]> git.proxmox.com Git - mirror_zfs.git/blob - module/zfs/vdev.c
vs_alloc can underflow in L2ARC vdevs
[mirror_zfs.git] / module / zfs / vdev.c
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22 /*
23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright (c) 2011, 2018 by Delphix. All rights reserved.
25 * Copyright 2017 Nexenta Systems, Inc.
26 * Copyright (c) 2014 Integros [integros.com]
27 * Copyright 2016 Toomas Soome <tsoome@me.com>
28 * Copyright 2017 Joyent, Inc.
29 * Copyright (c) 2017, Intel Corporation.
30 */
31
32 #include <sys/zfs_context.h>
33 #include <sys/fm/fs/zfs.h>
34 #include <sys/spa.h>
35 #include <sys/spa_impl.h>
36 #include <sys/bpobj.h>
37 #include <sys/dmu.h>
38 #include <sys/dmu_tx.h>
39 #include <sys/dsl_dir.h>
40 #include <sys/vdev_impl.h>
41 #include <sys/uberblock_impl.h>
42 #include <sys/metaslab.h>
43 #include <sys/metaslab_impl.h>
44 #include <sys/space_map.h>
45 #include <sys/space_reftree.h>
46 #include <sys/zio.h>
47 #include <sys/zap.h>
48 #include <sys/fs/zfs.h>
49 #include <sys/arc.h>
50 #include <sys/zil.h>
51 #include <sys/dsl_scan.h>
52 #include <sys/abd.h>
53 #include <sys/vdev_initialize.h>
54 #include <sys/zvol.h>
55 #include <sys/zfs_ratelimit.h>
56
57 /* default target for number of metaslabs per top-level vdev */
58 int zfs_vdev_default_ms_count = 200;
59
60 /* minimum number of metaslabs per top-level vdev */
61 int zfs_vdev_min_ms_count = 16;
62
63 /* practical upper limit of total metaslabs per top-level vdev */
64 int zfs_vdev_ms_count_limit = 1ULL << 17;
65
66 /* lower limit for metaslab size (512M) */
67 int zfs_vdev_default_ms_shift = 29;
68
69 /* upper limit for metaslab size (16G) */
70 int zfs_vdev_max_ms_shift = 34;
71
72 int vdev_validate_skip = B_FALSE;
73
74 /*
75 * Since the DTL space map of a vdev is not expected to have a lot of
76 * entries, we default its block size to 4K.
77 */
78 int vdev_dtl_sm_blksz = (1 << 12);
79
80 /*
81 * Rate limit slow IO (delay) events to this many per second.
82 */
83 unsigned int zfs_slow_io_events_per_second = 20;
84
85 /*
86 * Rate limit checksum events after this many checksum errors per second.
87 */
88 unsigned int zfs_checksum_events_per_second = 20;
89
90 /*
91 * Ignore errors during scrub/resilver. Allows to work around resilver
92 * upon import when there are pool errors.
93 */
94 int zfs_scan_ignore_errors = 0;
95
96 /*
97 * vdev-wide space maps that have lots of entries written to them at
98 * the end of each transaction can benefit from a higher I/O bandwidth
99 * (e.g. vdev_obsolete_sm), thus we default their block size to 128K.
100 */
101 int vdev_standard_sm_blksz = (1 << 17);
102
103 /*
104 * Tunable parameter for debugging or performance analysis. Setting this
105 * will cause pool corruption on power loss if a volatile out-of-order
106 * write cache is enabled.
107 */
108 int zfs_nocacheflush = 0;
109
110 /*PRINTFLIKE2*/
111 void
112 vdev_dbgmsg(vdev_t *vd, const char *fmt, ...)
113 {
114 va_list adx;
115 char buf[256];
116
117 va_start(adx, fmt);
118 (void) vsnprintf(buf, sizeof (buf), fmt, adx);
119 va_end(adx);
120
121 if (vd->vdev_path != NULL) {
122 zfs_dbgmsg("%s vdev '%s': %s", vd->vdev_ops->vdev_op_type,
123 vd->vdev_path, buf);
124 } else {
125 zfs_dbgmsg("%s-%llu vdev (guid %llu): %s",
126 vd->vdev_ops->vdev_op_type,
127 (u_longlong_t)vd->vdev_id,
128 (u_longlong_t)vd->vdev_guid, buf);
129 }
130 }
131
132 void
133 vdev_dbgmsg_print_tree(vdev_t *vd, int indent)
134 {
135 char state[20];
136
137 if (vd->vdev_ishole || vd->vdev_ops == &vdev_missing_ops) {
138 zfs_dbgmsg("%*svdev %u: %s", indent, "", vd->vdev_id,
139 vd->vdev_ops->vdev_op_type);
140 return;
141 }
142
143 switch (vd->vdev_state) {
144 case VDEV_STATE_UNKNOWN:
145 (void) snprintf(state, sizeof (state), "unknown");
146 break;
147 case VDEV_STATE_CLOSED:
148 (void) snprintf(state, sizeof (state), "closed");
149 break;
150 case VDEV_STATE_OFFLINE:
151 (void) snprintf(state, sizeof (state), "offline");
152 break;
153 case VDEV_STATE_REMOVED:
154 (void) snprintf(state, sizeof (state), "removed");
155 break;
156 case VDEV_STATE_CANT_OPEN:
157 (void) snprintf(state, sizeof (state), "can't open");
158 break;
159 case VDEV_STATE_FAULTED:
160 (void) snprintf(state, sizeof (state), "faulted");
161 break;
162 case VDEV_STATE_DEGRADED:
163 (void) snprintf(state, sizeof (state), "degraded");
164 break;
165 case VDEV_STATE_HEALTHY:
166 (void) snprintf(state, sizeof (state), "healthy");
167 break;
168 default:
169 (void) snprintf(state, sizeof (state), "<state %u>",
170 (uint_t)vd->vdev_state);
171 }
172
173 zfs_dbgmsg("%*svdev %u: %s%s, guid: %llu, path: %s, %s", indent,
174 "", (int)vd->vdev_id, vd->vdev_ops->vdev_op_type,
175 vd->vdev_islog ? " (log)" : "",
176 (u_longlong_t)vd->vdev_guid,
177 vd->vdev_path ? vd->vdev_path : "N/A", state);
178
179 for (uint64_t i = 0; i < vd->vdev_children; i++)
180 vdev_dbgmsg_print_tree(vd->vdev_child[i], indent + 2);
181 }
182
183 /*
184 * Virtual device management.
185 */
186
187 static vdev_ops_t *vdev_ops_table[] = {
188 &vdev_root_ops,
189 &vdev_raidz_ops,
190 &vdev_mirror_ops,
191 &vdev_replacing_ops,
192 &vdev_spare_ops,
193 &vdev_disk_ops,
194 &vdev_file_ops,
195 &vdev_missing_ops,
196 &vdev_hole_ops,
197 &vdev_indirect_ops,
198 NULL
199 };
200
201 /*
202 * Given a vdev type, return the appropriate ops vector.
203 */
204 static vdev_ops_t *
205 vdev_getops(const char *type)
206 {
207 vdev_ops_t *ops, **opspp;
208
209 for (opspp = vdev_ops_table; (ops = *opspp) != NULL; opspp++)
210 if (strcmp(ops->vdev_op_type, type) == 0)
211 break;
212
213 return (ops);
214 }
215
216 /* ARGSUSED */
217 void
218 vdev_default_xlate(vdev_t *vd, const range_seg_t *in, range_seg_t *res)
219 {
220 res->rs_start = in->rs_start;
221 res->rs_end = in->rs_end;
222 }
223
224 /*
225 * Derive the enumerated alloction bias from string input.
226 * String origin is either the per-vdev zap or zpool(1M).
227 */
228 static vdev_alloc_bias_t
229 vdev_derive_alloc_bias(const char *bias)
230 {
231 vdev_alloc_bias_t alloc_bias = VDEV_BIAS_NONE;
232
233 if (strcmp(bias, VDEV_ALLOC_BIAS_LOG) == 0)
234 alloc_bias = VDEV_BIAS_LOG;
235 else if (strcmp(bias, VDEV_ALLOC_BIAS_SPECIAL) == 0)
236 alloc_bias = VDEV_BIAS_SPECIAL;
237 else if (strcmp(bias, VDEV_ALLOC_BIAS_DEDUP) == 0)
238 alloc_bias = VDEV_BIAS_DEDUP;
239
240 return (alloc_bias);
241 }
242
243 /*
244 * Default asize function: return the MAX of psize with the asize of
245 * all children. This is what's used by anything other than RAID-Z.
246 */
247 uint64_t
248 vdev_default_asize(vdev_t *vd, uint64_t psize)
249 {
250 uint64_t asize = P2ROUNDUP(psize, 1ULL << vd->vdev_top->vdev_ashift);
251 uint64_t csize;
252
253 for (int c = 0; c < vd->vdev_children; c++) {
254 csize = vdev_psize_to_asize(vd->vdev_child[c], psize);
255 asize = MAX(asize, csize);
256 }
257
258 return (asize);
259 }
260
261 /*
262 * Get the minimum allocatable size. We define the allocatable size as
263 * the vdev's asize rounded to the nearest metaslab. This allows us to
264 * replace or attach devices which don't have the same physical size but
265 * can still satisfy the same number of allocations.
266 */
267 uint64_t
268 vdev_get_min_asize(vdev_t *vd)
269 {
270 vdev_t *pvd = vd->vdev_parent;
271
272 /*
273 * If our parent is NULL (inactive spare or cache) or is the root,
274 * just return our own asize.
275 */
276 if (pvd == NULL)
277 return (vd->vdev_asize);
278
279 /*
280 * The top-level vdev just returns the allocatable size rounded
281 * to the nearest metaslab.
282 */
283 if (vd == vd->vdev_top)
284 return (P2ALIGN(vd->vdev_asize, 1ULL << vd->vdev_ms_shift));
285
286 /*
287 * The allocatable space for a raidz vdev is N * sizeof(smallest child),
288 * so each child must provide at least 1/Nth of its asize.
289 */
290 if (pvd->vdev_ops == &vdev_raidz_ops)
291 return ((pvd->vdev_min_asize + pvd->vdev_children - 1) /
292 pvd->vdev_children);
293
294 return (pvd->vdev_min_asize);
295 }
296
297 void
298 vdev_set_min_asize(vdev_t *vd)
299 {
300 vd->vdev_min_asize = vdev_get_min_asize(vd);
301
302 for (int c = 0; c < vd->vdev_children; c++)
303 vdev_set_min_asize(vd->vdev_child[c]);
304 }
305
306 vdev_t *
307 vdev_lookup_top(spa_t *spa, uint64_t vdev)
308 {
309 vdev_t *rvd = spa->spa_root_vdev;
310
311 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
312
313 if (vdev < rvd->vdev_children) {
314 ASSERT(rvd->vdev_child[vdev] != NULL);
315 return (rvd->vdev_child[vdev]);
316 }
317
318 return (NULL);
319 }
320
321 vdev_t *
322 vdev_lookup_by_guid(vdev_t *vd, uint64_t guid)
323 {
324 vdev_t *mvd;
325
326 if (vd->vdev_guid == guid)
327 return (vd);
328
329 for (int c = 0; c < vd->vdev_children; c++)
330 if ((mvd = vdev_lookup_by_guid(vd->vdev_child[c], guid)) !=
331 NULL)
332 return (mvd);
333
334 return (NULL);
335 }
336
337 static int
338 vdev_count_leaves_impl(vdev_t *vd)
339 {
340 int n = 0;
341
342 if (vd->vdev_ops->vdev_op_leaf)
343 return (1);
344
345 for (int c = 0; c < vd->vdev_children; c++)
346 n += vdev_count_leaves_impl(vd->vdev_child[c]);
347
348 return (n);
349 }
350
351 int
352 vdev_count_leaves(spa_t *spa)
353 {
354 int rc;
355
356 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
357 rc = vdev_count_leaves_impl(spa->spa_root_vdev);
358 spa_config_exit(spa, SCL_VDEV, FTAG);
359
360 return (rc);
361 }
362
363 void
364 vdev_add_child(vdev_t *pvd, vdev_t *cvd)
365 {
366 size_t oldsize, newsize;
367 uint64_t id = cvd->vdev_id;
368 vdev_t **newchild;
369
370 ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
371 ASSERT(cvd->vdev_parent == NULL);
372
373 cvd->vdev_parent = pvd;
374
375 if (pvd == NULL)
376 return;
377
378 ASSERT(id >= pvd->vdev_children || pvd->vdev_child[id] == NULL);
379
380 oldsize = pvd->vdev_children * sizeof (vdev_t *);
381 pvd->vdev_children = MAX(pvd->vdev_children, id + 1);
382 newsize = pvd->vdev_children * sizeof (vdev_t *);
383
384 newchild = kmem_alloc(newsize, KM_SLEEP);
385 if (pvd->vdev_child != NULL) {
386 bcopy(pvd->vdev_child, newchild, oldsize);
387 kmem_free(pvd->vdev_child, oldsize);
388 }
389
390 pvd->vdev_child = newchild;
391 pvd->vdev_child[id] = cvd;
392
393 cvd->vdev_top = (pvd->vdev_top ? pvd->vdev_top: cvd);
394 ASSERT(cvd->vdev_top->vdev_parent->vdev_parent == NULL);
395
396 /*
397 * Walk up all ancestors to update guid sum.
398 */
399 for (; pvd != NULL; pvd = pvd->vdev_parent)
400 pvd->vdev_guid_sum += cvd->vdev_guid_sum;
401 }
402
403 void
404 vdev_remove_child(vdev_t *pvd, vdev_t *cvd)
405 {
406 int c;
407 uint_t id = cvd->vdev_id;
408
409 ASSERT(cvd->vdev_parent == pvd);
410
411 if (pvd == NULL)
412 return;
413
414 ASSERT(id < pvd->vdev_children);
415 ASSERT(pvd->vdev_child[id] == cvd);
416
417 pvd->vdev_child[id] = NULL;
418 cvd->vdev_parent = NULL;
419
420 for (c = 0; c < pvd->vdev_children; c++)
421 if (pvd->vdev_child[c])
422 break;
423
424 if (c == pvd->vdev_children) {
425 kmem_free(pvd->vdev_child, c * sizeof (vdev_t *));
426 pvd->vdev_child = NULL;
427 pvd->vdev_children = 0;
428 }
429
430 /*
431 * Walk up all ancestors to update guid sum.
432 */
433 for (; pvd != NULL; pvd = pvd->vdev_parent)
434 pvd->vdev_guid_sum -= cvd->vdev_guid_sum;
435 }
436
437 /*
438 * Remove any holes in the child array.
439 */
440 void
441 vdev_compact_children(vdev_t *pvd)
442 {
443 vdev_t **newchild, *cvd;
444 int oldc = pvd->vdev_children;
445 int newc;
446
447 ASSERT(spa_config_held(pvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
448
449 if (oldc == 0)
450 return;
451
452 for (int c = newc = 0; c < oldc; c++)
453 if (pvd->vdev_child[c])
454 newc++;
455
456 if (newc > 0) {
457 newchild = kmem_zalloc(newc * sizeof (vdev_t *), KM_SLEEP);
458
459 for (int c = newc = 0; c < oldc; c++) {
460 if ((cvd = pvd->vdev_child[c]) != NULL) {
461 newchild[newc] = cvd;
462 cvd->vdev_id = newc++;
463 }
464 }
465 } else {
466 newchild = NULL;
467 }
468
469 kmem_free(pvd->vdev_child, oldc * sizeof (vdev_t *));
470 pvd->vdev_child = newchild;
471 pvd->vdev_children = newc;
472 }
473
474 /*
475 * Allocate and minimally initialize a vdev_t.
476 */
477 vdev_t *
478 vdev_alloc_common(spa_t *spa, uint_t id, uint64_t guid, vdev_ops_t *ops)
479 {
480 vdev_t *vd;
481 vdev_indirect_config_t *vic;
482
483 vd = kmem_zalloc(sizeof (vdev_t), KM_SLEEP);
484 vic = &vd->vdev_indirect_config;
485
486 if (spa->spa_root_vdev == NULL) {
487 ASSERT(ops == &vdev_root_ops);
488 spa->spa_root_vdev = vd;
489 spa->spa_load_guid = spa_generate_guid(NULL);
490 }
491
492 if (guid == 0 && ops != &vdev_hole_ops) {
493 if (spa->spa_root_vdev == vd) {
494 /*
495 * The root vdev's guid will also be the pool guid,
496 * which must be unique among all pools.
497 */
498 guid = spa_generate_guid(NULL);
499 } else {
500 /*
501 * Any other vdev's guid must be unique within the pool.
502 */
503 guid = spa_generate_guid(spa);
504 }
505 ASSERT(!spa_guid_exists(spa_guid(spa), guid));
506 }
507
508 vd->vdev_spa = spa;
509 vd->vdev_id = id;
510 vd->vdev_guid = guid;
511 vd->vdev_guid_sum = guid;
512 vd->vdev_ops = ops;
513 vd->vdev_state = VDEV_STATE_CLOSED;
514 vd->vdev_ishole = (ops == &vdev_hole_ops);
515 vic->vic_prev_indirect_vdev = UINT64_MAX;
516
517 rw_init(&vd->vdev_indirect_rwlock, NULL, RW_DEFAULT, NULL);
518 mutex_init(&vd->vdev_obsolete_lock, NULL, MUTEX_DEFAULT, NULL);
519 vd->vdev_obsolete_segments = range_tree_create(NULL, NULL);
520
521 /*
522 * Initialize rate limit structs for events. We rate limit ZIO delay
523 * and checksum events so that we don't overwhelm ZED with thousands
524 * of events when a disk is acting up.
525 */
526 zfs_ratelimit_init(&vd->vdev_delay_rl, &zfs_slow_io_events_per_second,
527 1);
528 zfs_ratelimit_init(&vd->vdev_checksum_rl,
529 &zfs_checksum_events_per_second, 1);
530
531 list_link_init(&vd->vdev_config_dirty_node);
532 list_link_init(&vd->vdev_state_dirty_node);
533 list_link_init(&vd->vdev_initialize_node);
534 mutex_init(&vd->vdev_dtl_lock, NULL, MUTEX_NOLOCKDEP, NULL);
535 mutex_init(&vd->vdev_stat_lock, NULL, MUTEX_DEFAULT, NULL);
536 mutex_init(&vd->vdev_probe_lock, NULL, MUTEX_DEFAULT, NULL);
537 mutex_init(&vd->vdev_scan_io_queue_lock, NULL, MUTEX_DEFAULT, NULL);
538 mutex_init(&vd->vdev_initialize_lock, NULL, MUTEX_DEFAULT, NULL);
539 mutex_init(&vd->vdev_initialize_io_lock, NULL, MUTEX_DEFAULT, NULL);
540 cv_init(&vd->vdev_initialize_cv, NULL, CV_DEFAULT, NULL);
541 cv_init(&vd->vdev_initialize_io_cv, NULL, CV_DEFAULT, NULL);
542
543 for (int t = 0; t < DTL_TYPES; t++) {
544 vd->vdev_dtl[t] = range_tree_create(NULL, NULL);
545 }
546 txg_list_create(&vd->vdev_ms_list, spa,
547 offsetof(struct metaslab, ms_txg_node));
548 txg_list_create(&vd->vdev_dtl_list, spa,
549 offsetof(struct vdev, vdev_dtl_node));
550 vd->vdev_stat.vs_timestamp = gethrtime();
551 vdev_queue_init(vd);
552 vdev_cache_init(vd);
553
554 return (vd);
555 }
556
557 /*
558 * Allocate a new vdev. The 'alloctype' is used to control whether we are
559 * creating a new vdev or loading an existing one - the behavior is slightly
560 * different for each case.
561 */
562 int
563 vdev_alloc(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, uint_t id,
564 int alloctype)
565 {
566 vdev_ops_t *ops;
567 char *type;
568 uint64_t guid = 0, islog, nparity;
569 vdev_t *vd;
570 vdev_indirect_config_t *vic;
571 char *tmp = NULL;
572 int rc;
573 vdev_alloc_bias_t alloc_bias = VDEV_BIAS_NONE;
574 boolean_t top_level = (parent && !parent->vdev_parent);
575
576 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
577
578 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) != 0)
579 return (SET_ERROR(EINVAL));
580
581 if ((ops = vdev_getops(type)) == NULL)
582 return (SET_ERROR(EINVAL));
583
584 /*
585 * If this is a load, get the vdev guid from the nvlist.
586 * Otherwise, vdev_alloc_common() will generate one for us.
587 */
588 if (alloctype == VDEV_ALLOC_LOAD) {
589 uint64_t label_id;
590
591 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ID, &label_id) ||
592 label_id != id)
593 return (SET_ERROR(EINVAL));
594
595 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
596 return (SET_ERROR(EINVAL));
597 } else if (alloctype == VDEV_ALLOC_SPARE) {
598 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
599 return (SET_ERROR(EINVAL));
600 } else if (alloctype == VDEV_ALLOC_L2CACHE) {
601 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
602 return (SET_ERROR(EINVAL));
603 } else if (alloctype == VDEV_ALLOC_ROOTPOOL) {
604 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
605 return (SET_ERROR(EINVAL));
606 }
607
608 /*
609 * The first allocated vdev must be of type 'root'.
610 */
611 if (ops != &vdev_root_ops && spa->spa_root_vdev == NULL)
612 return (SET_ERROR(EINVAL));
613
614 /*
615 * Determine whether we're a log vdev.
616 */
617 islog = 0;
618 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_LOG, &islog);
619 if (islog && spa_version(spa) < SPA_VERSION_SLOGS)
620 return (SET_ERROR(ENOTSUP));
621
622 if (ops == &vdev_hole_ops && spa_version(spa) < SPA_VERSION_HOLES)
623 return (SET_ERROR(ENOTSUP));
624
625 /*
626 * Set the nparity property for RAID-Z vdevs.
627 */
628 nparity = -1ULL;
629 if (ops == &vdev_raidz_ops) {
630 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NPARITY,
631 &nparity) == 0) {
632 if (nparity == 0 || nparity > VDEV_RAIDZ_MAXPARITY)
633 return (SET_ERROR(EINVAL));
634 /*
635 * Previous versions could only support 1 or 2 parity
636 * device.
637 */
638 if (nparity > 1 &&
639 spa_version(spa) < SPA_VERSION_RAIDZ2)
640 return (SET_ERROR(ENOTSUP));
641 if (nparity > 2 &&
642 spa_version(spa) < SPA_VERSION_RAIDZ3)
643 return (SET_ERROR(ENOTSUP));
644 } else {
645 /*
646 * We require the parity to be specified for SPAs that
647 * support multiple parity levels.
648 */
649 if (spa_version(spa) >= SPA_VERSION_RAIDZ2)
650 return (SET_ERROR(EINVAL));
651 /*
652 * Otherwise, we default to 1 parity device for RAID-Z.
