]> git.proxmox.com Git - mirror_zfs.git/blob - module/zfs/vdev.c
Remove unused vdev_t fields
[mirror_zfs.git] / module / zfs / vdev.c
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22 /*
23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright (c) 2011, 2018 by Delphix. All rights reserved.
25 * Copyright 2017 Nexenta Systems, Inc.
26 * Copyright (c) 2014 Integros [integros.com]
27 * Copyright 2016 Toomas Soome <tsoome@me.com>
28 * Copyright 2017 Joyent, Inc.
29 * Copyright (c) 2017, Intel Corporation.
30 */
31
32 #include <sys/zfs_context.h>
33 #include <sys/fm/fs/zfs.h>
34 #include <sys/spa.h>
35 #include <sys/spa_impl.h>
36 #include <sys/bpobj.h>
37 #include <sys/dmu.h>
38 #include <sys/dmu_tx.h>
39 #include <sys/dsl_dir.h>
40 #include <sys/vdev_impl.h>
41 #include <sys/uberblock_impl.h>
42 #include <sys/metaslab.h>
43 #include <sys/metaslab_impl.h>
44 #include <sys/space_map.h>
45 #include <sys/space_reftree.h>
46 #include <sys/zio.h>
47 #include <sys/zap.h>
48 #include <sys/fs/zfs.h>
49 #include <sys/arc.h>
50 #include <sys/zil.h>
51 #include <sys/dsl_scan.h>
52 #include <sys/abd.h>
53 #include <sys/vdev_initialize.h>
54 #include <sys/zvol.h>
55 #include <sys/zfs_ratelimit.h>
56
57 /* target number of metaslabs per top-level vdev */
58 int vdev_max_ms_count = 200;
59
60 /* minimum number of metaslabs per top-level vdev */
61 int vdev_min_ms_count = 16;
62
63 /* practical upper limit of total metaslabs per top-level vdev */
64 int vdev_ms_count_limit = 1ULL << 17;
65
66 /* lower limit for metaslab size (512M) */
67 int vdev_default_ms_shift = 29;
68
69 /* upper limit for metaslab size (256G) */
70 int vdev_max_ms_shift = 38;
71
72 int vdev_validate_skip = B_FALSE;
73
74 /*
75 * Since the DTL space map of a vdev is not expected to have a lot of
76 * entries, we default its block size to 4K.
77 */
78 int vdev_dtl_sm_blksz = (1 << 12);
79
80 /*
81 * Rate limit slow IO (delay) events to this many per second.
82 */
83 unsigned int zfs_slow_io_events_per_second = 20;
84
85 /*
86 * Rate limit checksum events after this many checksum errors per second.
87 */
88 unsigned int zfs_checksum_events_per_second = 20;
89
90 /*
91 * Ignore errors during scrub/resilver. Allows to work around resilver
92 * upon import when there are pool errors.
93 */
94 int zfs_scan_ignore_errors = 0;
95
96 /*
97 * vdev-wide space maps that have lots of entries written to them at
98 * the end of each transaction can benefit from a higher I/O bandwidth
99 * (e.g. vdev_obsolete_sm), thus we default their block size to 128K.
100 */
101 int vdev_standard_sm_blksz = (1 << 17);
102
103 /*
104 * Tunable parameter for debugging or performance analysis. Setting this
105 * will cause pool corruption on power loss if a volatile out-of-order
106 * write cache is enabled.
107 */
108 int zfs_nocacheflush = 0;
109
110 /*PRINTFLIKE2*/
111 void
112 vdev_dbgmsg(vdev_t *vd, const char *fmt, ...)
