]> git.proxmox.com Git - mirror_zfs.git/blob - module/zfs/vdev.c
Remove unused variable in vdev_add_child()
[mirror_zfs.git] / module / zfs / vdev.c
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22 /*
23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
25 * Copyright (c) 2011, 2015 by Delphix. All rights reserved.
26 */
27
28 #include <sys/zfs_context.h>
29 #include <sys/fm/fs/zfs.h>
30 #include <sys/spa.h>
31 #include <sys/spa_impl.h>
32 #include <sys/dmu.h>
33 #include <sys/dmu_tx.h>
34 #include <sys/vdev_impl.h>
35 #include <sys/uberblock_impl.h>
36 #include <sys/metaslab.h>
37 #include <sys/metaslab_impl.h>
38 #include <sys/space_map.h>
39 #include <sys/space_reftree.h>
40 #include <sys/zio.h>
41 #include <sys/zap.h>
42 #include <sys/fs/zfs.h>
43 #include <sys/arc.h>
44 #include <sys/zil.h>
45 #include <sys/dsl_scan.h>
46 #include <sys/zvol.h>
47
48 /*
49 * When a vdev is added, it will be divided into approximately (but no
50 * more than) this number of metaslabs.
51 */
52 int metaslabs_per_vdev = 200;
53
54 /*
55 * Virtual device management.
56 */
57
58 static vdev_ops_t *vdev_ops_table[] = {
59 &vdev_root_ops,
60 &vdev_raidz_ops,
61 &vdev_mirror_ops,
62 &vdev_replacing_ops,
63 &vdev_spare_ops,
64 &vdev_disk_ops,
65 &vdev_file_ops,
66 &vdev_missing_ops,
67 &vdev_hole_ops,
68 NULL
69 };
70
71 /*
72 * Given a vdev type, return the appropriate ops vector.
73 */
74 static vdev_ops_t *
75 vdev_getops(const char *type)
76 {
77 vdev_ops_t *ops, **opspp;
78
79 for (opspp = vdev_ops_table; (ops = *opspp) != NULL; opspp++)
80 if (strcmp(ops->vdev_op_type, type) == 0)
81 break;
82
83 return (ops);
84 }
85
86 /*
87 * Default asize function: return the MAX of psize with the asize of
88 * all children. This is what's used by anything other than RAID-Z.
89 */
90 uint64_t
91 vdev_default_asize(vdev_t *vd, uint64_t psize)
92 {
93 uint64_t asize = P2ROUNDUP(psize, 1ULL << vd->vdev_top->vdev_ashift);
94 uint64_t csize;
95 int c;
96
97 for (c = 0; c < vd->vdev_children; c++) {
98 csize = vdev_psize_to_asize(vd->vdev_child[c], psize);
99 asize = MAX(asize, csize);
100 }
101
102 return (asize);
103 }
104
105 /*
106 * Get the minimum allocatable size. We define the allocatable size as
107 * the vdev's asize rounded to the nearest metaslab. This allows us to
108 * replace or attach devices which don't have the same physical size but
109 * can still satisfy the same number of allocations.
110 */
111 uint64_t
112 vdev_get_min_asize(vdev_t *vd)
113 {
114 vdev_t *pvd = vd->vdev_parent;
115
116 /*
117 * If our parent is NULL (inactive spare or cache) or is the root,
118 * just return our own asize.
119 */
120 if (pvd == NULL)
121 return (vd->vdev_asize);
122
123 /*
124 * The top-level vdev just returns the allocatable size rounded
125 * to the nearest metaslab.
126 */
127 if (vd == vd->vdev_top)
128 return (P2ALIGN(vd->vdev_asize, 1ULL << vd->vdev_ms_shift));
129
130 /*
131 * The allocatable space for a raidz vdev is N * sizeof(smallest child),
132 * so each child must provide at least 1/Nth of its asize.
133 */
134 if (pvd->vdev_ops == &vdev_raidz_ops)
135 return (pvd->vdev_min_asize / pvd->vdev_children);
136
137 return (pvd->vdev_min_asize);
138 }
139
140 void
141 vdev_set_min_asize(vdev_t *vd)
142 {
143 int c;
144 vd->vdev_min_asize = vdev_get_min_asize(vd);
145
146 for (c = 0; c < vd->vdev_children; c++)
147 vdev_set_min_asize(vd->vdev_child[c]);
148 }
149
150 vdev_t *
151 vdev_lookup_top(spa_t *spa, uint64_t vdev)
152 {
153 vdev_t *rvd = spa->spa_root_vdev;
154
155 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
156
157 if (vdev < rvd->vdev_children) {
158 ASSERT(rvd->vdev_child[vdev] != NULL);
159 return (rvd->vdev_child[vdev]);
160 }
161
162 return (NULL);
163 }
164
165 vdev_t *
166 vdev_lookup_by_guid(vdev_t *vd, uint64_t guid)
167 {
168 vdev_t *mvd;
169 int c;
170
171 if (vd->vdev_guid == guid)
172 return (vd);
173
174 for (c = 0; c < vd->vdev_children; c++)
175 if ((mvd = vdev_lookup_by_guid(vd->vdev_child[c], guid)) !=
176 NULL)
177 return (mvd);
178
179 return (NULL);
180 }
181
182 static int
183 vdev_count_leaves_impl(vdev_t *vd)
184 {
185 int n = 0;
186 int c;
187
188 if (vd->vdev_ops->vdev_op_leaf)
189 return (1);
190
191 for (c = 0; c < vd->vdev_children; c++)
192 n += vdev_count_leaves_impl(vd->vdev_child[c]);
193
194 return (n);
195 }
196
197 int
198 vdev_count_leaves(spa_t *spa)
199 {
200 return (vdev_count_leaves_impl(spa->spa_root_vdev));
201 }
202
203 void
204 vdev_add_child(vdev_t *pvd, vdev_t *cvd)
205 {
206 size_t oldsize, newsize;
207 uint64_t id = cvd->vdev_id;
208 vdev_t **newchild;
209
210 ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
211 ASSERT(cvd->vdev_parent == NULL);
212
213 cvd->vdev_parent = pvd;
214
215 if (pvd == NULL)
216 return;
217
218 ASSERT(id >= pvd->vdev_children || pvd->vdev_child[id] == NULL);
219
220 oldsize = pvd->vdev_children * sizeof (vdev_t *);
221 pvd->vdev_children = MAX(pvd->vdev_children, id + 1);
222 newsize = pvd->vdev_children * sizeof (vdev_t *);
223
224 newchild = kmem_alloc(newsize, KM_SLEEP);
225 if (pvd->vdev_child != NULL) {
226 bcopy(pvd->vdev_child, newchild, oldsize);
227 kmem_free(pvd->vdev_child, oldsize);
228 }
229
230 pvd->vdev_child = newchild;
231 pvd->vdev_child[id] = cvd;
232
233 cvd->vdev_top = (pvd->vdev_top ? pvd->vdev_top: cvd);
234 ASSERT(cvd->vdev_top->vdev_parent->vdev_parent == NULL);
235
236 /*
237 * Walk up all ancestors to update guid sum.
238 */
239 for (; pvd != NULL; pvd = pvd->vdev_parent)
240 pvd->vdev_guid_sum += cvd->vdev_guid_sum;
241 }
242
243 void
244 vdev_remove_child(vdev_t *pvd, vdev_t *cvd)
245 {
246 int c;
247 uint_t id = cvd->vdev_id;
248
249 ASSERT(cvd->vdev_parent == pvd);
250
251 if (pvd == NULL)
252 return;
253
254 ASSERT(id < pvd->vdev_children);
255 ASSERT(pvd->vdev_child[id] == cvd);
256
257 pvd->vdev_child[id] = NULL;
258 cvd->vdev_parent = NULL;
259
260 for (c = 0; c < pvd->vdev_children; c++)
261 if (pvd->vdev_child[c])
262 break;
263
264 if (c == pvd->vdev_children) {
265 kmem_free(pvd->vdev_child, c * sizeof (vdev_t *));
266 pvd->vdev_child = NULL;
267 pvd->vdev_children = 0;
268 }
269
270 /*
271 * Walk up all ancestors to update guid sum.
272 */
273 for (; pvd != NULL; pvd = pvd->vdev_parent)
274 pvd->vdev_guid_sum -= cvd->vdev_guid_sum;
275 }
276
277 /*
278 * Remove any holes in the child array.
279 */
280 void
281 vdev_compact_children(vdev_t *pvd)
282 {
283 vdev_t **newchild, *cvd;
284 int oldc = pvd->vdev_children;
285 int newc;
286 int c;
287
288 ASSERT(spa_config_held(pvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
289
290 for (c = newc = 0; c < oldc; c++)
291 if (pvd->vdev_child[c])
292 newc++;
293
294 newchild = kmem_zalloc(newc * sizeof (vdev_t *), KM_SLEEP);
295
296 for (c = newc = 0; c < oldc; c++) {
297 if ((cvd = pvd->vdev_child[c]) != NULL) {
298 newchild[newc] = cvd;
299 cvd->vdev_id = newc++;
300 }
301 }
302
303 kmem_free(pvd->vdev_child, oldc * sizeof (vdev_t *));
304 pvd->vdev_child = newchild;
305 pvd->vdev_children = newc;
306 }
307
308 /*
309 * Allocate and minimally initialize a vdev_t.
310 */
311 vdev_t *
312 vdev_alloc_common(spa_t *spa, uint_t id, uint64_t guid, vdev_ops_t *ops)
313 {
314 vdev_t *vd;
315 int t;
316
317 vd = kmem_zalloc(sizeof (vdev_t), KM_SLEEP);
318
319 if (spa->spa_root_vdev == NULL) {
320 ASSERT(ops == &vdev_root_ops);
321 spa->spa_root_vdev = vd;
322 spa->spa_load_guid = spa_generate_guid(NULL);
323 }
324
325 if (guid == 0 && ops != &vdev_hole_ops) {
326 if (spa->spa_root_vdev == vd) {
327 /*
328 * The root vdev's guid will also be the pool guid,
329 * which must be unique among all pools.
330 */
331 guid = spa_generate_guid(NULL);
332 } else {
333 /*
334 * Any other vdev's guid must be unique within the pool.
335 */
336 guid = spa_generate_guid(spa);
337 }
338 ASSERT(!spa_guid_exists(spa_guid(spa), guid));
339 }
340
341 vd->vdev_spa = spa;
342 vd->vdev_id = id;
343 vd->vdev_guid = guid;
344 vd->vdev_guid_sum = guid;
345 vd->vdev_ops = ops;
346 vd->vdev_state = VDEV_STATE_CLOSED;
347 vd->vdev_ishole = (ops == &vdev_hole_ops);
348
349 list_link_init(&vd->vdev_config_dirty_node);
350 list_link_init(&vd->vdev_state_dirty_node);
351 mutex_init(&vd->vdev_dtl_lock, NULL, MUTEX_DEFAULT, NULL);
352 mutex_init(&vd->vdev_stat_lock, NULL, MUTEX_DEFAULT, NULL);
353 mutex_init(&vd->vdev_probe_lock, NULL, MUTEX_DEFAULT, NULL);
354 for (t = 0; t < DTL_TYPES; t++) {
355 vd->vdev_dtl[t] = range_tree_create(NULL, NULL,
356 &vd->vdev_dtl_lock);
357 }
358 txg_list_create(&vd->vdev_ms_list,
359 offsetof(struct metaslab, ms_txg_node));
360 txg_list_create(&vd->vdev_dtl_list,
361 offsetof(struct vdev, vdev_dtl_node));
362 vd->vdev_stat.vs_timestamp = gethrtime();
363 vdev_queue_init(vd);
364 vdev_cache_init(vd);
365
366 return (vd);
367 }
368
369 /*
370 * Allocate a new vdev. The 'alloctype' is used to control whether we are
371 * creating a new vdev or loading an existing one - the behavior is slightly
372 * different for each case.
373 */
374 int
375 vdev_alloc(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, uint_t id,
376 int alloctype)
377 {
378 vdev_ops_t *ops;
379 char *type;
380 uint64_t guid = 0, islog, nparity;
381 vdev_t *vd;
382
383 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
384
385 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) != 0)
386 return (SET_ERROR(EINVAL));
387
388 if ((ops = vdev_getops(type)) == NULL)
389 return (SET_ERROR(EINVAL));
390
391 /*
392 * If this is a load, get the vdev guid from the nvlist.
393 * Otherwise, vdev_alloc_common() will generate one for us.
394 */
395 if (alloctype == VDEV_ALLOC_LOAD) {
396 uint64_t label_id;
397
398 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ID, &label_id) ||
399 label_id != id)
400 return (SET_ERROR(EINVAL));
401
402 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
403 return (SET_ERROR(EINVAL));
404 } else if (alloctype == VDEV_ALLOC_SPARE) {
405 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
406 return (SET_ERROR(EINVAL));
407 } else if (alloctype == VDEV_ALLOC_L2CACHE) {
408 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
409 return (SET_ERROR(EINVAL));
410 } else if (alloctype == VDEV_ALLOC_ROOTPOOL) {
411 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
412 return (SET_ERROR(EINVAL));
413 }
414
415 /*
416 * The first allocated vdev must be of type 'root'.
417 */
418 if (ops != &vdev_root_ops && spa->spa_root_vdev == NULL)
419 return (SET_ERROR(EINVAL));
420
421 /*
422 * Determine whether we're a log vdev.
423 */
424 islog = 0;
425 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_LOG, &islog);
426 if (islog && spa_version(spa) < SPA_VERSION_SLOGS)
427 return (SET_ERROR(ENOTSUP));
428
429 if (ops == &vdev_hole_ops && spa_version(spa) < SPA_VERSION_HOLES)
430 return (SET_ERROR(ENOTSUP));
431
432 /*
433 * Set the nparity property for RAID-Z vdevs.
434 */
435 nparity = -1ULL;
436 if (ops == &vdev_raidz_ops) {
437 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NPARITY,
438 &nparity) == 0) {
439 if (nparity == 0 || nparity > VDEV_RAIDZ_MAXPARITY)
440 return (SET_ERROR(EINVAL));
441 /*
442 * Previous versions could only support 1 or 2 parity
443 * device.
444 */
445 if (nparity > 1 &&
446 spa_version(spa) < SPA_VERSION_RAIDZ2)
447 return (SET_ERROR(ENOTSUP));
448 if (nparity > 2 &&
449 spa_version(spa) < SPA_VERSION_RAIDZ3)
450 return (SET_ERROR(ENOTSUP));
451 } else {
452 /*
453 * We require the parity to be specified for SPAs that
454 * support multiple parity levels.
455 */
456 if (spa_version(spa) >= SPA_VERSION_RAIDZ2)
457 return (SET_ERROR(EINVAL));
458 /*
459 * Otherwise, we default to 1 parity device for RAID-Z.
460 */
461 nparity = 1;
462 }
463 } else {
464 nparity = 0;
465 }
466 ASSERT(nparity != -1ULL);
467
468 vd = vdev_alloc_common(spa, id, guid, ops);
469
470 vd->vdev_islog = islog;
471 vd->vdev_nparity = nparity;
472
473 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &vd->vdev_path) == 0)
474 vd->vdev_path = spa_strdup(vd->vdev_path);
475 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_DEVID, &vd->vdev_devid) == 0)
476 vd->vdev_devid = spa_strdup(vd->vdev_devid);
477 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PHYS_PATH,
478 &vd->vdev_physpath) == 0)
479 vd->vdev_physpath = spa_strdup(vd->vdev_physpath);
480 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_FRU, &vd->vdev_fru) == 0)
481 vd->vdev_fru = spa_strdup(vd->vdev_fru);
482
483 /*
484 * Set the whole_disk property. If it's not specified, leave the value
485 * as -1.
486 */
487 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK,
488 &vd->vdev_wholedisk) != 0)
489 vd->vdev_wholedisk = -1ULL;
490
491 /*
492 * Look for the 'not present' flag. This will only be set if the device
493 * was not present at the time of import.
494 */
495 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT,
496 &vd->vdev_not_present);
497
498 /*
499 * Get the alignment requirement.
500 */
501 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASHIFT, &vd->vdev_ashift);
502
503 /*
504 * Retrieve the vdev creation time.
