.
862 */
863
864 typedef struct spa_aux {
865 uint64_t aux_guid;
866 uint64_t aux_pool;
867 avl_node_t aux_avl;
868 int aux_count;
869 } spa_aux_t;
870
871 static inline int
872 spa_aux_compare(const void *a, const void *b)
873 {
874 const spa_aux_t *sa = (const spa_aux_t *)a;
875 const spa_aux_t *sb = (const spa_aux_t *)b;
876
877 return (AVL_CMP(sa->aux_guid, sb->aux_guid));
878 }
879
880 void
881 spa_aux_add(vdev_t *vd, avl_tree_t *avl)
882 {
883 avl_index_t where;
884 spa_aux_t search;
885 spa_aux_t *aux;
886
887 search.aux_guid = vd->vdev_guid;
888 if ((aux = avl_find(avl, &search, &where)) != NULL) {
889 aux->aux_count++;
890 } else {
891 aux = kmem_zalloc(sizeof (spa_aux_t), KM_SLEEP);
892 aux->aux_guid = vd->vdev_guid;
893 aux->aux_count = 1;
894 avl_insert(avl, aux, where);
895 }
896 }
897
898 void
899 spa_aux_remove(vdev_t *vd, avl_tree_t *avl)
900 {
901 spa_aux_t search;
902 spa_aux_t *aux;
903 avl_index_t where;
904
905 search.aux_guid = vd->vdev_guid;
906 aux = avl_find(avl, &search, &where);
907
908 ASSERT(aux != NULL);
909
910 if (--aux->aux_count == 0) {
911 avl_remove(avl, aux);
912 kmem_free(aux, sizeof (spa_aux_t));
913 } else if (aux->aux_pool == spa_guid(vd->vdev_spa)) {
914 aux->aux_pool = 0ULL;
915 }
916 }
917
918 boolean_t
919 spa_aux_exists(uint64_t guid, uint64_t *pool, int *refcnt, avl_tree_t *avl)
920 {
921 spa_aux_t search, *found;
922
923 search.aux_guid = guid;
924 found = avl_find(avl, &search, NULL);
925
926 if (pool) {
927 if (found)
928 *pool = found->aux_pool;
929 else
930 *pool = 0ULL;
931 }
932
933 if (refcnt) {
934 if (found)
935 *refcnt = found->aux_count;
936 else
937 *refcnt = 0;
938 }
939
940 return (found != NULL);
941 }
942
943 void
944 spa_aux_activate(vdev_t *vd, avl_tree_t *avl)
945 {
946 spa_aux_t search, *found;
947 avl_index_t where;
948
949 search.aux_guid = vd->vdev_guid;
950 found = avl_find(avl, &search, &where);
951 ASSERT(found != NULL);
952 ASSERT(found->aux_pool == 0ULL);
953
954 found->aux_pool = spa_guid(vd->vdev_spa);
955 }
956
957 /*
958 * Spares are tracked globally due to the following constraints:
959 *
960 * - A spare may be part of multiple pools.
961 * - A spare may be added to a pool even if it's actively in use within
962 * another pool.
963 * - A spare in use in any pool can only be the source of a replacement if
964 * the target is a spare in the same pool.
965 *
966 * We keep track of all spares on the system through the use of a reference
967 * counted AVL tree. When a vdev is added as a spare, or used as a replacement
968 * spare, then we bump the reference count in the AVL tree. In addition, we set
969 * the 'vdev_isspare' member to indicate that the device is a spare (active or
970 * inactive). When a spare is made active (used to replace a device in the
971 * pool), we also keep track of which pool its been made a part of.
972 *
973 * The 'spa_spare_lock' protects the AVL tree. These functions are normally
974 * called under the spa_namespace lock as part of vdev reconfiguration. The
975 * separate spare lock exists for the status query path, which does not need to
976 * be completely consistent with respect to other vdev configuration changes.
977 */
978
979 static int
980 spa_spare_compare(const void *a, const void *b)
981 {
982 return (spa_aux_compare(a, b));
983 }
984
985 void
986 spa_spare_add(vdev_t *vd)
987 {
988 mutex_enter(&spa_spare_lock);
989 ASSERT(!vd->vdev_isspare);
990 spa_aux_add(vd, &spa_spare_avl);
991 vd->vdev_isspare = B_TRUE;
992 mutex_exit(&spa_spare_lock);
993 }
994
995 void
996 spa_spare_remove(vdev_t *vd)
997 {
998 mutex_enter(&spa_spare_lock);
999 ASSERT(vd->vdev_isspare);
1000 spa_aux_remove(vd, &spa_spare_avl);
1001 vd->vdev_isspare = B_FALSE;
1002 mutex_exit(&spa_spare_lock);
1003 }
1004
1005 boolean_t
1006 spa_spare_exists(uint64_t guid, uint64_t *pool, int *refcnt)
1007 {
1008 boolean_t found;
1009
1010 mutex_enter(&spa_spare_lock);
1011 found = spa_aux_exists(guid, pool, refcnt, &spa_spare_avl);
1012 mutex_exit(&spa_spare_lock);
1013
1014 return (found);
1015 }
1016
1017 void
1018 spa_spare_activate(vdev_t *vd)
1019 {
1020 mutex_enter(&spa_spare_lock);
1021 ASSERT(vd->vdev_isspare);
1022 spa_aux_activate(vd, &spa_spare_avl);
1023 mutex_exit(&spa_spare_lock);
1024 }
1025
1026 /*
1027 * Level 2 ARC devices are tracked globally for the same reasons as spares.
1028 * Cache devices currently only support one pool per cache device, and so
1029 * for these devices the aux reference count is currently unused beyond 1.
1030 */
1031
1032 static int
1033 spa_l2cache_compare(const void *a, const void *b)
1034 {
1035 return (spa_aux_compare(a, b));
1036 }
1037
1038 void
1039 spa_l2cache_add(vdev_t *vd)
1040 {
1041 mutex_enter(&spa_l2cache_lock);
1042 ASSERT(!vd->vdev_isl2cache);
1043 spa_aux_add(vd, &spa_l2cache_avl);
1044 vd->vdev_isl2cache = B_TRUE;
1045 mutex_exit(&spa_l2cache_lock);
1046 }
1047
1048 void
1049 spa_l2cache_remove(vdev_t *vd)
1050 {
1051 mutex_enter(&spa_l2cache_lock);
1052 ASSERT(vd->vdev_isl2cache);
1053 spa_aux_remove(vd, &spa_l2cache_avl);
1054 vd->vdev_isl2cache = B_FALSE;
1055 mutex_exit(&spa_l2cache_lock);
1056 }
1057
1058 boolean_t
1059 spa_l2cache_exists(uint64_t guid, uint64_t *pool)
1060 {
1061 boolean_t found;
1062
1063 mutex_enter(&spa_l2cache_lock);
1064 found = spa_aux_exists(guid, pool, NULL, &spa_l2cache_avl);
1065 mutex_exit(&spa_l2cache_lock);
1066
1067 return (found);
1068 }
1069
1070 void
1071 spa_l2cache_activate(vdev_t *vd)
1072 {
1073 mutex_enter(&spa_l2cache_lock);
1074 ASSERT(vd->vdev_isl2cache);
1075 spa_aux_activate(vd, &spa_l2cache_avl);
1076 mutex_exit(&spa_l2cache_lock);
1077 }
1078
1079 /*
1080 * ==========================================================================
1081 * SPA vdev locking
1082 * ==========================================================================
1083 */
1084
1085 /*
1086 * Lock the given spa_t for the purpose of adding or removing a vdev.
