]> git.proxmox.com Git - mirror_zfs.git/blob - module/zfs/vdev.c
Turn on/off enclosure slot fault LED even when disk isn't present
[mirror_zfs.git] / module / zfs / vdev.c
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22 /*
23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
25 * Copyright (c) 2011, 2015 by Delphix. All rights reserved.
26 */
27
28 #include <sys/zfs_context.h>
29 #include <sys/fm/fs/zfs.h>
30 #include <sys/spa.h>
31 #include <sys/spa_impl.h>
32 #include <sys/dmu.h>
33 #include <sys/dmu_tx.h>
34 #include <sys/vdev_impl.h>
35 #include <sys/uberblock_impl.h>
36 #include <sys/metaslab.h>
37 #include <sys/metaslab_impl.h>
38 #include <sys/space_map.h>
39 #include <sys/space_reftree.h>
40 #include <sys/zio.h>
41 #include <sys/zap.h>
42 #include <sys/fs/zfs.h>
43 #include <sys/arc.h>
44 #include <sys/zil.h>
45 #include <sys/dsl_scan.h>
46 #include <sys/zvol.h>
47 #include <sys/zfs_ratelimit.h>
48
49 /*
50 * When a vdev is added, it will be divided into approximately (but no
51 * more than) this number of metaslabs.
52 */
53 int metaslabs_per_vdev = 200;
54
55 /*
56 * Virtual device management.
57 */
58
59 static vdev_ops_t *vdev_ops_table[] = {
60 &vdev_root_ops,
61 &vdev_raidz_ops,
62 &vdev_mirror_ops,
63 &vdev_replacing_ops,
64 &vdev_spare_ops,
65 &vdev_disk_ops,
66 &vdev_file_ops,
67 &vdev_missing_ops,
68 &vdev_hole_ops,
69 NULL
70 };
71
72 /*
73 * Given a vdev type, return the appropriate ops vector.
74 */
75 static vdev_ops_t *
76 vdev_getops(const char *type)
77 {
78 vdev_ops_t *ops, **opspp;
79
80 for (opspp = vdev_ops_table; (ops = *opspp) != NULL; opspp++)
81 if (strcmp(ops->vdev_op_type, type) == 0)
82 break;
83
84 return (ops);
85 }
86
87 /*
88 * Default asize function: return the MAX of psize with the asize of
89 * all children. This is what's used by anything other than RAID-Z.
90 */
91 uint64_t
92 vdev_default_asize(vdev_t *vd, uint64_t psize)
93 {
94 uint64_t asize = P2ROUNDUP(psize, 1ULL << vd->vdev_top->vdev_ashift);
95 uint64_t csize;
96 int c;
97
98 for (c = 0; c < vd->vdev_children; c++) {
99 csize = vdev_psize_to_asize(vd->vdev_child[c], psize);
100 asize = MAX(asize, csize);
101 }
102
103 return (asize);
104 }
105
106 /*
107 * Get the minimum allocatable size. We define the allocatable size as
108 * the vdev's asize rounded to the nearest metaslab. This allows us to
109 * replace or attach devices which don't have the same physical size but
110 * can still satisfy the same number of allocations.
111 */
112 uint64_t
113 vdev_get_min_asize(vdev_t *vd)
114 {
115 vdev_t *pvd = vd->vdev_parent;
116
117 /*
118 * If our parent is NULL (inactive spare or cache) or is the root,
119 * just return our own asize.
120 */
121 if (pvd == NULL)
122 return (vd->vdev_asize);
123
124 /*
125 * The top-level vdev just returns the allocatable size rounded
126 * to the nearest metaslab.
127 */
128 if (vd == vd->vdev_top)
129 return (P2ALIGN(vd->vdev_asize, 1ULL << vd->vdev_ms_shift));
130
131 /*
132 * The allocatable space for a raidz vdev is N * sizeof(smallest child),
133 * so each child must provide at least 1/Nth of its asize.
134 */
135 if (pvd->vdev_ops == &vdev_raidz_ops)
136 return (pvd->vdev_min_asize / pvd->vdev_children);
137
138 return (pvd->vdev_min_asize);
139 }
140
141 void
142 vdev_set_min_asize(vdev_t *vd)
143 {
144 int c;
145 vd->vdev_min_asize = vdev_get_min_asize(vd);
146
147 for (c = 0; c < vd->vdev_children; c++)
148 vdev_set_min_asize(vd->vdev_child[c]);
149 }
150
151 vdev_t *
152 vdev_lookup_top(spa_t *spa, uint64_t vdev)
153 {
154 vdev_t *rvd = spa->spa_root_vdev;
155
156 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
157
158 if (vdev < rvd->vdev_children) {
159 ASSERT(rvd->vdev_child[vdev] != NULL);
160 return (rvd->vdev_child[vdev]);
161 }
162
163 return (NULL);
164 }
165
166 vdev_t *
167 vdev_lookup_by_guid(vdev_t *vd, uint64_t guid)
168 {
169 vdev_t *mvd;
170 int c;
171
172 if (vd->vdev_guid == guid)
173 return (vd);
174
175 for (c = 0; c < vd->vdev_children; c++)
176 if ((mvd = vdev_lookup_by_guid(vd->vdev_child[c], guid)) !=
177 NULL)
178 return (mvd);
179
180 return (NULL);
181 }
182
183 static int
184 vdev_count_leaves_impl(vdev_t *vd)
185 {
186 int n = 0;
187 int c;
188
189 if (vd->vdev_ops->vdev_op_leaf)
190 return (1);
191
192 for (c = 0; c < vd->vdev_children; c++)
193 n += vdev_count_leaves_impl(vd->vdev_child[c]);
194
195 return (n);
196 }
197
198 int
199 vdev_count_leaves(spa_t *spa)
200 {
201 return (vdev_count_leaves_impl(spa->spa_root_vdev));
202 }
203
204 void
205 vdev_add_child(vdev_t *pvd, vdev_t *cvd)
206 {
207 size_t oldsize, newsize;
208 uint64_t id = cvd->vdev_id;
209 vdev_t **newchild;
210
211 ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
212 ASSERT(cvd->vdev_parent == NULL);
213
214 cvd->vdev_parent = pvd;
215
216 if (pvd == NULL)
217 return;
218
219 ASSERT(id >= pvd->vdev_children || pvd->vdev_child[id] == NULL);
220
221 oldsize = pvd->vdev_children * sizeof (vdev_t *);
222 pvd->vdev_children = MAX(pvd->vdev_children, id + 1);
223 newsize = pvd->vdev_children * sizeof (vdev_t *);
224
225 newchild = kmem_alloc(newsize, KM_SLEEP);
226 if (pvd->vdev_child != NULL) {
227 bcopy(pvd->vdev_child, newchild, oldsize);
228 kmem_free(pvd->vdev_child, oldsize);
229 }
230
231 pvd->vdev_child = newchild;
232 pvd->vdev_child[id] = cvd;
233
234 cvd->vdev_top = (pvd->vdev_top ? pvd->vdev_top: cvd);
235 ASSERT(cvd->vdev_top->vdev_parent->vdev_parent == NULL);
236
237 /*
238 * Walk up all ancestors to update guid sum.
239 */
240 for (; pvd != NULL; pvd = pvd->vdev_parent)
241 pvd->vdev_guid_sum += cvd->vdev_guid_sum;
242 }
243
244 void
245 vdev_remove_child(vdev_t *pvd, vdev_t *cvd)
246 {
247 int c;
248 uint_t id = cvd->vdev_id;
249
250 ASSERT(cvd->vdev_parent == pvd);
251
252 if (pvd == NULL)
253 return;
254
255 ASSERT(id < pvd->vdev_children);
256 ASSERT(pvd->vdev_child[id] == cvd);
257
258 pvd->vdev_child[id] = NULL;
259 cvd->vdev_parent = NULL;
260
261 for (c = 0; c < pvd->vdev_children; c++)
262 if (pvd->vdev_child[c])
263 break;
264
265 if (c == pvd->vdev_children) {
266 kmem_free(pvd->vdev_child, c * sizeof (vdev_t *));
267 pvd->vdev_child = NULL;
268 pvd->vdev_children = 0;
269 }
270
271 /*
272 * Walk up all ancestors to update guid sum.
273 */
274 for (; pvd != NULL; pvd = pvd->vdev_parent)
275 pvd->vdev_guid_sum -= cvd->vdev_guid_sum;
276 }
277
278 /*
279 * Remove any holes in the child array.
280 */
281 void
282 vdev_compact_children(vdev_t *pvd)
283 {
284 vdev_t **newchild, *cvd;
285 int oldc = pvd->vdev_children;
286 int newc;
287 int c;
288
289 ASSERT(spa_config_held(pvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
290
291 for (c = newc = 0; c < oldc; c++)
292 if (pvd->vdev_child[c])
293 newc++;
294
295 newchild = kmem_zalloc(newc * sizeof (vdev_t *), KM_SLEEP);
296
297 for (c = newc = 0; c < oldc; c++) {
298 if ((cvd = pvd->vdev_child[c]) != NULL) {
299 newchild[newc] = cvd;
300 cvd->vdev_id = newc++;
301 }
302 }
303
304 kmem_free(pvd->vdev_child, oldc * sizeof (vdev_t *));
305 pvd->vdev_child = newchild;
306 pvd->vdev_children = newc;
307 }
308
309 /*
310 * Allocate and minimally initialize a vdev_t.
311 */
312 vdev_t *
313 vdev_alloc_common(spa_t *spa, uint_t id, uint64_t guid, vdev_ops_t *ops)
314 {
315 vdev_t *vd;
316 int t;
317
318 vd = kmem_zalloc(sizeof (vdev_t), KM_SLEEP);
319
320 if (spa->spa_root_vdev == NULL) {
321 ASSERT(ops == &vdev_root_ops);
322 spa->spa_root_vdev = vd;
323 spa->spa_load_guid = spa_generate_guid(NULL);
324 }
325
326 if (guid == 0 && ops != &vdev_hole_ops) {
327 if (spa->spa_root_vdev == vd) {
328 /*
329 * The root vdev's guid will also be the pool guid,
330 * which must be unique among all pools.
331 */
332 guid = spa_generate_guid(NULL);
333 } else {
334 /*
335 * Any other vdev's guid must be unique within the pool.
336 */
337 guid = spa_generate_guid(spa);
338 }
339 ASSERT(!spa_guid_exists(spa_guid(spa), guid));
340 }
341
342 vd->vdev_spa = spa;
343 vd->vdev_id = id;
344 vd->vdev_guid = guid;
345 vd->vdev_guid_sum = guid;
346 vd->vdev_ops = ops;
347 vd->vdev_state = VDEV_STATE_CLOSED;
348 vd->vdev_ishole = (ops == &vdev_hole_ops);
349
350 /*
351 * Initialize rate limit structs for events. We rate limit ZIO delay
352 * and checksum events so that we don't overwhelm ZED with thousands
353 * of events when a disk is acting up.
354 */
355 zfs_ratelimit_init(&vd->vdev_delay_rl, DELAYS_PER_SECOND, 1);
356 zfs_ratelimit_init(&vd->vdev_checksum_rl, CHECKSUMS_PER_SECOND, 1);
357
358 list_link_init(&vd->vdev_config_dirty_node);
359 list_link_init(&vd->vdev_state_dirty_node);
360 mutex_init(&vd->vdev_dtl_lock, NULL, MUTEX_NOLOCKDEP, NULL);
361 mutex_init(&vd->vdev_stat_lock, NULL, MUTEX_DEFAULT, NULL);
362 mutex_init(&vd->vdev_probe_lock, NULL, MUTEX_DEFAULT, NULL);
363 mutex_init(&vd->vdev_queue_lock, NULL, MUTEX_DEFAULT, NULL);
364
365 for (t = 0; t < DTL_TYPES; t++) {
366 vd->vdev_dtl[t] = range_tree_create(NULL, NULL,
367 &vd->vdev_dtl_lock);
368 }
369 txg_list_create(&vd->vdev_ms_list,
370 offsetof(struct metaslab, ms_txg_node));
371 txg_list_create(&vd->vdev_dtl_list,
372 offsetof(struct vdev, vdev_dtl_node));
373 vd->vdev_stat.vs_timestamp = gethrtime();
374 vdev_queue_init(vd);
375 vdev_cache_init(vd);
376
377 return (vd);
378 }
379
380 /*
381 * Allocate a new vdev. The 'alloctype' is used to control whether we are
382 * creating a new vdev or loading an existing one - the behavior is slightly
383 * different for each case.
384 */
385 int
386 vdev_alloc(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, uint_t id,
387 int alloctype)
388 {
389 vdev_ops_t *ops;
390 char *type;
391 uint64_t guid = 0, islog, nparity;
392 vdev_t *vd;
393
394 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
395
396 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) != 0)
397 return (SET_ERROR(EINVAL));
398
399 if ((ops = vdev_getops(type)) == NULL)
400 return (SET_ERROR(EINVAL));
401
402 /*
403 * If this is a load, get the vdev guid from the nvlist.
404 * Otherwise, vdev_alloc_common() will generate one for us.
405 */
406 if (alloctype == VDEV_ALLOC_LOAD) {
407 uint64_t label_id;
408
409 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ID, &label_id) ||
410 label_id != id)
411 return (SET_ERROR(EINVAL));
412
413 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
414 return (SET_ERROR(EINVAL));
415 } else if (alloctype == VDEV_ALLOC_SPARE) {
416 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
417 return (SET_ERROR(EINVAL));
418 } else if (alloctype == VDEV_ALLOC_L2CACHE) {
419 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
420 return (SET_ERROR(EINVAL));
421 } else if (alloctype == VDEV_ALLOC_ROOTPOOL) {
422 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
423 return (SET_ERROR(EINVAL));
424 }
425
426 /*
427 * The first allocated vdev must be of type 'root'.
428 */
429 if (ops != &vdev_root_ops && spa->spa_root_vdev == NULL)
430 return (SET_ERROR(EINVAL));
431
432 /*
433 * Determine whether we're a log vdev.
434 */
435 islog = 0;
436 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_LOG, &islog);
437 if (islog && spa_version(spa) < SPA_VERSION_SLOGS)
438 return (SET_ERROR(ENOTSUP));
439
440 if (ops == &vdev_hole_ops && spa_version(spa) < SPA_VERSION_HOLES)
441 return (SET_ERROR(ENOTSUP));
442
443 /*
444 * Set the nparity property for RAID-Z vdevs.
445 */
446 nparity = -1ULL;
447 if (ops == &vdev_raidz_ops) {
448 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NPARITY,
449 &nparity) == 0) {
450 if (nparity == 0 || nparity > VDEV_RAIDZ_MAXPARITY)
451 return (SET_ERROR(EINVAL));
452 /*
453 * Previous versions could only support 1 or 2 parity
454 * device.
455 */
456 if (nparity > 1 &&
457 spa_version(spa) < SPA_VERSION_RAIDZ2)
458 return (SET_ERROR(ENOTSUP));
459 if (nparity > 2 &&
460 spa_version(spa) < SPA_VERSION_RAIDZ3)
461 return (SET_ERROR(ENOTSUP));
462 } else {
463 /*
464 * We require the parity to be specified for SPAs that
465 * support multiple parity levels.
466 */
467 if (spa_version(spa) >= SPA_VERSION_RAIDZ2)
468 return (SET_ERROR(EINVAL));
469 /*
470 * Otherwise, we default to 1 parity device for RAID-Z.
471 */
472 nparity = 1;
473 }
474 } else {
475 nparity = 0;
476 }
477 ASSERT(nparity != -1ULL);
478
479 vd = vdev_alloc_common(spa, id, guid, ops);
480
481 vd->vdev_islog = islog;
482 vd->vdev_nparity = nparity;
483
484 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &vd->vdev_path) == 0)
485 vd->vdev_path = spa_strdup(vd->vdev_path);
486 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_DEVID, &vd->vdev_devid) == 0)
487 vd->vdev_devid = spa_strdup(vd->vdev_devid);
488 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PHYS_PATH,
489 &vd->vdev_physpath) == 0)
490 vd->vdev_physpath = spa_strdup(vd->vdev_physpath);
491
492 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_VDEV_ENC_SYSFS_PATH,
493 &vd->vdev_enc_sysfs_path) == 0)
494 vd->vdev_enc_sysfs_path = spa_strdup(vd->vdev_enc_sysfs_path);
495
496 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_FRU, &vd->vdev_fru) == 0)
497 vd->vdev_fru = spa_strdup(vd->vdev_fru);
498
499 /*
500 * Set the whole_disk property. If it's not specified, leave the value
501 * as -1.
502 */
503 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK,
504 &vd->vdev_wholedisk) != 0)
505 vd->vdev_wholedisk = -1ULL;
506
507 /*
508 * Look for the 'not present' flag. This will only be set if the device
509 * was not present at the time of import.
510 */
511 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT,
512 &vd->vdev_not_present);
513
514 /*
515 * Get the alignment requirement.
516 */
517 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASHIFT, &vd->vdev_ashift);
518
519 /*
520 * Retrieve the vdev creation time.
521 */
522 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_CREATE_TXG,
523 &vd->vdev_crtxg);
524
525 /*
526 * If we're a top-level vdev, try to load the allocation parameters.
