]> git.proxmox.com Git - mirror_zfs.git/blob - module/zfs/vdev.c
Improved error handling for extreme rewinds
[mirror_zfs.git] / module / zfs / vdev.c
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22 /*
23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright (c) 2011, 2018 by Delphix. All rights reserved.
25 * Copyright 2017 Nexenta Systems, Inc.
26 * Copyright (c) 2014 Integros [integros.com]
27 * Copyright 2016 Toomas Soome <tsoome@me.com>
28 * Copyright 2017 Joyent, Inc.
29 * Copyright (c) 2017, Intel Corporation.
30 */
31
32 #include <sys/zfs_context.h>
33 #include <sys/fm/fs/zfs.h>
34 #include <sys/spa.h>
35 #include <sys/spa_impl.h>
36 #include <sys/bpobj.h>
37 #include <sys/dmu.h>
38 #include <sys/dmu_tx.h>
39 #include <sys/dsl_dir.h>
40 #include <sys/vdev_impl.h>
41 #include <sys/uberblock_impl.h>
42 #include <sys/metaslab.h>
43 #include <sys/metaslab_impl.h>
44 #include <sys/space_map.h>
45 #include <sys/space_reftree.h>
46 #include <sys/zio.h>
47 #include <sys/zap.h>
48 #include <sys/fs/zfs.h>
49 #include <sys/arc.h>
50 #include <sys/zil.h>
51 #include <sys/dsl_scan.h>
52 #include <sys/abd.h>
53 #include <sys/zvol.h>
54 #include <sys/zfs_ratelimit.h>
55
56 /* target number of metaslabs per top-level vdev */
57 int vdev_max_ms_count = 200;
58
59 /* minimum number of metaslabs per top-level vdev */
60 int vdev_min_ms_count = 16;
61
62 /* practical upper limit of total metaslabs per top-level vdev */
63 int vdev_ms_count_limit = 1ULL << 17;
64
65 /* lower limit for metaslab size (512M) */
66 int vdev_default_ms_shift = 29;
67
68 /* upper limit for metaslab size (256G) */
69 int vdev_max_ms_shift = 38;
70
71 int vdev_validate_skip = B_FALSE;
72
73 /*
74 * Since the DTL space map of a vdev is not expected to have a lot of
75 * entries, we default its block size to 4K.
76 */
77 int vdev_dtl_sm_blksz = (1 << 12);
78
79 /*
80 * Rate limit delay events to this many IO delays per second.
81 */
82 unsigned int zfs_delays_per_second = 20;
83
84 /*
85 * Rate limit checksum events after this many checksum errors per second.
86 */
87 unsigned int zfs_checksums_per_second = 20;
88
89 /*
90 * Ignore errors during scrub/resilver. Allows to work around resilver
91 * upon import when there are pool errors.
92 */
93 int zfs_scan_ignore_errors = 0;
94
95 /*
96 * vdev-wide space maps that have lots of entries written to them at
97 * the end of each transaction can benefit from a higher I/O bandwidth
98 * (e.g. vdev_obsolete_sm), thus we default their block size to 128K.
99 */
100 int vdev_standard_sm_blksz = (1 << 17);
101
102 /*PRINTFLIKE2*/
103 void
104 vdev_dbgmsg(vdev_t *vd, const char *fmt, ...)
105 {
106 va_list adx;
107 char buf[256];
108
109 va_start(adx, fmt);
110 (void) vsnprintf(buf, sizeof (buf), fmt, adx);
111 va_end(adx);
112
113 if (vd->vdev_path != NULL) {
114 zfs_dbgmsg("%s vdev '%s': %s", vd->vdev_ops->vdev_op_type,
115 vd->vdev_path, buf);
116 } else {
117 zfs_dbgmsg("%s-%llu vdev (guid %llu): %s",
118 vd->vdev_ops->vdev_op_type,
119 (u_longlong_t)vd->vdev_id,
120 (u_longlong_t)vd->vdev_guid, buf);
121 }
122 }
123
124 void
125 vdev_dbgmsg_print_tree(vdev_t *vd, int indent)
126 {
127 char state[20];
128
129 if (vd->vdev_ishole || vd->vdev_ops == &vdev_missing_ops) {
130 zfs_dbgmsg("%*svdev %u: %s", indent, "", vd->vdev_id,
131 vd->vdev_ops->vdev_op_type);
132 return;
133 }
134
135 switch (vd->vdev_state) {
136 case VDEV_STATE_UNKNOWN:
137 (void) snprintf(state, sizeof (state), "unknown");
138 break;
139 case VDEV_STATE_CLOSED:
140 (void) snprintf(state, sizeof (state), "closed");
141 break;
142 case VDEV_STATE_OFFLINE:
143 (void) snprintf(state, sizeof (state), "offline");
144 break;
145 case VDEV_STATE_REMOVED:
146 (void) snprintf(state, sizeof (state), "removed");
147 break;
148 case VDEV_STATE_CANT_OPEN:
149 (void) snprintf(state, sizeof (state), "can't open");
150 break;
151 case VDEV_STATE_FAULTED:
152 (void) snprintf(state, sizeof (state), "faulted");
153 break;
154 case VDEV_STATE_DEGRADED:
155 (void) snprintf(state, sizeof (state), "degraded");
156 break;
157 case VDEV_STATE_HEALTHY:
158 (void) snprintf(state, sizeof (state), "healthy");
159 break;
160 default:
161 (void) snprintf(state, sizeof (state), "<state %u>",
162 (uint_t)vd->vdev_state);
163 }
164
165 zfs_dbgmsg("%*svdev %u: %s%s, guid: %llu, path: %s, %s", indent,
166 "", (int)vd->vdev_id, vd->vdev_ops->vdev_op_type,
167 vd->vdev_islog ? " (log)" : "",
168 (u_longlong_t)vd->vdev_guid,
169 vd->vdev_path ? vd->vdev_path : "N/A", state);
170
171 for (uint64_t i = 0; i < vd->vdev_children; i++)
172 vdev_dbgmsg_print_tree(vd->vdev_child[i], indent + 2);
173 }
174
175 /*
176 * Virtual device management.
177 */
178
179 static vdev_ops_t *vdev_ops_table[] = {
180 &vdev_root_ops,
181 &vdev_raidz_ops,
182 &vdev_mirror_ops,
183 &vdev_replacing_ops,
184 &vdev_spare_ops,
185 &vdev_disk_ops,
186 &vdev_file_ops,
187 &vdev_missing_ops,
188 &vdev_hole_ops,
189 &vdev_indirect_ops,
190 NULL
191 };
192
193 /*
194 * Given a vdev type, return the appropriate ops vector.
195 */
196 static vdev_ops_t *
197 vdev_getops(const char *type)
198 {
199 vdev_ops_t *ops, **opspp;
200
201 for (opspp = vdev_ops_table; (ops = *opspp) != NULL; opspp++)
202 if (strcmp(ops->vdev_op_type, type) == 0)
203 break;
204
205 return (ops);
206 }
207
208 /*
209 * Derive the enumerated alloction bias from string input.
210 * String origin is either the per-vdev zap or zpool(1M).
211 */
212 static vdev_alloc_bias_t
213 vdev_derive_alloc_bias(const char *bias)
214 {
215 vdev_alloc_bias_t alloc_bias = VDEV_BIAS_NONE;
216
217 if (strcmp(bias, VDEV_ALLOC_BIAS_LOG) == 0)
218 alloc_bias = VDEV_BIAS_LOG;
219 else if (strcmp(bias, VDEV_ALLOC_BIAS_SPECIAL) == 0)
220 alloc_bias = VDEV_BIAS_SPECIAL;
221 else if (strcmp(bias, VDEV_ALLOC_BIAS_DEDUP) == 0)
222 alloc_bias = VDEV_BIAS_DEDUP;
223
224 return (alloc_bias);
225 }
226
227 /*
228 * Default asize function: return the MAX of psize with the asize of
229 * all children. This is what's used by anything other than RAID-Z.
230 */
231 uint64_t
232 vdev_default_asize(vdev_t *vd, uint64_t psize)
233 {
234 uint64_t asize = P2ROUNDUP(psize, 1ULL << vd->vdev_top->vdev_ashift);
235 uint64_t csize;
236
237 for (int c = 0; c < vd->vdev_children; c++) {
238 csize = vdev_psize_to_asize(vd->vdev_child[c], psize);
239 asize = MAX(asize, csize);
240 }
241
242 return (asize);
243 }
244
245 /*
246 * Get the minimum allocatable size. We define the allocatable size as
247 * the vdev's asize rounded to the nearest metaslab. This allows us to
248 * replace or attach devices which don't have the same physical size but
249 * can still satisfy the same number of allocations.
250 */
251 uint64_t
252 vdev_get_min_asize(vdev_t *vd)
253 {
254 vdev_t *pvd = vd->vdev_parent;
255
256 /*
257 * If our parent is NULL (inactive spare or cache) or is the root,
258 * just return our own asize.
259 */
260 if (pvd == NULL)
261 return (vd->vdev_asize);
262
263 /*
264 * The top-level vdev just returns the allocatable size rounded
265 * to the nearest metaslab.
266 */
267 if (vd == vd->vdev_top)
268 return (P2ALIGN(vd->vdev_asize, 1ULL << vd->vdev_ms_shift));
269
270 /*
271 * The allocatable space for a raidz vdev is N * sizeof(smallest child),
272 * so each child must provide at least 1/Nth of its asize.
273 */
274 if (pvd->vdev_ops == &vdev_raidz_ops)
275 return ((pvd->vdev_min_asize + pvd->vdev_children - 1) /
276 pvd->vdev_children);
277
278 return (pvd->vdev_min_asize);
279 }
280
281 void
282 vdev_set_min_asize(vdev_t *vd)
283 {
284 vd->vdev_min_asize = vdev_get_min_asize(vd);
285
286 for (int c = 0; c < vd->vdev_children; c++)
287 vdev_set_min_asize(vd->vdev_child[c]);
288 }
289
290 vdev_t *
291 vdev_lookup_top(spa_t *spa, uint64_t vdev)
292 {
293 vdev_t *rvd = spa->spa_root_vdev;
294
295 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
296
297 if (vdev < rvd->vdev_children) {
298 ASSERT(rvd->vdev_child[vdev] != NULL);
299 return (rvd->vdev_child[vdev]);
300 }
301
302 return (NULL);
303 }
304
305 vdev_t *
306 vdev_lookup_by_guid(vdev_t *vd, uint64_t guid)
307 {
308 vdev_t *mvd;
309
310 if (vd->vdev_guid == guid)
311 return (vd);
312
313 for (int c = 0; c < vd->vdev_children; c++)
314 if ((mvd = vdev_lookup_by_guid(vd->vdev_child[c], guid)) !=
315 NULL)
316 return (mvd);
317
318 return (NULL);
319 }
320
321 static int
322 vdev_count_leaves_impl(vdev_t *vd)
323 {
324 int n = 0;
325
326 if (vd->vdev_ops->vdev_op_leaf)
327 return (1);
328
329 for (int c = 0; c < vd->vdev_children; c++)
330 n += vdev_count_leaves_impl(vd->vdev_child[c]);
331
332 return (n);
333 }
334
335 int
336 vdev_count_leaves(spa_t *spa)
337 {
338 int rc;
339
340 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
341 rc = vdev_count_leaves_impl(spa->spa_root_vdev);
342 spa_config_exit(spa, SCL_VDEV, FTAG);
343
344 return (rc);
345 }
346
347 void
348 vdev_add_child(vdev_t *pvd, vdev_t *cvd)
349 {
350 size_t oldsize, newsize;
351 uint64_t id = cvd->vdev_id;
352 vdev_t **newchild;
353
354 ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
355 ASSERT(cvd->vdev_parent == NULL);
356
357 cvd->vdev_parent = pvd;
358
359 if (pvd == NULL)
360 return;
361
362 ASSERT(id >= pvd->vdev_children || pvd->vdev_child[id] == NULL);
363
364 oldsize = pvd->vdev_children * sizeof (vdev_t *);
365 pvd->vdev_children = MAX(pvd->vdev_children, id + 1);
366 newsize = pvd->vdev_children * sizeof (vdev_t *);
367
368 newchild = kmem_alloc(newsize, KM_SLEEP);
369 if (pvd->vdev_child != NULL) {
370 bcopy(pvd->vdev_child, newchild, oldsize);
371 kmem_free(pvd->vdev_child, oldsize);
372 }
373
374 pvd->vdev_child = newchild;
375 pvd->vdev_child[id] = cvd;
376
377 cvd->vdev_top = (pvd->vdev_top ? pvd->vdev_top: cvd);
378 ASSERT(cvd->vdev_top->vdev_parent->vdev_parent == NULL);
379
380 /*
381 * Walk up all ancestors to update guid sum.
382 */
383 for (; pvd != NULL; pvd = pvd->vdev_parent)
384 pvd->vdev_guid_sum += cvd->vdev_guid_sum;
385 }
386
387 void
388 vdev_remove_child(vdev_t *pvd, vdev_t *cvd)
389 {
390 int c;
391 uint_t id = cvd->vdev_id;
392
393 ASSERT(cvd->vdev_parent == pvd);
394
395 if (pvd == NULL)
396 return;
397
398 ASSERT(id < pvd->vdev_children);
399 ASSERT(pvd->vdev_child[id] == cvd);
400
401 pvd->vdev_child[id] = NULL;
402 cvd->vdev_parent = NULL;
403
404 for (c = 0; c < pvd->vdev_children; c++)
405 if (pvd->vdev_child[c])
406 break;
407
408 if (c == pvd->vdev_children) {
409 kmem_free(pvd->vdev_child, c * sizeof (vdev_t *));
410 pvd->vdev_child = NULL;
411 pvd->vdev_children = 0;
412 }
413
414 /*
415 * Walk up all ancestors to update guid sum.
416 */
417 for (; pvd != NULL; pvd = pvd->vdev_parent)
418 pvd->vdev_guid_sum -= cvd->vdev_guid_sum;
419 }
420
421 /*
422 * Remove any holes in the child array.
423 */
424 void
425 vdev_compact_children(vdev_t *pvd)
426 {
427 vdev_t **newchild, *cvd;
428 int oldc = pvd->vdev_children;
429 int newc;
430
431 ASSERT(spa_config_held(pvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
432
433 if (oldc == 0)
434 return;
435
436 for (int c = newc = 0; c < oldc; c++)
437 if (pvd->vdev_child[c])
438 newc++;
439
440 if (newc > 0) {
441 newchild = kmem_zalloc(newc * sizeof (vdev_t *), KM_SLEEP);
442
443 for (int c = newc = 0; c < oldc; c++) {
444 if ((cvd = pvd->vdev_child[c]) != NULL) {
445 newchild[newc] = cvd;
446 cvd->vdev_id = newc++;
447 }
448 }
449 } else {
450 newchild = NULL;
451 }
452
453 kmem_free(pvd->vdev_child, oldc * sizeof (vdev_t *));
454 pvd->vdev_child = newchild;
455 pvd->vdev_children = newc;
456 }
457
458 /*
459 * Allocate and minimally initialize a vdev_t.
460 */
461 vdev_t *
462 vdev_alloc_common(spa_t *spa, uint_t id, uint64_t guid, vdev_ops_t *ops)
463 {
464 vdev_t *vd;
465 vdev_indirect_config_t *vic;
466
467 vd = kmem_zalloc(sizeof (vdev_t), KM_SLEEP);
468 vic = &vd->vdev_indirect_config;
469
470 if (spa->spa_root_vdev == NULL) {
471 ASSERT(ops == &vdev_root_ops);
472 spa->spa_root_vdev = vd;
473 spa->spa_load_guid = spa_generate_guid(NULL);
474 }
475
476 if (guid == 0 && ops != &vdev_hole_ops) {
477 if (spa->spa_root_vdev == vd) {
478 /*
479 * The root vdev's guid will also be the pool guid,
480 * which must be unique among all pools.
481 */
482 guid = spa_generate_guid(NULL);
483 } else {
484 /*
485 * Any other vdev's guid must be unique within the pool.
486 */
487 guid = spa_generate_guid(spa);
488 }
489 ASSERT(!spa_guid_exists(spa_guid(spa), guid));
490 }
491
492 vd->vdev_spa = spa;
493 vd->vdev_id = id;
494 vd->vdev_guid = guid;
495 vd->vdev_guid_sum = guid;
496 vd->vdev_ops = ops;
497 vd->vdev_state = VDEV_STATE_CLOSED;
498 vd->vdev_ishole = (ops == &vdev_hole_ops);
499 vic->vic_prev_indirect_vdev = UINT64_MAX;
500
501 rw_init(&vd->vdev_indirect_rwlock, NULL, RW_DEFAULT, NULL);
502 mutex_init(&vd->vdev_obsolete_lock, NULL, MUTEX_DEFAULT, NULL);
503 vd->vdev_obsolete_segments = range_tree_create(NULL, NULL);
504
505 /*
506 * Initialize rate limit structs for events. We rate limit ZIO delay
507 * and checksum events so that we don't overwhelm ZED with thousands
508 * of events when a disk is acting up.
509 */
510 zfs_ratelimit_init(&vd->vdev_delay_rl, &zfs_delays_per_second, 1);
511 zfs_ratelimit_init(&vd->vdev_checksum_rl, &zfs_checksums_per_second, 1);
512
513 list_link_init(&vd->vdev_config_dirty_node);
514 list_link_init(&vd->vdev_state_dirty_node);
515 mutex_init(&vd->vdev_dtl_lock, NULL, MUTEX_NOLOCKDEP, NULL);
516 mutex_init(&vd->vdev_stat_lock, NULL, MUTEX_DEFAULT, NULL);
517 mutex_init(&vd->vdev_probe_lock, NULL, MUTEX_DEFAULT, NULL);
518 mutex_init(&vd->vdev_queue_lock, NULL, MUTEX_DEFAULT, NULL);
519 mutex_init(&vd->vdev_scan_io_queue_lock, NULL, MUTEX_DEFAULT, NULL);
520
521 for (int t = 0; t < DTL_TYPES; t++) {
522 vd->vdev_dtl[t] = range_tree_create(NULL, NULL);
523 }
524 txg_list_create(&vd->vdev_ms_list, spa,
525 offsetof(struct metaslab, ms_txg_node));
526 txg_list_create(&vd->vdev_dtl_list, spa,
527 offsetof(struct vdev, vdev_dtl_node));
528 vd->vdev_stat.vs_timestamp = gethrtime();
529 vdev_queue_init(vd);
530 vdev_cache_init(vd);
531
532 return (vd);
533 }
534
535 /*
536 * Allocate a new vdev. The 'alloctype' is used to control whether we are
537 * creating a new vdev or loading an existing one - the behavior is slightly
538 * different for each case.
539 */
540 int
541 vdev_alloc(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, uint_t id,
542 int alloctype)
543 {
544 vdev_ops_t *ops;
545 char *type;
546 uint64_t guid = 0, islog, nparity;
547 vdev_t *vd;
548 vdev_indirect_config_t *vic;
549 char *tmp = NULL;
550 int rc;
551 vdev_alloc_bias_t alloc_bias = VDEV_BIAS_NONE;
552 boolean_t top_level = (parent && !parent->vdev_parent);
553
554 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
555
556 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) != 0)
557 return (SET_ERROR(EINVAL));
558
559 if ((ops = vdev_getops(type)) == NULL)
560 return (SET_ERROR(EINVAL));
561
562 /*
563 * If this is a load, get the vdev guid from the nvlist.
564 * Otherwise, vdev_alloc_common() will generate one for us.
565 */
566 if (alloctype == VDEV_ALLOC_LOAD) {
567 uint64_t label_id;
568
569 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ID, &label_id) ||
570 label_id != id)
571 return (SET_ERROR(EINVAL));
572
573 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
574 return (SET_ERROR(EINVAL));
575 } else if (alloctype == VDEV_ALLOC_SPARE) {
576 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
577 return (SET_ERROR(EINVAL));
578 } else if (alloctype == VDEV_ALLOC_L2CACHE) {
579 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
580 return (SET_ERROR(EINVAL));
581 } else if (alloctype == VDEV_ALLOC_ROOTPOOL) {
582 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
583 return (SET_ERROR(EINVAL));
584 }
585
586 /*
587 * The first allocated vdev must be of type 'root'.
588 */
589 if (ops != &vdev_root_ops && spa->spa_root_vdev == NULL)
590 return (SET_ERROR(EINVAL));
591
592 /*
593 * Determine whether we're a log vdev.
594 */
595 islog = 0;
596 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_LOG, &islog);
597 if (islog && spa_version(spa) < SPA_VERSION_SLOGS)
598 return (SET_ERROR(ENOTSUP));
599
600 if (ops == &vdev_hole_ops && spa_version(spa) < SPA_VERSION_HOLES)
601 return (SET_ERROR(ENOTSUP));
602
603 /*
604 * Set the nparity property for RAID-Z vdevs.
605 */
606 nparity = -1ULL;
607 if (ops == &vdev_raidz_ops) {
608 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NPARITY,
609 &nparity) == 0) {
610 if (nparity == 0 || nparity > VDEV_RAIDZ_MAXPARITY)
611 return (SET_ERROR(EINVAL));
612 /*
613 * Previous versions could only support 1 or 2 parity
614 * device.
615 */
616 if (nparity > 1 &&
617 spa_version(spa) < SPA_VERSION_RAIDZ2)
618 return (SET_ERROR(ENOTSUP));
619 if (nparity > 2 &&
620 spa_version(spa) < SPA_VERSION_RAIDZ3)
621 return (SET_ERROR(ENOTSUP));
622 } else {
623 /*
624 * We require the parity to be specified for SPAs that
625 * support multiple parity levels.
626 */
627 if (spa_version(spa) >= SPA_VERSION_RAIDZ2)
628 return (SET_ERROR(EINVAL));
629 /*
630 * Otherwise, we default to 1 parity device for RAID-Z.
631 */
632 nparity = 1;
633 }
634 } else {
635 nparity = 0;
636 }
637 ASSERT(nparity != -1ULL);
638
639 /*
640 * If creating a top-level vdev, check for allocation classes input
641 */
642 if (top_level && alloctype == VDEV_ALLOC_ADD) {
643 char *bias;
644
645 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_ALLOCATION_BIAS,
646 &bias) == 0) {
647 alloc_bias = vdev_derive_alloc_bias(bias);
648
649 /* spa_vdev_add() expects feature to be enabled */
650 if (spa->spa_load_state != SPA_LOAD_CREATE &&
651 !spa_feature_is_enabled(spa,
652 SPA_FEATURE_ALLOCATION_CLASSES)) {
653 return (SET_ERROR(ENOTSUP));
654 }
655 }
656 }
657
658 vd = vdev_alloc_common(spa, id, guid, ops);
659 vic = &vd->vdev_indirect_config;
660
661 vd->vdev_islog = islog;
662 vd->vdev_nparity = nparity;
663 if (top_level && alloc_bias != VDEV_BIAS_NONE)
664 vd->vdev_alloc_bias = alloc_bias;
665
666 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &vd->vdev_path) == 0)
667 vd->vdev_path = spa_strdup(vd->vdev_path);
668
669 /*
670 * ZPOOL_CONFIG_AUX_STATE = "external" means we previously forced a
671 * fault on a vdev and want it to persist across imports (like with
672 * zpool offline -f).