1087 * Grabs the global spa_namespace_lock plus the spa config lock for writing.
1088 * It returns the next transaction group for the spa_t.
1089 */
1090 uint64_t
1091 spa_vdev_enter(spa_t *spa)
1092 {
1093 mutex_enter(&spa->spa_vdev_top_lock);
1094 mutex_enter(&spa_namespace_lock);
1095 return (spa_vdev_config_enter(spa));
1096 }
1097
1098 /*
1099 * Internal implementation for spa_vdev_enter(). Used when a vdev
1100 * operation requires multiple syncs (i.e. removing a device) while
1101 * keeping the spa_namespace_lock held.
1102 */
1103 uint64_t
1104 spa_vdev_config_enter(spa_t *spa)
1105 {
1106 ASSERT(MUTEX_HELD(&spa_namespace_lock));
1107
1108 spa_config_enter(spa, SCL_ALL, spa, RW_WRITER);
1109
1110 return (spa_last_synced_txg(spa) + 1);
1111 }
1112
1113 /*
1114 * Used in combination with spa_vdev_config_enter() to allow the syncing
1115 * of multiple transactions without releasing the spa_namespace_lock.
1116 */
1117 void
1118 spa_vdev_config_exit(spa_t *spa, vdev_t *vd, uint64_t txg, int error, char *tag)
1119 {
1120 ASSERT(MUTEX_HELD(&spa_namespace_lock));
1121
1122 int config_changed = B_FALSE;
1123
1124 ASSERT(txg > spa_last_synced_txg(spa));
1125
1126 spa->spa_pending_vdev = NULL;
1127
1128 /*
1129 * Reassess the DTLs.
1130 */
1131 vdev_dtl_reassess(spa->spa_root_vdev, 0, 0, B_FALSE);
1132
1133 if (error == 0 && !list_is_empty(&spa->spa_config_dirty_list)) {
1134 config_changed = B_TRUE;
1135 spa->spa_config_generation++;
1136 }
1137
1138 /*
1139 * Verify the metaslab classes.
1140 */
1141 ASSERT(metaslab_class_validate(spa_normal_class(spa)) == 0);
1142 ASSERT(metaslab_class_validate(spa_log_class(spa)) == 0);
1143
1144 spa_config_exit(spa, SCL_ALL, spa);
1145
1146 /*
1147 * Panic the system if the specified tag requires it. This
1148 * is useful for ensuring that configurations are updated
1149 * transactionally.
1150 */
1151 if (zio_injection_enabled)
1152 zio_handle_panic_injection(spa, tag, 0);
1153
1154 /*
1155 * Note: this txg_wait_synced() is important because it ensures
1156 * that there won't be more than one config change per txg.
1157 * This allows us to use the txg as the generation number.
1158 */
1159 if (error == 0)
1160 txg_wait_synced(spa->spa_dsl_pool, txg);
1161
1162 if (vd != NULL) {
1163 ASSERT(!vd->vdev_detached || vd->vdev_dtl_sm == NULL);
1164 spa_config_enter(spa, SCL_ALL, spa, RW_WRITER);
1165 vdev_free(vd);
1166 spa_config_exit(spa, SCL_ALL, spa);
1167 }
1168
1169 /*
1170 * If the config changed, update the config cache.
1171 */
1172 if (config_changed)
1173 spa_write_cachefile(spa, B_FALSE, B_TRUE);
1174 }
1175
1176 /*
1177 * Unlock the spa_t after adding or removing a vdev. Besides undoing the
1178 * locking of spa_vdev_enter(), we also want make sure the transactions have
1179 * synced to disk, and then update the global configuration cache with the new
1180 * information.
1181 */
1182 int
1183 spa_vdev_exit(spa_t *spa, vdev_t *vd, uint64_t txg, int error)
1184 {
1185 spa_vdev_config_exit(spa, vd, txg, error, FTAG);
1186 mutex_exit(&spa_namespace_lock);
1187 mutex_exit(&spa->spa_vdev_top_lock);
1188
1189 return (error);
1190 }
1191
1192 /*
1193 * Lock the given spa_t for the purpose of changing vdev state.
1194 */
1195 void
1196 spa_vdev_state_enter(spa_t *spa, int oplocks)
1197 {
1198 int locks = SCL_STATE_ALL | oplocks;
1199
1200 /*
1201 * Root pools may need to read of the underlying devfs filesystem
1202 * when opening up a vdev. Unfortunately if we're holding the
1203 * SCL_ZIO lock it will result in a deadlock when we try to issue
1204 * the read from the root filesystem. Instead we "prefetch"
1205 * the associated vnodes that we need prior to opening the
1206 * underlying devices and cache them so that we can prevent
1207 * any I/O when we are doing the actual open.
1208 */
1209 if (spa_is_root(spa)) {
1210 int low = locks & ~(SCL_ZIO - 1);
1211 int high = locks & ~low;
1212
1213 spa_config_enter(spa, high, spa, RW_WRITER);
1214 vdev_hold(spa->spa_root_vdev);
1215 spa_config_enter(spa, low, spa, RW_WRITER);
1216 } else {
1217 spa_config_enter(spa, locks, spa, RW_WRITER);
1218 }
1219 spa->spa_vdev_locks = locks;
1220 }
1221
1222 int
1223 spa_vdev_state_exit(spa_t *spa, vdev_t *vd, int error)
1224 {
1225 boolean_t config_changed = B_FALSE;
1226 vdev_t *vdev_top;
1227
1228 if (vd == NULL || vd == spa->spa_root_vdev) {
1229 vdev_top = spa->spa_root_vdev;
1230 } else {
1231 vdev_top = vd->vdev_top;
1232 }
1233
1234 if (vd != NULL || error == 0)
1235 vdev_dtl_reassess(vdev_top, 0, 0, B_FALSE);
1236
1237 if (vd != NULL) {
1238 if (vd != spa->spa_root_vdev)
1239 vdev_state_dirty(vdev_top);
1240
1241 config_changed = B_TRUE;
1242 spa->spa_config_generation++;
1243 }
1244
1245 if (spa_is_root(spa))
1246 vdev_rele(spa->spa_root_vdev);
1247
1248 ASSERT3U(spa->spa_vdev_locks, >=, SCL_STATE_ALL);
1249 spa_config_exit(spa, spa->spa_vdev_locks, spa);
1250
1251 /*
1252 * If anything changed, wait for it to sync. This ensures that,
1253 * from the system administrator's perspective, zpool(1M) commands
1254 * are synchronous. This is important for things like zpool offline:
1255 * when the command completes, you expect no further I/O from ZFS.
1256 */
1257 if (vd != NULL)
1258 txg_wait_synced(spa->spa_dsl_pool, 0);
1259
1260 /*
1261 * If the config changed, update the config cache.