653 */
654 nparity = 1;
655 }
656 } else {
657 nparity = 0;
658 }
659 ASSERT(nparity != -1ULL);
660
661 /*
662 * If creating a top-level vdev, check for allocation classes input
663 */
664 if (top_level && alloctype == VDEV_ALLOC_ADD) {
665 char *bias;
666
667 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_ALLOCATION_BIAS,
668 &bias) == 0) {
669 alloc_bias = vdev_derive_alloc_bias(bias);
670
671 /* spa_vdev_add() expects feature to be enabled */
672 if (spa->spa_load_state != SPA_LOAD_CREATE &&
673 !spa_feature_is_enabled(spa,
674 SPA_FEATURE_ALLOCATION_CLASSES)) {
675 return (SET_ERROR(ENOTSUP));
676 }
677 }
678 }
679
680 vd = vdev_alloc_common(spa, id, guid, ops);
681 vic = &vd->vdev_indirect_config;
682
683 vd->vdev_islog = islog;
684 vd->vdev_nparity = nparity;
685 if (top_level && alloc_bias != VDEV_BIAS_NONE)
686 vd->vdev_alloc_bias = alloc_bias;
687
688 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &vd->vdev_path) == 0)
689 vd->vdev_path = spa_strdup(vd->vdev_path);
690
691 /*
692 * ZPOOL_CONFIG_AUX_STATE = "external" means we previously forced a
693 * fault on a vdev and want it to persist across imports (like with
694 * zpool offline -f).
695 */
696 rc = nvlist_lookup_string(nv, ZPOOL_CONFIG_AUX_STATE, &tmp);
697 if (rc == 0 && tmp != NULL && strcmp(tmp, "external") == 0) {
698 vd->vdev_stat.vs_aux = VDEV_AUX_EXTERNAL;
699 vd->vdev_faulted = 1;
700 vd->vdev_label_aux = VDEV_AUX_EXTERNAL;
701 }
702
703 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_DEVID, &vd->vdev_devid) == 0)
704 vd->vdev_devid = spa_strdup(vd->vdev_devid);
705 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PHYS_PATH,
706 &vd->vdev_physpath) == 0)
707 vd->vdev_physpath = spa_strdup(vd->vdev_physpath);
708
709 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_VDEV_ENC_SYSFS_PATH,
710 &vd->vdev_enc_sysfs_path) == 0)
711 vd->vdev_enc_sysfs_path = spa_strdup(vd->vdev_enc_sysfs_path);
712
713 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_FRU, &vd->vdev_fru) == 0)
714 vd->vdev_fru = spa_strdup(vd->vdev_fru);
715
716 /*
717 * Set the whole_disk property. If it's not specified, leave the value
718 * as -1.
719 */
720 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK,
721 &vd->vdev_wholedisk) != 0)
722 vd->vdev_wholedisk = -1ULL;
723
724 ASSERT0(vic->vic_mapping_object);
725 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_INDIRECT_OBJECT,
726 &vic->vic_mapping_object);
727 ASSERT0(vic->vic_births_object);
728 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_INDIRECT_BIRTHS,
729 &vic->vic_births_object);
730 ASSERT3U(vic->vic_prev_indirect_vdev, ==, UINT64_MAX);
731 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_PREV_INDIRECT_VDEV,
732 &vic->vic_prev_indirect_vdev);
733
734 /*
735 * Look for the 'not present' flag. This will only be set if the device
736 * was not present at the time of import.
737 */
738 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT,
739 &vd->vdev_not_present);
740
741 /*
742 * Get the alignment requirement.
743 */
744 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASHIFT, &vd->vdev_ashift);
745
746 /*
747 * Retrieve the vdev creation time.
748 */
749 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_CREATE_TXG,
750 &vd->vdev_crtxg);
751
752 /*
753 * If we're a top-level vdev, try to load the allocation parameters.
754 */
755 if (top_level &&
756 (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_SPLIT)) {
757 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY,
758 &vd->vdev_ms_array);
759 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT,
760 &vd->vdev_ms_shift);
761 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASIZE,
762 &vd->vdev_asize);
763 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVING,
764 &vd->vdev_removing);
765 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_VDEV_TOP_ZAP,
766 &vd->vdev_top_zap);
767 } else {
768 ASSERT0(vd->vdev_top_zap);
769 }
770
771 if (top_level && alloctype != VDEV_ALLOC_ATTACH) {
772 ASSERT(alloctype == VDEV_ALLOC_LOAD ||
773 alloctype == VDEV_ALLOC_ADD ||
774 alloctype == VDEV_ALLOC_SPLIT ||
775 alloctype == VDEV_ALLOC_ROOTPOOL);
776 /* Note: metaslab_group_create() is now deferred */
777 }
778
779 if (vd->vdev_ops->vdev_op_leaf &&
780 (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_SPLIT)) {
781 (void) nvlist_lookup_uint64(nv,
782 ZPOOL_CONFIG_VDEV_LEAF_ZAP, &vd->vdev_leaf_zap);
783 } else {
784 ASSERT0(vd->vdev_leaf_zap);
785 }
786
787 /*
788 * If we're a leaf vdev, try to load the DTL object and other state.
789 */
790
791 if (vd->vdev_ops->vdev_op_leaf &&
792 (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_L2CACHE ||
793 alloctype == VDEV_ALLOC_ROOTPOOL)) {
794 if (alloctype == VDEV_ALLOC_LOAD) {
795 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DTL,
796 &vd->vdev_dtl_object);
797 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_UNSPARE,
798 &vd->vdev_unspare);
799 }
800
801 if (alloctype == VDEV_ALLOC_ROOTPOOL) {
802 uint64_t spare = 0;
803
804 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_SPARE,
805 &spare) == 0 && spare)
806 spa_spare_add(vd);
807 }
808
809 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_OFFLINE,
810 &vd->vdev_offline);
811
812 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_RESILVER_TXG,
813 &vd->vdev_resilver_txg);
814
815 if (nvlist_exists(nv, ZPOOL_CONFIG_RESILVER_DEFER))
816 vdev_set_deferred_resilver(spa, vd);
817
818 /*
819 * In general, when importing a pool we want to ignore the
820 * persistent fault state, as the diagnosis made on another
821 * system may not be valid in the current context. The only
822 * exception is if we forced a vdev to a persistently faulted
823 * state with 'zpool offline -f'. The persistent fault will
824 * remain across imports until cleared.
825 *
826 * Local vdevs will remain in the faulted state.
827 */
828 if (spa_load_state(spa) == SPA_LOAD_OPEN ||
829 spa_load_state(spa) == SPA_LOAD_IMPORT) {
830 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_FAULTED,
831 &vd->vdev_faulted);
832 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DEGRADED,
833 &vd->vdev_degraded);
834 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVED,
835 &vd->vdev_removed);
836
837 if (vd->vdev_faulted || vd->vdev_degraded) {
838 char *aux;
839
840 vd->vdev_label_aux =
841 VDEV_AUX_ERR_EXCEEDED;
842 if (nvlist_lookup_string(nv,
843 ZPOOL_CONFIG_AUX_STATE, &aux) == 0 &&
844 strcmp(aux, "external") == 0)
845 vd->vdev_label_aux = VDEV_AUX_EXTERNAL;
846 else
847 vd->vdev_faulted = 0ULL;
848 }
849 }
850 }
851
852 /*
853 * Add ourselves to the parent's list of children.
854 */
855 vdev_add_child(parent, vd);
856
857 *vdp = vd;
858
859 return (0);
860 }
861
862 void
863 vdev_free(vdev_t *vd)
864 {
865 spa_t *spa = vd->vdev_spa;
866 ASSERT3P(vd->vdev_initialize_thread, ==, NULL);
867
868 /*
869 * Scan queues are normally destroyed at the end of a scan. If the
870 * queue exists here, that implies the vdev is being removed while
871 * the scan is still running.
872 */
873 if (vd->vdev_scan_io_queue != NULL) {
874 mutex_enter(&vd->vdev_scan_io_queue_lock);
875 dsl_scan_io_queue_destroy(vd->vdev_scan_io_queue);
876 vd->vdev_scan_io_queue = NULL;
877 mutex_exit(&vd->vdev_scan_io_queue_lock);
878 }
879
880 /*
881 * vdev_free() implies closing the vdev first. This is simpler than
882 * trying to ensure complicated semantics for all callers.
883 */
884 vdev_close(vd);
885
886 ASSERT(!list_link_active(&vd->vdev_config_dirty_node));
887 ASSERT(!list_link_active(&vd->vdev_state_dirty_node));
888
889 /*
890 * Free all children.
891 */
892 for (int c = 0; c < vd->vdev_children; c++)
893 vdev_free(vd->vdev_child[c]);
894
895 ASSERT(vd->vdev_child == NULL);
896 ASSERT(vd->vdev_guid_sum == vd->vdev_guid);
897 ASSERT(vd->vdev_initialize_thread == NULL);
898
899 /*
900 * Discard allocation state.
901 */
902 if (vd->vdev_mg != NULL) {
903 vdev_metaslab_fini(vd);
904 metaslab_group_destroy(vd->vdev_mg);
905 }
906
907 ASSERT0(vd->vdev_stat.vs_space);
908 ASSERT0(vd->vdev_stat.vs_dspace);
909 ASSERT0(vd->vdev_stat.vs_alloc);
910
911 /*
912 * Remove this vdev from its parent's child list.
913 */
914 vdev_remove_child(vd->vdev_parent, vd);
915
916 ASSERT(vd->vdev_parent == NULL);
917
918 /*
919 * Clean up vdev structure.
920 */
921 vdev_queue_fini(vd);
922 vdev_cache_fini(vd);
923
924 if (vd->vdev_path)
925 spa_strfree(vd->vdev_path);
926 if (vd->vdev_devid)
927 spa_strfree(vd->vdev_devid);
928 if (vd->vdev_physpath)
929 spa_strfree(vd->vdev_physpath);
930
931 if (vd->vdev_enc_sysfs_path)
932 spa_strfree(vd->vdev_enc_sysfs_path);
933
934 if (vd->vdev_fru)
935 spa_strfree(vd->vdev_fru);
936
937 if (vd->vdev_isspare)
938 spa_spare_remove(vd);
939 if (vd->vdev_isl2cache)
940 spa_l2cache_remove(vd);
941
942 txg_list_destroy(&vd->vdev_ms_list);
943 txg_list_destroy(&vd->vdev_dtl_list);
944
945 mutex_enter(&vd->vdev_dtl_lock);
946 space_map_close(vd->vdev_dtl_sm);
947 for (int t = 0; t < DTL_TYPES; t++) {
948 range_tree_vacate(vd->vdev_dtl[t], NULL, NULL);
949 range_tree_destroy(vd->vdev_dtl[t]);
950 }
951 mutex_exit(&vd->vdev_dtl_lock);
952
953 EQUIV(vd->vdev_indirect_births != NULL,
954 vd->vdev_indirect_mapping != NULL);
955 if (vd->vdev_indirect_births != NULL) {
956 vdev_indirect_mapping_close(vd->vdev_indirect_mapping);
957 vdev_indirect_births_close(vd->vdev_indirect_births);
958 }
959
960 if (vd->vdev_obsolete_sm != NULL) {
961 ASSERT(vd->vdev_removing ||
962 vd->vdev_ops == &vdev_indirect_ops);
963 space_map_close(vd->vdev_obsolete_sm);
964 vd->vdev_obsolete_sm = NULL;
965 }
966 range_tree_destroy(vd->vdev_obsolete_segments);
967 rw_destroy(&vd->vdev_indirect_rwlock);
968 mutex_destroy(&vd->vdev_obsolete_lock);
969
970 mutex_destroy(&vd->vdev_dtl_lock);
971 mutex_destroy(&vd->vdev_stat_lock);
972 mutex_destroy(&vd->vdev_probe_lock);
973 mutex_destroy(&vd->vdev_scan_io_queue_lock);
974 mutex_destroy(&vd->vdev_initialize_lock);
975 mutex_destroy(&vd->vdev_initialize_io_lock);
976 cv_destroy(&vd->vdev_initialize_io_cv);
977 cv_destroy(&vd->vdev_initialize_cv);
978
979 zfs_ratelimit_fini(&vd->vdev_delay_rl);
980 zfs_ratelimit_fini(&vd->vdev_checksum_rl);
981
982 if (vd == spa->spa_root_vdev)
983 spa->spa_root_vdev = NULL;
984
985 kmem_free(vd, sizeof (vdev_t));
986 }
987
988 /*
989 * Transfer top-level vdev state from svd to tvd.
990 */
991 static void
992 vdev_top_transfer(vdev_t *svd, vdev_t *tvd)
993 {
994 spa_t *spa = svd->vdev_spa;
995 metaslab_t *msp;
996 vdev_t *vd;
997 int t;
998
999 ASSERT(tvd == tvd->vdev_top);
1000
1001 tvd->vdev_pending_fastwrite = svd->vdev_pending_fastwrite;
1002 tvd->vdev_ms_array = svd->vdev_ms_array;
1003 tvd->vdev_ms_shift = svd->vdev_ms_shift;
1004 tvd->vdev_ms_count = svd->vdev_ms_count;
1005 tvd->vdev_top_zap = svd->vdev_top_zap;
1006
1007 svd->vdev_ms_array = 0;
1008 svd->vdev_ms_shift = 0;
1009 svd->vdev_ms_count = 0;
1010 svd->vdev_top_zap = 0;
1011
1012 if (tvd->vdev_mg)
1013 ASSERT3P(tvd->vdev_mg, ==, svd->vdev_mg);
1014 tvd->vdev_mg = svd->vdev_mg;
1015 tvd->vdev_ms = svd->vdev_ms;
1016
1017 svd->vdev_mg = NULL;
1018 svd->vdev_ms = NULL;
1019
1020 if (tvd->vdev_mg != NULL)
1021 tvd->vdev_mg->mg_vd = tvd;
1022
1023 tvd->vdev_checkpoint_sm = svd->vdev_checkpoint_sm;
1024 svd->vdev_checkpoint_sm = NULL;
1025
1026 tvd->vdev_alloc_bias = svd->vdev_alloc_bias;
1027 svd->vdev_alloc_bias = VDEV_BIAS_NONE;
1028
1029 tvd->vdev_stat.vs_alloc = svd->vdev_stat.vs_alloc;
1030 tvd->vdev_stat.vs_space = svd->vdev_stat.vs_space;
1031 tvd->vdev_stat.vs_dspace = svd->vdev_stat.vs_dspace;
1032
1033 svd->vdev_stat.vs_alloc = 0;
1034 svd->vdev_stat.vs_space = 0;
1035 svd->vdev_stat.vs_dspace = 0;
1036
1037 /*
1038 * State which may be set on a top-level vdev that's in the
1039 * process of being removed.
1040 */
1041 ASSERT0(tvd->vdev_indirect_config.vic_births_object);
1042 ASSERT0(tvd->vdev_indirect_config.vic_mapping_object);
1043 ASSERT3U(tvd->vdev_indirect_config.vic_prev_indirect_vdev, ==, -1ULL);
1044 ASSERT3P(tvd->vdev_indirect_mapping, ==, NULL);
1045 ASSERT3P(tvd->vdev_indirect_births, ==, NULL);
1046 ASSERT3P(tvd->vdev_obsolete_sm, ==, NULL);
1047 ASSERT0(tvd->vdev_removing);
1048 tvd->vdev_removing = svd->vdev_removing;
1049 tvd->vdev_indirect_config = svd->vdev_indirect_config;
1050 tvd->vdev_indirect_mapping = svd->vdev_indirect_mapping;
1051 tvd->vdev_indirect_births = svd->vdev_indirect_births;
1052 range_tree_swap(&svd->vdev_obsolete_segments,
1053 &tvd->vdev_obsolete_segments);
1054 tvd->vdev_obsolete_sm = svd->vdev_obsolete_sm;
1055 svd->vdev_indirect_config.vic_mapping_object = 0;
1056 svd->vdev_indirect_config.vic_births_object = 0;
1057 svd->vdev_indirect_config.vic_prev_indirect_vdev = -1ULL;
1058 svd->vdev_indirect_mapping = NULL;
1059 svd->vdev_indirect_births = NULL;
1060 svd->vdev_obsolete_sm = NULL;
1061 svd->vdev_removing = 0;
1062
1063 for (t = 0; t < TXG_SIZE; t++) {
1064 while ((msp = txg_list_remove(&svd->vdev_ms_list, t)) != NULL)
1065 (void) txg_list_add(&tvd->vdev_ms_list, msp, t);
1066 while ((vd = txg_list_remove(&svd->vdev_dtl_list, t)) != NULL)
1067 (void) txg_list_add(&tvd->vdev_dtl_list, vd, t);
1068 if (txg_list_remove_this(&spa->spa_vdev_txg_list, svd, t))
1069 (void) txg_list_add(&spa->spa_vdev_txg_list, tvd, t);
1070 }
1071
1072 if (list_link_active(&svd->vdev_config_dirty_node)) {
1073 vdev_config_clean(svd);
1074 vdev_config_dirty(tvd);
1075 }
1076
1077 if (list_link_active(&svd->vdev_state_dirty_node)) {
1078 vdev_state_clean(svd);
1079 vdev_state_dirty(tvd);
1080 }
1081
1082 tvd->vdev_deflate_ratio = svd->vdev_deflate_ratio;
1083 svd->vdev_deflate_ratio = 0;
1084
1085 tvd->vdev_islog = svd->vdev_islog;
1086 svd->vdev_islog = 0;
1087
1088 dsl_scan_io_queue_vdev_xfer(svd, tvd);
1089 }
1090
1091 static void
1092 vdev_top_update(vdev_t *tvd, vdev_t *vd)
1093 {
1094 if (vd == NULL)
1095 return;
1096
1097 vd->vdev_top = tvd;
1098
1099 for (int c = 0; c < vd->vdev_children; c++)
1100 vdev_top_update(tvd, vd->vdev_child[c]);
1101 }
1102
1103 /*
1104 * Add a mirror/replacing vdev above an existing vdev.
1105 */
1106 vdev_t *
1107 vdev_add_parent(vdev_t *cvd, vdev_ops_t *ops)
1108 {
1109 spa_t *spa = cvd->vdev_spa;
1110 vdev_t *pvd = cvd->vdev_parent;
1111 vdev_t *mvd;
1112
1113 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1114
1115 mvd = vdev_alloc_common(spa, cvd->vdev_id, 0, ops);
1116
1117 mvd->vdev_asize = cvd->vdev_asize;
1118 mvd->vdev_min_asize = cvd->vdev_min_asize;
1119 mvd->vdev_max_asize = cvd->vdev_max_asize;
1120 mvd->vdev_psize = cvd->vdev_psize;
1121 mvd->vdev_ashift = cvd->vdev_ashift;
1122 mvd->vdev_state = cvd->vdev_state;
1123 mvd->vdev_crtxg = cvd->vdev_crtxg;
1124
1125 vdev_remove_child(pvd, cvd);
1126 vdev_add_child(pvd, mvd);
1127 cvd->vdev_id = mvd->vdev_children;
1128 vdev_add_child(mvd, cvd);
1129 vdev_top_update(cvd->vdev_top, cvd->vdev_top);
1130
1131 if (mvd == mvd->vdev_top)
1132 vdev_top_transfer(cvd, mvd);
1133
1134 return (mvd);
1135 }
1136
1137 /*
1138 * Remove a 1-way mirror/replacing vdev from the tree.
1139 */
1140 void
1141 vdev_remove_parent(vdev_t *cvd)
1142 {
1143 vdev_t *mvd = cvd->vdev_parent;
1144 vdev_t *pvd = mvd->vdev_parent;
1145
1146 ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1147
1148 ASSERT(mvd->vdev_children == 1);
1149 ASSERT(mvd->vdev_ops == &vdev_mirror_ops ||
1150 mvd->vdev_ops == &vdev_replacing_ops ||
1151 mvd->vdev_ops == &vdev_spare_ops);
1152 cvd->vdev_ashift = mvd->vdev_ashift;
1153
1154 vdev_remove_child(mvd, cvd);
1155 vdev_remove_child(pvd, mvd);
1156
1157 /*
1158 * If cvd will replace mvd as a top-level vdev, preserve mvd's guid.
1159 * Otherwise, we could have detached an offline device, and when we
1160 * go to import the pool we'll think we have two top-level vdevs,
1161 * instead of a different version of the same top-level vdev.
1162 */
1163 if (mvd->vdev_top == mvd) {
1164 uint64_t guid_delta = mvd->vdev_guid - cvd->vdev_guid;
1165 cvd->vdev_orig_guid = cvd->vdev_guid;
1166 cvd->vdev_guid += guid_delta;
1167 cvd->vdev_guid_sum += guid_delta;
1168
1169 /*
1170 * If pool not set for autoexpand, we need to also preserve
1171 * mvd's asize to prevent automatic expansion of cvd.
1172 * Otherwise if we are adjusting the mirror by attaching and
1173 * detaching children of non-uniform sizes, the mirror could
1174 * autoexpand, unexpectedly requiring larger devices to
1175 * re-establish the mirror.
1176 */
1177 if (!cvd->vdev_spa->spa_autoexpand)
1178 cvd->vdev_asize = mvd->vdev_asize;
1179 }
1180 cvd->vdev_id = mvd->vdev_id;
1181 vdev_add_child(pvd, cvd);
1182 vdev_top_update(cvd->vdev_top, cvd->vdev_top);
1183
1184 if (cvd == cvd->vdev_top)
1185 vdev_top_transfer(mvd, cvd);
1186
1187 ASSERT(mvd->vdev_children == 0);
1188 vdev_free(mvd);
1189 }
1190
1191 static void
1192 vdev_metaslab_group_create(vdev_t *vd)
1193 {
1194 spa_t *spa = vd->vdev_spa;
1195
1196 /*
1197 * metaslab_group_create was delayed until allocation bias was available
1198 */
1199 if (vd->vdev_mg == NULL) {
1200 metaslab_class_t *mc;
1201
1202 if (vd->vdev_islog && vd->vdev_alloc_bias == VDEV_BIAS_NONE)
1203 vd->vdev_alloc_bias = VDEV_BIAS_LOG;
1204
1205 ASSERT3U(vd->vdev_islog, ==,
1206 (vd->vdev_alloc_bias == VDEV_BIAS_LOG));
1207
1208 switch (vd->vdev_alloc_bias) {
1209 case VDEV_BIAS_LOG:
1210 mc = spa_log_class(spa);
1211 break;
1212 case VDEV_BIAS_SPECIAL:
1213 mc = spa_special_class(spa);
1214 break;
1215 case VDEV_BIAS_DEDUP:
1216 mc = spa_dedup_class(spa);
1217 break;
1218 default:
1219 mc = spa_normal_class(spa);
1220 }
1221
1222 vd->vdev_mg = metaslab_group_create(mc, vd,
1223 spa->spa_alloc_count);
1224
1225 /*
1226 * The spa ashift values currently only reflect the
1227 * general vdev classes. Class destination is late
1228 * binding so ashift checking had to wait until now
1229 */
1230 if (vd->vdev_top == vd && vd->vdev_ashift != 0 &&
1231 mc == spa_normal_class(spa) && vd->vdev_aux == NULL) {
1232 if (vd->vdev_ashift > spa->spa_max_ashift)
1233 spa->spa_max_ashift = vd->vdev_ashift;
1234 if (vd->vdev_ashift < spa->spa_min_ashift)
1235 spa->spa_min_ashift = vd->vdev_ashift;
1236 }
1237 }
1238 }
1239
1240 int
1241 vdev_metaslab_init(vdev_t *vd, uint64_t txg)
1242 {
1243 spa_t *spa = vd->vdev_spa;
1244 objset_t *mos = spa->spa_meta_objset;
1245 uint64_t m;
1246 uint64_t oldc = vd->vdev_ms_count;
1247 uint64_t newc = vd->vdev_asize >> vd->vdev_ms_shift;
1248 metaslab_t **mspp;
1249 int error;
1250 boolean_t expanding = (oldc != 0);
1251
1252 ASSERT(txg == 0 || spa_config_held(spa, SCL_ALLOC, RW_WRITER));
1253
1254 /*
1255 * This vdev is not being allocated from yet or is a hole.