505 */
506 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_CREATE_TXG,
507 &vd->vdev_crtxg);
508
509 /*
510 * If we're a top-level vdev, try to load the allocation parameters.
511 */
512 if (parent && !parent->vdev_parent &&
513 (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_SPLIT)) {
514 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY,
515 &vd->vdev_ms_array);
516 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT,
517 &vd->vdev_ms_shift);
518 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASIZE,
519 &vd->vdev_asize);
520 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVING,
521 &vd->vdev_removing);
522 }
523
524 if (parent && !parent->vdev_parent && alloctype != VDEV_ALLOC_ATTACH) {
525 ASSERT(alloctype == VDEV_ALLOC_LOAD ||
526 alloctype == VDEV_ALLOC_ADD ||
527 alloctype == VDEV_ALLOC_SPLIT ||
528 alloctype == VDEV_ALLOC_ROOTPOOL);
529 vd->vdev_mg = metaslab_group_create(islog ?
530 spa_log_class(spa) : spa_normal_class(spa), vd);
531 }
532
533 /*
534 * If we're a leaf vdev, try to load the DTL object and other state.
535 */
536 if (vd->vdev_ops->vdev_op_leaf &&
537 (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_L2CACHE ||
538 alloctype == VDEV_ALLOC_ROOTPOOL)) {
539 if (alloctype == VDEV_ALLOC_LOAD) {
540 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DTL,
541 &vd->vdev_dtl_object);
542 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_UNSPARE,
543 &vd->vdev_unspare);
544 }
545
546 if (alloctype == VDEV_ALLOC_ROOTPOOL) {
547 uint64_t spare = 0;
548
549 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_SPARE,
550 &spare) == 0 && spare)
551 spa_spare_add(vd);
552 }
553
554 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_OFFLINE,
555 &vd->vdev_offline);
556
557 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_RESILVER_TXG,
558 &vd->vdev_resilver_txg);
559
560 /*
561 * When importing a pool, we want to ignore the persistent fault
562 * state, as the diagnosis made on another system may not be
563 * valid in the current context. Local vdevs will
564 * remain in the faulted state.
565 */
566 if (spa_load_state(spa) == SPA_LOAD_OPEN) {
567 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_FAULTED,
568 &vd->vdev_faulted);
569 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DEGRADED,
570 &vd->vdev_degraded);
571 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVED,
572 &vd->vdev_removed);
573
574 if (vd->vdev_faulted || vd->vdev_degraded) {
575 char *aux;
576
577 vd->vdev_label_aux =
578 VDEV_AUX_ERR_EXCEEDED;
579 if (nvlist_lookup_string(nv,
580 ZPOOL_CONFIG_AUX_STATE, &aux) == 0 &&
581 strcmp(aux, "external") == 0)
582 vd->vdev_label_aux = VDEV_AUX_EXTERNAL;
583 }
584 }
585 }
586
587 /*
588 * Add ourselves to the parent's list of children.
589 */
590 vdev_add_child(parent, vd);
591
592 *vdp = vd;
593
594 return (0);
595 }
596
597 void
598 vdev_free(vdev_t *vd)
599 {
600 int c, t;
601 spa_t *spa = vd->vdev_spa;
602
603 /*
604 * vdev_free() implies closing the vdev first. This is simpler than
605 * trying to ensure complicated semantics for all callers.
606 */
607 vdev_close(vd);
608
609 ASSERT(!list_link_active(&vd->vdev_config_dirty_node));
610 ASSERT(!list_link_active(&vd->vdev_state_dirty_node));
611
612 /*
613 * Free all children.
614 */
615 for (c = 0; c < vd->vdev_children; c++)
616 vdev_free(vd->vdev_child[c]);
617
618 ASSERT(vd->vdev_child == NULL);
619 ASSERT(vd->vdev_guid_sum == vd->vdev_guid);
620
621 /*
622 * Discard allocation state.
623 */
624 if (vd->vdev_mg != NULL) {
625 vdev_metaslab_fini(vd);
626 metaslab_group_destroy(vd->vdev_mg);
627 }
628
629 ASSERT0(vd->vdev_stat.vs_space);
630 ASSERT0(vd->vdev_stat.vs_dspace);
631 ASSERT0(vd->vdev_stat.vs_alloc);
632
633 /*
634 * Remove this vdev from its parent's child list.
635 */
636 vdev_remove_child(vd->vdev_parent, vd);
637
638 ASSERT(vd->vdev_parent == NULL);
639
640 /*
641 * Clean up vdev structure.
642 */
643 vdev_queue_fini(vd);
644 vdev_cache_fini(vd);
645
646 if (vd->vdev_path)
647 spa_strfree(vd->vdev_path);
648 if (vd->vdev_devid)
649 spa_strfree(vd->vdev_devid);
650 if (vd->vdev_physpath)
651 spa_strfree(vd->vdev_physpath);
652 if (vd->vdev_fru)
653 spa_strfree(vd->vdev_fru);
654
655 if (vd->vdev_isspare)
656 spa_spare_remove(vd);
657 if (vd->vdev_isl2cache)
658 spa_l2cache_remove(vd);
659
660 txg_list_destroy(&vd->vdev_ms_list);
661 txg_list_destroy(&vd->vdev_dtl_list);
662
663 mutex_enter(&vd->vdev_dtl_lock);
664 space_map_close(vd->vdev_dtl_sm);
665 for (t = 0; t < DTL_TYPES; t++) {
666 range_tree_vacate(vd->vdev_dtl[t], NULL, NULL);
667 range_tree_destroy(vd->vdev_dtl[t]);
668 }
669 mutex_exit(&vd->vdev_dtl_lock);
670
671 mutex_destroy(&vd->vdev_dtl_lock);
672 mutex_destroy(&vd->vdev_stat_lock);
673 mutex_destroy(&vd->vdev_probe_lock);
674
675 if (vd == spa->spa_root_vdev)
676 spa->spa_root_vdev = NULL;
677
678 kmem_free(vd, sizeof (vdev_t));
679 }
680
681 /*
682 * Transfer top-level vdev state from svd to tvd.
683 */
684 static void
685 vdev_top_transfer(vdev_t *svd, vdev_t *tvd)
686 {
687 spa_t *spa = svd->vdev_spa;
688 metaslab_t *msp;
689 vdev_t *vd;
690 int t;
691
692 ASSERT(tvd == tvd->vdev_top);
693
694 tvd->vdev_ms_array = svd->vdev_ms_array;
695 tvd->vdev_ms_shift = svd->vdev_ms_shift;
696 tvd->vdev_ms_count = svd->vdev_ms_count;
697
698 svd->vdev_ms_array = 0;
699 svd->vdev_ms_shift = 0;
700 svd->vdev_ms_count = 0;
701
702 if (tvd->vdev_mg)
703 ASSERT3P(tvd->vdev_mg, ==, svd->vdev_mg);
704 tvd->vdev_mg = svd->vdev_mg;
705 tvd->vdev_ms = svd->vdev_ms;
706
707 svd->vdev_mg = NULL;
708 svd->vdev_ms = NULL;
709
710 if (tvd->vdev_mg != NULL)
711 tvd->vdev_mg->mg_vd = tvd;
712
713 tvd->vdev_stat.vs_alloc = svd->vdev_stat.vs_alloc;
714 tvd->vdev_stat.vs_space = svd->vdev_stat.vs_space;
715 tvd->vdev_stat.vs_dspace = svd->vdev_stat.vs_dspace;
716
717 svd->vdev_stat.vs_alloc = 0;
718 svd->vdev_stat.vs_space = 0;
719 svd->vdev_stat.vs_dspace = 0;
720
721 for (t = 0; t < TXG_SIZE; t++) {
722 while ((msp = txg_list_remove(&svd->vdev_ms_list, t)) != NULL)
723 (void) txg_list_add(&tvd->vdev_ms_list, msp, t);
724 while ((vd = txg_list_remove(&svd->vdev_dtl_list, t)) != NULL)
725 (void) txg_list_add(&tvd->vdev_dtl_list, vd, t);
726 if (txg_list_remove_this(&spa->spa_vdev_txg_list, svd, t))
727 (void) txg_list_add(&spa->spa_vdev_txg_list, tvd, t);
728 }
729
730 if (list_link_active(&svd->vdev_config_dirty_node)) {
731 vdev_config_clean(svd);
732 vdev_config_dirty(tvd);
733 }
734
735 if (list_link_active(&svd->vdev_state_dirty_node)) {
736 vdev_state_clean(svd);
737 vdev_state_dirty(tvd);
738 }
739
740 tvd->vdev_deflate_ratio = svd->vdev_deflate_ratio;
741 svd->vdev_deflate_ratio = 0;
742
743 tvd->vdev_islog = svd->vdev_islog;
744 svd->vdev_islog = 0;
745 }
746
747 static void
748 vdev_top_update(vdev_t *tvd, vdev_t *vd)
749 {
750 int c;
751
752 if (vd == NULL)
753 return;
754
755 vd->vdev_top = tvd;
756
757 for (c = 0; c < vd->vdev_children; c++)
758 vdev_top_update(tvd, vd->vdev_child[c]);
759 }
760
761 /*
762 * Add a mirror/replacing vdev above an existing vdev.
763 */
764 vdev_t *
765 vdev_add_parent(vdev_t *cvd, vdev_ops_t *ops)
766 {
767 spa_t *spa = cvd->vdev_spa;
768 vdev_t *pvd = cvd->vdev_parent;
769 vdev_t *mvd;
770
771 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
772
773 mvd = vdev_alloc_common(spa, cvd->vdev_id, 0, ops);
774
775 mvd->vdev_asize = cvd->vdev_asize;
776 mvd->vdev_min_asize = cvd->vdev_min_asize;
777 mvd->vdev_max_asize = cvd->vdev_max_asize;
778 mvd->vdev_ashift = cvd->vdev_ashift;
779 mvd->vdev_state = cvd->vdev_state;
780 mvd->vdev_crtxg = cvd->vdev_crtxg;
781
782 vdev_remove_child(pvd, cvd);
783 vdev_add_child(pvd, mvd);
784 cvd->vdev_id = mvd->vdev_children;
785 vdev_add_child(mvd, cvd);
786 vdev_top_update(cvd->vdev_top, cvd->vdev_top);
787
788 if (mvd == mvd->vdev_top)
789 vdev_top_transfer(cvd, mvd);
790
791 return (mvd);
792 }
793
794 /*
795 * Remove a 1-way mirror/replacing vdev from the tree.
796 */
797 void
798 vdev_remove_parent(vdev_t *cvd)
799 {
800 vdev_t *mvd = cvd->vdev_parent;
801 vdev_t *pvd = mvd->vdev_parent;
802
803 ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
804
805 ASSERT(mvd->vdev_children == 1);
806 ASSERT(mvd->vdev_ops == &vdev_mirror_ops ||
807 mvd->vdev_ops == &vdev_replacing_ops ||
808 mvd->vdev_ops == &vdev_spare_ops);
809 cvd->vdev_ashift = mvd->vdev_ashift;
810
811 vdev_remove_child(mvd, cvd);
812 vdev_remove_child(pvd, mvd);
813
814 /*
815 * If cvd will replace mvd as a top-level vdev, preserve mvd's guid.
816 * Otherwise, we could have detached an offline device, and when we
817 * go to import the pool we'll think we have two top-level vdevs,
818 * instead of a different version of the same top-level vdev.
819 */
820 if (mvd->vdev_top == mvd) {
821 uint64_t guid_delta = mvd->vdev_guid - cvd->vdev_guid;
822 cvd->vdev_orig_guid = cvd->vdev_guid;
823 cvd->vdev_guid += guid_delta;
824 cvd->vdev_guid_sum += guid_delta;
825
826 /*
827 * If pool not set for autoexpand, we need to also preserve
828 * mvd's asize to prevent automatic expansion of cvd.
829 * Otherwise if we are adjusting the mirror by attaching and
830 * detaching children of non-uniform sizes, the mirror could
831 * autoexpand, unexpectedly requiring larger devices to
832 * re-establish the mirror.
833 */
834 if (!cvd->vdev_spa->spa_autoexpand)
835 cvd->vdev_asize = mvd->vdev_asize;
836 }
837 cvd->vdev_id = mvd->vdev_id;
838 vdev_add_child(pvd, cvd);
839 vdev_top_update(cvd->vdev_top, cvd->vdev_top);
840
841 if (cvd == cvd->vdev_top)
842 vdev_top_transfer(mvd, cvd);
843
844 ASSERT(mvd->vdev_children == 0);
845 vdev_free(mvd);
846 }
847
848 int
849 vdev_metaslab_init(vdev_t *vd, uint64_t txg)
850 {
851 spa_t *spa = vd->vdev_spa;
852 objset_t *mos = spa->spa_meta_objset;
853 uint64_t m;
854 uint64_t oldc = vd->vdev_ms_count;
855 uint64_t newc = vd->vdev_asize >> vd->vdev_ms_shift;
856 metaslab_t **mspp;
857 int error;
858
859 ASSERT(txg == 0 || spa_config_held(spa, SCL_ALLOC, RW_WRITER));
860
861 /*
862 * This vdev is not being allocated from yet or is a hole.
863 */
864 if (vd->vdev_ms_shift == 0)
865 return (0);
866
867 ASSERT(!vd->vdev_ishole);
868
869 /*
870 * Compute the raidz-deflation ratio. Note, we hard-code
871 * in 128k (1 << 17) because it is the "typical" blocksize.
872 * Even though SPA_MAXBLOCKSIZE changed, this algorithm can not change,
873 * otherwise it would inconsistently account for existing bp's.
874 */
875 vd->vdev_deflate_ratio = (1 << 17) /
876 (vdev_psize_to_asize(vd, 1 << 17) >> SPA_MINBLOCKSHIFT);
877
878 ASSERT(oldc <= newc);
879
880 mspp = kmem_zalloc(newc * sizeof (*mspp), KM_SLEEP);
881
882 if (oldc != 0) {
883 bcopy(vd->vdev_ms, mspp, oldc * sizeof (*mspp));
884 kmem_free(vd->vdev_ms, oldc * sizeof (*mspp));
885 }
886
887 vd->vdev_ms = mspp;
888 vd->vdev_ms_count = newc;
889
890 for (m = oldc; m < newc; m++) {
891 uint64_t object = 0;
892
893 if (txg == 0) {
894 error = dmu_read(mos, vd->vdev_ms_array,
895 m * sizeof (uint64_t), sizeof (uint64_t), &object,
896 DMU_READ_PREFETCH);
897 if (error)
898 return (error);
899 }
900
901 error = metaslab_init(vd->vdev_mg, m, object, txg,
902 &(vd->vdev_ms[m]));
903 if (error)
904 return (error);
905 }
906
907 if (txg == 0)
908 spa_config_enter(spa, SCL_ALLOC, FTAG, RW_WRITER);
909
910 /*
911 * If the vdev is being removed we don't activate
912 * the metaslabs since we want to ensure that no new
913 * allocations are performed on this device.