1262 */
1263 if (config_changed) {
1264 mutex_enter(&spa_namespace_lock);
1265 spa_write_cachefile(spa, B_FALSE, B_TRUE);
1266 mutex_exit(&spa_namespace_lock);
1267 }
1268
1269 return (error);
1270 }
1271
1272 /*
1273 * ==========================================================================
1274 * Miscellaneous functions
1275 * ==========================================================================
1276 */
1277
1278 void
1279 spa_activate_mos_feature(spa_t *spa, const char *feature, dmu_tx_t *tx)
1280 {
1281 if (!nvlist_exists(spa->spa_label_features, feature)) {
1282 fnvlist_add_boolean(spa->spa_label_features, feature);
1283 /*
1284 * When we are creating the pool (tx_txg==TXG_INITIAL), we can't
1285 * dirty the vdev config because lock SCL_CONFIG is not held.
1286 * Thankfully, in this case we don't need to dirty the config
1287 * because it will be written out anyway when we finish
1288 * creating the pool.
1289 */
1290 if (tx->tx_txg != TXG_INITIAL)
1291 vdev_config_dirty(spa->spa_root_vdev);
1292 }
1293 }
1294
1295 void
1296 spa_deactivate_mos_feature(spa_t *spa, const char *feature)
1297 {
1298 if (nvlist_remove_all(spa->spa_label_features, feature) == 0)
1299 vdev_config_dirty(spa->spa_root_vdev);
1300 }
1301
1302 /*
1303 * Rename a spa_t.
1304 */
1305 int
1306 spa_rename(const char *name, const char *newname)
1307 {
1308 spa_t *spa;
1309 int err;
1310
1311 /*
1312 * Lookup the spa_t and grab the config lock for writing. We need to
1313 * actually open the pool so that we can sync out the necessary labels.
1314 * It's OK to call spa_open() with the namespace lock held because we
1315 * allow recursive calls for other reasons.
1316 */
1317 mutex_enter(&spa_namespace_lock);
1318 if ((err = spa_open(name, &spa, FTAG)) != 0) {
1319 mutex_exit(&spa_namespace_lock);
1320 return (err);
1321 }
1322
1323 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1324
1325 avl_remove(&spa_namespace_avl, spa);
1326 (void) strlcpy(spa->spa_name, newname, sizeof (spa->spa_name));
1327 avl_add(&spa_namespace_avl, spa);
1328
1329 /*
1330 * Sync all labels to disk with the new names by marking the root vdev
1331 * dirty and waiting for it to sync. It will pick up the new pool name
1332 * during the sync.
1333 */
1334 vdev_config_dirty(spa->spa_root_vdev);
1335
1336 spa_config_exit(spa, SCL_ALL, FTAG);
1337
1338 txg_wait_synced(spa->spa_dsl_pool, 0);
1339
1340 /*
1341 * Sync the updated config cache.
1342 */
1343 spa_write_cachefile(spa, B_FALSE, B_TRUE);
1344
1345 spa_close(spa, FTAG);
1346
1347 mutex_exit(&spa_namespace_lock);
1348
1349 return (0);
1350 }
1351
1352 /*
1353 * Return the spa_t associated with given pool_guid, if it exists. If
1354 * device_guid is non-zero, determine whether the pool exists *and* contains
1355 * a device with the specified device_guid.
1356 */
1357 spa_t *
1358 spa_by_guid(uint64_t pool_guid, uint64_t device_guid)
1359 {
1360 spa_t *spa;
1361 avl_tree_t *t = &spa_namespace_avl;
1362
1363 ASSERT(MUTEX_HELD(&spa_namespace_lock));
1364
1365 for (spa = avl_first(t); spa != NULL; spa = AVL_NEXT(t, spa)) {
1366 if (spa->spa_state == POOL_STATE_UNINITIALIZED)
1367 continue;
1368 if (spa->spa_root_vdev == NULL)
1369 continue;
1370 if (spa_guid(spa) == pool_guid) {
1371 if (device_guid == 0)
1372 break;
1373
1374 if (vdev_lookup_by_guid(spa->spa_root_vdev,
1375 device_guid) != NULL)
1376 break;
1377
1378 /*
1379 * Check any devices we may be in the process of adding.
1380 */
1381 if (spa->spa_pending_vdev) {
1382 if (vdev_lookup_by_guid(spa->spa_pending_vdev,
1383 device_guid) != NULL)
1384 break;
1385 }
1386 }
1387 }
1388
1389 return (spa);
1390 }
1391
1392 /*
1393 * Determine whether a pool with the given pool_guid exists.
1394 */
1395 boolean_t
1396 spa_guid_exists(uint64_t pool_guid, uint64_t device_guid)
1397 {
1398 return (spa_by_guid(pool_guid, device_guid) != NULL);
1399 }
1400
1401 char *
1402 spa_strdup(const char *s)
1403 {
1404 size_t len;
1405 char *new;
1406
1407 len = strlen(s);
1408 new = kmem_alloc(len + 1, KM_SLEEP);
1409 bcopy(s, new, len);
1410 new[len] = '\0';
1411
1412 return (new);
1413 }
1414
1415 void
1416 spa_strfree(char *s)
1417 {
1418 kmem_free(s, strlen(s) + 1);
1419 }
1420
1421 uint64_t
1422 spa_get_random(uint64_t range)
1423 {
1424 uint64_t r;
1425
1426 ASSERT(range != 0);
1427
1428 if (range == 1)
1429 return (0);
1430
1431 (void) random_get_pseudo_bytes((void *)&r, sizeof (uint64_t));
1432
1433 return (r % range);
1434 }
1435
1436 uint64_t
1437 spa_generate_guid(spa_t *spa)
1438 {
1439 uint64_t guid = spa_get_random(-1ULL);
1440
1441 if (spa != NULL) {
1442 while (guid == 0 || spa_guid_exists(spa_guid(spa), guid))
1443 guid = spa_get_random(-1ULL);
1444 } else {
1445 while (guid == 0 || spa_guid_exists(guid, 0))
1446 guid = spa_get_random(-1ULL);
1447 }
1448
1449 return (guid);
1450 }
1451
1452 void
1453 snprintf_blkptr(char *buf, size_t buflen, const blkptr_t *bp)
1454 {
1455 char type[256];
1456 char *checksum = NULL;
1457 char *compress = NULL;
1458
1459 if (bp != NULL) {
1460 if (BP_GET_TYPE(bp) & DMU_OT_NEWTYPE) {
1461 dmu_object_byteswap_t bswap =
1462 DMU_OT_BYTESWAP(BP_GET_TYPE(bp));
1463 (void) snprintf(type, sizeof (type), "bswap %s %s",
1464 DMU_OT_IS_METADATA(BP_GET_TYPE(bp)) ?
1465 "metadata" : "data",
1466 dmu_ot_byteswap[bswap].ob_name);
1467 } else {
1468 (void) strlcpy(type, dmu_ot[BP_GET_TYPE(bp)].ot_name,
1469 sizeof (type));
1470 }
1471 if (!BP_IS_EMBEDDED(bp)) {
1472 checksum =
1473 zio_checksum_table[BP_GET_CHECKSUM(bp)].ci_name;
1474 }
1475 compress = zio_compress_table[BP_GET_COMPRESS(bp)].ci_name;
1476 }
1477
1478 SNPRINTF_BLKPTR(snprintf, ' ', buf, buflen, bp, type, checksum,
1479 compress);
1480 }
1481
1482 void
1483 spa_freeze(spa_t *spa)
1484 {
1485 uint64_t freeze_txg = 0;
1486
1487 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1488 if (spa->spa_freeze_txg == UINT64_MAX) {
1489 freeze_txg = spa_last_synced_txg(spa) + TXG_SIZE;
1490 spa->spa_freeze_txg = freeze_txg;
1491 }
1492 spa_config_exit(spa, SCL_ALL, FTAG);
1493 if (freeze_txg != 0)
1494 txg_wait_synced(spa_get_dsl(spa), freeze_txg);
1495 }
1496
1497 void
1498 zfs_panic_recover(const char *fmt, ...)