673 */
674 rc = nvlist_lookup_string(nv, ZPOOL_CONFIG_AUX_STATE, &tmp);
675 if (rc == 0 && tmp != NULL && strcmp(tmp, "external") == 0) {
676 vd->vdev_stat.vs_aux = VDEV_AUX_EXTERNAL;
677 vd->vdev_faulted = 1;
678 vd->vdev_label_aux = VDEV_AUX_EXTERNAL;
679 }
680
681 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_DEVID, &vd->vdev_devid) == 0)
682 vd->vdev_devid = spa_strdup(vd->vdev_devid);
683 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PHYS_PATH,
684 &vd->vdev_physpath) == 0)
685 vd->vdev_physpath = spa_strdup(vd->vdev_physpath);
686
687 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_VDEV_ENC_SYSFS_PATH,
688 &vd->vdev_enc_sysfs_path) == 0)
689 vd->vdev_enc_sysfs_path = spa_strdup(vd->vdev_enc_sysfs_path);
690
691 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_FRU, &vd->vdev_fru) == 0)
692 vd->vdev_fru = spa_strdup(vd->vdev_fru);
693
694 /*
695 * Set the whole_disk property. If it's not specified, leave the value
696 * as -1.
697 */
698 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK,
699 &vd->vdev_wholedisk) != 0)
700 vd->vdev_wholedisk = -1ULL;
701
702 ASSERT0(vic->vic_mapping_object);
703 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_INDIRECT_OBJECT,
704 &vic->vic_mapping_object);
705 ASSERT0(vic->vic_births_object);
706 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_INDIRECT_BIRTHS,
707 &vic->vic_births_object);
708 ASSERT3U(vic->vic_prev_indirect_vdev, ==, UINT64_MAX);
709 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_PREV_INDIRECT_VDEV,
710 &vic->vic_prev_indirect_vdev);
711
712 /*
713 * Look for the 'not present' flag. This will only be set if the device
714 * was not present at the time of import.
715 */
716 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT,
717 &vd->vdev_not_present);
718
719 /*
720 * Get the alignment requirement.
721 */
722 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASHIFT, &vd->vdev_ashift);
723
724 /*
725 * Retrieve the vdev creation time.
726 */
727 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_CREATE_TXG,
728 &vd->vdev_crtxg);
729
730 /*
731 * If we're a top-level vdev, try to load the allocation parameters.
732 */
733 if (top_level &&
734 (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_SPLIT)) {
735 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY,
736 &vd->vdev_ms_array);
737 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT,
738 &vd->vdev_ms_shift);
739 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASIZE,
740 &vd->vdev_asize);
741 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVING,
742 &vd->vdev_removing);
743 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_VDEV_TOP_ZAP,
744 &vd->vdev_top_zap);
745 } else {
746 ASSERT0(vd->vdev_top_zap);
747 }
748
749 if (top_level && alloctype != VDEV_ALLOC_ATTACH) {
750 ASSERT(alloctype == VDEV_ALLOC_LOAD ||
751 alloctype == VDEV_ALLOC_ADD ||
752 alloctype == VDEV_ALLOC_SPLIT ||
753 alloctype == VDEV_ALLOC_ROOTPOOL);
754 /* Note: metaslab_group_create() is now deferred */
755 }
756
757 if (vd->vdev_ops->vdev_op_leaf &&
758 (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_SPLIT)) {
759 (void) nvlist_lookup_uint64(nv,
760 ZPOOL_CONFIG_VDEV_LEAF_ZAP, &vd->vdev_leaf_zap);
761 } else {
762 ASSERT0(vd->vdev_leaf_zap);
763 }
764
765 /*
766 * If we're a leaf vdev, try to load the DTL object and other state.
767 */
768
769 if (vd->vdev_ops->vdev_op_leaf &&
770 (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_L2CACHE ||
771 alloctype == VDEV_ALLOC_ROOTPOOL)) {
772 if (alloctype == VDEV_ALLOC_LOAD) {
773 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DTL,
774 &vd->vdev_dtl_object);
775 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_UNSPARE,
776 &vd->vdev_unspare);
777 }
778
779 if (alloctype == VDEV_ALLOC_ROOTPOOL) {
780 uint64_t spare = 0;
781
782 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_SPARE,
783 &spare) == 0 && spare)
784 spa_spare_add(vd);
785 }
786
787 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_OFFLINE,
788 &vd->vdev_offline);
789
790 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_RESILVER_TXG,
791 &vd->vdev_resilver_txg);
792
793 /*
794 * In general, when importing a pool we want to ignore the
795 * persistent fault state, as the diagnosis made on another
796 * system may not be valid in the current context. The only
797 * exception is if we forced a vdev to a persistently faulted
798 * state with 'zpool offline -f'. The persistent fault will
799 * remain across imports until cleared.
800 *
801 * Local vdevs will remain in the faulted state.
802 */
803 if (spa_load_state(spa) == SPA_LOAD_OPEN ||
804 spa_load_state(spa) == SPA_LOAD_IMPORT) {
805 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_FAULTED,
806 &vd->vdev_faulted);
807 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DEGRADED,
808 &vd->vdev_degraded);
809 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVED,
810 &vd->vdev_removed);
811
812 if (vd->vdev_faulted || vd->vdev_degraded) {
813 char *aux;
814
815 vd->vdev_label_aux =
816 VDEV_AUX_ERR_EXCEEDED;
817 if (nvlist_lookup_string(nv,
818 ZPOOL_CONFIG_AUX_STATE, &aux) == 0 &&
819 strcmp(aux, "external") == 0)
820 vd->vdev_label_aux = VDEV_AUX_EXTERNAL;
821 else
822 vd->vdev_faulted = 0ULL;
823 }
824 }
825 }
826
827 /*
828 * Add ourselves to the parent's list of children.
829 */
830 vdev_add_child(parent, vd);
831
832 *vdp = vd;
833
834 return (0);
835 }
836
837 void
838 vdev_free(vdev_t *vd)
839 {
840 spa_t *spa = vd->vdev_spa;
841
842 /*
843 * Scan queues are normally destroyed at the end of a scan. If the
844 * queue exists here, that implies the vdev is being removed while
845 * the scan is still running.
846 */
847 if (vd->vdev_scan_io_queue != NULL) {
848 mutex_enter(&vd->vdev_scan_io_queue_lock);
849 dsl_scan_io_queue_destroy(vd->vdev_scan_io_queue);
850 vd->vdev_scan_io_queue = NULL;
851 mutex_exit(&vd->vdev_scan_io_queue_lock);
852 }
853
854 /*
855 * vdev_free() implies closing the vdev first. This is simpler than
856 * trying to ensure complicated semantics for all callers.
857 */
858 vdev_close(vd);
859
860 ASSERT(!list_link_active(&vd->vdev_config_dirty_node));
861 ASSERT(!list_link_active(&vd->vdev_state_dirty_node));
862
863 /*
864 * Free all children.
865 */
866 for (int c = 0; c < vd->vdev_children; c++)
867 vdev_free(vd->vdev_child[c]);
868
869 ASSERT(vd->vdev_child == NULL);
870 ASSERT(vd->vdev_guid_sum == vd->vdev_guid);
871
872 /*
873 * Discard allocation state.
874 */
875 if (vd->vdev_mg != NULL) {
876 vdev_metaslab_fini(vd);
877 metaslab_group_destroy(vd->vdev_mg);
878 }
879
880 ASSERT0(vd->vdev_stat.vs_space);
881 ASSERT0(vd->vdev_stat.vs_dspace);
882 ASSERT0(vd->vdev_stat.vs_alloc);
883
884 /*
885 * Remove this vdev from its parent's child list.
886 */
887 vdev_remove_child(vd->vdev_parent, vd);
888
889 ASSERT(vd->vdev_parent == NULL);
890
891 /*
892 * Clean up vdev structure.
893 */
894 vdev_queue_fini(vd);
895 vdev_cache_fini(vd);
896
897 if (vd->vdev_path)
898 spa_strfree(vd->vdev_path);
899 if (vd->vdev_devid)
900 spa_strfree(vd->vdev_devid);
901 if (vd->vdev_physpath)
902 spa_strfree(vd->vdev_physpath);
903
904 if (vd->vdev_enc_sysfs_path)
905 spa_strfree(vd->vdev_enc_sysfs_path);
906
907 if (vd->vdev_fru)
908 spa_strfree(vd->vdev_fru);
909
910 if (vd->vdev_isspare)
911 spa_spare_remove(vd);
912 if (vd->vdev_isl2cache)
913 spa_l2cache_remove(vd);
914
915 txg_list_destroy(&vd->vdev_ms_list);
916 txg_list_destroy(&vd->vdev_dtl_list);
917
918 mutex_enter(&vd->vdev_dtl_lock);
919 space_map_close(vd->vdev_dtl_sm);
920 for (int t = 0; t < DTL_TYPES; t++) {
921 range_tree_vacate(vd->vdev_dtl[t], NULL, NULL);
922 range_tree_destroy(vd->vdev_dtl[t]);
923 }
924 mutex_exit(&vd->vdev_dtl_lock);
925
926 EQUIV(vd->vdev_indirect_births != NULL,
927 vd->vdev_indirect_mapping != NULL);
928 if (vd->vdev_indirect_births != NULL) {
929 vdev_indirect_mapping_close(vd->vdev_indirect_mapping);
930 vdev_indirect_births_close(vd->vdev_indirect_births);
931 }
932
933 if (vd->vdev_obsolete_sm != NULL) {
934 ASSERT(vd->vdev_removing ||
935 vd->vdev_ops == &vdev_indirect_ops);
936 space_map_close(vd->vdev_obsolete_sm);
937 vd->vdev_obsolete_sm = NULL;
938 }
939 range_tree_destroy(vd->vdev_obsolete_segments);
940 rw_destroy(&vd->vdev_indirect_rwlock);
941 mutex_destroy(&vd->vdev_obsolete_lock);
942
943 mutex_destroy(&vd->vdev_queue_lock);
944 mutex_destroy(&vd->vdev_dtl_lock);
945 mutex_destroy(&vd->vdev_stat_lock);
946 mutex_destroy(&vd->vdev_probe_lock);
947 mutex_destroy(&vd->vdev_scan_io_queue_lock);
948
949 zfs_ratelimit_fini(&vd->vdev_delay_rl);
950 zfs_ratelimit_fini(&vd->vdev_checksum_rl);
951
952 if (vd == spa->spa_root_vdev)
953 spa->spa_root_vdev = NULL;
954
955 kmem_free(vd, sizeof (vdev_t));
956 }
957
958 /*
959 * Transfer top-level vdev state from svd to tvd.
960 */
961 static void
962 vdev_top_transfer(vdev_t *svd, vdev_t *tvd)
963 {
964 spa_t *spa = svd->vdev_spa;
965 metaslab_t *msp;
966 vdev_t *vd;
967 int t;
968
969 ASSERT(tvd == tvd->vdev_top);
970
971 tvd->vdev_pending_fastwrite = svd->vdev_pending_fastwrite;
972 tvd->vdev_ms_array = svd->vdev_ms_array;
973 tvd->vdev_ms_shift = svd->vdev_ms_shift;
974 tvd->vdev_ms_count = svd->vdev_ms_count;
975 tvd->vdev_top_zap = svd->vdev_top_zap;
976
977 svd->vdev_ms_array = 0;
978 svd->vdev_ms_shift = 0;
979 svd->vdev_ms_count = 0;
980 svd->vdev_top_zap = 0;
981
982 if (tvd->vdev_mg)
983 ASSERT3P(tvd->vdev_mg, ==, svd->vdev_mg);
984 tvd->vdev_mg = svd->vdev_mg;
985 tvd->vdev_ms = svd->vdev_ms;
986
987 svd->vdev_mg = NULL;
988 svd->vdev_ms = NULL;
989
990 if (tvd->vdev_mg != NULL)
991 tvd->vdev_mg->mg_vd = tvd;
992
993 tvd->vdev_checkpoint_sm = svd->vdev_checkpoint_sm;
994 svd->vdev_checkpoint_sm = NULL;
995
996 tvd->vdev_alloc_bias = svd->vdev_alloc_bias;
997 svd->vdev_alloc_bias = VDEV_BIAS_NONE;
998
999 tvd->vdev_stat.vs_alloc = svd->vdev_stat.vs_alloc;
1000 tvd->vdev_stat.vs_space = svd->vdev_stat.vs_space;
1001 tvd->vdev_stat.vs_dspace = svd->vdev_stat.vs_dspace;
1002
1003 svd->vdev_stat.vs_alloc = 0;
1004 svd->vdev_stat.vs_space = 0;
1005 svd->vdev_stat.vs_dspace = 0;
1006
1007 /*
1008 * State which may be set on a top-level vdev that's in the
1009 * process of being removed.
1010 */
1011 ASSERT0(tvd->vdev_indirect_config.vic_births_object);
1012 ASSERT0(tvd->vdev_indirect_config.vic_mapping_object);
1013 ASSERT3U(tvd->vdev_indirect_config.vic_prev_indirect_vdev, ==, -1ULL);
1014 ASSERT3P(tvd->vdev_indirect_mapping, ==, NULL);
1015 ASSERT3P(tvd->vdev_indirect_births, ==, NULL);
1016 ASSERT3P(tvd->vdev_obsolete_sm, ==, NULL);
1017 ASSERT0(tvd->vdev_removing);
1018 tvd->vdev_removing = svd->vdev_removing;
1019 tvd->vdev_indirect_config = svd->vdev_indirect_config;
1020 tvd->vdev_indirect_mapping = svd->vdev_indirect_mapping;
1021 tvd->vdev_indirect_births = svd->vdev_indirect_births;
1022 range_tree_swap(&svd->vdev_obsolete_segments,
1023 &tvd->vdev_obsolete_segments);
1024 tvd->vdev_obsolete_sm = svd->vdev_obsolete_sm;
1025 svd->vdev_indirect_config.vic_mapping_object = 0;
1026 svd->vdev_indirect_config.vic_births_object = 0;
1027 svd->vdev_indirect_config.vic_prev_indirect_vdev = -1ULL;
1028 svd->vdev_indirect_mapping = NULL;
1029 svd->vdev_indirect_births = NULL;
1030 svd->vdev_obsolete_sm = NULL;
1031 svd->vdev_removing = 0;
1032
1033 for (t = 0; t < TXG_SIZE; t++) {
1034 while ((msp = txg_list_remove(&svd->vdev_ms_list, t)) != NULL)
1035 (void) txg_list_add(&tvd->vdev_ms_list, msp, t);
1036 while ((vd = txg_list_remove(&svd->vdev_dtl_list, t)) != NULL)
1037 (void) txg_list_add(&tvd->vdev_dtl_list, vd, t);
1038 if (txg_list_remove_this(&spa->spa_vdev_txg_list, svd, t))
1039 (void) txg_list_add(&spa->spa_vdev_txg_list, tvd, t);
1040 }
1041
1042 if (list_link_active(&svd->vdev_config_dirty_node)) {
1043 vdev_config_clean(svd);
1044 vdev_config_dirty(tvd);
1045 }
1046
1047 if (list_link_active(&svd->vdev_state_dirty_node)) {
1048 vdev_state_clean(svd);
1049 vdev_state_dirty(tvd);
1050 }
1051
1052 tvd->vdev_deflate_ratio = svd->vdev_deflate_ratio;
1053 svd->vdev_deflate_ratio = 0;
1054
1055 tvd->vdev_islog = svd->vdev_islog;
1056 svd->vdev_islog = 0;
1057
1058 dsl_scan_io_queue_vdev_xfer(svd, tvd);
1059 }
1060
1061 static void
1062 vdev_top_update(vdev_t *tvd, vdev_t *vd)
1063 {
1064 if (vd == NULL)
1065 return;
1066
1067 vd->vdev_top = tvd;
1068
1069 for (int c = 0; c < vd->vdev_children; c++)
1070 vdev_top_update(tvd, vd->vdev_child[c]);
1071 }
1072
1073 /*
1074 * Add a mirror/replacing vdev above an existing vdev.
1075 */
1076 vdev_t *
1077 vdev_add_parent(vdev_t *cvd, vdev_ops_t *ops)
1078 {
1079 spa_t *spa = cvd->vdev_spa;
1080 vdev_t *pvd = cvd->vdev_parent;
1081 vdev_t *mvd;
1082
1083 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1084
1085 mvd = vdev_alloc_common(spa, cvd->vdev_id, 0, ops);
1086
1087 mvd->vdev_asize = cvd->vdev_asize;
1088 mvd->vdev_min_asize = cvd->vdev_min_asize;
1089 mvd->vdev_max_asize = cvd->vdev_max_asize;
1090 mvd->vdev_psize = cvd->vdev_psize;
1091 mvd->vdev_ashift = cvd->vdev_ashift;
1092 mvd->vdev_state = cvd->vdev_state;
1093 mvd->vdev_crtxg = cvd->vdev_crtxg;
1094
1095 vdev_remove_child(pvd, cvd);
1096 vdev_add_child(pvd, mvd);
1097 cvd->vdev_id = mvd->vdev_children;
1098 vdev_add_child(mvd, cvd);
1099 vdev_top_update(cvd->vdev_top, cvd->vdev_top);
1100
1101 if (mvd == mvd->vdev_top)
1102 vdev_top_transfer(cvd, mvd);
1103
1104 return (mvd);
1105 }
1106
1107 /*
1108 * Remove a 1-way mirror/replacing vdev from the tree.
1109 */
1110 void
1111 vdev_remove_parent(vdev_t *cvd)
1112 {
1113 vdev_t *mvd = cvd->vdev_parent;
1114 vdev_t *pvd = mvd->vdev_parent;
1115
1116 ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1117
1118 ASSERT(mvd->vdev_children == 1);
1119 ASSERT(mvd->vdev_ops == &vdev_mirror_ops ||
1120 mvd->vdev_ops == &vdev_replacing_ops ||
1121 mvd->vdev_ops == &vdev_spare_ops);
1122 cvd->vdev_ashift = mvd->vdev_ashift;
1123
1124 vdev_remove_child(mvd, cvd);
1125 vdev_remove_child(pvd, mvd);
1126
1127 /*
1128 * If cvd will replace mvd as a top-level vdev, preserve mvd's guid.
1129 * Otherwise, we could have detached an offline device, and when we
1130 * go to import the pool we'll think we have two top-level vdevs,
1131 * instead of a different version of the same top-level vdev.
1132 */
1133 if (mvd->vdev_top == mvd) {
1134 uint64_t guid_delta = mvd->vdev_guid - cvd->vdev_guid;
1135 cvd->vdev_orig_guid = cvd->vdev_guid;
1136 cvd->vdev_guid += guid_delta;
1137 cvd->vdev_guid_sum += guid_delta;
1138
1139 /*
1140 * If pool not set for autoexpand, we need to also preserve
1141 * mvd's asize to prevent automatic expansion of cvd.
1142 * Otherwise if we are adjusting the mirror by attaching and
1143 * detaching children of non-uniform sizes, the mirror could
1144 * autoexpand, unexpectedly requiring larger devices to
1145 * re-establish the mirror.
1146 */
1147 if (!cvd->vdev_spa->spa_autoexpand)
1148 cvd->vdev_asize = mvd->vdev_asize;
1149 }
1150 cvd->vdev_id = mvd->vdev_id;
1151 vdev_add_child(pvd, cvd);
1152 vdev_top_update(cvd->vdev_top, cvd->vdev_top);
1153
1154 if (cvd == cvd->vdev_top)
1155 vdev_top_transfer(mvd, cvd);
1156
1157 ASSERT(mvd->vdev_children == 0);
1158 vdev_free(mvd);
1159 }
1160
1161 static void
1162 vdev_metaslab_group_create(vdev_t *vd)
1163 {
1164 spa_t *spa = vd->vdev_spa;
1165
1166 /*
1167 * metaslab_group_create was delayed until allocation bias was available
1168 */
1169 if (vd->vdev_mg == NULL) {
1170 metaslab_class_t *mc;
1171
1172 if (vd->vdev_islog && vd->vdev_alloc_bias == VDEV_BIAS_NONE)
1173 vd->vdev_alloc_bias = VDEV_BIAS_LOG;
1174
1175 ASSERT3U(vd->vdev_islog, ==,
1176 (vd->vdev_alloc_bias == VDEV_BIAS_LOG));
1177
1178 switch (vd->vdev_alloc_bias) {
1179 case VDEV_BIAS_LOG:
1180 mc = spa_log_class(spa);
1181 break;
1182 case VDEV_BIAS_SPECIAL:
1183 mc = spa_special_class(spa);
1184 break;
1185 case VDEV_BIAS_DEDUP:
1186 mc = spa_dedup_class(spa);
1187 break;
1188 default:
1189 mc = spa_normal_class(spa);
1190 }
1191
1192 vd->vdev_mg = metaslab_group_create(mc, vd,
1193 spa->spa_alloc_count);
1194
1195 /*
1196 * The spa ashift values currently only reflect the
1197 * general vdev classes. Class destination is late
1198 * binding so ashift checking had to wait until now
1199 */
1200 if (vd->vdev_top == vd && vd->vdev_ashift != 0 &&
1201 mc == spa_normal_class(spa) && vd->vdev_aux == NULL) {
1202 if (vd->vdev_ashift > spa->spa_max_ashift)
1203 spa->spa_max_ashift = vd->vdev_ashift;
1204 if (vd->vdev_ashift < spa->spa_min_ashift)
1205 spa->spa_min_ashift = vd->vdev_ashift;
1206 }
1207 }
1208 }
1209
1210 int
1211 vdev_metaslab_init(vdev_t *vd, uint64_t txg)
1212 {
1213 spa_t *spa = vd->vdev_spa;
1214 objset_t *mos = spa->spa_meta_objset;
1215 uint64_t m;
1216 uint64_t oldc = vd->vdev_ms_count;
1217 uint64_t newc = vd->vdev_asize >> vd->vdev_ms_shift;
1218 metaslab_t **mspp;
1219 int error;
1220 boolean_t expanding = (oldc != 0);
1221
1222 ASSERT(txg == 0 || spa_config_held(spa, SCL_ALLOC, RW_WRITER));
1223
1224 /*
1225 * This vdev is not being allocated from yet or is a hole.