113 {
114 va_list adx;
115 char buf[256];
116
117 va_start(adx, fmt);
118 (void) vsnprintf(buf, sizeof (buf), fmt, adx);
119 va_end(adx);
120
121 if (vd->vdev_path != NULL) {
122 zfs_dbgmsg("%s vdev '%s': %s", vd->vdev_ops->vdev_op_type,
123 vd->vdev_path, buf);
124 } else {
125 zfs_dbgmsg("%s-%llu vdev (guid %llu): %s",
126 vd->vdev_ops->vdev_op_type,
127 (u_longlong_t)vd->vdev_id,
128 (u_longlong_t)vd->vdev_guid, buf);
129 }
130 }
131
132 void
133 vdev_dbgmsg_print_tree(vdev_t *vd, int indent)
134 {
135 char state[20];
136
137 if (vd->vdev_ishole || vd->vdev_ops == &vdev_missing_ops) {
138 zfs_dbgmsg("%*svdev %u: %s", indent, "", vd->vdev_id,
139 vd->vdev_ops->vdev_op_type);
140 return;
141 }
142
143 switch (vd->vdev_state) {
144 case VDEV_STATE_UNKNOWN:
145 (void) snprintf(state, sizeof (state), "unknown");
146 break;
147 case VDEV_STATE_CLOSED:
148 (void) snprintf(state, sizeof (state), "closed");
149 break;
150 case VDEV_STATE_OFFLINE:
151 (void) snprintf(state, sizeof (state), "offline");
152 break;
153 case VDEV_STATE_REMOVED:
154 (void) snprintf(state, sizeof (state), "removed");
155 break;
156 case VDEV_STATE_CANT_OPEN:
157 (void) snprintf(state, sizeof (state), "can't open");
158 break;
159 case VDEV_STATE_FAULTED:
160 (void) snprintf(state, sizeof (state), "faulted");
161 break;
162 case VDEV_STATE_DEGRADED:
163 (void) snprintf(state, sizeof (state), "degraded");
164 break;
165 case VDEV_STATE_HEALTHY:
166 (void) snprintf(state, sizeof (state), "healthy");
167 break;
168 default:
169 (void) snprintf(state, sizeof (state), "<state %u>",
170 (uint_t)vd->vdev_state);
171 }
172
173 zfs_dbgmsg("%*svdev %u: %s%s, guid: %llu, path: %s, %s", indent,
174 "", (int)vd->vdev_id, vd->vdev_ops->vdev_op_type,
175 vd->vdev_islog ? " (log)" : "",
176 (u_longlong_t)vd->vdev_guid,
177 vd->vdev_path ? vd->vdev_path : "N/A", state);
178
179 for (uint64_t i = 0; i < vd->vdev_children; i++)
180 vdev_dbgmsg_print_tree(vd->vdev_child[i], indent + 2);
181 }
182
183 /*
184 * Virtual device management.
185 */
186
187 static vdev_ops_t *vdev_ops_table[] = {
188 &vdev_root_ops,
189 &vdev_raidz_ops,
190 &vdev_mirror_ops,
191 &vdev_replacing_ops,
192 &vdev_spare_ops,
193 &vdev_disk_ops,
194 &vdev_file_ops,
195 &vdev_missing_ops,
196 &vdev_hole_ops,
197 &vdev_indirect_ops,
198 NULL
199 };
200
201 /*
202 * Given a vdev type, return the appropriate ops vector.
203 */
204 static vdev_ops_t *
205 vdev_getops(const char *type)
206 {
207 vdev_ops_t *ops, **opspp;
208
209 for (opspp = vdev_ops_table; (ops = *opspp) != NULL; opspp++)
210 if (strcmp(ops->vdev_op_type, type) == 0)
211 break;
212
213 return (ops);
214 }
215
216 /* ARGSUSED */
217 void
218 vdev_default_xlate(vdev_t *vd, const range_seg_t *in, range_seg_t *res)
219 {
220 res->rs_start = in->rs_start;
221 res->rs_end = in->rs_end;
222 }
223
224 /*
225 * Derive the enumerated alloction bias from string input.
226 * String origin is either the per-vdev zap or zpool(1M).
227 */
228 static vdev_alloc_bias_t
229 vdev_derive_alloc_bias(const char *bias)
230 {
231 vdev_alloc_bias_t alloc_bias = VDEV_BIAS_NONE;
232
233 if (strcmp(bias, VDEV_ALLOC_BIAS_LOG) == 0)
234 alloc_bias = VDEV_BIAS_LOG;
235 else if (strcmp(bias, VDEV_ALLOC_BIAS_SPECIAL) == 0)
236 alloc_bias = VDEV_BIAS_SPECIAL;
237 else if (strcmp(bias, VDEV_ALLOC_BIAS_DEDUP) == 0)
238 alloc_bias = VDEV_BIAS_DEDUP;
239
240 return (alloc_bias);
241 }
242
243 /*
244 * Default asize function: return the MAX of psize with the asize of
245 * all children. This is what's used by anything other than RAID-Z.