1499 {
1500 va_list adx;
1501
1502 va_start(adx, fmt);
1503 vcmn_err(zfs_recover ? CE_WARN : CE_PANIC, fmt, adx);
1504 va_end(adx);
1505 }
1506
1507 /*
1508 * This is a stripped-down version of strtoull, suitable only for converting
1509 * lowercase hexadecimal numbers that don't overflow.
1510 */
1511 uint64_t
1512 zfs_strtonum(const char *str, char **nptr)
1513 {
1514 uint64_t val = 0;
1515 char c;
1516 int digit;
1517
1518 while ((c = *str) != '\0') {
1519 if (c >= '0' && c <= '9')
1520 digit = c - '0';
1521 else if (c >= 'a' && c <= 'f')
1522 digit = 10 + c - 'a';
1523 else
1524 break;
1525
1526 val *= 16;
1527 val += digit;
1528
1529 str++;
1530 }
1531
1532 if (nptr)
1533 *nptr = (char *)str;
1534
1535 return (val);
1536 }
1537
1538 /*
1539 * ==========================================================================
1540 * Accessor functions
1541 * ==========================================================================
1542 */
1543
1544 boolean_t
1545 spa_shutting_down(spa_t *spa)
1546 {
1547 return (spa->spa_async_suspended);
1548 }
1549
1550 dsl_pool_t *
1551 spa_get_dsl(spa_t *spa)
1552 {
1553 return (spa->spa_dsl_pool);
1554 }
1555
1556 boolean_t
1557 spa_is_initializing(spa_t *spa)
1558 {
1559 return (spa->spa_is_initializing);
1560 }
1561
1562 boolean_t
1563 spa_indirect_vdevs_loaded(spa_t *spa)
1564 {
1565 return (spa->spa_indirect_vdevs_loaded);
1566 }
1567
1568 blkptr_t *
1569 spa_get_rootblkptr(spa_t *spa)
1570 {
1571 return (&spa->spa_ubsync.ub_rootbp);
1572 }
1573
1574 void
1575 spa_set_rootblkptr(spa_t *spa, const blkptr_t *bp)
1576 {
1577 spa->spa_uberblock.ub_rootbp = *bp;
1578 }
1579
1580 void
1581 spa_altroot(spa_t *spa, char *buf, size_t buflen)
1582 {
1583 if (spa->spa_root == NULL)
1584 buf[0] = '\0';
1585 else
1586 (void) strncpy(buf, spa->spa_root, buflen);
1587 }
1588
1589 int
1590 spa_sync_pass(spa_t *spa)
1591 {
1592 return (spa->spa_sync_pass);
1593 }
1594
1595 char *
1596 spa_name(spa_t *spa)
1597 {
1598 return (spa->spa_name);
1599 }
1600
1601 uint64_t
1602 spa_guid(spa_t *spa)
1603 {
1604 dsl_pool_t *dp = spa_get_dsl(spa);
1605 uint64_t guid;
1606
1607 /*
1608 * If we fail to parse the config during spa_load(), we can go through
1609 * the error path (which posts an ereport) and end up here with no root
1610 * vdev. We stash the original pool guid in 'spa_config_guid' to handle
1611 * this case.
1612 */
1613 if (spa->spa_root_vdev == NULL)
1614 return (spa->spa_config_guid);
1615
1616 guid = spa->spa_last_synced_guid != 0 ?
1617 spa->spa_last_synced_guid : spa->spa_root_vdev->vdev_guid;
1618
1619 /*
1620 * Return the most recently synced out guid unless we're
1621 * in syncing context.
1622 */
1623 if (dp && dsl_pool_sync_context(dp))
1624 return (spa->spa_root_vdev->vdev_guid);
1625 else
1626 return (guid);
1627 }
1628
1629 uint64_t
1630 spa_load_guid(spa_t *spa)
1631 {
1632 /*
1633 * This is a GUID that exists solely as a reference for the
1634 * purposes of the arc. It is generated at load time, and
1635 * is never written to persistent storage.
1636 */
1637 return (spa->spa_load_guid);
1638 }
1639
1640 uint64_t
1641 spa_last_synced_txg(spa_t *spa)
1642 {
1643 return (spa->spa_ubsync.ub_txg);
1644 }
1645
1646 uint64_t
1647 spa_first_txg(spa_t *spa)
1648 {
1649 return (spa->spa_first_txg);
1650 }
1651
1652 uint64_t
1653 spa_syncing_txg(spa_t *spa)
1654 {
1655 return (spa->spa_syncing_txg);
1656 }
1657
1658 /*
1659 * Return the last txg where data can be dirtied. The final txgs
1660 * will be used to just clear out any deferred frees that remain.
1661 */
1662 uint64_t
1663 spa_final_dirty_txg(spa_t *spa)
1664 {
1665 return (spa->spa_final_txg - TXG_DEFER_SIZE);
1666 }
1667
1668 pool_state_t
1669 spa_state(spa_t *spa)
1670 {
1671 return (spa->spa_state);
1672 }
1673
1674 spa_load_state_t
1675 spa_load_state(spa_t *spa)
1676 {
1677 return (spa->spa_load_state);
1678 }
1679
1680 uint64_t
1681 spa_freeze_txg(spa_t *spa)
1682 {
1683 return (spa->spa_freeze_txg);
1684 }
1685
1686 /*
1687 * Return the inflated asize for a logical write in bytes. This is used by the
1688 * DMU to calculate the space a logical write will require on disk.
1689 * If lsize is smaller than the largest physical block size allocatable on this
1690 * pool we use its value instead, since the write will end up using the whole
1691 * block anyway.
1692 */
1693 uint64_t
1694 spa_get_worst_case_asize(spa_t *spa, uint64_t lsize)
1695 {
1696 if (lsize == 0)
1697 return (0); /* No inflation needed */
1698 return (MAX(lsize, 1 << spa->spa_max_ashift) * spa_asize_inflation);
1699 }
1700
1701 /*
1702 * Return the amount of slop space in bytes. It is 1/32 of the pool (3.2%),
1703 * or at least 128MB, unless that would cause it to be more than half the
1704 * pool size.