1256 */
1257 if (vd->vdev_ms_shift == 0)
1258 return (0);
1259
1260 ASSERT(!vd->vdev_ishole);
1261
1262 ASSERT(oldc <= newc);
1263
1264 mspp = vmem_zalloc(newc * sizeof (*mspp), KM_SLEEP);
1265
1266 if (expanding) {
1267 bcopy(vd->vdev_ms, mspp, oldc * sizeof (*mspp));
1268 vmem_free(vd->vdev_ms, oldc * sizeof (*mspp));
1269 }
1270
1271 vd->vdev_ms = mspp;
1272 vd->vdev_ms_count = newc;
1273 for (m = oldc; m < newc; m++) {
1274 uint64_t object = 0;
1275
1276 /*
1277 * vdev_ms_array may be 0 if we are creating the "fake"
1278 * metaslabs for an indirect vdev for zdb's leak detection.
1279 * See zdb_leak_init().
1280 */
1281 if (txg == 0 && vd->vdev_ms_array != 0) {
1282 error = dmu_read(mos, vd->vdev_ms_array,
1283 m * sizeof (uint64_t), sizeof (uint64_t), &object,
1284 DMU_READ_PREFETCH);
1285 if (error != 0) {
1286 vdev_dbgmsg(vd, "unable to read the metaslab "
1287 "array [error=%d]", error);
1288 return (error);
1289 }
1290 }
1291
1292 #ifndef _KERNEL
1293 /*
1294 * To accomodate zdb_leak_init() fake indirect
1295 * metaslabs, we allocate a metaslab group for
1296 * indirect vdevs which normally don't have one.
1297 */
1298 if (vd->vdev_mg == NULL) {
1299 ASSERT0(vdev_is_concrete(vd));
1300 vdev_metaslab_group_create(vd);
1301 }
1302 #endif
1303 error = metaslab_init(vd->vdev_mg, m, object, txg,
1304 &(vd->vdev_ms[m]));
1305 if (error != 0) {
1306 vdev_dbgmsg(vd, "metaslab_init failed [error=%d]",
1307 error);
1308 return (error);
1309 }
1310 }
1311
1312 if (txg == 0)
1313 spa_config_enter(spa, SCL_ALLOC, FTAG, RW_WRITER);
1314
1315 /*
1316 * If the vdev is being removed we don't activate
1317 * the metaslabs since we want to ensure that no new
1318 * allocations are performed on this device.
1319 */
1320 if (!expanding && !vd->vdev_removing) {
1321 metaslab_group_activate(vd->vdev_mg);
1322 }
1323
1324 if (txg == 0)
1325 spa_config_exit(spa, SCL_ALLOC, FTAG);
1326
1327 return (0);
1328 }
1329
1330 void
1331 vdev_metaslab_fini(vdev_t *vd)
1332 {
1333 if (vd->vdev_checkpoint_sm != NULL) {
1334 ASSERT(spa_feature_is_active(vd->vdev_spa,
1335 SPA_FEATURE_POOL_CHECKPOINT));
1336 space_map_close(vd->vdev_checkpoint_sm);
1337 /*
1338 * Even though we close the space map, we need to set its
1339 * pointer to NULL. The reason is that vdev_metaslab_fini()
1340 * may be called multiple times for certain operations
1341 * (i.e. when destroying a pool) so we need to ensure that
1342 * this clause never executes twice. This logic is similar
1343 * to the one used for the vdev_ms clause below.
1344 */
1345 vd->vdev_checkpoint_sm = NULL;
1346 }
1347
1348 if (vd->vdev_ms != NULL) {
1349 uint64_t count = vd->vdev_ms_count;
1350
1351 metaslab_group_passivate(vd->vdev_mg);
1352 for (uint64_t m = 0; m < count; m++) {
1353 metaslab_t *msp = vd->vdev_ms[m];
1354
1355 if (msp != NULL)
1356 metaslab_fini(msp);
1357 }
1358 vmem_free(vd->vdev_ms, count * sizeof (metaslab_t *));
1359 vd->vdev_ms = NULL;
1360
1361 vd->vdev_ms_count = 0;
1362 }
1363 ASSERT0(vd->vdev_ms_count);
1364 ASSERT3U(vd->vdev_pending_fastwrite, ==, 0);
1365 }
1366
1367 typedef struct vdev_probe_stats {
1368 boolean_t vps_readable;
1369 boolean_t vps_writeable;
1370 int vps_flags;
1371 } vdev_probe_stats_t;
1372
1373 static void
1374 vdev_probe_done(zio_t *zio)
1375 {
1376 spa_t *spa = zio->io_spa;
1377 vdev_t *vd = zio->io_vd;
1378 vdev_probe_stats_t *vps = zio->io_private;
1379
1380 ASSERT(vd->vdev_probe_zio != NULL);
1381
1382 if (zio->io_type == ZIO_TYPE_READ) {
1383 if (zio->io_error == 0)
1384 vps->vps_readable = 1;
1385 if (zio->io_error == 0 && spa_writeable(spa)) {
1386 zio_nowait(zio_write_phys(vd->vdev_probe_zio, vd,
1387 zio->io_offset, zio->io_size, zio->io_abd,
1388 ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
1389 ZIO_PRIORITY_SYNC_WRITE, vps->vps_flags, B_TRUE));
1390 } else {
1391 abd_free(zio->io_abd);
1392 }
1393 } else if (zio->io_type == ZIO_TYPE_WRITE) {
1394 if (zio->io_error == 0)
1395 vps->vps_writeable = 1;
1396 abd_free(zio->io_abd);
1397 } else if (zio->io_type == ZIO_TYPE_NULL) {
1398 zio_t *pio;
1399 zio_link_t *zl;
1400
1401 vd->vdev_cant_read |= !vps->vps_readable;
1402 vd->vdev_cant_write |= !vps->vps_writeable;
1403
1404 if (vdev_readable(vd) &&
1405 (vdev_writeable(vd) || !spa_writeable(spa))) {
1406 zio->io_error = 0;
1407 } else {
1408 ASSERT(zio->io_error != 0);
1409 vdev_dbgmsg(vd, "failed probe");
1410 zfs_ereport_post(FM_EREPORT_ZFS_PROBE_FAILURE,
1411 spa, vd, NULL, NULL, 0, 0);
1412 zio->io_error = SET_ERROR(ENXIO);
1413 }
1414
1415 mutex_enter(&vd->vdev_probe_lock);
1416 ASSERT(vd->vdev_probe_zio == zio);
1417 vd->vdev_probe_zio = NULL;
1418 mutex_exit(&vd->vdev_probe_lock);
1419
1420 zl = NULL;
1421 while ((pio = zio_walk_parents(zio, &zl)) != NULL)
1422 if (!vdev_accessible(vd, pio))
1423 pio->io_error = SET_ERROR(ENXIO);
1424
1425 kmem_free(vps, sizeof (*vps));
1426 }
1427 }
1428
1429 /*
1430 * Determine whether this device is accessible.
1431 *
1432 * Read and write to several known locations: the pad regions of each
1433 * vdev label but the first, which we leave alone in case it contains
1434 * a VTOC.
1435 */
1436 zio_t *
1437 vdev_probe(vdev_t *vd, zio_t *zio)
1438 {
1439 spa_t *spa = vd->vdev_spa;
1440 vdev_probe_stats_t *vps = NULL;
1441 zio_t *pio;
1442
1443 ASSERT(vd->vdev_ops->vdev_op_leaf);
1444
1445 /*
1446 * Don't probe the probe.
1447 */
1448 if (zio && (zio->io_flags & ZIO_FLAG_PROBE))
1449 return (NULL);
1450
1451 /*
1452 * To prevent 'probe storms' when a device fails, we create
1453 * just one probe i/o at a time. All zios that want to probe
1454 * this vdev will become parents of the probe io.
1455 */
1456 mutex_enter(&vd->vdev_probe_lock);
1457
1458 if ((pio = vd->vdev_probe_zio) == NULL) {
1459 vps = kmem_zalloc(sizeof (*vps), KM_SLEEP);
1460
1461 vps->vps_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_PROBE |
1462 ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_AGGREGATE |
1463 ZIO_FLAG_TRYHARD;
1464
1465 if (spa_config_held(spa, SCL_ZIO, RW_WRITER)) {
1466 /*
1467 * vdev_cant_read and vdev_cant_write can only
1468 * transition from TRUE to FALSE when we have the
1469 * SCL_ZIO lock as writer; otherwise they can only
1470 * transition from FALSE to TRUE. This ensures that
1471 * any zio looking at these values can assume that
1472 * failures persist for the life of the I/O. That's
1473 * important because when a device has intermittent
1474 * connectivity problems, we want to ensure that
1475 * they're ascribed to the device (ENXIO) and not
1476 * the zio (EIO).
1477 *
1478 * Since we hold SCL_ZIO as writer here, clear both
1479 * values so the probe can reevaluate from first
1480 * principles.
1481 */
1482 vps->vps_flags |= ZIO_FLAG_CONFIG_WRITER;
1483 vd->vdev_cant_read = B_FALSE;
1484 vd->vdev_cant_write = B_FALSE;
1485 }
1486
1487 vd->vdev_probe_zio = pio = zio_null(NULL, spa, vd,
1488 vdev_probe_done, vps,
1489 vps->vps_flags | ZIO_FLAG_DONT_PROPAGATE);
1490
1491 /*
1492 * We can't change the vdev state in this context, so we
1493 * kick off an async task to do it on our behalf.
1494 */
1495 if (zio != NULL) {
1496 vd->vdev_probe_wanted = B_TRUE;
1497 spa_async_request(spa, SPA_ASYNC_PROBE);
1498 }
1499 }
1500
1501 if (zio != NULL)
1502 zio_add_child(zio, pio);
1503
1504 mutex_exit(&vd->vdev_probe_lock);
1505
1506 if (vps == NULL) {
1507 ASSERT(zio != NULL);
1508 return (NULL);
1509 }
1510
1511 for (int l = 1; l < VDEV_LABELS; l++) {
1512 zio_nowait(zio_read_phys(pio, vd,
1513 vdev_label_offset(vd->vdev_psize, l,
1514 offsetof(vdev_label_t, vl_pad2)), VDEV_PAD_SIZE,
1515 abd_alloc_for_io(VDEV_PAD_SIZE, B_TRUE),
1516 ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
1517 ZIO_PRIORITY_SYNC_READ, vps->vps_flags, B_TRUE));
1518 }
1519
1520 if (zio == NULL)
1521 return (pio);
1522
1523 zio_nowait(pio);
1524 return (NULL);
1525 }
1526
1527 static void
1528 vdev_open_child(void *arg)
1529 {
1530 vdev_t *vd = arg;
1531
1532 vd->vdev_open_thread = curthread;
1533 vd->vdev_open_error = vdev_open(vd);
1534 vd->vdev_open_thread = NULL;
1535 }
1536
1537 static boolean_t
1538 vdev_uses_zvols(vdev_t *vd)
1539 {
1540 #ifdef _KERNEL
1541 if (zvol_is_zvol(vd->vdev_path))
1542 return (B_TRUE);
1543 #endif
1544
1545 for (int c = 0; c < vd->vdev_children; c++)
1546 if (vdev_uses_zvols(vd->vdev_child[c]))
1547 return (B_TRUE);
1548
1549 return (B_FALSE);
1550 }
1551
1552 void
1553 vdev_open_children(vdev_t *vd)
1554 {
1555 taskq_t *tq;
1556 int children = vd->vdev_children;
1557
1558 /*
1559 * in order to handle pools on top of zvols, do the opens
1560 * in a single thread so that the same thread holds the
1561 * spa_namespace_lock
1562 */
1563 if (vdev_uses_zvols(vd)) {
1564 retry_sync:
1565 for (int c = 0; c < children; c++)
1566 vd->vdev_child[c]->vdev_open_error =
1567 vdev_open(vd->vdev_child[c]);
1568 } else {
1569 tq = taskq_create("vdev_open", children, minclsyspri,
1570 children, children, TASKQ_PREPOPULATE);
1571 if (tq == NULL)
1572 goto retry_sync;
1573
1574 for (int c = 0; c < children; c++)
1575 VERIFY(taskq_dispatch(tq, vdev_open_child,
1576 vd->vdev_child[c], TQ_SLEEP) != TASKQID_INVALID);
1577
1578 taskq_destroy(tq);
1579 }
1580
1581 vd->vdev_nonrot = B_TRUE;
1582
1583 for (int c = 0; c < children; c++)
1584 vd->vdev_nonrot &= vd->vdev_child[c]->vdev_nonrot;
1585 }
1586
1587 /*
1588 * Compute the raidz-deflation ratio. Note, we hard-code
1589 * in 128k (1 << 17) because it is the "typical" blocksize.
1590 * Even though SPA_MAXBLOCKSIZE changed, this algorithm can not change,
1591 * otherwise it would inconsistently account for existing bp's.
1592 */
1593 static void
1594 vdev_set_deflate_ratio(vdev_t *vd)
1595 {
1596 if (vd == vd->vdev_top && !vd->vdev_ishole && vd->vdev_ashift != 0) {
1597 vd->vdev_deflate_ratio = (1 << 17) /
1598 (vdev_psize_to_asize(vd, 1 << 17) >> SPA_MINBLOCKSHIFT);
1599 }
1600 }
1601
1602 /*
1603 * Prepare a virtual device for access.
1604 */
1605 int
1606 vdev_open(vdev_t *vd)
1607 {
1608 spa_t *spa = vd->vdev_spa;
1609 int error;
1610 uint64_t osize = 0;
1611 uint64_t max_osize = 0;
1612 uint64_t asize, max_asize, psize;
1613 uint64_t ashift = 0;
1614
1615 ASSERT(vd->vdev_open_thread == curthread ||
1616 spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1617 ASSERT(vd->vdev_state == VDEV_STATE_CLOSED ||
1618 vd->vdev_state == VDEV_STATE_CANT_OPEN ||
1619 vd->vdev_state == VDEV_STATE_OFFLINE);
1620
1621 vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
1622 vd->vdev_cant_read = B_FALSE;
1623 vd->vdev_cant_write = B_FALSE;
1624 vd->vdev_min_asize = vdev_get_min_asize(vd);
1625
1626 /*
1627 * If this vdev is not removed, check its fault status. If it's
1628 * faulted, bail out of the open.
1629 */
1630 if (!vd->vdev_removed && vd->vdev_faulted) {
1631 ASSERT(vd->vdev_children == 0);
1632 ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED ||
1633 vd->vdev_label_aux == VDEV_AUX_EXTERNAL);
1634 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1635 vd->vdev_label_aux);
1636 return (SET_ERROR(ENXIO));
1637 } else if (vd->vdev_offline) {
1638 ASSERT(vd->vdev_children == 0);
1639 vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE, VDEV_AUX_NONE);
1640 return (SET_ERROR(ENXIO));
1641 }
1642
1643 error = vd->vdev_ops->vdev_op_open(vd, &osize, &max_osize, &ashift);
1644
1645 /*
1646 * Reset the vdev_reopening flag so that we actually close
1647 * the vdev on error.
1648 */
1649 vd->vdev_reopening = B_FALSE;
1650 if (zio_injection_enabled && error == 0)
1651 error = zio_handle_device_injection(vd, NULL, ENXIO);
1652
1653 if (error) {
1654 if (vd->vdev_removed &&
1655 vd->vdev_stat.vs_aux != VDEV_AUX_OPEN_FAILED)
1656 vd->vdev_removed = B_FALSE;
1657
1658 if (vd->vdev_stat.vs_aux == VDEV_AUX_CHILDREN_OFFLINE) {
1659 vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE,
1660 vd->vdev_stat.vs_aux);
1661 } else {
1662 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1663 vd->vdev_stat.vs_aux);
1664 }
1665 return (error);
1666 }
1667
1668 vd->vdev_removed = B_FALSE;
1669
1670 /*
1671 * Recheck the faulted flag now that we have confirmed that
1672 * the vdev is accessible. If we're faulted, bail.
1673 */
1674 if (vd->vdev_faulted) {
1675 ASSERT(vd->vdev_children == 0);
1676 ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED ||
1677 vd->vdev_label_aux == VDEV_AUX_EXTERNAL);
1678 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1679 vd->vdev_label_aux);
1680 return (SET_ERROR(ENXIO));
1681 }
1682
1683 if (vd->vdev_degraded) {
1684 ASSERT(vd->vdev_children == 0);
1685 vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
1686 VDEV_AUX_ERR_EXCEEDED);
1687 } else {
1688 vdev_set_state(vd, B_TRUE, VDEV_STATE_HEALTHY, 0);
1689 }
1690
1691 /*
1692 * For hole or missing vdevs we just return success.
1693 */
1694 if (vd->vdev_ishole || vd->vdev_ops == &vdev_missing_ops)
1695 return (0);
1696
1697 for (int c = 0; c < vd->vdev_children; c++) {
1698 if (vd->vdev_child[c]->vdev_state != VDEV_STATE_HEALTHY) {
1699 vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
1700 VDEV_AUX_NONE);
1701 break;
1702 }
1703 }
1704
1705 osize = P2ALIGN(osize, (uint64_t)sizeof (vdev_label_t));
1706 max_osize = P2ALIGN(max_osize, (uint64_t)sizeof (vdev_label_t));
1707
1708 if (vd->vdev_children == 0) {
1709 if (osize < SPA_MINDEVSIZE) {
1710 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1711 VDEV_AUX_TOO_SMALL);
1712 return (SET_ERROR(EOVERFLOW));
1713 }
1714 psize = osize;
1715 asize = osize - (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE);
1716 max_asize = max_osize - (VDEV_LABEL_START_SIZE +
1717 VDEV_LABEL_END_SIZE);
1718 } else {
1719 if (vd->vdev_parent != NULL && osize < SPA_MINDEVSIZE -
1720 (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE)) {
1721 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1722 VDEV_AUX_TOO_SMALL);
1723 return (SET_ERROR(EOVERFLOW));
1724 }
1725 psize = 0;
1726 asize = osize;
1727 max_asize = max_osize;
1728 }
1729
1730 /*
1731 * If the vdev was expanded, record this so that we can re-create the
1732 * uberblock rings in labels {2,3}, during the next sync.
1733 */
1734 if ((psize > vd->vdev_psize) && (vd->vdev_psize != 0))
1735 vd->vdev_copy_uberblocks = B_TRUE;
1736
1737 vd->vdev_psize = psize;
1738
1739 /*
1740 * Make sure the allocatable size hasn't shrunk too much.
1741 */
1742 if (asize < vd->vdev_min_asize) {
1743 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1744 VDEV_AUX_BAD_LABEL);
1745 return (SET_ERROR(EINVAL));
1746 }
1747
1748 if (vd->vdev_asize == 0) {
1749 /*
1750 * This is the first-ever open, so use the computed values.
1751 * For compatibility, a different ashift can be requested.
1752 */
1753 vd->vdev_asize = asize;
1754 vd->vdev_max_asize = max_asize;
1755 if (vd->vdev_ashift == 0) {
1756 vd->vdev_ashift = ashift; /* use detected value */
1757 }
1758 if (vd->vdev_ashift != 0 && (vd->vdev_ashift < ASHIFT_MIN ||
1759 vd->vdev_ashift > ASHIFT_MAX)) {
1760 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1761 VDEV_AUX_BAD_ASHIFT);
1762 return (SET_ERROR(EDOM));
1763 }
1764 } else {
1765 /*
1766 * Detect if the alignment requirement has increased.
1767 * We don't want to make the pool unavailable, just
1768 * post an event instead.
1769 */
1770 if (ashift > vd->vdev_top->vdev_ashift &&
1771 vd->vdev_ops->vdev_op_leaf) {
1772 zfs_ereport_post(FM_EREPORT_ZFS_DEVICE_BAD_ASHIFT,
1773 spa, vd, NULL, NULL, 0, 0);
1774 }
1775
1776 vd->vdev_max_asize = max_asize;
1777 }
1778
1779 /*
1780 * If all children are healthy we update asize if either:
1781 * The asize has increased, due to a device expansion caused by dynamic
1782 * LUN growth or vdev replacement, and automatic expansion is enabled;
1783 * making the additional space available.
1784 *
1785 * The asize has decreased, due to a device shrink usually caused by a
1786 * vdev replace with a smaller device. This ensures that calculations
1787 * based of max_asize and asize e.g. esize are always valid. It's safe
1788 * to do this as we've already validated that asize is greater than
1789 * vdev_min_asize.
1790 */
1791 if (vd->vdev_state == VDEV_STATE_HEALTHY &&
1792 ((asize > vd->vdev_asize &&
1793 (vd->vdev_expanding || spa->spa_autoexpand)) ||
1794 (asize < vd->vdev_asize)))
1795 vd->vdev_asize = asize;
1796
1797 vdev_set_min_asize(vd);
1798
1799 /*
1800 * Ensure we can issue some IO before declaring the
1801 * vdev open for business.
1802 */
1803 if (vd->vdev_ops->vdev_op_leaf &&
1804 (error = zio_wait(vdev_probe(vd, NULL))) != 0) {
1805 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1806 VDEV_AUX_ERR_EXCEEDED);
1807 return (error);
1808 }
1809
1810 /*
1811 * Track the min and max ashift values for normal data devices.
1812 *
1813 * DJB - TBD these should perhaps be tracked per allocation class
1814 * (e.g. spa_min_ashift is used to round up post compression buffers)
1815 */
1816 if (vd->vdev_top == vd && vd->vdev_ashift != 0 &&
1817 vd->vdev_alloc_bias == VDEV_BIAS_NONE &&
1818 vd->vdev_aux == NULL) {
1819 if (vd->vdev_ashift > spa->spa_max_ashift)
1820 spa->spa_max_ashift = vd->vdev_ashift;
1821 if (vd->vdev_ashift < spa->spa_min_ashift)
1822 spa->spa_min_ashift = vd->vdev_ashift;
1823 }
1824
1825 /*
1826 * If a leaf vdev has a DTL, and seems healthy, then kick off a
1827 * resilver. But don't do this if we are doing a reopen for a scrub,
1828 * since this would just restart the scrub we are already doing.
1829 */
1830 if (vd->vdev_ops->vdev_op_leaf && !spa->spa_scrub_reopen &&
1831 vdev_resilver_needed(vd, NULL, NULL)) {
1832 if (dsl_scan_resilvering(spa->spa_dsl_pool) &&
1833 spa_feature_is_enabled(spa, SPA_FEATURE_RESILVER_DEFER))
1834 vdev_set_deferred_resilver(spa, vd);
1835 else
1836 spa_async_request(spa, SPA_ASYNC_RESILVER);
1837 }
1838
1839 return (0);
1840 }
1841
1842 /*
1843 * Called once the vdevs are all opened, this routine validates the label
1844 * contents. This needs to be done before vdev_load() so that we don't
1845 * inadvertently do repair I/Os to the wrong device.
1846 *
1847 * This function will only return failure if one of the vdevs indicates that it
1848 * has since been destroyed or exported. This is only possible if
1849 * /etc/zfs/zpool.cache was readonly at the time. Otherwise, the vdev state
1850 * will be updated but the function will return 0.
1851 */
1852 int
1853 vdev_validate(vdev_t *vd)
1854 {
1855 spa_t *spa = vd->vdev_spa;
1856 nvlist_t *label;
1857 uint64_t guid = 0, aux_guid = 0, top_guid;
1858 uint64_t state;
1859 nvlist_t *nvl;
1860 uint64_t txg;
1861
1862 if (vdev_validate_skip)
1863 return (0);
1864
1865 for (uint64_t c = 0; c < vd->vdev_children; c++)
1866 if (vdev_validate(vd->vdev_child[c]) != 0)
1867 return (SET_ERROR(EBADF));
1868
1869 /*
1870 * If the device has already failed, or was marked offline, don't do
1871 * any further validation. Otherwise, label I/O will fail and we will
1872 * overwrite the previous state.