246 */
247 uint64_t
248 vdev_default_asize(vdev_t *vd, uint64_t psize)
249 {
250 uint64_t asize = P2ROUNDUP(psize, 1ULL << vd->vdev_top->vdev_ashift);
251 uint64_t csize;
252
253 for (int c = 0; c < vd->vdev_children; c++) {
254 csize = vdev_psize_to_asize(vd->vdev_child[c], psize);
255 asize = MAX(asize, csize);
256 }
257
258 return (asize);
259 }
260
261 /*
262 * Get the minimum allocatable size. We define the allocatable size as
263 * the vdev's asize rounded to the nearest metaslab. This allows us to
264 * replace or attach devices which don't have the same physical size but
265 * can still satisfy the same number of allocations.
266 */
267 uint64_t
268 vdev_get_min_asize(vdev_t *vd)
269 {
270 vdev_t *pvd = vd->vdev_parent;
271
272 /*
273 * If our parent is NULL (inactive spare or cache) or is the root,
274 * just return our own asize.
275 */
276 if (pvd == NULL)
277 return (vd->vdev_asize);
278
279 /*
280 * The top-level vdev just returns the allocatable size rounded
281 * to the nearest metaslab.
282 */
283 if (vd == vd->vdev_top)
284 return (P2ALIGN(vd->vdev_asize, 1ULL << vd->vdev_ms_shift));
285
286 /*
287 * The allocatable space for a raidz vdev is N * sizeof(smallest child),
288 * so each child must provide at least 1/Nth of its asize.
289 */
290 if (pvd->vdev_ops == &vdev_raidz_ops)
291 return ((pvd->vdev_min_asize + pvd->vdev_children - 1) /
292 pvd->vdev_children);
293
294 return (pvd->vdev_min_asize);
295 }
296
297 void
298 vdev_set_min_asize(vdev_t *vd)
299 {
300 vd->vdev_min_asize = vdev_get_min_asize(vd);
301
302 for (int c = 0; c < vd->vdev_children; c++)
303 vdev_set_min_asize(vd->vdev_child[c]);
304 }
305
306 vdev_t *
307 vdev_lookup_top(spa_t *spa, uint64_t vdev)
308 {
309 vdev_t *rvd = spa->spa_root_vdev;
310
311 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
312
313 if (vdev < rvd->vdev_children) {
314 ASSERT(rvd->vdev_child[vdev] != NULL);
315 return (rvd->vdev_child[vdev]);
316 }
317
318 return (NULL);
319 }
320
321 vdev_t *
322 vdev_lookup_by_guid(vdev_t *vd, uint64_t guid)
323 {
324 vdev_t *mvd;
325
326 if (vd->vdev_guid == guid)
327 return (vd);
328
329 for (int c = 0; c < vd->vdev_children; c++)
330 if ((mvd = vdev_lookup_by_guid(vd->vdev_child[c], guid)) !=
331 NULL)
332 return (mvd);
333
334 return (NULL);
335 }
336
337 static int
338 vdev_count_leaves_impl(vdev_t *vd)
339 {
340 int n = 0;
341
342 if (vd->vdev_ops->vdev_op_leaf)
343 return (1);
344
345 for (int c = 0; c < vd->vdev_children; c++)
346 n += vdev_count_leaves_impl(vd->vdev_child[c]);
347
348 return (n);
349 }
350
351 int
352 vdev_count_leaves(spa_t *spa)
353 {
354 int rc;
355
356 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
357 rc = vdev_count_leaves_impl(spa->spa_root_vdev);
358 spa_config_exit(spa, SCL_VDEV, FTAG);
359
360 return (rc);
361 }
362
363 void
364 vdev_add_child(vdev_t *pvd, vdev_t *cvd)
365 {
366 size_t oldsize, newsize;
367 uint64_t id = cvd->vdev_id;
368 vdev_t **newchild;
369
370 ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
371 ASSERT(cvd->vdev_parent == NULL);
372
373 cvd->vdev_parent = pvd;
374
375 if (pvd == NULL)
376 return;
377
378 ASSERT(id >= pvd->vdev_children || pvd->vdev_child[id] == NULL);
379
380 oldsize = pvd->vdev_children * sizeof (vdev_t *);
381 pvd->vdev_children = MAX(pvd->vdev_children, id + 1);
382 newsize = pvd->vdev_children * sizeof (vdev_t *);
383
384 newchild = kmem_alloc(newsize, KM_SLEEP);
385 if (pvd->vdev_child != NULL) {
386 bcopy(pvd->vdev_child, newchild, oldsize);
387 kmem_free(pvd->vdev_child, oldsize);
388 }
389
390 pvd->vdev_child = newchild;
391 pvd->vdev_child[id] = cvd;
392
393 cvd->vdev_top = (pvd->vdev_top ? pvd->vdev_top: cvd);
394 ASSERT(cvd->vdev_top->vdev_parent->vdev_parent == NULL);
395
396 /*
397 * Walk up all ancestors to update guid sum.