1226 */
1227 if (vd->vdev_ms_shift == 0)
1228 return (0);
1229
1230 ASSERT(!vd->vdev_ishole);
1231
1232 ASSERT(oldc <= newc);
1233
1234 mspp = vmem_zalloc(newc * sizeof (*mspp), KM_SLEEP);
1235
1236 if (expanding) {
1237 bcopy(vd->vdev_ms, mspp, oldc * sizeof (*mspp));
1238 vmem_free(vd->vdev_ms, oldc * sizeof (*mspp));
1239 }
1240
1241 vd->vdev_ms = mspp;
1242 vd->vdev_ms_count = newc;
1243 for (m = oldc; m < newc; m++) {
1244 uint64_t object = 0;
1245
1246 /*
1247 * vdev_ms_array may be 0 if we are creating the "fake"
1248 * metaslabs for an indirect vdev for zdb's leak detection.
1249 * See zdb_leak_init().
1250 */
1251 if (txg == 0 && vd->vdev_ms_array != 0) {
1252 error = dmu_read(mos, vd->vdev_ms_array,
1253 m * sizeof (uint64_t), sizeof (uint64_t), &object,
1254 DMU_READ_PREFETCH);
1255 if (error != 0) {
1256 vdev_dbgmsg(vd, "unable to read the metaslab "
1257 "array [error=%d]", error);
1258 return (error);
1259 }
1260 }
1261
1262 #ifndef _KERNEL
1263 /*
1264 * To accomodate zdb_leak_init() fake indirect
1265 * metaslabs, we allocate a metaslab group for
1266 * indirect vdevs which normally don't have one.
1267 */
1268 if (vd->vdev_mg == NULL) {
1269 ASSERT0(vdev_is_concrete(vd));
1270 vdev_metaslab_group_create(vd);
1271 }
1272 #endif
1273 error = metaslab_init(vd->vdev_mg, m, object, txg,
1274 &(vd->vdev_ms[m]));
1275 if (error != 0) {
1276 vdev_dbgmsg(vd, "metaslab_init failed [error=%d]",
1277 error);
1278 return (error);
1279 }
1280 }
1281
1282 if (txg == 0)
1283 spa_config_enter(spa, SCL_ALLOC, FTAG, RW_WRITER);
1284
1285 /*
1286 * If the vdev is being removed we don't activate
1287 * the metaslabs since we want to ensure that no new
1288 * allocations are performed on this device.
1289 */
1290 if (!expanding && !vd->vdev_removing) {
1291 metaslab_group_activate(vd->vdev_mg);
1292 }
1293
1294 if (txg == 0)
1295 spa_config_exit(spa, SCL_ALLOC, FTAG);
1296
1297 return (0);
1298 }
1299
1300 void
1301 vdev_metaslab_fini(vdev_t *vd)
1302 {
1303 if (vd->vdev_checkpoint_sm != NULL) {
1304 ASSERT(spa_feature_is_active(vd->vdev_spa,
1305 SPA_FEATURE_POOL_CHECKPOINT));
1306 space_map_close(vd->vdev_checkpoint_sm);
1307 /*
1308 * Even though we close the space map, we need to set its
1309 * pointer to NULL. The reason is that vdev_metaslab_fini()
1310 * may be called multiple times for certain operations
1311 * (i.e. when destroying a pool) so we need to ensure that
1312 * this clause never executes twice. This logic is similar
1313 * to the one used for the vdev_ms clause below.
1314 */
1315 vd->vdev_checkpoint_sm = NULL;
1316 }
1317
1318 if (vd->vdev_ms != NULL) {
1319 uint64_t count = vd->vdev_ms_count;
1320
1321 metaslab_group_passivate(vd->vdev_mg);
1322 for (uint64_t m = 0; m < count; m++) {
1323 metaslab_t *msp = vd->vdev_ms[m];
1324
1325 if (msp != NULL)
1326 metaslab_fini(msp);
1327 }
1328 vmem_free(vd->vdev_ms, count * sizeof (metaslab_t *));
1329 vd->vdev_ms = NULL;
1330
1331 vd->vdev_ms_count = 0;
1332 }
1333 ASSERT0(vd->vdev_ms_count);
1334 ASSERT3U(vd->vdev_pending_fastwrite, ==, 0);
1335 }
1336
1337 typedef struct vdev_probe_stats {
1338 boolean_t vps_readable;
1339 boolean_t vps_writeable;
1340 int vps_flags;
1341 } vdev_probe_stats_t;
1342
1343 static void
1344 vdev_probe_done(zio_t *zio)
1345 {
1346 spa_t *spa = zio->io_spa;
1347 vdev_t *vd = zio->io_vd;
1348 vdev_probe_stats_t *vps = zio->io_private;
1349
1350 ASSERT(vd->vdev_probe_zio != NULL);
1351
1352 if (zio->io_type == ZIO_TYPE_READ) {
1353 if (zio->io_error == 0)
1354 vps->vps_readable = 1;
1355 if (zio->io_error == 0 && spa_writeable(spa)) {
1356 zio_nowait(zio_write_phys(vd->vdev_probe_zio, vd,
1357 zio->io_offset, zio->io_size, zio->io_abd,
1358 ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
1359 ZIO_PRIORITY_SYNC_WRITE, vps->vps_flags, B_TRUE));
1360 } else {
1361 abd_free(zio->io_abd);
1362 }
1363 } else if (zio->io_type == ZIO_TYPE_WRITE) {
1364 if (zio->io_error == 0)
1365 vps->vps_writeable = 1;
1366 abd_free(zio->io_abd);
1367 } else if (zio->io_type == ZIO_TYPE_NULL) {
1368 zio_t *pio;
1369 zio_link_t *zl;
1370
1371 vd->vdev_cant_read |= !vps->vps_readable;
1372 vd->vdev_cant_write |= !vps->vps_writeable;
1373
1374 if (vdev_readable(vd) &&
1375 (vdev_writeable(vd) || !spa_writeable(spa))) {
1376 zio->io_error = 0;
1377 } else {
1378 ASSERT(zio->io_error != 0);
1379 vdev_dbgmsg(vd, "failed probe");
1380 zfs_ereport_post(FM_EREPORT_ZFS_PROBE_FAILURE,
1381 spa, vd, NULL, NULL, 0, 0);
1382 zio->io_error = SET_ERROR(ENXIO);
1383 }
1384
1385 mutex_enter(&vd->vdev_probe_lock);
1386 ASSERT(vd->vdev_probe_zio == zio);
1387 vd->vdev_probe_zio = NULL;
1388 mutex_exit(&vd->vdev_probe_lock);
1389
1390 zl = NULL;
1391 while ((pio = zio_walk_parents(zio, &zl)) != NULL)
1392 if (!vdev_accessible(vd, pio))
1393 pio->io_error = SET_ERROR(ENXIO);
1394
1395 kmem_free(vps, sizeof (*vps));
1396 }
1397 }
1398
1399 /*
1400 * Determine whether this device is accessible.
1401 *
1402 * Read and write to several known locations: the pad regions of each
1403 * vdev label but the first, which we leave alone in case it contains
1404 * a VTOC.
1405 */
1406 zio_t *
1407 vdev_probe(vdev_t *vd, zio_t *zio)
1408 {
1409 spa_t *spa = vd->vdev_spa;
1410 vdev_probe_stats_t *vps = NULL;
1411 zio_t *pio;
1412
1413 ASSERT(vd->vdev_ops->vdev_op_leaf);
1414
1415 /*
1416 * Don't probe the probe.
1417 */
1418 if (zio && (zio->io_flags & ZIO_FLAG_PROBE))
1419 return (NULL);
1420
1421 /*
1422 * To prevent 'probe storms' when a device fails, we create
1423 * just one probe i/o at a time. All zios that want to probe
1424 * this vdev will become parents of the probe io.
1425 */
1426 mutex_enter(&vd->vdev_probe_lock);
1427
1428 if ((pio = vd->vdev_probe_zio) == NULL) {
1429 vps = kmem_zalloc(sizeof (*vps), KM_SLEEP);
1430
1431 vps->vps_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_PROBE |
1432 ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_AGGREGATE |
1433 ZIO_FLAG_TRYHARD;
1434
1435 if (spa_config_held(spa, SCL_ZIO, RW_WRITER)) {
1436 /*
1437 * vdev_cant_read and vdev_cant_write can only
1438 * transition from TRUE to FALSE when we have the
1439 * SCL_ZIO lock as writer; otherwise they can only
1440 * transition from FALSE to TRUE. This ensures that
1441 * any zio looking at these values can assume that
1442 * failures persist for the life of the I/O. That's
1443 * important because when a device has intermittent
1444 * connectivity problems, we want to ensure that
1445 * they're ascribed to the device (ENXIO) and not
1446 * the zio (EIO).
1447 *
1448 * Since we hold SCL_ZIO as writer here, clear both
1449 * values so the probe can reevaluate from first
1450 * principles.
1451 */
1452 vps->vps_flags |= ZIO_FLAG_CONFIG_WRITER;
1453 vd->vdev_cant_read = B_FALSE;
1454 vd->vdev_cant_write = B_FALSE;
1455 }
1456
1457 vd->vdev_probe_zio = pio = zio_null(NULL, spa, vd,
1458 vdev_probe_done, vps,
1459 vps->vps_flags | ZIO_FLAG_DONT_PROPAGATE);
1460
1461 /*
1462 * We can't change the vdev state in this context, so we
1463 * kick off an async task to do it on our behalf.
1464 */
1465 if (zio != NULL) {
1466 vd->vdev_probe_wanted = B_TRUE;
1467 spa_async_request(spa, SPA_ASYNC_PROBE);
1468 }
1469 }
1470
1471 if (zio != NULL)
1472 zio_add_child(zio, pio);
1473
1474 mutex_exit(&vd->vdev_probe_lock);
1475
1476 if (vps == NULL) {
1477 ASSERT(zio != NULL);
1478 return (NULL);
1479 }
1480
1481 for (int l = 1; l < VDEV_LABELS; l++) {
1482 zio_nowait(zio_read_phys(pio, vd,
1483 vdev_label_offset(vd->vdev_psize, l,
1484 offsetof(vdev_label_t, vl_pad2)), VDEV_PAD_SIZE,
1485 abd_alloc_for_io(VDEV_PAD_SIZE, B_TRUE),
1486 ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
1487 ZIO_PRIORITY_SYNC_READ, vps->vps_flags, B_TRUE));
1488 }
1489
1490 if (zio == NULL)
1491 return (pio);
1492
1493 zio_nowait(pio);
1494 return (NULL);
1495 }
1496
1497 static void
1498 vdev_open_child(void *arg)
1499 {
1500 vdev_t *vd = arg;
1501
1502 vd->vdev_open_thread = curthread;
1503 vd->vdev_open_error = vdev_open(vd);
1504 vd->vdev_open_thread = NULL;
1505 }
1506
1507 static boolean_t
1508 vdev_uses_zvols(vdev_t *vd)
1509 {
1510 #ifdef _KERNEL
1511 if (zvol_is_zvol(vd->vdev_path))
1512 return (B_TRUE);
1513 #endif
1514
1515 for (int c = 0; c < vd->vdev_children; c++)
1516 if (vdev_uses_zvols(vd->vdev_child[c]))
1517 return (B_TRUE);
1518
1519 return (B_FALSE);
1520 }
1521
1522 void
1523 vdev_open_children(vdev_t *vd)
1524 {
1525 taskq_t *tq;
1526 int children = vd->vdev_children;
1527
1528 /*
1529 * in order to handle pools on top of zvols, do the opens
1530 * in a single thread so that the same thread holds the
1531 * spa_namespace_lock
1532 */
1533 if (vdev_uses_zvols(vd)) {
1534 retry_sync:
1535 for (int c = 0; c < children; c++)
1536 vd->vdev_child[c]->vdev_open_error =
1537 vdev_open(vd->vdev_child[c]);
1538 } else {
1539 tq = taskq_create("vdev_open", children, minclsyspri,
1540 children, children, TASKQ_PREPOPULATE);
1541 if (tq == NULL)
1542 goto retry_sync;
1543
1544 for (int c = 0; c < children; c++)
1545 VERIFY(taskq_dispatch(tq, vdev_open_child,
1546 vd->vdev_child[c], TQ_SLEEP) != TASKQID_INVALID);
1547
1548 taskq_destroy(tq);
1549 }
1550
1551 vd->vdev_nonrot = B_TRUE;
1552
1553 for (int c = 0; c < children; c++)
1554 vd->vdev_nonrot &= vd->vdev_child[c]->vdev_nonrot;
1555 }
1556
1557 /*
1558 * Compute the raidz-deflation ratio. Note, we hard-code
1559 * in 128k (1 << 17) because it is the "typical" blocksize.
1560 * Even though SPA_MAXBLOCKSIZE changed, this algorithm can not change,
1561 * otherwise it would inconsistently account for existing bp's.
1562 */
1563 static void
1564 vdev_set_deflate_ratio(vdev_t *vd)
1565 {
1566 if (vd == vd->vdev_top && !vd->vdev_ishole && vd->vdev_ashift != 0) {
1567 vd->vdev_deflate_ratio = (1 << 17) /
1568 (vdev_psize_to_asize(vd, 1 << 17) >> SPA_MINBLOCKSHIFT);
1569 }
1570 }
1571
1572 /*
1573 * Prepare a virtual device for access.
1574 */
1575 int
1576 vdev_open(vdev_t *vd)
1577 {
1578 spa_t *spa = vd->vdev_spa;
1579 int error;
1580 uint64_t osize = 0;
1581 uint64_t max_osize = 0;
1582 uint64_t asize, max_asize, psize;
1583 uint64_t ashift = 0;
1584
1585 ASSERT(vd->vdev_open_thread == curthread ||
1586 spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1587 ASSERT(vd->vdev_state == VDEV_STATE_CLOSED ||
1588 vd->vdev_state == VDEV_STATE_CANT_OPEN ||
1589 vd->vdev_state == VDEV_STATE_OFFLINE);
1590
1591 vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
1592 vd->vdev_cant_read = B_FALSE;
1593 vd->vdev_cant_write = B_FALSE;
1594 vd->vdev_min_asize = vdev_get_min_asize(vd);
1595
1596 /*
1597 * If this vdev is not removed, check its fault status. If it's
1598 * faulted, bail out of the open.
1599 */
1600 if (!vd->vdev_removed && vd->vdev_faulted) {
1601 ASSERT(vd->vdev_children == 0);
1602 ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED ||
1603 vd->vdev_label_aux == VDEV_AUX_EXTERNAL);
1604 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1605 vd->vdev_label_aux);
1606 return (SET_ERROR(ENXIO));
1607 } else if (vd->vdev_offline) {
1608 ASSERT(vd->vdev_children == 0);
1609 vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE, VDEV_AUX_NONE);
1610 return (SET_ERROR(ENXIO));
1611 }
1612
1613 error = vd->vdev_ops->vdev_op_open(vd, &osize, &max_osize, &ashift);
1614
1615 /*
1616 * Reset the vdev_reopening flag so that we actually close
1617 * the vdev on error.
1618 */
1619 vd->vdev_reopening = B_FALSE;
1620 if (zio_injection_enabled && error == 0)
1621 error = zio_handle_device_injection(vd, NULL, ENXIO);
1622
1623 if (error) {
1624 if (vd->vdev_removed &&
1625 vd->vdev_stat.vs_aux != VDEV_AUX_OPEN_FAILED)
1626 vd->vdev_removed = B_FALSE;
1627
1628 if (vd->vdev_stat.vs_aux == VDEV_AUX_CHILDREN_OFFLINE) {
1629 vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE,
1630 vd->vdev_stat.vs_aux);
1631 } else {
1632 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1633 vd->vdev_stat.vs_aux);
1634 }
1635 return (error);
1636 }
1637
1638 vd->vdev_removed = B_FALSE;
1639
1640 /*
1641 * Recheck the faulted flag now that we have confirmed that
1642 * the vdev is accessible. If we're faulted, bail.
1643 */
1644 if (vd->vdev_faulted) {
1645 ASSERT(vd->vdev_children == 0);
1646 ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED ||
1647 vd->vdev_label_aux == VDEV_AUX_EXTERNAL);
1648 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1649 vd->vdev_label_aux);
1650 return (SET_ERROR(ENXIO));
1651 }
1652
1653 if (vd->vdev_degraded) {
1654 ASSERT(vd->vdev_children == 0);
1655 vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
1656 VDEV_AUX_ERR_EXCEEDED);
1657 } else {
1658 vdev_set_state(vd, B_TRUE, VDEV_STATE_HEALTHY, 0);
1659 }
1660
1661 /*
1662 * For hole or missing vdevs we just return success.
1663 */
1664 if (vd->vdev_ishole || vd->vdev_ops == &vdev_missing_ops)
1665 return (0);
1666
1667 for (int c = 0; c < vd->vdev_children; c++) {
1668 if (vd->vdev_child[c]->vdev_state != VDEV_STATE_HEALTHY) {
1669 vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
1670 VDEV_AUX_NONE);
1671 break;
1672 }
1673 }
1674
1675 osize = P2ALIGN(osize, (uint64_t)sizeof (vdev_label_t));
1676 max_osize = P2ALIGN(max_osize, (uint64_t)sizeof (vdev_label_t));
1677
1678 if (vd->vdev_children == 0) {
1679 if (osize < SPA_MINDEVSIZE) {
1680 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1681 VDEV_AUX_TOO_SMALL);
1682 return (SET_ERROR(EOVERFLOW));
1683 }
1684 psize = osize;
1685 asize = osize - (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE);
1686 max_asize = max_osize - (VDEV_LABEL_START_SIZE +
1687 VDEV_LABEL_END_SIZE);
1688 } else {
1689 if (vd->vdev_parent != NULL && osize < SPA_MINDEVSIZE -
1690 (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE)) {
1691 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1692 VDEV_AUX_TOO_SMALL);
1693 return (SET_ERROR(EOVERFLOW));
1694 }
1695 psize = 0;
1696 asize = osize;
1697 max_asize = max_osize;
1698 }
1699
1700 /*
1701 * If the vdev was expanded, record this so that we can re-create the
1702 * uberblock rings in labels {2,3}, during the next sync.
1703 */
1704 if ((psize > vd->vdev_psize) && (vd->vdev_psize != 0))
1705 vd->vdev_copy_uberblocks = B_TRUE;
1706
1707 vd->vdev_psize = psize;
1708
1709 /*
1710 * Make sure the allocatable size hasn't shrunk too much.
1711 */
1712 if (asize < vd->vdev_min_asize) {
1713 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1714 VDEV_AUX_BAD_LABEL);
1715 return (SET_ERROR(EINVAL));
1716 }
1717
1718 if (vd->vdev_asize == 0) {
1719 /*
1720 * This is the first-ever open, so use the computed values.
1721 * For compatibility, a different ashift can be requested.
1722 */
1723 vd->vdev_asize = asize;
1724 vd->vdev_max_asize = max_asize;
1725 if (vd->vdev_ashift == 0) {
1726 vd->vdev_ashift = ashift; /* use detected value */
1727 }
1728 if (vd->vdev_ashift != 0 && (vd->vdev_ashift < ASHIFT_MIN ||
1729 vd->vdev_ashift > ASHIFT_MAX)) {
1730 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1731 VDEV_AUX_BAD_ASHIFT);
1732 return (SET_ERROR(EDOM));
1733 }
1734 } else {
1735 /*
1736 * Detect if the alignment requirement has increased.
1737 * We don't want to make the pool unavailable, just
1738 * post an event instead.
1739 */
1740 if (ashift > vd->vdev_top->vdev_ashift &&
1741 vd->vdev_ops->vdev_op_leaf) {
1742 zfs_ereport_post(FM_EREPORT_ZFS_DEVICE_BAD_ASHIFT,
1743 spa, vd, NULL, NULL, 0, 0);
1744 }
1745
1746 vd->vdev_max_asize = max_asize;
1747 }
1748
1749 /*
1750 * If all children are healthy we update asize if either:
1751 * The asize has increased, due to a device expansion caused by dynamic
1752 * LUN growth or vdev replacement, and automatic expansion is enabled;
1753 * making the additional space available.
1754 *
1755 * The asize has decreased, due to a device shrink usually caused by a
1756 * vdev replace with a smaller device. This ensures that calculations
1757 * based of max_asize and asize e.g. esize are always valid. It's safe
1758 * to do this as we've already validated that asize is greater than
1759 * vdev_min_asize.
1760 */
1761 if (vd->vdev_state == VDEV_STATE_HEALTHY &&
1762 ((asize > vd->vdev_asize &&
1763 (vd->vdev_expanding || spa->spa_autoexpand)) ||
1764 (asize < vd->vdev_asize)))
1765 vd->vdev_asize = asize;
1766
1767 vdev_set_min_asize(vd);
1768
1769 /*
1770 * Ensure we can issue some IO before declaring the
1771 * vdev open for business.
1772 */
1773 if (vd->vdev_ops->vdev_op_leaf &&
1774 (error = zio_wait(vdev_probe(vd, NULL))) != 0) {
1775 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1776 VDEV_AUX_ERR_EXCEEDED);
1777 return (error);
1778 }
1779
1780 /*
1781 * Track the min and max ashift values for normal data devices.
1782 *
1783 * DJB - TBD these should perhaps be tracked per allocation class
1784 * (e.g. spa_min_ashift is used to round up post compression buffers)
1785 */
1786 if (vd->vdev_top == vd && vd->vdev_ashift != 0 &&
1787 vd->vdev_alloc_bias == VDEV_BIAS_NONE &&
1788 vd->vdev_aux == NULL) {
1789 if (vd->vdev_ashift > spa->spa_max_ashift)
1790 spa->spa_max_ashift = vd->vdev_ashift;
1791 if (vd->vdev_ashift < spa->spa_min_ashift)
1792 spa->spa_min_ashift = vd->vdev_ashift;
1793 }
1794
1795 /*
1796 * If a leaf vdev has a DTL, and seems healthy, then kick off a
1797 * resilver. But don't do this if we are doing a reopen for a scrub,
1798 * since this would just restart the scrub we are already doing.
1799 */
1800 if (vd->vdev_ops->vdev_op_leaf && !spa->spa_scrub_reopen &&
1801 vdev_resilver_needed(vd, NULL, NULL))
1802 spa_async_request(spa, SPA_ASYNC_RESILVER);
1803
1804 return (0);
1805 }
1806
1807 /*
1808 * Called once the vdevs are all opened, this routine validates the label
1809 * contents. This needs to be done before vdev_load() so that we don't
1810 * inadvertently do repair I/Os to the wrong device.
1811 *
1812 * This function will only return failure if one of the vdevs indicates that it
1813 * has since been destroyed or exported. This is only possible if
1814 * /etc/zfs/zpool.cache was readonly at the time. Otherwise, the vdev state
1815 * will be updated but the function will return 0.