1873 */
1874 if (!vd->vdev_ops->vdev_op_leaf || !vdev_readable(vd))
1875 return (0);
1876
1877 /*
1878 * If we are performing an extreme rewind, we allow for a label that
1879 * was modified at a point after the current txg.
1880 * If config lock is not held do not check for the txg. spa_sync could
1881 * be updating the vdev's label before updating spa_last_synced_txg.
1882 */
1883 if (spa->spa_extreme_rewind || spa_last_synced_txg(spa) == 0 ||
1884 spa_config_held(spa, SCL_CONFIG, RW_WRITER) != SCL_CONFIG)
1885 txg = UINT64_MAX;
1886 else
1887 txg = spa_last_synced_txg(spa);
1888
1889 if ((label = vdev_label_read_config(vd, txg)) == NULL) {
1890 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1891 VDEV_AUX_BAD_LABEL);
1892 vdev_dbgmsg(vd, "vdev_validate: failed reading config for "
1893 "txg %llu", (u_longlong_t)txg);
1894 return (0);
1895 }
1896
1897 /*
1898 * Determine if this vdev has been split off into another
1899 * pool. If so, then refuse to open it.
1900 */
1901 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_SPLIT_GUID,
1902 &aux_guid) == 0 && aux_guid == spa_guid(spa)) {
1903 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1904 VDEV_AUX_SPLIT_POOL);
1905 nvlist_free(label);
1906 vdev_dbgmsg(vd, "vdev_validate: vdev split into other pool");
1907 return (0);
1908 }
1909
1910 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_GUID, &guid) != 0) {
1911 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1912 VDEV_AUX_CORRUPT_DATA);
1913 nvlist_free(label);
1914 vdev_dbgmsg(vd, "vdev_validate: '%s' missing from label",
1915 ZPOOL_CONFIG_POOL_GUID);
1916 return (0);
1917 }
1918
1919 /*
1920 * If config is not trusted then ignore the spa guid check. This is
1921 * necessary because if the machine crashed during a re-guid the new
1922 * guid might have been written to all of the vdev labels, but not the
1923 * cached config. The check will be performed again once we have the
1924 * trusted config from the MOS.
1925 */
1926 if (spa->spa_trust_config && guid != spa_guid(spa)) {
1927 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1928 VDEV_AUX_CORRUPT_DATA);
1929 nvlist_free(label);
1930 vdev_dbgmsg(vd, "vdev_validate: vdev label pool_guid doesn't "
1931 "match config (%llu != %llu)", (u_longlong_t)guid,
1932 (u_longlong_t)spa_guid(spa));
1933 return (0);
1934 }
1935
1936 if (nvlist_lookup_nvlist(label, ZPOOL_CONFIG_VDEV_TREE, &nvl)
1937 != 0 || nvlist_lookup_uint64(nvl, ZPOOL_CONFIG_ORIG_GUID,
1938 &aux_guid) != 0)
1939 aux_guid = 0;
1940
1941 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0) {
1942 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1943 VDEV_AUX_CORRUPT_DATA);
1944 nvlist_free(label);
1945 vdev_dbgmsg(vd, "vdev_validate: '%s' missing from label",
1946 ZPOOL_CONFIG_GUID);
1947 return (0);
1948 }
1949
1950 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_TOP_GUID, &top_guid)
1951 != 0) {
1952 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1953 VDEV_AUX_CORRUPT_DATA);
1954 nvlist_free(label);
1955 vdev_dbgmsg(vd, "vdev_validate: '%s' missing from label",
1956 ZPOOL_CONFIG_TOP_GUID);
1957 return (0);
1958 }
1959
1960 /*
1961 * If this vdev just became a top-level vdev because its sibling was
1962 * detached, it will have adopted the parent's vdev guid -- but the
1963 * label may or may not be on disk yet. Fortunately, either version
1964 * of the label will have the same top guid, so if we're a top-level
1965 * vdev, we can safely compare to that instead.
1966 * However, if the config comes from a cachefile that failed to update
1967 * after the detach, a top-level vdev will appear as a non top-level
1968 * vdev in the config. Also relax the constraints if we perform an
1969 * extreme rewind.
1970 *
1971 * If we split this vdev off instead, then we also check the
1972 * original pool's guid. We don't want to consider the vdev
1973 * corrupt if it is partway through a split operation.
1974 */
1975 if (vd->vdev_guid != guid && vd->vdev_guid != aux_guid) {
1976 boolean_t mismatch = B_FALSE;
1977 if (spa->spa_trust_config && !spa->spa_extreme_rewind) {
1978 if (vd != vd->vdev_top || vd->vdev_guid != top_guid)
1979 mismatch = B_TRUE;
1980 } else {
1981 if (vd->vdev_guid != top_guid &&
1982 vd->vdev_top->vdev_guid != guid)
1983 mismatch = B_TRUE;
1984 }
1985
1986 if (mismatch) {
1987 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1988 VDEV_AUX_CORRUPT_DATA);
1989 nvlist_free(label);
1990 vdev_dbgmsg(vd, "vdev_validate: config guid "
1991 "doesn't match label guid");
1992 vdev_dbgmsg(vd, "CONFIG: guid %llu, top_guid %llu",
1993 (u_longlong_t)vd->vdev_guid,
1994 (u_longlong_t)vd->vdev_top->vdev_guid);
1995 vdev_dbgmsg(vd, "LABEL: guid %llu, top_guid %llu, "
1996 "aux_guid %llu", (u_longlong_t)guid,
1997 (u_longlong_t)top_guid, (u_longlong_t)aux_guid);
1998 return (0);
1999 }
2000 }
2001
2002 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE,
2003 &state) != 0) {
2004 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2005 VDEV_AUX_CORRUPT_DATA);
2006 nvlist_free(label);
2007 vdev_dbgmsg(vd, "vdev_validate: '%s' missing from label",
2008 ZPOOL_CONFIG_POOL_STATE);
2009 return (0);
2010 }
2011
2012 nvlist_free(label);
2013
2014 /*
2015 * If this is a verbatim import, no need to check the
2016 * state of the pool.
2017 */
2018 if (!(spa->spa_import_flags & ZFS_IMPORT_VERBATIM) &&
2019 spa_load_state(spa) == SPA_LOAD_OPEN &&
2020 state != POOL_STATE_ACTIVE) {
2021 vdev_dbgmsg(vd, "vdev_validate: invalid pool state (%llu) "
2022 "for spa %s", (u_longlong_t)state, spa->spa_name);
2023 return (SET_ERROR(EBADF));
2024 }
2025
2026 /*
2027 * If we were able to open and validate a vdev that was
2028 * previously marked permanently unavailable, clear that state
2029 * now.
2030 */
2031 if (vd->vdev_not_present)
2032 vd->vdev_not_present = 0;
2033
2034 return (0);
2035 }
2036
2037 static void
2038 vdev_copy_path_impl(vdev_t *svd, vdev_t *dvd)
2039 {
2040 if (svd->vdev_path != NULL && dvd->vdev_path != NULL) {
2041 if (strcmp(svd->vdev_path, dvd->vdev_path) != 0) {
2042 zfs_dbgmsg("vdev_copy_path: vdev %llu: path changed "
2043 "from '%s' to '%s'", (u_longlong_t)dvd->vdev_guid,
2044 dvd->vdev_path, svd->vdev_path);
2045 spa_strfree(dvd->vdev_path);
2046 dvd->vdev_path = spa_strdup(svd->vdev_path);
2047 }
2048 } else if (svd->vdev_path != NULL) {
2049 dvd->vdev_path = spa_strdup(svd->vdev_path);
2050 zfs_dbgmsg("vdev_copy_path: vdev %llu: path set to '%s'",
2051 (u_longlong_t)dvd->vdev_guid, dvd->vdev_path);
2052 }
2053 }
2054
2055 /*
2056 * Recursively copy vdev paths from one vdev to another. Source and destination
2057 * vdev trees must have same geometry otherwise return error. Intended to copy
2058 * paths from userland config into MOS config.
2059 */
2060 int
2061 vdev_copy_path_strict(vdev_t *svd, vdev_t *dvd)
2062 {
2063 if ((svd->vdev_ops == &vdev_missing_ops) ||
2064 (svd->vdev_ishole && dvd->vdev_ishole) ||
2065 (dvd->vdev_ops == &vdev_indirect_ops))
2066 return (0);
2067
2068 if (svd->vdev_ops != dvd->vdev_ops) {
2069 vdev_dbgmsg(svd, "vdev_copy_path: vdev type mismatch: %s != %s",
2070 svd->vdev_ops->vdev_op_type, dvd->vdev_ops->vdev_op_type);
2071 return (SET_ERROR(EINVAL));
2072 }
2073
2074 if (svd->vdev_guid != dvd->vdev_guid) {
2075 vdev_dbgmsg(svd, "vdev_copy_path: guids mismatch (%llu != "
2076 "%llu)", (u_longlong_t)svd->vdev_guid,
2077 (u_longlong_t)dvd->vdev_guid);
2078 return (SET_ERROR(EINVAL));
2079 }
2080
2081 if (svd->vdev_children != dvd->vdev_children) {
2082 vdev_dbgmsg(svd, "vdev_copy_path: children count mismatch: "
2083 "%llu != %llu", (u_longlong_t)svd->vdev_children,
2084 (u_longlong_t)dvd->vdev_children);
2085 return (SET_ERROR(EINVAL));
2086 }
2087
2088 for (uint64_t i = 0; i < svd->vdev_children; i++) {
2089 int error = vdev_copy_path_strict(svd->vdev_child[i],
2090 dvd->vdev_child[i]);
2091 if (error != 0)
2092 return (error);
2093 }
2094
2095 if (svd->vdev_ops->vdev_op_leaf)
2096 vdev_copy_path_impl(svd, dvd);
2097
2098 return (0);
2099 }
2100
2101 static void
2102 vdev_copy_path_search(vdev_t *stvd, vdev_t *dvd)
2103 {
2104 ASSERT(stvd->vdev_top == stvd);
2105 ASSERT3U(stvd->vdev_id, ==, dvd->vdev_top->vdev_id);
2106
2107 for (uint64_t i = 0; i < dvd->vdev_children; i++) {
2108 vdev_copy_path_search(stvd, dvd->vdev_child[i]);
2109 }
2110
2111 if (!dvd->vdev_ops->vdev_op_leaf || !vdev_is_concrete(dvd))
2112 return;
2113
2114 /*
2115 * The idea here is that while a vdev can shift positions within
2116 * a top vdev (when replacing, attaching mirror, etc.) it cannot
2117 * step outside of it.
2118 */
2119 vdev_t *vd = vdev_lookup_by_guid(stvd, dvd->vdev_guid);
2120
2121 if (vd == NULL || vd->vdev_ops != dvd->vdev_ops)
2122 return;
2123
2124 ASSERT(vd->vdev_ops->vdev_op_leaf);
2125
2126 vdev_copy_path_impl(vd, dvd);
2127 }
2128
2129 /*
2130 * Recursively copy vdev paths from one root vdev to another. Source and
2131 * destination vdev trees may differ in geometry. For each destination leaf
2132 * vdev, search a vdev with the same guid and top vdev id in the source.
2133 * Intended to copy paths from userland config into MOS config.
2134 */
2135 void
2136 vdev_copy_path_relaxed(vdev_t *srvd, vdev_t *drvd)
2137 {
2138 uint64_t children = MIN(srvd->vdev_children, drvd->vdev_children);
2139 ASSERT(srvd->vdev_ops == &vdev_root_ops);
2140 ASSERT(drvd->vdev_ops == &vdev_root_ops);
2141
2142 for (uint64_t i = 0; i < children; i++) {
2143 vdev_copy_path_search(srvd->vdev_child[i],
2144 drvd->vdev_child[i]);
2145 }
2146 }
2147
2148 /*
2149 * Close a virtual device.
2150 */
2151 void
2152 vdev_close(vdev_t *vd)
2153 {
2154 vdev_t *pvd = vd->vdev_parent;
2155 ASSERTV(spa_t *spa = vd->vdev_spa);
2156
2157 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
2158
2159 /*
2160 * If our parent is reopening, then we are as well, unless we are
2161 * going offline.
2162 */
2163 if (pvd != NULL && pvd->vdev_reopening)
2164 vd->vdev_reopening = (pvd->vdev_reopening && !vd->vdev_offline);
2165
2166 vd->vdev_ops->vdev_op_close(vd);
2167
2168 vdev_cache_purge(vd);
2169
2170 /*
2171 * We record the previous state before we close it, so that if we are
2172 * doing a reopen(), we don't generate FMA ereports if we notice that
2173 * it's still faulted.
2174 */
2175 vd->vdev_prevstate = vd->vdev_state;
2176
2177 if (vd->vdev_offline)
2178 vd->vdev_state = VDEV_STATE_OFFLINE;
2179 else
2180 vd->vdev_state = VDEV_STATE_CLOSED;
2181 vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
2182 }
2183
2184 void
2185 vdev_hold(vdev_t *vd)
2186 {
2187 spa_t *spa = vd->vdev_spa;
2188
2189 ASSERT(spa_is_root(spa));
2190 if (spa->spa_state == POOL_STATE_UNINITIALIZED)
2191 return;
2192
2193 for (int c = 0; c < vd->vdev_children; c++)
2194 vdev_hold(vd->vdev_child[c]);
2195
2196 if (vd->vdev_ops->vdev_op_leaf)
2197 vd->vdev_ops->vdev_op_hold(vd);
2198 }
2199
2200 void
2201 vdev_rele(vdev_t *vd)
2202 {
2203 ASSERT(spa_is_root(vd->vdev_spa));
2204 for (int c = 0; c < vd->vdev_children; c++)
2205 vdev_rele(vd->vdev_child[c]);
2206
2207 if (vd->vdev_ops->vdev_op_leaf)
2208 vd->vdev_ops->vdev_op_rele(vd);
2209 }
2210
2211 /*
2212 * Reopen all interior vdevs and any unopened leaves. We don't actually
2213 * reopen leaf vdevs which had previously been opened as they might deadlock
2214 * on the spa_config_lock. Instead we only obtain the leaf's physical size.
2215 * If the leaf has never been opened then open it, as usual.
2216 */
2217 void
2218 vdev_reopen(vdev_t *vd)
2219 {
2220 spa_t *spa = vd->vdev_spa;
2221
2222 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
2223
2224 /* set the reopening flag unless we're taking the vdev offline */
2225 vd->vdev_reopening = !vd->vdev_offline;
2226 vdev_close(vd);
2227 (void) vdev_open(vd);
2228
2229 /*
2230 * Call vdev_validate() here to make sure we have the same device.
2231 * Otherwise, a device with an invalid label could be successfully
2232 * opened in response to vdev_reopen().
2233 */
2234 if (vd->vdev_aux) {
2235 (void) vdev_validate_aux(vd);
2236 if (vdev_readable(vd) && vdev_writeable(vd) &&
2237 vd->vdev_aux == &spa->spa_l2cache &&
2238 !l2arc_vdev_present(vd))
2239 l2arc_add_vdev(spa, vd);
2240 } else {
2241 (void) vdev_validate(vd);
2242 }
2243
2244 /*
2245 * Reassess parent vdev's health.
2246 */
2247 vdev_propagate_state(vd);
2248 }
2249
2250 int
2251 vdev_create(vdev_t *vd, uint64_t txg, boolean_t isreplacing)
2252 {
2253 int error;
2254
2255 /*
2256 * Normally, partial opens (e.g. of a mirror) are allowed.
2257 * For a create, however, we want to fail the request if
2258 * there are any components we can't open.
2259 */
2260 error = vdev_open(vd);
2261
2262 if (error || vd->vdev_state != VDEV_STATE_HEALTHY) {
2263 vdev_close(vd);
2264 return (error ? error : ENXIO);
2265 }
2266
2267 /*
2268 * Recursively load DTLs and initialize all labels.
2269 */
2270 if ((error = vdev_dtl_load(vd)) != 0 ||
2271 (error = vdev_label_init(vd, txg, isreplacing ?
2272 VDEV_LABEL_REPLACE : VDEV_LABEL_CREATE)) != 0) {
2273 vdev_close(vd);
2274 return (error);
2275 }
2276
2277 return (0);
2278 }
2279
2280 void
2281 vdev_metaslab_set_size(vdev_t *vd)
2282 {
2283 uint64_t asize = vd->vdev_asize;
2284 uint64_t ms_count = asize >> zfs_vdev_default_ms_shift;
2285 uint64_t ms_shift;
2286
2287 /*
2288 * There are two dimensions to the metaslab sizing calculation:
2289 * the size of the metaslab and the count of metaslabs per vdev.
2290 *
2291 * The default values used below are a good balance between memory
2292 * usage (larger metaslab size means more memory needed for loaded
2293 * metaslabs; more metaslabs means more memory needed for the
2294 * metaslab_t structs), metaslab load time (larger metaslabs take
2295 * longer to load), and metaslab sync time (more metaslabs means
2296 * more time spent syncing all of them).
2297 *
2298 * In general, we aim for zfs_vdev_default_ms_count (200) metaslabs.
2299 * The range of the dimensions are as follows:
2300 *
2301 * 2^29 <= ms_size <= 2^34
2302 * 16 <= ms_count <= 131,072
2303 *
2304 * On the lower end of vdev sizes, we aim for metaslabs sizes of
2305 * at least 512MB (2^29) to minimize fragmentation effects when
2306 * testing with smaller devices. However, the count constraint
2307 * of at least 16 metaslabs will override this minimum size goal.
2308 *
2309 * On the upper end of vdev sizes, we aim for a maximum metaslab
2310 * size of 16GB. However, we will cap the total count to 2^17
2311 * metaslabs to keep our memory footprint in check and let the
2312 * metaslab size grow from there if that limit is hit.
2313 *
2314 * The net effect of applying above constrains is summarized below.
2315 *
2316 * vdev size metaslab count
2317 * --------------|-----------------
2318 * < 8GB ~16
2319 * 8GB - 100GB one per 512MB
2320 * 100GB - 3TB ~200
2321 * 3TB - 2PB one per 16GB
2322 * > 2PB ~131,072
2323 * --------------------------------
2324 *
2325 * Finally, note that all of the above calculate the initial
2326 * number of metaslabs. Expanding a top-level vdev will result
2327 * in additional metaslabs being allocated making it possible
2328 * to exceed the zfs_vdev_ms_count_limit.
2329 */
2330
2331 if (ms_count < zfs_vdev_min_ms_count)
2332 ms_shift = highbit64(asize / zfs_vdev_min_ms_count);
2333 else if (ms_count > zfs_vdev_default_ms_count)
2334 ms_shift = highbit64(asize / zfs_vdev_default_ms_count);
2335 else
2336 ms_shift = zfs_vdev_default_ms_shift;
2337
2338 if (ms_shift < SPA_MAXBLOCKSHIFT) {
2339 ms_shift = SPA_MAXBLOCKSHIFT;
2340 } else if (ms_shift > zfs_vdev_max_ms_shift) {
2341 ms_shift = zfs_vdev_max_ms_shift;
2342 /* cap the total count to constrain memory footprint */
2343 if ((asize >> ms_shift) > zfs_vdev_ms_count_limit)
2344 ms_shift = highbit64(asize / zfs_vdev_ms_count_limit);
2345 }
2346
2347 vd->vdev_ms_shift = ms_shift;
2348 ASSERT3U(vd->vdev_ms_shift, >=, SPA_MAXBLOCKSHIFT);
2349 }
2350
2351 void
2352 vdev_dirty(vdev_t *vd, int flags, void *arg, uint64_t txg)
2353 {
2354 ASSERT(vd == vd->vdev_top);
2355 /* indirect vdevs don't have metaslabs or dtls */
2356 ASSERT(vdev_is_concrete(vd) || flags == 0);
2357 ASSERT(ISP2(flags));
2358 ASSERT(spa_writeable(vd->vdev_spa));
2359
2360 if (flags & VDD_METASLAB)
2361 (void) txg_list_add(&vd->vdev_ms_list, arg, txg);
2362
2363 if (flags & VDD_DTL)
2364 (void) txg_list_add(&vd->vdev_dtl_list, arg, txg);
2365
2366 (void) txg_list_add(&vd->vdev_spa->spa_vdev_txg_list, vd, txg);
2367 }
2368
2369 void
2370 vdev_dirty_leaves(vdev_t *vd, int flags, uint64_t txg)
2371 {
2372 for (int c = 0; c < vd->vdev_children; c++)
2373 vdev_dirty_leaves(vd->vdev_child[c], flags, txg);
2374
2375 if (vd->vdev_ops->vdev_op_leaf)
2376 vdev_dirty(vd->vdev_top, flags, vd, txg);
2377 }
2378
2379 /*
2380 * DTLs.
2381 *
2382 * A vdev's DTL (dirty time log) is the set of transaction groups for which
2383 * the vdev has less than perfect replication. There are four kinds of DTL:
2384 *
2385 * DTL_MISSING: txgs for which the vdev has no valid copies of the data
2386 *
2387 * DTL_PARTIAL: txgs for which data is available, but not fully replicated
2388 *
2389 * DTL_SCRUB: the txgs that could not be repaired by the last scrub; upon
2390 * scrub completion, DTL_SCRUB replaces DTL_MISSING in the range of
2391 * txgs that was scrubbed.
2392 *
2393 * DTL_OUTAGE: txgs which cannot currently be read, whether due to
2394 * persistent errors or just some device being offline.
2395 * Unlike the other three, the DTL_OUTAGE map is not generally
2396 * maintained; it's only computed when needed, typically to
2397 * determine whether a device can be detached.
2398 *
2399 * For leaf vdevs, DTL_MISSING and DTL_PARTIAL are identical: the device
2400 * either has the data or it doesn't.
2401 *
2402 * For interior vdevs such as mirror and RAID-Z the picture is more complex.
2403 * A vdev's DTL_PARTIAL is the union of its children's DTL_PARTIALs, because
2404 * if any child is less than fully replicated, then so is its parent.
2405 * A vdev's DTL_MISSING is a modified union of its children's DTL_MISSINGs,
2406 * comprising only those txgs which appear in 'maxfaults' or more children;
2407 * those are the txgs we don't have enough replication to read. For example,
2408 * double-parity RAID-Z can tolerate up to two missing devices (maxfaults == 2);
2409 * thus, its DTL_MISSING consists of the set of txgs that appear in more than
2410 * two child DTL_MISSING maps.
2411 *
2412 * It should be clear from the above that to compute the DTLs and outage maps
2413 * for all vdevs, it suffices to know just the leaf vdevs' DTL_MISSING maps.
2414 * Therefore, that is all we keep on disk. When loading the pool, or after
2415 * a configuration change, we generate all other DTLs from first principles.
2416 */
2417 void
2418 vdev_dtl_dirty(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
2419 {
2420 range_tree_t *rt = vd->vdev_dtl[t];
2421
2422 ASSERT(t < DTL_TYPES);
2423 ASSERT(vd != vd->vdev_spa->spa_root_vdev);
2424 ASSERT(spa_writeable(vd->vdev_spa));
2425
2426 mutex_enter(&vd->vdev_dtl_lock);
2427 if (!range_tree_contains(rt, txg, size))
2428 range_tree_add(rt, txg, size);
2429 mutex_exit(&vd->vdev_dtl_lock);
2430 }
2431
2432 boolean_t
2433 vdev_dtl_contains(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
2434 {
2435 range_tree_t *rt = vd->vdev_dtl[t];
2436 boolean_t dirty = B_FALSE;
2437
2438 ASSERT(t < DTL_TYPES);
2439 ASSERT(vd != vd->vdev_spa->spa_root_vdev);
2440
2441 /*
2442 * While we are loading the pool, the DTLs have not been loaded yet.