914 */
915 if (oldc == 0 && !vd->vdev_removing)
916 metaslab_group_activate(vd->vdev_mg);
917
918 if (txg == 0)
919 spa_config_exit(spa, SCL_ALLOC, FTAG);
920
921 return (0);
922 }
923
924 void
925 vdev_metaslab_fini(vdev_t *vd)
926 {
927 uint64_t m;
928 uint64_t count = vd->vdev_ms_count;
929
930 if (vd->vdev_ms != NULL) {
931 metaslab_group_passivate(vd->vdev_mg);
932 for (m = 0; m < count; m++) {
933 metaslab_t *msp = vd->vdev_ms[m];
934
935 if (msp != NULL)
936 metaslab_fini(msp);
937 }
938 kmem_free(vd->vdev_ms, count * sizeof (metaslab_t *));
939 vd->vdev_ms = NULL;
940 }
941
942 ASSERT3U(vd->vdev_pending_fastwrite, ==, 0);
943 }
944
945 typedef struct vdev_probe_stats {
946 boolean_t vps_readable;
947 boolean_t vps_writeable;
948 int vps_flags;
949 } vdev_probe_stats_t;
950
951 static void
952 vdev_probe_done(zio_t *zio)
953 {
954 spa_t *spa = zio->io_spa;
955 vdev_t *vd = zio->io_vd;
956 vdev_probe_stats_t *vps = zio->io_private;
957
958 ASSERT(vd->vdev_probe_zio != NULL);
959
960 if (zio->io_type == ZIO_TYPE_READ) {
961 if (zio->io_error == 0)
962 vps->vps_readable = 1;
963 if (zio->io_error == 0 && spa_writeable(spa)) {
964 zio_nowait(zio_write_phys(vd->vdev_probe_zio, vd,
965 zio->io_offset, zio->io_size, zio->io_data,
966 ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
967 ZIO_PRIORITY_SYNC_WRITE, vps->vps_flags, B_TRUE));
968 } else {
969 zio_buf_free(zio->io_data, zio->io_size);
970 }
971 } else if (zio->io_type == ZIO_TYPE_WRITE) {
972 if (zio->io_error == 0)
973 vps->vps_writeable = 1;
974 zio_buf_free(zio->io_data, zio->io_size);
975 } else if (zio->io_type == ZIO_TYPE_NULL) {
976 zio_t *pio;
977
978 vd->vdev_cant_read |= !vps->vps_readable;
979 vd->vdev_cant_write |= !vps->vps_writeable;
980
981 if (vdev_readable(vd) &&
982 (vdev_writeable(vd) || !spa_writeable(spa))) {
983 zio->io_error = 0;
984 } else {
985 ASSERT(zio->io_error != 0);
986 zfs_ereport_post(FM_EREPORT_ZFS_PROBE_FAILURE,
987 spa, vd, NULL, 0, 0);
988 zio->io_error = SET_ERROR(ENXIO);
989 }
990
991 mutex_enter(&vd->vdev_probe_lock);
992 ASSERT(vd->vdev_probe_zio == zio);
993 vd->vdev_probe_zio = NULL;
994 mutex_exit(&vd->vdev_probe_lock);
995
996 while ((pio = zio_walk_parents(zio)) != NULL)
997 if (!vdev_accessible(vd, pio))
998 pio->io_error = SET_ERROR(ENXIO);
999
1000 kmem_free(vps, sizeof (*vps));
1001 }
1002 }
1003
1004 /*
1005 * Determine whether this device is accessible.
1006 *
1007 * Read and write to several known locations: the pad regions of each
1008 * vdev label but the first, which we leave alone in case it contains
1009 * a VTOC.
1010 */
1011 zio_t *
1012 vdev_probe(vdev_t *vd, zio_t *zio)
1013 {
1014 spa_t *spa = vd->vdev_spa;
1015 vdev_probe_stats_t *vps = NULL;
1016 zio_t *pio;
1017 int l;
1018
1019 ASSERT(vd->vdev_ops->vdev_op_leaf);
1020
1021 /*
1022 * Don't probe the probe.
1023 */
1024 if (zio && (zio->io_flags & ZIO_FLAG_PROBE))
1025 return (NULL);
1026
1027 /*
1028 * To prevent 'probe storms' when a device fails, we create
1029 * just one probe i/o at a time. All zios that want to probe
1030 * this vdev will become parents of the probe io.
1031 */
1032 mutex_enter(&vd->vdev_probe_lock);
1033
1034 if ((pio = vd->vdev_probe_zio) == NULL) {
1035 vps = kmem_zalloc(sizeof (*vps), KM_SLEEP);
1036
1037 vps->vps_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_PROBE |
1038 ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_AGGREGATE |
1039 ZIO_FLAG_TRYHARD;
1040
1041 if (spa_config_held(spa, SCL_ZIO, RW_WRITER)) {
1042 /*
1043 * vdev_cant_read and vdev_cant_write can only
1044 * transition from TRUE to FALSE when we have the
1045 * SCL_ZIO lock as writer; otherwise they can only
1046 * transition from FALSE to TRUE. This ensures that
1047 * any zio looking at these values can assume that
1048 * failures persist for the life of the I/O. That's
1049 * important because when a device has intermittent
1050 * connectivity problems, we want to ensure that
1051 * they're ascribed to the device (ENXIO) and not
1052 * the zio (EIO).
1053 *
1054 * Since we hold SCL_ZIO as writer here, clear both
1055 * values so the probe can reevaluate from first
1056 * principles.
1057 */
1058 vps->vps_flags |= ZIO_FLAG_CONFIG_WRITER;
1059 vd->vdev_cant_read = B_FALSE;
1060 vd->vdev_cant_write = B_FALSE;
1061 }
1062
1063 vd->vdev_probe_zio = pio = zio_null(NULL, spa, vd,
1064 vdev_probe_done, vps,
1065 vps->vps_flags | ZIO_FLAG_DONT_PROPAGATE);
1066
1067 /*
1068 * We can't change the vdev state in this context, so we
1069 * kick off an async task to do it on our behalf.
1070 */
1071 if (zio != NULL) {
1072 vd->vdev_probe_wanted = B_TRUE;
1073 spa_async_request(spa, SPA_ASYNC_PROBE);
1074 }
1075 }
1076
1077 if (zio != NULL)
1078 zio_add_child(zio, pio);
1079
1080 mutex_exit(&vd->vdev_probe_lock);
1081
1082 if (vps == NULL) {
1083 ASSERT(zio != NULL);
1084 return (NULL);
1085 }
1086
1087 for (l = 1; l < VDEV_LABELS; l++) {
1088 zio_nowait(zio_read_phys(pio, vd,
1089 vdev_label_offset(vd->vdev_psize, l,
1090 offsetof(vdev_label_t, vl_pad2)),
1091 VDEV_PAD_SIZE, zio_buf_alloc(VDEV_PAD_SIZE),
1092 ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
1093 ZIO_PRIORITY_SYNC_READ, vps->vps_flags, B_TRUE));
1094 }
1095
1096 if (zio == NULL)
1097 return (pio);
1098
1099 zio_nowait(pio);
1100 return (NULL);
1101 }
1102
1103 static void
1104 vdev_open_child(void *arg)
1105 {
1106 vdev_t *vd = arg;
1107
1108 vd->vdev_open_thread = curthread;
1109 vd->vdev_open_error = vdev_open(vd);
1110 vd->vdev_open_thread = NULL;
1111 }
1112
1113 static boolean_t
1114 vdev_uses_zvols(vdev_t *vd)
1115 {
1116 int c;
1117
1118 #ifdef _KERNEL
1119 if (zvol_is_zvol(vd->vdev_path))
1120 return (B_TRUE);
1121 #endif
1122
1123 for (c = 0; c < vd->vdev_children; c++)
1124 if (vdev_uses_zvols(vd->vdev_child[c]))
1125 return (B_TRUE);
1126
1127 return (B_FALSE);
1128 }
1129
1130 void
1131 vdev_open_children(vdev_t *vd)
1132 {
1133 taskq_t *tq;
1134 int children = vd->vdev_children;
1135 int c;
1136
1137 /*
1138 * in order to handle pools on top of zvols, do the opens
1139 * in a single thread so that the same thread holds the
1140 * spa_namespace_lock
1141 */
1142 if (vdev_uses_zvols(vd)) {
1143 for (c = 0; c < children; c++)
1144 vd->vdev_child[c]->vdev_open_error =
1145 vdev_open(vd->vdev_child[c]);
1146 return;
1147 }
1148 tq = taskq_create("vdev_open", children, minclsyspri,
1149 children, children, TASKQ_PREPOPULATE);
1150
1151 for (c = 0; c < children; c++)
1152 VERIFY(taskq_dispatch(tq, vdev_open_child, vd->vdev_child[c],
1153 TQ_SLEEP) != 0);
1154
1155 taskq_destroy(tq);
1156 }
1157
1158 /*
1159 * Prepare a virtual device for access.
1160 */
1161 int
1162 vdev_open(vdev_t *vd)
1163 {
1164 spa_t *spa = vd->vdev_spa;
1165 int error;
1166 uint64_t osize = 0;
1167 uint64_t max_osize = 0;
1168 uint64_t asize, max_asize, psize;
1169 uint64_t ashift = 0;
1170 int c;
1171
1172 ASSERT(vd->vdev_open_thread == curthread ||
1173 spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1174 ASSERT(vd->vdev_state == VDEV_STATE_CLOSED ||
1175 vd->vdev_state == VDEV_STATE_CANT_OPEN ||
1176 vd->vdev_state == VDEV_STATE_OFFLINE);
1177
1178 vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
1179 vd->vdev_cant_read = B_FALSE;
1180 vd->vdev_cant_write = B_FALSE;
1181 vd->vdev_min_asize = vdev_get_min_asize(vd);
1182
1183 /*
1184 * If this vdev is not removed, check its fault status. If it's
1185 * faulted, bail out of the open.
1186 */
1187 if (!vd->vdev_removed && vd->vdev_faulted) {
1188 ASSERT(vd->vdev_children == 0);
1189 ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED ||
1190 vd->vdev_label_aux == VDEV_AUX_EXTERNAL);
1191 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1192 vd->vdev_label_aux);
1193 return (SET_ERROR(ENXIO));
1194 } else if (vd->vdev_offline) {
1195 ASSERT(vd->vdev_children == 0);
1196 vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE, VDEV_AUX_NONE);
1197 return (SET_ERROR(ENXIO));
1198 }
1199
1200 error = vd->vdev_ops->vdev_op_open(vd, &osize, &max_osize, &ashift);
1201
1202 /*
1203 * Reset the vdev_reopening flag so that we actually close
1204 * the vdev on error.
1205 */
1206 vd->vdev_reopening = B_FALSE;
1207 if (zio_injection_enabled && error == 0)
1208 error = zio_handle_device_injection(vd, NULL, ENXIO);
1209
1210 if (error) {
1211 if (vd->vdev_removed &&
1212 vd->vdev_stat.vs_aux != VDEV_AUX_OPEN_FAILED)
1213 vd->vdev_removed = B_FALSE;
1214
1215 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1216 vd->vdev_stat.vs_aux);
1217 return (error);
1218 }
1219
1220 vd->vdev_removed = B_FALSE;
1221
1222 /*
1223 * Recheck the faulted flag now that we have confirmed that
1224 * the vdev is accessible. If we're faulted, bail.
1225 */
1226 if (vd->vdev_faulted) {
1227 ASSERT(vd->vdev_children == 0);
1228 ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED ||
1229 vd->vdev_label_aux == VDEV_AUX_EXTERNAL);
1230 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1231 vd->vdev_label_aux);
1232 return (SET_ERROR(ENXIO));
1233 }
1234
1235 if (vd->vdev_degraded) {
1236 ASSERT(vd->vdev_children == 0);
1237 vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
1238 VDEV_AUX_ERR_EXCEEDED);
1239 } else {
1240 vdev_set_state(vd, B_TRUE, VDEV_STATE_HEALTHY, 0);
1241 }
1242
1243 /*
1244 * For hole or missing vdevs we just return success.
1245 */
1246 if (vd->vdev_ishole || vd->vdev_ops == &vdev_missing_ops)
1247 return (0);
1248
1249 for (c = 0; c < vd->vdev_children; c++) {
1250 if (vd->vdev_child[c]->vdev_state != VDEV_STATE_HEALTHY) {
1251 vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
1252 VDEV_AUX_NONE);
1253 break;
1254 }
1255 }
1256
1257 osize = P2ALIGN(osize, (uint64_t)sizeof (vdev_label_t));
1258 max_osize = P2ALIGN(max_osize, (uint64_t)sizeof (vdev_label_t));
1259
1260 if (vd->vdev_children == 0) {
1261 if (osize < SPA_MINDEVSIZE) {
1262 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1263 VDEV_AUX_TOO_SMALL);
1264 return (SET_ERROR(EOVERFLOW));
1265 }
1266 psize = osize;
1267 asize = osize - (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE);
1268 max_asize = max_osize - (VDEV_LABEL_START_SIZE +
1269 VDEV_LABEL_END_SIZE);
1270 } else {
1271 if (vd->vdev_parent != NULL && osize < SPA_MINDEVSIZE -
1272 (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE)) {
1273 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1274 VDEV_AUX_TOO_SMALL);
1275 return (SET_ERROR(EOVERFLOW));
1276 }
1277 psize = 0;
1278 asize = osize;
1279 max_asize = max_osize;
1280 }
1281
1282 vd->vdev_psize = psize;
1283
1284 /*
1285 * Make sure the allocatable size hasn't shrunk.
1286 */
1287 if (asize < vd->vdev_min_asize) {
1288 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1289 VDEV_AUX_BAD_LABEL);
1290 return (SET_ERROR(EINVAL));
1291 }
1292
1293 if (vd->vdev_asize == 0) {
1294 /*
1295 * This is the first-ever open, so use the computed values.
1296 * For compatibility, a different ashift can be requested.
1297 */
1298 vd->vdev_asize = asize;
1299 vd->vdev_max_asize = max_asize;
1300 if (vd->vdev_ashift == 0)
1301 vd->vdev_ashift = ashift;
1302 } else {
1303 /*
1304 * Detect if the alignment requirement has increased.
1305 * We don't want to make the pool unavailable, just
1306 * post an event instead.
1307 */
1308 if (ashift > vd->vdev_top->vdev_ashift &&
1309 vd->vdev_ops->vdev_op_leaf) {
1310 zfs_ereport_post(FM_EREPORT_ZFS_DEVICE_BAD_ASHIFT,
1311 spa, vd, NULL, 0, 0);
1312 }
1313
1314 vd->vdev_max_asize = max_asize;
1315 }
1316
1317 /*
1318 * If all children are healthy and the asize has increased,
1319 * then we've experienced dynamic LUN growth. If automatic
1320 * expansion is enabled then use the additional space.
1321 */
1322 if (vd->vdev_state == VDEV_STATE_HEALTHY && asize > vd->vdev_asize &&
1323 (vd->vdev_expanding || spa->spa_autoexpand))
1324 vd->vdev_asize = asize;
1325
1326 vdev_set_min_asize(vd);
1327
1328 /*
1329 * Ensure we can issue some IO before declaring the
1330 * vdev open for business.
1331 */
1332 if (vd->vdev_ops->vdev_op_leaf &&
1333 (error = zio_wait(vdev_probe(vd, NULL))) != 0) {
1334 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1335 VDEV_AUX_ERR_EXCEEDED);
1336 return (error);
1337 }
1338
1339 /*
1340 * Track the min and max ashift values for normal data devices.
1341 */
1342 if (vd->vdev_top == vd && vd->vdev_ashift != 0 &&
1343 !vd->vdev_islog && vd->vdev_aux == NULL) {
1344 if (vd->vdev_ashift > spa->spa_max_ashift)
1345 spa->spa_max_ashift = vd->vdev_ashift;
1346 if (vd->vdev_ashift < spa->spa_min_ashift)
1347 spa->spa_min_ashift = vd->vdev_ashift;
1348 }
1349
1350 /*
1351 * If a leaf vdev has a DTL, and seems healthy, then kick off a
1352 * resilver. But don't do this if we are doing a reopen for a scrub,
1353 * since this would just restart the scrub we are already doing.
1354 */
1355 if (vd->vdev_ops->vdev_op_leaf && !spa->spa_scrub_reopen &&
1356 vdev_resilver_needed(vd, NULL, NULL))
1357 spa_async_request(spa, SPA_ASYNC_RESILVER);
1358
1359 return (0);
1360 }
1361
1362 /*
1363 * Called once the vdevs are all opened, this routine validates the label
1364 * contents. This needs to be done before vdev_load() so that we don't
1365 * inadvertently do repair I/Os to the wrong device.
1366 *
1367 * If 'strict' is false ignore the spa guid check. This is necessary because
1368 * if the machine crashed during a re-guid the new guid might have been written
1369 * to all of the vdev labels, but not the cached config. The strict check
1370 * will be performed when the pool is opened again using the mos config.
1371 *
1372 * This function will only return failure if one of the vdevs indicates that it
1373 * has since been destroyed or exported. This is only possible if
1374 * /etc/zfs/zpool.cache was readonly at the time. Otherwise, the vdev state
1375 * will be updated but the function will return 0.