1816 */
1817 int
1818 vdev_validate(vdev_t *vd)
1819 {
1820 spa_t *spa = vd->vdev_spa;
1821 nvlist_t *label;
1822 uint64_t guid = 0, aux_guid = 0, top_guid;
1823 uint64_t state;
1824 nvlist_t *nvl;
1825 uint64_t txg;
1826
1827 if (vdev_validate_skip)
1828 return (0);
1829
1830 for (uint64_t c = 0; c < vd->vdev_children; c++)
1831 if (vdev_validate(vd->vdev_child[c]) != 0)
1832 return (SET_ERROR(EBADF));
1833
1834 /*
1835 * If the device has already failed, or was marked offline, don't do
1836 * any further validation. Otherwise, label I/O will fail and we will
1837 * overwrite the previous state.
1838 */
1839 if (!vd->vdev_ops->vdev_op_leaf || !vdev_readable(vd))
1840 return (0);
1841
1842 /*
1843 * If we are performing an extreme rewind, we allow for a label that
1844 * was modified at a point after the current txg.
1845 * If config lock is not held do not check for the txg. spa_sync could
1846 * be updating the vdev's label before updating spa_last_synced_txg.
1847 */
1848 if (spa->spa_extreme_rewind || spa_last_synced_txg(spa) == 0 ||
1849 spa_config_held(spa, SCL_CONFIG, RW_WRITER) != SCL_CONFIG)
1850 txg = UINT64_MAX;
1851 else
1852 txg = spa_last_synced_txg(spa);
1853
1854 if ((label = vdev_label_read_config(vd, txg)) == NULL) {
1855 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1856 VDEV_AUX_BAD_LABEL);
1857 vdev_dbgmsg(vd, "vdev_validate: failed reading config for "
1858 "txg %llu", (u_longlong_t)txg);
1859 return (0);
1860 }
1861
1862 /*
1863 * Determine if this vdev has been split off into another
1864 * pool. If so, then refuse to open it.
1865 */
1866 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_SPLIT_GUID,
1867 &aux_guid) == 0 && aux_guid == spa_guid(spa)) {
1868 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1869 VDEV_AUX_SPLIT_POOL);
1870 nvlist_free(label);
1871 vdev_dbgmsg(vd, "vdev_validate: vdev split into other pool");
1872 return (0);
1873 }
1874
1875 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_GUID, &guid) != 0) {
1876 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1877 VDEV_AUX_CORRUPT_DATA);
1878 nvlist_free(label);
1879 vdev_dbgmsg(vd, "vdev_validate: '%s' missing from label",
1880 ZPOOL_CONFIG_POOL_GUID);
1881 return (0);
1882 }
1883
1884 /*
1885 * If config is not trusted then ignore the spa guid check. This is
1886 * necessary because if the machine crashed during a re-guid the new
1887 * guid might have been written to all of the vdev labels, but not the
1888 * cached config. The check will be performed again once we have the
1889 * trusted config from the MOS.
1890 */
1891 if (spa->spa_trust_config && guid != spa_guid(spa)) {
1892 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1893 VDEV_AUX_CORRUPT_DATA);
1894 nvlist_free(label);
1895 vdev_dbgmsg(vd, "vdev_validate: vdev label pool_guid doesn't "
1896 "match config (%llu != %llu)", (u_longlong_t)guid,
1897 (u_longlong_t)spa_guid(spa));
1898 return (0);
1899 }
1900
1901 if (nvlist_lookup_nvlist(label, ZPOOL_CONFIG_VDEV_TREE, &nvl)
1902 != 0 || nvlist_lookup_uint64(nvl, ZPOOL_CONFIG_ORIG_GUID,
1903 &aux_guid) != 0)
1904 aux_guid = 0;
1905
1906 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0) {
1907 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1908 VDEV_AUX_CORRUPT_DATA);
1909 nvlist_free(label);
1910 vdev_dbgmsg(vd, "vdev_validate: '%s' missing from label",
1911 ZPOOL_CONFIG_GUID);
1912 return (0);
1913 }
1914
1915 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_TOP_GUID, &top_guid)
1916 != 0) {
1917 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1918 VDEV_AUX_CORRUPT_DATA);
1919 nvlist_free(label);
1920 vdev_dbgmsg(vd, "vdev_validate: '%s' missing from label",
1921 ZPOOL_CONFIG_TOP_GUID);
1922 return (0);
1923 }
1924
1925 /*
1926 * If this vdev just became a top-level vdev because its sibling was
1927 * detached, it will have adopted the parent's vdev guid -- but the
1928 * label may or may not be on disk yet. Fortunately, either version
1929 * of the label will have the same top guid, so if we're a top-level
1930 * vdev, we can safely compare to that instead.
1931 * However, if the config comes from a cachefile that failed to update
1932 * after the detach, a top-level vdev will appear as a non top-level
1933 * vdev in the config. Also relax the constraints if we perform an
1934 * extreme rewind.
1935 *
1936 * If we split this vdev off instead, then we also check the
1937 * original pool's guid. We don't want to consider the vdev
1938 * corrupt if it is partway through a split operation.
1939 */
1940 if (vd->vdev_guid != guid && vd->vdev_guid != aux_guid) {
1941 boolean_t mismatch = B_FALSE;
1942 if (spa->spa_trust_config && !spa->spa_extreme_rewind) {
1943 if (vd != vd->vdev_top || vd->vdev_guid != top_guid)
1944 mismatch = B_TRUE;
1945 } else {
1946 if (vd->vdev_guid != top_guid &&
1947 vd->vdev_top->vdev_guid != guid)
1948 mismatch = B_TRUE;
1949 }
1950
1951 if (mismatch) {
1952 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1953 VDEV_AUX_CORRUPT_DATA);
1954 nvlist_free(label);
1955 vdev_dbgmsg(vd, "vdev_validate: config guid "
1956 "doesn't match label guid");
1957 vdev_dbgmsg(vd, "CONFIG: guid %llu, top_guid %llu",
1958 (u_longlong_t)vd->vdev_guid,
1959 (u_longlong_t)vd->vdev_top->vdev_guid);
1960 vdev_dbgmsg(vd, "LABEL: guid %llu, top_guid %llu, "
1961 "aux_guid %llu", (u_longlong_t)guid,
1962 (u_longlong_t)top_guid, (u_longlong_t)aux_guid);
1963 return (0);
1964 }
1965 }
1966
1967 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE,
1968 &state) != 0) {
1969 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1970 VDEV_AUX_CORRUPT_DATA);
1971 nvlist_free(label);
1972 vdev_dbgmsg(vd, "vdev_validate: '%s' missing from label",
1973 ZPOOL_CONFIG_POOL_STATE);
1974 return (0);
1975 }
1976
1977 nvlist_free(label);
1978
1979 /*
1980 * If this is a verbatim import, no need to check the
1981 * state of the pool.
1982 */
1983 if (!(spa->spa_import_flags & ZFS_IMPORT_VERBATIM) &&
1984 spa_load_state(spa) == SPA_LOAD_OPEN &&
1985 state != POOL_STATE_ACTIVE) {
1986 vdev_dbgmsg(vd, "vdev_validate: invalid pool state (%llu) "
1987 "for spa %s", (u_longlong_t)state, spa->spa_name);
1988 return (SET_ERROR(EBADF));
1989 }
1990
1991 /*
1992 * If we were able to open and validate a vdev that was
1993 * previously marked permanently unavailable, clear that state
1994 * now.
1995 */
1996 if (vd->vdev_not_present)
1997 vd->vdev_not_present = 0;
1998
1999 return (0);
2000 }
2001
2002 static void
2003 vdev_copy_path_impl(vdev_t *svd, vdev_t *dvd)
2004 {
2005 if (svd->vdev_path != NULL && dvd->vdev_path != NULL) {
2006 if (strcmp(svd->vdev_path, dvd->vdev_path) != 0) {
2007 zfs_dbgmsg("vdev_copy_path: vdev %llu: path changed "
2008 "from '%s' to '%s'", (u_longlong_t)dvd->vdev_guid,
2009 dvd->vdev_path, svd->vdev_path);
2010 spa_strfree(dvd->vdev_path);
2011 dvd->vdev_path = spa_strdup(svd->vdev_path);
2012 }
2013 } else if (svd->vdev_path != NULL) {
2014 dvd->vdev_path = spa_strdup(svd->vdev_path);
2015 zfs_dbgmsg("vdev_copy_path: vdev %llu: path set to '%s'",
2016 (u_longlong_t)dvd->vdev_guid, dvd->vdev_path);
2017 }
2018 }
2019
2020 /*
2021 * Recursively copy vdev paths from one vdev to another. Source and destination
2022 * vdev trees must have same geometry otherwise return error. Intended to copy
2023 * paths from userland config into MOS config.
2024 */
2025 int
2026 vdev_copy_path_strict(vdev_t *svd, vdev_t *dvd)
2027 {
2028 if ((svd->vdev_ops == &vdev_missing_ops) ||
2029 (svd->vdev_ishole && dvd->vdev_ishole) ||
2030 (dvd->vdev_ops == &vdev_indirect_ops))
2031 return (0);
2032
2033 if (svd->vdev_ops != dvd->vdev_ops) {
2034 vdev_dbgmsg(svd, "vdev_copy_path: vdev type mismatch: %s != %s",
2035 svd->vdev_ops->vdev_op_type, dvd->vdev_ops->vdev_op_type);
2036 return (SET_ERROR(EINVAL));
2037 }
2038
2039 if (svd->vdev_guid != dvd->vdev_guid) {
2040 vdev_dbgmsg(svd, "vdev_copy_path: guids mismatch (%llu != "
2041 "%llu)", (u_longlong_t)svd->vdev_guid,
2042 (u_longlong_t)dvd->vdev_guid);
2043 return (SET_ERROR(EINVAL));
2044 }
2045
2046 if (svd->vdev_children != dvd->vdev_children) {
2047 vdev_dbgmsg(svd, "vdev_copy_path: children count mismatch: "
2048 "%llu != %llu", (u_longlong_t)svd->vdev_children,
2049 (u_longlong_t)dvd->vdev_children);
2050 return (SET_ERROR(EINVAL));
2051 }
2052
2053 for (uint64_t i = 0; i < svd->vdev_children; i++) {
2054 int error = vdev_copy_path_strict(svd->vdev_child[i],
2055 dvd->vdev_child[i]);
2056 if (error != 0)
2057 return (error);
2058 }
2059
2060 if (svd->vdev_ops->vdev_op_leaf)
2061 vdev_copy_path_impl(svd, dvd);
2062
2063 return (0);
2064 }
2065
2066 static void
2067 vdev_copy_path_search(vdev_t *stvd, vdev_t *dvd)
2068 {
2069 ASSERT(stvd->vdev_top == stvd);
2070 ASSERT3U(stvd->vdev_id, ==, dvd->vdev_top->vdev_id);
2071
2072 for (uint64_t i = 0; i < dvd->vdev_children; i++) {
2073 vdev_copy_path_search(stvd, dvd->vdev_child[i]);
2074 }
2075
2076 if (!dvd->vdev_ops->vdev_op_leaf || !vdev_is_concrete(dvd))
2077 return;
2078
2079 /*
2080 * The idea here is that while a vdev can shift positions within
2081 * a top vdev (when replacing, attaching mirror, etc.) it cannot
2082 * step outside of it.
2083 */
2084 vdev_t *vd = vdev_lookup_by_guid(stvd, dvd->vdev_guid);
2085
2086 if (vd == NULL || vd->vdev_ops != dvd->vdev_ops)
2087 return;
2088
2089 ASSERT(vd->vdev_ops->vdev_op_leaf);
2090
2091 vdev_copy_path_impl(vd, dvd);
2092 }
2093
2094 /*
2095 * Recursively copy vdev paths from one root vdev to another. Source and
2096 * destination vdev trees may differ in geometry. For each destination leaf
2097 * vdev, search a vdev with the same guid and top vdev id in the source.
2098 * Intended to copy paths from userland config into MOS config.
2099 */
2100 void
2101 vdev_copy_path_relaxed(vdev_t *srvd, vdev_t *drvd)
2102 {
2103 uint64_t children = MIN(srvd->vdev_children, drvd->vdev_children);
2104 ASSERT(srvd->vdev_ops == &vdev_root_ops);
2105 ASSERT(drvd->vdev_ops == &vdev_root_ops);
2106
2107 for (uint64_t i = 0; i < children; i++) {
2108 vdev_copy_path_search(srvd->vdev_child[i],
2109 drvd->vdev_child[i]);
2110 }
2111 }
2112
2113 /*
2114 * Close a virtual device.
2115 */
2116 void
2117 vdev_close(vdev_t *vd)
2118 {
2119 vdev_t *pvd = vd->vdev_parent;
2120 ASSERTV(spa_t *spa = vd->vdev_spa);
2121
2122 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
2123
2124 /*
2125 * If our parent is reopening, then we are as well, unless we are
2126 * going offline.
2127 */
2128 if (pvd != NULL && pvd->vdev_reopening)
2129 vd->vdev_reopening = (pvd->vdev_reopening && !vd->vdev_offline);
2130
2131 vd->vdev_ops->vdev_op_close(vd);
2132
2133 vdev_cache_purge(vd);
2134
2135 /*
2136 * We record the previous state before we close it, so that if we are
2137 * doing a reopen(), we don't generate FMA ereports if we notice that
2138 * it's still faulted.
2139 */
2140 vd->vdev_prevstate = vd->vdev_state;
2141
2142 if (vd->vdev_offline)
2143 vd->vdev_state = VDEV_STATE_OFFLINE;
2144 else
2145 vd->vdev_state = VDEV_STATE_CLOSED;
2146 vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
2147 }
2148
2149 void
2150 vdev_hold(vdev_t *vd)
2151 {
2152 spa_t *spa = vd->vdev_spa;
2153
2154 ASSERT(spa_is_root(spa));
2155 if (spa->spa_state == POOL_STATE_UNINITIALIZED)
2156 return;
2157
2158 for (int c = 0; c < vd->vdev_children; c++)
2159 vdev_hold(vd->vdev_child[c]);
2160
2161 if (vd->vdev_ops->vdev_op_leaf)
2162 vd->vdev_ops->vdev_op_hold(vd);
2163 }
2164
2165 void
2166 vdev_rele(vdev_t *vd)
2167 {
2168 ASSERT(spa_is_root(vd->vdev_spa));
2169 for (int c = 0; c < vd->vdev_children; c++)
2170 vdev_rele(vd->vdev_child[c]);
2171
2172 if (vd->vdev_ops->vdev_op_leaf)
2173 vd->vdev_ops->vdev_op_rele(vd);
2174 }
2175
2176 /*
2177 * Reopen all interior vdevs and any unopened leaves. We don't actually
2178 * reopen leaf vdevs which had previously been opened as they might deadlock
2179 * on the spa_config_lock. Instead we only obtain the leaf's physical size.
2180 * If the leaf has never been opened then open it, as usual.
2181 */
2182 void
2183 vdev_reopen(vdev_t *vd)
2184 {
2185 spa_t *spa = vd->vdev_spa;
2186
2187 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
2188
2189 /* set the reopening flag unless we're taking the vdev offline */
2190 vd->vdev_reopening = !vd->vdev_offline;
2191 vdev_close(vd);
2192 (void) vdev_open(vd);
2193
2194 /*
2195 * Call vdev_validate() here to make sure we have the same device.
2196 * Otherwise, a device with an invalid label could be successfully
2197 * opened in response to vdev_reopen().
2198 */
2199 if (vd->vdev_aux) {
2200 (void) vdev_validate_aux(vd);
2201 if (vdev_readable(vd) && vdev_writeable(vd) &&
2202 vd->vdev_aux == &spa->spa_l2cache &&
2203 !l2arc_vdev_present(vd))
2204 l2arc_add_vdev(spa, vd);
2205 } else {
2206 (void) vdev_validate(vd);
2207 }
2208
2209 /*
2210 * Reassess parent vdev's health.
2211 */
2212 vdev_propagate_state(vd);
2213 }
2214
2215 int
2216 vdev_create(vdev_t *vd, uint64_t txg, boolean_t isreplacing)
2217 {
2218 int error;
2219
2220 /*
2221 * Normally, partial opens (e.g. of a mirror) are allowed.
2222 * For a create, however, we want to fail the request if
2223 * there are any components we can't open.
2224 */
2225 error = vdev_open(vd);
2226
2227 if (error || vd->vdev_state != VDEV_STATE_HEALTHY) {
2228 vdev_close(vd);
2229 return (error ? error : ENXIO);
2230 }
2231
2232 /*
2233 * Recursively load DTLs and initialize all labels.
2234 */
2235 if ((error = vdev_dtl_load(vd)) != 0 ||
2236 (error = vdev_label_init(vd, txg, isreplacing ?
2237 VDEV_LABEL_REPLACE : VDEV_LABEL_CREATE)) != 0) {
2238 vdev_close(vd);
2239 return (error);
2240 }
2241
2242 return (0);
2243 }
2244
2245 void
2246 vdev_metaslab_set_size(vdev_t *vd)
2247 {
2248 uint64_t asize = vd->vdev_asize;
2249 uint64_t ms_count = asize >> vdev_default_ms_shift;
2250 uint64_t ms_shift;
2251
2252 /*
2253 * There are two dimensions to the metaslab sizing calculation:
2254 * the size of the metaslab and the count of metaslabs per vdev.
2255 * In general, we aim for vdev_max_ms_count (200) metaslabs. The
2256 * range of the dimensions are as follows:
2257 *
2258 * 2^29 <= ms_size <= 2^38
2259 * 16 <= ms_count <= 131,072
2260 *
2261 * On the lower end of vdev sizes, we aim for metaslabs sizes of
2262 * at least 512MB (2^29) to minimize fragmentation effects when
2263 * testing with smaller devices. However, the count constraint
2264 * of at least 16 metaslabs will override this minimum size goal.
2265 *
2266 * On the upper end of vdev sizes, we aim for a maximum metaslab
2267 * size of 256GB. However, we will cap the total count to 2^17
2268 * metaslabs to keep our memory footprint in check.
2269 *
2270 * The net effect of applying above constrains is summarized below.
2271 *
2272 * vdev size metaslab count
2273 * -------------|-----------------
2274 * < 8GB ~16
2275 * 8GB - 100GB one per 512MB
2276 * 100GB - 50TB ~200
2277 * 50TB - 32PB one per 256GB
2278 * > 32PB ~131,072
2279 * -------------------------------
2280 */
2281
2282 if (ms_count < vdev_min_ms_count)
2283 ms_shift = highbit64(asize / vdev_min_ms_count);
2284 else if (ms_count > vdev_max_ms_count)
2285 ms_shift = highbit64(asize / vdev_max_ms_count);
2286 else
2287 ms_shift = vdev_default_ms_shift;
2288
2289 if (ms_shift < SPA_MAXBLOCKSHIFT) {
2290 ms_shift = SPA_MAXBLOCKSHIFT;
2291 } else if (ms_shift > vdev_max_ms_shift) {
2292 ms_shift = vdev_max_ms_shift;
2293 /* cap the total count to constrain memory footprint */
2294 if ((asize >> ms_shift) > vdev_ms_count_limit)
2295 ms_shift = highbit64(asize / vdev_ms_count_limit);
2296 }
2297
2298 vd->vdev_ms_shift = ms_shift;
2299 ASSERT3U(vd->vdev_ms_shift, >=, SPA_MAXBLOCKSHIFT);
2300 }
2301
2302 void
2303 vdev_dirty(vdev_t *vd, int flags, void *arg, uint64_t txg)
2304 {
2305 ASSERT(vd == vd->vdev_top);
2306 /* indirect vdevs don't have metaslabs or dtls */
2307 ASSERT(vdev_is_concrete(vd) || flags == 0);
2308 ASSERT(ISP2(flags));
2309 ASSERT(spa_writeable(vd->vdev_spa));
2310
2311 if (flags & VDD_METASLAB)
2312 (void) txg_list_add(&vd->vdev_ms_list, arg, txg);
2313
2314 if (flags & VDD_DTL)
2315 (void) txg_list_add(&vd->vdev_dtl_list, arg, txg);
2316
2317 (void) txg_list_add(&vd->vdev_spa->spa_vdev_txg_list, vd, txg);
2318 }
2319
2320 void
2321 vdev_dirty_leaves(vdev_t *vd, int flags, uint64_t txg)
2322 {
2323 for (int c = 0; c < vd->vdev_children; c++)
2324 vdev_dirty_leaves(vd->vdev_child[c], flags, txg);
2325
2326 if (vd->vdev_ops->vdev_op_leaf)
2327 vdev_dirty(vd->vdev_top, flags, vd, txg);
2328 }
2329
2330 /*
2331 * DTLs.
2332 *
2333 * A vdev's DTL (dirty time log) is the set of transaction groups for which
2334 * the vdev has less than perfect replication. There are four kinds of DTL:
2335 *
2336 * DTL_MISSING: txgs for which the vdev has no valid copies of the data
2337 *
2338 * DTL_PARTIAL: txgs for which data is available, but not fully replicated
2339 *
2340 * DTL_SCRUB: the txgs that could not be repaired by the last scrub; upon
2341 * scrub completion, DTL_SCRUB replaces DTL_MISSING in the range of
2342 * txgs that was scrubbed.
2343 *
2344 * DTL_OUTAGE: txgs which cannot currently be read, whether due to
2345 * persistent errors or just some device being offline.
2346 * Unlike the other three, the DTL_OUTAGE map is not generally
2347 * maintained; it's only computed when needed, typically to
2348 * determine whether a device can be detached.
2349 *
2350 * For leaf vdevs, DTL_MISSING and DTL_PARTIAL are identical: the device
2351 * either has the data or it doesn't.
2352 *
2353 * For interior vdevs such as mirror and RAID-Z the picture is more complex.
2354 * A vdev's DTL_PARTIAL is the union of its children's DTL_PARTIALs, because
2355 * if any child is less than fully replicated, then so is its parent.
2356 * A vdev's DTL_MISSING is a modified union of its children's DTL_MISSINGs,
2357 * comprising only those txgs which appear in 'maxfaults' or more children;
2358 * those are the txgs we don't have enough replication to read. For example,
2359 * double-parity RAID-Z can tolerate up to two missing devices (maxfaults == 2);
2360 * thus, its DTL_MISSING consists of the set of txgs that appear in more than
2361 * two child DTL_MISSING maps.
2362 *
2363 * It should be clear from the above that to compute the DTLs and outage maps
2364 * for all vdevs, it suffices to know just the leaf vdevs' DTL_MISSING maps.
2365 * Therefore, that is all we keep on disk. When loading the pool, or after
2366 * a configuration change, we generate all other DTLs from first principles.