2443 * Ignore the DTLs and try all devices. This avoids a recursive
2444 * mutex enter on the vdev_dtl_lock, and also makes us try hard
2445 * when loading the pool (relying on the checksum to ensure that
2446 * we get the right data -- note that we while loading, we are
2447 * only reading the MOS, which is always checksummed).
2448 */
2449 if (vd->vdev_spa->spa_load_state != SPA_LOAD_NONE)
2450 return (B_FALSE);
2451
2452 mutex_enter(&vd->vdev_dtl_lock);
2453 if (!range_tree_is_empty(rt))
2454 dirty = range_tree_contains(rt, txg, size);
2455 mutex_exit(&vd->vdev_dtl_lock);
2456
2457 return (dirty);
2458 }
2459
2460 boolean_t
2461 vdev_dtl_empty(vdev_t *vd, vdev_dtl_type_t t)
2462 {
2463 range_tree_t *rt = vd->vdev_dtl[t];
2464 boolean_t empty;
2465
2466 mutex_enter(&vd->vdev_dtl_lock);
2467 empty = range_tree_is_empty(rt);
2468 mutex_exit(&vd->vdev_dtl_lock);
2469
2470 return (empty);
2471 }
2472
2473 /*
2474 * Returns B_TRUE if vdev determines offset needs to be resilvered.
2475 */
2476 boolean_t
2477 vdev_dtl_need_resilver(vdev_t *vd, uint64_t offset, size_t psize)
2478 {
2479 ASSERT(vd != vd->vdev_spa->spa_root_vdev);
2480
2481 if (vd->vdev_ops->vdev_op_need_resilver == NULL ||
2482 vd->vdev_ops->vdev_op_leaf)
2483 return (B_TRUE);
2484
2485 return (vd->vdev_ops->vdev_op_need_resilver(vd, offset, psize));
2486 }
2487
2488 /*
2489 * Returns the lowest txg in the DTL range.
2490 */
2491 static uint64_t
2492 vdev_dtl_min(vdev_t *vd)
2493 {
2494 range_seg_t *rs;
2495
2496 ASSERT(MUTEX_HELD(&vd->vdev_dtl_lock));
2497 ASSERT3U(range_tree_space(vd->vdev_dtl[DTL_MISSING]), !=, 0);
2498 ASSERT0(vd->vdev_children);
2499
2500 rs = avl_first(&vd->vdev_dtl[DTL_MISSING]->rt_root);
2501 return (rs->rs_start - 1);
2502 }
2503
2504 /*
2505 * Returns the highest txg in the DTL.
2506 */
2507 static uint64_t
2508 vdev_dtl_max(vdev_t *vd)
2509 {
2510 range_seg_t *rs;
2511
2512 ASSERT(MUTEX_HELD(&vd->vdev_dtl_lock));
2513 ASSERT3U(range_tree_space(vd->vdev_dtl[DTL_MISSING]), !=, 0);
2514 ASSERT0(vd->vdev_children);
2515
2516 rs = avl_last(&vd->vdev_dtl[DTL_MISSING]->rt_root);
2517 return (rs->rs_end);
2518 }
2519
2520 /*
2521 * Determine if a resilvering vdev should remove any DTL entries from
2522 * its range. If the vdev was resilvering for the entire duration of the
2523 * scan then it should excise that range from its DTLs. Otherwise, this
2524 * vdev is considered partially resilvered and should leave its DTL
2525 * entries intact. The comment in vdev_dtl_reassess() describes how we
2526 * excise the DTLs.
2527 */
2528 static boolean_t
2529 vdev_dtl_should_excise(vdev_t *vd)
2530 {
2531 spa_t *spa = vd->vdev_spa;
2532 dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan;
2533
2534 ASSERT0(scn->scn_phys.scn_errors);
2535 ASSERT0(vd->vdev_children);
2536
2537 if (vd->vdev_state < VDEV_STATE_DEGRADED)
2538 return (B_FALSE);
2539
2540 if (vd->vdev_resilver_deferred)
2541 return (B_FALSE);
2542
2543 if (vd->vdev_resilver_txg == 0 ||
2544 range_tree_is_empty(vd->vdev_dtl[DTL_MISSING]))
2545 return (B_TRUE);
2546
2547 /*
2548 * When a resilver is initiated the scan will assign the scn_max_txg
2549 * value to the highest txg value that exists in all DTLs. If this
2550 * device's max DTL is not part of this scan (i.e. it is not in
2551 * the range (scn_min_txg, scn_max_txg] then it is not eligible
2552 * for excision.
2553 */
2554 if (vdev_dtl_max(vd) <= scn->scn_phys.scn_max_txg) {
2555 ASSERT3U(scn->scn_phys.scn_min_txg, <=, vdev_dtl_min(vd));
2556 ASSERT3U(scn->scn_phys.scn_min_txg, <, vd->vdev_resilver_txg);
2557 ASSERT3U(vd->vdev_resilver_txg, <=, scn->scn_phys.scn_max_txg);
2558 return (B_TRUE);
2559 }
2560 return (B_FALSE);
2561 }
2562
2563 /*
2564 * Reassess DTLs after a config change or scrub completion. If txg == 0 no
2565 * write operations will be issued to the pool.
2566 */
2567 void
2568 vdev_dtl_reassess(vdev_t *vd, uint64_t txg, uint64_t scrub_txg, int scrub_done)
2569 {
2570 spa_t *spa = vd->vdev_spa;
2571 avl_tree_t reftree;
2572 int minref;
2573
2574 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
2575
2576 for (int c = 0; c < vd->vdev_children; c++)
2577 vdev_dtl_reassess(vd->vdev_child[c], txg,
2578 scrub_txg, scrub_done);
2579
2580 if (vd == spa->spa_root_vdev || !vdev_is_concrete(vd) || vd->vdev_aux)
2581 return;
2582
2583 if (vd->vdev_ops->vdev_op_leaf) {
2584 dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan;
2585
2586 mutex_enter(&vd->vdev_dtl_lock);
2587
2588 /*
2589 * If requested, pretend the scan completed cleanly.
2590 */
2591 if (zfs_scan_ignore_errors && scn)
2592 scn->scn_phys.scn_errors = 0;
2593
2594 /*
2595 * If we've completed a scan cleanly then determine
2596 * if this vdev should remove any DTLs. We only want to
2597 * excise regions on vdevs that were available during
2598 * the entire duration of this scan.
2599 */
2600 if (scrub_txg != 0 &&
2601 (spa->spa_scrub_started ||
2602 (scn != NULL && scn->scn_phys.scn_errors == 0)) &&
2603 vdev_dtl_should_excise(vd)) {
2604 /*
2605 * We completed a scrub up to scrub_txg. If we
2606 * did it without rebooting, then the scrub dtl
2607 * will be valid, so excise the old region and
2608 * fold in the scrub dtl. Otherwise, leave the
2609 * dtl as-is if there was an error.
2610 *
2611 * There's little trick here: to excise the beginning
2612 * of the DTL_MISSING map, we put it into a reference
2613 * tree and then add a segment with refcnt -1 that
2614 * covers the range [0, scrub_txg). This means
2615 * that each txg in that range has refcnt -1 or 0.
2616 * We then add DTL_SCRUB with a refcnt of 2, so that
2617 * entries in the range [0, scrub_txg) will have a
2618 * positive refcnt -- either 1 or 2. We then convert
2619 * the reference tree into the new DTL_MISSING map.
2620 */
2621 space_reftree_create(&reftree);
2622 space_reftree_add_map(&reftree,
2623 vd->vdev_dtl[DTL_MISSING], 1);
2624 space_reftree_add_seg(&reftree, 0, scrub_txg, -1);
2625 space_reftree_add_map(&reftree,
2626 vd->vdev_dtl[DTL_SCRUB], 2);
2627 space_reftree_generate_map(&reftree,
2628 vd->vdev_dtl[DTL_MISSING], 1);
2629 space_reftree_destroy(&reftree);
2630 }
2631 range_tree_vacate(vd->vdev_dtl[DTL_PARTIAL], NULL, NULL);
2632 range_tree_walk(vd->vdev_dtl[DTL_MISSING],
2633 range_tree_add, vd->vdev_dtl[DTL_PARTIAL]);
2634 if (scrub_done)
2635 range_tree_vacate(vd->vdev_dtl[DTL_SCRUB], NULL, NULL);
2636 range_tree_vacate(vd->vdev_dtl[DTL_OUTAGE], NULL, NULL);
2637 if (!vdev_readable(vd))
2638 range_tree_add(vd->vdev_dtl[DTL_OUTAGE], 0, -1ULL);
2639 else
2640 range_tree_walk(vd->vdev_dtl[DTL_MISSING],
2641 range_tree_add, vd->vdev_dtl[DTL_OUTAGE]);
2642
2643 /*
2644 * If the vdev was resilvering and no longer has any
2645 * DTLs then reset its resilvering flag and dirty
2646 * the top level so that we persist the change.
2647 */
2648 if (txg != 0 && vd->vdev_resilver_txg != 0 &&
2649 range_tree_is_empty(vd->vdev_dtl[DTL_MISSING]) &&
2650 range_tree_is_empty(vd->vdev_dtl[DTL_OUTAGE])) {
2651 vd->vdev_resilver_txg = 0;
2652 vdev_config_dirty(vd->vdev_top);
2653 }
2654
2655 mutex_exit(&vd->vdev_dtl_lock);
2656
2657 if (txg != 0)
2658 vdev_dirty(vd->vdev_top, VDD_DTL, vd, txg);
2659 return;
2660 }
2661
2662 mutex_enter(&vd->vdev_dtl_lock);
2663 for (int t = 0; t < DTL_TYPES; t++) {
2664 /* account for child's outage in parent's missing map */
2665 int s = (t == DTL_MISSING) ? DTL_OUTAGE: t;
2666 if (t == DTL_SCRUB)
2667 continue; /* leaf vdevs only */
2668 if (t == DTL_PARTIAL)
2669 minref = 1; /* i.e. non-zero */
2670 else if (vd->vdev_nparity != 0)
2671 minref = vd->vdev_nparity + 1; /* RAID-Z */
2672 else
2673 minref = vd->vdev_children; /* any kind of mirror */
2674 space_reftree_create(&reftree);
2675 for (int c = 0; c < vd->vdev_children; c++) {
2676 vdev_t *cvd = vd->vdev_child[c];
2677 mutex_enter(&cvd->vdev_dtl_lock);
2678 space_reftree_add_map(&reftree, cvd->vdev_dtl[s], 1);
2679 mutex_exit(&cvd->vdev_dtl_lock);
2680 }
2681 space_reftree_generate_map(&reftree, vd->vdev_dtl[t], minref);
2682 space_reftree_destroy(&reftree);
2683 }
2684 mutex_exit(&vd->vdev_dtl_lock);
2685 }
2686
2687 int
2688 vdev_dtl_load(vdev_t *vd)
2689 {
2690 spa_t *spa = vd->vdev_spa;
2691 objset_t *mos = spa->spa_meta_objset;
2692 int error = 0;
2693
2694 if (vd->vdev_ops->vdev_op_leaf && vd->vdev_dtl_object != 0) {
2695 ASSERT(vdev_is_concrete(vd));
2696
2697 error = space_map_open(&vd->vdev_dtl_sm, mos,
2698 vd->vdev_dtl_object, 0, -1ULL, 0);
2699 if (error)
2700 return (error);
2701 ASSERT(vd->vdev_dtl_sm != NULL);
2702
2703 mutex_enter(&vd->vdev_dtl_lock);
2704
2705 /*
2706 * Now that we've opened the space_map we need to update
2707 * the in-core DTL.
2708 */
2709 space_map_update(vd->vdev_dtl_sm);
2710
2711 error = space_map_load(vd->vdev_dtl_sm,
2712 vd->vdev_dtl[DTL_MISSING], SM_ALLOC);
2713 mutex_exit(&vd->vdev_dtl_lock);
2714
2715 return (error);
2716 }
2717
2718 for (int c = 0; c < vd->vdev_children; c++) {
2719 error = vdev_dtl_load(vd->vdev_child[c]);
2720 if (error != 0)
2721 break;
2722 }
2723
2724 return (error);
2725 }
2726
2727 static void
2728 vdev_zap_allocation_data(vdev_t *vd, dmu_tx_t *tx)
2729 {
2730 spa_t *spa = vd->vdev_spa;
2731 objset_t *mos = spa->spa_meta_objset;
2732 vdev_alloc_bias_t alloc_bias = vd->vdev_alloc_bias;
2733 const char *string;
2734
2735 ASSERT(alloc_bias != VDEV_BIAS_NONE);
2736
2737 string =
2738 (alloc_bias == VDEV_BIAS_LOG) ? VDEV_ALLOC_BIAS_LOG :
2739 (alloc_bias == VDEV_BIAS_SPECIAL) ? VDEV_ALLOC_BIAS_SPECIAL :
2740 (alloc_bias == VDEV_BIAS_DEDUP) ? VDEV_ALLOC_BIAS_DEDUP : NULL;
2741
2742 ASSERT(string != NULL);
2743 VERIFY0(zap_add(mos, vd->vdev_top_zap, VDEV_TOP_ZAP_ALLOCATION_BIAS,
2744 1, strlen(string) + 1, string, tx));
2745
2746 if (alloc_bias == VDEV_BIAS_SPECIAL || alloc_bias == VDEV_BIAS_DEDUP) {
2747 spa_activate_allocation_classes(spa, tx);
2748 }
2749 }
2750
2751 void
2752 vdev_destroy_unlink_zap(vdev_t *vd, uint64_t zapobj, dmu_tx_t *tx)
2753 {
2754 spa_t *spa = vd->vdev_spa;
2755
2756 VERIFY0(zap_destroy(spa->spa_meta_objset, zapobj, tx));
2757 VERIFY0(zap_remove_int(spa->spa_meta_objset, spa->spa_all_vdev_zaps,
2758 zapobj, tx));
2759 }
2760
2761 uint64_t
2762 vdev_create_link_zap(vdev_t *vd, dmu_tx_t *tx)
2763 {
2764 spa_t *spa = vd->vdev_spa;
2765 uint64_t zap = zap_create(spa->spa_meta_objset, DMU_OTN_ZAP_METADATA,
2766 DMU_OT_NONE, 0, tx);
2767
2768 ASSERT(zap != 0);
2769 VERIFY0(zap_add_int(spa->spa_meta_objset, spa->spa_all_vdev_zaps,
2770 zap, tx));
2771
2772 return (zap);
2773 }
2774
2775 void
2776 vdev_construct_zaps(vdev_t *vd, dmu_tx_t *tx)
2777 {
2778 if (vd->vdev_ops != &vdev_hole_ops &&
2779 vd->vdev_ops != &vdev_missing_ops &&
2780 vd->vdev_ops != &vdev_root_ops &&
2781 !vd->vdev_top->vdev_removing) {
2782 if (vd->vdev_ops->vdev_op_leaf && vd->vdev_leaf_zap == 0) {
2783 vd->vdev_leaf_zap = vdev_create_link_zap(vd, tx);
2784 }
2785 if (vd == vd->vdev_top && vd->vdev_top_zap == 0) {
2786 vd->vdev_top_zap = vdev_create_link_zap(vd, tx);
2787 if (vd->vdev_alloc_bias != VDEV_BIAS_NONE)
2788 vdev_zap_allocation_data(vd, tx);
2789 }
2790 }
2791
2792 for (uint64_t i = 0; i < vd->vdev_children; i++) {
2793 vdev_construct_zaps(vd->vdev_child[i], tx);
2794 }
2795 }
2796
2797 void
2798 vdev_dtl_sync(vdev_t *vd, uint64_t txg)
2799 {
2800 spa_t *spa = vd->vdev_spa;
2801 range_tree_t *rt = vd->vdev_dtl[DTL_MISSING];
2802 objset_t *mos = spa->spa_meta_objset;
2803 range_tree_t *rtsync;
2804 dmu_tx_t *tx;
2805 uint64_t object = space_map_object(vd->vdev_dtl_sm);
2806
2807 ASSERT(vdev_is_concrete(vd));
2808 ASSERT(vd->vdev_ops->vdev_op_leaf);
2809
2810 tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
2811
2812 if (vd->vdev_detached || vd->vdev_top->vdev_removing) {
2813 mutex_enter(&vd->vdev_dtl_lock);
2814 space_map_free(vd->vdev_dtl_sm, tx);
2815 space_map_close(vd->vdev_dtl_sm);
2816 vd->vdev_dtl_sm = NULL;
2817 mutex_exit(&vd->vdev_dtl_lock);
2818
2819 /*
2820 * We only destroy the leaf ZAP for detached leaves or for
2821 * removed log devices. Removed data devices handle leaf ZAP
2822 * cleanup later, once cancellation is no longer possible.
2823 */
2824 if (vd->vdev_leaf_zap != 0 && (vd->vdev_detached ||
2825 vd->vdev_top->vdev_islog)) {
2826 vdev_destroy_unlink_zap(vd, vd->vdev_leaf_zap, tx);
2827 vd->vdev_leaf_zap = 0;
2828 }
2829
2830 dmu_tx_commit(tx);
2831 return;
2832 }
2833
2834 if (vd->vdev_dtl_sm == NULL) {
2835 uint64_t new_object;
2836
2837 new_object = space_map_alloc(mos, vdev_dtl_sm_blksz, tx);
2838 VERIFY3U(new_object, !=, 0);
2839
2840 VERIFY0(space_map_open(&vd->vdev_dtl_sm, mos, new_object,
2841 0, -1ULL, 0));
2842 ASSERT(vd->vdev_dtl_sm != NULL);
2843 }
2844
2845 rtsync = range_tree_create(NULL, NULL);
2846
2847 mutex_enter(&vd->vdev_dtl_lock);
2848 range_tree_walk(rt, range_tree_add, rtsync);
2849 mutex_exit(&vd->vdev_dtl_lock);
2850
2851 space_map_truncate(vd->vdev_dtl_sm, vdev_dtl_sm_blksz, tx);
2852 space_map_write(vd->vdev_dtl_sm, rtsync, SM_ALLOC, SM_NO_VDEVID, tx);
2853 range_tree_vacate(rtsync, NULL, NULL);
2854
2855 range_tree_destroy(rtsync);
2856
2857 /*
2858 * If the object for the space map has changed then dirty
2859 * the top level so that we update the config.
2860 */
2861 if (object != space_map_object(vd->vdev_dtl_sm)) {
2862 vdev_dbgmsg(vd, "txg %llu, spa %s, DTL old object %llu, "
2863 "new object %llu", (u_longlong_t)txg, spa_name(spa),
2864 (u_longlong_t)object,
2865 (u_longlong_t)space_map_object(vd->vdev_dtl_sm));
2866 vdev_config_dirty(vd->vdev_top);
2867 }
2868
2869 dmu_tx_commit(tx);
2870
2871 mutex_enter(&vd->vdev_dtl_lock);
2872 space_map_update(vd->vdev_dtl_sm);
2873 mutex_exit(&vd->vdev_dtl_lock);
2874 }
2875
2876 /*
2877 * Determine whether the specified vdev can be offlined/detached/removed
2878 * without losing data.
2879 */
2880 boolean_t
2881 vdev_dtl_required(vdev_t *vd)
2882 {
2883 spa_t *spa = vd->vdev_spa;
2884 vdev_t *tvd = vd->vdev_top;
2885 uint8_t cant_read = vd->vdev_cant_read;
2886 boolean_t required;
2887
2888 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
2889
2890 if (vd == spa->spa_root_vdev || vd == tvd)
2891 return (B_TRUE);
2892
2893 /*
2894 * Temporarily mark the device as unreadable, and then determine
2895 * whether this results in any DTL outages in the top-level vdev.
2896 * If not, we can safely offline/detach/remove the device.
2897 */
2898 vd->vdev_cant_read = B_TRUE;
2899 vdev_dtl_reassess(tvd, 0, 0, B_FALSE);
2900 required = !vdev_dtl_empty(tvd, DTL_OUTAGE);
2901 vd->vdev_cant_read = cant_read;
2902 vdev_dtl_reassess(tvd, 0, 0, B_FALSE);
2903
2904 if (!required && zio_injection_enabled)
2905 required = !!zio_handle_device_injection(vd, NULL, ECHILD);
2906
2907 return (required);
2908 }
2909
2910 /*
2911 * Determine if resilver is needed, and if so the txg range.
2912 */
2913 boolean_t
2914 vdev_resilver_needed(vdev_t *vd, uint64_t *minp, uint64_t *maxp)
2915 {
2916 boolean_t needed = B_FALSE;
2917 uint64_t thismin = UINT64_MAX;
2918 uint64_t thismax = 0;
2919
2920 if (vd->vdev_children == 0) {
2921 mutex_enter(&vd->vdev_dtl_lock);
2922 if (!range_tree_is_empty(vd->vdev_dtl[DTL_MISSING]) &&
2923 vdev_writeable(vd)) {
2924
2925 thismin = vdev_dtl_min(vd);
2926 thismax = vdev_dtl_max(vd);
2927 needed = B_TRUE;
2928 }
2929 mutex_exit(&vd->vdev_dtl_lock);
2930 } else {
2931 for (int c = 0; c < vd->vdev_children; c++) {
2932 vdev_t *cvd = vd->vdev_child[c];
2933 uint64_t cmin, cmax;
2934
2935 if (vdev_resilver_needed(cvd, &cmin, &cmax)) {
2936 thismin = MIN(thismin, cmin);
2937 thismax = MAX(thismax, cmax);
2938 needed = B_TRUE;
2939 }
2940 }
2941 }
2942
2943 if (needed && minp) {
2944 *minp = thismin;
2945 *maxp = thismax;
2946 }
2947 return (needed);
2948 }
2949
2950 /*
2951 * Gets the checkpoint space map object from the vdev's ZAP. On success sm_obj
2952 * will contain either the checkpoint spacemap object or zero if none exists.
2953 * All other errors are returned to the caller.
2954 */
2955 int
2956 vdev_checkpoint_sm_object(vdev_t *vd, uint64_t *sm_obj)
2957 {
2958 ASSERT0(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER));
2959
2960 if (vd->vdev_top_zap == 0) {
2961 *sm_obj = 0;
2962 return (0);
2963 }
2964
2965 int error = zap_lookup(spa_meta_objset(vd->vdev_spa), vd->vdev_top_zap,
2966 VDEV_TOP_ZAP_POOL_CHECKPOINT_SM, sizeof (uint64_t), 1, sm_obj);
2967 if (error == ENOENT) {
2968 *sm_obj = 0;
2969 error = 0;
2970 }
2971
2972 return (error);
2973 }
2974
2975 int
2976 vdev_load(vdev_t *vd)
2977 {
2978 int error = 0;
2979
2980 /*
2981 * Recursively load all children.