527 */
528 if (parent && !parent->vdev_parent &&
529 (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_SPLIT)) {
530 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY,
531 &vd->vdev_ms_array);
532 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT,
533 &vd->vdev_ms_shift);
534 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASIZE,
535 &vd->vdev_asize);
536 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVING,
537 &vd->vdev_removing);
538 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_VDEV_TOP_ZAP,
539 &vd->vdev_top_zap);
540 } else {
541 ASSERT0(vd->vdev_top_zap);
542 }
543
544 if (parent && !parent->vdev_parent && alloctype != VDEV_ALLOC_ATTACH) {
545 ASSERT(alloctype == VDEV_ALLOC_LOAD ||
546 alloctype == VDEV_ALLOC_ADD ||
547 alloctype == VDEV_ALLOC_SPLIT ||
548 alloctype == VDEV_ALLOC_ROOTPOOL);
549 vd->vdev_mg = metaslab_group_create(islog ?
550 spa_log_class(spa) : spa_normal_class(spa), vd);
551 }
552
553 if (vd->vdev_ops->vdev_op_leaf &&
554 (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_SPLIT)) {
555 (void) nvlist_lookup_uint64(nv,
556 ZPOOL_CONFIG_VDEV_LEAF_ZAP, &vd->vdev_leaf_zap);
557 } else {
558 ASSERT0(vd->vdev_leaf_zap);
559 }
560
561 /*
562 * If we're a leaf vdev, try to load the DTL object and other state.
563 */
564
565 if (vd->vdev_ops->vdev_op_leaf &&
566 (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_L2CACHE ||
567 alloctype == VDEV_ALLOC_ROOTPOOL)) {
568 if (alloctype == VDEV_ALLOC_LOAD) {
569 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DTL,
570 &vd->vdev_dtl_object);
571 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_UNSPARE,
572 &vd->vdev_unspare);
573 }
574
575 if (alloctype == VDEV_ALLOC_ROOTPOOL) {
576 uint64_t spare = 0;
577
578 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_SPARE,
579 &spare) == 0 && spare)
580 spa_spare_add(vd);
581 }
582
583 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_OFFLINE,
584 &vd->vdev_offline);
585
586 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_RESILVER_TXG,
587 &vd->vdev_resilver_txg);
588
589 /*
590 * When importing a pool, we want to ignore the persistent fault
591 * state, as the diagnosis made on another system may not be
592 * valid in the current context. Local vdevs will
593 * remain in the faulted state.
594 */
595 if (spa_load_state(spa) == SPA_LOAD_OPEN) {
596 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_FAULTED,
597 &vd->vdev_faulted);
598 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DEGRADED,
599 &vd->vdev_degraded);
600 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVED,
601 &vd->vdev_removed);
602
603 if (vd->vdev_faulted || vd->vdev_degraded) {
604 char *aux;
605
606 vd->vdev_label_aux =
607 VDEV_AUX_ERR_EXCEEDED;
608 if (nvlist_lookup_string(nv,
609 ZPOOL_CONFIG_AUX_STATE, &aux) == 0 &&
610 strcmp(aux, "external") == 0)
611 vd->vdev_label_aux = VDEV_AUX_EXTERNAL;
612 }
613 }
614 }
615
616 /*
617 * Add ourselves to the parent's list of children.
618 */
619 vdev_add_child(parent, vd);
620
621 *vdp = vd;
622
623 return (0);
624 }
625
626 void
627 vdev_free(vdev_t *vd)
628 {
629 int c, t;
630 spa_t *spa = vd->vdev_spa;
631
632 /*
633 * vdev_free() implies closing the vdev first. This is simpler than
634 * trying to ensure complicated semantics for all callers.
635 */
636 vdev_close(vd);
637
638 ASSERT(!list_link_active(&vd->vdev_config_dirty_node));
639 ASSERT(!list_link_active(&vd->vdev_state_dirty_node));
640
641 /*
642 * Free all children.
643 */
644 for (c = 0; c < vd->vdev_children; c++)
645 vdev_free(vd->vdev_child[c]);
646
647 ASSERT(vd->vdev_child == NULL);
648 ASSERT(vd->vdev_guid_sum == vd->vdev_guid);
649
650 /*
651 * Discard allocation state.
652 */
653 if (vd->vdev_mg != NULL) {
654 vdev_metaslab_fini(vd);
655 metaslab_group_destroy(vd->vdev_mg);
656 }
657
658 ASSERT0(vd->vdev_stat.vs_space);
659 ASSERT0(vd->vdev_stat.vs_dspace);
660 ASSERT0(vd->vdev_stat.vs_alloc);
661
662 /*
663 * Remove this vdev from its parent's child list.
664 */
665 vdev_remove_child(vd->vdev_parent, vd);
666
667 ASSERT(vd->vdev_parent == NULL);
668
669 /*
670 * Clean up vdev structure.
671 */
672 vdev_queue_fini(vd);
673 vdev_cache_fini(vd);
674
675 if (vd->vdev_path)
676 spa_strfree(vd->vdev_path);
677 if (vd->vdev_devid)
678 spa_strfree(vd->vdev_devid);
679 if (vd->vdev_physpath)
680 spa_strfree(vd->vdev_physpath);
681
682 if (vd->vdev_enc_sysfs_path)
683 spa_strfree(vd->vdev_enc_sysfs_path);
684
685 if (vd->vdev_fru)
686 spa_strfree(vd->vdev_fru);
687
688 if (vd->vdev_isspare)
689 spa_spare_remove(vd);
690 if (vd->vdev_isl2cache)
691 spa_l2cache_remove(vd);
692
693 txg_list_destroy(&vd->vdev_ms_list);
694 txg_list_destroy(&vd->vdev_dtl_list);
695
696 mutex_enter(&vd->vdev_dtl_lock);
697 space_map_close(vd->vdev_dtl_sm);
698 for (t = 0; t < DTL_TYPES; t++) {
699 range_tree_vacate(vd->vdev_dtl[t], NULL, NULL);
700 range_tree_destroy(vd->vdev_dtl[t]);
701 }
702 mutex_exit(&vd->vdev_dtl_lock);
703
704 mutex_destroy(&vd->vdev_queue_lock);
705 mutex_destroy(&vd->vdev_dtl_lock);
706 mutex_destroy(&vd->vdev_stat_lock);
707 mutex_destroy(&vd->vdev_probe_lock);
708
709 if (vd == spa->spa_root_vdev)
710 spa->spa_root_vdev = NULL;
711
712 kmem_free(vd, sizeof (vdev_t));
713 }
714
715 /*
716 * Transfer top-level vdev state from svd to tvd.
717 */
718 static void
719 vdev_top_transfer(vdev_t *svd, vdev_t *tvd)
720 {
721 spa_t *spa = svd->vdev_spa;
722 metaslab_t *msp;
723 vdev_t *vd;
724 int t;
725
726 ASSERT(tvd == tvd->vdev_top);
727
728 tvd->vdev_pending_fastwrite = svd->vdev_pending_fastwrite;
729 tvd->vdev_ms_array = svd->vdev_ms_array;
730 tvd->vdev_ms_shift = svd->vdev_ms_shift;
731 tvd->vdev_ms_count = svd->vdev_ms_count;
732 tvd->vdev_top_zap = svd->vdev_top_zap;
733
734 svd->vdev_ms_array = 0;
735 svd->vdev_ms_shift = 0;
736 svd->vdev_ms_count = 0;
737 svd->vdev_top_zap = 0;
738
739 if (tvd->vdev_mg)
740 ASSERT3P(tvd->vdev_mg, ==, svd->vdev_mg);
741 tvd->vdev_mg = svd->vdev_mg;
742 tvd->vdev_ms = svd->vdev_ms;
743
744 svd->vdev_mg = NULL;
745 svd->vdev_ms = NULL;
746
747 if (tvd->vdev_mg != NULL)
748 tvd->vdev_mg->mg_vd = tvd;
749
750 tvd->vdev_stat.vs_alloc = svd->vdev_stat.vs_alloc;
751 tvd->vdev_stat.vs_space = svd->vdev_stat.vs_space;
752 tvd->vdev_stat.vs_dspace = svd->vdev_stat.vs_dspace;
753
754 svd->vdev_stat.vs_alloc = 0;
755 svd->vdev_stat.vs_space = 0;
756 svd->vdev_stat.vs_dspace = 0;
757
758 for (t = 0; t < TXG_SIZE; t++) {
759 while ((msp = txg_list_remove(&svd->vdev_ms_list, t)) != NULL)
760 (void) txg_list_add(&tvd->vdev_ms_list, msp, t);
761 while ((vd = txg_list_remove(&svd->vdev_dtl_list, t)) != NULL)
762 (void) txg_list_add(&tvd->vdev_dtl_list, vd, t);
763 if (txg_list_remove_this(&spa->spa_vdev_txg_list, svd, t))
764 (void) txg_list_add(&spa->spa_vdev_txg_list, tvd, t);
765 }
766
767 if (list_link_active(&svd->vdev_config_dirty_node)) {
768 vdev_config_clean(svd);
769 vdev_config_dirty(tvd);
770 }
771
772 if (list_link_active(&svd->vdev_state_dirty_node)) {
773 vdev_state_clean(svd);
774 vdev_state_dirty(tvd);
775 }
776
777 tvd->vdev_deflate_ratio = svd->vdev_deflate_ratio;
778 svd->vdev_deflate_ratio = 0;
779
780 tvd->vdev_islog = svd->vdev_islog;
781 svd->vdev_islog = 0;
782 }
783
784 static void
785 vdev_top_update(vdev_t *tvd, vdev_t *vd)
786 {
787 int c;
788
789 if (vd == NULL)
790 return;
791
792 vd->vdev_top = tvd;
793
794 for (c = 0; c < vd->vdev_children; c++)
795 vdev_top_update(tvd, vd->vdev_child[c]);
796 }
797
798 /*
799 * Add a mirror/replacing vdev above an existing vdev.
800 */
801 vdev_t *
802 vdev_add_parent(vdev_t *cvd, vdev_ops_t *ops)
803 {
804 spa_t *spa = cvd->vdev_spa;
805 vdev_t *pvd = cvd->vdev_parent;
806 vdev_t *mvd;
807
808 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
809
810 mvd = vdev_alloc_common(spa, cvd->vdev_id, 0, ops);
811
812 mvd->vdev_asize = cvd->vdev_asize;
813 mvd->vdev_min_asize = cvd->vdev_min_asize;
814 mvd->vdev_max_asize = cvd->vdev_max_asize;
815 mvd->vdev_ashift = cvd->vdev_ashift;
816 mvd->vdev_state = cvd->vdev_state;
817 mvd->vdev_crtxg = cvd->vdev_crtxg;
818
819 vdev_remove_child(pvd, cvd);
820 vdev_add_child(pvd, mvd);
821 cvd->vdev_id = mvd->vdev_children;
822 vdev_add_child(mvd, cvd);
823 vdev_top_update(cvd->vdev_top, cvd->vdev_top);
824
825 if (mvd == mvd->vdev_top)
826 vdev_top_transfer(cvd, mvd);
827
828 return (mvd);
829 }
830
831 /*
832 * Remove a 1-way mirror/replacing vdev from the tree.
833 */
834 void
835 vdev_remove_parent(vdev_t *cvd)
836 {
837 vdev_t *mvd = cvd->vdev_parent;
838 vdev_t *pvd = mvd->vdev_parent;
839
840 ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
841
842 ASSERT(mvd->vdev_children == 1);
843 ASSERT(mvd->vdev_ops == &vdev_mirror_ops ||
844 mvd->vdev_ops == &vdev_replacing_ops ||
845 mvd->vdev_ops == &vdev_spare_ops);
846 cvd->vdev_ashift = mvd->vdev_ashift;
847
848 vdev_remove_child(mvd, cvd);
849 vdev_remove_child(pvd, mvd);
850
851 /*
852 * If cvd will replace mvd as a top-level vdev, preserve mvd's guid.
853 * Otherwise, we could have detached an offline device, and when we
854 * go to import the pool we'll think we have two top-level vdevs,
855 * instead of a different version of the same top-level vdev.
856 */
857 if (mvd->vdev_top == mvd) {
858 uint64_t guid_delta = mvd->vdev_guid - cvd->vdev_guid;
859 cvd->vdev_orig_guid = cvd->vdev_guid;
860 cvd->vdev_guid += guid_delta;
861 cvd->vdev_guid_sum += guid_delta;
862
863 /*
864 * If pool not set for autoexpand, we need to also preserve
865 * mvd's asize to prevent automatic expansion of cvd.
866 * Otherwise if we are adjusting the mirror by attaching and
867 * detaching children of non-uniform sizes, the mirror could
868 * autoexpand, unexpectedly requiring larger devices to
869 * re-establish the mirror.
870 */
871 if (!cvd->vdev_spa->spa_autoexpand)
872 cvd->vdev_asize = mvd->vdev_asize;
873 }
874 cvd->vdev_id = mvd->vdev_id;
875 vdev_add_child(pvd, cvd);
876 vdev_top_update(cvd->vdev_top, cvd->vdev_top);
877
878 if (cvd == cvd->vdev_top)
879 vdev_top_transfer(mvd, cvd);
880
881 ASSERT(mvd->vdev_children == 0);
882 vdev_free(mvd);
883 }
884
885 int
886 vdev_metaslab_init(vdev_t *vd, uint64_t txg)
887 {
888 spa_t *spa = vd->vdev_spa;
889 objset_t *mos = spa->spa_meta_objset;
890 uint64_t m;
891 uint64_t oldc = vd->vdev_ms_count;
892 uint64_t newc = vd->vdev_asize >> vd->vdev_ms_shift;
893 metaslab_t **mspp;
894 int error;
895
896 ASSERT(txg == 0 || spa_config_held(spa, SCL_ALLOC, RW_WRITER));
897
898 /*
899 * This vdev is not being allocated from yet or is a hole.
900 */
901 if (vd->vdev_ms_shift == 0)
902 return (0);
903
904 ASSERT(!vd->vdev_ishole);
905
906 /*
907 * Compute the raidz-deflation ratio. Note, we hard-code
908 * in 128k (1 << 17) because it is the "typical" blocksize.
909 * Even though SPA_MAXBLOCKSIZE changed, this algorithm can not change,
910 * otherwise it would inconsistently account for existing bp's.
911 */
912 vd->vdev_deflate_ratio = (1 << 17) /
913 (vdev_psize_to_asize(vd, 1 << 17) >> SPA_MINBLOCKSHIFT);
914
915 ASSERT(oldc <= newc);
916
917 mspp = vmem_zalloc(newc * sizeof (*mspp), KM_SLEEP);
918
919 if (oldc != 0) {
920 bcopy(vd->vdev_ms, mspp, oldc * sizeof (*mspp));
921 vmem_free(vd->vdev_ms, oldc * sizeof (*mspp));
922 }
923
924 vd->vdev_ms = mspp;
925 vd->vdev_ms_count = newc;
926
927 for (m = oldc; m < newc; m++) {
928 uint64_t object = 0;
929
930 if (txg == 0) {
931 error = dmu_read(mos, vd->vdev_ms_array,
932 m * sizeof (uint64_t), sizeof (uint64_t), &object,
933 DMU_READ_PREFETCH);
934 if (error)
935 return (error);
936 }
937
938 error = metaslab_init(vd->vdev_mg, m, object, txg,
939 &(vd->vdev_ms[m]));
940 if (error)
941 return (error);
942 }
943
944 if (txg == 0)
945 spa_config_enter(spa, SCL_ALLOC, FTAG, RW_WRITER);
946
947 /*
948 * If the vdev is being removed we don't activate
949 * the metaslabs since we want to ensure that no new
950 * allocations are performed on this device.
951 */
952 if (oldc == 0 && !vd->vdev_removing)
953 metaslab_group_activate(vd->vdev_mg);
954
955 if (txg == 0)
956 spa_config_exit(spa, SCL_ALLOC, FTAG);
957
958 return (0);
959 }
960
961 void
962 vdev_metaslab_fini(vdev_t *vd)
963 {
964 uint64_t m;
965 uint64_t count = vd->vdev_ms_count;
966
967 if (vd->vdev_ms != NULL) {
968 metaslab_group_passivate(vd->vdev_mg);
969 for (m = 0; m < count; m++) {
970 metaslab_t *msp = vd->vdev_ms[m];
971
972 if (msp != NULL)
973 metaslab_fini(msp);
974 }
975 vmem_free(vd->vdev_ms, count * sizeof (metaslab_t *));
976 vd->vdev_ms = NULL;
977 }
978
979 ASSERT3U(vd->vdev_pending_fastwrite, ==, 0);
980 }
981
982 typedef struct vdev_probe_stats {
983 boolean_t vps_readable;
984 boolean_t vps_writeable;
985 int vps_flags;
986 } vdev_probe_stats_t;
987
988 static void
989 vdev_probe_done(zio_t *zio)
990 {
991 spa_t *spa = zio->io_spa;
992 vdev_t *vd = zio->io_vd;
993 vdev_probe_stats_t *vps = zio->io_private;
994
995 ASSERT(vd->vdev_probe_zio != NULL);
996
997 if (zio->io_type == ZIO_TYPE_READ) {
998 if (zio->io_error == 0)
999 vps->vps_readable = 1;
1000 if (zio->io_error == 0 && spa_writeable(spa)) {
1001 zio_nowait(zio_write_phys(vd->vdev_probe_zio, vd,
1002 zio->io_offset, zio->io_size, zio->io_data,
1003 ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
1004 ZIO_PRIORITY_SYNC_WRITE, vps->vps_flags, B_TRUE));
1005 } else {
1006 zio_buf_free(zio->io_data, zio->io_size);
1007 }
1008 } else if (zio->io_type == ZIO_TYPE_WRITE) {
1009 if (zio->io_error == 0)
1010 vps->vps_writeable = 1;
1011 zio_buf_free(zio->io_data, zio->io_size);
1012 } else if (zio->io_type == ZIO_TYPE_NULL) {
1013 zio_t *pio;
1014 zio_link_t *zl;
1015
1016 vd->vdev_cant_read |= !vps->vps_readable;
1017 vd->vdev_cant_write |= !vps->vps_writeable;
1018
1019 if (vdev_readable(vd) &&
1020 (vdev_writeable(vd) || !spa_writeable(spa))) {
1021 zio->io_error = 0;
1022 } else {
1023 ASSERT(zio->io_error != 0);
1024 zfs_ereport_post(FM_EREPORT_ZFS_PROBE_FAILURE,
1025 spa, vd, NULL, 0, 0);
1026 zio->io_error = SET_ERROR(ENXIO);
1027 }
1028
1029 mutex_enter(&vd->vdev_probe_lock);
1030 ASSERT(vd->vdev_probe_zio == zio);
1031 vd->vdev_probe_zio = NULL;
1032 mutex_exit(&vd->vdev_probe_lock);
1033
1034 zl = NULL;
1035 while ((pio = zio_walk_parents(zio, &zl)) != NULL)
1036 if (!vdev_accessible(vd, pio))
1037 pio->io_error = SET_ERROR(ENXIO);
1038
1039 kmem_free(vps, sizeof (*vps));
1040 }
1041 }
1042
1043 /*
1044 * Determine whether this device is accessible.
