]> git.proxmox.com Git - mirror_zfs.git/blob - module/zfs/spa_misc.c
Document zfs_flags module parameter
[mirror_zfs.git] / module / zfs / spa_misc.c
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2011, 2014 by Delphix. All rights reserved.
24 * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
25 */
26
27 #include <sys/zfs_context.h>
28 #include <sys/spa_impl.h>
29 #include <sys/zio.h>
30 #include <sys/zio_checksum.h>
31 #include <sys/zio_compress.h>
32 #include <sys/dmu.h>
33 #include <sys/dmu_tx.h>
34 #include <sys/zap.h>
35 #include <sys/zil.h>
36 #include <sys/vdev_impl.h>
37 #include <sys/vdev_file.h>
38 #include <sys/metaslab.h>
39 #include <sys/uberblock_impl.h>
40 #include <sys/txg.h>
41 #include <sys/avl.h>
42 #include <sys/unique.h>
43 #include <sys/dsl_pool.h>
44 #include <sys/dsl_dir.h>
45 #include <sys/dsl_prop.h>
46 #include <sys/fm/util.h>
47 #include <sys/dsl_scan.h>
48 #include <sys/fs/zfs.h>
49 #include <sys/metaslab_impl.h>
50 #include <sys/arc.h>
51 #include <sys/ddt.h>
52 #include <sys/kstat.h>
53 #include "zfs_prop.h"
54 #include "zfeature_common.h"
55
56 /*
57 * SPA locking
58 *
59 * There are four basic locks for managing spa_t structures:
60 *
61 * spa_namespace_lock (global mutex)
62 *
63 * This lock must be acquired to do any of the following:
64 *
65 * - Lookup a spa_t by name
66 * - Add or remove a spa_t from the namespace
67 * - Increase spa_refcount from non-zero
68 * - Check if spa_refcount is zero
69 * - Rename a spa_t
70 * - add/remove/attach/detach devices
71 * - Held for the duration of create/destroy/import/export
72 *
73 * It does not need to handle recursion. A create or destroy may
74 * reference objects (files or zvols) in other pools, but by
75 * definition they must have an existing reference, and will never need
76 * to lookup a spa_t by name.
77 *
78 * spa_refcount (per-spa refcount_t protected by mutex)
79 *
80 * This reference count keep track of any active users of the spa_t. The
81 * spa_t cannot be destroyed or freed while this is non-zero. Internally,
82 * the refcount is never really 'zero' - opening a pool implicitly keeps
83 * some references in the DMU. Internally we check against spa_minref, but
84 * present the image of a zero/non-zero value to consumers.
85 *
86 * spa_config_lock[] (per-spa array of rwlocks)
87 *
88 * This protects the spa_t from config changes, and must be held in
89 * the following circumstances:
90 *
91 * - RW_READER to perform I/O to the spa
92 * - RW_WRITER to change the vdev config
93 *
94 * The locking order is fairly straightforward:
95 *
96 * spa_namespace_lock -> spa_refcount
97 *
98 * The namespace lock must be acquired to increase the refcount from 0
99 * or to check if it is zero.
100 *
101 * spa_refcount -> spa_config_lock[]
102 *
103 * There must be at least one valid reference on the spa_t to acquire
104 * the config lock.
105 *
106 * spa_namespace_lock -> spa_config_lock[]
107 *
108 * The namespace lock must always be taken before the config lock.
109 *
110 *
111 * The spa_namespace_lock can be acquired directly and is globally visible.
112 *
113 * The namespace is manipulated using the following functions, all of which
114 * require the spa_namespace_lock to be held.
115 *
116 * spa_lookup() Lookup a spa_t by name.
117 *
118 * spa_add() Create a new spa_t in the namespace.
119 *
120 * spa_remove() Remove a spa_t from the namespace. This also
121 * frees up any memory associated with the spa_t.
122 *
123 * spa_next() Returns the next spa_t in the system, or the
124 * first if NULL is passed.
125 *
126 * spa_evict_all() Shutdown and remove all spa_t structures in
127 * the system.
128 *
129 * spa_guid_exists() Determine whether a pool/device guid exists.
130 *
131 * The spa_refcount is manipulated using the following functions:
132 *
133 * spa_open_ref() Adds a reference to the given spa_t. Must be
134 * called with spa_namespace_lock held if the
135 * refcount is currently zero.
136 *
137 * spa_close() Remove a reference from the spa_t. This will
138 * not free the spa_t or remove it from the
139 * namespace. No locking is required.
140 *
141 * spa_refcount_zero() Returns true if the refcount is currently
142 * zero. Must be called with spa_namespace_lock
143 * held.
144 *
145 * The spa_config_lock[] is an array of rwlocks, ordered as follows:
146 * SCL_CONFIG > SCL_STATE > SCL_ALLOC > SCL_ZIO > SCL_FREE > SCL_VDEV.
147 * spa_config_lock[] is manipulated with spa_config_{enter,exit,held}().
148 *
149 * To read the configuration, it suffices to hold one of these locks as reader.
150 * To modify the configuration, you must hold all locks as writer. To modify
151 * vdev state without altering the vdev tree's topology (e.g. online/offline),
152 * you must hold SCL_STATE and SCL_ZIO as writer.
153 *
154 * We use these distinct config locks to avoid recursive lock entry.
155 * For example, spa_sync() (which holds SCL_CONFIG as reader) induces
156 * block allocations (SCL_ALLOC), which may require reading space maps
157 * from disk (dmu_read() -> zio_read() -> SCL_ZIO).
158 *
159 * The spa config locks cannot be normal rwlocks because we need the
160 * ability to hand off ownership. For example, SCL_ZIO is acquired
161 * by the issuing thread and later released by an interrupt thread.
162 * They do, however, obey the usual write-wanted semantics to prevent
163 * writer (i.e. system administrator) starvation.
164 *
165 * The lock acquisition rules are as follows:
166 *
167 * SCL_CONFIG
168 * Protects changes to the vdev tree topology, such as vdev
169 * add/remove/attach/detach. Protects the dirty config list
170 * (spa_config_dirty_list) and the set of spares and l2arc devices.
171 *
172 * SCL_STATE
173 * Protects changes to pool state and vdev state, such as vdev
174 * online/offline/fault/degrade/clear. Protects the dirty state list
175 * (spa_state_dirty_list) and global pool state (spa_state).
176 *
177 * SCL_ALLOC
178 * Protects changes to metaslab groups and classes.
179 * Held as reader by metaslab_alloc() and metaslab_claim().
180 *
181 * SCL_ZIO
182 * Held by bp-level zios (those which have no io_vd upon entry)
183 * to prevent changes to the vdev tree. The bp-level zio implicitly
184 * protects all of its vdev child zios, which do not hold SCL_ZIO.
185 *
186 * SCL_FREE
187 * Protects changes to metaslab groups and classes.
188 * Held as reader by metaslab_free(). SCL_FREE is distinct from
189 * SCL_ALLOC, and lower than SCL_ZIO, so that we can safely free
190 * blocks in zio_done() while another i/o that holds either
191 * SCL_ALLOC or SCL_ZIO is waiting for this i/o to complete.
192 *
193 * SCL_VDEV
194 * Held as reader to prevent changes to the vdev tree during trivial
195 * inquiries such as bp_get_dsize(). SCL_VDEV is distinct from the
196 * other locks, and lower than all of them, to ensure that it's safe
197 * to acquire regardless of caller context.
198 *
199 * In addition, the following rules apply:
200 *
201 * (a) spa_props_lock protects pool properties, spa_config and spa_config_list.
202 * The lock ordering is SCL_CONFIG > spa_props_lock.
203 *
204 * (b) I/O operations on leaf vdevs. For any zio operation that takes
205 * an explicit vdev_t argument -- such as zio_ioctl(), zio_read_phys(),
206 * or zio_write_phys() -- the caller must ensure that the config cannot
207 * cannot change in the interim, and that the vdev cannot be reopened.
208 * SCL_STATE as reader suffices for both.
209 *
210 * The vdev configuration is protected by spa_vdev_enter() / spa_vdev_exit().
211 *
212 * spa_vdev_enter() Acquire the namespace lock and the config lock
213 * for writing.
214 *
215 * spa_vdev_exit() Release the config lock, wait for all I/O
216 * to complete, sync the updated configs to the
217 * cache, and release the namespace lock.
218 *
219 * vdev state is protected by spa_vdev_state_enter() / spa_vdev_state_exit().
220 * Like spa_vdev_enter/exit, these are convenience wrappers -- the actual
221 * locking is, always, based on spa_namespace_lock and spa_config_lock[].
222 *
223 * spa_rename() is also implemented within this file since it requires
224 * manipulation of the namespace.