2367 */
2368 void
2369 vdev_dtl_dirty(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
2370 {
2371 range_tree_t *rt = vd->vdev_dtl[t];
2372
2373 ASSERT(t < DTL_TYPES);
2374 ASSERT(vd != vd->vdev_spa->spa_root_vdev);
2375 ASSERT(spa_writeable(vd->vdev_spa));
2376
2377 mutex_enter(&vd->vdev_dtl_lock);
2378 if (!range_tree_contains(rt, txg, size))
2379 range_tree_add(rt, txg, size);
2380 mutex_exit(&vd->vdev_dtl_lock);
2381 }
2382
2383 boolean_t
2384 vdev_dtl_contains(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
2385 {
2386 range_tree_t *rt = vd->vdev_dtl[t];
2387 boolean_t dirty = B_FALSE;
2388
2389 ASSERT(t < DTL_TYPES);
2390 ASSERT(vd != vd->vdev_spa->spa_root_vdev);
2391
2392 /*
2393 * While we are loading the pool, the DTLs have not been loaded yet.
2394 * Ignore the DTLs and try all devices. This avoids a recursive
2395 * mutex enter on the vdev_dtl_lock, and also makes us try hard
2396 * when loading the pool (relying on the checksum to ensure that
2397 * we get the right data -- note that we while loading, we are
2398 * only reading the MOS, which is always checksummed).
2399 */
2400 if (vd->vdev_spa->spa_load_state != SPA_LOAD_NONE)
2401 return (B_FALSE);
2402
2403 mutex_enter(&vd->vdev_dtl_lock);
2404 if (!range_tree_is_empty(rt))
2405 dirty = range_tree_contains(rt, txg, size);
2406 mutex_exit(&vd->vdev_dtl_lock);
2407
2408 return (dirty);
2409 }
2410
2411 boolean_t
2412 vdev_dtl_empty(vdev_t *vd, vdev_dtl_type_t t)
2413 {
2414 range_tree_t *rt = vd->vdev_dtl[t];
2415 boolean_t empty;
2416
2417 mutex_enter(&vd->vdev_dtl_lock);
2418 empty = range_tree_is_empty(rt);
2419 mutex_exit(&vd->vdev_dtl_lock);
2420
2421 return (empty);
2422 }
2423
2424 /*
2425 * Returns B_TRUE if vdev determines offset needs to be resilvered.
2426 */
2427 boolean_t
2428 vdev_dtl_need_resilver(vdev_t *vd, uint64_t offset, size_t psize)
2429 {
2430 ASSERT(vd != vd->vdev_spa->spa_root_vdev);
2431
2432 if (vd->vdev_ops->vdev_op_need_resilver == NULL ||
2433 vd->vdev_ops->vdev_op_leaf)
2434 return (B_TRUE);
2435
2436 return (vd->vdev_ops->vdev_op_need_resilver(vd, offset, psize));
2437 }
2438
2439 /*
2440 * Returns the lowest txg in the DTL range.
2441 */
2442 static uint64_t
2443 vdev_dtl_min(vdev_t *vd)
2444 {
2445 range_seg_t *rs;
2446
2447 ASSERT(MUTEX_HELD(&vd->vdev_dtl_lock));
2448 ASSERT3U(range_tree_space(vd->vdev_dtl[DTL_MISSING]), !=, 0);
2449 ASSERT0(vd->vdev_children);
2450
2451 rs = avl_first(&vd->vdev_dtl[DTL_MISSING]->rt_root);
2452 return (rs->rs_start - 1);
2453 }
2454
2455 /*
2456 * Returns the highest txg in the DTL.
2457 */
2458 static uint64_t
2459 vdev_dtl_max(vdev_t *vd)
2460 {
2461 range_seg_t *rs;
2462
2463 ASSERT(MUTEX_HELD(&vd->vdev_dtl_lock));
2464 ASSERT3U(range_tree_space(vd->vdev_dtl[DTL_MISSING]), !=, 0);
2465 ASSERT0(vd->vdev_children);
2466
2467 rs = avl_last(&vd->vdev_dtl[DTL_MISSING]->rt_root);
2468 return (rs->rs_end);
2469 }
2470
2471 /*
2472 * Determine if a resilvering vdev should remove any DTL entries from
2473 * its range. If the vdev was resilvering for the entire duration of the
2474 * scan then it should excise that range from its DTLs. Otherwise, this
2475 * vdev is considered partially resilvered and should leave its DTL
2476 * entries intact. The comment in vdev_dtl_reassess() describes how we
2477 * excise the DTLs.
2478 */
2479 static boolean_t
2480 vdev_dtl_should_excise(vdev_t *vd)
2481 {
2482 spa_t *spa = vd->vdev_spa;
2483 dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan;
2484
2485 ASSERT0(scn->scn_phys.scn_errors);
2486 ASSERT0(vd->vdev_children);
2487
2488 if (vd->vdev_state < VDEV_STATE_DEGRADED)
2489 return (B_FALSE);
2490
2491 if (vd->vdev_resilver_txg == 0 ||
2492 range_tree_is_empty(vd->vdev_dtl[DTL_MISSING]))
2493 return (B_TRUE);
2494
2495 /*
2496 * When a resilver is initiated the scan will assign the scn_max_txg
2497 * value to the highest txg value that exists in all DTLs. If this
2498 * device's max DTL is not part of this scan (i.e. it is not in
2499 * the range (scn_min_txg, scn_max_txg] then it is not eligible
2500 * for excision.
2501 */
2502 if (vdev_dtl_max(vd) <= scn->scn_phys.scn_max_txg) {
2503 ASSERT3U(scn->scn_phys.scn_min_txg, <=, vdev_dtl_min(vd));
2504 ASSERT3U(scn->scn_phys.scn_min_txg, <, vd->vdev_resilver_txg);
2505 ASSERT3U(vd->vdev_resilver_txg, <=, scn->scn_phys.scn_max_txg);
2506 return (B_TRUE);
2507 }
2508 return (B_FALSE);
2509 }
2510
2511 /*
2512 * Reassess DTLs after a config change or scrub completion.
2513 */
2514 void
2515 vdev_dtl_reassess(vdev_t *vd, uint64_t txg, uint64_t scrub_txg, int scrub_done)
2516 {
2517 spa_t *spa = vd->vdev_spa;
2518 avl_tree_t reftree;
2519 int minref;
2520
2521 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
2522
2523 for (int c = 0; c < vd->vdev_children; c++)
2524 vdev_dtl_reassess(vd->vdev_child[c], txg,
2525 scrub_txg, scrub_done);
2526
2527 if (vd == spa->spa_root_vdev || !vdev_is_concrete(vd) || vd->vdev_aux)
2528 return;
2529
2530 if (vd->vdev_ops->vdev_op_leaf) {
2531 dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan;
2532
2533 mutex_enter(&vd->vdev_dtl_lock);
2534
2535 /*
2536 * If requested, pretend the scan completed cleanly.
2537 */
2538 if (zfs_scan_ignore_errors && scn)
2539 scn->scn_phys.scn_errors = 0;
2540
2541 /*
2542 * If we've completed a scan cleanly then determine
2543 * if this vdev should remove any DTLs. We only want to
2544 * excise regions on vdevs that were available during
2545 * the entire duration of this scan.
2546 */
2547 if (scrub_txg != 0 &&
2548 (spa->spa_scrub_started ||
2549 (scn != NULL && scn->scn_phys.scn_errors == 0)) &&
2550 vdev_dtl_should_excise(vd)) {
2551 /*
2552 * We completed a scrub up to scrub_txg. If we
2553 * did it without rebooting, then the scrub dtl
2554 * will be valid, so excise the old region and
2555 * fold in the scrub dtl. Otherwise, leave the
2556 * dtl as-is if there was an error.
2557 *
2558 * There's little trick here: to excise the beginning
2559 * of the DTL_MISSING map, we put it into a reference
2560 * tree and then add a segment with refcnt -1 that
2561 * covers the range [0, scrub_txg). This means
2562 * that each txg in that range has refcnt -1 or 0.
2563 * We then add DTL_SCRUB with a refcnt of 2, so that
2564 * entries in the range [0, scrub_txg) will have a
2565 * positive refcnt -- either 1 or 2. We then convert
2566 * the reference tree into the new DTL_MISSING map.
2567 */
2568 space_reftree_create(&reftree);
2569 space_reftree_add_map(&reftree,
2570 vd->vdev_dtl[DTL_MISSING], 1);
2571 space_reftree_add_seg(&reftree, 0, scrub_txg, -1);
2572 space_reftree_add_map(&reftree,
2573 vd->vdev_dtl[DTL_SCRUB], 2);
2574 space_reftree_generate_map(&reftree,
2575 vd->vdev_dtl[DTL_MISSING], 1);
2576 space_reftree_destroy(&reftree);
2577 }
2578 range_tree_vacate(vd->vdev_dtl[DTL_PARTIAL], NULL, NULL);
2579 range_tree_walk(vd->vdev_dtl[DTL_MISSING],
2580 range_tree_add, vd->vdev_dtl[DTL_PARTIAL]);
2581 if (scrub_done)
2582 range_tree_vacate(vd->vdev_dtl[DTL_SCRUB], NULL, NULL);
2583 range_tree_vacate(vd->vdev_dtl[DTL_OUTAGE], NULL, NULL);
2584 if (!vdev_readable(vd))
2585 range_tree_add(vd->vdev_dtl[DTL_OUTAGE], 0, -1ULL);
2586 else
2587 range_tree_walk(vd->vdev_dtl[DTL_MISSING],
2588 range_tree_add, vd->vdev_dtl[DTL_OUTAGE]);
2589
2590 /*
2591 * If the vdev was resilvering and no longer has any
2592 * DTLs then reset its resilvering flag and dirty
2593 * the top level so that we persist the change.
2594 */
2595 if (vd->vdev_resilver_txg != 0 &&
2596 range_tree_is_empty(vd->vdev_dtl[DTL_MISSING]) &&
2597 range_tree_is_empty(vd->vdev_dtl[DTL_OUTAGE])) {
2598 vd->vdev_resilver_txg = 0;
2599 vdev_config_dirty(vd->vdev_top);
2600 }
2601
2602 mutex_exit(&vd->vdev_dtl_lock);
2603
2604 if (txg != 0)
2605 vdev_dirty(vd->vdev_top, VDD_DTL, vd, txg);
2606 return;
2607 }
2608
2609 mutex_enter(&vd->vdev_dtl_lock);
2610 for (int t = 0; t < DTL_TYPES; t++) {
2611 /* account for child's outage in parent's missing map */
2612 int s = (t == DTL_MISSING) ? DTL_OUTAGE: t;
2613 if (t == DTL_SCRUB)
2614 continue; /* leaf vdevs only */
2615 if (t == DTL_PARTIAL)
2616 minref = 1; /* i.e. non-zero */
2617 else if (vd->vdev_nparity != 0)
2618 minref = vd->vdev_nparity + 1; /* RAID-Z */
2619 else
2620 minref = vd->vdev_children; /* any kind of mirror */
2621 space_reftree_create(&reftree);
2622 for (int c = 0; c < vd->vdev_children; c++) {
2623 vdev_t *cvd = vd->vdev_child[c];
2624 mutex_enter(&cvd->vdev_dtl_lock);
2625 space_reftree_add_map(&reftree, cvd->vdev_dtl[s], 1);
2626 mutex_exit(&cvd->vdev_dtl_lock);
2627 }
2628 space_reftree_generate_map(&reftree, vd->vdev_dtl[t], minref);
2629 space_reftree_destroy(&reftree);
2630 }
2631 mutex_exit(&vd->vdev_dtl_lock);
2632 }
2633
2634 int
2635 vdev_dtl_load(vdev_t *vd)
2636 {
2637 spa_t *spa = vd->vdev_spa;
2638 objset_t *mos = spa->spa_meta_objset;
2639 int error = 0;
2640
2641 if (vd->vdev_ops->vdev_op_leaf && vd->vdev_dtl_object != 0) {
2642 ASSERT(vdev_is_concrete(vd));
2643
2644 error = space_map_open(&vd->vdev_dtl_sm, mos,
2645 vd->vdev_dtl_object, 0, -1ULL, 0);
2646 if (error)
2647 return (error);
2648 ASSERT(vd->vdev_dtl_sm != NULL);
2649
2650 mutex_enter(&vd->vdev_dtl_lock);
2651
2652 /*
2653 * Now that we've opened the space_map we need to update
2654 * the in-core DTL.
2655 */
2656 space_map_update(vd->vdev_dtl_sm);
2657
2658 error = space_map_load(vd->vdev_dtl_sm,
2659 vd->vdev_dtl[DTL_MISSING], SM_ALLOC);
2660 mutex_exit(&vd->vdev_dtl_lock);
2661
2662 return (error);
2663 }
2664
2665 for (int c = 0; c < vd->vdev_children; c++) {
2666 error = vdev_dtl_load(vd->vdev_child[c]);
2667 if (error != 0)
2668 break;
2669 }
2670
2671 return (error);
2672 }
2673
2674 static void
2675 vdev_zap_allocation_data(vdev_t *vd, dmu_tx_t *tx)
2676 {
2677 spa_t *spa = vd->vdev_spa;
2678 objset_t *mos = spa->spa_meta_objset;
2679 vdev_alloc_bias_t alloc_bias = vd->vdev_alloc_bias;
2680 const char *string;
2681
2682 ASSERT(alloc_bias != VDEV_BIAS_NONE);
2683
2684 string =
2685 (alloc_bias == VDEV_BIAS_LOG) ? VDEV_ALLOC_BIAS_LOG :
2686 (alloc_bias == VDEV_BIAS_SPECIAL) ? VDEV_ALLOC_BIAS_SPECIAL :
2687 (alloc_bias == VDEV_BIAS_DEDUP) ? VDEV_ALLOC_BIAS_DEDUP : NULL;
2688
2689 ASSERT(string != NULL);
2690 VERIFY0(zap_add(mos, vd->vdev_top_zap, VDEV_TOP_ZAP_ALLOCATION_BIAS,
2691 1, strlen(string) + 1, string, tx));
2692
2693 if (alloc_bias == VDEV_BIAS_SPECIAL || alloc_bias == VDEV_BIAS_DEDUP) {
2694 spa_activate_allocation_classes(spa, tx);
2695 }
2696 }
2697
2698 void
2699 vdev_destroy_unlink_zap(vdev_t *vd, uint64_t zapobj, dmu_tx_t *tx)
2700 {
2701 spa_t *spa = vd->vdev_spa;
2702
2703 VERIFY0(zap_destroy(spa->spa_meta_objset, zapobj, tx));
2704 VERIFY0(zap_remove_int(spa->spa_meta_objset, spa->spa_all_vdev_zaps,
2705 zapobj, tx));
2706 }
2707
2708 uint64_t
2709 vdev_create_link_zap(vdev_t *vd, dmu_tx_t *tx)
2710 {
2711 spa_t *spa = vd->vdev_spa;
2712 uint64_t zap = zap_create(spa->spa_meta_objset, DMU_OTN_ZAP_METADATA,
2713 DMU_OT_NONE, 0, tx);
2714
2715 ASSERT(zap != 0);
2716 VERIFY0(zap_add_int(spa->spa_meta_objset, spa->spa_all_vdev_zaps,
2717 zap, tx));
2718
2719 return (zap);
2720 }
2721
2722 void
2723 vdev_construct_zaps(vdev_t *vd, dmu_tx_t *tx)
2724 {
2725 if (vd->vdev_ops != &vdev_hole_ops &&
2726 vd->vdev_ops != &vdev_missing_ops &&
2727 vd->vdev_ops != &vdev_root_ops &&
2728 !vd->vdev_top->vdev_removing) {
2729 if (vd->vdev_ops->vdev_op_leaf && vd->vdev_leaf_zap == 0) {
2730 vd->vdev_leaf_zap = vdev_create_link_zap(vd, tx);
2731 }
2732 if (vd == vd->vdev_top && vd->vdev_top_zap == 0) {
2733 vd->vdev_top_zap = vdev_create_link_zap(vd, tx);
2734 if (vd->vdev_alloc_bias != VDEV_BIAS_NONE)
2735 vdev_zap_allocation_data(vd, tx);
2736 }
2737 }
2738
2739 for (uint64_t i = 0; i < vd->vdev_children; i++) {
2740 vdev_construct_zaps(vd->vdev_child[i], tx);
2741 }
2742 }
2743
2744 void
2745 vdev_dtl_sync(vdev_t *vd, uint64_t txg)
2746 {
2747 spa_t *spa = vd->vdev_spa;
2748 range_tree_t *rt = vd->vdev_dtl[DTL_MISSING];
2749 objset_t *mos = spa->spa_meta_objset;
2750 range_tree_t *rtsync;
2751 dmu_tx_t *tx;
2752 uint64_t object = space_map_object(vd->vdev_dtl_sm);
2753
2754 ASSERT(vdev_is_concrete(vd));
2755 ASSERT(vd->vdev_ops->vdev_op_leaf);
2756
2757 tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
2758
2759 if (vd->vdev_detached || vd->vdev_top->vdev_removing) {
2760 mutex_enter(&vd->vdev_dtl_lock);
2761 space_map_free(vd->vdev_dtl_sm, tx);
2762 space_map_close(vd->vdev_dtl_sm);
2763 vd->vdev_dtl_sm = NULL;
2764 mutex_exit(&vd->vdev_dtl_lock);
2765
2766 /*
2767 * We only destroy the leaf ZAP for detached leaves or for
2768 * removed log devices. Removed data devices handle leaf ZAP
2769 * cleanup later, once cancellation is no longer possible.
2770 */
2771 if (vd->vdev_leaf_zap != 0 && (vd->vdev_detached ||
2772 vd->vdev_top->vdev_islog)) {
2773 vdev_destroy_unlink_zap(vd, vd->vdev_leaf_zap, tx);
2774 vd->vdev_leaf_zap = 0;
2775 }
2776
2777 dmu_tx_commit(tx);
2778 return;
2779 }
2780
2781 if (vd->vdev_dtl_sm == NULL) {
2782 uint64_t new_object;
2783
2784 new_object = space_map_alloc(mos, vdev_dtl_sm_blksz, tx);
2785 VERIFY3U(new_object, !=, 0);
2786
2787 VERIFY0(space_map_open(&vd->vdev_dtl_sm, mos, new_object,
2788 0, -1ULL, 0));
2789 ASSERT(vd->vdev_dtl_sm != NULL);
2790 }
2791
2792 rtsync = range_tree_create(NULL, NULL);
2793
2794 mutex_enter(&vd->vdev_dtl_lock);
2795 range_tree_walk(rt, range_tree_add, rtsync);
2796 mutex_exit(&vd->vdev_dtl_lock);
2797
2798 space_map_truncate(vd->vdev_dtl_sm, vdev_dtl_sm_blksz, tx);
2799 space_map_write(vd->vdev_dtl_sm, rtsync, SM_ALLOC, SM_NO_VDEVID, tx);
2800 range_tree_vacate(rtsync, NULL, NULL);
2801
2802 range_tree_destroy(rtsync);
2803
2804 /*
2805 * If the object for the space map has changed then dirty
2806 * the top level so that we update the config.
2807 */
2808 if (object != space_map_object(vd->vdev_dtl_sm)) {
2809 vdev_dbgmsg(vd, "txg %llu, spa %s, DTL old object %llu, "
2810 "new object %llu", (u_longlong_t)txg, spa_name(spa),
2811 (u_longlong_t)object,
2812 (u_longlong_t)space_map_object(vd->vdev_dtl_sm));
2813 vdev_config_dirty(vd->vdev_top);
2814 }
2815
2816 dmu_tx_commit(tx);
2817
2818 mutex_enter(&vd->vdev_dtl_lock);
2819 space_map_update(vd->vdev_dtl_sm);
2820 mutex_exit(&vd->vdev_dtl_lock);
2821 }
2822
2823 /*
2824 * Determine whether the specified vdev can be offlined/detached/removed
2825 * without losing data.
2826 */
2827 boolean_t
2828 vdev_dtl_required(vdev_t *vd)
2829 {
2830 spa_t *spa = vd->vdev_spa;
2831 vdev_t *tvd = vd->vdev_top;
2832 uint8_t cant_read = vd->vdev_cant_read;
2833 boolean_t required;
2834
2835 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
2836
2837 if (vd == spa->spa_root_vdev || vd == tvd)
2838 return (B_TRUE);
2839
2840 /*
2841 * Temporarily mark the device as unreadable, and then determine
2842 * whether this results in any DTL outages in the top-level vdev.
2843 * If not, we can safely offline/detach/remove the device.
2844 */
2845 vd->vdev_cant_read = B_TRUE;
2846 vdev_dtl_reassess(tvd, 0, 0, B_FALSE);
2847 required = !vdev_dtl_empty(tvd, DTL_OUTAGE);
2848 vd->vdev_cant_read = cant_read;
2849 vdev_dtl_reassess(tvd, 0, 0, B_FALSE);
2850
2851 if (!required && zio_injection_enabled)
2852 required = !!zio_handle_device_injection(vd, NULL, ECHILD);
2853
2854 return (required);
2855 }
2856
2857 /*
2858 * Determine if resilver is needed, and if so the txg range.
2859 */
2860 boolean_t
2861 vdev_resilver_needed(vdev_t *vd, uint64_t *minp, uint64_t *maxp)
2862 {
2863 boolean_t needed = B_FALSE;
2864 uint64_t thismin = UINT64_MAX;
2865 uint64_t thismax = 0;
2866
2867 if (vd->vdev_children == 0) {
2868 mutex_enter(&vd->vdev_dtl_lock);
2869 if (!range_tree_is_empty(vd->vdev_dtl[DTL_MISSING]) &&
2870 vdev_writeable(vd)) {
2871
2872 thismin = vdev_dtl_min(vd);
2873 thismax = vdev_dtl_max(vd);
2874 needed = B_TRUE;
2875 }
2876 mutex_exit(&vd->vdev_dtl_lock);
2877 } else {
2878 for (int c = 0; c < vd->vdev_children; c++) {
2879 vdev_t *cvd = vd->vdev_child[c];
2880 uint64_t cmin, cmax;
2881
2882 if (vdev_resilver_needed(cvd, &cmin, &cmax)) {
2883 thismin = MIN(thismin, cmin);
2884 thismax = MAX(thismax, cmax);
2885 needed = B_TRUE;
2886 }
2887 }
2888 }
2889
2890 if (needed && minp) {
2891 *minp = thismin;
2892 *maxp = thismax;
2893 }
2894 return (needed);
2895 }
2896
2897 /*
2898 * Gets the checkpoint space map object from the vdev's ZAP. On success sm_obj
2899 * will contain either the checkpoint spacemap object or zero if none exists.
2900 * All other errors are returned to the caller.
2901 */
2902 int
2903 vdev_checkpoint_sm_object(vdev_t *vd, uint64_t *sm_obj)
2904 {
2905 ASSERT0(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER));
2906
2907 if (vd->vdev_top_zap == 0) {
2908 *sm_obj = 0;
2909 return (0);
2910 }
2911
2912 int error = zap_lookup(spa_meta_objset(vd->vdev_spa), vd->vdev_top_zap,
2913 VDEV_TOP_ZAP_POOL_CHECKPOINT_SM, sizeof (uint64_t), 1, sm_obj);
2914 if (error == ENOENT) {
2915 *sm_obj = 0;
2916 error = 0;
2917 }
2918
2919 return (error);
2920 }
2921
2922 int
2923 vdev_load(vdev_t *vd)
2924 {
2925 int error = 0;
2926
2927 /*
2928 * Recursively load all children.