1376 */
1377 int
1378 vdev_validate(vdev_t *vd, boolean_t strict)
1379 {
1380 spa_t *spa = vd->vdev_spa;
1381 nvlist_t *label;
1382 uint64_t guid = 0, top_guid;
1383 uint64_t state;
1384 int c;
1385
1386 for (c = 0; c < vd->vdev_children; c++)
1387 if (vdev_validate(vd->vdev_child[c], strict) != 0)
1388 return (SET_ERROR(EBADF));
1389
1390 /*
1391 * If the device has already failed, or was marked offline, don't do
1392 * any further validation. Otherwise, label I/O will fail and we will
1393 * overwrite the previous state.
1394 */
1395 if (vd->vdev_ops->vdev_op_leaf && vdev_readable(vd)) {
1396 uint64_t aux_guid = 0;
1397 nvlist_t *nvl;
1398 uint64_t txg = spa_last_synced_txg(spa) != 0 ?
1399 spa_last_synced_txg(spa) : -1ULL;
1400
1401 if ((label = vdev_label_read_config(vd, txg)) == NULL) {
1402 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1403 VDEV_AUX_BAD_LABEL);
1404 return (0);
1405 }
1406
1407 /*
1408 * Determine if this vdev has been split off into another
1409 * pool. If so, then refuse to open it.
1410 */
1411 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_SPLIT_GUID,
1412 &aux_guid) == 0 && aux_guid == spa_guid(spa)) {
1413 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1414 VDEV_AUX_SPLIT_POOL);
1415 nvlist_free(label);
1416 return (0);
1417 }
1418
1419 if (strict && (nvlist_lookup_uint64(label,
1420 ZPOOL_CONFIG_POOL_GUID, &guid) != 0 ||
1421 guid != spa_guid(spa))) {
1422 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1423 VDEV_AUX_CORRUPT_DATA);
1424 nvlist_free(label);
1425 return (0);
1426 }
1427
1428 if (nvlist_lookup_nvlist(label, ZPOOL_CONFIG_VDEV_TREE, &nvl)
1429 != 0 || nvlist_lookup_uint64(nvl, ZPOOL_CONFIG_ORIG_GUID,
1430 &aux_guid) != 0)
1431 aux_guid = 0;
1432
1433 /*
1434 * If this vdev just became a top-level vdev because its
1435 * sibling was detached, it will have adopted the parent's
1436 * vdev guid -- but the label may or may not be on disk yet.
1437 * Fortunately, either version of the label will have the
1438 * same top guid, so if we're a top-level vdev, we can
1439 * safely compare to that instead.
1440 *
1441 * If we split this vdev off instead, then we also check the
1442 * original pool's guid. We don't want to consider the vdev
1443 * corrupt if it is partway through a split operation.
1444 */
1445 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID,
1446 &guid) != 0 ||
1447 nvlist_lookup_uint64(label, ZPOOL_CONFIG_TOP_GUID,
1448 &top_guid) != 0 ||
1449 ((vd->vdev_guid != guid && vd->vdev_guid != aux_guid) &&
1450 (vd->vdev_guid != top_guid || vd != vd->vdev_top))) {
1451 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1452 VDEV_AUX_CORRUPT_DATA);
1453 nvlist_free(label);
1454 return (0);
1455 }
1456
1457 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE,
1458 &state) != 0) {
1459 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1460 VDEV_AUX_CORRUPT_DATA);
1461 nvlist_free(label);
1462 return (0);
1463 }
1464
1465 nvlist_free(label);
1466
1467 /*
1468 * If this is a verbatim import, no need to check the
1469 * state of the pool.
1470 */
1471 if (!(spa->spa_import_flags & ZFS_IMPORT_VERBATIM) &&
1472 spa_load_state(spa) == SPA_LOAD_OPEN &&
1473 state != POOL_STATE_ACTIVE)
1474 return (SET_ERROR(EBADF));
1475
1476 /*
1477 * If we were able to open and validate a vdev that was
1478 * previously marked permanently unavailable, clear that state
1479 * now.
1480 */
1481 if (vd->vdev_not_present)
1482 vd->vdev_not_present = 0;
1483 }
1484
1485 return (0);
1486 }
1487
1488 /*
1489 * Close a virtual device.
1490 */
1491 void
1492 vdev_close(vdev_t *vd)
1493 {
1494 vdev_t *pvd = vd->vdev_parent;
1495 ASSERTV(spa_t *spa = vd->vdev_spa);
1496
1497 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1498
1499 /*
1500 * If our parent is reopening, then we are as well, unless we are
1501 * going offline.
1502 */
1503 if (pvd != NULL && pvd->vdev_reopening)
1504 vd->vdev_reopening = (pvd->vdev_reopening && !vd->vdev_offline);
1505
1506 vd->vdev_ops->vdev_op_close(vd);
1507
1508 vdev_cache_purge(vd);
1509
1510 /*
1511 * We record the previous state before we close it, so that if we are
1512 * doing a reopen(), we don't generate FMA ereports if we notice that
1513 * it's still faulted.
1514 */
1515 vd->vdev_prevstate = vd->vdev_state;
1516
1517 if (vd->vdev_offline)
1518 vd->vdev_state = VDEV_STATE_OFFLINE;
1519 else
1520 vd->vdev_state = VDEV_STATE_CLOSED;
1521 vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
1522 }
1523
1524 void
1525 vdev_hold(vdev_t *vd)
1526 {
1527 spa_t *spa = vd->vdev_spa;
1528 int c;
1529
1530 ASSERT(spa_is_root(spa));
1531 if (spa->spa_state == POOL_STATE_UNINITIALIZED)
1532 return;
1533
1534 for (c = 0; c < vd->vdev_children; c++)
1535 vdev_hold(vd->vdev_child[c]);
1536
1537 if (vd->vdev_ops->vdev_op_leaf)
1538 vd->vdev_ops->vdev_op_hold(vd);
1539 }
1540
1541 void
1542 vdev_rele(vdev_t *vd)
1543 {
1544 int c;
1545
1546 ASSERT(spa_is_root(vd->vdev_spa));
1547 for (c = 0; c < vd->vdev_children; c++)
1548 vdev_rele(vd->vdev_child[c]);
1549
1550 if (vd->vdev_ops->vdev_op_leaf)
1551 vd->vdev_ops->vdev_op_rele(vd);
1552 }
1553
1554 /*
1555 * Reopen all interior vdevs and any unopened leaves. We don't actually
1556 * reopen leaf vdevs which had previously been opened as they might deadlock
1557 * on the spa_config_lock. Instead we only obtain the leaf's physical size.
1558 * If the leaf has never been opened then open it, as usual.
1559 */
1560 void
1561 vdev_reopen(vdev_t *vd)
1562 {
1563 spa_t *spa = vd->vdev_spa;
1564
1565 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1566
1567 /* set the reopening flag unless we're taking the vdev offline */
1568 vd->vdev_reopening = !vd->vdev_offline;
1569 vdev_close(vd);
1570 (void) vdev_open(vd);
1571
1572 /*
1573 * Call vdev_validate() here to make sure we have the same device.
1574 * Otherwise, a device with an invalid label could be successfully
1575 * opened in response to vdev_reopen().
1576 */
1577 if (vd->vdev_aux) {
1578 (void) vdev_validate_aux(vd);
1579 if (vdev_readable(vd) && vdev_writeable(vd) &&
1580 vd->vdev_aux == &spa->spa_l2cache &&
1581 !l2arc_vdev_present(vd))
1582 l2arc_add_vdev(spa, vd);
1583 } else {
1584 (void) vdev_validate(vd, B_TRUE);
1585 }
1586
1587 /*
1588 * Reassess parent vdev's health.
1589 */
1590 vdev_propagate_state(vd);
1591 }
1592
1593 int
1594 vdev_create(vdev_t *vd, uint64_t txg, boolean_t isreplacing)
1595 {
1596 int error;
1597
1598 /*
1599 * Normally, partial opens (e.g. of a mirror) are allowed.
1600 * For a create, however, we want to fail the request if
1601 * there are any components we can't open.
1602 */
1603 error = vdev_open(vd);
1604
1605 if (error || vd->vdev_state != VDEV_STATE_HEALTHY) {
1606 vdev_close(vd);
1607 return (error ? error : ENXIO);
1608 }
1609
1610 /*
1611 * Recursively load DTLs and initialize all labels.
1612 */
1613 if ((error = vdev_dtl_load(vd)) != 0 ||
1614 (error = vdev_label_init(vd, txg, isreplacing ?
1615 VDEV_LABEL_REPLACE : VDEV_LABEL_CREATE)) != 0) {
1616 vdev_close(vd);
1617 return (error);
1618 }
1619
1620 return (0);
1621 }
1622
1623 void
1624 vdev_metaslab_set_size(vdev_t *vd)
1625 {
1626 /*
1627 * Aim for roughly metaslabs_per_vdev (default 200) metaslabs per vdev.
1628 */
1629 vd->vdev_ms_shift = highbit64(vd->vdev_asize / metaslabs_per_vdev);
1630 vd->vdev_ms_shift = MAX(vd->vdev_ms_shift, SPA_MAXBLOCKSHIFT);
1631 }
1632
1633 void
1634 vdev_dirty(vdev_t *vd, int flags, void *arg, uint64_t txg)
1635 {
1636 ASSERT(vd == vd->vdev_top);
1637 ASSERT(!vd->vdev_ishole);
1638 ASSERT(ISP2(flags));
1639 ASSERT(spa_writeable(vd->vdev_spa));
1640
1641 if (flags & VDD_METASLAB)
1642 (void) txg_list_add(&vd->vdev_ms_list, arg, txg);
1643
1644 if (flags & VDD_DTL)
1645 (void) txg_list_add(&vd->vdev_dtl_list, arg, txg);
1646
1647 (void) txg_list_add(&vd->vdev_spa->spa_vdev_txg_list, vd, txg);
1648 }
1649
1650 void
1651 vdev_dirty_leaves(vdev_t *vd, int flags, uint64_t txg)
1652 {
1653 int c;
1654
1655 for (c = 0; c < vd->vdev_children; c++)
1656 vdev_dirty_leaves(vd->vdev_child[c], flags, txg);
1657
1658 if (vd->vdev_ops->vdev_op_leaf)
1659 vdev_dirty(vd->vdev_top, flags, vd, txg);
1660 }
1661
1662 /*
1663 * DTLs.
1664 *
1665 * A vdev's DTL (dirty time log) is the set of transaction groups for which
1666 * the vdev has less than perfect replication. There are four kinds of DTL:
1667 *
1668 * DTL_MISSING: txgs for which the vdev has no valid copies of the data
1669 *
1670 * DTL_PARTIAL: txgs for which data is available, but not fully replicated
1671 *
1672 * DTL_SCRUB: the txgs that could not be repaired by the last scrub; upon
1673 * scrub completion, DTL_SCRUB replaces DTL_MISSING in the range of
1674 * txgs that was scrubbed.
1675 *
1676 * DTL_OUTAGE: txgs which cannot currently be read, whether due to
1677 * persistent errors or just some device being offline.
1678 * Unlike the other three, the DTL_OUTAGE map is not generally
1679 * maintained; it's only computed when needed, typically to
1680 * determine whether a device can be detached.
1681 *
1682 * For leaf vdevs, DTL_MISSING and DTL_PARTIAL are identical: the device
1683 * either has the data or it doesn't.
1684 *
1685 * For interior vdevs such as mirror and RAID-Z the picture is more complex.
1686 * A vdev's DTL_PARTIAL is the union of its children's DTL_PARTIALs, because
1687 * if any child is less than fully replicated, then so is its parent.
1688 * A vdev's DTL_MISSING is a modified union of its children's DTL_MISSINGs,
1689 * comprising only those txgs which appear in 'maxfaults' or more children;
1690 * those are the txgs we don't have enough replication to read. For example,
1691 * double-parity RAID-Z can tolerate up to two missing devices (maxfaults == 2);
1692 * thus, its DTL_MISSING consists of the set of txgs that appear in more than
1693 * two child DTL_MISSING maps.
1694 *
1695 * It should be clear from the above that to compute the DTLs and outage maps
1696 * for all vdevs, it suffices to know just the leaf vdevs' DTL_MISSING maps.
1697 * Therefore, that is all we keep on disk. When loading the pool, or after
1698 * a configuration change, we generate all other DTLs from first principles.
1699 */
1700 void
1701 vdev_dtl_dirty(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
1702 {
1703 range_tree_t *rt = vd->vdev_dtl[t];
1704
1705 ASSERT(t < DTL_TYPES);
1706 ASSERT(vd != vd->vdev_spa->spa_root_vdev);
1707 ASSERT(spa_writeable(vd->vdev_spa));
1708
1709 mutex_enter(rt->rt_lock);
1710 if (!range_tree_contains(rt, txg, size))
1711 range_tree_add(rt, txg, size);
1712 mutex_exit(rt->rt_lock);
1713 }
1714
1715 boolean_t
1716 vdev_dtl_contains(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
1717 {
1718 range_tree_t *rt = vd->vdev_dtl[t];
1719 boolean_t dirty = B_FALSE;
1720
1721 ASSERT(t < DTL_TYPES);
1722 ASSERT(vd != vd->vdev_spa->spa_root_vdev);
1723
1724 mutex_enter(rt->rt_lock);
1725 if (range_tree_space(rt) != 0)
1726 dirty = range_tree_contains(rt, txg, size);
1727 mutex_exit(rt->rt_lock);
1728
1729 return (dirty);
1730 }
1731
1732 boolean_t
1733 vdev_dtl_empty(vdev_t *vd, vdev_dtl_type_t t)
1734 {
1735 range_tree_t *rt = vd->vdev_dtl[t];
1736 boolean_t empty;
1737
1738 mutex_enter(rt->rt_lock);
1739 empty = (range_tree_space(rt) == 0);
1740 mutex_exit(rt->rt_lock);
1741
1742 return (empty);
1743 }
1744
1745 /*
1746 * Returns the lowest txg in the DTL range.
1747 */
1748 static uint64_t
1749 vdev_dtl_min(vdev_t *vd)
1750 {
1751 range_seg_t *rs;
1752
1753 ASSERT(MUTEX_HELD(&vd->vdev_dtl_lock));
1754 ASSERT3U(range_tree_space(vd->vdev_dtl[DTL_MISSING]), !=, 0);
1755 ASSERT0(vd->vdev_children);
1756
1757 rs = avl_first(&vd->vdev_dtl[DTL_MISSING]->rt_root);
1758 return (rs->rs_start - 1);
1759 }
1760
1761 /*
1762 * Returns the highest txg in the DTL.
1763 */
1764 static uint64_t
1765 vdev_dtl_max(vdev_t *vd)
1766 {
1767 range_seg_t *rs;
1768
1769 ASSERT(MUTEX_HELD(&vd->vdev_dtl_lock));
1770 ASSERT3U(range_tree_space(vd->vdev_dtl[DTL_MISSING]), !=, 0);
1771 ASSERT0(vd->vdev_children);
1772
1773 rs = avl_last(&vd->vdev_dtl[DTL_MISSING]->rt_root);
1774 return (rs->rs_end);
1775 }
1776
1777 /*
1778 * Determine if a resilvering vdev should remove any DTL entries from
1779 * its range. If the vdev was resilvering for the entire duration of the
1780 * scan then it should excise that range from its DTLs. Otherwise, this
1781 * vdev is considered partially resilvered and should leave its DTL
1782 * entries intact. The comment in vdev_dtl_reassess() describes how we
1783 * excise the DTLs.
1784 */
1785 static boolean_t
1786 vdev_dtl_should_excise(vdev_t *vd)
1787 {
1788 spa_t *spa = vd->vdev_spa;
1789 dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan;
1790
1791 ASSERT0(scn->scn_phys.scn_errors);
1792 ASSERT0(vd->vdev_children);
1793
1794 if (vd->vdev_resilver_txg == 0 ||
1795 range_tree_space(vd->vdev_dtl[DTL_MISSING]) == 0)
1796 return (B_TRUE);
1797
1798 /*
1799 * When a resilver is initiated the scan will assign the scn_max_txg
1800 * value to the highest txg value that exists in all DTLs. If this
1801 * device's max DTL is not part of this scan (i.e. it is not in
1802 * the range (scn_min_txg, scn_max_txg] then it is not eligible
1803 * for excision.