1705 *
1706 * See the comment above spa_slop_shift for details.
1707 */
1708 uint64_t
1709 spa_get_slop_space(spa_t *spa)
1710 {
1711 uint64_t space = spa_get_dspace(spa);
1712 return (MAX(space >> spa_slop_shift, MIN(space >> 1, spa_min_slop)));
1713 }
1714
1715 uint64_t
1716 spa_get_dspace(spa_t *spa)
1717 {
1718 return (spa->spa_dspace);
1719 }
1720
1721 void
1722 spa_update_dspace(spa_t *spa)
1723 {
1724 spa->spa_dspace = metaslab_class_get_dspace(spa_normal_class(spa)) +
1725 ddt_get_dedup_dspace(spa);
1726 if (spa->spa_vdev_removal != NULL) {
1727 /*
1728 * We can't allocate from the removing device, so
1729 * subtract its size. This prevents the DMU/DSL from
1730 * filling up the (now smaller) pool while we are in the
1731 * middle of removing the device.
1732 *
1733 * Note that the DMU/DSL doesn't actually know or care
1734 * how much space is allocated (it does its own tracking
1735 * of how much space has been logically used). So it
1736 * doesn't matter that the data we are moving may be
1737 * allocated twice (on the old device and the new
1738 * device).
1739 */
1740 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
1741 vdev_t *vd =
1742 vdev_lookup_top(spa, spa->spa_vdev_removal->svr_vdev_id);
1743 spa->spa_dspace -= spa_deflate(spa) ?
1744 vd->vdev_stat.vs_dspace : vd->vdev_stat.vs_space;
1745 spa_config_exit(spa, SCL_VDEV, FTAG);
1746 }
1747 }
1748
1749 /*
1750 * Return the failure mode that has been set to this pool. The default
1751 * behavior will be to block all I/Os when a complete failure occurs.
1752 */
1753 uint64_t
1754 spa_get_failmode(spa_t *spa)
1755 {
1756 return (spa->spa_failmode);
1757 }
1758
1759 boolean_t
1760 spa_suspended(spa_t *spa)
1761 {
1762 return (spa->spa_suspended != ZIO_SUSPEND_NONE);
1763 }
1764
1765 uint64_t
1766 spa_version(spa_t *spa)
1767 {
1768 return (spa->spa_ubsync.ub_version);
1769 }
1770
1771 boolean_t
1772 spa_deflate(spa_t *spa)
1773 {
1774 return (spa->spa_deflate);
1775 }
1776
1777 metaslab_class_t *
1778 spa_normal_class(spa_t *spa)
1779 {
1780 return (spa->spa_normal_class);
1781 }
1782
1783 metaslab_class_t *
1784 spa_log_class(spa_t *spa)
1785 {
1786 return (spa->spa_log_class);
1787 }
1788
1789 void
1790 spa_evicting_os_register(spa_t *spa, objset_t *os)
1791 {
1792 mutex_enter(&spa->spa_evicting_os_lock);
1793 list_insert_head(&spa->spa_evicting_os_list, os);
1794 mutex_exit(&spa->spa_evicting_os_lock);
1795 }
1796
1797 void
1798 spa_evicting_os_deregister(spa_t *spa, objset_t *os)
1799 {
1800 mutex_enter(&spa->spa_evicting_os_lock);
1801 list_remove(&spa->spa_evicting_os_list, os);
1802 cv_broadcast(&spa->spa_evicting_os_cv);
1803 mutex_exit(&spa->spa_evicting_os_lock);
1804 }
1805
1806 void
1807 spa_evicting_os_wait(spa_t *spa)
1808 {
1809 mutex_enter(&spa->spa_evicting_os_lock);
1810 while (!list_is_empty(&spa->spa_evicting_os_list))
1811 cv_wait(&spa->spa_evicting_os_cv, &spa->spa_evicting_os_lock);
1812 mutex_exit(&spa->spa_evicting_os_lock);
1813
1814 dmu_buf_user_evict_wait();
1815 }
1816
1817 int
1818 spa_max_replication(spa_t *spa)
1819 {
1820 /*
1821 * As of SPA_VERSION == SPA_VERSION_DITTO_BLOCKS, we are able to
1822 * handle BPs with more than one DVA allocated. Set our max
1823 * replication level accordingly.
1824 */
1825 if (spa_version(spa) < SPA_VERSION_DITTO_BLOCKS)
1826 return (1);
1827 return (MIN(SPA_DVAS_PER_BP, spa_max_replication_override));
1828 }
1829
1830 int
1831 spa_prev_software_version(spa_t *spa)
1832 {
1833 return (spa->spa_prev_software_version);
1834 }
1835
1836 uint64_t
1837 spa_deadman_synctime(spa_t *spa)
1838 {
1839 return (spa->spa_deadman_synctime);
1840 }
1841
1842 uint64_t
1843 spa_deadman_ziotime(spa_t *spa)
1844 {
1845 return (spa->spa_deadman_ziotime);
1846 }
1847
1848 uint64_t
1849 spa_get_deadman_failmode(spa_t *spa)
1850 {
1851 return (spa->spa_deadman_failmode);
1852 }
1853
1854 void
1855 spa_set_deadman_failmode(spa_t *spa, const char *failmode)
1856 {
1857 if (strcmp(failmode, "wait") == 0)
1858 spa->spa_deadman_failmode = ZIO_FAILURE_MODE_WAIT;
1859 else if (strcmp(failmode, "continue") == 0)
1860 spa->spa_deadman_failmode = ZIO_FAILURE_MODE_CONTINUE;
1861 else if (strcmp(failmode, "panic") == 0)
1862 spa->spa_deadman_failmode = ZIO_FAILURE_MODE_PANIC;
1863 else
1864 spa->spa_deadman_failmode = ZIO_FAILURE_MODE_WAIT;
1865 }
1866
1867 uint64_t
1868 dva_get_dsize_sync(spa_t *spa, const dva_t *dva)
1869 {
1870 uint64_t asize = DVA_GET_ASIZE(dva);
1871 uint64_t dsize = asize;
1872
1873 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
1874
1875 if (asize != 0 && spa->spa_deflate) {
1876 vdev_t *vd = vdev_lookup_top(spa, DVA_GET_VDEV(dva));
1877 if (vd != NULL)
1878 dsize = (asize >> SPA_MINBLOCKSHIFT) *
1879 vd->vdev_deflate_ratio;
1880 }
1881
1882 return (dsize);
1883 }
1884
1885 uint64_t
1886 bp_get_dsize_sync(spa_t *spa, const blkptr_t *bp)
1887 {
1888 uint64_t dsize = 0;
1889