2929 */
2930 for (int c = 0; c < vd->vdev_children; c++) {
2931 error = vdev_load(vd->vdev_child[c]);
2932 if (error != 0) {
2933 return (error);
2934 }
2935 }
2936
2937 vdev_set_deflate_ratio(vd);
2938
2939 /*
2940 * On spa_load path, grab the allocation bias from our zap
2941 */
2942 if (vd == vd->vdev_top && vd->vdev_top_zap != 0) {
2943 spa_t *spa = vd->vdev_spa;
2944 char bias_str[64];
2945
2946 if (zap_lookup(spa->spa_meta_objset, vd->vdev_top_zap,
2947 VDEV_TOP_ZAP_ALLOCATION_BIAS, 1, sizeof (bias_str),
2948 bias_str) == 0) {
2949 ASSERT(vd->vdev_alloc_bias == VDEV_BIAS_NONE);
2950 vd->vdev_alloc_bias = vdev_derive_alloc_bias(bias_str);
2951 }
2952 }
2953
2954 /*
2955 * If this is a top-level vdev, initialize its metaslabs.
2956 */
2957 if (vd == vd->vdev_top && vdev_is_concrete(vd)) {
2958 vdev_metaslab_group_create(vd);
2959
2960 if (vd->vdev_ashift == 0 || vd->vdev_asize == 0) {
2961 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2962 VDEV_AUX_CORRUPT_DATA);
2963 vdev_dbgmsg(vd, "vdev_load: invalid size. ashift=%llu, "
2964 "asize=%llu", (u_longlong_t)vd->vdev_ashift,
2965 (u_longlong_t)vd->vdev_asize);
2966 return (SET_ERROR(ENXIO));
2967 } else if ((error = vdev_metaslab_init(vd, 0)) != 0) {
2968 vdev_dbgmsg(vd, "vdev_load: metaslab_init failed "
2969 "[error=%d]", error);
2970 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2971 VDEV_AUX_CORRUPT_DATA);
2972 return (error);
2973 }
2974
2975 uint64_t checkpoint_sm_obj;
2976 error = vdev_checkpoint_sm_object(vd, &checkpoint_sm_obj);
2977 if (error == 0 && checkpoint_sm_obj != 0) {
2978 objset_t *mos = spa_meta_objset(vd->vdev_spa);
2979 ASSERT(vd->vdev_asize != 0);
2980 ASSERT3P(vd->vdev_checkpoint_sm, ==, NULL);
2981
2982 if ((error = space_map_open(&vd->vdev_checkpoint_sm,
2983 mos, checkpoint_sm_obj, 0, vd->vdev_asize,
2984 vd->vdev_ashift))) {
2985 vdev_dbgmsg(vd, "vdev_load: space_map_open "
2986 "failed for checkpoint spacemap (obj %llu) "
2987 "[error=%d]",
2988 (u_longlong_t)checkpoint_sm_obj, error);
2989 return (error);
2990 }
2991 ASSERT3P(vd->vdev_checkpoint_sm, !=, NULL);
2992 space_map_update(vd->vdev_checkpoint_sm);
2993
2994 /*
2995 * Since the checkpoint_sm contains free entries
2996 * exclusively we can use sm_alloc to indicate the
2997 * cumulative checkpointed space that has been freed.
2998 */
2999 vd->vdev_stat.vs_checkpoint_space =
3000 -vd->vdev_checkpoint_sm->sm_alloc;
3001 vd->vdev_spa->spa_checkpoint_info.sci_dspace +=
3002 vd->vdev_stat.vs_checkpoint_space;
3003 } else if (error != 0) {
3004 vdev_dbgmsg(vd, "vdev_load: failed to retrieve "
3005 "checkpoint space map object from vdev ZAP "
3006 "[error=%d]", error);
3007 return (error);
3008 }
3009 }
3010
3011 /*
3012 * If this is a leaf vdev, load its DTL.
3013 */
3014 if (vd->vdev_ops->vdev_op_leaf && (error = vdev_dtl_load(vd)) != 0) {
3015 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
3016 VDEV_AUX_CORRUPT_DATA);
3017 vdev_dbgmsg(vd, "vdev_load: vdev_dtl_load failed "
3018 "[error=%d]", error);
3019 return (error);
3020 }
3021
3022 uint64_t obsolete_sm_object;
3023 error = vdev_obsolete_sm_object(vd, &obsolete_sm_object);
3024 if (error == 0 && obsolete_sm_object != 0) {
3025 objset_t *mos = vd->vdev_spa->spa_meta_objset;
3026 ASSERT(vd->vdev_asize != 0);
3027 ASSERT3P(vd->vdev_obsolete_sm, ==, NULL);
3028
3029 if ((error = space_map_open(&vd->vdev_obsolete_sm, mos,
3030 obsolete_sm_object, 0, vd->vdev_asize, 0))) {
3031 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
3032 VDEV_AUX_CORRUPT_DATA);
3033 vdev_dbgmsg(vd, "vdev_load: space_map_open failed for "
3034 "obsolete spacemap (obj %llu) [error=%d]",
3035 (u_longlong_t)obsolete_sm_object, error);
3036 return (error);
3037 }
3038 space_map_update(vd->vdev_obsolete_sm);
3039 } else if (error != 0) {
3040 vdev_dbgmsg(vd, "vdev_load: failed to retrieve obsolete "
3041 "space map object from vdev ZAP [error=%d]", error);
3042 return (error);
3043 }
3044
3045 return (0);
3046 }
3047
3048 /*
3049 * The special vdev case is used for hot spares and l2cache devices. Its
3050 * sole purpose it to set the vdev state for the associated vdev. To do this,
3051 * we make sure that we can open the underlying device, then try to read the
3052 * label, and make sure that the label is sane and that it hasn't been
3053 * repurposed to another pool.
3054 */
3055 int
3056 vdev_validate_aux(vdev_t *vd)
3057 {
3058 nvlist_t *label;
3059 uint64_t guid, version;
3060 uint64_t state;
3061
3062 if (!vdev_readable(vd))
3063 return (0);
3064
3065 if ((label = vdev_label_read_config(vd, -1ULL)) == NULL) {
3066 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
3067 VDEV_AUX_CORRUPT_DATA);
3068 return (-1);
3069 }
3070
3071 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_VERSION, &version) != 0 ||
3072 !SPA_VERSION_IS_SUPPORTED(version) ||
3073 nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0 ||
3074 guid != vd->vdev_guid ||
3075 nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, &state) != 0) {
3076 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
3077 VDEV_AUX_CORRUPT_DATA);
3078 nvlist_free(label);
3079 return (-1);
3080 }
3081
3082 /*
3083 * We don't actually check the pool state here. If it's in fact in
3084 * use by another pool, we update this fact on the fly when requested.
3085 */
3086 nvlist_free(label);
3087 return (0);
3088 }
3089
3090 /*
3091 * Free the objects used to store this vdev's spacemaps, and the array
3092 * that points to them.
3093 */
3094 void
3095 vdev_destroy_spacemaps(vdev_t *vd, dmu_tx_t *tx)
3096 {
3097 if (vd->vdev_ms_array == 0)
3098 return;
3099
3100 objset_t *mos = vd->vdev_spa->spa_meta_objset;
3101 uint64_t array_count = vd->vdev_asize >> vd->vdev_ms_shift;
3102 size_t array_bytes = array_count * sizeof (uint64_t);
3103 uint64_t *smobj_array = kmem_alloc(array_bytes, KM_SLEEP);
3104 VERIFY0(dmu_read(mos, vd->vdev_ms_array, 0,
3105 array_bytes, smobj_array, 0));
3106
3107 for (uint64_t i = 0; i < array_count; i++) {
3108 uint64_t smobj = smobj_array[i];
3109 if (smobj == 0)
3110 continue;
3111
3112 space_map_free_obj(mos, smobj, tx);
3113 }
3114
3115 kmem_free(smobj_array, array_bytes);
3116 VERIFY0(dmu_object_free(mos, vd->vdev_ms_array, tx));
3117 vd->vdev_ms_array = 0;
3118 }
3119
3120 static void
3121 vdev_remove_empty(vdev_t *vd, uint64_t txg)
3122 {
3123 spa_t *spa = vd->vdev_spa;
3124 dmu_tx_t *tx;
3125
3126 ASSERT(vd == vd->vdev_top);
3127 ASSERT3U(txg, ==, spa_syncing_txg(spa));
3128
3129 if (vd->vdev_ms != NULL) {
3130 metaslab_group_t *mg = vd->vdev_mg;
3131
3132 metaslab_group_histogram_verify(mg);
3133 metaslab_class_histogram_verify(mg->mg_class);
3134
3135 for (int m = 0; m < vd->vdev_ms_count; m++) {
3136 metaslab_t *msp = vd->vdev_ms[m];
3137
3138 if (msp == NULL || msp->ms_sm == NULL)
3139 continue;
3140
3141 mutex_enter(&msp->ms_lock);
3142 /*
3143 * If the metaslab was not loaded when the vdev
3144 * was removed then the histogram accounting may
3145 * not be accurate. Update the histogram information
3146 * here so that we ensure that the metaslab group
3147 * and metaslab class are up-to-date.
3148 */
3149 metaslab_group_histogram_remove(mg, msp);
3150
3151 VERIFY0(space_map_allocated(msp->ms_sm));
3152 space_map_close(msp->ms_sm);
3153 msp->ms_sm = NULL;
3154 mutex_exit(&msp->ms_lock);
3155 }
3156
3157 if (vd->vdev_checkpoint_sm != NULL) {
3158 ASSERT(spa_has_checkpoint(spa));
3159 space_map_close(vd->vdev_checkpoint_sm);
3160 vd->vdev_checkpoint_sm = NULL;
3161 }
3162
3163 metaslab_group_histogram_verify(mg);
3164 metaslab_class_histogram_verify(mg->mg_class);
3165
3166 for (int i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i++)
3167 ASSERT0(mg->mg_histogram[i]);
3168 }
3169
3170 tx = dmu_tx_create_assigned(spa_get_dsl(spa), txg);
3171 vdev_destroy_spacemaps(vd, tx);
3172
3173 if (vd->vdev_islog && vd->vdev_top_zap != 0) {
3174 vdev_destroy_unlink_zap(vd, vd->vdev_top_zap, tx);
3175 vd->vdev_top_zap = 0;
3176 }
3177 dmu_tx_commit(tx);
3178 }
3179
3180 void
3181 vdev_sync_done(vdev_t *vd, uint64_t txg)
3182 {
3183 metaslab_t *msp;
3184 boolean_t reassess = !txg_list_empty(&vd->vdev_ms_list, TXG_CLEAN(txg));
3185
3186 ASSERT(vdev_is_concrete(vd));
3187
3188 while ((msp = txg_list_remove(&vd->vdev_ms_list, TXG_CLEAN(txg))))
3189 metaslab_sync_done(msp, txg);
3190
3191 if (reassess)
3192 metaslab_sync_reassess(vd->vdev_mg);
3193 }
3194
3195 void
3196 vdev_sync(vdev_t *vd, uint64_t txg)
3197 {
3198 spa_t *spa = vd->vdev_spa;
3199 vdev_t *lvd;
3200 metaslab_t *msp;
3201 dmu_tx_t *tx;
3202
3203 if (range_tree_space(vd->vdev_obsolete_segments) > 0) {
3204 dmu_tx_t *tx;
3205
3206 ASSERT(vd->vdev_removing ||
3207 vd->vdev_ops == &vdev_indirect_ops);
3208
3209 tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
3210 vdev_indirect_sync_obsolete(vd, tx);
3211 dmu_tx_commit(tx);
3212
3213 /*
3214 * If the vdev is indirect, it can't have dirty
3215 * metaslabs or DTLs.
3216 */
3217 if (vd->vdev_ops == &vdev_indirect_ops) {
3218 ASSERT(txg_list_empty(&vd->vdev_ms_list, txg));
3219 ASSERT(txg_list_empty(&vd->vdev_dtl_list, txg));
3220 return;
3221 }
3222 }
3223
3224 ASSERT(vdev_is_concrete(vd));
3225
3226 if (vd->vdev_ms_array == 0 && vd->vdev_ms_shift != 0 &&
3227 !vd->vdev_removing) {
3228 ASSERT(vd == vd->vdev_top);
3229 ASSERT0(vd->vdev_indirect_config.vic_mapping_object);
3230 tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
3231 vd->vdev_ms_array = dmu_object_alloc(spa->spa_meta_objset,
3232 DMU_OT_OBJECT_ARRAY, 0, DMU_OT_NONE, 0, tx);
3233 ASSERT(vd->vdev_ms_array != 0);
3234 vdev_config_dirty(vd);
3235 dmu_tx_commit(tx);
3236 }
3237
3238 while ((msp = txg_list_remove(&vd->vdev_ms_list, txg)) != NULL) {
3239 metaslab_sync(msp, txg);
3240 (void) txg_list_add(&vd->vdev_ms_list, msp, TXG_CLEAN(txg));
3241 }
3242
3243 while ((lvd = txg_list_remove(&vd->vdev_dtl_list, txg)) != NULL)
3244 vdev_dtl_sync(lvd, txg);
3245
3246 /*
3247 * Remove the metadata associated with this vdev once it's empty.
3248 * Note that this is typically used for log/cache device removal;
3249 * we don't empty toplevel vdevs when removing them. But if
3250 * a toplevel happens to be emptied, this is not harmful.
3251 */
3252 if (vd->vdev_stat.vs_alloc == 0 && vd->vdev_removing) {
3253 vdev_remove_empty(vd, txg);
3254 }
3255
3256 (void) txg_list_add(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg));
3257 }
3258
3259 uint64_t
3260 vdev_psize_to_asize(vdev_t *vd, uint64_t psize)
3261 {
3262 return (vd->vdev_ops->vdev_op_asize(vd, psize));
3263 }
3264
3265 /*
3266 * Mark the given vdev faulted. A faulted vdev behaves as if the device could
3267 * not be opened, and no I/O is attempted.
3268 */
3269 int
3270 vdev_fault(spa_t *spa, uint64_t guid, vdev_aux_t aux)
3271 {
3272 vdev_t *vd, *tvd;
3273
3274 spa_vdev_state_enter(spa, SCL_NONE);
3275
3276 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
3277 return (spa_vdev_state_exit(spa, NULL, ENODEV));
3278
3279 if (!vd->vdev_ops->vdev_op_leaf)
3280 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
3281
3282 tvd = vd->vdev_top;
3283
3284 /*
3285 * If user did a 'zpool offline -f' then make the fault persist across
3286 * reboots.
3287 */
3288 if (aux == VDEV_AUX_EXTERNAL_PERSIST) {
3289 /*
3290 * There are two kinds of forced faults: temporary and
3291 * persistent. Temporary faults go away at pool import, while
3292 * persistent faults stay set. Both types of faults can be
3293 * cleared with a zpool clear.
3294 *
3295 * We tell if a vdev is persistently faulted by looking at the
3296 * ZPOOL_CONFIG_AUX_STATE nvpair. If it's set to "external" at
3297 * import then it's a persistent fault. Otherwise, it's
3298 * temporary. We get ZPOOL_CONFIG_AUX_STATE set to "external"
3299 * by setting vd.vdev_stat.vs_aux to VDEV_AUX_EXTERNAL. This
3300 * tells vdev_config_generate() (which gets run later) to set
3301 * ZPOOL_CONFIG_AUX_STATE to "external" in the nvlist.
3302 */
3303 vd->vdev_stat.vs_aux = VDEV_AUX_EXTERNAL;
3304 vd->vdev_tmpoffline = B_FALSE;
3305 aux = VDEV_AUX_EXTERNAL;
3306 } else {
3307 vd->vdev_tmpoffline = B_TRUE;
3308 }
3309
3310 /*
3311 * We don't directly use the aux state here, but if we do a
3312 * vdev_reopen(), we need this value to be present to remember why we
3313 * were faulted.
3314 */
3315 vd->vdev_label_aux = aux;
3316
3317 /*
3318 * Faulted state takes precedence over degraded.
3319 */
3320 vd->vdev_delayed_close = B_FALSE;
3321 vd->vdev_faulted = 1ULL;
3322 vd->vdev_degraded = 0ULL;
3323 vdev_set_state(vd, B_FALSE, VDEV_STATE_FAULTED, aux);
3324
3325 /*
3326 * If this device has the only valid copy of the data, then
3327 * back off and simply mark the vdev as degraded instead.
3328 */
3329 if (!tvd->vdev_islog && vd->vdev_aux == NULL && vdev_dtl_required(vd)) {
3330 vd->vdev_degraded = 1ULL;
3331 vd->vdev_faulted = 0ULL;
3332
3333 /*
3334 * If we reopen the device and it's not dead, only then do we
3335 * mark it degraded.
3336 */
3337 vdev_reopen(tvd);
3338
3339 if (vdev_readable(vd))
3340 vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, aux);
3341 }
3342
3343 return (spa_vdev_state_exit(spa, vd, 0));
3344 }
3345
3346 /*
3347 * Mark the given vdev degraded. A degraded vdev is purely an indication to the
3348 * user that something is wrong. The vdev continues to operate as normal as far
3349 * as I/O is concerned.
3350 */
3351 int
3352 vdev_degrade(spa_t *spa, uint64_t guid, vdev_aux_t aux)
3353 {
3354 vdev_t *vd;
3355
3356 spa_vdev_state_enter(spa, SCL_NONE);
3357
3358 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
3359 return (spa_vdev_state_exit(spa, NULL, ENODEV));
3360
3361 if (!vd->vdev_ops->vdev_op_leaf)
3362 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
3363
3364 /*
3365 * If the vdev is already faulted, then don't do anything.
3366 */
3367 if (vd->vdev_faulted || vd->vdev_degraded)
3368 return (spa_vdev_state_exit(spa, NULL, 0));
3369
3370 vd->vdev_degraded = 1ULL;
3371 if (!vdev_is_dead(vd))
3372 vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED,
3373 aux);
3374
3375 return (spa_vdev_state_exit(spa, vd, 0));
3376 }
3377
3378 /*
3379 * Online the given vdev.
3380 *
3381 * If 'ZFS_ONLINE_UNSPARE' is set, it implies two things. First, any attached
3382 * spare device should be detached when the device finishes resilvering.
3383 * Second, the online should be treated like a 'test' online case, so no FMA
3384 * events are generated if the device fails to open.
3385 */
3386 int
3387 vdev_online(spa_t *spa, uint64_t guid, uint64_t flags, vdev_state_t *newstate)
3388 {
3389 vdev_t *vd, *tvd, *pvd, *rvd = spa->spa_root_vdev;
3390 boolean_t wasoffline;
3391 vdev_state_t oldstate;
3392
3393 spa_vdev_state_enter(spa, SCL_NONE);
3394
3395 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
3396 return (spa_vdev_state_exit(spa, NULL, ENODEV));
3397
3398 if (!vd->vdev_ops->vdev_op_leaf)
3399 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
3400
3401 wasoffline = (vd->vdev_offline || vd->vdev_tmpoffline);
3402 oldstate = vd->vdev_state;
3403
3404 tvd = vd->vdev_top;
3405 vd->vdev_offline = B_FALSE;
3406 vd->vdev_tmpoffline = B_FALSE;
3407 vd->vdev_checkremove = !!(flags & ZFS_ONLINE_CHECKREMOVE);
3408 vd->vdev_forcefault = !!(flags & ZFS_ONLINE_FORCEFAULT);
3409
3410 /* XXX - L2ARC 1.0 does not support expansion */
3411 if (!vd->vdev_aux) {
3412 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
3413 pvd->vdev_expanding = !!((flags & ZFS_ONLINE_EXPAND) ||
3414 spa->spa_autoexpand);
3415 }
3416
3417 vdev_reopen(tvd);
3418 vd->vdev_checkremove = vd->vdev_forcefault = B_FALSE;
3419
3420 if (!vd->vdev_aux) {
3421 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
3422 pvd->vdev_expanding = B_FALSE;
3423 }
3424
3425 if (newstate)
3426 *newstate = vd->vdev_state;
3427 if ((flags & ZFS_ONLINE_UNSPARE) &&
3428 !vdev_is_dead(vd) && vd->vdev_parent &&
3429 vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
3430 vd->vdev_parent->vdev_child[0] == vd)
3431 vd->vdev_unspare = B_TRUE;
3432
3433 if ((flags & ZFS_ONLINE_EXPAND) || spa->spa_autoexpand) {
3434
3435 /* XXX - L2ARC 1.0 does not support expansion */
3436 if (vd->vdev_aux)
3437 return (spa_vdev_state_exit(spa, vd, ENOTSUP));
3438 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
3439 }
3440
3441 if (wasoffline ||
3442 (oldstate < VDEV_STATE_DEGRADED &&
3443 vd->vdev_state >= VDEV_STATE_DEGRADED))
3444 spa_event_notify(spa, vd, NULL, ESC_ZFS_VDEV_ONLINE);
3445
3446 return (spa_vdev_state_exit(spa, vd, 0));
3447 }
3448
3449 static int
3450 vdev_offline_locked(spa_t *spa, uint64_t guid, uint64_t flags)
3451 {
3452 vdev_t *vd, *tvd;
3453 int error = 0;
3454 uint64_t generation;
3455 metaslab_group_t *mg;
3456
3457 top:
3458 spa_vdev_state_enter(spa, SCL_ALLOC);
3459
3460 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
3461 return (spa_vdev_state_exit(spa, NULL, ENODEV));
3462
3463 if (!vd->vdev_ops->vdev_op_leaf)
3464 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
3465
3466 tvd = vd->vdev_top;
3467 mg = tvd->vdev_mg;
3468 generation = spa->spa_config_generation + 1;
3469
3470 /*
3471 * If the device isn't already offline, try to offline it.
3472 */
3473 if (!vd->vdev_offline) {
3474 /*
3475 * If this device has the only valid copy of some data,
3476 * don't allow it to be offlined. Log devices are always
3477 * expendable.
3478 */
3479 if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
3480 vdev_dtl_required(vd))
3481 return (spa_vdev_state_exit(spa, NULL, EBUSY));
3482
3483 /*
3484 * If the top-level is a slog and it has had allocations
3485 * then proceed. We check that the vdev's metaslab group
3486 * is not NULL since it's possible that we may have just
3487 * added this vdev but not yet initialized its metaslabs.
3488 */
3489 if (tvd->vdev_islog && mg != NULL) {
3490 /*
3491 * Prevent any future allocations.