225 */
226
227 static avl_tree_t spa_namespace_avl;
228 kmutex_t spa_namespace_lock;
229 static kcondvar_t spa_namespace_cv;
230 static int spa_active_count;
231 int spa_max_replication_override = SPA_DVAS_PER_BP;
232
233 static kmutex_t spa_spare_lock;
234 static avl_tree_t spa_spare_avl;
235 static kmutex_t spa_l2cache_lock;
236 static avl_tree_t spa_l2cache_avl;
237
238 kmem_cache_t *spa_buffer_pool;
239 int spa_mode_global;
240
241 #ifdef ZFS_DEBUG
242 /* Everything except dprintf and spa is on by default in debug builds */
243 int zfs_flags = ~(ZFS_DEBUG_DPRINTF | ZFS_DEBUG_SPA);
244 #else
245 int zfs_flags = 0;
246 #endif
247
248 /*
249 * zfs_recover can be set to nonzero to attempt to recover from
250 * otherwise-fatal errors, typically caused by on-disk corruption. When
251 * set, calls to zfs_panic_recover() will turn into warning messages.
252 * This should only be used as a last resort, as it typically results
253 * in leaked space, or worse.
254 */
255 int zfs_recover = B_FALSE;
256
257 /*
258 * If destroy encounters an EIO while reading metadata (e.g. indirect
259 * blocks), space referenced by the missing metadata can not be freed.
260 * Normally this causes the background destroy to become "stalled", as
261 * it is unable to make forward progress. While in this stalled state,
262 * all remaining space to free from the error-encountering filesystem is
263 * "temporarily leaked". Set this flag to cause it to ignore the EIO,
264 * permanently leak the space from indirect blocks that can not be read,
265 * and continue to free everything else that it can.
266 *
267 * The default, "stalling" behavior is useful if the storage partially
268 * fails (i.e. some but not all i/os fail), and then later recovers. In
269 * this case, we will be able to continue pool operations while it is
270 * partially failed, and when it recovers, we can continue to free the
271 * space, with no leaks. However, note that this case is actually
272 * fairly rare.
273 *
274 * Typically pools either (a) fail completely (but perhaps temporarily,
275 * e.g. a top-level vdev going offline), or (b) have localized,
276 * permanent errors (e.g. disk returns the wrong data due to bit flip or
277 * firmware bug). In case (a), this setting does not matter because the
278 * pool will be suspended and the sync thread will not be able to make
279 * forward progress regardless. In case (b), because the error is
280 * permanent, the best we can do is leak the minimum amount of space,
281 * which is what setting this flag will do. Therefore, it is reasonable
282 * for this flag to normally be set, but we chose the more conservative
283 * approach of not setting it, so that there is no possibility of
284 * leaking space in the "partial temporary" failure case.
285 */
286 int zfs_free_leak_on_eio = B_FALSE;
287
288 /*
289 * Expiration time in milliseconds. This value has two meanings. First it is
290 * used to determine when the spa_deadman() logic should fire. By default the
291 * spa_deadman() will fire if spa_sync() has not completed in 1000 seconds.
292 * Secondly, the value determines if an I/O is considered "hung". Any I/O that
293 * has not completed in zfs_deadman_synctime_ms is considered "hung" resulting
294 * in a system panic.
295 */
296 unsigned long zfs_deadman_synctime_ms = 1000000ULL;
297
298 /*
299 * By default the deadman is enabled.
300 */
301 int zfs_deadman_enabled = 1;
302
303 /*
304 * The worst case is single-sector max-parity RAID-Z blocks, in which
305 * case the space requirement is exactly (VDEV_RAIDZ_MAXPARITY + 1)
306 * times the size; so just assume that. Add to this the fact that
307 * we can have up to 3 DVAs per bp, and one more factor of 2 because
308 * the block may be dittoed with up to 3 DVAs by ddt_sync(). All together,
309 * the worst case is:
310 * (VDEV_RAIDZ_MAXPARITY + 1) * SPA_DVAS_PER_BP * 2 == 24
311 */
312 int spa_asize_inflation = 24;
313
314 /*
315 * ==========================================================================
316 * SPA config locking
317 * ==========================================================================
318 */
319 static void
320 spa_config_lock_init(spa_t *spa)
321 {
322 int i;
323
324 for (i = 0; i < SCL_LOCKS; i++) {
325 spa_config_lock_t *scl = &spa->spa_config_lock[i];
326 mutex_init(&scl->scl_lock, NULL, MUTEX_DEFAULT, NULL);
327 cv_init(&scl->scl_cv, NULL, CV_DEFAULT, NULL);
328 refcount_create_untracked(&scl->scl_count);
329 scl->scl_writer = NULL;
330 scl->scl_write_wanted = 0;
331 }
332 }
333
334 static void
335 spa_config_lock_destroy(spa_t *spa)
336 {
337 int i;
338
339 for (i = 0; i < SCL_LOCKS; i++) {
340 spa_config_lock_t *scl = &spa->spa_config_lock[i];
341 mutex_destroy(&scl->scl_lock);
342 cv_destroy(&scl->scl_cv);
343 refcount_destroy(&scl->scl_count);
344 ASSERT(scl->scl_writer == NULL);
345 ASSERT(scl->scl_write_wanted == 0);
346 }
347 }
348
349 int
350 spa_config_tryenter(spa_t *spa, int locks, void *tag, krw_t rw)
351 {
352 int i;
353
354 for (i = 0; i < SCL_LOCKS; i++) {
355 spa_config_lock_t *scl = &spa->spa_config_lock[i];
356 if (!(locks & (1 << i)))
357 continue;
358 mutex_enter(&scl->scl_lock);
359 if (rw == RW_READER) {
360 if (scl->scl_writer || scl->scl_write_wanted) {
361 mutex_exit(&scl->scl_lock);
362 spa_config_exit(spa, locks ^ (1 << i), tag);
363 return (0);
364 }
365 } else {
366 ASSERT(scl->scl_writer != curthread);
367 if (!refcount_is_zero(&scl->scl_count)) {
368 mutex_exit(&scl->scl_lock);
369 spa_config_exit(spa, locks ^ (1 << i), tag);
370 return (0);
371 }
372 scl->scl_writer = curthread;
373 }
374 (void) refcount_add(&scl->scl_count, tag);
375 mutex_exit(&scl->scl_lock);
376 }
377 return (1);
378 }
379
380 void
381 spa_config_enter(spa_t *spa, int locks, void *tag, krw_t rw)
382 {
383 int wlocks_held = 0;
384 int i;
385
386 ASSERT3U(SCL_LOCKS, <, sizeof (wlocks_held) * NBBY);
387
388 for (i = 0; i < SCL_LOCKS; i++) {
389 spa_config_lock_t *scl = &spa->spa_config_lock[i];
390 if (scl->scl_writer == curthread)
391 wlocks_held |= (1 << i);
392 if (!(locks & (1 << i)))
393 continue;
394 mutex_enter(&scl->scl_lock);
395 if (rw == RW_READER) {
396 while (scl->scl_writer || scl->scl_write_wanted) {
397 cv_wait(&scl->scl_cv, &scl->scl_lock);
398 }
399 } else {
400 ASSERT(scl->scl_writer != curthread);
401 while (!refcount_is_zero(&scl->scl_count)) {
402 scl->scl_write_wanted++;
403 cv_wait(&scl->scl_cv, &scl->scl_lock);
404 scl->scl_write_wanted--;
405 }
406 scl->scl_writer = curthread;
407 }
408 (void) refcount_add(&scl->scl_count, tag);
409 mutex_exit(&scl->scl_lock);
410 }
411 ASSERT(wlocks_held <= locks);
412 }
413
414 void
415 spa_config_exit(spa_t *spa, int locks, void *tag)
416 {
417 int i;
418
419 for (i = SCL_LOCKS - 1; i >= 0; i--) {
420 spa_config_lock_t *scl = &spa->spa_config_lock[i];
421 if (!(locks & (1 << i)))
422 continue;
423 mutex_enter(&scl->scl_lock);
424 ASSERT(!refcount_is_zero(&scl->scl_count));
425 if (refcount_remove(&scl->scl_count, tag) == 0) {
426 ASSERT(scl->scl_writer == NULL ||
427 scl->scl_writer == curthread);
428 scl->scl_writer = NULL; /* OK in either case */
429 cv_broadcast(&scl->scl_cv);
430 }
431 mutex_exit(&scl->scl_lock);
432 }
433 }
434
435 int
436 spa_config_held(spa_t *spa, int locks, krw_t rw)
437 {
438 int i, locks_held = 0;
439
440 for (i = 0; i < SCL_LOCKS; i++) {
441 spa_config_lock_t *scl = &spa->spa_config_lock[i];
442 if (!(locks & (1 << i)))
443 continue;
444 if ((rw == RW_READER && !refcount_is_zero(&scl->scl_count)) ||
445 (rw == RW_WRITER && scl->scl_writer == curthread))
446 locks_held |= 1 << i;
447 }
448
449 return (locks_held);
450 }
451
452 /*
453 * ==========================================================================
454 * SPA namespace functions
455 * ==========================================================================
456 */
457
458 /*
459 * Lookup the named spa_t in the AVL tree. The spa_namespace_lock must be held.
460 * Returns NULL if no matching spa_t is found.