1804 */
1805 if (vdev_dtl_max(vd) <= scn->scn_phys.scn_max_txg) {
1806 ASSERT3U(scn->scn_phys.scn_min_txg, <=, vdev_dtl_min(vd));
1807 ASSERT3U(scn->scn_phys.scn_min_txg, <, vd->vdev_resilver_txg);
1808 ASSERT3U(vd->vdev_resilver_txg, <=, scn->scn_phys.scn_max_txg);
1809 return (B_TRUE);
1810 }
1811 return (B_FALSE);
1812 }
1813
1814 /*
1815 * Reassess DTLs after a config change or scrub completion.
1816 */
1817 void
1818 vdev_dtl_reassess(vdev_t *vd, uint64_t txg, uint64_t scrub_txg, int scrub_done)
1819 {
1820 spa_t *spa = vd->vdev_spa;
1821 avl_tree_t reftree;
1822 int c, t, minref;
1823
1824 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
1825
1826 for (c = 0; c < vd->vdev_children; c++)
1827 vdev_dtl_reassess(vd->vdev_child[c], txg,
1828 scrub_txg, scrub_done);
1829
1830 if (vd == spa->spa_root_vdev || vd->vdev_ishole || vd->vdev_aux)
1831 return;
1832
1833 if (vd->vdev_ops->vdev_op_leaf) {
1834 dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan;
1835
1836 mutex_enter(&vd->vdev_dtl_lock);
1837
1838 /*
1839 * If we've completed a scan cleanly then determine
1840 * if this vdev should remove any DTLs. We only want to
1841 * excise regions on vdevs that were available during
1842 * the entire duration of this scan.
1843 */
1844 if (scrub_txg != 0 &&
1845 (spa->spa_scrub_started ||
1846 (scn != NULL && scn->scn_phys.scn_errors == 0)) &&
1847 vdev_dtl_should_excise(vd)) {
1848 /*
1849 * We completed a scrub up to scrub_txg. If we
1850 * did it without rebooting, then the scrub dtl
1851 * will be valid, so excise the old region and
1852 * fold in the scrub dtl. Otherwise, leave the
1853 * dtl as-is if there was an error.
1854 *
1855 * There's little trick here: to excise the beginning
1856 * of the DTL_MISSING map, we put it into a reference
1857 * tree and then add a segment with refcnt -1 that
1858 * covers the range [0, scrub_txg). This means
1859 * that each txg in that range has refcnt -1 or 0.
1860 * We then add DTL_SCRUB with a refcnt of 2, so that
1861 * entries in the range [0, scrub_txg) will have a
1862 * positive refcnt -- either 1 or 2. We then convert
1863 * the reference tree into the new DTL_MISSING map.
1864 */
1865 space_reftree_create(&reftree);
1866 space_reftree_add_map(&reftree,
1867 vd->vdev_dtl[DTL_MISSING], 1);
1868 space_reftree_add_seg(&reftree, 0, scrub_txg, -1);
1869 space_reftree_add_map(&reftree,
1870 vd->vdev_dtl[DTL_SCRUB], 2);
1871 space_reftree_generate_map(&reftree,
1872 vd->vdev_dtl[DTL_MISSING], 1);
1873 space_reftree_destroy(&reftree);
1874 }
1875 range_tree_vacate(vd->vdev_dtl[DTL_PARTIAL], NULL, NULL);
1876 range_tree_walk(vd->vdev_dtl[DTL_MISSING],
1877 range_tree_add, vd->vdev_dtl[DTL_PARTIAL]);
1878 if (scrub_done)
1879 range_tree_vacate(vd->vdev_dtl[DTL_SCRUB], NULL, NULL);
1880 range_tree_vacate(vd->vdev_dtl[DTL_OUTAGE], NULL, NULL);
1881 if (!vdev_readable(vd))
1882 range_tree_add(vd->vdev_dtl[DTL_OUTAGE], 0, -1ULL);
1883 else
1884 range_tree_walk(vd->vdev_dtl[DTL_MISSING],
1885 range_tree_add, vd->vdev_dtl[DTL_OUTAGE]);
1886
1887 /*
1888 * If the vdev was resilvering and no longer has any
1889 * DTLs then reset its resilvering flag.
1890 */
1891 if (vd->vdev_resilver_txg != 0 &&
1892 range_tree_space(vd->vdev_dtl[DTL_MISSING]) == 0 &&
1893 range_tree_space(vd->vdev_dtl[DTL_OUTAGE]) == 0)
1894 vd->vdev_resilver_txg = 0;
1895
1896 mutex_exit(&vd->vdev_dtl_lock);
1897
1898 if (txg != 0)
1899 vdev_dirty(vd->vdev_top, VDD_DTL, vd, txg);
1900 return;
1901 }
1902
1903 mutex_enter(&vd->vdev_dtl_lock);
1904 for (t = 0; t < DTL_TYPES; t++) {
1905 int c;
1906
1907 /* account for child's outage in parent's missing map */
1908 int s = (t == DTL_MISSING) ? DTL_OUTAGE: t;
1909 if (t == DTL_SCRUB)
1910 continue; /* leaf vdevs only */
1911 if (t == DTL_PARTIAL)
1912 minref = 1; /* i.e. non-zero */
1913 else if (vd->vdev_nparity != 0)
1914 minref = vd->vdev_nparity + 1; /* RAID-Z */
1915 else
1916 minref = vd->vdev_children; /* any kind of mirror */
1917 space_reftree_create(&reftree);
1918 for (c = 0; c < vd->vdev_children; c++) {
1919 vdev_t *cvd = vd->vdev_child[c];
1920 mutex_enter(&cvd->vdev_dtl_lock);
1921 space_reftree_add_map(&reftree, cvd->vdev_dtl[s], 1);
1922 mutex_exit(&cvd->vdev_dtl_lock);
1923 }
1924 space_reftree_generate_map(&reftree, vd->vdev_dtl[t], minref);
1925 space_reftree_destroy(&reftree);
1926 }
1927 mutex_exit(&vd->vdev_dtl_lock);
1928 }
1929
1930 int
1931 vdev_dtl_load(vdev_t *vd)
1932 {
1933 spa_t *spa = vd->vdev_spa;
1934 objset_t *mos = spa->spa_meta_objset;
1935 int error = 0;
1936 int c;
1937
1938 if (vd->vdev_ops->vdev_op_leaf && vd->vdev_dtl_object != 0) {
1939 ASSERT(!vd->vdev_ishole);
1940
1941 error = space_map_open(&vd->vdev_dtl_sm, mos,
1942 vd->vdev_dtl_object, 0, -1ULL, 0, &vd->vdev_dtl_lock);
1943 if (error)
1944 return (error);
1945 ASSERT(vd->vdev_dtl_sm != NULL);
1946
1947 mutex_enter(&vd->vdev_dtl_lock);
1948
1949 /*
1950 * Now that we've opened the space_map we need to update
1951 * the in-core DTL.
1952 */
1953 space_map_update(vd->vdev_dtl_sm);
1954
1955 error = space_map_load(vd->vdev_dtl_sm,
1956 vd->vdev_dtl[DTL_MISSING], SM_ALLOC);
1957 mutex_exit(&vd->vdev_dtl_lock);
1958
1959 return (error);
1960 }
1961
1962 for (c = 0; c < vd->vdev_children; c++) {
1963 error = vdev_dtl_load(vd->vdev_child[c]);
1964 if (error != 0)
1965 break;
1966 }
1967
1968 return (error);
1969 }
1970
1971 void
1972 vdev_dtl_sync(vdev_t *vd, uint64_t txg)
1973 {
1974 spa_t *spa = vd->vdev_spa;
1975 range_tree_t *rt = vd->vdev_dtl[DTL_MISSING];
1976 objset_t *mos = spa->spa_meta_objset;
1977 range_tree_t *rtsync;
1978 kmutex_t rtlock;
1979 dmu_tx_t *tx;
1980 uint64_t object = space_map_object(vd->vdev_dtl_sm);
1981
1982 ASSERT(!vd->vdev_ishole);
1983 ASSERT(vd->vdev_ops->vdev_op_leaf);
1984
1985 tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
1986
1987 if (vd->vdev_detached || vd->vdev_top->vdev_removing) {
1988 mutex_enter(&vd->vdev_dtl_lock);
1989 space_map_free(vd->vdev_dtl_sm, tx);
1990 space_map_close(vd->vdev_dtl_sm);
1991 vd->vdev_dtl_sm = NULL;
1992 mutex_exit(&vd->vdev_dtl_lock);
1993 dmu_tx_commit(tx);
1994 return;
1995 }
1996
1997 if (vd->vdev_dtl_sm == NULL) {
1998 uint64_t new_object;
1999
2000 new_object = space_map_alloc(mos, tx);
2001 VERIFY3U(new_object, !=, 0);
2002
2003 VERIFY0(space_map_open(&vd->vdev_dtl_sm, mos, new_object,
2004 0, -1ULL, 0, &vd->vdev_dtl_lock));
2005 ASSERT(vd->vdev_dtl_sm != NULL);
2006 }
2007
2008 mutex_init(&rtlock, NULL, MUTEX_DEFAULT, NULL);
2009
2010 rtsync = range_tree_create(NULL, NULL, &rtlock);
2011
2012 mutex_enter(&rtlock);
2013
2014 mutex_enter(&vd->vdev_dtl_lock);
2015 range_tree_walk(rt, range_tree_add, rtsync);
2016 mutex_exit(&vd->vdev_dtl_lock);
2017
2018 space_map_truncate(vd->vdev_dtl_sm, tx);
2019 space_map_write(vd->vdev_dtl_sm, rtsync, SM_ALLOC, tx);
2020 range_tree_vacate(rtsync, NULL, NULL);
2021
2022 range_tree_destroy(rtsync);
2023
2024 mutex_exit(&rtlock);
2025 mutex_destroy(&rtlock);
2026
2027 /*
2028 * If the object for the space map has changed then dirty
2029 * the top level so that we update the config.
2030 */
2031 if (object != space_map_object(vd->vdev_dtl_sm)) {
2032 zfs_dbgmsg("txg %llu, spa %s, DTL old object %llu, "
2033 "new object %llu", txg, spa_name(spa), object,
2034 space_map_object(vd->vdev_dtl_sm));
2035 vdev_config_dirty(vd->vdev_top);
2036 }
2037
2038 dmu_tx_commit(tx);
2039
2040 mutex_enter(&vd->vdev_dtl_lock);
2041 space_map_update(vd->vdev_dtl_sm);
2042 mutex_exit(&vd->vdev_dtl_lock);
2043 }
2044
2045 /*
2046 * Determine whether the specified vdev can be offlined/detached/removed
2047 * without losing data.
2048 */
2049 boolean_t
2050 vdev_dtl_required(vdev_t *vd)
2051 {
2052 spa_t *spa = vd->vdev_spa;
2053 vdev_t *tvd = vd->vdev_top;
2054 uint8_t cant_read = vd->vdev_cant_read;
2055 boolean_t required;
2056
2057 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
2058
2059 if (vd == spa->spa_root_vdev || vd == tvd)
2060 return (B_TRUE);
2061
2062 /*
2063 * Temporarily mark the device as unreadable, and then determine
2064 * whether this results in any DTL outages in the top-level vdev.
2065 * If not, we can safely offline/detach/remove the device.
2066 */
2067 vd->vdev_cant_read = B_TRUE;
2068 vdev_dtl_reassess(tvd, 0, 0, B_FALSE);
2069 required = !vdev_dtl_empty(tvd, DTL_OUTAGE);
2070 vd->vdev_cant_read = cant_read;
2071 vdev_dtl_reassess(tvd, 0, 0, B_FALSE);
2072
2073 if (!required && zio_injection_enabled)
2074 required = !!zio_handle_device_injection(vd, NULL, ECHILD);
2075
2076 return (required);
2077 }
2078
2079 /*
2080 * Determine if resilver is needed, and if so the txg range.
2081 */
2082 boolean_t
2083 vdev_resilver_needed(vdev_t *vd, uint64_t *minp, uint64_t *maxp)
2084 {
2085 boolean_t needed = B_FALSE;
2086 uint64_t thismin = UINT64_MAX;
2087 uint64_t thismax = 0;
2088 int c;
2089
2090 if (vd->vdev_children == 0) {
2091 mutex_enter(&vd->vdev_dtl_lock);
2092 if (range_tree_space(vd->vdev_dtl[DTL_MISSING]) != 0 &&
2093 vdev_writeable(vd)) {
2094
2095 thismin = vdev_dtl_min(vd);
2096 thismax = vdev_dtl_max(vd);
2097 needed = B_TRUE;
2098 }
2099 mutex_exit(&vd->vdev_dtl_lock);
2100 } else {
2101 for (c = 0; c < vd->vdev_children; c++) {
2102 vdev_t *cvd = vd->vdev_child[c];
2103 uint64_t cmin, cmax;
2104
2105 if (vdev_resilver_needed(cvd, &cmin, &cmax)) {
2106 thismin = MIN(thismin, cmin);
2107 thismax = MAX(thismax, cmax);
2108 needed = B_TRUE;
2109 }
2110 }
2111 }
2112
2113 if (needed && minp) {
2114 *minp = thismin;
2115 *maxp = thismax;
2116 }
2117 return (needed);
2118 }
2119
2120 void
2121 vdev_load(vdev_t *vd)
2122 {
2123 int c;
2124
2125 /*
2126 * Recursively load all children.
2127 */
2128 for (c = 0; c < vd->vdev_children; c++)
2129 vdev_load(vd->vdev_child[c]);
2130
2131 /*
2132 * If this is a top-level vdev, initialize its metaslabs.
2133 */
2134 if (vd == vd->vdev_top && !vd->vdev_ishole &&
2135 (vd->vdev_ashift == 0 || vd->vdev_asize == 0 ||
2136 vdev_metaslab_init(vd, 0) != 0))
2137 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2138 VDEV_AUX_CORRUPT_DATA);
2139
2140 /*
2141 * If this is a leaf vdev, load its DTL.
2142 */
2143 if (vd->vdev_ops->vdev_op_leaf && vdev_dtl_load(vd) != 0)
2144 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2145 VDEV_AUX_CORRUPT_DATA);
2146 }
2147
2148 /*
2149 * The special vdev case is used for hot spares and l2cache devices. Its
2150 * sole purpose it to set the vdev state for the associated vdev. To do this,
2151 * we make sure that we can open the underlying device, then try to read the
2152 * label, and make sure that the label is sane and that it hasn't been
2153 * repurposed to another pool.
2154 */
2155 int
2156 vdev_validate_aux(vdev_t *vd)
2157 {
2158 nvlist_t *label;
2159 uint64_t guid, version;
2160 uint64_t state;
2161
2162 if (!vdev_readable(vd))
2163 return (0);
2164
2165 if ((label = vdev_label_read_config(vd, -1ULL)) == NULL) {
2166 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2167 VDEV_AUX_CORRUPT_DATA);
2168 return (-1);
2169 }
2170
2171 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_VERSION, &version) != 0 ||
2172 !SPA_VERSION_IS_SUPPORTED(version) ||
2173 nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0 ||
2174 guid != vd->vdev_guid ||
2175 nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, &state) != 0) {
2176 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2177 VDEV_AUX_CORRUPT_DATA);
2178 nvlist_free(label);
2179 return (-1);
2180 }
2181
2182 /*
2183 * We don't actually check the pool state here. If it's in fact in
2184 * use by another pool, we update this fact on the fly when requested.
2185 */
2186 nvlist_free(label);
2187 return (0);
2188 }
2189
2190 void
2191 vdev_remove(vdev_t *vd, uint64_t txg)
2192 {
2193 spa_t *spa = vd->vdev_spa;
2194 objset_t *mos = spa->spa_meta_objset;
2195 dmu_tx_t *tx;
2196 int m, i;
2197
2198 tx = dmu_tx_create_assigned(spa_get_dsl(spa), txg);
2199
2200 if (vd->vdev_ms != NULL) {
2201 metaslab_group_t *mg = vd->vdev_mg;
2202
2203 metaslab_group_histogram_verify(mg);
2204 metaslab_class_histogram_verify(mg->mg_class);
2205
2206 for (m = 0; m < vd->vdev_ms_count; m++) {
2207 metaslab_t *msp = vd->vdev_ms[m];
2208
2209 if (msp == NULL || msp->ms_sm == NULL)
2210 continue;
2211
2212 mutex_enter(&msp->ms_lock);
2213 /*
2214 * If the metaslab was not loaded when the vdev
2215 * was removed then the histogram accounting may
2216 * not be accurate. Update the histogram information
2217 * here so that we ensure that the metaslab group
2218 * and metaslab class are up-to-date.