1045 *
1046 * Read and write to several known locations: the pad regions of each
1047 * vdev label but the first, which we leave alone in case it contains
1048 * a VTOC.
1049 */
1050 zio_t *
1051 vdev_probe(vdev_t *vd, zio_t *zio)
1052 {
1053 spa_t *spa = vd->vdev_spa;
1054 vdev_probe_stats_t *vps = NULL;
1055 zio_t *pio;
1056 int l;
1057
1058 ASSERT(vd->vdev_ops->vdev_op_leaf);
1059
1060 /*
1061 * Don't probe the probe.
1062 */
1063 if (zio && (zio->io_flags & ZIO_FLAG_PROBE))
1064 return (NULL);
1065
1066 /*
1067 * To prevent 'probe storms' when a device fails, we create
1068 * just one probe i/o at a time. All zios that want to probe
1069 * this vdev will become parents of the probe io.
1070 */
1071 mutex_enter(&vd->vdev_probe_lock);
1072
1073 if ((pio = vd->vdev_probe_zio) == NULL) {
1074 vps = kmem_zalloc(sizeof (*vps), KM_SLEEP);
1075
1076 vps->vps_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_PROBE |
1077 ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_AGGREGATE |
1078 ZIO_FLAG_TRYHARD;
1079
1080 if (spa_config_held(spa, SCL_ZIO, RW_WRITER)) {
1081 /*
1082 * vdev_cant_read and vdev_cant_write can only
1083 * transition from TRUE to FALSE when we have the
1084 * SCL_ZIO lock as writer; otherwise they can only
1085 * transition from FALSE to TRUE. This ensures that
1086 * any zio looking at these values can assume that
1087 * failures persist for the life of the I/O. That's
1088 * important because when a device has intermittent
1089 * connectivity problems, we want to ensure that
1090 * they're ascribed to the device (ENXIO) and not
1091 * the zio (EIO).
1092 *
1093 * Since we hold SCL_ZIO as writer here, clear both
1094 * values so the probe can reevaluate from first
1095 * principles.
1096 */
1097 vps->vps_flags |= ZIO_FLAG_CONFIG_WRITER;
1098 vd->vdev_cant_read = B_FALSE;
1099 vd->vdev_cant_write = B_FALSE;
1100 }
1101
1102 vd->vdev_probe_zio = pio = zio_null(NULL, spa, vd,
1103 vdev_probe_done, vps,
1104 vps->vps_flags | ZIO_FLAG_DONT_PROPAGATE);
1105
1106 /*
1107 * We can't change the vdev state in this context, so we
1108 * kick off an async task to do it on our behalf.
1109 */
1110 if (zio != NULL) {
1111 vd->vdev_probe_wanted = B_TRUE;
1112 spa_async_request(spa, SPA_ASYNC_PROBE);
1113 }
1114 }
1115
1116 if (zio != NULL)
1117 zio_add_child(zio, pio);
1118
1119 mutex_exit(&vd->vdev_probe_lock);
1120
1121 if (vps == NULL) {
1122 ASSERT(zio != NULL);
1123 return (NULL);
1124 }
1125
1126 for (l = 1; l < VDEV_LABELS; l++) {
1127 zio_nowait(zio_read_phys(pio, vd,
1128 vdev_label_offset(vd->vdev_psize, l,
1129 offsetof(vdev_label_t, vl_pad2)),
1130 VDEV_PAD_SIZE, zio_buf_alloc(VDEV_PAD_SIZE),
1131 ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
1132 ZIO_PRIORITY_SYNC_READ, vps->vps_flags, B_TRUE));
1133 }
1134
1135 if (zio == NULL)
1136 return (pio);
1137
1138 zio_nowait(pio);
1139 return (NULL);
1140 }
1141
1142 static void
1143 vdev_open_child(void *arg)
1144 {
1145 vdev_t *vd = arg;
1146
1147 vd->vdev_open_thread = curthread;
1148 vd->vdev_open_error = vdev_open(vd);
1149 vd->vdev_open_thread = NULL;
1150 }
1151
1152 static boolean_t
1153 vdev_uses_zvols(vdev_t *vd)
1154 {
1155 int c;
1156
1157 #ifdef _KERNEL
1158 if (zvol_is_zvol(vd->vdev_path))
1159 return (B_TRUE);
1160 #endif
1161
1162 for (c = 0; c < vd->vdev_children; c++)
1163 if (vdev_uses_zvols(vd->vdev_child[c]))
1164 return (B_TRUE);
1165
1166 return (B_FALSE);
1167 }
1168
1169 void
1170 vdev_open_children(vdev_t *vd)
1171 {
1172 taskq_t *tq;
1173 int children = vd->vdev_children;
1174 int c;
1175
1176 /*
1177 * in order to handle pools on top of zvols, do the opens
1178 * in a single thread so that the same thread holds the
1179 * spa_namespace_lock
1180 */
1181 if (vdev_uses_zvols(vd)) {
1182 for (c = 0; c < children; c++)
1183 vd->vdev_child[c]->vdev_open_error =
1184 vdev_open(vd->vdev_child[c]);
1185 } else {
1186 tq = taskq_create("vdev_open", children, minclsyspri,
1187 children, children, TASKQ_PREPOPULATE);
1188
1189 for (c = 0; c < children; c++)
1190 VERIFY(taskq_dispatch(tq, vdev_open_child,
1191 vd->vdev_child[c], TQ_SLEEP) != 0);
1192
1193 taskq_destroy(tq);
1194 }
1195
1196 vd->vdev_nonrot = B_TRUE;
1197
1198 for (c = 0; c < children; c++)
1199 vd->vdev_nonrot &= vd->vdev_child[c]->vdev_nonrot;
1200 }
1201
1202 /*
1203 * Prepare a virtual device for access.
1204 */
1205 int
1206 vdev_open(vdev_t *vd)
1207 {
1208 spa_t *spa = vd->vdev_spa;
1209 int error;
1210 uint64_t osize = 0;
1211 uint64_t max_osize = 0;
1212 uint64_t asize, max_asize, psize;
1213 uint64_t ashift = 0;
1214 int c;
1215
1216 ASSERT(vd->vdev_open_thread == curthread ||
1217 spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1218 ASSERT(vd->vdev_state == VDEV_STATE_CLOSED ||
1219 vd->vdev_state == VDEV_STATE_CANT_OPEN ||
1220 vd->vdev_state == VDEV_STATE_OFFLINE);
1221
1222 vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
1223 vd->vdev_cant_read = B_FALSE;
1224 vd->vdev_cant_write = B_FALSE;
1225 vd->vdev_min_asize = vdev_get_min_asize(vd);
1226
1227 /*
1228 * If this vdev is not removed, check its fault status. If it's
1229 * faulted, bail out of the open.
1230 */
1231 if (!vd->vdev_removed && vd->vdev_faulted) {
1232 ASSERT(vd->vdev_children == 0);
1233 ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED ||
1234 vd->vdev_label_aux == VDEV_AUX_EXTERNAL);
1235 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1236 vd->vdev_label_aux);
1237 return (SET_ERROR(ENXIO));
1238 } else if (vd->vdev_offline) {
1239 ASSERT(vd->vdev_children == 0);
1240 vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE, VDEV_AUX_NONE);
1241 return (SET_ERROR(ENXIO));
1242 }
1243
1244 error = vd->vdev_ops->vdev_op_open(vd, &osize, &max_osize, &ashift);
1245
1246 /*
1247 * Reset the vdev_reopening flag so that we actually close
1248 * the vdev on error.
1249 */
1250 vd->vdev_reopening = B_FALSE;
1251 if (zio_injection_enabled && error == 0)
1252 error = zio_handle_device_injection(vd, NULL, ENXIO);
1253
1254 if (error) {
1255 if (vd->vdev_removed &&
1256 vd->vdev_stat.vs_aux != VDEV_AUX_OPEN_FAILED)
1257 vd->vdev_removed = B_FALSE;
1258
1259 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1260 vd->vdev_stat.vs_aux);
1261 return (error);
1262 }
1263
1264 vd->vdev_removed = B_FALSE;
1265
1266 /*
1267 * Recheck the faulted flag now that we have confirmed that
1268 * the vdev is accessible. If we're faulted, bail.
1269 */
1270 if (vd->vdev_faulted) {
1271 ASSERT(vd->vdev_children == 0);
1272 ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED ||
1273 vd->vdev_label_aux == VDEV_AUX_EXTERNAL);
1274 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1275 vd->vdev_label_aux);
1276 return (SET_ERROR(ENXIO));
1277 }
1278
1279 if (vd->vdev_degraded) {
1280 ASSERT(vd->vdev_children == 0);
1281 vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
1282 VDEV_AUX_ERR_EXCEEDED);
1283 } else {
1284 vdev_set_state(vd, B_TRUE, VDEV_STATE_HEALTHY, 0);
1285 }
1286
1287 /*
1288 * For hole or missing vdevs we just return success.
1289 */
1290 if (vd->vdev_ishole || vd->vdev_ops == &vdev_missing_ops)
1291 return (0);
1292
1293 for (c = 0; c < vd->vdev_children; c++) {
1294 if (vd->vdev_child[c]->vdev_state != VDEV_STATE_HEALTHY) {
1295 vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
1296 VDEV_AUX_NONE);
1297 break;
1298 }
1299 }
1300
1301 osize = P2ALIGN(osize, (uint64_t)sizeof (vdev_label_t));
1302 max_osize = P2ALIGN(max_osize, (uint64_t)sizeof (vdev_label_t));
1303
1304 if (vd->vdev_children == 0) {
1305 if (osize < SPA_MINDEVSIZE) {
1306 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1307 VDEV_AUX_TOO_SMALL);
1308 return (SET_ERROR(EOVERFLOW));
1309 }
1310 psize = osize;
1311 asize = osize - (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE);
1312 max_asize = max_osize - (VDEV_LABEL_START_SIZE +
1313 VDEV_LABEL_END_SIZE);
1314 } else {
1315 if (vd->vdev_parent != NULL && osize < SPA_MINDEVSIZE -
1316 (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE)) {
1317 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1318 VDEV_AUX_TOO_SMALL);
1319 return (SET_ERROR(EOVERFLOW));
1320 }
1321 psize = 0;
1322 asize = osize;
1323 max_asize = max_osize;
1324 }
1325
1326 vd->vdev_psize = psize;
1327
1328 /*
1329 * Make sure the allocatable size hasn't shrunk.
1330 */
1331 if (asize < vd->vdev_min_asize) {
1332 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1333 VDEV_AUX_BAD_LABEL);
1334 return (SET_ERROR(EINVAL));
1335 }
1336
1337 if (vd->vdev_asize == 0) {
1338 /*
1339 * This is the first-ever open, so use the computed values.
1340 * For compatibility, a different ashift can be requested.
1341 */
1342 vd->vdev_asize = asize;
1343 vd->vdev_max_asize = max_asize;
1344 if (vd->vdev_ashift == 0)
1345 vd->vdev_ashift = ashift;
1346 } else {
1347 /*
1348 * Detect if the alignment requirement has increased.
1349 * We don't want to make the pool unavailable, just
1350 * post an event instead.
1351 */
1352 if (ashift > vd->vdev_top->vdev_ashift &&
1353 vd->vdev_ops->vdev_op_leaf) {
1354 zfs_ereport_post(FM_EREPORT_ZFS_DEVICE_BAD_ASHIFT,
1355 spa, vd, NULL, 0, 0);
1356 }
1357
1358 vd->vdev_max_asize = max_asize;
1359 }
1360
1361 /*
1362 * If all children are healthy and the asize has increased,
1363 * then we've experienced dynamic LUN growth. If automatic
1364 * expansion is enabled then use the additional space.
1365 */
1366 if (vd->vdev_state == VDEV_STATE_HEALTHY && asize > vd->vdev_asize &&
1367 (vd->vdev_expanding || spa->spa_autoexpand))
1368 vd->vdev_asize = asize;
1369
1370 vdev_set_min_asize(vd);
1371
1372 /*
1373 * Ensure we can issue some IO before declaring the
1374 * vdev open for business.
1375 */
1376 if (vd->vdev_ops->vdev_op_leaf &&
1377 (error = zio_wait(vdev_probe(vd, NULL))) != 0) {
1378 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1379 VDEV_AUX_ERR_EXCEEDED);
1380 return (error);
1381 }
1382
1383 /*
1384 * Track the min and max ashift values for normal data devices.
1385 */
1386 if (vd->vdev_top == vd && vd->vdev_ashift != 0 &&
1387 !vd->vdev_islog && vd->vdev_aux == NULL) {
1388 if (vd->vdev_ashift > spa->spa_max_ashift)
1389 spa->spa_max_ashift = vd->vdev_ashift;
1390 if (vd->vdev_ashift < spa->spa_min_ashift)
1391 spa->spa_min_ashift = vd->vdev_ashift;
1392 }
1393
1394 /*
1395 * If a leaf vdev has a DTL, and seems healthy, then kick off a
1396 * resilver. But don't do this if we are doing a reopen for a scrub,
1397 * since this would just restart the scrub we are already doing.
1398 */
1399 if (vd->vdev_ops->vdev_op_leaf && !spa->spa_scrub_reopen &&
1400 vdev_resilver_needed(vd, NULL, NULL))
1401 spa_async_request(spa, SPA_ASYNC_RESILVER);
1402
1403 return (0);
1404 }
1405
1406 /*
1407 * Called once the vdevs are all opened, this routine validates the label
1408 * contents. This needs to be done before vdev_load() so that we don't
1409 * inadvertently do repair I/Os to the wrong device.
1410 *
1411 * If 'strict' is false ignore the spa guid check. This is necessary because
1412 * if the machine crashed during a re-guid the new guid might have been written
1413 * to all of the vdev labels, but not the cached config. The strict check
1414 * will be performed when the pool is opened again using the mos config.
1415 *
1416 * This function will only return failure if one of the vdevs indicates that it
1417 * has since been destroyed or exported. This is only possible if
1418 * /etc/zfs/zpool.cache was readonly at the time. Otherwise, the vdev state
1419 * will be updated but the function will return 0.
1420 */
1421 int
1422 vdev_validate(vdev_t *vd, boolean_t strict)
1423 {
1424 spa_t *spa = vd->vdev_spa;
1425 nvlist_t *label;
1426 uint64_t guid = 0, top_guid;
1427 uint64_t state;
1428 int c;
1429
1430 for (c = 0; c < vd->vdev_children; c++)
1431 if (vdev_validate(vd->vdev_child[c], strict) != 0)
1432 return (SET_ERROR(EBADF));
1433
1434 /*
1435 * If the device has already failed, or was marked offline, don't do
1436 * any further validation. Otherwise, label I/O will fail and we will
1437 * overwrite the previous state.
1438 */
1439 if (vd->vdev_ops->vdev_op_leaf && vdev_readable(vd)) {
1440 uint64_t aux_guid = 0;
1441 nvlist_t *nvl;
1442 uint64_t txg = spa_last_synced_txg(spa) != 0 ?
1443 spa_last_synced_txg(spa) : -1ULL;
1444
1445 if ((label = vdev_label_read_config(vd, txg)) == NULL) {
1446 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1447 VDEV_AUX_BAD_LABEL);
1448 return (0);
1449 }
1450
1451 /*
1452 * Determine if this vdev has been split off into another
1453 * pool. If so, then refuse to open it.
1454 */
1455 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_SPLIT_GUID,
1456 &aux_guid) == 0 && aux_guid == spa_guid(spa)) {
1457 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1458 VDEV_AUX_SPLIT_POOL);
1459 nvlist_free(label);
1460 return (0);
1461 }
1462
1463 if (strict && (nvlist_lookup_uint64(label,
1464 ZPOOL_CONFIG_POOL_GUID, &guid) != 0 ||
1465 guid != spa_guid(spa))) {
1466 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1467 VDEV_AUX_CORRUPT_DATA);
1468 nvlist_free(label);
1469 return (0);
1470 }
1471
1472 if (nvlist_lookup_nvlist(label, ZPOOL_CONFIG_VDEV_TREE, &nvl)
1473 != 0 || nvlist_lookup_uint64(nvl, ZPOOL_CONFIG_ORIG_GUID,
1474 &aux_guid) != 0)
1475 aux_guid = 0;
1476
1477 /*
1478 * If this vdev just became a top-level vdev because its
1479 * sibling was detached, it will have adopted the parent's
1480 * vdev guid -- but the label may or may not be on disk yet.