1890 for (int d = 0; d < BP_GET_NDVAS(bp); d++)
1891 dsize += dva_get_dsize_sync(spa, &bp->blk_dva[d]);
1892
1893 return (dsize);
1894 }
1895
1896 uint64_t
1897 bp_get_dsize(spa_t *spa, const blkptr_t *bp)
1898 {
1899 uint64_t dsize = 0;
1900
1901 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
1902
1903 for (int d = 0; d < BP_GET_NDVAS(bp); d++)
1904 dsize += dva_get_dsize_sync(spa, &bp->blk_dva[d]);
1905
1906 spa_config_exit(spa, SCL_VDEV, FTAG);
1907
1908 return (dsize);
1909 }
1910
1911 /*
1912 * ==========================================================================
1913 * Initialization and Termination
1914 * ==========================================================================
1915 */
1916
1917 static int
1918 spa_name_compare(const void *a1, const void *a2)
1919 {
1920 const spa_t *s1 = a1;
1921 const spa_t *s2 = a2;
1922 int s;
1923
1924 s = strcmp(s1->spa_name, s2->spa_name);
1925
1926 return (AVL_ISIGN(s));
1927 }
1928
1929 void
1930 spa_boot_init(void)
1931 {
1932 spa_config_load();
1933 }
1934
1935 void
1936 spa_init(int mode)
1937 {
1938 mutex_init(&spa_namespace_lock, NULL, MUTEX_DEFAULT, NULL);
1939 mutex_init(&spa_spare_lock, NULL, MUTEX_DEFAULT, NULL);
1940 mutex_init(&spa_l2cache_lock, NULL, MUTEX_DEFAULT, NULL);
1941 cv_init(&spa_namespace_cv, NULL, CV_DEFAULT, NULL);
1942
1943 avl_create(&spa_namespace_avl, spa_name_compare, sizeof (spa_t),
1944 offsetof(spa_t, spa_avl));
1945
1946 avl_create(&spa_spare_avl, spa_spare_compare, sizeof (spa_aux_t),
1947 offsetof(spa_aux_t, aux_avl));
1948
1949 avl_create(&spa_l2cache_avl, spa_l2cache_compare, sizeof (spa_aux_t),
1950 offsetof(spa_aux_t, aux_avl));
1951
1952 spa_mode_global = mode;
1953
1954 #ifndef _KERNEL
1955 if (spa_mode_global != FREAD && dprintf_find_string("watch")) {
1956 struct sigaction sa;
1957
1958 sa.sa_flags = SA_SIGINFO;
1959 sigemptyset(&sa.sa_mask);
1960 sa.sa_sigaction = arc_buf_sigsegv;
1961
1962 if (sigaction(SIGSEGV, &sa, NULL) == -1) {
1963 perror("could not enable watchpoints: "
1964 "sigaction(SIGSEGV, ...) = ");
1965 } else {
1966 arc_watch = B_TRUE;
1967 }
1968 }
1969 #endif
1970
1971 fm_init();
1972 refcount_init();
1973 unique_init();
1974 range_tree_init();
1975 metaslab_alloc_trace_init();
1976 ddt_init();
1977 zio_init();
1978 dmu_init();
1979 zil_init();
1980 vdev_cache_stat_init();
1981 vdev_mirror_stat_init();
1982 vdev_raidz_math_init();
1983 vdev_file_init();
1984 zfs_prop_init();
1985 zpool_prop_init();
1986 zpool_feature_init();
1987 spa_config_load();
1988 l2arc_start();
1989 scan_init();
1990 qat_init();
1991 }
1992
1993 void
1994 spa_fini(void)
1995 {
1996 l2arc_stop();
1997
1998 spa_evict_all();
1999
2000 vdev_file_fini();
2001 vdev_cache_stat_fini();
2002 vdev_mirror_stat_fini();
2003 vdev_raidz_math_fini();
2004 zil_fini();
2005 dmu_fini();
2006 zio_fini();
2007 ddt_fini();
2008 metaslab_alloc_trace_fini();
2009 range_tree_fini();
2010 unique_fini();
2011 refcount_fini();
2012 fm_fini();
2013 scan_fini();
2014 qat_fini();
2015
2016 avl_destroy(&spa_namespace_avl);
2017 avl_destroy(&spa_spare_avl);
2018 avl_destroy(&spa_l2cache_avl);
2019
2020 cv_destroy(&spa_namespace_cv);
2021 mutex_destroy(&spa_namespace_lock);
2022 mutex_destroy(&spa_spare_lock);
2023 mutex_destroy(&spa_l2cache_lock);
2024 }
2025
2026 /*
2027 * Return whether this pool has slogs. No locking needed.
2028 * It's not a problem if the wrong answer is returned as it's only for
2029 * performance and not correctness
2030 */
2031 boolean_t
2032 spa_has_slogs(spa_t *spa)
2033 {
2034 return (spa->spa_log_class->mc_rotor != NULL);
2035 }
2036
2037 spa_log_state_t
2038 spa_get_log_state(spa_t *spa)
2039 {
2040 return (spa->spa_log_state);
2041 }
2042
2043 void
2044 spa_set_log_state(spa_t *spa, spa_log_state_t state)
2045 {
2046 spa->spa_log_state = state;
2047 }
2048
2049 boolean_t
2050 spa_is_root(spa_t *spa)
2051 {
2052 return (spa->spa_is_root);
2053 }
2054
2055 boolean_t
2056 spa_writeable(spa_t *spa)
2057 {
2058 return (!!(spa->spa_mode & FWRITE) && spa->spa_trust_config);
2059 }
2060
2061 /*
2062 * Returns true if there is a pending sync task in any of the current
2063 * syncing txg, the current quiescing txg, or the current open txg.
2064 */
2065 boolean_t
2066 spa_has_pending_synctask(spa_t *spa)
2067 {
2068 return (!txg_all_lists_empty(&spa->spa_dsl_pool->dp_sync_tasks));
2069 }
2070
2071 int
2072 spa_mode(spa_t *spa)
2073 {
2074 return (spa->spa_mode);
2075 }
2076
2077 uint64_t
2078 spa_bootfs(spa_t *spa)
2079 {
2080 return (spa->spa_bootfs);
2081 }
2082
2083 uint64_t
2084 spa_delegation(spa_t *spa)
2085 {
2086 return (spa->spa_delegation);
2087 }
2088
2089 objset_t *
2090 spa_meta_objset(spa_t *spa)
2091 {
2092 return (spa->spa_meta_objset);
2093 }
2094
2095 enum zio_checksum
2096 spa_dedup_checksum(spa_t *spa)
2097 {
2098 return (spa->spa_dedup_checksum);
2099 }
2100
2101 /*
2102 * Reset pool scan stat per scan pass (or reboot).