461 */
462 spa_t *
463 spa_lookup(const char *name)
464 {
465 static spa_t search; /* spa_t is large; don't allocate on stack */
466 spa_t *spa;
467 avl_index_t where;
468 char *cp;
469
470 ASSERT(MUTEX_HELD(&spa_namespace_lock));
471
472 (void) strlcpy(search.spa_name, name, sizeof (search.spa_name));
473
474 /*
475 * If it's a full dataset name, figure out the pool name and
476 * just use that.
477 */
478 cp = strpbrk(search.spa_name, "/@#");
479 if (cp != NULL)
480 *cp = '\0';
481
482 spa = avl_find(&spa_namespace_avl, &search, &where);
483
484 return (spa);
485 }
486
487 /*
488 * Fires when spa_sync has not completed within zfs_deadman_synctime_ms.
489 * If the zfs_deadman_enabled flag is set then it inspects all vdev queues
490 * looking for potentially hung I/Os.
491 */
492 void
493 spa_deadman(void *arg)
494 {
495 spa_t *spa = arg;
496
497 zfs_dbgmsg("slow spa_sync: started %llu seconds ago, calls %llu",
498 (gethrtime() - spa->spa_sync_starttime) / NANOSEC,
499 ++spa->spa_deadman_calls);
500 if (zfs_deadman_enabled)
501 vdev_deadman(spa->spa_root_vdev);
502
503 spa->spa_deadman_tqid = taskq_dispatch_delay(system_taskq,
504 spa_deadman, spa, TQ_PUSHPAGE, ddi_get_lbolt() +
505 NSEC_TO_TICK(spa->spa_deadman_synctime));
506 }
507
508 /*
509 * Create an uninitialized spa_t with the given name. Requires
510 * spa_namespace_lock. The caller must ensure that the spa_t doesn't already
511 * exist by calling spa_lookup() first.
512 */
513 spa_t *
514 spa_add(const char *name, nvlist_t *config, const char *altroot)
515 {
516 spa_t *spa;
517 spa_config_dirent_t *dp;
518 int t;
519 int i;
520
521 ASSERT(MUTEX_HELD(&spa_namespace_lock));
522
523 spa = kmem_zalloc(sizeof (spa_t), KM_PUSHPAGE | KM_NODEBUG);
524
525 mutex_init(&spa->spa_async_lock, NULL, MUTEX_DEFAULT, NULL);
526 mutex_init(&spa->spa_errlist_lock, NULL, MUTEX_DEFAULT, NULL);
527 mutex_init(&spa->spa_errlog_lock, NULL, MUTEX_DEFAULT, NULL);
528 mutex_init(&spa->spa_history_lock, NULL, MUTEX_DEFAULT, NULL);
529 mutex_init(&spa->spa_proc_lock, NULL, MUTEX_DEFAULT, NULL);
530 mutex_init(&spa->spa_props_lock, NULL, MUTEX_DEFAULT, NULL);
531 mutex_init(&spa->spa_scrub_lock, NULL, MUTEX_DEFAULT, NULL);
532 mutex_init(&spa->spa_suspend_lock, NULL, MUTEX_DEFAULT, NULL);
533 mutex_init(&spa->spa_vdev_top_lock, NULL, MUTEX_DEFAULT, NULL);
534
535 cv_init(&spa->spa_async_cv, NULL, CV_DEFAULT, NULL);
536 cv_init(&spa->spa_proc_cv, NULL, CV_DEFAULT, NULL);
537 cv_init(&spa->spa_scrub_io_cv, NULL, CV_DEFAULT, NULL);
538 cv_init(&spa->spa_suspend_cv, NULL, CV_DEFAULT, NULL);
539
540 for (t = 0; t < TXG_SIZE; t++)
541 bplist_create(&spa->spa_free_bplist[t]);
542
543 (void) strlcpy(spa->spa_name, name, sizeof (spa->spa_name));
544 spa->spa_state = POOL_STATE_UNINITIALIZED;
545 spa->spa_freeze_txg = UINT64_MAX;
546 spa->spa_final_txg = UINT64_MAX;
547 spa->spa_load_max_txg = UINT64_MAX;
548 spa->spa_proc = &p0;
549 spa->spa_proc_state = SPA_PROC_NONE;
550
551 spa->spa_deadman_synctime = MSEC2NSEC(zfs_deadman_synctime_ms);
552
553 refcount_create(&spa->spa_refcount);
554 spa_config_lock_init(spa);
555 spa_stats_init(spa);
556
557 avl_add(&spa_namespace_avl, spa);
558
559 /*
560 * Set the alternate root, if there is one.
561 */
562 if (altroot) {
563 spa->spa_root = spa_strdup(altroot);
564 spa_active_count++;
565 }
566
567 /*
568 * Every pool starts with the default cachefile
569 */
570 list_create(&spa->spa_config_list, sizeof (spa_config_dirent_t),
571 offsetof(spa_config_dirent_t, scd_link));
572
573 dp = kmem_zalloc(sizeof (spa_config_dirent_t), KM_PUSHPAGE);
574 dp->scd_path = altroot ? NULL : spa_strdup(spa_config_path);
575 list_insert_head(&spa->spa_config_list, dp);
576
577 VERIFY(nvlist_alloc(&spa->spa_load_info, NV_UNIQUE_NAME,
578 KM_PUSHPAGE) == 0);
579
580 if (config != NULL) {
581 nvlist_t *features;
582
583 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_FEATURES_FOR_READ,
584 &features) == 0) {
585 VERIFY(nvlist_dup(features, &spa->spa_label_features,
586 0) == 0);
587 }
588
589 VERIFY(nvlist_dup(config, &spa->spa_config, 0) == 0);
590 }
591
592 if (spa->spa_label_features == NULL) {
593 VERIFY(nvlist_alloc(&spa->spa_label_features, NV_UNIQUE_NAME,
594 KM_PUSHPAGE) == 0);
595 }
596
597 spa->spa_debug = ((zfs_flags & ZFS_DEBUG_SPA) != 0);
598
599 /*
600 * As a pool is being created, treat all features as disabled by
601 * setting SPA_FEATURE_DISABLED for all entries in the feature
602 * refcount cache.
603 */
604 for (i = 0; i < SPA_FEATURES; i++) {
605 spa->spa_feat_refcount_cache[i] = SPA_FEATURE_DISABLED;
606 }
607
608 return (spa);
609 }
610
611 /*
612 * Removes a spa_t from the namespace, freeing up any memory used. Requires
613 * spa_namespace_lock. This is called only after the spa_t has been closed and
614 * deactivated.
615 */
616 void
617 spa_remove(spa_t *spa)
618 {
619 spa_config_dirent_t *dp;
620 int t;
621
622 ASSERT(MUTEX_HELD(&spa_namespace_lock));
623 ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED);
624
625 nvlist_free(spa->spa_config_splitting);
626
627 avl_remove(&spa_namespace_avl, spa);
628 cv_broadcast(&spa_namespace_cv);
629
630 if (spa->spa_root) {
631 spa_strfree(spa->spa_root);
632 spa_active_count--;
633 }
634
635 while ((dp = list_head(&spa->spa_config_list)) != NULL) {
636 list_remove(&spa->spa_config_list, dp);
637 if (dp->scd_path != NULL)
638 spa_strfree(dp->scd_path);
639 kmem_free(dp, sizeof (spa_config_dirent_t));
640 }
641
642 list_destroy(&spa->spa_config_list);
643
644 nvlist_free(spa->spa_label_features);
645 nvlist_free(spa->spa_load_info);
646 spa_config_set(spa, NULL);
647
648 refcount_destroy(&spa->spa_refcount);
649
650 spa_stats_destroy(spa);
651 spa_config_lock_destroy(spa);
652
653 for (t = 0; t < TXG_SIZE; t++)
654 bplist_destroy(&spa->spa_free_bplist[t]);
655
656 cv_destroy(&spa->spa_async_cv);
657 cv_destroy(&spa->spa_proc_cv);
658 cv_destroy(&spa->spa_scrub_io_cv);
659 cv_destroy(&spa->spa_suspend_cv);
660
661 mutex_destroy(&spa->spa_async_lock);
662 mutex_destroy(&spa->spa_errlist_lock);
663 mutex_destroy(&spa->spa_errlog_lock);
664 mutex_destroy(&spa->spa_history_lock);
665 mutex_destroy(&spa->spa_proc_lock);
666 mutex_destroy(&spa->spa_props_lock);
667 mutex_destroy(&spa->spa_scrub_lock);
668 mutex_destroy(&spa->spa_suspend_lock);
669 mutex_destroy(&spa->spa_vdev_top_lock);
670
671 kmem_free(spa, sizeof (spa_t));
672 }
673
674 /*
675 * Given a pool, return the next pool in the namespace, or NULL if there is
676 * none. If 'prev' is NULL, return the first pool.
677 */
678 spa_t *
679 spa_next(spa_t *prev)
680 {
681 ASSERT(MUTEX_HELD(&spa_namespace_lock));
682
683 if (prev)
684 return (AVL_NEXT(&spa_namespace_avl, prev));
685 else
686 return (avl_first(&spa_namespace_avl));
687 }
688
689 /*
690 * ==========================================================================
691 * SPA refcount functions
692 * ==========================================================================
693 */
694
695 /*
696 * Add a reference to the given spa_t. Must have at least one reference, or
697 * have the namespace lock held.