2982 */
2983 for (int c = 0; c < vd->vdev_children; c++) {
2984 error = vdev_load(vd->vdev_child[c]);
2985 if (error != 0) {
2986 return (error);
2987 }
2988 }
2989
2990 vdev_set_deflate_ratio(vd);
2991
2992 /*
2993 * On spa_load path, grab the allocation bias from our zap
2994 */
2995 if (vd == vd->vdev_top && vd->vdev_top_zap != 0) {
2996 spa_t *spa = vd->vdev_spa;
2997 char bias_str[64];
2998
2999 if (zap_lookup(spa->spa_meta_objset, vd->vdev_top_zap,
3000 VDEV_TOP_ZAP_ALLOCATION_BIAS, 1, sizeof (bias_str),
3001 bias_str) == 0) {
3002 ASSERT(vd->vdev_alloc_bias == VDEV_BIAS_NONE);
3003 vd->vdev_alloc_bias = vdev_derive_alloc_bias(bias_str);
3004 }
3005 }
3006
3007 /*
3008 * If this is a top-level vdev, initialize its metaslabs.
3009 */
3010 if (vd == vd->vdev_top && vdev_is_concrete(vd)) {
3011 vdev_metaslab_group_create(vd);
3012
3013 if (vd->vdev_ashift == 0 || vd->vdev_asize == 0) {
3014 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
3015 VDEV_AUX_CORRUPT_DATA);
3016 vdev_dbgmsg(vd, "vdev_load: invalid size. ashift=%llu, "
3017 "asize=%llu", (u_longlong_t)vd->vdev_ashift,
3018 (u_longlong_t)vd->vdev_asize);
3019 return (SET_ERROR(ENXIO));
3020 } else if ((error = vdev_metaslab_init(vd, 0)) != 0) {
3021 vdev_dbgmsg(vd, "vdev_load: metaslab_init failed "
3022 "[error=%d]", error);
3023 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
3024 VDEV_AUX_CORRUPT_DATA);
3025 return (error);
3026 }
3027
3028 uint64_t checkpoint_sm_obj;
3029 error = vdev_checkpoint_sm_object(vd, &checkpoint_sm_obj);
3030 if (error == 0 && checkpoint_sm_obj != 0) {
3031 objset_t *mos = spa_meta_objset(vd->vdev_spa);
3032 ASSERT(vd->vdev_asize != 0);
3033 ASSERT3P(vd->vdev_checkpoint_sm, ==, NULL);
3034
3035 if ((error = space_map_open(&vd->vdev_checkpoint_sm,
3036 mos, checkpoint_sm_obj, 0, vd->vdev_asize,
3037 vd->vdev_ashift))) {
3038 vdev_dbgmsg(vd, "vdev_load: space_map_open "
3039 "failed for checkpoint spacemap (obj %llu) "
3040 "[error=%d]",
3041 (u_longlong_t)checkpoint_sm_obj, error);
3042 return (error);
3043 }
3044 ASSERT3P(vd->vdev_checkpoint_sm, !=, NULL);
3045 space_map_update(vd->vdev_checkpoint_sm);
3046
3047 /*
3048 * Since the checkpoint_sm contains free entries
3049 * exclusively we can use sm_alloc to indicate the
3050 * cumulative checkpointed space that has been freed.
3051 */
3052 vd->vdev_stat.vs_checkpoint_space =
3053 -vd->vdev_checkpoint_sm->sm_alloc;
3054 vd->vdev_spa->spa_checkpoint_info.sci_dspace +=
3055 vd->vdev_stat.vs_checkpoint_space;
3056 } else if (error != 0) {
3057 vdev_dbgmsg(vd, "vdev_load: failed to retrieve "
3058 "checkpoint space map object from vdev ZAP "
3059 "[error=%d]", error);
3060 return (error);
3061 }
3062 }
3063
3064 /*
3065 * If this is a leaf vdev, load its DTL.
3066 */
3067 if (vd->vdev_ops->vdev_op_leaf && (error = vdev_dtl_load(vd)) != 0) {
3068 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
3069 VDEV_AUX_CORRUPT_DATA);
3070 vdev_dbgmsg(vd, "vdev_load: vdev_dtl_load failed "
3071 "[error=%d]", error);
3072 return (error);
3073 }
3074
3075 uint64_t obsolete_sm_object;
3076 error = vdev_obsolete_sm_object(vd, &obsolete_sm_object);
3077 if (error == 0 && obsolete_sm_object != 0) {
3078 objset_t *mos = vd->vdev_spa->spa_meta_objset;
3079 ASSERT(vd->vdev_asize != 0);
3080 ASSERT3P(vd->vdev_obsolete_sm, ==, NULL);
3081
3082 if ((error = space_map_open(&vd->vdev_obsolete_sm, mos,
3083 obsolete_sm_object, 0, vd->vdev_asize, 0))) {
3084 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
3085 VDEV_AUX_CORRUPT_DATA);
3086 vdev_dbgmsg(vd, "vdev_load: space_map_open failed for "
3087 "obsolete spacemap (obj %llu) [error=%d]",
3088 (u_longlong_t)obsolete_sm_object, error);
3089 return (error);
3090 }
3091 space_map_update(vd->vdev_obsolete_sm);
3092 } else if (error != 0) {
3093 vdev_dbgmsg(vd, "vdev_load: failed to retrieve obsolete "
3094 "space map object from vdev ZAP [error=%d]", error);
3095 return (error);
3096 }
3097
3098 return (0);
3099 }
3100
3101 /*
3102 * The special vdev case is used for hot spares and l2cache devices. Its
3103 * sole purpose it to set the vdev state for the associated vdev. To do this,
3104 * we make sure that we can open the underlying device, then try to read the
3105 * label, and make sure that the label is sane and that it hasn't been
3106 * repurposed to another pool.
3107 */
3108 int
3109 vdev_validate_aux(vdev_t *vd)
3110 {
3111 nvlist_t *label;
3112 uint64_t guid, version;
3113 uint64_t state;
3114
3115 if (!vdev_readable(vd))
3116 return (0);
3117
3118 if ((label = vdev_label_read_config(vd, -1ULL)) == NULL) {
3119 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
3120 VDEV_AUX_CORRUPT_DATA);
3121 return (-1);
3122 }
3123
3124 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_VERSION, &version) != 0 ||
3125 !SPA_VERSION_IS_SUPPORTED(version) ||
3126 nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0 ||
3127 guid != vd->vdev_guid ||
3128 nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, &state) != 0) {
3129 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
3130 VDEV_AUX_CORRUPT_DATA);
3131 nvlist_free(label);
3132 return (-1);
3133 }
3134
3135 /*
3136 * We don't actually check the pool state here. If it's in fact in
3137 * use by another pool, we update this fact on the fly when requested.
3138 */
3139 nvlist_free(label);
3140 return (0);
3141 }
3142
3143 /*
3144 * Free the objects used to store this vdev's spacemaps, and the array
3145 * that points to them.
3146 */
3147 void
3148 vdev_destroy_spacemaps(vdev_t *vd, dmu_tx_t *tx)
3149 {
3150 if (vd->vdev_ms_array == 0)
3151 return;
3152
3153 objset_t *mos = vd->vdev_spa->spa_meta_objset;
3154 uint64_t array_count = vd->vdev_asize >> vd->vdev_ms_shift;
3155 size_t array_bytes = array_count * sizeof (uint64_t);
3156 uint64_t *smobj_array = kmem_alloc(array_bytes, KM_SLEEP);
3157 VERIFY0(dmu_read(mos, vd->vdev_ms_array, 0,
3158 array_bytes, smobj_array, 0));
3159
3160 for (uint64_t i = 0; i < array_count; i++) {
3161 uint64_t smobj = smobj_array[i];
3162 if (smobj == 0)
3163 continue;
3164
3165 space_map_free_obj(mos, smobj, tx);
3166 }
3167
3168 kmem_free(smobj_array, array_bytes);
3169 VERIFY0(dmu_object_free(mos, vd->vdev_ms_array, tx));
3170 vd->vdev_ms_array = 0;
3171 }
3172
3173 static void
3174 vdev_remove_empty_log(vdev_t *vd, uint64_t txg)
3175 {
3176 spa_t *spa = vd->vdev_spa;
3177
3178 ASSERT(vd->vdev_islog);
3179 ASSERT(vd == vd->vdev_top);
3180 ASSERT3U(txg, ==, spa_syncing_txg(spa));
3181
3182 if (vd->vdev_ms != NULL) {
3183 metaslab_group_t *mg = vd->vdev_mg;
3184
3185 metaslab_group_histogram_verify(mg);
3186 metaslab_class_histogram_verify(mg->mg_class);
3187
3188 for (int m = 0; m < vd->vdev_ms_count; m++) {
3189 metaslab_t *msp = vd->vdev_ms[m];
3190
3191 if (msp == NULL || msp->ms_sm == NULL)
3192 continue;
3193
3194 mutex_enter(&msp->ms_lock);
3195 /*
3196 * If the metaslab was not loaded when the vdev
3197 * was removed then the histogram accounting may
3198 * not be accurate. Update the histogram information
3199 * here so that we ensure that the metaslab group
3200 * and metaslab class are up-to-date.
3201 */
3202 metaslab_group_histogram_remove(mg, msp);
3203
3204 VERIFY0(space_map_allocated(msp->ms_sm));
3205 space_map_close(msp->ms_sm);
3206 msp->ms_sm = NULL;
3207 mutex_exit(&msp->ms_lock);
3208 }
3209
3210 if (vd->vdev_checkpoint_sm != NULL) {
3211 ASSERT(spa_has_checkpoint(spa));
3212 space_map_close(vd->vdev_checkpoint_sm);
3213 vd->vdev_checkpoint_sm = NULL;
3214 }
3215
3216 metaslab_group_histogram_verify(mg);
3217 metaslab_class_histogram_verify(mg->mg_class);
3218
3219 for (int i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i++)
3220 ASSERT0(mg->mg_histogram[i]);
3221 }
3222
3223 dmu_tx_t *tx = dmu_tx_create_assigned(spa_get_dsl(spa), txg);
3224
3225 vdev_destroy_spacemaps(vd, tx);
3226 if (vd->vdev_top_zap != 0) {
3227 vdev_destroy_unlink_zap(vd, vd->vdev_top_zap, tx);
3228 vd->vdev_top_zap = 0;
3229 }
3230
3231 dmu_tx_commit(tx);
3232 }
3233
3234 void
3235 vdev_sync_done(vdev_t *vd, uint64_t txg)
3236 {
3237 metaslab_t *msp;
3238 boolean_t reassess = !txg_list_empty(&vd->vdev_ms_list, TXG_CLEAN(txg));
3239
3240 ASSERT(vdev_is_concrete(vd));
3241
3242 while ((msp = txg_list_remove(&vd->vdev_ms_list, TXG_CLEAN(txg)))
3243 != NULL)
3244 metaslab_sync_done(msp, txg);
3245
3246 if (reassess)
3247 metaslab_sync_reassess(vd->vdev_mg);
3248 }
3249
3250 void
3251 vdev_sync(vdev_t *vd, uint64_t txg)
3252 {
3253 spa_t *spa = vd->vdev_spa;
3254 vdev_t *lvd;
3255 metaslab_t *msp;
3256 dmu_tx_t *tx;
3257
3258 if (range_tree_space(vd->vdev_obsolete_segments) > 0) {
3259 dmu_tx_t *tx;
3260
3261 ASSERT(vd->vdev_removing ||
3262 vd->vdev_ops == &vdev_indirect_ops);
3263
3264 tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
3265 vdev_indirect_sync_obsolete(vd, tx);
3266 dmu_tx_commit(tx);
3267
3268 /*
3269 * If the vdev is indirect, it can't have dirty
3270 * metaslabs or DTLs.
3271 */
3272 if (vd->vdev_ops == &vdev_indirect_ops) {
3273 ASSERT(txg_list_empty(&vd->vdev_ms_list, txg));
3274 ASSERT(txg_list_empty(&vd->vdev_dtl_list, txg));
3275 return;
3276 }
3277 }
3278
3279 ASSERT(vdev_is_concrete(vd));
3280
3281 if (vd->vdev_ms_array == 0 && vd->vdev_ms_shift != 0 &&
3282 !vd->vdev_removing) {
3283 ASSERT(vd == vd->vdev_top);
3284 ASSERT0(vd->vdev_indirect_config.vic_mapping_object);
3285 tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
3286 vd->vdev_ms_array = dmu_object_alloc(spa->spa_meta_objset,
3287 DMU_OT_OBJECT_ARRAY, 0, DMU_OT_NONE, 0, tx);
3288 ASSERT(vd->vdev_ms_array != 0);
3289 vdev_config_dirty(vd);
3290 dmu_tx_commit(tx);
3291 }
3292
3293 while ((msp = txg_list_remove(&vd->vdev_ms_list, txg)) != NULL) {
3294 metaslab_sync(msp, txg);
3295 (void) txg_list_add(&vd->vdev_ms_list, msp, TXG_CLEAN(txg));
3296 }
3297
3298 while ((lvd = txg_list_remove(&vd->vdev_dtl_list, txg)) != NULL)
3299 vdev_dtl_sync(lvd, txg);
3300
3301 /*
3302 * If this is an empty log device being removed, destroy the
3303 * metadata associated with it.
3304 */
3305 if (vd->vdev_islog && vd->vdev_stat.vs_alloc == 0 && vd->vdev_removing)
3306 vdev_remove_empty_log(vd, txg);
3307
3308 (void) txg_list_add(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg));
3309 }
3310
3311 uint64_t
3312 vdev_psize_to_asize(vdev_t *vd, uint64_t psize)
3313 {
3314 return (vd->vdev_ops->vdev_op_asize(vd, psize));
3315 }
3316
3317 /*
3318 * Mark the given vdev faulted. A faulted vdev behaves as if the device could
3319 * not be opened, and no I/O is attempted.
3320 */
3321 int
3322 vdev_fault(spa_t *spa, uint64_t guid, vdev_aux_t aux)
3323 {
3324 vdev_t *vd, *tvd;
3325
3326 spa_vdev_state_enter(spa, SCL_NONE);
3327
3328 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
3329 return (spa_vdev_state_exit(spa, NULL, ENODEV));
3330
3331 if (!vd->vdev_ops->vdev_op_leaf)
3332 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
3333
3334 tvd = vd->vdev_top;
3335
3336 /*
3337 * If user did a 'zpool offline -f' then make the fault persist across
3338 * reboots.
3339 */
3340 if (aux == VDEV_AUX_EXTERNAL_PERSIST) {
3341 /*
3342 * There are two kinds of forced faults: temporary and
3343 * persistent. Temporary faults go away at pool import, while
3344 * persistent faults stay set. Both types of faults can be
3345 * cleared with a zpool clear.
3346 *
3347 * We tell if a vdev is persistently faulted by looking at the
3348 * ZPOOL_CONFIG_AUX_STATE nvpair. If it's set to "external" at
3349 * import then it's a persistent fault. Otherwise, it's
3350 * temporary. We get ZPOOL_CONFIG_AUX_STATE set to "external"
3351 * by setting vd.vdev_stat.vs_aux to VDEV_AUX_EXTERNAL. This
3352 * tells vdev_config_generate() (which gets run later) to set
3353 * ZPOOL_CONFIG_AUX_STATE to "external" in the nvlist.
3354 */
3355 vd->vdev_stat.vs_aux = VDEV_AUX_EXTERNAL;
3356 vd->vdev_tmpoffline = B_FALSE;
3357 aux = VDEV_AUX_EXTERNAL;
3358 } else {
3359 vd->vdev_tmpoffline = B_TRUE;
3360 }
3361
3362 /*
3363 * We don't directly use the aux state here, but if we do a
3364 * vdev_reopen(), we need this value to be present to remember why we
3365 * were faulted.
3366 */
3367 vd->vdev_label_aux = aux;
3368
3369 /*
3370 * Faulted state takes precedence over degraded.
3371 */
3372 vd->vdev_delayed_close = B_FALSE;
3373 vd->vdev_faulted = 1ULL;
3374 vd->vdev_degraded = 0ULL;
3375 vdev_set_state(vd, B_FALSE, VDEV_STATE_FAULTED, aux);
3376
3377 /*
3378 * If this device has the only valid copy of the data, then
3379 * back off and simply mark the vdev as degraded instead.
3380 */
3381 if (!tvd->vdev_islog && vd->vdev_aux == NULL && vdev_dtl_required(vd)) {
3382 vd->vdev_degraded = 1ULL;
3383 vd->vdev_faulted = 0ULL;
3384
3385 /*
3386 * If we reopen the device and it's not dead, only then do we
3387 * mark it degraded.
3388 */
3389 vdev_reopen(tvd);
3390
3391 if (vdev_readable(vd))
3392 vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, aux);
3393 }
3394
3395 return (spa_vdev_state_exit(spa, vd, 0));
3396 }
3397
3398 /*
3399 * Mark the given vdev degraded. A degraded vdev is purely an indication to the
3400 * user that something is wrong. The vdev continues to operate as normal as far
3401 * as I/O is concerned.
3402 */
3403 int
3404 vdev_degrade(spa_t *spa, uint64_t guid, vdev_aux_t aux)
3405 {
3406 vdev_t *vd;
3407
3408 spa_vdev_state_enter(spa, SCL_NONE);
3409
3410 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
3411 return (spa_vdev_state_exit(spa, NULL, ENODEV));
3412
3413 if (!vd->vdev_ops->vdev_op_leaf)
3414 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
3415
3416 /*
3417 * If the vdev is already faulted, then don't do anything.
3418 */
3419 if (vd->vdev_faulted || vd->vdev_degraded)
3420 return (spa_vdev_state_exit(spa, NULL, 0));
3421
3422 vd->vdev_degraded = 1ULL;
3423 if (!vdev_is_dead(vd))
3424 vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED,
3425 aux);
3426
3427 return (spa_vdev_state_exit(spa, vd, 0));
3428 }
3429
3430 /*
3431 * Online the given vdev.
3432 *
3433 * If 'ZFS_ONLINE_UNSPARE' is set, it implies two things. First, any attached
3434 * spare device should be detached when the device finishes resilvering.
3435 * Second, the online should be treated like a 'test' online case, so no FMA
3436 * events are generated if the device fails to open.
3437 */
3438 int
3439 vdev_online(spa_t *spa, uint64_t guid, uint64_t flags, vdev_state_t *newstate)
3440 {
3441 vdev_t *vd, *tvd, *pvd, *rvd = spa->spa_root_vdev;
3442 boolean_t wasoffline;
3443 vdev_state_t oldstate;
3444
3445 spa_vdev_state_enter(spa, SCL_NONE);
3446
3447 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
3448 return (spa_vdev_state_exit(spa, NULL, ENODEV));
3449
3450 if (!vd->vdev_ops->vdev_op_leaf)
3451 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
3452
3453 wasoffline = (vd->vdev_offline || vd->vdev_tmpoffline);
3454 oldstate = vd->vdev_state;
3455
3456 tvd = vd->vdev_top;
3457 vd->vdev_offline = B_FALSE;
3458 vd->vdev_tmpoffline = B_FALSE;
3459 vd->vdev_checkremove = !!(flags & ZFS_ONLINE_CHECKREMOVE);
3460 vd->vdev_forcefault = !!(flags & ZFS_ONLINE_FORCEFAULT);
3461
3462 /* XXX - L2ARC 1.0 does not support expansion */
3463 if (!vd->vdev_aux) {
3464 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
3465 pvd->vdev_expanding = !!((flags & ZFS_ONLINE_EXPAND) ||
3466 spa->spa_autoexpand);
3467 vd->vdev_expansion_time = gethrestime_sec();
3468 }
3469
3470 vdev_reopen(tvd);
3471 vd->vdev_checkremove = vd->vdev_forcefault = B_FALSE;
3472
3473 if (!vd->vdev_aux) {
3474 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
3475 pvd->vdev_expanding = B_FALSE;
3476 }
3477
3478 if (newstate)
3479 *newstate = vd->vdev_state;
3480 if ((flags & ZFS_ONLINE_UNSPARE) &&
3481 !vdev_is_dead(vd) && vd->vdev_parent &&
3482 vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
3483 vd->vdev_parent->vdev_child[0] == vd)
3484 vd->vdev_unspare = B_TRUE;
3485
3486 if ((flags & ZFS_ONLINE_EXPAND) || spa->spa_autoexpand) {
3487
3488 /* XXX - L2ARC 1.0 does not support expansion */
3489 if (vd->vdev_aux)
3490 return (spa_vdev_state_exit(spa, vd, ENOTSUP));
3491 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
3492 }
3493
3494 /* Restart initializing if necessary */
3495 mutex_enter(&vd->vdev_initialize_lock);
3496 if (vdev_writeable(vd) &&
3497 vd->vdev_initialize_thread == NULL &&
3498 vd->vdev_initialize_state == VDEV_INITIALIZE_ACTIVE) {
3499 (void) vdev_initialize(vd);
3500 }
3501 mutex_exit(&vd->vdev_initialize_lock);
3502
3503 if (wasoffline ||
3504 (oldstate < VDEV_STATE_DEGRADED &&
3505 vd->vdev_state >= VDEV_STATE_DEGRADED))
3506 spa_event_notify(spa, vd, NULL, ESC_ZFS_VDEV_ONLINE);
3507
3508 return (spa_vdev_state_exit(spa, vd, 0));
3509 }
3510
3511 static int
3512 vdev_offline_locked(spa_t *spa, uint64_t guid, uint64_t flags)
3513 {
3514 vdev_t *vd, *tvd;
3515 int error = 0;
3516 uint64_t generation;
3517 metaslab_group_t *mg;
3518
3519 top:
3520 spa_vdev_state_enter(spa, SCL_ALLOC);
3521
3522 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
3523 return (spa_vdev_state_exit(spa, NULL, ENODEV));
3524
3525 if (!vd->vdev_ops->vdev_op_leaf)
3526 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
3527
3528 tvd = vd->vdev_top;
3529 mg = tvd->vdev_mg;
3530 generation = spa->spa_config_generation + 1;
3531
3532 /*
3533 * If the device isn't already offline, try to offline it.
3534 */
3535 if (!vd->vdev_offline) {
3536 /*
3537 * If this device has the only valid copy of some data,
3538 * don't allow it to be offlined. Log devices are always
3539 * expendable.
3540 */
3541 if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
3542 vdev_dtl_required(vd))
3543 return (spa_vdev_state_exit(spa, NULL, EBUSY));
3544
3545 /*
3546 * If the top-level is a slog and it has had allocations
3547 * then proceed. We check that the vdev's metaslab group
3548 * is not NULL since it's possible that we may have just
3549 * added this vdev but not yet initialized its metaslabs.
3550 */
3551 if (tvd->vdev_islog && mg != NULL) {
3552 /*
3553 * Prevent any future allocations.
3554 */
3555 metaslab_group_passivate(mg);
3556 (void) spa_vdev_state_exit(spa, vd, 0);
3557
3558 error = spa_reset_logs(spa);
3559
3560 /*
3561 * If the log device was successfully reset but has
3562 * checkpointed data, do not offline it.
3563 */
3564 if (error == 0 &&
3565 tvd->vdev_checkpoint_sm != NULL) {
3566 ASSERT3U(tvd->vdev_checkpoint_sm->sm_alloc,
3567 !=, 0);
3568 error = ZFS_ERR_CHECKPOINT_EXISTS;
3569 }
3570
3571 spa_vdev_state_enter(spa, SCL_ALLOC);
3572
3573 /*
3574 * Check to see if the config has changed.
3575 */
3576 if (error || generation != spa->spa_config_generation) {
3577 metaslab_group_activate(mg);
3578 if (error)
3579 return (spa_vdev_state_exit(spa,
3580 vd, error));
3581 (void) spa_vdev_state_exit(spa, vd, 0);
3582 goto top;
3583 }
3584 ASSERT0(tvd->vdev_stat.vs_alloc);
3585 }
3586
3587 /*
3588 * Offline this device and reopen its top-level vdev.