2103 */
2104 void
2105 spa_scan_stat_init(spa_t *spa)
2106 {
2107 /* data not stored on disk */
2108 spa->spa_scan_pass_start = gethrestime_sec();
2109 if (dsl_scan_is_paused_scrub(spa->spa_dsl_pool->dp_scan))
2110 spa->spa_scan_pass_scrub_pause = spa->spa_scan_pass_start;
2111 else
2112 spa->spa_scan_pass_scrub_pause = 0;
2113 spa->spa_scan_pass_scrub_spent_paused = 0;
2114 spa->spa_scan_pass_exam = 0;
2115 spa->spa_scan_pass_issued = 0;
2116 vdev_scan_stat_init(spa->spa_root_vdev);
2117 }
2118
2119 /*
2120 * Get scan stats for zpool status reports
2121 */
2122 int
2123 spa_scan_get_stats(spa_t *spa, pool_scan_stat_t *ps)
2124 {
2125 dsl_scan_t *scn = spa->spa_dsl_pool ? spa->spa_dsl_pool->dp_scan : NULL;
2126
2127 if (scn == NULL || scn->scn_phys.scn_func == POOL_SCAN_NONE)
2128 return (SET_ERROR(ENOENT));
2129 bzero(ps, sizeof (pool_scan_stat_t));
2130
2131 /* data stored on disk */
2132 ps->pss_func = scn->scn_phys.scn_func;
2133 ps->pss_state = scn->scn_phys.scn_state;
2134 ps->pss_start_time = scn->scn_phys.scn_start_time;
2135 ps->pss_end_time = scn->scn_phys.scn_end_time;
2136 ps->pss_to_examine = scn->scn_phys.scn_to_examine;
2137 ps->pss_examined = scn->scn_phys.scn_examined;
2138 ps->pss_to_process = scn->scn_phys.scn_to_process;
2139 ps->pss_processed = scn->scn_phys.scn_processed;
2140 ps->pss_errors = scn->scn_phys.scn_errors;
2141
2142 /* data not stored on disk */
2143 ps->pss_pass_exam = spa->spa_scan_pass_exam;
2144 ps->pss_pass_start = spa->spa_scan_pass_start;
2145 ps->pss_pass_scrub_pause = spa->spa_scan_pass_scrub_pause;
2146 ps->pss_pass_scrub_spent_paused = spa->spa_scan_pass_scrub_spent_paused;
2147 ps->pss_pass_issued = spa->spa_scan_pass_issued;
2148 ps->pss_issued =
2149 scn->scn_issued_before_pass + spa->spa_scan_pass_issued;
2150
2151 return (0);
2152 }
2153
2154 int
2155 spa_maxblocksize(spa_t *spa)
2156 {
2157 if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_BLOCKS))
2158 return (SPA_MAXBLOCKSIZE);
2159 else
2160 return (SPA_OLD_MAXBLOCKSIZE);
2161 }
2162
2163
2164 /*
2165 * Returns the txg that the last device removal completed. No indirect mappings
2166 * have been added since this txg.
2167 */
2168 uint64_t
2169 spa_get_last_removal_txg(spa_t *spa)
2170 {
2171 uint64_t vdevid;
2172 uint64_t ret = -1ULL;
2173
2174 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
2175 /*
2176 * sr_prev_indirect_vdev is only modified while holding all the
2177 * config locks, so it is sufficient to hold SCL_VDEV as reader when
2178 * examining it.
2179 */
2180 vdevid = spa->spa_removing_phys.sr_prev_indirect_vdev;
2181
2182 while (vdevid != -1ULL) {
2183 vdev_t *vd = vdev_lookup_top(spa, vdevid);
2184 vdev_indirect_births_t *vib = vd->vdev_indirect_births;
2185
2186 ASSERT3P(vd->vdev_ops, ==, &vdev_indirect_ops);
2187
2188 /*
2189 * If the removal did not remap any data, we don't care.
2190 */
2191 if (vdev_indirect_births_count(vib) != 0) {
2192 ret = vdev_indirect_births_last_entry_txg(vib);
2193 break;
2194 }
2195
2196 vdevid = vd->vdev_indirect_config.vic_prev_indirect_vdev;
2197 }
2198 spa_config_exit(spa, SCL_VDEV, FTAG);
2199
2200 IMPLY(ret != -1ULL,
2201 spa_feature_is_active(spa, SPA_FEATURE_DEVICE_REMOVAL));
2202
2203 return (ret);
2204 }
2205
2206 int
2207 spa_maxdnodesize(spa_t *spa)
2208 {
2209 if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_DNODE))
2210 return (DNODE_MAX_SIZE);
2211 else
2212 return (DNODE_MIN_SIZE);
2213 }
2214
2215 boolean_t
2216 spa_multihost(spa_t *spa)
2217 {
2218 return (spa->spa_multihost ? B_TRUE : B_FALSE);
2219 }
2220
2221 unsigned long
2222 spa_get_hostid(void)
2223 {
2224 unsigned long myhostid;
2225
2226 #ifdef _KERNEL
2227 myhostid = zone_get_hostid(NULL);
2228 #else /* _KERNEL */
2229 /*
2230 * We're emulating the system's hostid in userland, so
2231 * we can't use zone_get_hostid().
2232 */
2233 (void) ddi_strtoul(hw_serial, NULL, 10, &myhostid);
2234 #endif /* _KERNEL */
2235
2236 return (myhostid);
2237 }
2238
2239 boolean_t
2240 spa_trust_config(spa_t *spa)
2241 {
2242 return (spa->spa_trust_config);
2243 }
2244
2245 uint64_t
2246 spa_missing_tvds_allowed(spa_t *spa)
2247 {
2248 return (spa->spa_missing_tvds_allowed);
2249 }
2250
2251 void
2252 spa_set_missing_tvds(spa_t *spa, uint64_t missing)
2253 {
2254 spa->spa_missing_tvds = missing;
2255 }
2256
2257 #if defined(_KERNEL) && defined(HAVE_SPL)
2258
2259 #include <linux/mod_compat.h>
2260
2261 static int
2262 param_set_deadman_failmode(const char *val, zfs_kernel_param_t *kp)
2263 {
2264 spa_t *spa = NULL;
2265 char *p;
2266
2267 if (val == NULL)
2268 return (SET_ERROR(-EINVAL));
2269
2270 if ((p = strchr(val, '\n')) != NULL)
2271 *p = '\0';
2272
2273 if (strcmp(val, "wait") != 0 && strcmp(val, "continue") != 0 &&
2274 strcmp(val, "panic"))
2275 return (SET_ERROR(-EINVAL));
2276
2277 if (spa_mode_global != 0) {
2278 mutex_enter(&spa_namespace_lock);
2279 while ((spa = spa_next(spa)) != NULL)
2280 spa_set_deadman_failmode(spa, val);
2281 mutex_exit(&spa_namespace_lock);
2282 }
2283
2284 return (param_set_charp(val, kp));
2285 }
2286
2287 static int
2288 param_set_deadman_ziotime(const char *val, zfs_kernel_param_t *kp)
2289 {
2290 spa_t *spa = NULL;
2291 int error;
2292
2293 error = param_set_ulong(val, kp);