2219 */
2220 metaslab_group_histogram_remove(mg, msp);
2221
2222 VERIFY0(space_map_allocated(msp->ms_sm));
2223 space_map_free(msp->ms_sm, tx);
2224 space_map_close(msp->ms_sm);
2225 msp->ms_sm = NULL;
2226 mutex_exit(&msp->ms_lock);
2227 }
2228
2229 metaslab_group_histogram_verify(mg);
2230 metaslab_class_histogram_verify(mg->mg_class);
2231 for (i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i++)
2232 ASSERT0(mg->mg_histogram[i]);
2233
2234 }
2235
2236 if (vd->vdev_ms_array) {
2237 (void) dmu_object_free(mos, vd->vdev_ms_array, tx);
2238 vd->vdev_ms_array = 0;
2239 }
2240 dmu_tx_commit(tx);
2241 }
2242
2243 void
2244 vdev_sync_done(vdev_t *vd, uint64_t txg)
2245 {
2246 metaslab_t *msp;
2247 boolean_t reassess = !txg_list_empty(&vd->vdev_ms_list, TXG_CLEAN(txg));
2248
2249 ASSERT(!vd->vdev_ishole);
2250
2251 while ((msp = txg_list_remove(&vd->vdev_ms_list, TXG_CLEAN(txg))))
2252 metaslab_sync_done(msp, txg);
2253
2254 if (reassess)
2255 metaslab_sync_reassess(vd->vdev_mg);
2256 }
2257
2258 void
2259 vdev_sync(vdev_t *vd, uint64_t txg)
2260 {
2261 spa_t *spa = vd->vdev_spa;
2262 vdev_t *lvd;
2263 metaslab_t *msp;
2264 dmu_tx_t *tx;
2265
2266 ASSERT(!vd->vdev_ishole);
2267
2268 if (vd->vdev_ms_array == 0 && vd->vdev_ms_shift != 0) {
2269 ASSERT(vd == vd->vdev_top);
2270 tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
2271 vd->vdev_ms_array = dmu_object_alloc(spa->spa_meta_objset,
2272 DMU_OT_OBJECT_ARRAY, 0, DMU_OT_NONE, 0, tx);
2273 ASSERT(vd->vdev_ms_array != 0);
2274 vdev_config_dirty(vd);
2275 dmu_tx_commit(tx);
2276 }
2277
2278 /*
2279 * Remove the metadata associated with this vdev once it's empty.
2280 */
2281 if (vd->vdev_stat.vs_alloc == 0 && vd->vdev_removing)
2282 vdev_remove(vd, txg);
2283
2284 while ((msp = txg_list_remove(&vd->vdev_ms_list, txg)) != NULL) {
2285 metaslab_sync(msp, txg);
2286 (void) txg_list_add(&vd->vdev_ms_list, msp, TXG_CLEAN(txg));
2287 }
2288
2289 while ((lvd = txg_list_remove(&vd->vdev_dtl_list, txg)) != NULL)
2290 vdev_dtl_sync(lvd, txg);
2291
2292 (void) txg_list_add(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg));
2293 }
2294
2295 uint64_t
2296 vdev_psize_to_asize(vdev_t *vd, uint64_t psize)
2297 {
2298 return (vd->vdev_ops->vdev_op_asize(vd, psize));
2299 }
2300
2301 /*
2302 * Mark the given vdev faulted. A faulted vdev behaves as if the device could
2303 * not be opened, and no I/O is attempted.
2304 */
2305 int
2306 vdev_fault(spa_t *spa, uint64_t guid, vdev_aux_t aux)
2307 {
2308 vdev_t *vd, *tvd;
2309
2310 spa_vdev_state_enter(spa, SCL_NONE);
2311
2312 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2313 return (spa_vdev_state_exit(spa, NULL, ENODEV));
2314
2315 if (!vd->vdev_ops->vdev_op_leaf)
2316 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2317
2318 tvd = vd->vdev_top;
2319
2320 /*
2321 * We don't directly use the aux state here, but if we do a
2322 * vdev_reopen(), we need this value to be present to remember why we
2323 * were faulted.
2324 */
2325 vd->vdev_label_aux = aux;
2326
2327 /*
2328 * Faulted state takes precedence over degraded.
2329 */
2330 vd->vdev_delayed_close = B_FALSE;
2331 vd->vdev_faulted = 1ULL;
2332 vd->vdev_degraded = 0ULL;
2333 vdev_set_state(vd, B_FALSE, VDEV_STATE_FAULTED, aux);
2334
2335 /*
2336 * If this device has the only valid copy of the data, then
2337 * back off and simply mark the vdev as degraded instead.
2338 */
2339 if (!tvd->vdev_islog && vd->vdev_aux == NULL && vdev_dtl_required(vd)) {
2340 vd->vdev_degraded = 1ULL;
2341 vd->vdev_faulted = 0ULL;
2342
2343 /*
2344 * If we reopen the device and it's not dead, only then do we
2345 * mark it degraded.
2346 */
2347 vdev_reopen(tvd);
2348
2349 if (vdev_readable(vd))
2350 vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, aux);
2351 }
2352
2353 return (spa_vdev_state_exit(spa, vd, 0));
2354 }
2355
2356 /*
2357 * Mark the given vdev degraded. A degraded vdev is purely an indication to the
2358 * user that something is wrong. The vdev continues to operate as normal as far
2359 * as I/O is concerned.
2360 */
2361 int
2362 vdev_degrade(spa_t *spa, uint64_t guid, vdev_aux_t aux)
2363 {
2364 vdev_t *vd;
2365
2366 spa_vdev_state_enter(spa, SCL_NONE);
2367
2368 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2369 return (spa_vdev_state_exit(spa, NULL, ENODEV));
2370
2371 if (!vd->vdev_ops->vdev_op_leaf)
2372 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2373
2374 /*
2375 * If the vdev is already faulted, then don't do anything.
2376 */
2377 if (vd->vdev_faulted || vd->vdev_degraded)
2378 return (spa_vdev_state_exit(spa, NULL, 0));
2379
2380 vd->vdev_degraded = 1ULL;
2381 if (!vdev_is_dead(vd))
2382 vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED,
2383 aux);
2384
2385 return (spa_vdev_state_exit(spa, vd, 0));
2386 }
2387
2388 /*
2389 * Online the given vdev.
2390 *
2391 * If 'ZFS_ONLINE_UNSPARE' is set, it implies two things. First, any attached
2392 * spare device should be detached when the device finishes resilvering.
2393 * Second, the online should be treated like a 'test' online case, so no FMA
2394 * events are generated if the device fails to open.
2395 */
2396 int
2397 vdev_online(spa_t *spa, uint64_t guid, uint64_t flags, vdev_state_t *newstate)
2398 {
2399 vdev_t *vd, *tvd, *pvd, *rvd = spa->spa_root_vdev;
2400
2401 spa_vdev_state_enter(spa, SCL_NONE);
2402
2403 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2404 return (spa_vdev_state_exit(spa, NULL, ENODEV));
2405
2406 if (!vd->vdev_ops->vdev_op_leaf)
2407 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2408
2409 tvd = vd->vdev_top;
2410 vd->vdev_offline = B_FALSE;
2411 vd->vdev_tmpoffline = B_FALSE;
2412 vd->vdev_checkremove = !!(flags & ZFS_ONLINE_CHECKREMOVE);
2413 vd->vdev_forcefault = !!(flags & ZFS_ONLINE_FORCEFAULT);
2414
2415 /* XXX - L2ARC 1.0 does not support expansion */
2416 if (!vd->vdev_aux) {
2417 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
2418 pvd->vdev_expanding = !!(flags & ZFS_ONLINE_EXPAND);
2419 }
2420
2421 vdev_reopen(tvd);
2422 vd->vdev_checkremove = vd->vdev_forcefault = B_FALSE;
2423
2424 if (!vd->vdev_aux) {
2425 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
2426 pvd->vdev_expanding = B_FALSE;
2427 }
2428
2429 if (newstate)
2430 *newstate = vd->vdev_state;
2431 if ((flags & ZFS_ONLINE_UNSPARE) &&
2432 !vdev_is_dead(vd) && vd->vdev_parent &&
2433 vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
2434 vd->vdev_parent->vdev_child[0] == vd)
2435 vd->vdev_unspare = B_TRUE;
2436
2437 if ((flags & ZFS_ONLINE_EXPAND) || spa->spa_autoexpand) {
2438
2439 /* XXX - L2ARC 1.0 does not support expansion */
2440 if (vd->vdev_aux)
2441 return (spa_vdev_state_exit(spa, vd, ENOTSUP));
2442 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
2443 }
2444 return (spa_vdev_state_exit(spa, vd, 0));
2445 }
2446
2447 static int
2448 vdev_offline_locked(spa_t *spa, uint64_t guid, uint64_t flags)
2449 {
2450 vdev_t *vd, *tvd;
2451 int error = 0;
2452 uint64_t generation;
2453 metaslab_group_t *mg;
2454
2455 top:
2456 spa_vdev_state_enter(spa, SCL_ALLOC);
2457
2458 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2459 return (spa_vdev_state_exit(spa, NULL, ENODEV));
2460
2461 if (!vd->vdev_ops->vdev_op_leaf)
2462 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2463
2464 tvd = vd->vdev_top;
2465 mg = tvd->vdev_mg;
2466 generation = spa->spa_config_generation + 1;
2467
2468 /*
2469 * If the device isn't already offline, try to offline it.
2470 */
2471 if (!vd->vdev_offline) {
2472 /*
2473 * If this device has the only valid copy of some data,
2474 * don't allow it to be offlined. Log devices are always
2475 * expendable.
2476 */
2477 if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
2478 vdev_dtl_required(vd))
2479 return (spa_vdev_state_exit(spa, NULL, EBUSY));
2480
2481 /*
2482 * If the top-level is a slog and it has had allocations
2483 * then proceed. We check that the vdev's metaslab group
2484 * is not NULL since it's possible that we may have just
2485 * added this vdev but not yet initialized its metaslabs.
2486 */
2487 if (tvd->vdev_islog && mg != NULL) {
2488 /*
2489 * Prevent any future allocations.
2490 */
2491 metaslab_group_passivate(mg);
2492 (void) spa_vdev_state_exit(spa, vd, 0);
2493
2494 error = spa_offline_log(spa);
2495
2496 spa_vdev_state_enter(spa, SCL_ALLOC);
2497
2498 /*
2499 * Check to see if the config has changed.
2500 */
2501 if (error || generation != spa->spa_config_generation) {
2502 metaslab_group_activate(mg);
2503 if (error)
2504 return (spa_vdev_state_exit(spa,
2505 vd, error));
2506 (void) spa_vdev_state_exit(spa, vd, 0);
2507 goto top;
2508 }
2509 ASSERT0(tvd->vdev_stat.vs_alloc);
2510 }
2511
2512 /*
2513 * Offline this device and reopen its top-level vdev.
2514 * If the top-level vdev is a log device then just offline
2515 * it. Otherwise, if this action results in the top-level
2516 * vdev becoming unusable, undo it and fail the request.
2517 */
2518 vd->vdev_offline = B_TRUE;
2519 vdev_reopen(tvd);
2520
2521 if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
2522 vdev_is_dead(tvd)) {
2523 vd->vdev_offline = B_FALSE;
2524 vdev_reopen(tvd);
2525 return (spa_vdev_state_exit(spa, NULL, EBUSY));
2526 }
2527
2528 /*
2529 * Add the device back into the metaslab rotor so that
2530 * once we online the device it's open for business.
2531 */
2532 if (tvd->vdev_islog && mg != NULL)
2533 metaslab_group_activate(mg);
2534 }
2535
2536 vd->vdev_tmpoffline = !!(flags & ZFS_OFFLINE_TEMPORARY);
2537
2538 return (spa_vdev_state_exit(spa, vd, 0));
2539 }
2540
2541 int
2542 vdev_offline(spa_t *spa, uint64_t guid, uint64_t flags)
2543 {
2544 int error;
2545
2546 mutex_enter(&spa->spa_vdev_top_lock);
2547 error = vdev_offline_locked(spa, guid, flags);
2548 mutex_exit(&spa->spa_vdev_top_lock);
2549
2550 return (error);
2551 }
2552
2553 /*
2554 * Clear the error counts associated with this vdev. Unlike vdev_online() and
2555 * vdev_offline(), we assume the spa config is locked. We also clear all
2556 * children. If 'vd' is NULL, then the user wants to clear all vdevs.
2557 */
2558 void
2559 vdev_clear(spa_t *spa, vdev_t *vd)
2560 {
2561 vdev_t *rvd = spa->spa_root_vdev;
2562 int c;
2563
2564 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
2565
2566 if (vd == NULL)
2567 vd = rvd;
2568
2569 vd->vdev_stat.vs_read_errors = 0;
2570 vd->vdev_stat.vs_write_errors = 0;
2571 vd->vdev_stat.vs_checksum_errors = 0;
2572
2573 for (c = 0; c < vd->vdev_children; c++)
2574 vdev_clear(spa, vd->vdev_child[c]);
2575
2576 /*
2577 * If we're in the FAULTED state or have experienced failed I/O, then
2578 * clear the persistent state and attempt to reopen the device. We
2579 * also mark the vdev config dirty, so that the new faulted state is
2580 * written out to disk.
2581 */
2582 if (vd->vdev_faulted || vd->vdev_degraded ||
2583 !vdev_readable(vd) || !vdev_writeable(vd)) {
2584
2585 /*
2586 * When reopening in reponse to a clear event, it may be due to
2587 * a fmadm repair request. In this case, if the device is
2588 * still broken, we want to still post the ereport again.
2589 */
2590 vd->vdev_forcefault = B_TRUE;
2591
2592 vd->vdev_faulted = vd->vdev_degraded = 0ULL;
2593 vd->vdev_cant_read = B_FALSE;
2594 vd->vdev_cant_write = B_FALSE;
2595
2596 vdev_reopen(vd == rvd ? rvd : vd->vdev_top);
2597
2598 vd->vdev_forcefault = B_FALSE;
2599
2600 if (vd != rvd && vdev_writeable(vd->vdev_top))
2601 vdev_state_dirty(vd->vdev_top);
2602
2603 if (vd->vdev_aux == NULL && !vdev_is_dead(vd))
2604 spa_async_request(spa, SPA_ASYNC_RESILVER);
2605
2606 spa_event_notify(spa, vd, FM_EREPORT_ZFS_DEVICE_CLEAR);
2607 }
2608
2609 /*
2610 * When clearing a FMA-diagnosed fault, we always want to
2611 * unspare the device, as we assume that the original spare was
2612 * done in response to the FMA fault.
2613 */
2614 if (!vdev_is_dead(vd) && vd->vdev_parent != NULL &&
2615 vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
2616 vd->vdev_parent->vdev_child[0] == vd)
2617 vd->vdev_unspare = B_TRUE;
2618 }
2619
2620 boolean_t
2621 vdev_is_dead(vdev_t *vd)
2622 {
2623 /*
2624 * Holes and missing devices are always considered "dead".
2625 * This simplifies the code since we don't have to check for
2626 * these types of devices in the various code paths.
2627 * Instead we rely on the fact that we skip over dead devices
2628 * before issuing I/O to them.