3589 * If the top-level vdev is a log device then just offline
3590 * it. Otherwise, if this action results in the top-level
3591 * vdev becoming unusable, undo it and fail the request.
3592 */
3593 vd->vdev_offline = B_TRUE;
3594 vdev_reopen(tvd);
3595
3596 if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
3597 vdev_is_dead(tvd)) {
3598 vd->vdev_offline = B_FALSE;
3599 vdev_reopen(tvd);
3600 return (spa_vdev_state_exit(spa, NULL, EBUSY));
3601 }
3602
3603 /*
3604 * Add the device back into the metaslab rotor so that
3605 * once we online the device it's open for business.
3606 */
3607 if (tvd->vdev_islog && mg != NULL)
3608 metaslab_group_activate(mg);
3609 }
3610
3611 vd->vdev_tmpoffline = !!(flags & ZFS_OFFLINE_TEMPORARY);
3612
3613 return (spa_vdev_state_exit(spa, vd, 0));
3614 }
3615
3616 int
3617 vdev_offline(spa_t *spa, uint64_t guid, uint64_t flags)
3618 {
3619 int error;
3620
3621 mutex_enter(&spa->spa_vdev_top_lock);
3622 error = vdev_offline_locked(spa, guid, flags);
3623 mutex_exit(&spa->spa_vdev_top_lock);
3624
3625 return (error);
3626 }
3627
3628 /*
3629 * Clear the error counts associated with this vdev. Unlike vdev_online() and
3630 * vdev_offline(), we assume the spa config is locked. We also clear all
3631 * children. If 'vd' is NULL, then the user wants to clear all vdevs.
3632 */
3633 void
3634 vdev_clear(spa_t *spa, vdev_t *vd)
3635 {
3636 vdev_t *rvd = spa->spa_root_vdev;
3637
3638 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
3639
3640 if (vd == NULL)
3641 vd = rvd;
3642
3643 vd->vdev_stat.vs_read_errors = 0;
3644 vd->vdev_stat.vs_write_errors = 0;
3645 vd->vdev_stat.vs_checksum_errors = 0;
3646 vd->vdev_stat.vs_slow_ios = 0;
3647
3648 for (int c = 0; c < vd->vdev_children; c++)
3649 vdev_clear(spa, vd->vdev_child[c]);
3650
3651 /*
3652 * It makes no sense to "clear" an indirect vdev.
3653 */
3654 if (!vdev_is_concrete(vd))
3655 return;
3656
3657 /*
3658 * If we're in the FAULTED state or have experienced failed I/O, then
3659 * clear the persistent state and attempt to reopen the device. We
3660 * also mark the vdev config dirty, so that the new faulted state is
3661 * written out to disk.
3662 */
3663 if (vd->vdev_faulted || vd->vdev_degraded ||
3664 !vdev_readable(vd) || !vdev_writeable(vd)) {
3665 /*
3666 * When reopening in response to a clear event, it may be due to
3667 * a fmadm repair request. In this case, if the device is
3668 * still broken, we want to still post the ereport again.
3669 */
3670 vd->vdev_forcefault = B_TRUE;
3671
3672 vd->vdev_faulted = vd->vdev_degraded = 0ULL;
3673 vd->vdev_cant_read = B_FALSE;
3674 vd->vdev_cant_write = B_FALSE;
3675 vd->vdev_stat.vs_aux = 0;
3676
3677 vdev_reopen(vd == rvd ? rvd : vd->vdev_top);
3678
3679 vd->vdev_forcefault = B_FALSE;
3680
3681 if (vd != rvd && vdev_writeable(vd->vdev_top))
3682 vdev_state_dirty(vd->vdev_top);
3683
3684 if (vd->vdev_aux == NULL && !vdev_is_dead(vd)) {
3685 if (dsl_scan_resilvering(spa->spa_dsl_pool) &&
3686 spa_feature_is_enabled(spa,
3687 SPA_FEATURE_RESILVER_DEFER))
3688 vdev_set_deferred_resilver(spa, vd);
3689 else
3690 spa_async_request(spa, SPA_ASYNC_RESILVER);
3691 }
3692
3693 spa_event_notify(spa, vd, NULL, ESC_ZFS_VDEV_CLEAR);
3694 }
3695
3696 /*
3697 * When clearing a FMA-diagnosed fault, we always want to
3698 * unspare the device, as we assume that the original spare was
3699 * done in response to the FMA fault.
3700 */
3701 if (!vdev_is_dead(vd) && vd->vdev_parent != NULL &&
3702 vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
3703 vd->vdev_parent->vdev_child[0] == vd)
3704 vd->vdev_unspare = B_TRUE;
3705 }
3706
3707 boolean_t
3708 vdev_is_dead(vdev_t *vd)
3709 {
3710 /*
3711 * Holes and missing devices are always considered "dead".
3712 * This simplifies the code since we don't have to check for
3713 * these types of devices in the various code paths.
3714 * Instead we rely on the fact that we skip over dead devices
3715 * before issuing I/O to them.
3716 */
3717 return (vd->vdev_state < VDEV_STATE_DEGRADED ||
3718 vd->vdev_ops == &vdev_hole_ops ||
3719 vd->vdev_ops == &vdev_missing_ops);
3720 }
3721
3722 boolean_t
3723 vdev_readable(vdev_t *vd)
3724 {
3725 return (!vdev_is_dead(vd) && !vd->vdev_cant_read);
3726 }
3727
3728 boolean_t
3729 vdev_writeable(vdev_t *vd)
3730 {
3731 return (!vdev_is_dead(vd) && !vd->vdev_cant_write &&
3732 vdev_is_concrete(vd));
3733 }
3734
3735 boolean_t
3736 vdev_allocatable(vdev_t *vd)
3737 {
3738 uint64_t state = vd->vdev_state;
3739
3740 /*
3741 * We currently allow allocations from vdevs which may be in the
3742 * process of reopening (i.e. VDEV_STATE_CLOSED). If the device
3743 * fails to reopen then we'll catch it later when we're holding
3744 * the proper locks. Note that we have to get the vdev state
3745 * in a local variable because although it changes atomically,
3746 * we're asking two separate questions about it.
3747 */
3748 return (!(state < VDEV_STATE_DEGRADED && state != VDEV_STATE_CLOSED) &&
3749 !vd->vdev_cant_write && vdev_is_concrete(vd) &&
3750 vd->vdev_mg->mg_initialized);
3751 }
3752
3753 boolean_t
3754 vdev_accessible(vdev_t *vd, zio_t *zio)
3755 {
3756 ASSERT(zio->io_vd == vd);
3757
3758 if (vdev_is_dead(vd) || vd->vdev_remove_wanted)
3759 return (B_FALSE);
3760
3761 if (zio->io_type == ZIO_TYPE_READ)
3762 return (!vd->vdev_cant_read);
3763
3764 if (zio->io_type == ZIO_TYPE_WRITE)
3765 return (!vd->vdev_cant_write);
3766
3767 return (B_TRUE);
3768 }
3769
3770 static void
3771 vdev_get_child_stat(vdev_t *cvd, vdev_stat_t *vs, vdev_stat_t *cvs)
3772 {
3773 int t;
3774 for (t = 0; t < ZIO_TYPES; t++) {
3775 vs->vs_ops[t] += cvs->vs_ops[t];
3776 vs->vs_bytes[t] += cvs->vs_bytes[t];
3777 }
3778
3779 cvs->vs_scan_removing = cvd->vdev_removing;
3780 }
3781
3782 /*
3783 * Get extended stats
3784 */
3785 static void
3786 vdev_get_child_stat_ex(vdev_t *cvd, vdev_stat_ex_t *vsx, vdev_stat_ex_t *cvsx)
3787 {
3788 int t, b;
3789 for (t = 0; t < ZIO_TYPES; t++) {
3790 for (b = 0; b < ARRAY_SIZE(vsx->vsx_disk_histo[0]); b++)
3791 vsx->vsx_disk_histo[t][b] += cvsx->vsx_disk_histo[t][b];
3792
3793 for (b = 0; b < ARRAY_SIZE(vsx->vsx_total_histo[0]); b++) {
3794 vsx->vsx_total_histo[t][b] +=
3795 cvsx->vsx_total_histo[t][b];
3796 }
3797 }
3798
3799 for (t = 0; t < ZIO_PRIORITY_NUM_QUEUEABLE; t++) {
3800 for (b = 0; b < ARRAY_SIZE(vsx->vsx_queue_histo[0]); b++) {
3801 vsx->vsx_queue_histo[t][b] +=
3802 cvsx->vsx_queue_histo[t][b];
3803 }
3804 vsx->vsx_active_queue[t] += cvsx->vsx_active_queue[t];
3805 vsx->vsx_pend_queue[t] += cvsx->vsx_pend_queue[t];
3806
3807 for (b = 0; b < ARRAY_SIZE(vsx->vsx_ind_histo[0]); b++)
3808 vsx->vsx_ind_histo[t][b] += cvsx->vsx_ind_histo[t][b];
3809
3810 for (b = 0; b < ARRAY_SIZE(vsx->vsx_agg_histo[0]); b++)
3811 vsx->vsx_agg_histo[t][b] += cvsx->vsx_agg_histo[t][b];
3812 }
3813
3814 }
3815
3816 boolean_t
3817 vdev_is_spacemap_addressable(vdev_t *vd)
3818 {
3819 if (spa_feature_is_active(vd->vdev_spa, SPA_FEATURE_SPACEMAP_V2))
3820 return (B_TRUE);
3821
3822 /*
3823 * If double-word space map entries are not enabled we assume
3824 * 47 bits of the space map entry are dedicated to the entry's
3825 * offset (see SM_OFFSET_BITS in space_map.h). We then use that
3826 * to calculate the maximum address that can be described by a
3827 * space map entry for the given device.
3828 */
3829 uint64_t shift = vd->vdev_ashift + SM_OFFSET_BITS;
3830
3831 if (shift >= 63) /* detect potential overflow */
3832 return (B_TRUE);
3833
3834 return (vd->vdev_asize < (1ULL << shift));
3835 }
3836
3837 /*
3838 * Get statistics for the given vdev.
3839 */
3840 static void
3841 vdev_get_stats_ex_impl(vdev_t *vd, vdev_stat_t *vs, vdev_stat_ex_t *vsx)
3842 {
3843 int t;
3844 /*
3845 * If we're getting stats on the root vdev, aggregate the I/O counts
3846 * over all top-level vdevs (i.e. the direct children of the root).
3847 */
3848 if (!vd->vdev_ops->vdev_op_leaf) {
3849 if (vs) {
3850 memset(vs->vs_ops, 0, sizeof (vs->vs_ops));
3851 memset(vs->vs_bytes, 0, sizeof (vs->vs_bytes));
3852 }
3853 if (vsx)
3854 memset(vsx, 0, sizeof (*vsx));
3855
3856 for (int c = 0; c < vd->vdev_children; c++) {
3857 vdev_t *cvd = vd->vdev_child[c];
3858 vdev_stat_t *cvs = &cvd->vdev_stat;
3859 vdev_stat_ex_t *cvsx = &cvd->vdev_stat_ex;
3860
3861 vdev_get_stats_ex_impl(cvd, cvs, cvsx);
3862 if (vs)
3863 vdev_get_child_stat(cvd, vs, cvs);
3864 if (vsx)
3865 vdev_get_child_stat_ex(cvd, vsx, cvsx);
3866
3867 }
3868 } else {
3869 /*
3870 * We're a leaf. Just copy our ZIO active queue stats in. The
3871 * other leaf stats are updated in vdev_stat_update().
3872 */
3873 if (!vsx)
3874 return;
3875
3876 memcpy(vsx, &vd->vdev_stat_ex, sizeof (vd->vdev_stat_ex));
3877
3878 for (t = 0; t < ARRAY_SIZE(vd->vdev_queue.vq_class); t++) {
3879 vsx->vsx_active_queue[t] =
3880 vd->vdev_queue.vq_class[t].vqc_active;
3881 vsx->vsx_pend_queue[t] = avl_numnodes(
3882 &vd->vdev_queue.vq_class[t].vqc_queued_tree);
3883 }
3884 }
3885 }
3886
3887 void
3888 vdev_get_stats_ex(vdev_t *vd, vdev_stat_t *vs, vdev_stat_ex_t *vsx)
3889 {
3890 vdev_t *tvd = vd->vdev_top;
3891 mutex_enter(&vd->vdev_stat_lock);
3892 if (vs) {
3893 bcopy(&vd->vdev_stat, vs, sizeof (*vs));
3894 vs->vs_timestamp = gethrtime() - vs->vs_timestamp;
3895 vs->vs_state = vd->vdev_state;
3896 vs->vs_rsize = vdev_get_min_asize(vd);
3897 if (vd->vdev_ops->vdev_op_leaf) {
3898 vs->vs_rsize += VDEV_LABEL_START_SIZE +
3899 VDEV_LABEL_END_SIZE;
3900 /*
3901 * Report intializing progress. Since we don't
3902 * have the initializing locks held, this is only
3903 * an estimate (although a fairly accurate one).
3904 */
3905 vs->vs_initialize_bytes_done =
3906 vd->vdev_initialize_bytes_done;
3907 vs->vs_initialize_bytes_est =
3908 vd->vdev_initialize_bytes_est;
3909 vs->vs_initialize_state = vd->vdev_initialize_state;
3910 vs->vs_initialize_action_time =
3911 vd->vdev_initialize_action_time;
3912 }
3913 /*
3914 * Report expandable space on top-level, non-auxillary devices
3915 * only. The expandable space is reported in terms of metaslab
3916 * sized units since that determines how much space the pool
3917 * can expand.
3918 */
3919 if (vd->vdev_aux == NULL && tvd != NULL) {
3920 vs->vs_esize = P2ALIGN(
3921 vd->vdev_max_asize - vd->vdev_asize,
3922 1ULL << tvd->vdev_ms_shift);
3923 }
3924 if (vd->vdev_aux == NULL && vd == vd->vdev_top &&
3925 vdev_is_concrete(vd)) {
3926 vs->vs_fragmentation = (vd->vdev_mg != NULL) ?
3927 vd->vdev_mg->mg_fragmentation : 0;
3928 }
3929 if (vd->vdev_ops->vdev_op_leaf)
3930 vs->vs_resilver_deferred = vd->vdev_resilver_deferred;
3931 }
3932
3933 ASSERT(spa_config_held(vd->vdev_spa, SCL_ALL, RW_READER) != 0);
3934 vdev_get_stats_ex_impl(vd, vs, vsx);
3935 mutex_exit(&vd->vdev_stat_lock);
3936 }
3937
3938 void
3939 vdev_get_stats(vdev_t *vd, vdev_stat_t *vs)
3940 {
3941 return (vdev_get_stats_ex(vd, vs, NULL));
3942 }
3943
3944 void
3945 vdev_clear_stats(vdev_t *vd)
3946 {
3947 mutex_enter(&vd->vdev_stat_lock);
3948 vd->vdev_stat.vs_space = 0;
3949 vd->vdev_stat.vs_dspace = 0;
3950 vd->vdev_stat.vs_alloc = 0;
3951 mutex_exit(&vd->vdev_stat_lock);
3952 }
3953
3954 void
3955 vdev_scan_stat_init(vdev_t *vd)
3956 {
3957 vdev_stat_t *vs = &vd->vdev_stat;
3958
3959 for (int c = 0; c < vd->vdev_children; c++)
3960 vdev_scan_stat_init(vd->vdev_child[c]);
3961
3962 mutex_enter(&vd->vdev_stat_lock);
3963 vs->vs_scan_processed = 0;
3964 mutex_exit(&vd->vdev_stat_lock);
3965 }
3966
3967 void
3968 vdev_stat_update(zio_t *zio, uint64_t psize)
3969 {
3970 spa_t *spa = zio->io_spa;
3971 vdev_t *rvd = spa->spa_root_vdev;
3972 vdev_t *vd = zio->io_vd ? zio->io_vd : rvd;
3973 vdev_t *pvd;
3974 uint64_t txg = zio->io_txg;
3975 vdev_stat_t *vs = &vd->vdev_stat;
3976 vdev_stat_ex_t *vsx = &vd->vdev_stat_ex;
3977 zio_type_t type = zio->io_type;
3978 int flags = zio->io_flags;
3979
3980 /*
3981 * If this i/o is a gang leader, it didn't do any actual work.
3982 */
3983 if (zio->io_gang_tree)
3984 return;
3985
3986 if (zio->io_error == 0) {
3987 /*
3988 * If this is a root i/o, don't count it -- we've already
3989 * counted the top-level vdevs, and vdev_get_stats() will
3990 * aggregate them when asked. This reduces contention on
3991 * the root vdev_stat_lock and implicitly handles blocks
3992 * that compress away to holes, for which there is no i/o.
3993 * (Holes never create vdev children, so all the counters
3994 * remain zero, which is what we want.)
3995 *
3996 * Note: this only applies to successful i/o (io_error == 0)
3997 * because unlike i/o counts, errors are not additive.
3998 * When reading a ditto block, for example, failure of
3999 * one top-level vdev does not imply a root-level error.
4000 */
4001 if (vd == rvd)
4002 return;
4003
4004 ASSERT(vd == zio->io_vd);
4005
4006 if (flags & ZIO_FLAG_IO_BYPASS)
4007 return;
4008
4009 mutex_enter(&vd->vdev_stat_lock);
4010
4011 if (flags & ZIO_FLAG_IO_REPAIR) {
4012 if (flags & ZIO_FLAG_SCAN_THREAD) {
4013 dsl_scan_phys_t *scn_phys =
4014 &spa->spa_dsl_pool->dp_scan->scn_phys;
4015 uint64_t *processed = &scn_phys->scn_processed;
4016
4017 /* XXX cleanup? */
4018 if (vd->vdev_ops->vdev_op_leaf)
4019 atomic_add_64(processed, psize);
4020 vs->vs_scan_processed += psize;
4021 }
4022
4023 if (flags & ZIO_FLAG_SELF_HEAL)
4024 vs->vs_self_healed += psize;
4025 }
4026
4027 /*
4028 * The bytes/ops/histograms are recorded at the leaf level and
4029 * aggregated into the higher level vdevs in vdev_get_stats().
4030 */
4031 if (vd->vdev_ops->vdev_op_leaf &&
4032 (zio->io_priority < ZIO_PRIORITY_NUM_QUEUEABLE)) {
4033
4034 vs->vs_ops[type]++;
4035 vs->vs_bytes[type] += psize;
4036
4037 if (flags & ZIO_FLAG_DELEGATED) {
4038 vsx->vsx_agg_histo[zio->io_priority]
4039 [RQ_HISTO(zio->io_size)]++;
4040 } else {
4041 vsx->vsx_ind_histo[zio->io_priority]
4042 [RQ_HISTO(zio->io_size)]++;
4043 }
4044
4045 if (zio->io_delta && zio->io_delay) {
4046 vsx->vsx_queue_histo[zio->io_priority]
4047 [L_HISTO(zio->io_delta - zio->io_delay)]++;
4048 vsx->vsx_disk_histo[type]
4049 [L_HISTO(zio->io_delay)]++;
4050 vsx->vsx_total_histo[type]
4051 [L_HISTO(zio->io_delta)]++;
4052 }
4053 }
4054
4055 mutex_exit(&vd->vdev_stat_lock);
4056 return;
4057 }
4058
4059 if (flags & ZIO_FLAG_SPECULATIVE)
4060 return;
4061
4062 /*
4063 * If this is an I/O error that is going to be retried, then ignore the
4064 * error. Otherwise, the user may interpret B_FAILFAST I/O errors as
4065 * hard errors, when in reality they can happen for any number of
4066 * innocuous reasons (bus resets, MPxIO link failure, etc).
4067 */
4068 if (zio->io_error == EIO &&
4069 !(zio->io_flags & ZIO_FLAG_IO_RETRY))
4070 return;
4071
4072 /*
4073 * Intent logs writes won't propagate their error to the root
4074 * I/O so don't mark these types of failures as pool-level
4075 * errors.
4076 */
4077 if (zio->io_vd == NULL && (zio->io_flags & ZIO_FLAG_DONT_PROPAGATE))
4078 return;
4079
4080 mutex_enter(&vd->vdev_stat_lock);
4081 if (type == ZIO_TYPE_READ && !vdev_is_dead(vd)) {
4082 if (zio->io_error == ECKSUM)
4083 vs->vs_checksum_errors++;
4084 else
4085 vs->vs_read_errors++;
4086 }
4087 if (type == ZIO_TYPE_WRITE && !vdev_is_dead(vd))
4088 vs->vs_write_errors++;
4089 mutex_exit(&vd->vdev_stat_lock);
4090
4091 if (spa->spa_load_state == SPA_LOAD_NONE &&
4092 type == ZIO_TYPE_WRITE && txg != 0 &&
4093 (!(flags & ZIO_FLAG_IO_REPAIR) ||
4094 (flags & ZIO_FLAG_SCAN_THREAD) ||
4095 spa->spa_claiming)) {
4096 /*
4097 * This is either a normal write (not a repair), or it's
4098 * a repair induced by the scrub thread, or it's a repair
4099 * made by zil_claim() during spa_load() in the first txg.
4100 * In the normal case, we commit the DTL change in the same
4101 * txg as the block was born. In the scrub-induced repair
4102 * case, we know that scrubs run in first-pass syncing context,
4103 * so we commit the DTL change in spa_syncing_txg(spa).
4104 * In the zil_claim() case, we commit in spa_first_txg(spa).
4105 *
4106 * We currently do not make DTL entries for failed spontaneous
4107 * self-healing writes triggered by normal (non-scrubbing)
4108 * reads, because we have no transactional context in which to
4109 * do so -- and it's not clear that it'd be desirable anyway.
4110 */
4111 if (vd->vdev_ops->vdev_op_leaf) {
4112 uint64_t commit_txg = txg;
4113 if (flags & ZIO_FLAG_SCAN_THREAD) {
4114 ASSERT(flags & ZIO_FLAG_IO_REPAIR);
4115 ASSERT(spa_sync_pass(spa) == 1);
4116 vdev_dtl_dirty(vd, DTL_SCRUB, txg, 1);
4117 commit_txg = spa_syncing_txg(spa);
4118 } else if (spa->spa_claiming) {
4119 ASSERT(flags & ZIO_FLAG_IO_REPAIR);
4120 commit_txg = spa_first_txg(spa);
4121 }
4122 ASSERT(commit_txg >= spa_syncing_txg(spa));
4123 if (vdev_dtl_contains(vd, DTL_MISSING, txg, 1))
4124 return;
4125 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
4126 vdev_dtl_dirty(pvd, DTL_PARTIAL, txg, 1);
4127 vdev_dirty(vd->vdev_top, VDD_DTL, vd, commit_txg);
4128 }
4129 if (vd != rvd)
4130 vdev_dtl_dirty(vd, DTL_MISSING, txg, 1);
4131 }
4132 }
4133
4134 int64_t
4135 vdev_deflated_space(vdev_t *vd, int64_t space)
4136 {
4137 ASSERT((space & (SPA_MINBLOCKSIZE-1)) == 0);
4138 ASSERT(vd->vdev_deflate_ratio != 0 || vd->vdev_isl2cache);
4139
4140 return ((space >> SPA_MINBLOCKSHIFT) * vd->vdev_deflate_ratio);
4141 }
4142
4143 /*
4144 * Update the in-core space usage stats for this vdev and the root vdev.