2294 if (error < 0)
2295 return (SET_ERROR(error));
2296
2297 if (spa_mode_global != 0) {
2298 mutex_enter(&spa_namespace_lock);
2299 while ((spa = spa_next(spa)) != NULL)
2300 spa->spa_deadman_ziotime =
2301 MSEC2NSEC(zfs_deadman_ziotime_ms);
2302 mutex_exit(&spa_namespace_lock);
2303 }
2304
2305 return (0);
2306 }
2307
2308 static int
2309 param_set_deadman_synctime(const char *val, zfs_kernel_param_t *kp)
2310 {
2311 spa_t *spa = NULL;
2312 int error;
2313
2314 error = param_set_ulong(val, kp);
2315 if (error < 0)
2316 return (SET_ERROR(error));
2317
2318 if (spa_mode_global != 0) {
2319 mutex_enter(&spa_namespace_lock);
2320 while ((spa = spa_next(spa)) != NULL)
2321 spa->spa_deadman_synctime =
2322 MSEC2NSEC(zfs_deadman_synctime_ms);
2323 mutex_exit(&spa_namespace_lock);
2324 }
2325
2326 return (0);
2327 }
2328
2329 /* Namespace manipulation */
2330 EXPORT_SYMBOL(spa_lookup);
2331 EXPORT_SYMBOL(spa_add);
2332 EXPORT_SYMBOL(spa_remove);
2333 EXPORT_SYMBOL(spa_next);
2334
2335 /* Refcount functions */
2336 EXPORT_SYMBOL(spa_open_ref);
2337 EXPORT_SYMBOL(spa_close);
2338 EXPORT_SYMBOL(spa_refcount_zero);
2339
2340 /* Pool configuration lock */
2341 EXPORT_SYMBOL(spa_config_tryenter);
2342 EXPORT_SYMBOL(spa_config_enter);
2343 EXPORT_SYMBOL(spa_config_exit);
2344 EXPORT_SYMBOL(spa_config_held);
2345
2346 /* Pool vdev add/remove lock */
2347 EXPORT_SYMBOL(spa_vdev_enter);
2348 EXPORT_SYMBOL(spa_vdev_exit);
2349
2350 /* Pool vdev state change lock */
2351 EXPORT_SYMBOL(spa_vdev_state_enter);
2352 EXPORT_SYMBOL(spa_vdev_state_exit);
2353
2354 /* Accessor functions */
2355 EXPORT_SYMBOL(spa_shutting_down);
2356 EXPORT_SYMBOL(spa_get_dsl);
2357 EXPORT_SYMBOL(spa_get_rootblkptr);
2358 EXPORT_SYMBOL(spa_set_rootblkptr);
2359 EXPORT_SYMBOL(spa_altroot);
2360 EXPORT_SYMBOL(spa_sync_pass);
2361 EXPORT_SYMBOL(spa_name);
2362 EXPORT_SYMBOL(spa_guid);
2363 EXPORT_SYMBOL(spa_last_synced_txg);
2364 EXPORT_SYMBOL(spa_first_txg);
2365 EXPORT_SYMBOL(spa_syncing_txg);
2366 EXPORT_SYMBOL(spa_version);
2367 EXPORT_SYMBOL(spa_state);
2368 EXPORT_SYMBOL(spa_load_state);
2369 EXPORT_SYMBOL(spa_freeze_txg);
2370 EXPORT_SYMBOL(spa_get_dspace);
2371 EXPORT_SYMBOL(spa_update_dspace);
2372 EXPORT_SYMBOL(spa_deflate);
2373 EXPORT_SYMBOL(spa_normal_class);
2374 EXPORT_SYMBOL(spa_log_class);
2375 EXPORT_SYMBOL(spa_max_replication);
2376 EXPORT_SYMBOL(spa_prev_software_version);
2377 EXPORT_SYMBOL(spa_get_failmode);
2378 EXPORT_SYMBOL(spa_suspended);
2379 EXPORT_SYMBOL(spa_bootfs);
2380 EXPORT_SYMBOL(spa_delegation);
2381 EXPORT_SYMBOL(spa_meta_objset);
2382 EXPORT_SYMBOL(spa_maxblocksize);
2383 EXPORT_SYMBOL(spa_maxdnodesize);
2384
2385 /* Miscellaneous support routines */
2386 EXPORT_SYMBOL(spa_rename);
2387 EXPORT_SYMBOL(spa_guid_exists);
2388 EXPORT_SYMBOL(spa_strdup);
2389 EXPORT_SYMBOL(spa_strfree);
2390 EXPORT_SYMBOL(spa_get_random);
2391 EXPORT_SYMBOL(spa_generate_guid);
2392 EXPORT_SYMBOL(snprintf_blkptr);
2393 EXPORT_SYMBOL(spa_freeze);
2394 EXPORT_SYMBOL(spa_upgrade);
2395 EXPORT_SYMBOL(spa_evict_all);
2396 EXPORT_SYMBOL(spa_lookup_by_guid);
2397 EXPORT_SYMBOL(spa_has_spare);
2398 EXPORT_SYMBOL(dva_get_dsize_sync);
2399 EXPORT_SYMBOL(bp_get_dsize_sync);
2400 EXPORT_SYMBOL(bp_get_dsize);
2401 EXPORT_SYMBOL(spa_has_slogs);
2402 EXPORT_SYMBOL(spa_is_root);
2403 EXPORT_SYMBOL(spa_writeable);
2404 EXPORT_SYMBOL(spa_mode);
2405 EXPORT_SYMBOL(spa_namespace_lock);
2406 EXPORT_SYMBOL(spa_trust_config);
2407 EXPORT_SYMBOL(spa_missing_tvds_allowed);
2408 EXPORT_SYMBOL(spa_set_missing_tvds);
2409
2410 /* BEGIN CSTYLED */
2411 module_param(zfs_flags, uint, 0644);
2412 MODULE_PARM_DESC(zfs_flags, "Set additional debugging flags");
2413
2414 module_param(zfs_recover, int, 0644);
2415 MODULE_PARM_DESC(zfs_recover, "Set to attempt to recover from fatal errors");
2416
2417 module_param(zfs_free_leak_on_eio, int, 0644);
2418 MODULE_PARM_DESC(zfs_free_leak_on_eio,
2419 "Set to ignore IO errors during free and permanently leak the space");
2420
2421 module_param_call(zfs_deadman_synctime_ms, param_set_deadman_synctime,
2422 param_get_ulong, &zfs_deadman_synctime_ms, 0644);
2423 MODULE_PARM_DESC(zfs_deadman_synctime_ms,
2424 "Pool sync expiration time in milliseconds");
2425
2426 module_param_call(zfs_deadman_ziotime_ms, param_set_deadman_ziotime,
2427 param_get_ulong, &zfs_deadman_ziotime_ms, 0644);
2428 MODULE_PARM_DESC(zfs_deadman_ziotime_ms,
2429 "IO expiration time in milliseconds");
2430
2431 module_param(zfs_deadman_checktime_ms, ulong, 0644);
2432 MODULE_PARM_DESC(zfs_deadman_checktime_ms,
2433 "Dead I/O check interval in milliseconds");
2434
2435 module_param(zfs_deadman_enabled, int, 0644);
2436 MODULE_PARM_DESC(zfs_deadman_enabled, "Enable deadman timer");
2437
2438 module_param_call(zfs_deadman_failmode, param_set_deadman_failmode,
2439 param_get_charp, &zfs_deadman_failmode, 0644);
2440 MODULE_PARM_DESC(zfs_deadman_failmode, "Failmode for deadman timer");
2441
2442 module_param(spa_asize_inflation, int, 0644);
2443 MODULE_PARM_DESC(spa_asize_inflation,
2444 "SPA size estimate multiplication factor");
2445
2446 module_param(spa_slop_shift, int, 0644);
2447 MODULE_PARM_DESC(spa_slop_shift, "Reserved free space in pool");
2448 /* END CSTYLED */
2449 #endif