3492 */
3493 metaslab_group_passivate(mg);
3494 (void) spa_vdev_state_exit(spa, vd, 0);
3495
3496 error = spa_reset_logs(spa);
3497
3498 /*
3499 * If the log device was successfully reset but has
3500 * checkpointed data, do not offline it.
3501 */
3502 if (error == 0 &&
3503 tvd->vdev_checkpoint_sm != NULL) {
3504 ASSERT3U(tvd->vdev_checkpoint_sm->sm_alloc,
3505 !=, 0);
3506 error = ZFS_ERR_CHECKPOINT_EXISTS;
3507 }
3508
3509 spa_vdev_state_enter(spa, SCL_ALLOC);
3510
3511 /*
3512 * Check to see if the config has changed.
3513 */
3514 if (error || generation != spa->spa_config_generation) {
3515 metaslab_group_activate(mg);
3516 if (error)
3517 return (spa_vdev_state_exit(spa,
3518 vd, error));
3519 (void) spa_vdev_state_exit(spa, vd, 0);
3520 goto top;
3521 }
3522 ASSERT0(tvd->vdev_stat.vs_alloc);
3523 }
3524
3525 /*
3526 * Offline this device and reopen its top-level vdev.
3527 * If the top-level vdev is a log device then just offline
3528 * it. Otherwise, if this action results in the top-level
3529 * vdev becoming unusable, undo it and fail the request.
3530 */
3531 vd->vdev_offline = B_TRUE;
3532 vdev_reopen(tvd);
3533
3534 if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
3535 vdev_is_dead(tvd)) {
3536 vd->vdev_offline = B_FALSE;
3537 vdev_reopen(tvd);
3538 return (spa_vdev_state_exit(spa, NULL, EBUSY));
3539 }
3540
3541 /*
3542 * Add the device back into the metaslab rotor so that
3543 * once we online the device it's open for business.
3544 */
3545 if (tvd->vdev_islog && mg != NULL)
3546 metaslab_group_activate(mg);
3547 }
3548
3549 vd->vdev_tmpoffline = !!(flags & ZFS_OFFLINE_TEMPORARY);
3550
3551 return (spa_vdev_state_exit(spa, vd, 0));
3552 }
3553
3554 int
3555 vdev_offline(spa_t *spa, uint64_t guid, uint64_t flags)
3556 {
3557 int error;
3558
3559 mutex_enter(&spa->spa_vdev_top_lock);
3560 error = vdev_offline_locked(spa, guid, flags);
3561 mutex_exit(&spa->spa_vdev_top_lock);
3562
3563 return (error);
3564 }
3565
3566 /*
3567 * Clear the error counts associated with this vdev. Unlike vdev_online() and
3568 * vdev_offline(), we assume the spa config is locked. We also clear all
3569 * children. If 'vd' is NULL, then the user wants to clear all vdevs.
3570 */
3571 void
3572 vdev_clear(spa_t *spa, vdev_t *vd)
3573 {
3574 vdev_t *rvd = spa->spa_root_vdev;
3575
3576 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
3577
3578 if (vd == NULL)
3579 vd = rvd;
3580
3581 vd->vdev_stat.vs_read_errors = 0;
3582 vd->vdev_stat.vs_write_errors = 0;
3583 vd->vdev_stat.vs_checksum_errors = 0;
3584
3585 for (int c = 0; c < vd->vdev_children; c++)
3586 vdev_clear(spa, vd->vdev_child[c]);
3587
3588 /*
3589 * It makes no sense to "clear" an indirect vdev.
3590 */
3591 if (!vdev_is_concrete(vd))
3592 return;
3593
3594 /*
3595 * If we're in the FAULTED state or have experienced failed I/O, then
3596 * clear the persistent state and attempt to reopen the device. We
3597 * also mark the vdev config dirty, so that the new faulted state is
3598 * written out to disk.
3599 */
3600 if (vd->vdev_faulted || vd->vdev_degraded ||
3601 !vdev_readable(vd) || !vdev_writeable(vd)) {
3602 /*
3603 * When reopening in response to a clear event, it may be due to
3604 * a fmadm repair request. In this case, if the device is
3605 * still broken, we want to still post the ereport again.
3606 */
3607 vd->vdev_forcefault = B_TRUE;
3608
3609 vd->vdev_faulted = vd->vdev_degraded = 0ULL;
3610 vd->vdev_cant_read = B_FALSE;
3611 vd->vdev_cant_write = B_FALSE;
3612 vd->vdev_stat.vs_aux = 0;
3613
3614 vdev_reopen(vd == rvd ? rvd : vd->vdev_top);
3615
3616 vd->vdev_forcefault = B_FALSE;
3617
3618 if (vd != rvd && vdev_writeable(vd->vdev_top))
3619 vdev_state_dirty(vd->vdev_top);
3620
3621 if (vd->vdev_aux == NULL && !vdev_is_dead(vd))
3622 spa_async_request(spa, SPA_ASYNC_RESILVER);
3623
3624 spa_event_notify(spa, vd, NULL, ESC_ZFS_VDEV_CLEAR);
3625 }
3626
3627 /*
3628 * When clearing a FMA-diagnosed fault, we always want to
3629 * unspare the device, as we assume that the original spare was
3630 * done in response to the FMA fault.
3631 */
3632 if (!vdev_is_dead(vd) && vd->vdev_parent != NULL &&
3633 vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
3634 vd->vdev_parent->vdev_child[0] == vd)
3635 vd->vdev_unspare = B_TRUE;
3636 }
3637
3638 boolean_t
3639 vdev_is_dead(vdev_t *vd)
3640 {
3641 /*
3642 * Holes and missing devices are always considered "dead".
3643 * This simplifies the code since we don't have to check for
3644 * these types of devices in the various code paths.
3645 * Instead we rely on the fact that we skip over dead devices
3646 * before issuing I/O to them.
3647 */
3648 return (vd->vdev_state < VDEV_STATE_DEGRADED ||
3649 vd->vdev_ops == &vdev_hole_ops ||
3650 vd->vdev_ops == &vdev_missing_ops);
3651 }
3652
3653 boolean_t
3654 vdev_readable(vdev_t *vd)
3655 {
3656 return (!vdev_is_dead(vd) && !vd->vdev_cant_read);
3657 }
3658
3659 boolean_t
3660 vdev_writeable(vdev_t *vd)
3661 {
3662 return (!vdev_is_dead(vd) && !vd->vdev_cant_write &&
3663 vdev_is_concrete(vd));
3664 }
3665
3666 boolean_t
3667 vdev_allocatable(vdev_t *vd)
3668 {
3669 uint64_t state = vd->vdev_state;
3670
3671 /*
3672 * We currently allow allocations from vdevs which may be in the
3673 * process of reopening (i.e. VDEV_STATE_CLOSED). If the device
3674 * fails to reopen then we'll catch it later when we're holding
3675 * the proper locks. Note that we have to get the vdev state
3676 * in a local variable because although it changes atomically,
3677 * we're asking two separate questions about it.
3678 */
3679 return (!(state < VDEV_STATE_DEGRADED && state != VDEV_STATE_CLOSED) &&
3680 !vd->vdev_cant_write && vdev_is_concrete(vd) &&
3681 vd->vdev_mg->mg_initialized);
3682 }
3683
3684 boolean_t
3685 vdev_accessible(vdev_t *vd, zio_t *zio)
3686 {
3687 ASSERT(zio->io_vd == vd);
3688
3689 if (vdev_is_dead(vd) || vd->vdev_remove_wanted)
3690 return (B_FALSE);
3691
3692 if (zio->io_type == ZIO_TYPE_READ)
3693 return (!vd->vdev_cant_read);
3694
3695 if (zio->io_type == ZIO_TYPE_WRITE)
3696 return (!vd->vdev_cant_write);
3697
3698 return (B_TRUE);
3699 }
3700
3701 static void
3702 vdev_get_child_stat(vdev_t *cvd, vdev_stat_t *vs, vdev_stat_t *cvs)
3703 {
3704 int t;
3705 for (t = 0; t < ZIO_TYPES; t++) {
3706 vs->vs_ops[t] += cvs->vs_ops[t];
3707 vs->vs_bytes[t] += cvs->vs_bytes[t];
3708 }
3709
3710 cvs->vs_scan_removing = cvd->vdev_removing;
3711 }
3712
3713 /*
3714 * Get extended stats
3715 */
3716 static void
3717 vdev_get_child_stat_ex(vdev_t *cvd, vdev_stat_ex_t *vsx, vdev_stat_ex_t *cvsx)
3718 {
3719 int t, b;
3720 for (t = 0; t < ZIO_TYPES; t++) {
3721 for (b = 0; b < ARRAY_SIZE(vsx->vsx_disk_histo[0]); b++)
3722 vsx->vsx_disk_histo[t][b] += cvsx->vsx_disk_histo[t][b];
3723
3724 for (b = 0; b < ARRAY_SIZE(vsx->vsx_total_histo[0]); b++) {
3725 vsx->vsx_total_histo[t][b] +=
3726 cvsx->vsx_total_histo[t][b];
3727 }
3728 }
3729
3730 for (t = 0; t < ZIO_PRIORITY_NUM_QUEUEABLE; t++) {
3731 for (b = 0; b < ARRAY_SIZE(vsx->vsx_queue_histo[0]); b++) {
3732 vsx->vsx_queue_histo[t][b] +=
3733 cvsx->vsx_queue_histo[t][b];
3734 }
3735 vsx->vsx_active_queue[t] += cvsx->vsx_active_queue[t];
3736 vsx->vsx_pend_queue[t] += cvsx->vsx_pend_queue[t];
3737
3738 for (b = 0; b < ARRAY_SIZE(vsx->vsx_ind_histo[0]); b++)
3739 vsx->vsx_ind_histo[t][b] += cvsx->vsx_ind_histo[t][b];
3740
3741 for (b = 0; b < ARRAY_SIZE(vsx->vsx_agg_histo[0]); b++)
3742 vsx->vsx_agg_histo[t][b] += cvsx->vsx_agg_histo[t][b];
3743 }
3744
3745 }
3746
3747 boolean_t
3748 vdev_is_spacemap_addressable(vdev_t *vd)
3749 {
3750 /*
3751 * Assuming 47 bits of the space map entry dedicated for the entry's
3752 * offset (see description in space_map.h), we calculate the maximum
3753 * address that can be described by a space map entry for the given
3754 * device.
3755 */
3756 uint64_t shift = vd->vdev_ashift + 47;
3757
3758 if (shift >= 63) /* detect potential overflow */
3759 return (B_TRUE);
3760
3761 return (vd->vdev_asize < (1ULL << shift));
3762 }
3763
3764 /*
3765 * Get statistics for the given vdev.
3766 */
3767 static void
3768 vdev_get_stats_ex_impl(vdev_t *vd, vdev_stat_t *vs, vdev_stat_ex_t *vsx)
3769 {
3770 int t;
3771 /*
3772 * If we're getting stats on the root vdev, aggregate the I/O counts
3773 * over all top-level vdevs (i.e. the direct children of the root).
3774 */
3775 if (!vd->vdev_ops->vdev_op_leaf) {
3776 if (vs) {
3777 memset(vs->vs_ops, 0, sizeof (vs->vs_ops));
3778 memset(vs->vs_bytes, 0, sizeof (vs->vs_bytes));
3779 }
3780 if (vsx)
3781 memset(vsx, 0, sizeof (*vsx));
3782
3783 for (int c = 0; c < vd->vdev_children; c++) {
3784 vdev_t *cvd = vd->vdev_child[c];
3785 vdev_stat_t *cvs = &cvd->vdev_stat;
3786 vdev_stat_ex_t *cvsx = &cvd->vdev_stat_ex;
3787
3788 vdev_get_stats_ex_impl(cvd, cvs, cvsx);
3789 if (vs)
3790 vdev_get_child_stat(cvd, vs, cvs);
3791 if (vsx)
3792 vdev_get_child_stat_ex(cvd, vsx, cvsx);
3793
3794 }
3795 } else {
3796 /*
3797 * We're a leaf. Just copy our ZIO active queue stats in. The
3798 * other leaf stats are updated in vdev_stat_update().
3799 */
3800 if (!vsx)
3801 return;
3802
3803 memcpy(vsx, &vd->vdev_stat_ex, sizeof (vd->vdev_stat_ex));
3804
3805 for (t = 0; t < ARRAY_SIZE(vd->vdev_queue.vq_class); t++) {
3806 vsx->vsx_active_queue[t] =
3807 vd->vdev_queue.vq_class[t].vqc_active;
3808 vsx->vsx_pend_queue[t] = avl_numnodes(
3809 &vd->vdev_queue.vq_class[t].vqc_queued_tree);
3810 }
3811 }
3812 }
3813
3814 void
3815 vdev_get_stats_ex(vdev_t *vd, vdev_stat_t *vs, vdev_stat_ex_t *vsx)
3816 {
3817 vdev_t *tvd = vd->vdev_top;
3818 mutex_enter(&vd->vdev_stat_lock);
3819 if (vs) {
3820 bcopy(&vd->vdev_stat, vs, sizeof (*vs));
3821 vs->vs_timestamp = gethrtime() - vs->vs_timestamp;
3822 vs->vs_state = vd->vdev_state;
3823 vs->vs_rsize = vdev_get_min_asize(vd);
3824 if (vd->vdev_ops->vdev_op_leaf)
3825 vs->vs_rsize += VDEV_LABEL_START_SIZE +
3826 VDEV_LABEL_END_SIZE;
3827 /*
3828 * Report expandable space on top-level, non-auxillary devices
3829 * only. The expandable space is reported in terms of metaslab
3830 * sized units since that determines how much space the pool
3831 * can expand.
3832 */
3833 if (vd->vdev_aux == NULL && tvd != NULL) {
3834 vs->vs_esize = P2ALIGN(
3835 vd->vdev_max_asize - vd->vdev_asize,
3836 1ULL << tvd->vdev_ms_shift);
3837 }
3838 if (vd->vdev_aux == NULL && vd == vd->vdev_top &&
3839 vdev_is_concrete(vd)) {
3840 vs->vs_fragmentation = (vd->vdev_mg != NULL) ?
3841 vd->vdev_mg->mg_fragmentation : 0;
3842 }
3843 }
3844
3845 ASSERT(spa_config_held(vd->vdev_spa, SCL_ALL, RW_READER) != 0);
3846 vdev_get_stats_ex_impl(vd, vs, vsx);
3847 mutex_exit(&vd->vdev_stat_lock);
3848 }
3849
3850 void
3851 vdev_get_stats(vdev_t *vd, vdev_stat_t *vs)
3852 {
3853 return (vdev_get_stats_ex(vd, vs, NULL));
3854 }
3855
3856 void
3857 vdev_clear_stats(vdev_t *vd)
3858 {
3859 mutex_enter(&vd->vdev_stat_lock);
3860 vd->vdev_stat.vs_space = 0;
3861 vd->vdev_stat.vs_dspace = 0;
3862 vd->vdev_stat.vs_alloc = 0;
3863 mutex_exit(&vd->vdev_stat_lock);
3864 }
3865
3866 void
3867 vdev_scan_stat_init(vdev_t *vd)
3868 {
3869 vdev_stat_t *vs = &vd->vdev_stat;
3870
3871 for (int c = 0; c < vd->vdev_children; c++)
3872 vdev_scan_stat_init(vd->vdev_child[c]);
3873
3874 mutex_enter(&vd->vdev_stat_lock);
3875 vs->vs_scan_processed = 0;
3876 mutex_exit(&vd->vdev_stat_lock);
3877 }
3878
3879 void
3880 vdev_stat_update(zio_t *zio, uint64_t psize)
3881 {
3882 spa_t *spa = zio->io_spa;
3883 vdev_t *rvd = spa->spa_root_vdev;
3884 vdev_t *vd = zio->io_vd ? zio->io_vd : rvd;
3885 vdev_t *pvd;
3886 uint64_t txg = zio->io_txg;
3887 vdev_stat_t *vs = &vd->vdev_stat;
3888 vdev_stat_ex_t *vsx = &vd->vdev_stat_ex;
3889 zio_type_t type = zio->io_type;
3890 int flags = zio->io_flags;
3891
3892 /*
3893 * If this i/o is a gang leader, it didn't do any actual work.
3894 */
3895 if (zio->io_gang_tree)
3896 return;
3897
3898 if (zio->io_error == 0) {
3899 /*
3900 * If this is a root i/o, don't count it -- we've already
3901 * counted the top-level vdevs, and vdev_get_stats() will
3902 * aggregate them when asked. This reduces contention on
3903 * the root vdev_stat_lock and implicitly handles blocks
3904 * that compress away to holes, for which there is no i/o.
3905 * (Holes never create vdev children, so all the counters
3906 * remain zero, which is what we want.)
3907 *
3908 * Note: this only applies to successful i/o (io_error == 0)
3909 * because unlike i/o counts, errors are not additive.
3910 * When reading a ditto block, for example, failure of
3911 * one top-level vdev does not imply a root-level error.
3912 */
3913 if (vd == rvd)
3914 return;
3915
3916 ASSERT(vd == zio->io_vd);
3917
3918 if (flags & ZIO_FLAG_IO_BYPASS)
3919 return;
3920
3921 mutex_enter(&vd->vdev_stat_lock);
3922
3923 if (flags & ZIO_FLAG_IO_REPAIR) {
3924 if (flags & ZIO_FLAG_SCAN_THREAD) {
3925 dsl_scan_phys_t *scn_phys =
3926 &spa->spa_dsl_pool->dp_scan->scn_phys;
3927 uint64_t *processed = &scn_phys->scn_processed;
3928
3929 /* XXX cleanup? */
3930 if (vd->vdev_ops->vdev_op_leaf)
3931 atomic_add_64(processed, psize);
3932 vs->vs_scan_processed += psize;
3933 }
3934
3935 if (flags & ZIO_FLAG_SELF_HEAL)
3936 vs->vs_self_healed += psize;
3937 }
3938
3939 /*
3940 * The bytes/ops/histograms are recorded at the leaf level and
3941 * aggregated into the higher level vdevs in vdev_get_stats().
3942 */
3943 if (vd->vdev_ops->vdev_op_leaf &&
3944 (zio->io_priority < ZIO_PRIORITY_NUM_QUEUEABLE)) {
3945
3946 vs->vs_ops[type]++;
3947 vs->vs_bytes[type] += psize;
3948
3949 if (flags & ZIO_FLAG_DELEGATED) {
3950 vsx->vsx_agg_histo[zio->io_priority]
3951 [RQ_HISTO(zio->io_size)]++;
3952 } else {
3953 vsx->vsx_ind_histo[zio->io_priority]
3954 [RQ_HISTO(zio->io_size)]++;
3955 }
3956
3957 if (zio->io_delta && zio->io_delay) {
3958 vsx->vsx_queue_histo[zio->io_priority]
3959 [L_HISTO(zio->io_delta - zio->io_delay)]++;
3960 vsx->vsx_disk_histo[type]
3961 [L_HISTO(zio->io_delay)]++;
3962 vsx->vsx_total_histo[type]
3963 [L_HISTO(zio->io_delta)]++;
3964 }
3965 }
3966
3967 mutex_exit(&vd->vdev_stat_lock);
3968 return;
3969 }
3970
3971 if (flags & ZIO_FLAG_SPECULATIVE)
3972 return;
3973
3974 /*
3975 * If this is an I/O error that is going to be retried, then ignore the
3976 * error. Otherwise, the user may interpret B_FAILFAST I/O errors as
3977 * hard errors, when in reality they can happen for any number of
3978 * innocuous reasons (bus resets, MPxIO link failure, etc).
3979 */
3980 if (zio->io_error == EIO &&
3981 !(zio->io_flags & ZIO_FLAG_IO_RETRY))
3982 return;
3983
3984 /*
3985 * Intent logs writes won't propagate their error to the root
3986 * I/O so don't mark these types of failures as pool-level
3987 * errors.
3988 */
3989 if (zio->io_vd == NULL && (zio->io_flags & ZIO_FLAG_DONT_PROPAGATE))
3990 return;
3991
3992 mutex_enter(&vd->vdev_stat_lock);
3993 if (type == ZIO_TYPE_READ && !vdev_is_dead(vd)) {
3994 if (zio->io_error == ECKSUM)
3995 vs->vs_checksum_errors++;
3996 else
3997 vs->vs_read_errors++;
3998 }
3999 if (type == ZIO_TYPE_WRITE && !vdev_is_dead(vd))
4000 vs->vs_write_errors++;
4001 mutex_exit(&vd->vdev_stat_lock);
4002
4003 if (spa->spa_load_state == SPA_LOAD_NONE &&
4004 type == ZIO_TYPE_WRITE && txg != 0 &&
4005 (!(flags & ZIO_FLAG_IO_REPAIR) ||
4006 (flags & ZIO_FLAG_SCAN_THREAD) ||
4007 spa->spa_claiming)) {
4008 /*
4009 * This is either a normal write (not a repair), or it's
4010 * a repair induced by the scrub thread, or it's a repair
4011 * made by zil_claim() during spa_load() in the first txg.
4012 * In the normal case, we commit the DTL change in the same
4013 * txg as the block was born. In the scrub-induced repair
4014 * case, we know that scrubs run in first-pass syncing context,
4015 * so we commit the DTL change in spa_syncing_txg(spa).
4016 * In the zil_claim() case, we commit in spa_first_txg(spa).
4017 *
4018 * We currently do not make DTL entries for failed spontaneous
4019 * self-healing writes triggered by normal (non-scrubbing)
4020 * reads, because we have no transactional context in which to
4021 * do so -- and it's not clear that it'd be desirable anyway.
4022 */
4023 if (vd->vdev_ops->vdev_op_leaf) {
4024 uint64_t commit_txg = txg;
4025 if (flags & ZIO_FLAG_SCAN_THREAD) {
4026 ASSERT(flags & ZIO_FLAG_IO_REPAIR);
4027 ASSERT(spa_sync_pass(spa) == 1);
4028 vdev_dtl_dirty(vd, DTL_SCRUB, txg, 1);
4029 commit_txg = spa_syncing_txg(spa);
4030 } else if (spa->spa_claiming) {
4031 ASSERT(flags & ZIO_FLAG_IO_REPAIR);
4032 commit_txg = spa_first_txg(spa);
4033 }
4034 ASSERT(commit_txg >= spa_syncing_txg(spa));
4035 if (vdev_dtl_contains(vd, DTL_MISSING, txg, 1))
4036 return;
4037 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
4038 vdev_dtl_dirty(pvd, DTL_PARTIAL, txg, 1);
4039 vdev_dirty(vd->vdev_top, VDD_DTL, vd, commit_txg);
4040 }
4041 if (vd != rvd)
4042 vdev_dtl_dirty(vd, DTL_MISSING, txg, 1);
4043 }
4044 }
4045
4046 int64_t
4047 vdev_deflated_space(vdev_t *vd, int64_t space)
4048 {
4049 ASSERT((space & (SPA_MINBLOCKSIZE-1)) == 0);
4050 ASSERT(vd->vdev_deflate_ratio != 0 || vd->vdev_isl2cache);
4051
4052 return ((space >> SPA_MINBLOCKSHIFT) * vd->vdev_deflate_ratio);
4053 }
4054
4055 /*
4056 * Update the in-core space usage stats for this vdev and the root vdev.