1481 * Fortunately, either version of the label will have the
1482 * same top guid, so if we're a top-level vdev, we can
1483 * safely compare to that instead.
1484 *
1485 * If we split this vdev off instead, then we also check the
1486 * original pool's guid. We don't want to consider the vdev
1487 * corrupt if it is partway through a split operation.
1488 */
1489 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID,
1490 &guid) != 0 ||
1491 nvlist_lookup_uint64(label, ZPOOL_CONFIG_TOP_GUID,
1492 &top_guid) != 0 ||
1493 ((vd->vdev_guid != guid && vd->vdev_guid != aux_guid) &&
1494 (vd->vdev_guid != top_guid || vd != vd->vdev_top))) {
1495 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1496 VDEV_AUX_CORRUPT_DATA);
1497 nvlist_free(label);
1498 return (0);
1499 }
1500
1501 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE,
1502 &state) != 0) {
1503 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1504 VDEV_AUX_CORRUPT_DATA);
1505 nvlist_free(label);
1506 return (0);
1507 }
1508
1509 nvlist_free(label);
1510
1511 /*
1512 * If this is a verbatim import, no need to check the
1513 * state of the pool.
1514 */
1515 if (!(spa->spa_import_flags & ZFS_IMPORT_VERBATIM) &&
1516 spa_load_state(spa) == SPA_LOAD_OPEN &&
1517 state != POOL_STATE_ACTIVE)
1518 return (SET_ERROR(EBADF));
1519
1520 /*
1521 * If we were able to open and validate a vdev that was
1522 * previously marked permanently unavailable, clear that state
1523 * now.
1524 */
1525 if (vd->vdev_not_present)
1526 vd->vdev_not_present = 0;
1527 }
1528
1529 return (0);
1530 }
1531
1532 /*
1533 * Close a virtual device.
1534 */
1535 void
1536 vdev_close(vdev_t *vd)
1537 {
1538 vdev_t *pvd = vd->vdev_parent;
1539 ASSERTV(spa_t *spa = vd->vdev_spa);
1540
1541 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1542
1543 /*
1544 * If our parent is reopening, then we are as well, unless we are
1545 * going offline.
1546 */
1547 if (pvd != NULL && pvd->vdev_reopening)
1548 vd->vdev_reopening = (pvd->vdev_reopening && !vd->vdev_offline);
1549
1550 vd->vdev_ops->vdev_op_close(vd);
1551
1552 vdev_cache_purge(vd);
1553
1554 /*
1555 * We record the previous state before we close it, so that if we are
1556 * doing a reopen(), we don't generate FMA ereports if we notice that
1557 * it's still faulted.
1558 */
1559 vd->vdev_prevstate = vd->vdev_state;
1560
1561 if (vd->vdev_offline)
1562 vd->vdev_state = VDEV_STATE_OFFLINE;
1563 else
1564 vd->vdev_state = VDEV_STATE_CLOSED;
1565 vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
1566 }
1567
1568 void
1569 vdev_hold(vdev_t *vd)
1570 {
1571 spa_t *spa = vd->vdev_spa;
1572 int c;
1573
1574 ASSERT(spa_is_root(spa));
1575 if (spa->spa_state == POOL_STATE_UNINITIALIZED)
1576 return;
1577
1578 for (c = 0; c < vd->vdev_children; c++)
1579 vdev_hold(vd->vdev_child[c]);
1580
1581 if (vd->vdev_ops->vdev_op_leaf)
1582 vd->vdev_ops->vdev_op_hold(vd);
1583 }
1584
1585 void
1586 vdev_rele(vdev_t *vd)
1587 {
1588 int c;
1589
1590 ASSERT(spa_is_root(vd->vdev_spa));
1591 for (c = 0; c < vd->vdev_children; c++)
1592 vdev_rele(vd->vdev_child[c]);
1593
1594 if (vd->vdev_ops->vdev_op_leaf)
1595 vd->vdev_ops->vdev_op_rele(vd);
1596 }
1597
1598 /*
1599 * Reopen all interior vdevs and any unopened leaves. We don't actually
1600 * reopen leaf vdevs which had previously been opened as they might deadlock
1601 * on the spa_config_lock. Instead we only obtain the leaf's physical size.
1602 * If the leaf has never been opened then open it, as usual.
1603 */
1604 void
1605 vdev_reopen(vdev_t *vd)
1606 {
1607 spa_t *spa = vd->vdev_spa;
1608
1609 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1610
1611 /* set the reopening flag unless we're taking the vdev offline */
1612 vd->vdev_reopening = !vd->vdev_offline;
1613 vdev_close(vd);
1614 (void) vdev_open(vd);
1615
1616 /*
1617 * Call vdev_validate() here to make sure we have the same device.
1618 * Otherwise, a device with an invalid label could be successfully
1619 * opened in response to vdev_reopen().
1620 */
1621 if (vd->vdev_aux) {
1622 (void) vdev_validate_aux(vd);
1623 if (vdev_readable(vd) && vdev_writeable(vd) &&
1624 vd->vdev_aux == &spa->spa_l2cache &&
1625 !l2arc_vdev_present(vd))
1626 l2arc_add_vdev(spa, vd);
1627 } else {
1628 (void) vdev_validate(vd, B_TRUE);
1629 }
1630
1631 /*
1632 * Reassess parent vdev's health.
1633 */
1634 vdev_propagate_state(vd);
1635 }
1636
1637 int
1638 vdev_create(vdev_t *vd, uint64_t txg, boolean_t isreplacing)
1639 {
1640 int error;
1641
1642 /*
1643 * Normally, partial opens (e.g. of a mirror) are allowed.
1644 * For a create, however, we want to fail the request if
1645 * there are any components we can't open.
1646 */
1647 error = vdev_open(vd);
1648
1649 if (error || vd->vdev_state != VDEV_STATE_HEALTHY) {
1650 vdev_close(vd);
1651 return (error ? error : ENXIO);
1652 }
1653
1654 /*
1655 * Recursively load DTLs and initialize all labels.
1656 */
1657 if ((error = vdev_dtl_load(vd)) != 0 ||
1658 (error = vdev_label_init(vd, txg, isreplacing ?
1659 VDEV_LABEL_REPLACE : VDEV_LABEL_CREATE)) != 0) {
1660 vdev_close(vd);
1661 return (error);
1662 }
1663
1664 return (0);
1665 }
1666
1667 void
1668 vdev_metaslab_set_size(vdev_t *vd)
1669 {
1670 /*
1671 * Aim for roughly metaslabs_per_vdev (default 200) metaslabs per vdev.
1672 */
1673 vd->vdev_ms_shift = highbit64(vd->vdev_asize / metaslabs_per_vdev);
1674 vd->vdev_ms_shift = MAX(vd->vdev_ms_shift, SPA_MAXBLOCKSHIFT);
1675 }
1676
1677 void
1678 vdev_dirty(vdev_t *vd, int flags, void *arg, uint64_t txg)
1679 {
1680 ASSERT(vd == vd->vdev_top);
1681 ASSERT(!vd->vdev_ishole);
1682 ASSERT(ISP2(flags));
1683 ASSERT(spa_writeable(vd->vdev_spa));
1684
1685 if (flags & VDD_METASLAB)
1686 (void) txg_list_add(&vd->vdev_ms_list, arg, txg);
1687
1688 if (flags & VDD_DTL)
1689 (void) txg_list_add(&vd->vdev_dtl_list, arg, txg);
1690
1691 (void) txg_list_add(&vd->vdev_spa->spa_vdev_txg_list, vd, txg);
1692 }
1693
1694 void
1695 vdev_dirty_leaves(vdev_t *vd, int flags, uint64_t txg)
1696 {
1697 int c;
1698
1699 for (c = 0; c < vd->vdev_children; c++)
1700 vdev_dirty_leaves(vd->vdev_child[c], flags, txg);
1701
1702 if (vd->vdev_ops->vdev_op_leaf)
1703 vdev_dirty(vd->vdev_top, flags, vd, txg);
1704 }
1705
1706 /*
1707 * DTLs.
1708 *
1709 * A vdev's DTL (dirty time log) is the set of transaction groups for which
1710 * the vdev has less than perfect replication. There are four kinds of DTL:
1711 *
1712 * DTL_MISSING: txgs for which the vdev has no valid copies of the data
1713 *
1714 * DTL_PARTIAL: txgs for which data is available, but not fully replicated
1715 *
1716 * DTL_SCRUB: the txgs that could not be repaired by the last scrub; upon
1717 * scrub completion, DTL_SCRUB replaces DTL_MISSING in the range of
1718 * txgs that was scrubbed.
1719 *
1720 * DTL_OUTAGE: txgs which cannot currently be read, whether due to
1721 * persistent errors or just some device being offline.
1722 * Unlike the other three, the DTL_OUTAGE map is not generally
1723 * maintained; it's only computed when needed, typically to
1724 * determine whether a device can be detached.
1725 *
1726 * For leaf vdevs, DTL_MISSING and DTL_PARTIAL are identical: the device
1727 * either has the data or it doesn't.
1728 *
1729 * For interior vdevs such as mirror and RAID-Z the picture is more complex.
1730 * A vdev's DTL_PARTIAL is the union of its children's DTL_PARTIALs, because
1731 * if any child is less than fully replicated, then so is its parent.
1732 * A vdev's DTL_MISSING is a modified union of its children's DTL_MISSINGs,
1733 * comprising only those txgs which appear in 'maxfaults' or more children;
1734 * those are the txgs we don't have enough replication to read. For example,
1735 * double-parity RAID-Z can tolerate up to two missing devices (maxfaults == 2);
1736 * thus, its DTL_MISSING consists of the set of txgs that appear in more than
1737 * two child DTL_MISSING maps.
1738 *
1739 * It should be clear from the above that to compute the DTLs and outage maps
1740 * for all vdevs, it suffices to know just the leaf vdevs' DTL_MISSING maps.
1741 * Therefore, that is all we keep on disk. When loading the pool, or after
1742 * a configuration change, we generate all other DTLs from first principles.
1743 */
1744 void
1745 vdev_dtl_dirty(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
1746 {
1747 range_tree_t *rt = vd->vdev_dtl[t];
1748
1749 ASSERT(t < DTL_TYPES);
1750 ASSERT(vd != vd->vdev_spa->spa_root_vdev);
1751 ASSERT(spa_writeable(vd->vdev_spa));
1752
1753 mutex_enter(rt->rt_lock);
1754 if (!range_tree_contains(rt, txg, size))
1755 range_tree_add(rt, txg, size);
1756 mutex_exit(rt->rt_lock);
1757 }
1758
1759 boolean_t
1760 vdev_dtl_contains(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
1761 {
1762 range_tree_t *rt = vd->vdev_dtl[t];
1763 boolean_t dirty = B_FALSE;
1764
1765 ASSERT(t < DTL_TYPES);
1766 ASSERT(vd != vd->vdev_spa->spa_root_vdev);
1767
1768 mutex_enter(rt->rt_lock);
1769 if (range_tree_space(rt) != 0)
1770 dirty = range_tree_contains(rt, txg, size);
1771 mutex_exit(rt->rt_lock);
1772
1773 return (dirty);
1774 }
1775
1776 boolean_t
1777 vdev_dtl_empty(vdev_t *vd, vdev_dtl_type_t t)
1778 {
1779 range_tree_t *rt = vd->vdev_dtl[t];
1780 boolean_t empty;
1781
1782 mutex_enter(rt->rt_lock);
1783 empty = (range_tree_space(rt) == 0);
1784 mutex_exit(rt->rt_lock);
1785
1786 return (empty);
1787 }
1788
1789 /*
1790 * Returns the lowest txg in the DTL range.
1791 */
1792 static uint64_t
1793 vdev_dtl_min(vdev_t *vd)
1794 {
1795 range_seg_t *rs;
1796
1797 ASSERT(MUTEX_HELD(&vd->vdev_dtl_lock));
1798 ASSERT3U(range_tree_space(vd->vdev_dtl[DTL_MISSING]), !=, 0);
1799 ASSERT0(vd->vdev_children);
1800
1801 rs = avl_first(&vd->vdev_dtl[DTL_MISSING]->rt_root);
1802 return (rs->rs_start - 1);
1803 }
1804
1805 /*
1806 * Returns the highest txg in the DTL.
1807 */
1808 static uint64_t
1809 vdev_dtl_max(vdev_t *vd)
1810 {
1811 range_seg_t *rs;
1812
1813 ASSERT(MUTEX_HELD(&vd->vdev_dtl_lock));
1814 ASSERT3U(range_tree_space(vd->vdev_dtl[DTL_MISSING]), !=, 0);
1815 ASSERT0(vd->vdev_children);
1816
1817 rs = avl_last(&vd->vdev_dtl[DTL_MISSING]->rt_root);
1818 return (rs->rs_end);
1819 }
1820
1821 /*
1822 * Determine if a resilvering vdev should remove any DTL entries from
1823 * its range. If the vdev was resilvering for the entire duration of the
1824 * scan then it should excise that range from its DTLs. Otherwise, this
1825 * vdev is considered partially resilvered and should leave its DTL
1826 * entries intact. The comment in vdev_dtl_reassess() describes how we
1827 * excise the DTLs.
1828 */
1829 static boolean_t
1830 vdev_dtl_should_excise(vdev_t *vd)
1831 {
1832 spa_t *spa = vd->vdev_spa;
1833 dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan;
1834
1835 ASSERT0(scn->scn_phys.scn_errors);
1836 ASSERT0(vd->vdev_children);
1837
1838 if (vd->vdev_resilver_txg == 0 ||
1839 range_tree_space(vd->vdev_dtl[DTL_MISSING]) == 0)
1840 return (B_TRUE);
1841
1842 /*
1843 * When a resilver is initiated the scan will assign the scn_max_txg
1844 * value to the highest txg value that exists in all DTLs. If this
1845 * device's max DTL is not part of this scan (i.e. it is not in
1846 * the range (scn_min_txg, scn_max_txg] then it is not eligible
1847 * for excision.
1848 */
1849 if (vdev_dtl_max(vd) <= scn->scn_phys.scn_max_txg) {
1850 ASSERT3U(scn->scn_phys.scn_min_txg, <=, vdev_dtl_min(vd));
1851 ASSERT3U(scn->scn_phys.scn_min_txg, <, vd->vdev_resilver_txg);
1852 ASSERT3U(vd->vdev_resilver_txg, <=, scn->scn_phys.scn_max_txg);
1853 return (B_TRUE);
1854 }
1855 return (B_FALSE);
1856 }
1857
1858 /*
1859 * Reassess DTLs after a config change or scrub completion.
1860 */
1861 void
1862 vdev_dtl_reassess(vdev_t *vd, uint64_t txg, uint64_t scrub_txg, int scrub_done)
1863 {
1864 spa_t *spa = vd->vdev_spa;
1865 avl_tree_t reftree;
1866 int c, t, minref;
1867
1868 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
1869
1870 for (c = 0; c < vd->vdev_children; c++)
1871 vdev_dtl_reassess(vd->vdev_child[c], txg,
1872 scrub_txg, scrub_done);
1873
1874 if (vd == spa->spa_root_vdev || vd->vdev_ishole || vd->vdev_aux)
1875 return;
1876
1877 if (vd->vdev_ops->vdev_op_leaf) {
1878 dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan;
1879
1880 mutex_enter(&vd->vdev_dtl_lock);
1881
1882 /*
1883 * If we've completed a scan cleanly then determine
1884 * if this vdev should remove any DTLs. We only want to
1885 * excise regions on vdevs that were available during
1886 * the entire duration of this scan.
1887 */
1888 if (scrub_txg != 0 &&
1889 (spa->spa_scrub_started ||
1890 (scn != NULL && scn->scn_phys.scn_errors == 0)) &&
1891 vdev_dtl_should_excise(vd)) {
1892 /*
1893 * We completed a scrub up to scrub_txg. If we
1894 * did it without rebooting, then the scrub dtl
1895 * will be valid, so excise the old region and
1896 * fold in the scrub dtl. Otherwise, leave the
1897 * dtl as-is if there was an error.
1898 *
1899 * There's little trick here: to excise the beginning
1900 * of the DTL_MISSING map, we put it into a reference
1901 * tree and then add a segment with refcnt -1 that
1902 * covers the range [0, scrub_txg). This means
1903 * that each txg in that range has refcnt -1 or 0.
1904 * We then add DTL_SCRUB with a refcnt of 2, so that
1905 * entries in the range [0, scrub_txg) will have a
1906 * positive refcnt -- either 1 or 2. We then convert
1907 * the reference tree into the new DTL_MISSING map.