698 */
699 void
700 spa_open_ref(spa_t *spa, void *tag)
701 {
702 ASSERT(refcount_count(&spa->spa_refcount) >= spa->spa_minref ||
703 MUTEX_HELD(&spa_namespace_lock));
704 (void) refcount_add(&spa->spa_refcount, tag);
705 }
706
707 /*
708 * Remove a reference to the given spa_t. Must have at least one reference, or
709 * have the namespace lock held.
710 */
711 void
712 spa_close(spa_t *spa, void *tag)
713 {
714 ASSERT(refcount_count(&spa->spa_refcount) > spa->spa_minref ||
715 MUTEX_HELD(&spa_namespace_lock));
716 (void) refcount_remove(&spa->spa_refcount, tag);
717 }
718
719 /*
720 * Check to see if the spa refcount is zero. Must be called with
721 * spa_namespace_lock held. We really compare against spa_minref, which is the
722 * number of references acquired when opening a pool
723 */
724 boolean_t
725 spa_refcount_zero(spa_t *spa)
726 {
727 ASSERT(MUTEX_HELD(&spa_namespace_lock));
728
729 return (refcount_count(&spa->spa_refcount) == spa->spa_minref);
730 }
731
732 /*
733 * ==========================================================================
734 * SPA spare and l2cache tracking
735 * ==========================================================================
736 */
737
738 /*
739 * Hot spares and cache devices are tracked using the same code below,
740 * for 'auxiliary' devices.
741 */
742
743 typedef struct spa_aux {
744 uint64_t aux_guid;
745 uint64_t aux_pool;
746 avl_node_t aux_avl;
747 int aux_count;
748 } spa_aux_t;
749
750 static int
751 spa_aux_compare(const void *a, const void *b)
752 {
753 const spa_aux_t *sa = a;
754 const spa_aux_t *sb = b;
755
756 if (sa->aux_guid < sb->aux_guid)
757 return (-1);
758 else if (sa->aux_guid > sb->aux_guid)
759 return (1);
760 else
761 return (0);
762 }
763
764 void
765 spa_aux_add(vdev_t *vd, avl_tree_t *avl)
766 {
767 avl_index_t where;
768 spa_aux_t search;
769 spa_aux_t *aux;
770
771 search.aux_guid = vd->vdev_guid;
772 if ((aux = avl_find(avl, &search, &where)) != NULL) {
773 aux->aux_count++;
774 } else {
775 aux = kmem_zalloc(sizeof (spa_aux_t), KM_PUSHPAGE);
776 aux->aux_guid = vd->vdev_guid;
777 aux->aux_count = 1;
778 avl_insert(avl, aux, where);
779 }
780 }
781
782 void
783 spa_aux_remove(vdev_t *vd, avl_tree_t *avl)
784 {
785 spa_aux_t search;
786 spa_aux_t *aux;
787 avl_index_t where;
788
789 search.aux_guid = vd->vdev_guid;
790 aux = avl_find(avl, &search, &where);
791
792 ASSERT(aux != NULL);
793
794 if (--aux->aux_count == 0) {
795 avl_remove(avl, aux);
796 kmem_free(aux, sizeof (spa_aux_t));
797 } else if (aux->aux_pool == spa_guid(vd->vdev_spa)) {
798 aux->aux_pool = 0ULL;
799 }
800 }
801
802 boolean_t
803 spa_aux_exists(uint64_t guid, uint64_t *pool, int *refcnt, avl_tree_t *avl)
804 {
805 spa_aux_t search, *found;
806
807 search.aux_guid = guid;
808 found = avl_find(avl, &search, NULL);
809
810 if (pool) {
811 if (found)
812 *pool = found->aux_pool;
813 else
814 *pool = 0ULL;
815 }
816
817 if (refcnt) {
818 if (found)
819 *refcnt = found->aux_count;
820 else
821 *refcnt = 0;
822 }
823
824 return (found != NULL);
825 }
826
827 void
828 spa_aux_activate(vdev_t *vd, avl_tree_t *avl)
829 {
830 spa_aux_t search, *found;
831 avl_index_t where;
832
833 search.aux_guid = vd->vdev_guid;
834 found = avl_find(avl, &search, &where);
835 ASSERT(found != NULL);
836 ASSERT(found->aux_pool == 0ULL);
837
838 found->aux_pool = spa_guid(vd->vdev_spa);
839 }
840
841 /*
842 * Spares are tracked globally due to the following constraints:
843 *
844 * - A spare may be part of multiple pools.
845 * - A spare may be added to a pool even if it's actively in use within
846 * another pool.
847 * - A spare in use in any pool can only be the source of a replacement if
848 * the target is a spare in the same pool.
849 *
850 * We keep track of all spares on the system through the use of a reference
851 * counted AVL tree. When a vdev is added as a spare, or used as a replacement
852 * spare, then we bump the reference count in the AVL tree. In addition, we set
853 * the 'vdev_isspare' member to indicate that the device is a spare (active or
854 * inactive). When a spare is made active (used to replace a device in the
855 * pool), we also keep track of which pool its been made a part of.
856 *
857 * The 'spa_spare_lock' protects the AVL tree. These functions are normally
858 * called under the spa_namespace lock as part of vdev reconfiguration. The
859 * separate spare lock exists for the status query path, which does not need to
860 * be completely consistent with respect to other vdev configuration changes.
861 */
862
863 static int
864 spa_spare_compare(const void *a, const void *b)
865 {
866 return (spa_aux_compare(a, b));
867 }
868
869 void
870 spa_spare_add(vdev_t *vd)
871 {
872 mutex_enter(&spa_spare_lock);
873 ASSERT(!vd->vdev_isspare);
874 spa_aux_add(vd, &spa_spare_avl);
875 vd->vdev_isspare = B_TRUE;
876 mutex_exit(&spa_spare_lock);
877 }
878
879 void
880 spa_spare_remove(vdev_t *vd)
881 {
882 mutex_enter(&spa_spare_lock);
883 ASSERT(vd->vdev_isspare);
884 spa_aux_remove(vd, &spa_spare_avl);
885 vd->vdev_isspare = B_FALSE;
886 mutex_exit(&spa_spare_lock);
887 }
888
889 boolean_t
890 spa_spare_exists(uint64_t guid, uint64_t *pool, int *refcnt)
891 {
892 boolean_t found;
893
894 mutex_enter(&spa_spare_lock);
895 found = spa_aux_exists(guid, pool, refcnt, &spa_spare_avl);
896 mutex_exit(&spa_spare_lock);
897
898 return (found);
899 }
900
901 void
902 spa_spare_activate(vdev_t *vd)
903 {
904 mutex_enter(&spa_spare_lock);
905 ASSERT(vd->vdev_isspare);
906 spa_aux_activate(vd, &spa_spare_avl);
907 mutex_exit(&spa_spare_lock);
908 }
909
910 /*
911 * Level 2 ARC devices are tracked globally for the same reasons as spares.
912 * Cache devices currently only support one pool per cache device, and so
913 * for these devices the aux reference count is currently unused beyond 1.
914 */
915
916 static int
917 spa_l2cache_compare(const void *a, const void *b)
918 {
919 return (spa_aux_compare(a, b));
920 }
921
922 void
923 spa_l2cache_add(vdev_t *vd)
924 {
925 mutex_enter(&spa_l2cache_lock);
926 ASSERT(!vd->vdev_isl2cache);
927 spa_aux_add(vd, &spa_l2cache_avl);
928 vd->vdev_isl2cache = B_TRUE;
929 mutex_exit(&spa_l2cache_lock);
930 }
931
932 void
933 spa_l2cache_remove(vdev_t *vd)
934 {
935 mutex_enter(&spa_l2cache_lock);
936 ASSERT(vd->vdev_isl2cache);
937 spa_aux_remove(vd, &spa_l2cache_avl);
938 vd->vdev_isl2cache = B_FALSE;
939 mutex_exit(&spa_l2cache_lock);
940 }
941
942 boolean_t
943 spa_l2cache_exists(uint64_t guid, uint64_t *pool)
944 {
945 boolean_t found;
946
947 mutex_enter(&spa_l2cache_lock);
948 found = spa_aux_exists(guid, pool, NULL, &spa_l2cache_avl);
949 mutex_exit(&spa_l2cache_lock);
950
951 return (found);
952 }
953
954 void
955 spa_l2cache_activate(vdev_t *vd)
956 {
957 mutex_enter(&spa_l2cache_lock);
958 ASSERT(vd->vdev_isl2cache);
959 spa_aux_activate(vd, &spa_l2cache_avl);
960 mutex_exit(&spa_l2cache_lock);
961 }
962
963 /*
964 * ==========================================================================
965 * SPA vdev locking
966 * ==========================================================================
967 */
968
969 /*
970 * Lock the given spa_t for the purpose of adding or removing a vdev.