4057 */
4058 void
4059 vdev_space_update(vdev_t *vd, int64_t alloc_delta, int64_t defer_delta,
4060 int64_t space_delta)
4061 {
4062 int64_t dspace_delta;
4063 spa_t *spa = vd->vdev_spa;
4064 vdev_t *rvd = spa->spa_root_vdev;
4065
4066 ASSERT(vd == vd->vdev_top);
4067
4068 /*
4069 * Apply the inverse of the psize-to-asize (ie. RAID-Z) space-expansion
4070 * factor. We must calculate this here and not at the root vdev
4071 * because the root vdev's psize-to-asize is simply the max of its
4072 * childrens', thus not accurate enough for us.
4073 */
4074 dspace_delta = vdev_deflated_space(vd, space_delta);
4075
4076 mutex_enter(&vd->vdev_stat_lock);
4077 vd->vdev_stat.vs_alloc += alloc_delta;
4078 vd->vdev_stat.vs_space += space_delta;
4079 vd->vdev_stat.vs_dspace += dspace_delta;
4080 mutex_exit(&vd->vdev_stat_lock);
4081
4082 /* every class but log contributes to root space stats */
4083 if (vd->vdev_mg != NULL && !vd->vdev_islog) {
4084 mutex_enter(&rvd->vdev_stat_lock);
4085 rvd->vdev_stat.vs_alloc += alloc_delta;
4086 rvd->vdev_stat.vs_space += space_delta;
4087 rvd->vdev_stat.vs_dspace += dspace_delta;
4088 mutex_exit(&rvd->vdev_stat_lock);
4089 }
4090 /* Note: metaslab_class_space_update moved to metaslab_space_update */
4091 }
4092
4093 /*
4094 * Mark a top-level vdev's config as dirty, placing it on the dirty list
4095 * so that it will be written out next time the vdev configuration is synced.
4096 * If the root vdev is specified (vdev_top == NULL), dirty all top-level vdevs.
4097 */
4098 void
4099 vdev_config_dirty(vdev_t *vd)
4100 {
4101 spa_t *spa = vd->vdev_spa;
4102 vdev_t *rvd = spa->spa_root_vdev;
4103 int c;
4104
4105 ASSERT(spa_writeable(spa));
4106
4107 /*
4108 * If this is an aux vdev (as with l2cache and spare devices), then we
4109 * update the vdev config manually and set the sync flag.
4110 */
4111 if (vd->vdev_aux != NULL) {
4112 spa_aux_vdev_t *sav = vd->vdev_aux;
4113 nvlist_t **aux;
4114 uint_t naux;
4115
4116 for (c = 0; c < sav->sav_count; c++) {
4117 if (sav->sav_vdevs[c] == vd)
4118 break;
4119 }
4120
4121 if (c == sav->sav_count) {
4122 /*
4123 * We're being removed. There's nothing more to do.
4124 */
4125 ASSERT(sav->sav_sync == B_TRUE);
4126 return;
4127 }
4128
4129 sav->sav_sync = B_TRUE;
4130
4131 if (nvlist_lookup_nvlist_array(sav->sav_config,
4132 ZPOOL_CONFIG_L2CACHE, &aux, &naux) != 0) {
4133 VERIFY(nvlist_lookup_nvlist_array(sav->sav_config,
4134 ZPOOL_CONFIG_SPARES, &aux, &naux) == 0);
4135 }
4136
4137 ASSERT(c < naux);
4138
4139 /*
4140 * Setting the nvlist in the middle if the array is a little
4141 * sketchy, but it will work.
4142 */
4143 nvlist_free(aux[c]);
4144 aux[c] = vdev_config_generate(spa, vd, B_TRUE, 0);
4145
4146 return;
4147 }
4148
4149 /*
4150 * The dirty list is protected by the SCL_CONFIG lock. The caller
4151 * must either hold SCL_CONFIG as writer, or must be the sync thread
4152 * (which holds SCL_CONFIG as reader). There's only one sync thread,
4153 * so this is sufficient to ensure mutual exclusion.
4154 */
4155 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
4156 (dsl_pool_sync_context(spa_get_dsl(spa)) &&
4157 spa_config_held(spa, SCL_CONFIG, RW_READER)));
4158
4159 if (vd == rvd) {
4160 for (c = 0; c < rvd->vdev_children; c++)
4161 vdev_config_dirty(rvd->vdev_child[c]);
4162 } else {
4163 ASSERT(vd == vd->vdev_top);
4164
4165 if (!list_link_active(&vd->vdev_config_dirty_node) &&
4166 vdev_is_concrete(vd)) {
4167 list_insert_head(&spa->spa_config_dirty_list, vd);
4168 }
4169 }
4170 }
4171
4172 void
4173 vdev_config_clean(vdev_t *vd)
4174 {
4175 spa_t *spa = vd->vdev_spa;
4176
4177 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
4178 (dsl_pool_sync_context(spa_get_dsl(spa)) &&
4179 spa_config_held(spa, SCL_CONFIG, RW_READER)));
4180
4181 ASSERT(list_link_active(&vd->vdev_config_dirty_node));
4182 list_remove(&spa->spa_config_dirty_list, vd);
4183 }
4184
4185 /*
4186 * Mark a top-level vdev's state as dirty, so that the next pass of
4187 * spa_sync() can convert this into vdev_config_dirty(). We distinguish
4188 * the state changes from larger config changes because they require
4189 * much less locking, and are often needed for administrative actions.
4190 */
4191 void
4192 vdev_state_dirty(vdev_t *vd)
4193 {
4194 spa_t *spa = vd->vdev_spa;
4195
4196 ASSERT(spa_writeable(spa));
4197 ASSERT(vd == vd->vdev_top);
4198
4199 /*
4200 * The state list is protected by the SCL_STATE lock. The caller
4201 * must either hold SCL_STATE as writer, or must be the sync thread
4202 * (which holds SCL_STATE as reader). There's only one sync thread,
4203 * so this is sufficient to ensure mutual exclusion.
4204 */
4205 ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
4206 (dsl_pool_sync_context(spa_get_dsl(spa)) &&
4207 spa_config_held(spa, SCL_STATE, RW_READER)));
4208
4209 if (!list_link_active(&vd->vdev_state_dirty_node) &&
4210 vdev_is_concrete(vd))
4211 list_insert_head(&spa->spa_state_dirty_list, vd);
4212 }
4213
4214 void
4215 vdev_state_clean(vdev_t *vd)
4216 {
4217 spa_t *spa = vd->vdev_spa;
4218
4219 ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
4220 (dsl_pool_sync_context(spa_get_dsl(spa)) &&
4221 spa_config_held(spa, SCL_STATE, RW_READER)));
4222
4223 ASSERT(list_link_active(&vd->vdev_state_dirty_node));
4224 list_remove(&spa->spa_state_dirty_list, vd);
4225 }
4226
4227 /*
4228 * Propagate vdev state up from children to parent.
4229 */
4230 void
4231 vdev_propagate_state(vdev_t *vd)
4232 {
4233 spa_t *spa = vd->vdev_spa;
4234 vdev_t *rvd = spa->spa_root_vdev;
4235 int degraded = 0, faulted = 0;
4236 int corrupted = 0;
4237 vdev_t *child;
4238
4239 if (vd->vdev_children > 0) {
4240 for (int c = 0; c < vd->vdev_children; c++) {
4241 child = vd->vdev_child[c];
4242
4243 /*
4244 * Don't factor holes or indirect vdevs into the
4245 * decision.
4246 */
4247 if (!vdev_is_concrete(child))
4248 continue;
4249
4250 if (!vdev_readable(child) ||
4251 (!vdev_writeable(child) && spa_writeable(spa))) {
4252 /*
4253 * Root special: if there is a top-level log
4254 * device, treat the root vdev as if it were
4255 * degraded.
4256 */
4257 if (child->vdev_islog && vd == rvd)
4258 degraded++;
4259 else
4260 faulted++;
4261 } else if (child->vdev_state <= VDEV_STATE_DEGRADED) {
4262 degraded++;
4263 }
4264
4265 if (child->vdev_stat.vs_aux == VDEV_AUX_CORRUPT_DATA)
4266 corrupted++;
4267 }
4268
4269 vd->vdev_ops->vdev_op_state_change(vd, faulted, degraded);
4270
4271 /*
4272 * Root special: if there is a top-level vdev that cannot be
4273 * opened due to corrupted metadata, then propagate the root
4274 * vdev's aux state as 'corrupt' rather than 'insufficient
4275 * replicas'.
4276 */
4277 if (corrupted && vd == rvd &&
4278 rvd->vdev_state == VDEV_STATE_CANT_OPEN)
4279 vdev_set_state(rvd, B_FALSE, VDEV_STATE_CANT_OPEN,
4280 VDEV_AUX_CORRUPT_DATA);
4281 }
4282
4283 if (vd->vdev_parent)
4284 vdev_propagate_state(vd->vdev_parent);
4285 }
4286
4287 /*
4288 * Set a vdev's state. If this is during an open, we don't update the parent
4289 * state, because we're in the process of opening children depth-first.
4290 * Otherwise, we propagate the change to the parent.
4291 *
4292 * If this routine places a device in a faulted state, an appropriate ereport is
4293 * generated.
4294 */
4295 void
4296 vdev_set_state(vdev_t *vd, boolean_t isopen, vdev_state_t state, vdev_aux_t aux)
4297 {
4298 uint64_t save_state;
4299 spa_t *spa = vd->vdev_spa;
4300
4301 if (state == vd->vdev_state) {
4302 /*
4303 * Since vdev_offline() code path is already in an offline
4304 * state we can miss a statechange event to OFFLINE. Check
4305 * the previous state to catch this condition.
4306 */
4307 if (vd->vdev_ops->vdev_op_leaf &&
4308 (state == VDEV_STATE_OFFLINE) &&
4309 (vd->vdev_prevstate >= VDEV_STATE_FAULTED)) {
4310 /* post an offline state change */
4311 zfs_post_state_change(spa, vd, vd->vdev_prevstate);
4312 }
4313 vd->vdev_stat.vs_aux = aux;
4314 return;
4315 }
4316
4317 save_state = vd->vdev_state;
4318
4319 vd->vdev_state = state;
4320 vd->vdev_stat.vs_aux = aux;
4321
4322 /*
4323 * If we are setting the vdev state to anything but an open state, then
4324 * always close the underlying device unless the device has requested
4325 * a delayed close (i.e. we're about to remove or fault the device).
4326 * Otherwise, we keep accessible but invalid devices open forever.
4327 * We don't call vdev_close() itself, because that implies some extra
4328 * checks (offline, etc) that we don't want here. This is limited to
4329 * leaf devices, because otherwise closing the device will affect other
4330 * children.
4331 */
4332 if (!vd->vdev_delayed_close && vdev_is_dead(vd) &&
4333 vd->vdev_ops->vdev_op_leaf)
4334 vd->vdev_ops->vdev_op_close(vd);
4335
4336 if (vd->vdev_removed &&
4337 state == VDEV_STATE_CANT_OPEN &&
4338 (aux == VDEV_AUX_OPEN_FAILED || vd->vdev_checkremove)) {
4339 /*
4340 * If the previous state is set to VDEV_STATE_REMOVED, then this
4341 * device was previously marked removed and someone attempted to
4342 * reopen it. If this failed due to a nonexistent device, then
4343 * keep the device in the REMOVED state. We also let this be if
4344 * it is one of our special test online cases, which is only
4345 * attempting to online the device and shouldn't generate an FMA
4346 * fault.
4347 */
4348 vd->vdev_state = VDEV_STATE_REMOVED;
4349 vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
4350 } else if (state == VDEV_STATE_REMOVED) {
4351 vd->vdev_removed = B_TRUE;
4352 } else if (state == VDEV_STATE_CANT_OPEN) {
4353 /*
4354 * If we fail to open a vdev during an import or recovery, we
4355 * mark it as "not available", which signifies that it was
4356 * never there to begin with. Failure to open such a device
4357 * is not considered an error.
4358 */
4359 if ((spa_load_state(spa) == SPA_LOAD_IMPORT ||
4360 spa_load_state(spa) == SPA_LOAD_RECOVER) &&
4361 vd->vdev_ops->vdev_op_leaf)
4362 vd->vdev_not_present = 1;
4363
4364 /*
4365 * Post the appropriate ereport. If the 'prevstate' field is
4366 * set to something other than VDEV_STATE_UNKNOWN, it indicates
4367 * that this is part of a vdev_reopen(). In this case, we don't
4368 * want to post the ereport if the device was already in the
4369 * CANT_OPEN state beforehand.
4370 *
4371 * If the 'checkremove' flag is set, then this is an attempt to
4372 * online the device in response to an insertion event. If we
4373 * hit this case, then we have detected an insertion event for a
4374 * faulted or offline device that wasn't in the removed state.
4375 * In this scenario, we don't post an ereport because we are
4376 * about to replace the device, or attempt an online with
4377 * vdev_forcefault, which will generate the fault for us.
4378 */
4379 if ((vd->vdev_prevstate != state || vd->vdev_forcefault) &&
4380 !vd->vdev_not_present && !vd->vdev_checkremove &&
4381 vd != spa->spa_root_vdev) {
4382 const char *class;
4383
4384 switch (aux) {
4385 case VDEV_AUX_OPEN_FAILED:
4386 class = FM_EREPORT_ZFS_DEVICE_OPEN_FAILED;
4387 break;
4388 case VDEV_AUX_CORRUPT_DATA:
4389 class = FM_EREPORT_ZFS_DEVICE_CORRUPT_DATA;
4390 break;
4391 case VDEV_AUX_NO_REPLICAS:
4392 class = FM_EREPORT_ZFS_DEVICE_NO_REPLICAS;
4393 break;
4394 case VDEV_AUX_BAD_GUID_SUM:
4395 class = FM_EREPORT_ZFS_DEVICE_BAD_GUID_SUM;
4396 break;
4397 case VDEV_AUX_TOO_SMALL:
4398 class = FM_EREPORT_ZFS_DEVICE_TOO_SMALL;
4399 break;
4400 case VDEV_AUX_BAD_LABEL:
4401 class = FM_EREPORT_ZFS_DEVICE_BAD_LABEL;
4402 break;
4403 case VDEV_AUX_BAD_ASHIFT:
4404 class = FM_EREPORT_ZFS_DEVICE_BAD_ASHIFT;
4405 break;
4406 default:
4407 class = FM_EREPORT_ZFS_DEVICE_UNKNOWN;
4408 }
4409
4410 zfs_ereport_post(class, spa, vd, NULL, NULL,
4411 save_state, 0);
4412 }
4413
4414 /* Erase any notion of persistent removed state */
4415 vd->vdev_removed = B_FALSE;
4416 } else {
4417 vd->vdev_removed = B_FALSE;
4418 }
4419
4420 /*
4421 * Notify ZED of any significant state-change on a leaf vdev.
4422 *
4423 */
4424 if (vd->vdev_ops->vdev_op_leaf) {
4425 /* preserve original state from a vdev_reopen() */
4426 if ((vd->vdev_prevstate != VDEV_STATE_UNKNOWN) &&
4427 (vd->vdev_prevstate != vd->vdev_state) &&
4428 (save_state <= VDEV_STATE_CLOSED))
4429 save_state = vd->vdev_prevstate;
4430
4431 /* filter out state change due to initial vdev_open */
4432 if (save_state > VDEV_STATE_CLOSED)
4433 zfs_post_state_change(spa, vd, save_state);
4434 }
4435
4436 if (!isopen && vd->vdev_parent)
4437 vdev_propagate_state(vd->vdev_parent);
4438 }
4439
4440 boolean_t
4441 vdev_children_are_offline(vdev_t *vd)
4442 {
4443 ASSERT(!vd->vdev_ops->vdev_op_leaf);
4444
4445 for (uint64_t i = 0; i < vd->vdev_children; i++) {
4446 if (vd->vdev_child[i]->vdev_state != VDEV_STATE_OFFLINE)
4447 return (B_FALSE);
4448 }
4449
4450 return (B_TRUE);
4451 }
4452
4453 /*
4454 * Check the vdev configuration to ensure that it's capable of supporting
4455 * a root pool. We do not support partial configuration.
4456 */
4457 boolean_t
4458 vdev_is_bootable(vdev_t *vd)
4459 {
4460 if (!vd->vdev_ops->vdev_op_leaf) {
4461 const char *vdev_type = vd->vdev_ops->vdev_op_type;
4462
4463 if (strcmp(vdev_type, VDEV_TYPE_MISSING) == 0 ||
4464 strcmp(vdev_type, VDEV_TYPE_INDIRECT) == 0) {
4465 return (B_FALSE);
4466 }
4467 }
4468
4469 for (int c = 0; c < vd->vdev_children; c++) {
4470 if (!vdev_is_bootable(vd->vdev_child[c]))
4471 return (B_FALSE);
4472 }
4473 return (B_TRUE);
4474 }
4475
4476 boolean_t
4477 vdev_is_concrete(vdev_t *vd)
4478 {
4479 vdev_ops_t *ops = vd->vdev_ops;
4480 if (ops == &vdev_indirect_ops || ops == &vdev_hole_ops ||
4481 ops == &vdev_missing_ops || ops == &vdev_root_ops) {
4482 return (B_FALSE);
4483 } else {
4484 return (B_TRUE);
4485 }
4486 }
4487
4488 /*
4489 * Determine if a log device has valid content. If the vdev was
4490 * removed or faulted in the MOS config then we know that
4491 * the content on the log device has already been written to the pool.
4492 */
4493 boolean_t
4494 vdev_log_state_valid(vdev_t *vd)
4495 {
4496 if (vd->vdev_ops->vdev_op_leaf && !vd->vdev_faulted &&
4497 !vd->vdev_removed)
4498 return (B_TRUE);
4499
4500 for (int c = 0; c < vd->vdev_children; c++)
4501 if (vdev_log_state_valid(vd->vdev_child[c]))
4502 return (B_TRUE);
4503
4504 return (B_FALSE);
4505 }
4506
4507 /*
4508 * Expand a vdev if possible.
4509 */
4510 void
4511 vdev_expand(vdev_t *vd, uint64_t txg)
4512 {
4513 ASSERT(vd->vdev_top == vd);
4514 ASSERT(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
4515 ASSERT(vdev_is_concrete(vd));
4516
4517 vdev_set_deflate_ratio(vd);
4518
4519 if ((vd->vdev_asize >> vd->vdev_ms_shift) > vd->vdev_ms_count &&
4520 vdev_is_concrete(vd)) {
4521 vdev_metaslab_group_create(vd);
4522 VERIFY(vdev_metaslab_init(vd, txg) == 0);
4523 vdev_config_dirty(vd);
4524 }
4525 }
4526
4527 /*
4528 * Split a vdev.
4529 */
4530 void
4531 vdev_split(vdev_t *vd)
4532 {
4533 vdev_t *cvd, *pvd = vd->vdev_parent;
4534
4535 vdev_remove_child(pvd, vd);
4536 vdev_compact_children(pvd);
4537
4538 cvd = pvd->vdev_child[0];
4539 if (pvd->vdev_children == 1) {
4540 vdev_remove_parent(cvd);
4541 cvd->vdev_splitting = B_TRUE;
4542 }
4543 vdev_propagate_state(cvd);
4544 }
4545
4546 void
4547 vdev_deadman(vdev_t *vd, char *tag)
4548 {
4549 for (int c = 0; c < vd->vdev_children; c++) {
4550 vdev_t *cvd = vd->vdev_child[c];
4551
4552 vdev_deadman(cvd, tag);
4553 }
4554
4555 if (vd->vdev_ops->vdev_op_leaf) {
4556 vdev_queue_t *vq = &vd->vdev_queue;
4557
4558 mutex_enter(&vq->vq_lock);
4559 if (avl_numnodes(&vq->vq_active_tree) > 0) {
4560 spa_t *spa = vd->vdev_spa;
4561 zio_t *fio;
4562 uint64_t delta;
4563
4564 zfs_dbgmsg("slow vdev: %s has %d active IOs",
4565 vd->vdev_path, avl_numnodes(&vq->vq_active_tree));
4566
4567 /*
4568 * Look at the head of all the pending queues,
4569 * if any I/O has been outstanding for longer than
4570 * the spa_deadman_synctime invoke the deadman logic.
4571 */
4572 fio = avl_first(&vq->vq_active_tree);
4573 delta = gethrtime() - fio->io_timestamp;
4574 if (delta > spa_deadman_synctime(spa))
4575 zio_deadman(fio, tag);
4576 }
4577 mutex_exit(&vq->vq_lock);
4578 }
4579 }
4580
4581 #if defined(_KERNEL)
4582 EXPORT_SYMBOL(vdev_fault);
4583 EXPORT_SYMBOL(vdev_degrade);
4584 EXPORT_SYMBOL(vdev_online);
4585 EXPORT_SYMBOL(vdev_offline);
4586 EXPORT_SYMBOL(vdev_clear);
4587 /* BEGIN CSTYLED */
4588 module_param(vdev_max_ms_count, int, 0644);
4589 MODULE_PARM_DESC(vdev_max_ms_count,
4590 "Target number of metaslabs per top-level vdev");
4591
4592 module_param(vdev_min_ms_count, int, 0644);
4593 MODULE_PARM_DESC(vdev_min_ms_count,
4594 "Minimum number of metaslabs per top-level vdev");
4595
4596 module_param(vdev_ms_count_limit, int, 0644);
4597 MODULE_PARM_DESC(vdev_ms_count_limit,
4598 "Practical upper limit of total metaslabs per top-level vdev");
4599
4600 module_param(zfs_delays_per_second, uint, 0644);
4601 MODULE_PARM_DESC(zfs_delays_per_second, "Rate limit delay events to this many "
4602 "IO delays per second");
4603
4604 module_param(zfs_checksums_per_second, uint, 0644);
4605 MODULE_PARM_DESC(zfs_checksums_per_second, "Rate limit checksum events "
4606 "to this many checksum errors per second (do not set below zed"
4607 "threshold).");
4608
4609 module_param(zfs_scan_ignore_errors, int, 0644);
4610 MODULE_PARM_DESC(zfs_scan_ignore_errors,
4611 "Ignore errors during resilver/scrub");
4612
4613 module_param(vdev_validate_skip, int, 0644);
4614 MODULE_PARM_DESC(vdev_validate_skip,
4615 "Bypass vdev_validate()");
4616 /* END CSTYLED */
4617 #endif