1908 */
1909 space_reftree_create(&reftree);
1910 space_reftree_add_map(&reftree,
1911 vd->vdev_dtl[DTL_MISSING], 1);
1912 space_reftree_add_seg(&reftree, 0, scrub_txg, -1);
1913 space_reftree_add_map(&reftree,
1914 vd->vdev_dtl[DTL_SCRUB], 2);
1915 space_reftree_generate_map(&reftree,
1916 vd->vdev_dtl[DTL_MISSING], 1);
1917 space_reftree_destroy(&reftree);
1918 }
1919 range_tree_vacate(vd->vdev_dtl[DTL_PARTIAL], NULL, NULL);
1920 range_tree_walk(vd->vdev_dtl[DTL_MISSING],
1921 range_tree_add, vd->vdev_dtl[DTL_PARTIAL]);
1922 if (scrub_done)
1923 range_tree_vacate(vd->vdev_dtl[DTL_SCRUB], NULL, NULL);
1924 range_tree_vacate(vd->vdev_dtl[DTL_OUTAGE], NULL, NULL);
1925 if (!vdev_readable(vd))
1926 range_tree_add(vd->vdev_dtl[DTL_OUTAGE], 0, -1ULL);
1927 else
1928 range_tree_walk(vd->vdev_dtl[DTL_MISSING],
1929 range_tree_add, vd->vdev_dtl[DTL_OUTAGE]);
1930
1931 /*
1932 * If the vdev was resilvering and no longer has any
1933 * DTLs then reset its resilvering flag and dirty
1934 * the top level so that we persist the change.
1935 */
1936 if (vd->vdev_resilver_txg != 0 &&
1937 range_tree_space(vd->vdev_dtl[DTL_MISSING]) == 0 &&
1938 range_tree_space(vd->vdev_dtl[DTL_OUTAGE]) == 0) {
1939 vd->vdev_resilver_txg = 0;
1940 vdev_config_dirty(vd->vdev_top);
1941 }
1942
1943 mutex_exit(&vd->vdev_dtl_lock);
1944
1945 if (txg != 0)
1946 vdev_dirty(vd->vdev_top, VDD_DTL, vd, txg);
1947 return;
1948 }
1949
1950 mutex_enter(&vd->vdev_dtl_lock);
1951 for (t = 0; t < DTL_TYPES; t++) {
1952 int c;
1953
1954 /* account for child's outage in parent's missing map */
1955 int s = (t == DTL_MISSING) ? DTL_OUTAGE: t;
1956 if (t == DTL_SCRUB)
1957 continue; /* leaf vdevs only */
1958 if (t == DTL_PARTIAL)
1959 minref = 1; /* i.e. non-zero */
1960 else if (vd->vdev_nparity != 0)
1961 minref = vd->vdev_nparity + 1; /* RAID-Z */
1962 else
1963 minref = vd->vdev_children; /* any kind of mirror */
1964 space_reftree_create(&reftree);
1965 for (c = 0; c < vd->vdev_children; c++) {
1966 vdev_t *cvd = vd->vdev_child[c];
1967 mutex_enter(&cvd->vdev_dtl_lock);
1968 space_reftree_add_map(&reftree, cvd->vdev_dtl[s], 1);
1969 mutex_exit(&cvd->vdev_dtl_lock);
1970 }
1971 space_reftree_generate_map(&reftree, vd->vdev_dtl[t], minref);
1972 space_reftree_destroy(&reftree);
1973 }
1974 mutex_exit(&vd->vdev_dtl_lock);
1975 }
1976
1977 int
1978 vdev_dtl_load(vdev_t *vd)
1979 {
1980 spa_t *spa = vd->vdev_spa;
1981 objset_t *mos = spa->spa_meta_objset;
1982 int error = 0;
1983 int c;
1984
1985 if (vd->vdev_ops->vdev_op_leaf && vd->vdev_dtl_object != 0) {
1986 ASSERT(!vd->vdev_ishole);
1987
1988 error = space_map_open(&vd->vdev_dtl_sm, mos,
1989 vd->vdev_dtl_object, 0, -1ULL, 0, &vd->vdev_dtl_lock);
1990 if (error)
1991 return (error);
1992 ASSERT(vd->vdev_dtl_sm != NULL);
1993
1994 mutex_enter(&vd->vdev_dtl_lock);
1995
1996 /*
1997 * Now that we've opened the space_map we need to update
1998 * the in-core DTL.
1999 */
2000 space_map_update(vd->vdev_dtl_sm);
2001
2002 error = space_map_load(vd->vdev_dtl_sm,
2003 vd->vdev_dtl[DTL_MISSING], SM_ALLOC);
2004 mutex_exit(&vd->vdev_dtl_lock);
2005
2006 return (error);
2007 }
2008
2009 for (c = 0; c < vd->vdev_children; c++) {
2010 error = vdev_dtl_load(vd->vdev_child[c]);
2011 if (error != 0)
2012 break;
2013 }
2014
2015 return (error);
2016 }
2017
2018 void
2019 vdev_destroy_unlink_zap(vdev_t *vd, uint64_t zapobj, dmu_tx_t *tx)
2020 {
2021 spa_t *spa = vd->vdev_spa;
2022
2023 VERIFY0(zap_destroy(spa->spa_meta_objset, zapobj, tx));
2024 VERIFY0(zap_remove_int(spa->spa_meta_objset, spa->spa_all_vdev_zaps,
2025 zapobj, tx));
2026 }
2027
2028 uint64_t
2029 vdev_create_link_zap(vdev_t *vd, dmu_tx_t *tx)
2030 {
2031 spa_t *spa = vd->vdev_spa;
2032 uint64_t zap = zap_create(spa->spa_meta_objset, DMU_OTN_ZAP_METADATA,
2033 DMU_OT_NONE, 0, tx);
2034
2035 ASSERT(zap != 0);
2036 VERIFY0(zap_add_int(spa->spa_meta_objset, spa->spa_all_vdev_zaps,
2037 zap, tx));
2038
2039 return (zap);
2040 }
2041
2042 void
2043 vdev_construct_zaps(vdev_t *vd, dmu_tx_t *tx)
2044 {
2045 uint64_t i;
2046
2047 if (vd->vdev_ops != &vdev_hole_ops &&
2048 vd->vdev_ops != &vdev_missing_ops &&
2049 vd->vdev_ops != &vdev_root_ops &&
2050 !vd->vdev_top->vdev_removing) {
2051 if (vd->vdev_ops->vdev_op_leaf && vd->vdev_leaf_zap == 0) {
2052 vd->vdev_leaf_zap = vdev_create_link_zap(vd, tx);
2053 }
2054 if (vd == vd->vdev_top && vd->vdev_top_zap == 0) {
2055 vd->vdev_top_zap = vdev_create_link_zap(vd, tx);
2056 }
2057 }
2058 for (i = 0; i < vd->vdev_children; i++) {
2059 vdev_construct_zaps(vd->vdev_child[i], tx);
2060 }
2061 }
2062
2063 void
2064 vdev_dtl_sync(vdev_t *vd, uint64_t txg)
2065 {
2066 spa_t *spa = vd->vdev_spa;
2067 range_tree_t *rt = vd->vdev_dtl[DTL_MISSING];
2068 objset_t *mos = spa->spa_meta_objset;
2069 range_tree_t *rtsync;
2070 kmutex_t rtlock;
2071 dmu_tx_t *tx;
2072 uint64_t object = space_map_object(vd->vdev_dtl_sm);
2073
2074 ASSERT(!vd->vdev_ishole);
2075 ASSERT(vd->vdev_ops->vdev_op_leaf);
2076
2077 tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
2078
2079 if (vd->vdev_detached || vd->vdev_top->vdev_removing) {
2080 mutex_enter(&vd->vdev_dtl_lock);
2081 space_map_free(vd->vdev_dtl_sm, tx);
2082 space_map_close(vd->vdev_dtl_sm);
2083 vd->vdev_dtl_sm = NULL;
2084 mutex_exit(&vd->vdev_dtl_lock);
2085
2086 /*
2087 * We only destroy the leaf ZAP for detached leaves or for
2088 * removed log devices. Removed data devices handle leaf ZAP
2089 * cleanup later, once cancellation is no longer possible.
2090 */
2091 if (vd->vdev_leaf_zap != 0 && (vd->vdev_detached ||
2092 vd->vdev_top->vdev_islog)) {
2093 vdev_destroy_unlink_zap(vd, vd->vdev_leaf_zap, tx);
2094 vd->vdev_leaf_zap = 0;
2095 }
2096
2097 dmu_tx_commit(tx);
2098 return;
2099 }
2100
2101 if (vd->vdev_dtl_sm == NULL) {
2102 uint64_t new_object;
2103
2104 new_object = space_map_alloc(mos, tx);
2105 VERIFY3U(new_object, !=, 0);
2106
2107 VERIFY0(space_map_open(&vd->vdev_dtl_sm, mos, new_object,
2108 0, -1ULL, 0, &vd->vdev_dtl_lock));
2109 ASSERT(vd->vdev_dtl_sm != NULL);
2110 }
2111
2112 mutex_init(&rtlock, NULL, MUTEX_DEFAULT, NULL);
2113
2114 rtsync = range_tree_create(NULL, NULL, &rtlock);
2115
2116 mutex_enter(&rtlock);
2117
2118 mutex_enter(&vd->vdev_dtl_lock);
2119 range_tree_walk(rt, range_tree_add, rtsync);
2120 mutex_exit(&vd->vdev_dtl_lock);
2121
2122 space_map_truncate(vd->vdev_dtl_sm, tx);
2123 space_map_write(vd->vdev_dtl_sm, rtsync, SM_ALLOC, tx);
2124 range_tree_vacate(rtsync, NULL, NULL);
2125
2126 range_tree_destroy(rtsync);
2127
2128 mutex_exit(&rtlock);
2129 mutex_destroy(&rtlock);
2130
2131 /*
2132 * If the object for the space map has changed then dirty
2133 * the top level so that we update the config.
2134 */
2135 if (object != space_map_object(vd->vdev_dtl_sm)) {
2136 zfs_dbgmsg("txg %llu, spa %s, DTL old object %llu, "
2137 "new object %llu", txg, spa_name(spa), object,
2138 space_map_object(vd->vdev_dtl_sm));
2139 vdev_config_dirty(vd->vdev_top);
2140 }
2141
2142 dmu_tx_commit(tx);
2143
2144 mutex_enter(&vd->vdev_dtl_lock);
2145 space_map_update(vd->vdev_dtl_sm);
2146 mutex_exit(&vd->vdev_dtl_lock);
2147 }
2148
2149 /*
2150 * Determine whether the specified vdev can be offlined/detached/removed
2151 * without losing data.
2152 */
2153 boolean_t
2154 vdev_dtl_required(vdev_t *vd)
2155 {
2156 spa_t *spa = vd->vdev_spa;
2157 vdev_t *tvd = vd->vdev_top;
2158 uint8_t cant_read = vd->vdev_cant_read;
2159 boolean_t required;
2160
2161 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
2162
2163 if (vd == spa->spa_root_vdev || vd == tvd)
2164 return (B_TRUE);
2165
2166 /*
2167 * Temporarily mark the device as unreadable, and then determine
2168 * whether this results in any DTL outages in the top-level vdev.
2169 * If not, we can safely offline/detach/remove the device.
2170 */
2171 vd->vdev_cant_read = B_TRUE;
2172 vdev_dtl_reassess(tvd, 0, 0, B_FALSE);
2173 required = !vdev_dtl_empty(tvd, DTL_OUTAGE);
2174 vd->vdev_cant_read = cant_read;
2175 vdev_dtl_reassess(tvd, 0, 0, B_FALSE);
2176
2177 if (!required && zio_injection_enabled)
2178 required = !!zio_handle_device_injection(vd, NULL, ECHILD);
2179
2180 return (required);
2181 }
2182
2183 /*
2184 * Determine if resilver is needed, and if so the txg range.
2185 */
2186 boolean_t
2187 vdev_resilver_needed(vdev_t *vd, uint64_t *minp, uint64_t *maxp)
2188 {
2189 boolean_t needed = B_FALSE;
2190 uint64_t thismin = UINT64_MAX;
2191 uint64_t thismax = 0;
2192 int c;
2193
2194 if (vd->vdev_children == 0) {
2195 mutex_enter(&vd->vdev_dtl_lock);
2196 if (range_tree_space(vd->vdev_dtl[DTL_MISSING]) != 0 &&
2197 vdev_writeable(vd)) {
2198
2199 thismin = vdev_dtl_min(vd);
2200 thismax = vdev_dtl_max(vd);
2201 needed = B_TRUE;
2202 }
2203 mutex_exit(&vd->vdev_dtl_lock);
2204 } else {
2205 for (c = 0; c < vd->vdev_children; c++) {
2206 vdev_t *cvd = vd->vdev_child[c];
2207 uint64_t cmin, cmax;
2208
2209 if (vdev_resilver_needed(cvd, &cmin, &cmax)) {
2210 thismin = MIN(thismin, cmin);
2211 thismax = MAX(thismax, cmax);
2212 needed = B_TRUE;
2213 }
2214 }
2215 }
2216
2217 if (needed && minp) {
2218 *minp = thismin;
2219 *maxp = thismax;
2220 }
2221 return (needed);
2222 }
2223
2224 void
2225 vdev_load(vdev_t *vd)
2226 {
2227 int c;
2228
2229 /*
2230 * Recursively load all children.
2231 */
2232 for (c = 0; c < vd->vdev_children; c++)
2233 vdev_load(vd->vdev_child[c]);
2234
2235 /*
2236 * If this is a top-level vdev, initialize its metaslabs.
2237 */
2238 if (vd == vd->vdev_top && !vd->vdev_ishole &&
2239 (vd->vdev_ashift == 0 || vd->vdev_asize == 0 ||
2240 vdev_metaslab_init(vd, 0) != 0))
2241 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2242 VDEV_AUX_CORRUPT_DATA);
2243 /*
2244 * If this is a leaf vdev, load its DTL.
2245 */
2246 if (vd->vdev_ops->vdev_op_leaf && vdev_dtl_load(vd) != 0)
2247 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2248 VDEV_AUX_CORRUPT_DATA);
2249 }
2250
2251 /*
2252 * The special vdev case is used for hot spares and l2cache devices. Its
2253 * sole purpose it to set the vdev state for the associated vdev. To do this,
2254 * we make sure that we can open the underlying device, then try to read the
2255 * label, and make sure that the label is sane and that it hasn't been
2256 * repurposed to another pool.
2257 */
2258 int
2259 vdev_validate_aux(vdev_t *vd)
2260 {
2261 nvlist_t *label;
2262 uint64_t guid, version;
2263 uint64_t state;
2264
2265 if (!vdev_readable(vd))
2266 return (0);
2267
2268 if ((label = vdev_label_read_config(vd, -1ULL)) == NULL) {
2269 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2270 VDEV_AUX_CORRUPT_DATA);
2271 return (-1);
2272 }
2273
2274 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_VERSION, &version) != 0 ||
2275 !SPA_VERSION_IS_SUPPORTED(version) ||
2276 nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0 ||
2277 guid != vd->vdev_guid ||
2278 nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, &state) != 0) {
2279 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2280 VDEV_AUX_CORRUPT_DATA);
2281 nvlist_free(label);
2282 return (-1);
2283 }
2284
2285 /*
2286 * We don't actually check the pool state here. If it's in fact in
2287 * use by another pool, we update this fact on the fly when requested.
2288 */
2289 nvlist_free(label);
2290 return (0);
2291 }
2292
2293 void
2294 vdev_remove(vdev_t *vd, uint64_t txg)
2295 {
2296 spa_t *spa = vd->vdev_spa;
2297 objset_t *mos = spa->spa_meta_objset;
2298 dmu_tx_t *tx;
2299 int m, i;
2300
2301 tx = dmu_tx_create_assigned(spa_get_dsl(spa), txg);
2302 ASSERT(vd == vd->vdev_top);
2303 ASSERT3U(txg, ==, spa_syncing_txg(spa));
2304
2305 if (vd->vdev_ms != NULL) {
2306 metaslab_group_t *mg = vd->vdev_mg;
2307
2308 metaslab_group_histogram_verify(mg);
2309 metaslab_class_histogram_verify(mg->mg_class);
2310
2311 for (m = 0; m < vd->vdev_ms_count; m++) {
2312 metaslab_t *msp = vd->vdev_ms[m];
2313
2314 if (msp == NULL || msp->ms_sm == NULL)
2315 continue;
2316
2317 mutex_enter(&msp->ms_lock);
2318 /*
2319 * If the metaslab was not loaded when the vdev
2320 * was removed then the histogram accounting may
2321 * not be accurate. Update the histogram information
2322 * here so that we ensure that the metaslab group
2323 * and metaslab class are up-to-date.