971 * Grabs the global spa_namespace_lock plus the spa config lock for writing.
972 * It returns the next transaction group for the spa_t.
973 */
974 uint64_t
975 spa_vdev_enter(spa_t *spa)
976 {
977 mutex_enter(&spa->spa_vdev_top_lock);
978 mutex_enter(&spa_namespace_lock);
979 return (spa_vdev_config_enter(spa));
980 }
981
982 /*
983 * Internal implementation for spa_vdev_enter(). Used when a vdev
984 * operation requires multiple syncs (i.e. removing a device) while
985 * keeping the spa_namespace_lock held.
986 */
987 uint64_t
988 spa_vdev_config_enter(spa_t *spa)
989 {
990 ASSERT(MUTEX_HELD(&spa_namespace_lock));
991
992 spa_config_enter(spa, SCL_ALL, spa, RW_WRITER);
993
994 return (spa_last_synced_txg(spa) + 1);
995 }
996
997 /*
998 * Used in combination with spa_vdev_config_enter() to allow the syncing
999 * of multiple transactions without releasing the spa_namespace_lock.
1000 */
1001 void
1002 spa_vdev_config_exit(spa_t *spa, vdev_t *vd, uint64_t txg, int error, char *tag)
1003 {
1004 int config_changed = B_FALSE;
1005
1006 ASSERT(MUTEX_HELD(&spa_namespace_lock));
1007 ASSERT(txg > spa_last_synced_txg(spa));
1008
1009 spa->spa_pending_vdev = NULL;
1010
1011 /*
1012 * Reassess the DTLs.
1013 */
1014 vdev_dtl_reassess(spa->spa_root_vdev, 0, 0, B_FALSE);
1015
1016 if (error == 0 && !list_is_empty(&spa->spa_config_dirty_list)) {
1017 config_changed = B_TRUE;
1018 spa->spa_config_generation++;
1019 }
1020
1021 /*
1022 * Verify the metaslab classes.
1023 */
1024 ASSERT(metaslab_class_validate(spa_normal_class(spa)) == 0);
1025 ASSERT(metaslab_class_validate(spa_log_class(spa)) == 0);
1026
1027 spa_config_exit(spa, SCL_ALL, spa);
1028
1029 /*
1030 * Panic the system if the specified tag requires it. This
1031 * is useful for ensuring that configurations are updated
1032 * transactionally.
1033 */
1034 if (zio_injection_enabled)
1035 zio_handle_panic_injection(spa, tag, 0);
1036
1037 /*
1038 * Note: this txg_wait_synced() is important because it ensures
1039 * that there won't be more than one config change per txg.
1040 * This allows us to use the txg as the generation number.
1041 */
1042 if (error == 0)
1043 txg_wait_synced(spa->spa_dsl_pool, txg);
1044
1045 if (vd != NULL) {
1046 ASSERT(!vd->vdev_detached || vd->vdev_dtl_sm == NULL);
1047 spa_config_enter(spa, SCL_ALL, spa, RW_WRITER);
1048 vdev_free(vd);
1049 spa_config_exit(spa, SCL_ALL, spa);
1050 }
1051
1052 /*
1053 * If the config changed, update the config cache.
1054 */
1055 if (config_changed)
1056 spa_config_sync(spa, B_FALSE, B_TRUE);
1057 }
1058
1059 /*
1060 * Unlock the spa_t after adding or removing a vdev. Besides undoing the
1061 * locking of spa_vdev_enter(), we also want make sure the transactions have
1062 * synced to disk, and then update the global configuration cache with the new
1063 * information.
1064 */
1065 int
1066 spa_vdev_exit(spa_t *spa, vdev_t *vd, uint64_t txg, int error)
1067 {
1068 spa_vdev_config_exit(spa, vd, txg, error, FTAG);
1069 mutex_exit(&spa_namespace_lock);
1070 mutex_exit(&spa->spa_vdev_top_lock);
1071
1072 return (error);
1073 }
1074
1075 /*
1076 * Lock the given spa_t for the purpose of changing vdev state.
1077 */
1078 void
1079 spa_vdev_state_enter(spa_t *spa, int oplocks)
1080 {
1081 int locks = SCL_STATE_ALL | oplocks;
1082
1083 /*
1084 * Root pools may need to read of the underlying devfs filesystem
1085 * when opening up a vdev. Unfortunately if we're holding the
1086 * SCL_ZIO lock it will result in a deadlock when we try to issue
1087 * the read from the root filesystem. Instead we "prefetch"
1088 * the associated vnodes that we need prior to opening the
1089 * underlying devices and cache them so that we can prevent
1090 * any I/O when we are doing the actual open.
1091 */
1092 if (spa_is_root(spa)) {
1093 int low = locks & ~(SCL_ZIO - 1);
1094 int high = locks & ~low;
1095
1096 spa_config_enter(spa, high, spa, RW_WRITER);
1097 vdev_hold(spa->spa_root_vdev);
1098 spa_config_enter(spa, low, spa, RW_WRITER);
1099 } else {
1100 spa_config_enter(spa, locks, spa, RW_WRITER);
1101 }
1102 spa->spa_vdev_locks = locks;
1103 }
1104
1105 int
1106 spa_vdev_state_exit(spa_t *spa, vdev_t *vd, int error)
1107 {
1108 boolean_t config_changed = B_FALSE;
1109
1110 if (vd != NULL || error == 0)
1111 vdev_dtl_reassess(vd ? vd->vdev_top : spa->spa_root_vdev,
1112 0, 0, B_FALSE);
1113
1114 if (vd != NULL) {
1115 vdev_state_dirty(vd->vdev_top);
1116 config_changed = B_TRUE;
1117 spa->spa_config_generation++;
1118 }
1119
1120 if (spa_is_root(spa))
1121 vdev_rele(spa->spa_root_vdev);
1122
1123 ASSERT3U(spa->spa_vdev_locks, >=, SCL_STATE_ALL);
1124 spa_config_exit(spa, spa->spa_vdev_locks, spa);
1125
1126 /*
1127 * If anything changed, wait for it to sync. This ensures that,
1128 * from the system administrator's perspective, zpool(1M) commands
1129 * are synchronous. This is important for things like zpool offline:
1130 * when the command completes, you expect no further I/O from ZFS.
1131 */
1132 if (vd != NULL)
1133 txg_wait_synced(spa->spa_dsl_pool, 0);
1134
1135 /*
1136 * If the config changed, update the config cache.
1137 */
1138 if (config_changed) {
1139 mutex_enter(&spa_namespace_lock);
1140 spa_config_sync(spa, B_FALSE, B_TRUE);
1141 mutex_exit(&spa_namespace_lock);
1142 }
1143
1144 return (error);
1145 }
1146
1147 /*
1148 * ==========================================================================
1149 * Miscellaneous functions
1150 * ==========================================================================
1151 */
1152
1153 void
1154 spa_activate_mos_feature(spa_t *spa, const char *feature, dmu_tx_t *tx)
1155 {
1156 if (!nvlist_exists(spa->spa_label_features, feature)) {
1157 fnvlist_add_boolean(spa->spa_label_features, feature);
1158 /*
1159 * When we are creating the pool (tx_txg==TXG_INITIAL), we can't
1160 * dirty the vdev config because lock SCL_CONFIG is not held.
1161 * Thankfully, in this case we don't need to dirty the config
1162 * because it will be written out anyway when we finish
1163 * creating the pool.
1164 */
1165 if (tx->tx_txg != TXG_INITIAL)
1166 vdev_config_dirty(spa->spa_root_vdev);
1167 }
1168 }
1169
1170 void
1171 spa_deactivate_mos_feature(spa_t *spa, const char *feature)
1172 {
1173 if (nvlist_remove_all(spa->spa_label_features, feature) == 0)
1174 vdev_config_dirty(spa->spa_root_vdev);
1175 }
1176
1177 /*
1178 * Rename a spa_t.
1179 */
1180 int
1181 spa_rename(const char *name, const char *newname)
1182 {
1183 spa_t *spa;
1184 int err;
1185
1186 /*
1187 * Lookup the spa_t and grab the config lock for writing. We need to
1188 * actually open the pool so that we can sync out the necessary labels.
1189 * It's OK to call spa_open() with the namespace lock held because we
1190 * allow recursive calls for other reasons.
1191 */
1192 mutex_enter(&spa_namespace_lock);
1193 if ((err = spa_open(name, &spa, FTAG)) != 0) {
1194 mutex_exit(&spa_namespace_lock);
1195 return (err);
1196 }
1197
1198 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1199
1200 avl_remove(&spa_namespace_avl, spa);
1201 (void) strlcpy(spa->spa_name, newname, sizeof (spa->spa_name));
1202 avl_add(&spa_namespace_avl, spa);
1203
1204 /*
1205 * Sync all labels to disk with the new names by marking the root vdev
1206 * dirty and waiting for it to sync. It will pick up the new pool name
1207 * during the sync.