4145 */
4146 void
4147 vdev_space_update(vdev_t *vd, int64_t alloc_delta, int64_t defer_delta,
4148 int64_t space_delta)
4149 {
4150 int64_t dspace_delta;
4151 spa_t *spa = vd->vdev_spa;
4152 vdev_t *rvd = spa->spa_root_vdev;
4153
4154 ASSERT(vd == vd->vdev_top);
4155
4156 /*
4157 * Apply the inverse of the psize-to-asize (ie. RAID-Z) space-expansion
4158 * factor. We must calculate this here and not at the root vdev
4159 * because the root vdev's psize-to-asize is simply the max of its
4160 * childrens', thus not accurate enough for us.
4161 */
4162 dspace_delta = vdev_deflated_space(vd, space_delta);
4163
4164 mutex_enter(&vd->vdev_stat_lock);
4165 /* ensure we won't underflow */
4166 if (alloc_delta < 0) {
4167 ASSERT3U(vd->vdev_stat.vs_alloc, >=, -alloc_delta);
4168 }
4169
4170 vd->vdev_stat.vs_alloc += alloc_delta;
4171 vd->vdev_stat.vs_space += space_delta;
4172 vd->vdev_stat.vs_dspace += dspace_delta;
4173 mutex_exit(&vd->vdev_stat_lock);
4174
4175 /* every class but log contributes to root space stats */
4176 if (vd->vdev_mg != NULL && !vd->vdev_islog) {
4177 ASSERT(!vd->vdev_isl2cache);
4178 mutex_enter(&rvd->vdev_stat_lock);
4179 rvd->vdev_stat.vs_alloc += alloc_delta;
4180 rvd->vdev_stat.vs_space += space_delta;
4181 rvd->vdev_stat.vs_dspace += dspace_delta;
4182 mutex_exit(&rvd->vdev_stat_lock);
4183 }
4184 /* Note: metaslab_class_space_update moved to metaslab_space_update */
4185 }
4186
4187 /*
4188 * Mark a top-level vdev's config as dirty, placing it on the dirty list
4189 * so that it will be written out next time the vdev configuration is synced.
4190 * If the root vdev is specified (vdev_top == NULL), dirty all top-level vdevs.
4191 */
4192 void
4193 vdev_config_dirty(vdev_t *vd)
4194 {
4195 spa_t *spa = vd->vdev_spa;
4196 vdev_t *rvd = spa->spa_root_vdev;
4197 int c;
4198
4199 ASSERT(spa_writeable(spa));
4200
4201 /*
4202 * If this is an aux vdev (as with l2cache and spare devices), then we
4203 * update the vdev config manually and set the sync flag.
4204 */
4205 if (vd->vdev_aux != NULL) {
4206 spa_aux_vdev_t *sav = vd->vdev_aux;
4207 nvlist_t **aux;
4208 uint_t naux;
4209
4210 for (c = 0; c < sav->sav_count; c++) {
4211 if (sav->sav_vdevs[c] == vd)
4212 break;
4213 }
4214
4215 if (c == sav->sav_count) {
4216 /*
4217 * We're being removed. There's nothing more to do.
4218 */
4219 ASSERT(sav->sav_sync == B_TRUE);
4220 return;
4221 }
4222
4223 sav->sav_sync = B_TRUE;
4224
4225 if (nvlist_lookup_nvlist_array(sav->sav_config,
4226 ZPOOL_CONFIG_L2CACHE, &aux, &naux) != 0) {
4227 VERIFY(nvlist_lookup_nvlist_array(sav->sav_config,
4228 ZPOOL_CONFIG_SPARES, &aux, &naux) == 0);
4229 }
4230
4231 ASSERT(c < naux);
4232
4233 /*
4234 * Setting the nvlist in the middle if the array is a little
4235 * sketchy, but it will work.
4236 */
4237 nvlist_free(aux[c]);
4238 aux[c] = vdev_config_generate(spa, vd, B_TRUE, 0);
4239
4240 return;
4241 }
4242
4243 /*
4244 * The dirty list is protected by the SCL_CONFIG lock. The caller
4245 * must either hold SCL_CONFIG as writer, or must be the sync thread
4246 * (which holds SCL_CONFIG as reader). There's only one sync thread,
4247 * so this is sufficient to ensure mutual exclusion.
4248 */
4249 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
4250 (dsl_pool_sync_context(spa_get_dsl(spa)) &&
4251 spa_config_held(spa, SCL_CONFIG, RW_READER)));
4252
4253 if (vd == rvd) {
4254 for (c = 0; c < rvd->vdev_children; c++)
4255 vdev_config_dirty(rvd->vdev_child[c]);
4256 } else {
4257 ASSERT(vd == vd->vdev_top);
4258
4259 if (!list_link_active(&vd->vdev_config_dirty_node) &&
4260 vdev_is_concrete(vd)) {
4261 list_insert_head(&spa->spa_config_dirty_list, vd);
4262 }
4263 }
4264 }
4265
4266 void
4267 vdev_config_clean(vdev_t *vd)
4268 {
4269 spa_t *spa = vd->vdev_spa;
4270
4271 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
4272 (dsl_pool_sync_context(spa_get_dsl(spa)) &&
4273 spa_config_held(spa, SCL_CONFIG, RW_READER)));
4274
4275 ASSERT(list_link_active(&vd->vdev_config_dirty_node));
4276 list_remove(&spa->spa_config_dirty_list, vd);
4277 }
4278
4279 /*
4280 * Mark a top-level vdev's state as dirty, so that the next pass of
4281 * spa_sync() can convert this into vdev_config_dirty(). We distinguish
4282 * the state changes from larger config changes because they require
4283 * much less locking, and are often needed for administrative actions.
4284 */
4285 void
4286 vdev_state_dirty(vdev_t *vd)
4287 {
4288 spa_t *spa = vd->vdev_spa;
4289
4290 ASSERT(spa_writeable(spa));
4291 ASSERT(vd == vd->vdev_top);
4292
4293 /*
4294 * The state list is protected by the SCL_STATE lock. The caller
4295 * must either hold SCL_STATE as writer, or must be the sync thread
4296 * (which holds SCL_STATE as reader). There's only one sync thread,
4297 * so this is sufficient to ensure mutual exclusion.
4298 */
4299 ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
4300 (dsl_pool_sync_context(spa_get_dsl(spa)) &&
4301 spa_config_held(spa, SCL_STATE, RW_READER)));
4302
4303 if (!list_link_active(&vd->vdev_state_dirty_node) &&
4304 vdev_is_concrete(vd))
4305 list_insert_head(&spa->spa_state_dirty_list, vd);
4306 }
4307
4308 void
4309 vdev_state_clean(vdev_t *vd)
4310 {
4311 spa_t *spa = vd->vdev_spa;
4312
4313 ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
4314 (dsl_pool_sync_context(spa_get_dsl(spa)) &&
4315 spa_config_held(spa, SCL_STATE, RW_READER)));
4316
4317 ASSERT(list_link_active(&vd->vdev_state_dirty_node));
4318 list_remove(&spa->spa_state_dirty_list, vd);
4319 }
4320
4321 /*
4322 * Propagate vdev state up from children to parent.
4323 */
4324 void
4325 vdev_propagate_state(vdev_t *vd)
4326 {
4327 spa_t *spa = vd->vdev_spa;
4328 vdev_t *rvd = spa->spa_root_vdev;
4329 int degraded = 0, faulted = 0;
4330 int corrupted = 0;
4331 vdev_t *child;
4332
4333 if (vd->vdev_children > 0) {
4334 for (int c = 0; c < vd->vdev_children; c++) {
4335 child = vd->vdev_child[c];
4336
4337 /*
4338 * Don't factor holes or indirect vdevs into the
4339 * decision.
4340 */
4341 if (!vdev_is_concrete(child))
4342 continue;
4343
4344 if (!vdev_readable(child) ||
4345 (!vdev_writeable(child) && spa_writeable(spa))) {
4346 /*
4347 * Root special: if there is a top-level log
4348 * device, treat the root vdev as if it were
4349 * degraded.
4350 */
4351 if (child->vdev_islog && vd == rvd)
4352 degraded++;
4353 else
4354 faulted++;
4355 } else if (child->vdev_state <= VDEV_STATE_DEGRADED) {
4356 degraded++;
4357 }
4358
4359 if (child->vdev_stat.vs_aux == VDEV_AUX_CORRUPT_DATA)
4360 corrupted++;
4361 }
4362
4363 vd->vdev_ops->vdev_op_state_change(vd, faulted, degraded);
4364
4365 /*
4366 * Root special: if there is a top-level vdev that cannot be
4367 * opened due to corrupted metadata, then propagate the root
4368 * vdev's aux state as 'corrupt' rather than 'insufficient
4369 * replicas'.
4370 */
4371 if (corrupted && vd == rvd &&
4372 rvd->vdev_state == VDEV_STATE_CANT_OPEN)
4373 vdev_set_state(rvd, B_FALSE, VDEV_STATE_CANT_OPEN,
4374 VDEV_AUX_CORRUPT_DATA);
4375 }
4376
4377 if (vd->vdev_parent)
4378 vdev_propagate_state(vd->vdev_parent);
4379 }
4380
4381 /*
4382 * Set a vdev's state. If this is during an open, we don't update the parent
4383 * state, because we're in the process of opening children depth-first.
4384 * Otherwise, we propagate the change to the parent.
4385 *
4386 * If this routine places a device in a faulted state, an appropriate ereport is
4387 * generated.
4388 */
4389 void
4390 vdev_set_state(vdev_t *vd, boolean_t isopen, vdev_state_t state, vdev_aux_t aux)
4391 {
4392 uint64_t save_state;
4393 spa_t *spa = vd->vdev_spa;
4394
4395 if (state == vd->vdev_state) {
4396 /*
4397 * Since vdev_offline() code path is already in an offline
4398 * state we can miss a statechange event to OFFLINE. Check
4399 * the previous state to catch this condition.
4400 */
4401 if (vd->vdev_ops->vdev_op_leaf &&
4402 (state == VDEV_STATE_OFFLINE) &&
4403 (vd->vdev_prevstate >= VDEV_STATE_FAULTED)) {
4404 /* post an offline state change */
4405 zfs_post_state_change(spa, vd, vd->vdev_prevstate);
4406 }
4407 vd->vdev_stat.vs_aux = aux;
4408 return;
4409 }
4410
4411 save_state = vd->vdev_state;
4412
4413 vd->vdev_state = state;
4414 vd->vdev_stat.vs_aux = aux;
4415
4416 /*
4417 * If we are setting the vdev state to anything but an open state, then
4418 * always close the underlying device unless the device has requested
4419 * a delayed close (i.e. we're about to remove or fault the device).
4420 * Otherwise, we keep accessible but invalid devices open forever.
4421 * We don't call vdev_close() itself, because that implies some extra
4422 * checks (offline, etc) that we don't want here. This is limited to
4423 * leaf devices, because otherwise closing the device will affect other
4424 * children.
4425 */
4426 if (!vd->vdev_delayed_close && vdev_is_dead(vd) &&
4427 vd->vdev_ops->vdev_op_leaf)
4428 vd->vdev_ops->vdev_op_close(vd);
4429
4430 if (vd->vdev_removed &&
4431 state == VDEV_STATE_CANT_OPEN &&
4432 (aux == VDEV_AUX_OPEN_FAILED || vd->vdev_checkremove)) {
4433 /*
4434 * If the previous state is set to VDEV_STATE_REMOVED, then this
4435 * device was previously marked removed and someone attempted to
4436 * reopen it. If this failed due to a nonexistent device, then
4437 * keep the device in the REMOVED state. We also let this be if
4438 * it is one of our special test online cases, which is only
4439 * attempting to online the device and shouldn't generate an FMA
4440 * fault.
4441 */
4442 vd->vdev_state = VDEV_STATE_REMOVED;
4443 vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
4444 } else if (state == VDEV_STATE_REMOVED) {
4445 vd->vdev_removed = B_TRUE;
4446 } else if (state == VDEV_STATE_CANT_OPEN) {
4447 /*
4448 * If we fail to open a vdev during an import or recovery, we
4449 * mark it as "not available", which signifies that it was
4450 * never there to begin with. Failure to open such a device
4451 * is not considered an error.
4452 */
4453 if ((spa_load_state(spa) == SPA_LOAD_IMPORT ||
4454 spa_load_state(spa) == SPA_LOAD_RECOVER) &&
4455 vd->vdev_ops->vdev_op_leaf)
4456 vd->vdev_not_present = 1;
4457
4458 /*
4459 * Post the appropriate ereport. If the 'prevstate' field is
4460 * set to something other than VDEV_STATE_UNKNOWN, it indicates
4461 * that this is part of a vdev_reopen(). In this case, we don't
4462 * want to post the ereport if the device was already in the
4463 * CANT_OPEN state beforehand.
4464 *
4465 * If the 'checkremove' flag is set, then this is an attempt to
4466 * online the device in response to an insertion event. If we
4467 * hit this case, then we have detected an insertion event for a
4468 * faulted or offline device that wasn't in the removed state.
4469 * In this scenario, we don't post an ereport because we are
4470 * about to replace the device, or attempt an online with
4471 * vdev_forcefault, which will generate the fault for us.
4472 */
4473 if ((vd->vdev_prevstate != state || vd->vdev_forcefault) &&
4474 !vd->vdev_not_present && !vd->vdev_checkremove &&
4475 vd != spa->spa_root_vdev) {
4476 const char *class;
4477
4478 switch (aux) {
4479 case VDEV_AUX_OPEN_FAILED:
4480 class = FM_EREPORT_ZFS_DEVICE_OPEN_FAILED;
4481 break;
4482 case VDEV_AUX_CORRUPT_DATA:
4483 class = FM_EREPORT_ZFS_DEVICE_CORRUPT_DATA;
4484 break;
4485 case VDEV_AUX_NO_REPLICAS:
4486 class = FM_EREPORT_ZFS_DEVICE_NO_REPLICAS;
4487 break;
4488 case VDEV_AUX_BAD_GUID_SUM:
4489 class = FM_EREPORT_ZFS_DEVICE_BAD_GUID_SUM;
4490 break;
4491 case VDEV_AUX_TOO_SMALL:
4492 class = FM_EREPORT_ZFS_DEVICE_TOO_SMALL;
4493 break;
4494 case VDEV_AUX_BAD_LABEL:
4495 class = FM_EREPORT_ZFS_DEVICE_BAD_LABEL;
4496 break;
4497 case VDEV_AUX_BAD_ASHIFT:
4498 class = FM_EREPORT_ZFS_DEVICE_BAD_ASHIFT;
4499 break;
4500 default:
4501 class = FM_EREPORT_ZFS_DEVICE_UNKNOWN;
4502 }
4503
4504 zfs_ereport_post(class, spa, vd, NULL, NULL,
4505 save_state, 0);
4506 }
4507
4508 /* Erase any notion of persistent removed state */
4509 vd->vdev_removed = B_FALSE;
4510 } else {
4511 vd->vdev_removed = B_FALSE;
4512 }
4513
4514 /*
4515 * Notify ZED of any significant state-change on a leaf vdev.
4516 *
4517 */
4518 if (vd->vdev_ops->vdev_op_leaf) {
4519 /* preserve original state from a vdev_reopen() */
4520 if ((vd->vdev_prevstate != VDEV_STATE_UNKNOWN) &&
4521 (vd->vdev_prevstate != vd->vdev_state) &&
4522 (save_state <= VDEV_STATE_CLOSED))
4523 save_state = vd->vdev_prevstate;
4524
4525 /* filter out state change due to initial vdev_open */
4526 if (save_state > VDEV_STATE_CLOSED)
4527 zfs_post_state_change(spa, vd, save_state);
4528 }
4529
4530 if (!isopen && vd->vdev_parent)
4531 vdev_propagate_state(vd->vdev_parent);
4532 }
4533
4534 boolean_t
4535 vdev_children_are_offline(vdev_t *vd)
4536 {
4537 ASSERT(!vd->vdev_ops->vdev_op_leaf);
4538
4539 for (uint64_t i = 0; i < vd->vdev_children; i++) {
4540 if (vd->vdev_child[i]->vdev_state != VDEV_STATE_OFFLINE)
4541 return (B_FALSE);
4542 }
4543
4544 return (B_TRUE);
4545 }
4546
4547 /*
4548 * Check the vdev configuration to ensure that it's capable of supporting
4549 * a root pool. We do not support partial configuration.
4550 */
4551 boolean_t
4552 vdev_is_bootable(vdev_t *vd)
4553 {
4554 if (!vd->vdev_ops->vdev_op_leaf) {
4555 const char *vdev_type = vd->vdev_ops->vdev_op_type;
4556
4557 if (strcmp(vdev_type, VDEV_TYPE_MISSING) == 0 ||
4558 strcmp(vdev_type, VDEV_TYPE_INDIRECT) == 0) {
4559 return (B_FALSE);
4560 }
4561 }
4562
4563 for (int c = 0; c < vd->vdev_children; c++) {
4564 if (!vdev_is_bootable(vd->vdev_child[c]))
4565 return (B_FALSE);
4566 }
4567 return (B_TRUE);
4568 }
4569
4570 boolean_t
4571 vdev_is_concrete(vdev_t *vd)
4572 {
4573 vdev_ops_t *ops = vd->vdev_ops;
4574 if (ops == &vdev_indirect_ops || ops == &vdev_hole_ops ||
4575 ops == &vdev_missing_ops || ops == &vdev_root_ops) {
4576 return (B_FALSE);
4577 } else {
4578 return (B_TRUE);
4579 }
4580 }
4581
4582 /*
4583 * Determine if a log device has valid content. If the vdev was
4584 * removed or faulted in the MOS config then we know that
4585 * the content on the log device has already been written to the pool.
4586 */
4587 boolean_t
4588 vdev_log_state_valid(vdev_t *vd)
4589 {
4590 if (vd->vdev_ops->vdev_op_leaf && !vd->vdev_faulted &&
4591 !vd->vdev_removed)
4592 return (B_TRUE);
4593
4594 for (int c = 0; c < vd->vdev_children; c++)
4595 if (vdev_log_state_valid(vd->vdev_child[c]))
4596 return (B_TRUE);
4597
4598 return (B_FALSE);
4599 }
4600
4601 /*
4602 * Expand a vdev if possible.
4603 */
4604 void
4605 vdev_expand(vdev_t *vd, uint64_t txg)
4606 {
4607 ASSERT(vd->vdev_top == vd);
4608 ASSERT(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
4609 ASSERT(vdev_is_concrete(vd));
4610
4611 vdev_set_deflate_ratio(vd);
4612
4613 if ((vd->vdev_asize >> vd->vdev_ms_shift) > vd->vdev_ms_count &&
4614 vdev_is_concrete(vd)) {
4615 vdev_metaslab_group_create(vd);
4616 VERIFY(vdev_metaslab_init(vd, txg) == 0);
4617 vdev_config_dirty(vd);
4618 }
4619 }
4620
4621 /*
4622 * Split a vdev.
4623 */
4624 void
4625 vdev_split(vdev_t *vd)
4626 {
4627 vdev_t *cvd, *pvd = vd->vdev_parent;
4628
4629 vdev_remove_child(pvd, vd);
4630 vdev_compact_children(pvd);
4631
4632 cvd = pvd->vdev_child[0];
4633 if (pvd->vdev_children == 1) {
4634 vdev_remove_parent(cvd);
4635 cvd->vdev_splitting = B_TRUE;
4636 }
4637 vdev_propagate_state(cvd);
4638 }
4639
4640 void
4641 vdev_deadman(vdev_t *vd, char *tag)
4642 {
4643 for (int c = 0; c < vd->vdev_children; c++) {
4644 vdev_t *cvd = vd->vdev_child[c];
4645
4646 vdev_deadman(cvd, tag);
4647 }
4648
4649 if (vd->vdev_ops->vdev_op_leaf) {
4650 vdev_queue_t *vq = &vd->vdev_queue;
4651
4652 mutex_enter(&vq->vq_lock);
4653 if (avl_numnodes(&vq->vq_active_tree) > 0) {
4654 spa_t *spa = vd->vdev_spa;
4655 zio_t *fio;
4656 uint64_t delta;
4657
4658 zfs_dbgmsg("slow vdev: %s has %d active IOs",
4659 vd->vdev_path, avl_numnodes(&vq->vq_active_tree));
4660
4661 /*
4662 * Look at the head of all the pending queues,
4663 * if any I/O has been outstanding for longer than
4664 * the spa_deadman_synctime invoke the deadman logic.
4665 */
4666 fio = avl_first(&vq->vq_active_tree);
4667 delta = gethrtime() - fio->io_timestamp;
4668 if (delta > spa_deadman_synctime(spa))
4669 zio_deadman(fio, tag);
4670 }
4671 mutex_exit(&vq->vq_lock);
4672 }
4673 }
4674
4675 void
4676 vdev_set_deferred_resilver(spa_t *spa, vdev_t *vd)
4677 {
4678 for (uint64_t i = 0; i < vd->vdev_children; i++)
4679 vdev_set_deferred_resilver(spa, vd->vdev_child[i]);
4680
4681 if (!vd->vdev_ops->vdev_op_leaf || !vdev_writeable(vd) ||
4682 range_tree_is_empty(vd->vdev_dtl[DTL_MISSING])) {
4683 return;
4684 }
4685
4686 vd->vdev_resilver_deferred = B_TRUE;
4687 spa->spa_resilver_deferred = B_TRUE;
4688 }
4689
4690 #if defined(_KERNEL)
4691 EXPORT_SYMBOL(vdev_fault);
4692 EXPORT_SYMBOL(vdev_degrade);
4693 EXPORT_SYMBOL(vdev_online);
4694 EXPORT_SYMBOL(vdev_offline);
4695 EXPORT_SYMBOL(vdev_clear);
4696 /* BEGIN CSTYLED */
4697 module_param(zfs_vdev_default_ms_count, int, 0644);
4698 MODULE_PARM_DESC(zfs_vdev_default_ms_count,
4699 "Target number of metaslabs per top-level vdev");
4700
4701 module_param(zfs_vdev_min_ms_count, int, 0644);
4702 MODULE_PARM_DESC(zfs_vdev_min_ms_count,
4703 "Minimum number of metaslabs per top-level vdev");
4704
4705 module_param(zfs_vdev_ms_count_limit, int, 0644);
4706 MODULE_PARM_DESC(zfs_vdev_ms_count_limit,
4707 "Practical upper limit of total metaslabs per top-level vdev");
4708
4709 module_param(zfs_slow_io_events_per_second, uint, 0644);
4710 MODULE_PARM_DESC(zfs_slow_io_events_per_second,
4711 "Rate limit slow IO (delay) events to this many per second");
4712
4713 module_param(zfs_checksum_events_per_second, uint, 0644);
4714 MODULE_PARM_DESC(zfs_checksum_events_per_second, "Rate limit checksum events "
4715 "to this many checksum errors per second (do not set below zed"
4716 "threshold).");
4717
4718 module_param(zfs_scan_ignore_errors, int, 0644);
4719 MODULE_PARM_DESC(zfs_scan_ignore_errors,
4720 "Ignore errors during resilver/scrub");
4721
4722 module_param(vdev_validate_skip, int, 0644);
4723 MODULE_PARM_DESC(vdev_validate_skip,
4724 "Bypass vdev_validate()");
4725
4726 module_param(zfs_nocacheflush, int, 0644);
4727 MODULE_PARM_DESC(zfs_nocacheflush, "Disable cache flushes");
4728 /* END CSTYLED */
4729 #endif