2629 */
2630 return (vd->vdev_state < VDEV_STATE_DEGRADED || vd->vdev_ishole ||
2631 vd->vdev_ops == &vdev_missing_ops);
2632 }
2633
2634 boolean_t
2635 vdev_readable(vdev_t *vd)
2636 {
2637 return (!vdev_is_dead(vd) && !vd->vdev_cant_read);
2638 }
2639
2640 boolean_t
2641 vdev_writeable(vdev_t *vd)
2642 {
2643 return (!vdev_is_dead(vd) && !vd->vdev_cant_write);
2644 }
2645
2646 boolean_t
2647 vdev_allocatable(vdev_t *vd)
2648 {
2649 uint64_t state = vd->vdev_state;
2650
2651 /*
2652 * We currently allow allocations from vdevs which may be in the
2653 * process of reopening (i.e. VDEV_STATE_CLOSED). If the device
2654 * fails to reopen then we'll catch it later when we're holding
2655 * the proper locks. Note that we have to get the vdev state
2656 * in a local variable because although it changes atomically,
2657 * we're asking two separate questions about it.
2658 */
2659 return (!(state < VDEV_STATE_DEGRADED && state != VDEV_STATE_CLOSED) &&
2660 !vd->vdev_cant_write && !vd->vdev_ishole);
2661 }
2662
2663 boolean_t
2664 vdev_accessible(vdev_t *vd, zio_t *zio)
2665 {
2666 ASSERT(zio->io_vd == vd);
2667
2668 if (vdev_is_dead(vd) || vd->vdev_remove_wanted)
2669 return (B_FALSE);
2670
2671 if (zio->io_type == ZIO_TYPE_READ)
2672 return (!vd->vdev_cant_read);
2673
2674 if (zio->io_type == ZIO_TYPE_WRITE)
2675 return (!vd->vdev_cant_write);
2676
2677 return (B_TRUE);
2678 }
2679
2680 /*
2681 * Get statistics for the given vdev.
2682 */
2683 void
2684 vdev_get_stats(vdev_t *vd, vdev_stat_t *vs)
2685 {
2686 spa_t *spa = vd->vdev_spa;
2687 vdev_t *rvd = spa->spa_root_vdev;
2688 int c, t;
2689
2690 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
2691
2692 mutex_enter(&vd->vdev_stat_lock);
2693 bcopy(&vd->vdev_stat, vs, sizeof (*vs));
2694 vs->vs_timestamp = gethrtime() - vs->vs_timestamp;
2695 vs->vs_state = vd->vdev_state;
2696 vs->vs_rsize = vdev_get_min_asize(vd);
2697 if (vd->vdev_ops->vdev_op_leaf)
2698 vs->vs_rsize += VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE;
2699 vs->vs_esize = vd->vdev_max_asize - vd->vdev_asize;
2700 if (vd->vdev_aux == NULL && vd == vd->vdev_top && !vd->vdev_ishole) {
2701 vs->vs_fragmentation = vd->vdev_mg->mg_fragmentation;
2702 }
2703
2704 /*
2705 * If we're getting stats on the root vdev, aggregate the I/O counts
2706 * over all top-level vdevs (i.e. the direct children of the root).
2707 */
2708 if (vd == rvd) {
2709 for (c = 0; c < rvd->vdev_children; c++) {
2710 vdev_t *cvd = rvd->vdev_child[c];
2711 vdev_stat_t *cvs = &cvd->vdev_stat;
2712
2713 for (t = 0; t < ZIO_TYPES; t++) {
2714 vs->vs_ops[t] += cvs->vs_ops[t];
2715 vs->vs_bytes[t] += cvs->vs_bytes[t];
2716 }
2717 cvs->vs_scan_removing = cvd->vdev_removing;
2718 }
2719 }
2720 mutex_exit(&vd->vdev_stat_lock);
2721 }
2722
2723 void
2724 vdev_clear_stats(vdev_t *vd)
2725 {
2726 mutex_enter(&vd->vdev_stat_lock);
2727 vd->vdev_stat.vs_space = 0;
2728 vd->vdev_stat.vs_dspace = 0;
2729 vd->vdev_stat.vs_alloc = 0;
2730 mutex_exit(&vd->vdev_stat_lock);
2731 }
2732
2733 void
2734 vdev_scan_stat_init(vdev_t *vd)
2735 {
2736 vdev_stat_t *vs = &vd->vdev_stat;
2737 int c;
2738
2739 for (c = 0; c < vd->vdev_children; c++)
2740 vdev_scan_stat_init(vd->vdev_child[c]);
2741
2742 mutex_enter(&vd->vdev_stat_lock);
2743 vs->vs_scan_processed = 0;
2744 mutex_exit(&vd->vdev_stat_lock);
2745 }
2746
2747 void
2748 vdev_stat_update(zio_t *zio, uint64_t psize)
2749 {
2750 spa_t *spa = zio->io_spa;
2751 vdev_t *rvd = spa->spa_root_vdev;
2752 vdev_t *vd = zio->io_vd ? zio->io_vd : rvd;
2753 vdev_t *pvd;
2754 uint64_t txg = zio->io_txg;
2755 vdev_stat_t *vs = &vd->vdev_stat;
2756 zio_type_t type = zio->io_type;
2757 int flags = zio->io_flags;
2758
2759 /*
2760 * If this i/o is a gang leader, it didn't do any actual work.
2761 */
2762 if (zio->io_gang_tree)
2763 return;
2764
2765 if (zio->io_error == 0) {
2766 /*
2767 * If this is a root i/o, don't count it -- we've already
2768 * counted the top-level vdevs, and vdev_get_stats() will
2769 * aggregate them when asked. This reduces contention on
2770 * the root vdev_stat_lock and implicitly handles blocks
2771 * that compress away to holes, for which there is no i/o.
2772 * (Holes never create vdev children, so all the counters
2773 * remain zero, which is what we want.)
2774 *
2775 * Note: this only applies to successful i/o (io_error == 0)
2776 * because unlike i/o counts, errors are not additive.
2777 * When reading a ditto block, for example, failure of
2778 * one top-level vdev does not imply a root-level error.
2779 */
2780 if (vd == rvd)
2781 return;
2782
2783 ASSERT(vd == zio->io_vd);
2784
2785 if (flags & ZIO_FLAG_IO_BYPASS)
2786 return;
2787
2788 mutex_enter(&vd->vdev_stat_lock);
2789
2790 if (flags & ZIO_FLAG_IO_REPAIR) {
2791 if (flags & ZIO_FLAG_SCAN_THREAD) {
2792 dsl_scan_phys_t *scn_phys =
2793 &spa->spa_dsl_pool->dp_scan->scn_phys;
2794 uint64_t *processed = &scn_phys->scn_processed;
2795
2796 /* XXX cleanup? */
2797 if (vd->vdev_ops->vdev_op_leaf)
2798 atomic_add_64(processed, psize);
2799 vs->vs_scan_processed += psize;
2800 }
2801
2802 if (flags & ZIO_FLAG_SELF_HEAL)
2803 vs->vs_self_healed += psize;
2804 }
2805
2806 vs->vs_ops[type]++;
2807 vs->vs_bytes[type] += psize;
2808
2809 mutex_exit(&vd->vdev_stat_lock);
2810 return;
2811 }
2812
2813 if (flags & ZIO_FLAG_SPECULATIVE)
2814 return;
2815
2816 /*
2817 * If this is an I/O error that is going to be retried, then ignore the
2818 * error. Otherwise, the user may interpret B_FAILFAST I/O errors as
2819 * hard errors, when in reality they can happen for any number of
2820 * innocuous reasons (bus resets, MPxIO link failure, etc).
2821 */
2822 if (zio->io_error == EIO &&
2823 !(zio->io_flags & ZIO_FLAG_IO_RETRY))
2824 return;
2825
2826 /*
2827 * Intent logs writes won't propagate their error to the root
2828 * I/O so don't mark these types of failures as pool-level
2829 * errors.
2830 */
2831 if (zio->io_vd == NULL && (zio->io_flags & ZIO_FLAG_DONT_PROPAGATE))
2832 return;
2833
2834 mutex_enter(&vd->vdev_stat_lock);
2835 if (type == ZIO_TYPE_READ && !vdev_is_dead(vd)) {
2836 if (zio->io_error == ECKSUM)
2837 vs->vs_checksum_errors++;
2838 else
2839 vs->vs_read_errors++;
2840 }
2841 if (type == ZIO_TYPE_WRITE && !vdev_is_dead(vd))
2842 vs->vs_write_errors++;
2843 mutex_exit(&vd->vdev_stat_lock);
2844
2845 if (type == ZIO_TYPE_WRITE && txg != 0 &&
2846 (!(flags & ZIO_FLAG_IO_REPAIR) ||
2847 (flags & ZIO_FLAG_SCAN_THREAD) ||
2848 spa->spa_claiming)) {
2849 /*
2850 * This is either a normal write (not a repair), or it's
2851 * a repair induced by the scrub thread, or it's a repair
2852 * made by zil_claim() during spa_load() in the first txg.
2853 * In the normal case, we commit the DTL change in the same
2854 * txg as the block was born. In the scrub-induced repair
2855 * case, we know that scrubs run in first-pass syncing context,
2856 * so we commit the DTL change in spa_syncing_txg(spa).
2857 * In the zil_claim() case, we commit in spa_first_txg(spa).
2858 *
2859 * We currently do not make DTL entries for failed spontaneous
2860 * self-healing writes triggered by normal (non-scrubbing)
2861 * reads, because we have no transactional context in which to
2862 * do so -- and it's not clear that it'd be desirable anyway.
2863 */
2864 if (vd->vdev_ops->vdev_op_leaf) {
2865 uint64_t commit_txg = txg;
2866 if (flags & ZIO_FLAG_SCAN_THREAD) {
2867 ASSERT(flags & ZIO_FLAG_IO_REPAIR);
2868 ASSERT(spa_sync_pass(spa) == 1);
2869 vdev_dtl_dirty(vd, DTL_SCRUB, txg, 1);
2870 commit_txg = spa_syncing_txg(spa);
2871 } else if (spa->spa_claiming) {
2872 ASSERT(flags & ZIO_FLAG_IO_REPAIR);
2873 commit_txg = spa_first_txg(spa);
2874 }
2875 ASSERT(commit_txg >= spa_syncing_txg(spa));
2876 if (vdev_dtl_contains(vd, DTL_MISSING, txg, 1))
2877 return;
2878 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
2879 vdev_dtl_dirty(pvd, DTL_PARTIAL, txg, 1);
2880 vdev_dirty(vd->vdev_top, VDD_DTL, vd, commit_txg);
2881 }
2882 if (vd != rvd)
2883 vdev_dtl_dirty(vd, DTL_MISSING, txg, 1);
2884 }
2885 }
2886
2887 /*
2888 * Update the in-core space usage stats for this vdev, its metaslab class,
2889 * and the root vdev.
2890 */
2891 void
2892 vdev_space_update(vdev_t *vd, int64_t alloc_delta, int64_t defer_delta,
2893 int64_t space_delta)
2894 {
2895 int64_t dspace_delta = space_delta;
2896 spa_t *spa = vd->vdev_spa;
2897 vdev_t *rvd = spa->spa_root_vdev;
2898 metaslab_group_t *mg = vd->vdev_mg;
2899 metaslab_class_t *mc = mg ? mg->mg_class : NULL;
2900
2901 ASSERT(vd == vd->vdev_top);
2902
2903 /*
2904 * Apply the inverse of the psize-to-asize (ie. RAID-Z) space-expansion
2905 * factor. We must calculate this here and not at the root vdev
2906 * because the root vdev's psize-to-asize is simply the max of its
2907 * childrens', thus not accurate enough for us.
2908 */
2909 ASSERT((dspace_delta & (SPA_MINBLOCKSIZE-1)) == 0);
2910 ASSERT(vd->vdev_deflate_ratio != 0 || vd->vdev_isl2cache);
2911 dspace_delta = (dspace_delta >> SPA_MINBLOCKSHIFT) *
2912 vd->vdev_deflate_ratio;
2913
2914 mutex_enter(&vd->vdev_stat_lock);
2915 vd->vdev_stat.vs_alloc += alloc_delta;
2916 vd->vdev_stat.vs_space += space_delta;
2917 vd->vdev_stat.vs_dspace += dspace_delta;
2918 mutex_exit(&vd->vdev_stat_lock);
2919
2920 if (mc == spa_normal_class(spa)) {
2921 mutex_enter(&rvd->vdev_stat_lock);
2922 rvd->vdev_stat.vs_alloc += alloc_delta;
2923 rvd->vdev_stat.vs_space += space_delta;
2924 rvd->vdev_stat.vs_dspace += dspace_delta;
2925 mutex_exit(&rvd->vdev_stat_lock);
2926 }
2927
2928 if (mc != NULL) {
2929 ASSERT(rvd == vd->vdev_parent);
2930 ASSERT(vd->vdev_ms_count != 0);
2931
2932 metaslab_class_space_update(mc,
2933 alloc_delta, defer_delta, space_delta, dspace_delta);
2934 }
2935 }
2936
2937 /*
2938 * Mark a top-level vdev's config as dirty, placing it on the dirty list
2939 * so that it will be written out next time the vdev configuration is synced.
2940 * If the root vdev is specified (vdev_top == NULL), dirty all top-level vdevs.
2941 */
2942 void
2943 vdev_config_dirty(vdev_t *vd)
2944 {
2945 spa_t *spa = vd->vdev_spa;
2946 vdev_t *rvd = spa->spa_root_vdev;
2947 int c;
2948
2949 ASSERT(spa_writeable(spa));
2950
2951 /*
2952 * If this is an aux vdev (as with l2cache and spare devices), then we
2953 * update the vdev config manually and set the sync flag.
2954 */
2955 if (vd->vdev_aux != NULL) {
2956 spa_aux_vdev_t *sav = vd->vdev_aux;
2957 nvlist_t **aux;
2958 uint_t naux;
2959
2960 for (c = 0; c < sav->sav_count; c++) {
2961 if (sav->sav_vdevs[c] == vd)
2962 break;
2963 }
2964
2965 if (c == sav->sav_count) {
2966 /*
2967 * We're being removed. There's nothing more to do.
2968 */
2969 ASSERT(sav->sav_sync == B_TRUE);
2970 return;
2971 }
2972
2973 sav->sav_sync = B_TRUE;
2974
2975 if (nvlist_lookup_nvlist_array(sav->sav_config,
2976 ZPOOL_CONFIG_L2CACHE, &aux, &naux) != 0) {
2977 VERIFY(nvlist_lookup_nvlist_array(sav->sav_config,
2978 ZPOOL_CONFIG_SPARES, &aux, &naux) == 0);
2979 }
2980
2981 ASSERT(c < naux);
2982
2983 /*
2984 * Setting the nvlist in the middle if the array is a little
2985 * sketchy, but it will work.
2986 */
2987 nvlist_free(aux[c]);
2988 aux[c] = vdev_config_generate(spa, vd, B_TRUE, 0);
2989
2990 return;
2991 }
2992
2993 /*
2994 * The dirty list is protected by the SCL_CONFIG lock. The caller
2995 * must either hold SCL_CONFIG as writer, or must be the sync thread
2996 * (which holds SCL_CONFIG as reader). There's only one sync thread,
2997 * so this is sufficient to ensure mutual exclusion.
2998 */
2999 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
3000 (dsl_pool_sync_context(spa_get_dsl(spa)) &&
3001 spa_config_held(spa, SCL_CONFIG, RW_READER)));
3002
3003 if (vd == rvd) {
3004 for (c = 0; c < rvd->vdev_children; c++)
3005 vdev_config_dirty(rvd->vdev_child[c]);
3006 } else {
3007 ASSERT(vd == vd->vdev_top);
3008
3009 if (!list_link_active(&vd->vdev_config_dirty_node) &&
3010 !vd->vdev_ishole)
3011 list_insert_head(&spa->spa_config_dirty_list, vd);
3012 }
3013 }
3014
3015 void
3016 vdev_config_clean(vdev_t *vd)
3017 {
3018 spa_t *spa = vd->vdev_spa;
3019
3020 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
3021 (dsl_pool_sync_context(spa_get_dsl(spa)) &&
3022 spa_config_held(spa, SCL_CONFIG, RW_READER)));
3023
3024 ASSERT(list_link_active(&vd->vdev_config_dirty_node));
3025 list_remove(&spa->spa_config_dirty_list, vd);
3026 }
3027
3028 /*
3029 * Mark a top-level vdev's state as dirty, so that the next pass of
3030 * spa_sync() can convert this into vdev_config_dirty(). We distinguish
3031 * the state changes from larger config changes because they require
3032 * much less locking, and are often needed for administrative actions.