1208 */
1209 vdev_config_dirty(spa->spa_root_vdev);
1210
1211 spa_config_exit(spa, SCL_ALL, FTAG);
1212
1213 txg_wait_synced(spa->spa_dsl_pool, 0);
1214
1215 /*
1216 * Sync the updated config cache.
1217 */
1218 spa_config_sync(spa, B_FALSE, B_TRUE);
1219
1220 spa_close(spa, FTAG);
1221
1222 mutex_exit(&spa_namespace_lock);
1223
1224 return (0);
1225 }
1226
1227 /*
1228 * Return the spa_t associated with given pool_guid, if it exists. If
1229 * device_guid is non-zero, determine whether the pool exists *and* contains
1230 * a device with the specified device_guid.
1231 */
1232 spa_t *
1233 spa_by_guid(uint64_t pool_guid, uint64_t device_guid)
1234 {
1235 spa_t *spa;
1236 avl_tree_t *t = &spa_namespace_avl;
1237
1238 ASSERT(MUTEX_HELD(&spa_namespace_lock));
1239
1240 for (spa = avl_first(t); spa != NULL; spa = AVL_NEXT(t, spa)) {
1241 if (spa->spa_state == POOL_STATE_UNINITIALIZED)
1242 continue;
1243 if (spa->spa_root_vdev == NULL)
1244 continue;
1245 if (spa_guid(spa) == pool_guid) {
1246 if (device_guid == 0)
1247 break;
1248
1249 if (vdev_lookup_by_guid(spa->spa_root_vdev,
1250 device_guid) != NULL)
1251 break;
1252
1253 /*
1254 * Check any devices we may be in the process of adding.
1255 */
1256 if (spa->spa_pending_vdev) {
1257 if (vdev_lookup_by_guid(spa->spa_pending_vdev,
1258 device_guid) != NULL)
1259 break;
1260 }
1261 }
1262 }
1263
1264 return (spa);
1265 }
1266
1267 /*
1268 * Determine whether a pool with the given pool_guid exists.
1269 */
1270 boolean_t
1271 spa_guid_exists(uint64_t pool_guid, uint64_t device_guid)
1272 {
1273 return (spa_by_guid(pool_guid, device_guid) != NULL);
1274 }
1275
1276 char *
1277 spa_strdup(const char *s)
1278 {
1279 size_t len;
1280 char *new;
1281
1282 len = strlen(s);
1283 new = kmem_alloc(len + 1, KM_PUSHPAGE);
1284 bcopy(s, new, len);
1285 new[len] = '\0';
1286
1287 return (new);
1288 }
1289
1290 void
1291 spa_strfree(char *s)
1292 {
1293 kmem_free(s, strlen(s) + 1);
1294 }
1295
1296 uint64_t
1297 spa_get_random(uint64_t range)
1298 {
1299 uint64_t r;
1300
1301 ASSERT(range != 0);
1302
1303 (void) random_get_pseudo_bytes((void *)&r, sizeof (uint64_t));
1304
1305 return (r % range);
1306 }
1307
1308 uint64_t
1309 spa_generate_guid(spa_t *spa)
1310 {
1311 uint64_t guid = spa_get_random(-1ULL);
1312
1313 if (spa != NULL) {
1314 while (guid == 0 || spa_guid_exists(spa_guid(spa), guid))
1315 guid = spa_get_random(-1ULL);
1316 } else {
1317 while (guid == 0 || spa_guid_exists(guid, 0))
1318 guid = spa_get_random(-1ULL);
1319 }
1320
1321 return (guid);
1322 }
1323
1324 void
1325 snprintf_blkptr(char *buf, size_t buflen, const blkptr_t *bp)
1326 {
1327 char type[256];
1328 char *checksum = NULL;
1329 char *compress = NULL;
1330
1331 if (bp != NULL) {
1332 if (BP_GET_TYPE(bp) & DMU_OT_NEWTYPE) {
1333 dmu_object_byteswap_t bswap =
1334 DMU_OT_BYTESWAP(BP_GET_TYPE(bp));
1335 (void) snprintf(type, sizeof (type), "bswap %s %s",
1336 DMU_OT_IS_METADATA(BP_GET_TYPE(bp)) ?
1337 "metadata" : "data",
1338 dmu_ot_byteswap[bswap].ob_name);
1339 } else {
1340 (void) strlcpy(type, dmu_ot[BP_GET_TYPE(bp)].ot_name,
1341 sizeof (type));
1342 }
1343 if (!BP_IS_EMBEDDED(bp)) {
1344 checksum =
1345 zio_checksum_table[BP_GET_CHECKSUM(bp)].ci_name;
1346 }
1347 compress = zio_compress_table[BP_GET_COMPRESS(bp)].ci_name;
1348 }
1349
1350 SNPRINTF_BLKPTR(snprintf, ' ', buf, buflen, bp, type, checksum,
1351 compress);
1352 }
1353
1354 void
1355 spa_freeze(spa_t *spa)
1356 {
1357 uint64_t freeze_txg = 0;
1358
1359 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1360 if (spa->spa_freeze_txg == UINT64_MAX) {
1361 freeze_txg = spa_last_synced_txg(spa) + TXG_SIZE;
1362 spa->spa_freeze_txg = freeze_txg;
1363 }
1364 spa_config_exit(spa, SCL_ALL, FTAG);
1365 if (freeze_txg != 0)
1366 txg_wait_synced(spa_get_dsl(spa), freeze_txg);
1367 }
1368
1369 void
1370 zfs_panic_recover(const char *fmt, ...)
1371 {
1372 va_list adx;
1373
1374 va_start(adx, fmt);
1375 vcmn_err(zfs_recover ? CE_WARN : CE_PANIC, fmt, adx);
1376 va_end(adx);
1377 }
1378
1379 /*
1380 * This is a stripped-down version of strtoull, suitable only for converting
1381 * lowercase hexadecimal numbers that don't overflow.
1382 */
1383 uint64_t
1384 strtonum(const char *str, char **nptr)
1385 {
1386 uint64_t val = 0;
1387 char c;
1388 int digit;
1389
1390 while ((c = *str) != '\0') {
1391 if (c >= '0' && c <= '9')
1392 digit = c - '0';
1393 else if (c >= 'a' && c <= 'f')
1394 digit = 10 + c - 'a';
1395 else
1396 break;
1397
1398 val *= 16;
1399 val += digit;
1400
1401 str++;
1402 }
1403
1404 if (nptr)
1405 *nptr = (char *)str;
1406
1407 return (val);
1408 }
1409
1410 /*
1411 * ==========================================================================
1412 * Accessor functions
1413 * ==========================================================================
1414 */
1415
1416 boolean_t
1417 spa_shutting_down(spa_t *spa)
1418 {
1419 return (spa->spa_async_suspended);
1420 }
1421
1422 dsl_pool_t *
1423 spa_get_dsl(spa_t *spa)
1424 {
1425 return (spa->spa_dsl_pool);
1426 }
1427
1428 boolean_t
1429 spa_is_initializing(spa_t *spa)
1430 {
1431 return (spa->spa_is_initializing);
1432 }
1433
1434 blkptr_t *
1435 spa_get_rootblkptr(spa_t *spa)
1436 {
1437 return (&spa->spa_ubsync.ub_rootbp);
1438 }
1439
1440 void
1441 spa_set_rootblkptr(spa_t *spa, const blkptr_t *bp)
1442 {
1443 spa->spa_uberblock.ub_rootbp = *bp;
1444 }
1445
1446 void
1447 spa_altroot(spa_t *spa, char *buf, size_t buflen)
1448 {
1449 if (spa->spa_root == NULL)
1450 buf[0] = '\0';
1451 else
1452 (void) strncpy(buf, spa->spa_root, buflen);
1453 }
1454
1455 int
1456 spa_sync_pass(spa_t *spa)
1457 {
1458 return (spa->spa_sync_pass);
1459 }
1460
1461 char *
1462 spa_name(spa_t *spa)
1463 {
1464 return (spa->spa_name);
1465 }
1466
1467 uint64_t
1468 spa_guid(spa_t *spa)
1469 {
1470 dsl_pool_t *dp = spa_get_dsl(spa);
1471 uint64_t guid;
1472
1473 /*
1474 * If we fail to parse the config during spa_load(), we can go through
1475 * the error path (which posts an ereport) and end up here with no root
1476 * vdev. We stash the original pool guid in 'spa_config_guid' to handle
1477 * this case.
1478 */
1479 if (spa->spa_root_vdev == NULL)
1480 return (spa->spa_config_guid);
1481
1482 guid = spa->spa_last_synced_guid != 0 ?
1483 spa->spa_last_synced_guid : spa->spa_root_vdev->vdev_guid;
1484
1485 /*
1486 * Return the most recently synced out guid unless we're
1487 * in syncing context.
1488 */
1489 if (dp && dsl_pool_sync_context(dp))
1490 return (spa->spa_root_vdev->vdev_guid);
1491 else
1492 return (guid);
1493 }
1494
1495 uint64_t
1496 spa_load_guid(spa_t *spa)
1497 {
1498 /*
1499 * This is a GUID that exists solely as a reference for the
1500 * purposes of the arc. It is generated at load time, and
1501 * is never written to persistent storage.