2324 */
2325 metaslab_group_histogram_remove(mg, msp);
2326
2327 VERIFY0(space_map_allocated(msp->ms_sm));
2328 space_map_free(msp->ms_sm, tx);
2329 space_map_close(msp->ms_sm);
2330 msp->ms_sm = NULL;
2331 mutex_exit(&msp->ms_lock);
2332 }
2333
2334 metaslab_group_histogram_verify(mg);
2335 metaslab_class_histogram_verify(mg->mg_class);
2336 for (i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i++)
2337 ASSERT0(mg->mg_histogram[i]);
2338
2339 }
2340
2341 if (vd->vdev_ms_array) {
2342 (void) dmu_object_free(mos, vd->vdev_ms_array, tx);
2343 vd->vdev_ms_array = 0;
2344 }
2345
2346 if (vd->vdev_islog && vd->vdev_top_zap != 0) {
2347 vdev_destroy_unlink_zap(vd, vd->vdev_top_zap, tx);
2348 vd->vdev_top_zap = 0;
2349 }
2350 dmu_tx_commit(tx);
2351 }
2352
2353 void
2354 vdev_sync_done(vdev_t *vd, uint64_t txg)
2355 {
2356 metaslab_t *msp;
2357 boolean_t reassess = !txg_list_empty(&vd->vdev_ms_list, TXG_CLEAN(txg));
2358
2359 ASSERT(!vd->vdev_ishole);
2360
2361 while ((msp = txg_list_remove(&vd->vdev_ms_list, TXG_CLEAN(txg))))
2362 metaslab_sync_done(msp, txg);
2363
2364 if (reassess)
2365 metaslab_sync_reassess(vd->vdev_mg);
2366 }
2367
2368 void
2369 vdev_sync(vdev_t *vd, uint64_t txg)
2370 {
2371 spa_t *spa = vd->vdev_spa;
2372 vdev_t *lvd;
2373 metaslab_t *msp;
2374 dmu_tx_t *tx;
2375
2376 ASSERT(!vd->vdev_ishole);
2377
2378 if (vd->vdev_ms_array == 0 && vd->vdev_ms_shift != 0) {
2379 ASSERT(vd == vd->vdev_top);
2380 tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
2381 vd->vdev_ms_array = dmu_object_alloc(spa->spa_meta_objset,
2382 DMU_OT_OBJECT_ARRAY, 0, DMU_OT_NONE, 0, tx);
2383 ASSERT(vd->vdev_ms_array != 0);
2384 vdev_config_dirty(vd);
2385 dmu_tx_commit(tx);
2386 }
2387
2388 /*
2389 * Remove the metadata associated with this vdev once it's empty.
2390 */
2391 if (vd->vdev_stat.vs_alloc == 0 && vd->vdev_removing)
2392 vdev_remove(vd, txg);
2393
2394 while ((msp = txg_list_remove(&vd->vdev_ms_list, txg)) != NULL) {
2395 metaslab_sync(msp, txg);
2396 (void) txg_list_add(&vd->vdev_ms_list, msp, TXG_CLEAN(txg));
2397 }
2398
2399 while ((lvd = txg_list_remove(&vd->vdev_dtl_list, txg)) != NULL)
2400 vdev_dtl_sync(lvd, txg);
2401
2402 (void) txg_list_add(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg));
2403 }
2404
2405 uint64_t
2406 vdev_psize_to_asize(vdev_t *vd, uint64_t psize)
2407 {
2408 return (vd->vdev_ops->vdev_op_asize(vd, psize));
2409 }
2410
2411 /*
2412 * Mark the given vdev faulted. A faulted vdev behaves as if the device could
2413 * not be opened, and no I/O is attempted.
2414 */
2415 int
2416 vdev_fault(spa_t *spa, uint64_t guid, vdev_aux_t aux)
2417 {
2418 vdev_t *vd, *tvd;
2419
2420 spa_vdev_state_enter(spa, SCL_NONE);
2421
2422 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2423 return (spa_vdev_state_exit(spa, NULL, ENODEV));
2424
2425 if (!vd->vdev_ops->vdev_op_leaf)
2426 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2427
2428 tvd = vd->vdev_top;
2429
2430 /*
2431 * We don't directly use the aux state here, but if we do a
2432 * vdev_reopen(), we need this value to be present to remember why we
2433 * were faulted.
2434 */
2435 vd->vdev_label_aux = aux;
2436
2437 /*
2438 * Faulted state takes precedence over degraded.
2439 */
2440 vd->vdev_delayed_close = B_FALSE;
2441 vd->vdev_faulted = 1ULL;
2442 vd->vdev_degraded = 0ULL;
2443 vdev_set_state(vd, B_FALSE, VDEV_STATE_FAULTED, aux);
2444
2445 /*
2446 * If this device has the only valid copy of the data, then
2447 * back off and simply mark the vdev as degraded instead.
2448 */
2449 if (!tvd->vdev_islog && vd->vdev_aux == NULL && vdev_dtl_required(vd)) {
2450 vd->vdev_degraded = 1ULL;
2451 vd->vdev_faulted = 0ULL;
2452
2453 /*
2454 * If we reopen the device and it's not dead, only then do we
2455 * mark it degraded.
2456 */
2457 vdev_reopen(tvd);
2458
2459 if (vdev_readable(vd))
2460 vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, aux);
2461 }
2462
2463 return (spa_vdev_state_exit(spa, vd, 0));
2464 }
2465
2466 /*
2467 * Mark the given vdev degraded. A degraded vdev is purely an indication to the
2468 * user that something is wrong. The vdev continues to operate as normal as far
2469 * as I/O is concerned.
2470 */
2471 int
2472 vdev_degrade(spa_t *spa, uint64_t guid, vdev_aux_t aux)
2473 {
2474 vdev_t *vd;
2475
2476 spa_vdev_state_enter(spa, SCL_NONE);
2477
2478 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2479 return (spa_vdev_state_exit(spa, NULL, ENODEV));
2480
2481 if (!vd->vdev_ops->vdev_op_leaf)
2482 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2483
2484 /*
2485 * If the vdev is already faulted, then don't do anything.
2486 */
2487 if (vd->vdev_faulted || vd->vdev_degraded)
2488 return (spa_vdev_state_exit(spa, NULL, 0));
2489
2490 vd->vdev_degraded = 1ULL;
2491 if (!vdev_is_dead(vd))
2492 vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED,
2493 aux);
2494
2495 return (spa_vdev_state_exit(spa, vd, 0));
2496 }
2497
2498 /*
2499 * Online the given vdev.
2500 *
2501 * If 'ZFS_ONLINE_UNSPARE' is set, it implies two things. First, any attached
2502 * spare device should be detached when the device finishes resilvering.
2503 * Second, the online should be treated like a 'test' online case, so no FMA
2504 * events are generated if the device fails to open.
2505 */
2506 int
2507 vdev_online(spa_t *spa, uint64_t guid, uint64_t flags, vdev_state_t *newstate)
2508 {
2509 vdev_t *vd, *tvd, *pvd, *rvd = spa->spa_root_vdev;
2510 boolean_t postevent = B_FALSE;
2511
2512 spa_vdev_state_enter(spa, SCL_NONE);
2513
2514 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2515 return (spa_vdev_state_exit(spa, NULL, ENODEV));
2516
2517 if (!vd->vdev_ops->vdev_op_leaf)
2518 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2519
2520 postevent =
2521 (vd->vdev_offline == B_TRUE || vd->vdev_tmpoffline == B_TRUE) ?
2522 B_TRUE : B_FALSE;
2523
2524 tvd = vd->vdev_top;
2525 vd->vdev_offline = B_FALSE;
2526 vd->vdev_tmpoffline = B_FALSE;
2527 vd->vdev_checkremove = !!(flags & ZFS_ONLINE_CHECKREMOVE);
2528 vd->vdev_forcefault = !!(flags & ZFS_ONLINE_FORCEFAULT);
2529
2530 /* XXX - L2ARC 1.0 does not support expansion */
2531 if (!vd->vdev_aux) {
2532 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
2533 pvd->vdev_expanding = !!(flags & ZFS_ONLINE_EXPAND);
2534 }
2535
2536 vdev_reopen(tvd);
2537 vd->vdev_checkremove = vd->vdev_forcefault = B_FALSE;
2538
2539 if (!vd->vdev_aux) {
2540 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
2541 pvd->vdev_expanding = B_FALSE;
2542 }
2543
2544 if (newstate)
2545 *newstate = vd->vdev_state;
2546 if ((flags & ZFS_ONLINE_UNSPARE) &&
2547 !vdev_is_dead(vd) && vd->vdev_parent &&
2548 vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
2549 vd->vdev_parent->vdev_child[0] == vd)
2550 vd->vdev_unspare = B_TRUE;
2551
2552 if ((flags & ZFS_ONLINE_EXPAND) || spa->spa_autoexpand) {
2553
2554 /* XXX - L2ARC 1.0 does not support expansion */
2555 if (vd->vdev_aux)
2556 return (spa_vdev_state_exit(spa, vd, ENOTSUP));
2557 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
2558 }
2559
2560 if (postevent)
2561 spa_event_notify(spa, vd, ESC_ZFS_VDEV_ONLINE);
2562
2563 return (spa_vdev_state_exit(spa, vd, 0));
2564 }
2565
2566 static int
2567 vdev_offline_locked(spa_t *spa, uint64_t guid, uint64_t flags)
2568 {
2569 vdev_t *vd, *tvd;
2570 int error = 0;
2571 uint64_t generation;
2572 metaslab_group_t *mg;
2573
2574 top:
2575 spa_vdev_state_enter(spa, SCL_ALLOC);
2576
2577 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2578 return (spa_vdev_state_exit(spa, NULL, ENODEV));
2579
2580 if (!vd->vdev_ops->vdev_op_leaf)
2581 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2582
2583 tvd = vd->vdev_top;
2584 mg = tvd->vdev_mg;
2585 generation = spa->spa_config_generation + 1;
2586
2587 /*
2588 * If the device isn't already offline, try to offline it.
2589 */
2590 if (!vd->vdev_offline) {
2591 /*
2592 * If this device has the only valid copy of some data,
2593 * don't allow it to be offlined. Log devices are always
2594 * expendable.
2595 */
2596 if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
2597 vdev_dtl_required(vd))
2598 return (spa_vdev_state_exit(spa, NULL, EBUSY));
2599
2600 /*
2601 * If the top-level is a slog and it has had allocations
2602 * then proceed. We check that the vdev's metaslab group
2603 * is not NULL since it's possible that we may have just
2604 * added this vdev but not yet initialized its metaslabs.
2605 */
2606 if (tvd->vdev_islog && mg != NULL) {
2607 /*
2608 * Prevent any future allocations.
2609 */
2610 metaslab_group_passivate(mg);
2611 (void) spa_vdev_state_exit(spa, vd, 0);
2612
2613 error = spa_offline_log(spa);
2614
2615 spa_vdev_state_enter(spa, SCL_ALLOC);
2616
2617 /*
2618 * Check to see if the config has changed.
2619 */
2620 if (error || generation != spa->spa_config_generation) {
2621 metaslab_group_activate(mg);
2622 if (error)
2623 return (spa_vdev_state_exit(spa,
2624 vd, error));
2625 (void) spa_vdev_state_exit(spa, vd, 0);
2626 goto top;
2627 }
2628 ASSERT0(tvd->vdev_stat.vs_alloc);
2629 }
2630
2631 /*
2632 * Offline this device and reopen its top-level vdev.
2633 * If the top-level vdev is a log device then just offline
2634 * it. Otherwise, if this action results in the top-level
2635 * vdev becoming unusable, undo it and fail the request.
2636 */
2637 vd->vdev_offline = B_TRUE;
2638 vdev_reopen(tvd);
2639
2640 if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
2641 vdev_is_dead(tvd)) {
2642 vd->vdev_offline = B_FALSE;
2643 vdev_reopen(tvd);
2644 return (spa_vdev_state_exit(spa, NULL, EBUSY));
2645 }
2646
2647 /*
2648 * Add the device back into the metaslab rotor so that
2649 * once we online the device it's open for business.
2650 */
2651 if (tvd->vdev_islog && mg != NULL)
2652 metaslab_group_activate(mg);
2653 }
2654
2655 vd->vdev_tmpoffline = !!(flags & ZFS_OFFLINE_TEMPORARY);
2656
2657 return (spa_vdev_state_exit(spa, vd, 0));
2658 }
2659
2660 int
2661 vdev_offline(spa_t *spa, uint64_t guid, uint64_t flags)
2662 {
2663 int error;
2664
2665 mutex_enter(&spa->spa_vdev_top_lock);
2666 error = vdev_offline_locked(spa, guid, flags);
2667 mutex_exit(&spa->spa_vdev_top_lock);
2668
2669 return (error);
2670 }
2671
2672 /*
2673 * Clear the error counts associated with this vdev. Unlike vdev_online() and
2674 * vdev_offline(), we assume the spa config is locked. We also clear all
2675 * children. If 'vd' is NULL, then the user wants to clear all vdevs.
2676 */
2677 void
2678 vdev_clear(spa_t *spa, vdev_t *vd)
2679 {
2680 vdev_t *rvd = spa->spa_root_vdev;
2681 int c;
2682
2683 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
2684
2685 if (vd == NULL)
2686 vd = rvd;
2687
2688 vd->vdev_stat.vs_read_errors = 0;
2689 vd->vdev_stat.vs_write_errors = 0;
2690 vd->vdev_stat.vs_checksum_errors = 0;
2691
2692 for (c = 0; c < vd->vdev_children; c++)
2693 vdev_clear(spa, vd->vdev_child[c]);
2694
2695 /*
2696 * If we're in the FAULTED state or have experienced failed I/O, then
2697 * clear the persistent state and attempt to reopen the device. We
2698 * also mark the vdev config dirty, so that the new faulted state is
2699 * written out to disk.
2700 */
2701 if (vd->vdev_faulted || vd->vdev_degraded ||
2702 !vdev_readable(vd) || !vdev_writeable(vd)) {
2703
2704 /*
2705 * When reopening in reponse to a clear event, it may be due to
2706 * a fmadm repair request. In this case, if the device is
2707 * still broken, we want to still post the ereport again.
2708 */
2709 vd->vdev_forcefault = B_TRUE;
2710
2711 vd->vdev_faulted = vd->vdev_degraded = 0ULL;
2712 vd->vdev_cant_read = B_FALSE;
2713 vd->vdev_cant_write = B_FALSE;
2714
2715 vdev_reopen(vd == rvd ? rvd : vd->vdev_top);
2716
2717 vd->vdev_forcefault = B_FALSE;
2718
2719 if (vd != rvd && vdev_writeable(vd->vdev_top))
2720 vdev_state_dirty(vd->vdev_top);
2721
2722 if (vd->vdev_aux == NULL && !vdev_is_dead(vd))
2723 spa_async_request(spa, SPA_ASYNC_RESILVER);
2724
2725 spa_event_notify(spa, vd, ESC_ZFS_VDEV_CLEAR);
2726 }
2727
2728 /*
2729 * When clearing a FMA-diagnosed fault, we always want to
2730 * unspare the device, as we assume that the original spare was
2731 * done in response to the FMA fault.
2732 */
2733 if (!vdev_is_dead(vd) && vd->vdev_parent != NULL &&
2734 vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
2735 vd->vdev_parent->vdev_child[0] == vd)
2736 vd->vdev_unspare = B_TRUE;
2737 }
2738
2739 boolean_t
2740 vdev_is_dead(vdev_t *vd)
2741 {
2742 /*
2743 * Holes and missing devices are always considered "dead".
2744 * This simplifies the code since we don't have to check for
2745 * these types of devices in the various code paths.
2746 * Instead we rely on the fact that we skip over dead devices
2747 * before issuing I/O to them.
2748 */
2749 return (vd->vdev_state < VDEV_STATE_DEGRADED || vd->vdev_ishole ||
2750 vd->vdev_ops == &vdev_missing_ops);
2751 }
2752
2753 boolean_t
2754 vdev_readable(vdev_t *vd)
2755 {
2756 return (!vdev_is_dead(vd) && !vd->vdev_cant_read);
2757 }
2758
2759 boolean_t
2760 vdev_writeable(vdev_t *vd)
2761 {
2762 return (!vdev_is_dead(vd) && !vd->vdev_cant_write);
2763 }
2764
2765 boolean_t
2766 vdev_allocatable(vdev_t *vd)
2767 {
2768 uint64_t state = vd->vdev_state;
2769
2770 /*
2771 * We currently allow allocations from vdevs which may be in the
2772 * process of reopening (i.e. VDEV_STATE_CLOSED). If the device
2773 * fails to reopen then we'll catch it later when we're holding
2774 * the proper locks. Note that we have to get the vdev state
2775 * in a local variable because although it changes atomically,
2776 * we're asking two separate questions about it.
2777 */
2778 return (!(state < VDEV_STATE_DEGRADED && state != VDEV_STATE_CLOSED) &&
2779 !vd->vdev_cant_write && !vd->vdev_ishole &&
2780 vd->vdev_mg->mg_initialized);
2781 }
2782
2783 boolean_t
2784 vdev_accessible(vdev_t *vd, zio_t *zio)
2785 {
2786 ASSERT(zio->io_vd == vd);
2787
2788 if (vdev_is_dead(vd) || vd->vdev_remove_wanted)
2789 return (B_FALSE);
2790
2791 if (zio->io_type == ZIO_TYPE_READ)
2792 return (!vd->vdev_cant_read);
2793
2794 if (zio->io_type == ZIO_TYPE_WRITE)
2795 return (!vd->vdev_cant_write);
2796
2797 return (B_TRUE);
2798 }
2799
2800 static void
2801 vdev_get_child_stat(vdev_t *cvd, vdev_stat_t *vs, vdev_stat_t *cvs)
2802 {
2803 int t;
2804 for (t = 0; t < ZIO_TYPES; t++) {
2805 vs->vs_ops[t] += cvs->vs_ops[t];
2806 vs->vs_bytes[t] += cvs->vs_bytes[t];
2807 }
2808
2809 cvs->vs_scan_removing = cvd->vdev_removing;
2810 }
2811
2812 /*
2813 * Get extended stats
2814 */
2815 static void
2816 vdev_get_child_stat_ex(vdev_t *cvd, vdev_stat_ex_t *vsx, vdev_stat_ex_t *cvsx)
2817 {
2818 int t, b;
2819 for (t = 0; t < ZIO_TYPES; t++) {
2820 for (b = 0; b < ARRAY_SIZE(vsx->vsx_disk_histo[0]); b++)
2821 vsx->vsx_disk_histo[t][b] += cvsx->vsx_disk_histo[t][b];
2822
2823 for (b = 0; b < ARRAY_SIZE(vsx->vsx_total_histo[0]); b++) {
2824 vsx->vsx_total_histo[t][b] +=
2825 cvsx->vsx_total_histo[t][b];
2826 }
2827 }
2828
2829 for (t = 0; t < ZIO_PRIORITY_NUM_QUEUEABLE; t++) {
2830 for (b = 0; b < ARRAY_SIZE(vsx->vsx_queue_histo[0]); b++) {
2831 vsx->vsx_queue_histo[t][b] +=
2832 cvsx->vsx_queue_histo[t][b];
2833 }
2834 vsx->vsx_active_queue[t] += cvsx->vsx_active_queue[t];
2835 vsx->vsx_pend_queue[t] += cvsx->vsx_pend_queue[t];
2836
2837 for (b = 0; b < ARRAY_SIZE(vsx->vsx_ind_histo[0]); b++)
2838 vsx->vsx_ind_histo[t][b] += cvsx->vsx_ind_histo[t][b];
2839
2840 for (b = 0; b < ARRAY_SIZE(vsx->vsx_agg_histo[0]); b++)
2841 vsx->vsx_agg_histo[t][b] += cvsx->vsx_agg_histo[t][b];
2842 }
2843
2844 }
2845
2846 /*
2847 * Get statistics for the given vdev.