3033 */
3034 void
3035 vdev_state_dirty(vdev_t *vd)
3036 {
3037 spa_t *spa = vd->vdev_spa;
3038
3039 ASSERT(spa_writeable(spa));
3040 ASSERT(vd == vd->vdev_top);
3041
3042 /*
3043 * The state list is protected by the SCL_STATE lock. The caller
3044 * must either hold SCL_STATE as writer, or must be the sync thread
3045 * (which holds SCL_STATE as reader). There's only one sync thread,
3046 * so this is sufficient to ensure mutual exclusion.
3047 */
3048 ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
3049 (dsl_pool_sync_context(spa_get_dsl(spa)) &&
3050 spa_config_held(spa, SCL_STATE, RW_READER)));
3051
3052 if (!list_link_active(&vd->vdev_state_dirty_node) && !vd->vdev_ishole)
3053 list_insert_head(&spa->spa_state_dirty_list, vd);
3054 }
3055
3056 void
3057 vdev_state_clean(vdev_t *vd)
3058 {
3059 spa_t *spa = vd->vdev_spa;
3060
3061 ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
3062 (dsl_pool_sync_context(spa_get_dsl(spa)) &&
3063 spa_config_held(spa, SCL_STATE, RW_READER)));
3064
3065 ASSERT(list_link_active(&vd->vdev_state_dirty_node));
3066 list_remove(&spa->spa_state_dirty_list, vd);
3067 }
3068
3069 /*
3070 * Propagate vdev state up from children to parent.
3071 */
3072 void
3073 vdev_propagate_state(vdev_t *vd)
3074 {
3075 spa_t *spa = vd->vdev_spa;
3076 vdev_t *rvd = spa->spa_root_vdev;
3077 int degraded = 0, faulted = 0;
3078 int corrupted = 0;
3079 vdev_t *child;
3080 int c;
3081
3082 if (vd->vdev_children > 0) {
3083 for (c = 0; c < vd->vdev_children; c++) {
3084 child = vd->vdev_child[c];
3085
3086 /*
3087 * Don't factor holes into the decision.
3088 */
3089 if (child->vdev_ishole)
3090 continue;
3091
3092 if (!vdev_readable(child) ||
3093 (!vdev_writeable(child) && spa_writeable(spa))) {
3094 /*
3095 * Root special: if there is a top-level log
3096 * device, treat the root vdev as if it were
3097 * degraded.
3098 */
3099 if (child->vdev_islog && vd == rvd)
3100 degraded++;
3101 else
3102 faulted++;
3103 } else if (child->vdev_state <= VDEV_STATE_DEGRADED) {
3104 degraded++;
3105 }
3106
3107 if (child->vdev_stat.vs_aux == VDEV_AUX_CORRUPT_DATA)
3108 corrupted++;
3109 }
3110
3111 vd->vdev_ops->vdev_op_state_change(vd, faulted, degraded);
3112
3113 /*
3114 * Root special: if there is a top-level vdev that cannot be
3115 * opened due to corrupted metadata, then propagate the root
3116 * vdev's aux state as 'corrupt' rather than 'insufficient
3117 * replicas'.
3118 */
3119 if (corrupted && vd == rvd &&
3120 rvd->vdev_state == VDEV_STATE_CANT_OPEN)
3121 vdev_set_state(rvd, B_FALSE, VDEV_STATE_CANT_OPEN,
3122 VDEV_AUX_CORRUPT_DATA);
3123 }
3124
3125 if (vd->vdev_parent)
3126 vdev_propagate_state(vd->vdev_parent);
3127 }
3128
3129 /*
3130 * Set a vdev's state. If this is during an open, we don't update the parent
3131 * state, because we're in the process of opening children depth-first.
3132 * Otherwise, we propagate the change to the parent.
3133 *
3134 * If this routine places a device in a faulted state, an appropriate ereport is
3135 * generated.
3136 */
3137 void
3138 vdev_set_state(vdev_t *vd, boolean_t isopen, vdev_state_t state, vdev_aux_t aux)
3139 {
3140 uint64_t save_state;
3141 spa_t *spa = vd->vdev_spa;
3142
3143 if (state == vd->vdev_state) {
3144 vd->vdev_stat.vs_aux = aux;
3145 return;
3146 }
3147
3148 save_state = vd->vdev_state;
3149
3150 vd->vdev_state = state;
3151 vd->vdev_stat.vs_aux = aux;
3152
3153 /*
3154 * If we are setting the vdev state to anything but an open state, then
3155 * always close the underlying device unless the device has requested
3156 * a delayed close (i.e. we're about to remove or fault the device).
3157 * Otherwise, we keep accessible but invalid devices open forever.
3158 * We don't call vdev_close() itself, because that implies some extra
3159 * checks (offline, etc) that we don't want here. This is limited to
3160 * leaf devices, because otherwise closing the device will affect other
3161 * children.
3162 */
3163 if (!vd->vdev_delayed_close && vdev_is_dead(vd) &&
3164 vd->vdev_ops->vdev_op_leaf)
3165 vd->vdev_ops->vdev_op_close(vd);
3166
3167 /*
3168 * If we have brought this vdev back into service, we need
3169 * to notify fmd so that it can gracefully repair any outstanding
3170 * cases due to a missing device. We do this in all cases, even those
3171 * that probably don't correlate to a repaired fault. This is sure to
3172 * catch all cases, and we let the zfs-retire agent sort it out. If
3173 * this is a transient state it's OK, as the retire agent will
3174 * double-check the state of the vdev before repairing it.
3175 */
3176 if (state == VDEV_STATE_HEALTHY && vd->vdev_ops->vdev_op_leaf &&
3177 vd->vdev_prevstate != state)
3178 zfs_post_state_change(spa, vd);
3179
3180 if (vd->vdev_removed &&
3181 state == VDEV_STATE_CANT_OPEN &&
3182 (aux == VDEV_AUX_OPEN_FAILED || vd->vdev_checkremove)) {
3183 /*
3184 * If the previous state is set to VDEV_STATE_REMOVED, then this
3185 * device was previously marked removed and someone attempted to
3186 * reopen it. If this failed due to a nonexistent device, then
3187 * keep the device in the REMOVED state. We also let this be if
3188 * it is one of our special test online cases, which is only
3189 * attempting to online the device and shouldn't generate an FMA
3190 * fault.
3191 */
3192 vd->vdev_state = VDEV_STATE_REMOVED;
3193 vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
3194 } else if (state == VDEV_STATE_REMOVED) {
3195 vd->vdev_removed = B_TRUE;
3196 } else if (state == VDEV_STATE_CANT_OPEN) {
3197 /*
3198 * If we fail to open a vdev during an import or recovery, we
3199 * mark it as "not available", which signifies that it was
3200 * never there to begin with. Failure to open such a device
3201 * is not considered an error.
3202 */
3203 if ((spa_load_state(spa) == SPA_LOAD_IMPORT ||
3204 spa_load_state(spa) == SPA_LOAD_RECOVER) &&
3205 vd->vdev_ops->vdev_op_leaf)
3206 vd->vdev_not_present = 1;
3207
3208 /*
3209 * Post the appropriate ereport. If the 'prevstate' field is
3210 * set to something other than VDEV_STATE_UNKNOWN, it indicates
3211 * that this is part of a vdev_reopen(). In this case, we don't
3212 * want to post the ereport if the device was already in the
3213 * CANT_OPEN state beforehand.
3214 *
3215 * If the 'checkremove' flag is set, then this is an attempt to
3216 * online the device in response to an insertion event. If we
3217 * hit this case, then we have detected an insertion event for a
3218 * faulted or offline device that wasn't in the removed state.
3219 * In this scenario, we don't post an ereport because we are
3220 * about to replace the device, or attempt an online with
3221 * vdev_forcefault, which will generate the fault for us.
3222 */
3223 if ((vd->vdev_prevstate != state || vd->vdev_forcefault) &&
3224 !vd->vdev_not_present && !vd->vdev_checkremove &&
3225 vd != spa->spa_root_vdev) {
3226 const char *class;
3227
3228 switch (aux) {
3229 case VDEV_AUX_OPEN_FAILED:
3230 class = FM_EREPORT_ZFS_DEVICE_OPEN_FAILED;
3231 break;
3232 case VDEV_AUX_CORRUPT_DATA:
3233 class = FM_EREPORT_ZFS_DEVICE_CORRUPT_DATA;
3234 break;
3235 case VDEV_AUX_NO_REPLICAS:
3236 class = FM_EREPORT_ZFS_DEVICE_NO_REPLICAS;
3237 break;
3238 case VDEV_AUX_BAD_GUID_SUM:
3239 class = FM_EREPORT_ZFS_DEVICE_BAD_GUID_SUM;
3240 break;
3241 case VDEV_AUX_TOO_SMALL:
3242 class = FM_EREPORT_ZFS_DEVICE_TOO_SMALL;
3243 break;
3244 case VDEV_AUX_BAD_LABEL:
3245 class = FM_EREPORT_ZFS_DEVICE_BAD_LABEL;
3246 break;
3247 default:
3248 class = FM_EREPORT_ZFS_DEVICE_UNKNOWN;
3249 }
3250
3251 zfs_ereport_post(class, spa, vd, NULL, save_state, 0);
3252 }
3253
3254 /* Erase any notion of persistent removed state */
3255 vd->vdev_removed = B_FALSE;
3256 } else {
3257 vd->vdev_removed = B_FALSE;
3258 }
3259
3260 if (!isopen && vd->vdev_parent)
3261 vdev_propagate_state(vd->vdev_parent);
3262 }
3263
3264 /*
3265 * Check the vdev configuration to ensure that it's capable of supporting
3266 * a root pool.
3267 */
3268 boolean_t
3269 vdev_is_bootable(vdev_t *vd)
3270 {
3271 #if defined(__sun__) || defined(__sun)
3272 /*
3273 * Currently, we do not support RAID-Z or partial configuration.
3274 * In addition, only a single top-level vdev is allowed and none of the
3275 * leaves can be wholedisks.
3276 */
3277 int c;
3278
3279 if (!vd->vdev_ops->vdev_op_leaf) {
3280 char *vdev_type = vd->vdev_ops->vdev_op_type;
3281
3282 if (strcmp(vdev_type, VDEV_TYPE_ROOT) == 0 &&
3283 vd->vdev_children > 1) {
3284 return (B_FALSE);
3285 } else if (strcmp(vdev_type, VDEV_TYPE_RAIDZ) == 0 ||
3286 strcmp(vdev_type, VDEV_TYPE_MISSING) == 0) {
3287 return (B_FALSE);
3288 }
3289 } else if (vd->vdev_wholedisk == 1) {
3290 return (B_FALSE);
3291 }
3292
3293 for (c = 0; c < vd->vdev_children; c++) {
3294 if (!vdev_is_bootable(vd->vdev_child[c]))
3295 return (B_FALSE);
3296 }
3297 #endif /* __sun__ || __sun */
3298 return (B_TRUE);
3299 }
3300
3301 /*
3302 * Load the state from the original vdev tree (ovd) which
3303 * we've retrieved from the MOS config object. If the original
3304 * vdev was offline or faulted then we transfer that state to the
3305 * device in the current vdev tree (nvd).
3306 */
3307 void
3308 vdev_load_log_state(vdev_t *nvd, vdev_t *ovd)
3309 {
3310 int c;
3311
3312 ASSERT(nvd->vdev_top->vdev_islog);
3313 ASSERT(spa_config_held(nvd->vdev_spa,
3314 SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
3315 ASSERT3U(nvd->vdev_guid, ==, ovd->vdev_guid);
3316
3317 for (c = 0; c < nvd->vdev_children; c++)
3318 vdev_load_log_state(nvd->vdev_child[c], ovd->vdev_child[c]);
3319
3320 if (nvd->vdev_ops->vdev_op_leaf) {
3321 /*
3322 * Restore the persistent vdev state
3323 */
3324 nvd->vdev_offline = ovd->vdev_offline;
3325 nvd->vdev_faulted = ovd->vdev_faulted;
3326 nvd->vdev_degraded = ovd->vdev_degraded;
3327 nvd->vdev_removed = ovd->vdev_removed;
3328 }
3329 }
3330
3331 /*
3332 * Determine if a log device has valid content. If the vdev was
3333 * removed or faulted in the MOS config then we know that
3334 * the content on the log device has already been written to the pool.
3335 */
3336 boolean_t
3337 vdev_log_state_valid(vdev_t *vd)
3338 {
3339 int c;
3340
3341 if (vd->vdev_ops->vdev_op_leaf && !vd->vdev_faulted &&
3342 !vd->vdev_removed)
3343 return (B_TRUE);
3344
3345 for (c = 0; c < vd->vdev_children; c++)
3346 if (vdev_log_state_valid(vd->vdev_child[c]))
3347 return (B_TRUE);
3348
3349 return (B_FALSE);
3350 }
3351
3352 /*
3353 * Expand a vdev if possible.
3354 */
3355 void
3356 vdev_expand(vdev_t *vd, uint64_t txg)
3357 {
3358 ASSERT(vd->vdev_top == vd);
3359 ASSERT(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
3360
3361 if ((vd->vdev_asize >> vd->vdev_ms_shift) > vd->vdev_ms_count) {
3362 VERIFY(vdev_metaslab_init(vd, txg) == 0);
3363 vdev_config_dirty(vd);
3364 }
3365 }
3366
3367 /*
3368 * Split a vdev.
3369 */
3370 void
3371 vdev_split(vdev_t *vd)
3372 {
3373 vdev_t *cvd, *pvd = vd->vdev_parent;
3374
3375 vdev_remove_child(pvd, vd);
3376 vdev_compact_children(pvd);
3377
3378 cvd = pvd->vdev_child[0];
3379 if (pvd->vdev_children == 1) {
3380 vdev_remove_parent(cvd);
3381 cvd->vdev_splitting = B_TRUE;
3382 }
3383 vdev_propagate_state(cvd);
3384 }
3385
3386 void
3387 vdev_deadman(vdev_t *vd)
3388 {
3389 int c;
3390
3391 for (c = 0; c < vd->vdev_children; c++) {
3392 vdev_t *cvd = vd->vdev_child[c];
3393
3394 vdev_deadman(cvd);
3395 }
3396
3397 if (vd->vdev_ops->vdev_op_leaf) {
3398 vdev_queue_t *vq = &vd->vdev_queue;
3399
3400 mutex_enter(&vq->vq_lock);
3401 if (avl_numnodes(&vq->vq_active_tree) > 0) {
3402 spa_t *spa = vd->vdev_spa;
3403 zio_t *fio;
3404 uint64_t delta;
3405
3406 /*
3407 * Look at the head of all the pending queues,
3408 * if any I/O has been outstanding for longer than
3409 * the spa_deadman_synctime we log a zevent.
3410 */
3411 fio = avl_first(&vq->vq_active_tree);
3412 delta = gethrtime() - fio->io_timestamp;
3413 if (delta > spa_deadman_synctime(spa)) {
3414 zfs_dbgmsg("SLOW IO: zio timestamp %lluns, "
3415 "delta %lluns, last io %lluns",
3416 fio->io_timestamp, delta,
3417 vq->vq_io_complete_ts);
3418 zfs_ereport_post(FM_EREPORT_ZFS_DELAY,
3419 spa, vd, fio, 0, 0);
3420 }
3421 }
3422 mutex_exit(&vq->vq_lock);
3423 }
3424 }
3425
3426 #if defined(_KERNEL) && defined(HAVE_SPL)
3427 EXPORT_SYMBOL(vdev_fault);
3428 EXPORT_SYMBOL(vdev_degrade);
3429 EXPORT_SYMBOL(vdev_online);
3430 EXPORT_SYMBOL(vdev_offline);
3431 EXPORT_SYMBOL(vdev_clear);
3432
3433 module_param(metaslabs_per_vdev, int, 0644);
3434 MODULE_PARM_DESC(metaslabs_per_vdev,
3435 "Divide added vdev into approximately (but no more than) this number "
3436 "of metaslabs");
3437 #endif