1502 */
1503 return (spa->spa_load_guid);
1504 }
1505
1506 uint64_t
1507 spa_last_synced_txg(spa_t *spa)
1508 {
1509 return (spa->spa_ubsync.ub_txg);
1510 }
1511
1512 uint64_t
1513 spa_first_txg(spa_t *spa)
1514 {
1515 return (spa->spa_first_txg);
1516 }
1517
1518 uint64_t
1519 spa_syncing_txg(spa_t *spa)
1520 {
1521 return (spa->spa_syncing_txg);
1522 }
1523
1524 pool_state_t
1525 spa_state(spa_t *spa)
1526 {
1527 return (spa->spa_state);
1528 }
1529
1530 spa_load_state_t
1531 spa_load_state(spa_t *spa)
1532 {
1533 return (spa->spa_load_state);
1534 }
1535
1536 uint64_t
1537 spa_freeze_txg(spa_t *spa)
1538 {
1539 return (spa->spa_freeze_txg);
1540 }
1541
1542 /* ARGSUSED */
1543 uint64_t
1544 spa_get_asize(spa_t *spa, uint64_t lsize)
1545 {
1546 return (lsize * spa_asize_inflation);
1547 }
1548
1549 uint64_t
1550 spa_get_dspace(spa_t *spa)
1551 {
1552 return (spa->spa_dspace);
1553 }
1554
1555 void
1556 spa_update_dspace(spa_t *spa)
1557 {
1558 spa->spa_dspace = metaslab_class_get_dspace(spa_normal_class(spa)) +
1559 ddt_get_dedup_dspace(spa);
1560 }
1561
1562 /*
1563 * Return the failure mode that has been set to this pool. The default
1564 * behavior will be to block all I/Os when a complete failure occurs.
1565 */
1566 uint8_t
1567 spa_get_failmode(spa_t *spa)
1568 {
1569 return (spa->spa_failmode);
1570 }
1571
1572 boolean_t
1573 spa_suspended(spa_t *spa)
1574 {
1575 return (spa->spa_suspended);
1576 }
1577
1578 uint64_t
1579 spa_version(spa_t *spa)
1580 {
1581 return (spa->spa_ubsync.ub_version);
1582 }
1583
1584 boolean_t
1585 spa_deflate(spa_t *spa)
1586 {
1587 return (spa->spa_deflate);
1588 }
1589
1590 metaslab_class_t *
1591 spa_normal_class(spa_t *spa)
1592 {
1593 return (spa->spa_normal_class);
1594 }
1595
1596 metaslab_class_t *
1597 spa_log_class(spa_t *spa)
1598 {
1599 return (spa->spa_log_class);
1600 }
1601
1602 int
1603 spa_max_replication(spa_t *spa)
1604 {
1605 /*
1606 * As of SPA_VERSION == SPA_VERSION_DITTO_BLOCKS, we are able to
1607 * handle BPs with more than one DVA allocated. Set our max
1608 * replication level accordingly.
1609 */
1610 if (spa_version(spa) < SPA_VERSION_DITTO_BLOCKS)
1611 return (1);
1612 return (MIN(SPA_DVAS_PER_BP, spa_max_replication_override));
1613 }
1614
1615 int
1616 spa_prev_software_version(spa_t *spa)
1617 {
1618 return (spa->spa_prev_software_version);
1619 }
1620
1621 uint64_t
1622 spa_deadman_synctime(spa_t *spa)
1623 {
1624 return (spa->spa_deadman_synctime);
1625 }
1626
1627 uint64_t
1628 dva_get_dsize_sync(spa_t *spa, const dva_t *dva)
1629 {
1630 uint64_t asize = DVA_GET_ASIZE(dva);
1631 uint64_t dsize = asize;
1632
1633 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
1634
1635 if (asize != 0 && spa->spa_deflate) {
1636 vdev_t *vd = vdev_lookup_top(spa, DVA_GET_VDEV(dva));
1637 if (vd != NULL)
1638 dsize = (asize >> SPA_MINBLOCKSHIFT) *
1639 vd->vdev_deflate_ratio;
1640 }
1641
1642 return (dsize);
1643 }
1644
1645 uint64_t
1646 bp_get_dsize_sync(spa_t *spa, const blkptr_t *bp)
1647 {
1648 uint64_t dsize = 0;
1649 int d;
1650
1651 for (d = 0; d < BP_GET_NDVAS(bp); d++)
1652 dsize += dva_get_dsize_sync(spa, &bp->blk_dva[d]);
1653
1654 return (dsize);
1655 }
1656
1657 uint64_t
1658 bp_get_dsize(spa_t *spa, const blkptr_t *bp)
1659 {
1660 uint64_t dsize = 0;
1661 int d;
1662
1663 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
1664
1665 for (d = 0; d < BP_GET_NDVAS(bp); d++)
1666 dsize += dva_get_dsize_sync(spa, &bp->blk_dva[d]);
1667
1668 spa_config_exit(spa, SCL_VDEV, FTAG);
1669
1670 return (dsize);
1671 }
1672
1673 /*
1674 * ==========================================================================
1675 * Initialization and Termination
1676 * ==========================================================================
1677 */
1678
1679 static int
1680 spa_name_compare(const void *a1, const void *a2)
1681 {
1682 const spa_t *s1 = a1;
1683 const spa_t *s2 = a2;
1684 int s;
1685
1686 s = strcmp(s1->spa_name, s2->spa_name);
1687 if (s > 0)
1688 return (1);
1689 if (s < 0)
1690 return (-1);
1691 return (0);
1692 }
1693
1694 void
1695 spa_boot_init(void)
1696 {
1697 spa_config_load();
1698 }
1699
1700 void
1701 spa_init(int mode)
1702 {
1703 mutex_init(&spa_namespace_lock, NULL, MUTEX_DEFAULT, NULL);
1704 mutex_init(&spa_spare_lock, NULL, MUTEX_DEFAULT, NULL);
1705 mutex_init(&spa_l2cache_lock, NULL, MUTEX_DEFAULT, NULL);
1706 cv_init(&spa_namespace_cv, NULL, CV_DEFAULT, NULL);
1707
1708 avl_create(&spa_namespace_avl, spa_name_compare, sizeof (spa_t),
1709 offsetof(spa_t, spa_avl));
1710
1711 avl_create(&spa_spare_avl, spa_spare_compare, sizeof (spa_aux_t),
1712 offsetof(spa_aux_t, aux_avl));
1713
1714 avl_create(&spa_l2cache_avl, spa_l2cache_compare, sizeof (spa_aux_t),
1715 offsetof(spa_aux_t, aux_avl));
1716
1717 spa_mode_global = mode;
1718
1719 #ifndef _KERNEL
1720 if (spa_mode_global != FREAD && dprintf_find_string("watch")) {
1721 struct sigaction sa;
1722
1723 sa.sa_flags = SA_SIGINFO;
1724 sigemptyset(&sa.sa_mask);
1725 sa.sa_sigaction = arc_buf_sigsegv;
1726
1727 if (sigaction(SIGSEGV, &sa, NULL) == -1) {
1728 perror("could not enable watchpoints: "
1729 "sigaction(SIGSEGV, ...) = ");
1730 } else {
1731 arc_watch = B_TRUE;
1732 }
1733 }
1734 #endif
1735
1736 fm_init();
1737 refcount_init();
1738 unique_init();
1739 range_tree_init();
1740 ddt_init();
1741 zio_init();
1742 dmu_init();
1743 zil_init();
1744 vdev_cache_stat_init();
1745 vdev_file_init();
1746 zfs_prop_init();
1747 zpool_prop_init();
1748 zpool_feature_init();
1749 spa_config_load();
1750 l2arc_start();
1751 }
1752
1753 void
1754 spa_fini(void)
1755 {
1756 l2arc_stop();
1757
1758 spa_evict_all();
1759
1760 vdev_file_fini();
1761 vdev_cache_stat_fini();
1762 zil_fini();
1763 dmu_fini();
1764 zio_fini();
1765 ddt_fini();
1766 range_tree_fini();
1767 unique_fini();
1768 refcount_fini();
1769 fm_fini();
1770
1771 avl_destroy(&spa_namespace_avl);
1772 avl_destroy(&spa_spare_avl);
1773 avl_destroy(&spa_l2cache_avl);
1774
1775 cv_destroy(&spa_namespace_cv);
1776 mutex_destroy(&spa_namespace_lock);
1777 mutex_destroy(&spa_spare_lock);
1778 mutex_destroy(&spa_l2cache_lock);
1779 }
1780
1781 /*
1782 * Return whether this pool has slogs. No locking needed.