2848 */
2849 static void
2850 vdev_get_stats_ex_impl(vdev_t *vd, vdev_stat_t *vs, vdev_stat_ex_t *vsx)
2851 {
2852 int c, t;
2853 /*
2854 * If we're getting stats on the root vdev, aggregate the I/O counts
2855 * over all top-level vdevs (i.e. the direct children of the root).
2856 */
2857 if (!vd->vdev_ops->vdev_op_leaf) {
2858 if (vs) {
2859 memset(vs->vs_ops, 0, sizeof (vs->vs_ops));
2860 memset(vs->vs_bytes, 0, sizeof (vs->vs_bytes));
2861 }
2862 if (vsx)
2863 memset(vsx, 0, sizeof (*vsx));
2864
2865 for (c = 0; c < vd->vdev_children; c++) {
2866 vdev_t *cvd = vd->vdev_child[c];
2867 vdev_stat_t *cvs = &cvd->vdev_stat;
2868 vdev_stat_ex_t *cvsx = &cvd->vdev_stat_ex;
2869
2870 vdev_get_stats_ex_impl(cvd, cvs, cvsx);
2871 if (vs)
2872 vdev_get_child_stat(cvd, vs, cvs);
2873 if (vsx)
2874 vdev_get_child_stat_ex(cvd, vsx, cvsx);
2875
2876 }
2877 } else {
2878 /*
2879 * We're a leaf. Just copy our ZIO active queue stats in. The
2880 * other leaf stats are updated in vdev_stat_update().
2881 */
2882 if (!vsx)
2883 return;
2884
2885 memcpy(vsx, &vd->vdev_stat_ex, sizeof (vd->vdev_stat_ex));
2886
2887 for (t = 0; t < ARRAY_SIZE(vd->vdev_queue.vq_class); t++) {
2888 vsx->vsx_active_queue[t] =
2889 vd->vdev_queue.vq_class[t].vqc_active;
2890 vsx->vsx_pend_queue[t] = avl_numnodes(
2891 &vd->vdev_queue.vq_class[t].vqc_queued_tree);
2892 }
2893 }
2894 }
2895
2896 void
2897 vdev_get_stats_ex(vdev_t *vd, vdev_stat_t *vs, vdev_stat_ex_t *vsx)
2898 {
2899 mutex_enter(&vd->vdev_stat_lock);
2900 if (vs) {
2901 bcopy(&vd->vdev_stat, vs, sizeof (*vs));
2902 vs->vs_timestamp = gethrtime() - vs->vs_timestamp;
2903 vs->vs_state = vd->vdev_state;
2904 vs->vs_rsize = vdev_get_min_asize(vd);
2905 if (vd->vdev_ops->vdev_op_leaf)
2906 vs->vs_rsize += VDEV_LABEL_START_SIZE +
2907 VDEV_LABEL_END_SIZE;
2908 vs->vs_esize = vd->vdev_max_asize - vd->vdev_asize;
2909 if (vd->vdev_aux == NULL && vd == vd->vdev_top &&
2910 !vd->vdev_ishole) {
2911 vs->vs_fragmentation = vd->vdev_mg->mg_fragmentation;
2912 }
2913 }
2914
2915 ASSERT(spa_config_held(vd->vdev_spa, SCL_ALL, RW_READER) != 0);
2916 vdev_get_stats_ex_impl(vd, vs, vsx);
2917 mutex_exit(&vd->vdev_stat_lock);
2918 }
2919
2920 void
2921 vdev_get_stats(vdev_t *vd, vdev_stat_t *vs)
2922 {
2923 return (vdev_get_stats_ex(vd, vs, NULL));
2924 }
2925
2926 void
2927 vdev_clear_stats(vdev_t *vd)
2928 {
2929 mutex_enter(&vd->vdev_stat_lock);
2930 vd->vdev_stat.vs_space = 0;
2931 vd->vdev_stat.vs_dspace = 0;
2932 vd->vdev_stat.vs_alloc = 0;
2933 mutex_exit(&vd->vdev_stat_lock);
2934 }
2935
2936 void
2937 vdev_scan_stat_init(vdev_t *vd)
2938 {
2939 vdev_stat_t *vs = &vd->vdev_stat;
2940 int c;
2941
2942 for (c = 0; c < vd->vdev_children; c++)
2943 vdev_scan_stat_init(vd->vdev_child[c]);
2944
2945 mutex_enter(&vd->vdev_stat_lock);
2946 vs->vs_scan_processed = 0;
2947 mutex_exit(&vd->vdev_stat_lock);
2948 }
2949
2950 void
2951 vdev_stat_update(zio_t *zio, uint64_t psize)
2952 {
2953 spa_t *spa = zio->io_spa;
2954 vdev_t *rvd = spa->spa_root_vdev;
2955 vdev_t *vd = zio->io_vd ? zio->io_vd : rvd;
2956 vdev_t *pvd;
2957 uint64_t txg = zio->io_txg;
2958 vdev_stat_t *vs = &vd->vdev_stat;
2959 vdev_stat_ex_t *vsx = &vd->vdev_stat_ex;
2960 zio_type_t type = zio->io_type;
2961 int flags = zio->io_flags;
2962
2963 /*
2964 * If this i/o is a gang leader, it didn't do any actual work.
2965 */
2966 if (zio->io_gang_tree)
2967 return;
2968
2969 if (zio->io_error == 0) {
2970 /*
2971 * If this is a root i/o, don't count it -- we've already
2972 * counted the top-level vdevs, and vdev_get_stats() will
2973 * aggregate them when asked. This reduces contention on
2974 * the root vdev_stat_lock and implicitly handles blocks
2975 * that compress away to holes, for which there is no i/o.
2976 * (Holes never create vdev children, so all the counters
2977 * remain zero, which is what we want.)
2978 *
2979 * Note: this only applies to successful i/o (io_error == 0)
2980 * because unlike i/o counts, errors are not additive.
2981 * When reading a ditto block, for example, failure of
2982 * one top-level vdev does not imply a root-level error.
2983 */
2984 if (vd == rvd)
2985 return;
2986
2987 ASSERT(vd == zio->io_vd);
2988
2989 if (flags & ZIO_FLAG_IO_BYPASS)
2990 return;
2991
2992 mutex_enter(&vd->vdev_stat_lock);
2993
2994 if (flags & ZIO_FLAG_IO_REPAIR) {
2995 if (flags & ZIO_FLAG_SCAN_THREAD) {
2996 dsl_scan_phys_t *scn_phys =
2997 &spa->spa_dsl_pool->dp_scan->scn_phys;
2998 uint64_t *processed = &scn_phys->scn_processed;
2999
3000 /* XXX cleanup? */
3001 if (vd->vdev_ops->vdev_op_leaf)
3002 atomic_add_64(processed, psize);
3003 vs->vs_scan_processed += psize;
3004 }
3005
3006 if (flags & ZIO_FLAG_SELF_HEAL)
3007 vs->vs_self_healed += psize;
3008 }
3009
3010 /*
3011 * The bytes/ops/histograms are recorded at the leaf level and
3012 * aggregated into the higher level vdevs in vdev_get_stats().
3013 */
3014 if (vd->vdev_ops->vdev_op_leaf &&
3015 (zio->io_priority < ZIO_PRIORITY_NUM_QUEUEABLE)) {
3016
3017 vs->vs_ops[type]++;
3018 vs->vs_bytes[type] += psize;
3019
3020 if (flags & ZIO_FLAG_DELEGATED) {
3021 vsx->vsx_agg_histo[zio->io_priority]
3022 [RQ_HISTO(zio->io_size)]++;
3023 } else {
3024 vsx->vsx_ind_histo[zio->io_priority]
3025 [RQ_HISTO(zio->io_size)]++;
3026 }
3027
3028 if (zio->io_delta && zio->io_delay) {
3029 vsx->vsx_queue_histo[zio->io_priority]
3030 [L_HISTO(zio->io_delta - zio->io_delay)]++;
3031 vsx->vsx_disk_histo[type]
3032 [L_HISTO(zio->io_delay)]++;
3033 vsx->vsx_total_histo[type]
3034 [L_HISTO(zio->io_delta)]++;
3035 }
3036 }
3037
3038 mutex_exit(&vd->vdev_stat_lock);
3039 return;
3040 }
3041
3042 if (flags & ZIO_FLAG_SPECULATIVE)
3043 return;
3044
3045 /*
3046 * If this is an I/O error that is going to be retried, then ignore the
3047 * error. Otherwise, the user may interpret B_FAILFAST I/O errors as
3048 * hard errors, when in reality they can happen for any number of
3049 * innocuous reasons (bus resets, MPxIO link failure, etc).
3050 */
3051 if (zio->io_error == EIO &&
3052 !(zio->io_flags & ZIO_FLAG_IO_RETRY))
3053 return;
3054
3055 /*
3056 * Intent logs writes won't propagate their error to the root
3057 * I/O so don't mark these types of failures as pool-level
3058 * errors.
3059 */
3060 if (zio->io_vd == NULL && (zio->io_flags & ZIO_FLAG_DONT_PROPAGATE))
3061 return;
3062
3063 mutex_enter(&vd->vdev_stat_lock);
3064 if (type == ZIO_TYPE_READ && !vdev_is_dead(vd)) {
3065 if (zio->io_error == ECKSUM)
3066 vs->vs_checksum_errors++;
3067 else
3068 vs->vs_read_errors++;
3069 }
3070 if (type == ZIO_TYPE_WRITE && !vdev_is_dead(vd))
3071 vs->vs_write_errors++;
3072 mutex_exit(&vd->vdev_stat_lock);
3073
3074 if (type == ZIO_TYPE_WRITE && txg != 0 &&
3075 (!(flags & ZIO_FLAG_IO_REPAIR) ||
3076 (flags & ZIO_FLAG_SCAN_THREAD) ||
3077 spa->spa_claiming)) {
3078 /*
3079 * This is either a normal write (not a repair), or it's
3080 * a repair induced by the scrub thread, or it's a repair
3081 * made by zil_claim() during spa_load() in the first txg.
3082 * In the normal case, we commit the DTL change in the same
3083 * txg as the block was born. In the scrub-induced repair
3084 * case, we know that scrubs run in first-pass syncing context,
3085 * so we commit the DTL change in spa_syncing_txg(spa).
3086 * In the zil_claim() case, we commit in spa_first_txg(spa).
3087 *
3088 * We currently do not make DTL entries for failed spontaneous
3089 * self-healing writes triggered by normal (non-scrubbing)
3090 * reads, because we have no transactional context in which to
3091 * do so -- and it's not clear that it'd be desirable anyway.
3092 */
3093 if (vd->vdev_ops->vdev_op_leaf) {
3094 uint64_t commit_txg = txg;
3095 if (flags & ZIO_FLAG_SCAN_THREAD) {
3096 ASSERT(flags & ZIO_FLAG_IO_REPAIR);
3097 ASSERT(spa_sync_pass(spa) == 1);
3098 vdev_dtl_dirty(vd, DTL_SCRUB, txg, 1);
3099 commit_txg = spa_syncing_txg(spa);
3100 } else if (spa->spa_claiming) {
3101 ASSERT(flags & ZIO_FLAG_IO_REPAIR);
3102 commit_txg = spa_first_txg(spa);
3103 }
3104 ASSERT(commit_txg >= spa_syncing_txg(spa));
3105 if (vdev_dtl_contains(vd, DTL_MISSING, txg, 1))
3106 return;
3107 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
3108 vdev_dtl_dirty(pvd, DTL_PARTIAL, txg, 1);
3109 vdev_dirty(vd->vdev_top, VDD_DTL, vd, commit_txg);
3110 }
3111 if (vd != rvd)
3112 vdev_dtl_dirty(vd, DTL_MISSING, txg, 1);
3113 }
3114 }
3115
3116 /*
3117 * Update the in-core space usage stats for this vdev, its metaslab class,
3118 * and the root vdev.
3119 */
3120 void
3121 vdev_space_update(vdev_t *vd, int64_t alloc_delta, int64_t defer_delta,
3122 int64_t space_delta)
3123 {
3124 int64_t dspace_delta = space_delta;
3125 spa_t *spa = vd->vdev_spa;
3126 vdev_t *rvd = spa->spa_root_vdev;
3127 metaslab_group_t *mg = vd->vdev_mg;
3128 metaslab_class_t *mc = mg ? mg->mg_class : NULL;
3129
3130 ASSERT(vd == vd->vdev_top);
3131
3132 /*
3133 * Apply the inverse of the psize-to-asize (ie. RAID-Z) space-expansion
3134 * factor. We must calculate this here and not at the root vdev
3135 * because the root vdev's psize-to-asize is simply the max of its
3136 * childrens', thus not accurate enough for us.
3137 */
3138 ASSERT((dspace_delta & (SPA_MINBLOCKSIZE-1)) == 0);
3139 ASSERT(vd->vdev_deflate_ratio != 0 || vd->vdev_isl2cache);
3140 dspace_delta = (dspace_delta >> SPA_MINBLOCKSHIFT) *
3141 vd->vdev_deflate_ratio;
3142
3143 mutex_enter(&vd->vdev_stat_lock);
3144 vd->vdev_stat.vs_alloc += alloc_delta;
3145 vd->vdev_stat.vs_space += space_delta;
3146 vd->vdev_stat.vs_dspace += dspace_delta;
3147 mutex_exit(&vd->vdev_stat_lock);
3148
3149 if (mc == spa_normal_class(spa)) {
3150 mutex_enter(&rvd->vdev_stat_lock);
3151 rvd->vdev_stat.vs_alloc += alloc_delta;
3152 rvd->vdev_stat.vs_space += space_delta;
3153 rvd->vdev_stat.vs_dspace += dspace_delta;
3154 mutex_exit(&rvd->vdev_stat_lock);
3155 }
3156
3157 if (mc != NULL) {
3158 ASSERT(rvd == vd->vdev_parent);
3159 ASSERT(vd->vdev_ms_count != 0);
3160
3161 metaslab_class_space_update(mc,
3162 alloc_delta, defer_delta, space_delta, dspace_delta);
3163 }
3164 }
3165
3166 /*
3167 * Mark a top-level vdev's config as dirty, placing it on the dirty list
3168 * so that it will be written out next time the vdev configuration is synced.
3169 * If the root vdev is specified (vdev_top == NULL), dirty all top-level vdevs.
3170 */
3171 void
3172 vdev_config_dirty(vdev_t *vd)
3173 {
3174 spa_t *spa = vd->vdev_spa;
3175 vdev_t *rvd = spa->spa_root_vdev;
3176 int c;
3177
3178 ASSERT(spa_writeable(spa));
3179
3180 /*
3181 * If this is an aux vdev (as with l2cache and spare devices), then we
3182 * update the vdev config manually and set the sync flag.
3183 */
3184 if (vd->vdev_aux != NULL) {
3185 spa_aux_vdev_t *sav = vd->vdev_aux;
3186 nvlist_t **aux;
3187 uint_t naux;
3188
3189 for (c = 0; c < sav->sav_count; c++) {
3190 if (sav->sav_vdevs[c] == vd)
3191 break;
3192 }
3193
3194 if (c == sav->sav_count) {
3195 /*
3196 * We're being removed. There's nothing more to do.
3197 */
3198 ASSERT(sav->sav_sync == B_TRUE);
3199 return;
3200 }
3201
3202 sav->sav_sync = B_TRUE;
3203
3204 if (nvlist_lookup_nvlist_array(sav->sav_config,
3205 ZPOOL_CONFIG_L2CACHE, &aux, &naux) != 0) {
3206 VERIFY(nvlist_lookup_nvlist_array(sav->sav_config,
3207 ZPOOL_CONFIG_SPARES, &aux, &naux) == 0);
3208 }
3209
3210 ASSERT(c < naux);
3211
3212 /*
3213 * Setting the nvlist in the middle if the array is a little
3214 * sketchy, but it will work.
3215 */
3216 nvlist_free(aux[c]);
3217 aux[c] = vdev_config_generate(spa, vd, B_TRUE, 0);
3218
3219 return;
3220 }
3221
3222 /*
3223 * The dirty list is protected by the SCL_CONFIG lock. The caller
3224 * must either hold SCL_CONFIG as writer, or must be the sync thread
3225 * (which holds SCL_CONFIG as reader). There's only one sync thread,
3226 * so this is sufficient to ensure mutual exclusion.