1783 * It's not a problem if the wrong answer is returned as it's only for
1784 * performance and not correctness
1785 */
1786 boolean_t
1787 spa_has_slogs(spa_t *spa)
1788 {
1789 return (spa->spa_log_class->mc_rotor != NULL);
1790 }
1791
1792 spa_log_state_t
1793 spa_get_log_state(spa_t *spa)
1794 {
1795 return (spa->spa_log_state);
1796 }
1797
1798 void
1799 spa_set_log_state(spa_t *spa, spa_log_state_t state)
1800 {
1801 spa->spa_log_state = state;
1802 }
1803
1804 boolean_t
1805 spa_is_root(spa_t *spa)
1806 {
1807 return (spa->spa_is_root);
1808 }
1809
1810 boolean_t
1811 spa_writeable(spa_t *spa)
1812 {
1813 return (!!(spa->spa_mode & FWRITE));
1814 }
1815
1816 /*
1817 * Returns true if there is a pending sync task in any of the current
1818 * syncing txg, the current quiescing txg, or the current open txg.
1819 */
1820 boolean_t
1821 spa_has_pending_synctask(spa_t *spa)
1822 {
1823 return (!txg_all_lists_empty(&spa->spa_dsl_pool->dp_sync_tasks));
1824 }
1825
1826 int
1827 spa_mode(spa_t *spa)
1828 {
1829 return (spa->spa_mode);
1830 }
1831
1832 uint64_t
1833 spa_bootfs(spa_t *spa)
1834 {
1835 return (spa->spa_bootfs);
1836 }
1837
1838 uint64_t
1839 spa_delegation(spa_t *spa)
1840 {
1841 return (spa->spa_delegation);
1842 }
1843
1844 objset_t *
1845 spa_meta_objset(spa_t *spa)
1846 {
1847 return (spa->spa_meta_objset);
1848 }
1849
1850 enum zio_checksum
1851 spa_dedup_checksum(spa_t *spa)
1852 {
1853 return (spa->spa_dedup_checksum);
1854 }
1855
1856 /*
1857 * Reset pool scan stat per scan pass (or reboot).
1858 */
1859 void
1860 spa_scan_stat_init(spa_t *spa)
1861 {
1862 /* data not stored on disk */
1863 spa->spa_scan_pass_start = gethrestime_sec();
1864 spa->spa_scan_pass_exam = 0;
1865 vdev_scan_stat_init(spa->spa_root_vdev);
1866 }
1867
1868 /*
1869 * Get scan stats for zpool status reports
1870 */
1871 int
1872 spa_scan_get_stats(spa_t *spa, pool_scan_stat_t *ps)
1873 {
1874 dsl_scan_t *scn = spa->spa_dsl_pool ? spa->spa_dsl_pool->dp_scan : NULL;
1875
1876 if (scn == NULL || scn->scn_phys.scn_func == POOL_SCAN_NONE)
1877 return (SET_ERROR(ENOENT));
1878 bzero(ps, sizeof (pool_scan_stat_t));
1879
1880 /* data stored on disk */
1881 ps->pss_func = scn->scn_phys.scn_func;
1882 ps->pss_start_time = scn->scn_phys.scn_start_time;
1883 ps->pss_end_time = scn->scn_phys.scn_end_time;
1884 ps->pss_to_examine = scn->scn_phys.scn_to_examine;
1885 ps->pss_examined = scn->scn_phys.scn_examined;
1886 ps->pss_to_process = scn->scn_phys.scn_to_process;
1887 ps->pss_processed = scn->scn_phys.scn_processed;
1888 ps->pss_errors = scn->scn_phys.scn_errors;
1889 ps->pss_state = scn->scn_phys.scn_state;
1890
1891 /* data not stored on disk */
1892 ps->pss_pass_start = spa->spa_scan_pass_start;
1893 ps->pss_pass_exam = spa->spa_scan_pass_exam;
1894
1895 return (0);
1896 }
1897
1898 boolean_t
1899 spa_debug_enabled(spa_t *spa)
1900 {
1901 return (spa->spa_debug);
1902 }
1903
1904 #if defined(_KERNEL) && defined(HAVE_SPL)
1905 /* Namespace manipulation */
1906 EXPORT_SYMBOL(spa_lookup);
1907 EXPORT_SYMBOL(spa_add);
1908 EXPORT_SYMBOL(spa_remove);
1909 EXPORT_SYMBOL(spa_next);
1910
1911 /* Refcount functions */
1912 EXPORT_SYMBOL(spa_open_ref);
1913 EXPORT_SYMBOL(spa_close);
1914 EXPORT_SYMBOL(spa_refcount_zero);
1915
1916 /* Pool configuration lock */
1917 EXPORT_SYMBOL(spa_config_tryenter);
1918 EXPORT_SYMBOL(spa_config_enter);
1919 EXPORT_SYMBOL(spa_config_exit);
1920 EXPORT_SYMBOL(spa_config_held);
1921
1922 /* Pool vdev add/remove lock */
1923 EXPORT_SYMBOL(spa_vdev_enter);
1924 EXPORT_SYMBOL(spa_vdev_exit);
1925
1926 /* Pool vdev state change lock */
1927 EXPORT_SYMBOL(spa_vdev_state_enter);
1928 EXPORT_SYMBOL(spa_vdev_state_exit);
1929
1930 /* Accessor functions */
1931 EXPORT_SYMBOL(spa_shutting_down);
1932 EXPORT_SYMBOL(spa_get_dsl);
1933 EXPORT_SYMBOL(spa_get_rootblkptr);
1934 EXPORT_SYMBOL(spa_set_rootblkptr);
1935 EXPORT_SYMBOL(spa_altroot);
1936 EXPORT_SYMBOL(spa_sync_pass);
1937 EXPORT_SYMBOL(spa_name);
1938 EXPORT_SYMBOL(spa_guid);
1939 EXPORT_SYMBOL(spa_last_synced_txg);
1940 EXPORT_SYMBOL(spa_first_txg);
1941 EXPORT_SYMBOL(spa_syncing_txg);
1942 EXPORT_SYMBOL(spa_version);
1943 EXPORT_SYMBOL(spa_state);
1944 EXPORT_SYMBOL(spa_load_state);
1945 EXPORT_SYMBOL(spa_freeze_txg);
1946 EXPORT_SYMBOL(spa_get_asize);
1947 EXPORT_SYMBOL(spa_get_dspace);
1948 EXPORT_SYMBOL(spa_update_dspace);
1949 EXPORT_SYMBOL(spa_deflate);
1950 EXPORT_SYMBOL(spa_normal_class);
1951 EXPORT_SYMBOL(spa_log_class);
1952 EXPORT_SYMBOL(spa_max_replication);
1953 EXPORT_SYMBOL(spa_prev_software_version);
1954 EXPORT_SYMBOL(spa_get_failmode);
1955 EXPORT_SYMBOL(spa_suspended);
1956 EXPORT_SYMBOL(spa_bootfs);
1957 EXPORT_SYMBOL(spa_delegation);
1958 EXPORT_SYMBOL(spa_meta_objset);
1959
1960 /* Miscellaneous support routines */
1961 EXPORT_SYMBOL(spa_rename);
1962 EXPORT_SYMBOL(spa_guid_exists);
1963 EXPORT_SYMBOL(spa_strdup);
1964 EXPORT_SYMBOL(spa_strfree);
1965 EXPORT_SYMBOL(spa_get_random);
1966 EXPORT_SYMBOL(spa_generate_guid);
1967 EXPORT_SYMBOL(snprintf_blkptr);
1968 EXPORT_SYMBOL(spa_freeze);
1969 EXPORT_SYMBOL(spa_upgrade);
1970 EXPORT_SYMBOL(spa_evict_all);
1971 EXPORT_SYMBOL(spa_lookup_by_guid);
1972 EXPORT_SYMBOL(spa_has_spare);
1973 EXPORT_SYMBOL(dva_get_dsize_sync);
1974 EXPORT_SYMBOL(bp_get_dsize_sync);
1975 EXPORT_SYMBOL(bp_get_dsize);
1976 EXPORT_SYMBOL(spa_has_slogs);
1977 EXPORT_SYMBOL(spa_is_root);
1978 EXPORT_SYMBOL(spa_writeable);
1979 EXPORT_SYMBOL(spa_mode);
1980
1981 EXPORT_SYMBOL(spa_namespace_lock);
1982
1983 module_param(zfs_flags, uint, 0644);
1984 MODULE_PARM_DESC(zfs_flags, "Set additional debugging flags");
1985
1986 module_param(zfs_recover, int, 0644);
1987 MODULE_PARM_DESC(zfs_recover, "Set to attempt to recover from fatal errors");
1988
1989 module_param(zfs_free_leak_on_eio, int, 0644);
1990 MODULE_PARM_DESC(zfs_free_leak_on_eio,
1991 "Set to ignore IO errors during free and permanently leak the space");
1992
1993 module_param(zfs_deadman_synctime_ms, ulong, 0644);
1994 MODULE_PARM_DESC(zfs_deadman_synctime_ms, "Expiration time in milliseconds");
1995
1996 module_param(zfs_deadman_enabled, int, 0644);
1997 MODULE_PARM_DESC(zfs_deadman_enabled, "Enable deadman timer");
1998
1999 module_param(spa_asize_inflation, int, 0644);
2000 MODULE_PARM_DESC(spa_asize_inflation,
2001 "SPA size estimate multiplication factor");
2002 #endif