3227 */
3228 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
3229 (dsl_pool_sync_context(spa_get_dsl(spa)) &&
3230 spa_config_held(spa, SCL_CONFIG, RW_READER)));
3231
3232 if (vd == rvd) {
3233 for (c = 0; c < rvd->vdev_children; c++)
3234 vdev_config_dirty(rvd->vdev_child[c]);
3235 } else {
3236 ASSERT(vd == vd->vdev_top);
3237
3238 if (!list_link_active(&vd->vdev_config_dirty_node) &&
3239 !vd->vdev_ishole)
3240 list_insert_head(&spa->spa_config_dirty_list, vd);
3241 }
3242 }
3243
3244 void
3245 vdev_config_clean(vdev_t *vd)
3246 {
3247 spa_t *spa = vd->vdev_spa;
3248
3249 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
3250 (dsl_pool_sync_context(spa_get_dsl(spa)) &&
3251 spa_config_held(spa, SCL_CONFIG, RW_READER)));
3252
3253 ASSERT(list_link_active(&vd->vdev_config_dirty_node));
3254 list_remove(&spa->spa_config_dirty_list, vd);
3255 }
3256
3257 /*
3258 * Mark a top-level vdev's state as dirty, so that the next pass of
3259 * spa_sync() can convert this into vdev_config_dirty(). We distinguish
3260 * the state changes from larger config changes because they require
3261 * much less locking, and are often needed for administrative actions.
3262 */
3263 void
3264 vdev_state_dirty(vdev_t *vd)
3265 {
3266 spa_t *spa = vd->vdev_spa;
3267
3268 ASSERT(spa_writeable(spa));
3269 ASSERT(vd == vd->vdev_top);
3270
3271 /*
3272 * The state list is protected by the SCL_STATE lock. The caller
3273 * must either hold SCL_STATE as writer, or must be the sync thread
3274 * (which holds SCL_STATE as reader). There's only one sync thread,
3275 * so this is sufficient to ensure mutual exclusion.
3276 */
3277 ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
3278 (dsl_pool_sync_context(spa_get_dsl(spa)) &&
3279 spa_config_held(spa, SCL_STATE, RW_READER)));
3280
3281 if (!list_link_active(&vd->vdev_state_dirty_node) && !vd->vdev_ishole)
3282 list_insert_head(&spa->spa_state_dirty_list, vd);
3283 }
3284
3285 void
3286 vdev_state_clean(vdev_t *vd)
3287 {
3288 spa_t *spa = vd->vdev_spa;
3289
3290 ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
3291 (dsl_pool_sync_context(spa_get_dsl(spa)) &&
3292 spa_config_held(spa, SCL_STATE, RW_READER)));
3293
3294 ASSERT(list_link_active(&vd->vdev_state_dirty_node));
3295 list_remove(&spa->spa_state_dirty_list, vd);
3296 }
3297
3298 /*
3299 * Propagate vdev state up from children to parent.
3300 */
3301 void
3302 vdev_propagate_state(vdev_t *vd)
3303 {
3304 spa_t *spa = vd->vdev_spa;
3305 vdev_t *rvd = spa->spa_root_vdev;
3306 int degraded = 0, faulted = 0;
3307 int corrupted = 0;
3308 vdev_t *child;
3309 int c;
3310
3311 if (vd->vdev_children > 0) {
3312 for (c = 0; c < vd->vdev_children; c++) {
3313 child = vd->vdev_child[c];
3314
3315 /*
3316 * Don't factor holes into the decision.
3317 */
3318 if (child->vdev_ishole)
3319 continue;
3320
3321 if (!vdev_readable(child) ||
3322 (!vdev_writeable(child) && spa_writeable(spa))) {
3323 /*
3324 * Root special: if there is a top-level log
3325 * device, treat the root vdev as if it were
3326 * degraded.
3327 */
3328 if (child->vdev_islog && vd == rvd)
3329 degraded++;
3330 else
3331 faulted++;
3332 } else if (child->vdev_state <= VDEV_STATE_DEGRADED) {
3333 degraded++;
3334 }
3335
3336 if (child->vdev_stat.vs_aux == VDEV_AUX_CORRUPT_DATA)
3337 corrupted++;
3338 }
3339
3340 vd->vdev_ops->vdev_op_state_change(vd, faulted, degraded);
3341
3342 /*
3343 * Root special: if there is a top-level vdev that cannot be
3344 * opened due to corrupted metadata, then propagate the root
3345 * vdev's aux state as 'corrupt' rather than 'insufficient
3346 * replicas'.
3347 */
3348 if (corrupted && vd == rvd &&
3349 rvd->vdev_state == VDEV_STATE_CANT_OPEN)
3350 vdev_set_state(rvd, B_FALSE, VDEV_STATE_CANT_OPEN,
3351 VDEV_AUX_CORRUPT_DATA);
3352 }
3353
3354 if (vd->vdev_parent)
3355 vdev_propagate_state(vd->vdev_parent);
3356 }
3357
3358 /*
3359 * Set a vdev's state. If this is during an open, we don't update the parent
3360 * state, because we're in the process of opening children depth-first.
3361 * Otherwise, we propagate the change to the parent.
3362 *
3363 * If this routine places a device in a faulted state, an appropriate ereport is
3364 * generated.
3365 */
3366 void
3367 vdev_set_state(vdev_t *vd, boolean_t isopen, vdev_state_t state, vdev_aux_t aux)
3368 {
3369 uint64_t save_state;
3370 spa_t *spa = vd->vdev_spa;
3371
3372 if (state == vd->vdev_state) {
3373 vd->vdev_stat.vs_aux = aux;
3374 return;
3375 }
3376
3377 save_state = vd->vdev_state;
3378
3379 vd->vdev_state = state;
3380 vd->vdev_stat.vs_aux = aux;
3381
3382 /*
3383 * If we are setting the vdev state to anything but an open state, then
3384 * always close the underlying device unless the device has requested
3385 * a delayed close (i.e. we're about to remove or fault the device).
3386 * Otherwise, we keep accessible but invalid devices open forever.
3387 * We don't call vdev_close() itself, because that implies some extra
3388 * checks (offline, etc) that we don't want here. This is limited to
3389 * leaf devices, because otherwise closing the device will affect other
3390 * children.
3391 */
3392 if (!vd->vdev_delayed_close && vdev_is_dead(vd) &&
3393 vd->vdev_ops->vdev_op_leaf)
3394 vd->vdev_ops->vdev_op_close(vd);
3395
3396 if (vd->vdev_removed &&
3397 state == VDEV_STATE_CANT_OPEN &&
3398 (aux == VDEV_AUX_OPEN_FAILED || vd->vdev_checkremove)) {
3399 /*
3400 * If the previous state is set to VDEV_STATE_REMOVED, then this
3401 * device was previously marked removed and someone attempted to
3402 * reopen it. If this failed due to a nonexistent device, then
3403 * keep the device in the REMOVED state. We also let this be if
3404 * it is one of our special test online cases, which is only
3405 * attempting to online the device and shouldn't generate an FMA
3406 * fault.
3407 */
3408 vd->vdev_state = VDEV_STATE_REMOVED;
3409 vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
3410 } else if (state == VDEV_STATE_REMOVED) {
3411 vd->vdev_removed = B_TRUE;
3412 } else if (state == VDEV_STATE_CANT_OPEN) {
3413 /*
3414 * If we fail to open a vdev during an import or recovery, we
3415 * mark it as "not available", which signifies that it was
3416 * never there to begin with. Failure to open such a device
3417 * is not considered an error.
3418 */
3419 if ((spa_load_state(spa) == SPA_LOAD_IMPORT ||
3420 spa_load_state(spa) == SPA_LOAD_RECOVER) &&
3421 vd->vdev_ops->vdev_op_leaf)
3422 vd->vdev_not_present = 1;
3423
3424 /*
3425 * Post the appropriate ereport. If the 'prevstate' field is
3426 * set to something other than VDEV_STATE_UNKNOWN, it indicates
3427 * that this is part of a vdev_reopen(). In this case, we don't
3428 * want to post the ereport if the device was already in the
3429 * CANT_OPEN state beforehand.
3430 *
3431 * If the 'checkremove' flag is set, then this is an attempt to
3432 * online the device in response to an insertion event. If we
3433 * hit this case, then we have detected an insertion event for a
3434 * faulted or offline device that wasn't in the removed state.
3435 * In this scenario, we don't post an ereport because we are
3436 * about to replace the device, or attempt an online with
3437 * vdev_forcefault, which will generate the fault for us.
3438 */
3439 if ((vd->vdev_prevstate != state || vd->vdev_forcefault) &&
3440 !vd->vdev_not_present && !vd->vdev_checkremove &&
3441 vd != spa->spa_root_vdev) {
3442 const char *class;
3443
3444 switch (aux) {
3445 case VDEV_AUX_OPEN_FAILED:
3446 class = FM_EREPORT_ZFS_DEVICE_OPEN_FAILED;
3447 break;
3448 case VDEV_AUX_CORRUPT_DATA:
3449 class = FM_EREPORT_ZFS_DEVICE_CORRUPT_DATA;
3450 break;
3451 case VDEV_AUX_NO_REPLICAS:
3452 class = FM_EREPORT_ZFS_DEVICE_NO_REPLICAS;
3453 break;
3454 case VDEV_AUX_BAD_GUID_SUM:
3455 class = FM_EREPORT_ZFS_DEVICE_BAD_GUID_SUM;
3456 break;
3457 case VDEV_AUX_TOO_SMALL:
3458 class = FM_EREPORT_ZFS_DEVICE_TOO_SMALL;
3459 break;
3460 case VDEV_AUX_BAD_LABEL:
3461 class = FM_EREPORT_ZFS_DEVICE_BAD_LABEL;
3462 break;
3463 default:
3464 class = FM_EREPORT_ZFS_DEVICE_UNKNOWN;
3465 }
3466
3467 zfs_ereport_post(class, spa, vd, NULL, save_state, 0);
3468 }
3469
3470 /* Erase any notion of persistent removed state */
3471 vd->vdev_removed = B_FALSE;
3472 } else {
3473 vd->vdev_removed = B_FALSE;
3474 }
3475
3476 /*
3477 * Notify ZED of any significant state-change on a leaf vdev.
3478 *
3479 */
3480 if (vd->vdev_ops->vdev_op_leaf) {
3481 /* preserve original state from a vdev_reopen() */
3482 if ((vd->vdev_prevstate != VDEV_STATE_UNKNOWN) &&
3483 (vd->vdev_prevstate != vd->vdev_state) &&
3484 (save_state <= VDEV_STATE_CLOSED))
3485 save_state = vd->vdev_prevstate;
3486
3487 /* filter out state change due to initial vdev_open */
3488 if (save_state > VDEV_STATE_CLOSED)
3489 zfs_post_state_change(spa, vd, save_state);
3490 }
3491
3492 if (!isopen && vd->vdev_parent)
3493 vdev_propagate_state(vd->vdev_parent);
3494 }
3495
3496 /*
3497 * Check the vdev configuration to ensure that it's capable of supporting
3498 * a root pool.
3499 */
3500 boolean_t
3501 vdev_is_bootable(vdev_t *vd)
3502 {
3503 #if defined(__sun__) || defined(__sun)
3504 /*
3505 * Currently, we do not support RAID-Z or partial configuration.
3506 * In addition, only a single top-level vdev is allowed and none of the
3507 * leaves can be wholedisks.
3508 */
3509 int c;
3510
3511 if (!vd->vdev_ops->vdev_op_leaf) {
3512 char *vdev_type = vd->vdev_ops->vdev_op_type;
3513
3514 if (strcmp(vdev_type, VDEV_TYPE_ROOT) == 0 &&
3515 vd->vdev_children > 1) {
3516 return (B_FALSE);
3517 } else if (strcmp(vdev_type, VDEV_TYPE_RAIDZ) == 0 ||
3518 strcmp(vdev_type, VDEV_TYPE_MISSING) == 0) {
3519 return (B_FALSE);
3520 }
3521 } else if (vd->vdev_wholedisk == 1) {
3522 return (B_FALSE);
3523 }
3524
3525 for (c = 0; c < vd->vdev_children; c++) {
3526 if (!vdev_is_bootable(vd->vdev_child[c]))
3527 return (B_FALSE);
3528 }
3529 #endif /* __sun__ || __sun */
3530 return (B_TRUE);
3531 }
3532
3533 /*
3534 * Load the state from the original vdev tree (ovd) which
3535 * we've retrieved from the MOS config object. If the original
3536 * vdev was offline or faulted then we transfer that state to the
3537 * device in the current vdev tree (nvd).
3538 */
3539 void
3540 vdev_load_log_state(vdev_t *nvd, vdev_t *ovd)
3541 {
3542 int c;
3543
3544 ASSERT(nvd->vdev_top->vdev_islog);
3545 ASSERT(spa_config_held(nvd->vdev_spa,
3546 SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
3547 ASSERT3U(nvd->vdev_guid, ==, ovd->vdev_guid);
3548
3549 for (c = 0; c < nvd->vdev_children; c++)
3550 vdev_load_log_state(nvd->vdev_child[c], ovd->vdev_child[c]);
3551
3552 if (nvd->vdev_ops->vdev_op_leaf) {
3553 /*
3554 * Restore the persistent vdev state
3555 */
3556 nvd->vdev_offline = ovd->vdev_offline;
3557 nvd->vdev_faulted = ovd->vdev_faulted;
3558 nvd->vdev_degraded = ovd->vdev_degraded;
3559 nvd->vdev_removed = ovd->vdev_removed;
3560 }
3561 }
3562
3563 /*
3564 * Determine if a log device has valid content. If the vdev was
3565 * removed or faulted in the MOS config then we know that
3566 * the content on the log device has already been written to the pool.
3567 */
3568 boolean_t
3569 vdev_log_state_valid(vdev_t *vd)
3570 {
3571 int c;
3572
3573 if (vd->vdev_ops->vdev_op_leaf && !vd->vdev_faulted &&
3574 !vd->vdev_removed)
3575 return (B_TRUE);
3576
3577 for (c = 0; c < vd->vdev_children; c++)
3578 if (vdev_log_state_valid(vd->vdev_child[c]))
3579 return (B_TRUE);
3580
3581 return (B_FALSE);
3582 }
3583
3584 /*
3585 * Expand a vdev if possible.
3586 */
3587 void
3588 vdev_expand(vdev_t *vd, uint64_t txg)
3589 {
3590 ASSERT(vd->vdev_top == vd);
3591 ASSERT(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
3592
3593 if ((vd->vdev_asize >> vd->vdev_ms_shift) > vd->vdev_ms_count) {
3594 VERIFY(vdev_metaslab_init(vd, txg) == 0);
3595 vdev_config_dirty(vd);
3596 }
3597 }
3598
3599 /*
3600 * Split a vdev.
3601 */
3602 void
3603 vdev_split(vdev_t *vd)
3604 {
3605 vdev_t *cvd, *pvd = vd->vdev_parent;
3606
3607 vdev_remove_child(pvd, vd);
3608 vdev_compact_children(pvd);
3609
3610 cvd = pvd->vdev_child[0];
3611 if (pvd->vdev_children == 1) {
3612 vdev_remove_parent(cvd);
3613 cvd->vdev_splitting = B_TRUE;
3614 }
3615 vdev_propagate_state(cvd);
3616 }
3617
3618 void
3619 vdev_deadman(vdev_t *vd)
3620 {
3621 int c;
3622
3623 for (c = 0; c < vd->vdev_children; c++) {
3624 vdev_t *cvd = vd->vdev_child[c];
3625
3626 vdev_deadman(cvd);
3627 }
3628
3629 if (vd->vdev_ops->vdev_op_leaf) {
3630 vdev_queue_t *vq = &vd->vdev_queue;
3631
3632 mutex_enter(&vq->vq_lock);
3633 if (avl_numnodes(&vq->vq_active_tree) > 0) {
3634 spa_t *spa = vd->vdev_spa;
3635 zio_t *fio;
3636 uint64_t delta;
3637
3638 /*
3639 * Look at the head of all the pending queues,
3640 * if any I/O has been outstanding for longer than
3641 * the spa_deadman_synctime we log a zevent.
3642 */
3643 fio = avl_first(&vq->vq_active_tree);
3644 delta = gethrtime() - fio->io_timestamp;
3645 if (delta > spa_deadman_synctime(spa)) {
3646 zfs_dbgmsg("SLOW IO: zio timestamp %lluns, "
3647 "delta %lluns, last io %lluns",
3648 fio->io_timestamp, delta,
3649 vq->vq_io_complete_ts);
3650 zfs_ereport_post(FM_EREPORT_ZFS_DELAY,
3651 spa, vd, fio, 0, 0);
3652 }
3653 }
3654 mutex_exit(&vq->vq_lock);
3655 }
3656 }
3657
3658 #if defined(_KERNEL) && defined(HAVE_SPL)
3659 EXPORT_SYMBOL(vdev_fault);
3660 EXPORT_SYMBOL(vdev_degrade);
3661 EXPORT_SYMBOL(vdev_online);
3662 EXPORT_SYMBOL(vdev_offline);
3663 EXPORT_SYMBOL(vdev_clear);
3664
3665 module_param(metaslabs_per_vdev, int, 0644);
3666 MODULE_PARM_DESC(metaslabs_per_vdev,
3667 "Divide added vdev into approximately (but no more than) this number "
3668 "of metaslabs");
3669 #endif