398 */
399 for (; pvd != NULL; pvd = pvd->vdev_parent)
400 pvd->vdev_guid_sum += cvd->vdev_guid_sum;
401 }
402
403 void
404 vdev_remove_child(vdev_t *pvd, vdev_t *cvd)
405 {
406 int c;
407 uint_t id = cvd->vdev_id;
408
409 ASSERT(cvd->vdev_parent == pvd);
410
411 if (pvd == NULL)
412 return;
413
414 ASSERT(id < pvd->vdev_children);
415 ASSERT(pvd->vdev_child[id] == cvd);
416
417 pvd->vdev_child[id] = NULL;
418 cvd->vdev_parent = NULL;
419
420 for (c = 0; c < pvd->vdev_children; c++)
421 if (pvd->vdev_child[c])
422 break;
423
424 if (c == pvd->vdev_children) {
425 kmem_free(pvd->vdev_child, c * sizeof (vdev_t *));
426 pvd->vdev_child = NULL;
427 pvd->vdev_children = 0;
428 }
429
430 /*
431 * Walk up all ancestors to update guid sum.
432 */
433 for (; pvd != NULL; pvd = pvd->vdev_parent)
434 pvd->vdev_guid_sum -= cvd->vdev_guid_sum;
435 }
436
437 /*
438 * Remove any holes in the child array.
439 */
440 void
441 vdev_compact_children(vdev_t *pvd)
442 {
443 vdev_t **newchild, *cvd;
444 int oldc = pvd->vdev_children;
445 int newc;
446
447 ASSERT(spa_config_held(pvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
448
449 if (oldc == 0)
450 return;
451
452 for (int c = newc = 0; c < oldc; c++)
453 if (pvd->vdev_child[c])
454 newc++;
455
456 if (newc > 0) {
457 newchild = kmem_zalloc(newc * sizeof (vdev_t *), KM_SLEEP);
458
459 for (int c = newc = 0; c < oldc; c++) {
460 if ((cvd = pvd->vdev_child[c]) != NULL) {
461 newchild[newc] = cvd;
462 cvd->vdev_id = newc++;
463 }
464 }
465 } else {
466 newchild = NULL;
467 }
468
469 kmem_free(pvd->vdev_child, oldc * sizeof (vdev_t *));
470 pvd->vdev_child = newchild;
471 pvd->vdev_children = newc;
472 }
473
474 /*
475 * Allocate and minimally initialize a vdev_t.
476 */
477 vdev_t *
478 vdev_alloc_common(spa_t *spa, uint_t id, uint64_t guid, vdev_ops_t *ops)
479 {
480 vdev_t *vd;
481 vdev_indirect_config_t *vic;
482
483 vd = kmem_zalloc(sizeof (vdev_t), KM_SLEEP);
484 vic = &vd->vdev_indirect_config;
485
486 if (spa->spa_root_vdev == NULL) {
487 ASSERT(ops == &vdev_root_ops);
488 spa->spa_root_vdev = vd;
489 spa->spa_load_guid = spa_generate_guid(NULL);
490 }
491
492 if (guid == 0 && ops != &vdev_hole_ops) {
493 if (spa->spa_root_vdev == vd) {
494 /*
495 * The root vdev's guid will also be the pool guid,
496 * which must be unique among all pools.
497 */
498 guid = spa_generate_guid(NULL);
499 } else {
500 /*
501 * Any other vdev's guid must be unique within the pool.
502 */
503 guid = spa_generate_guid(spa);
504 }
505 ASSERT(!spa_guid_exists(spa_guid(spa), guid));
506 }
507
508 vd->vdev_spa = spa;
509 vd->vdev_id = id;
510 vd->vdev_guid = guid;
511 vd->vdev_guid_sum = guid;
512 vd->vdev_ops = ops;
513 vd->vdev_state = VDEV_STATE_CLOSED;
514 vd->vdev_ishole = (ops == &vdev_hole_ops);
515 vic->vic_prev_indirect_vdev = UINT64_MAX;
516
517 rw_init(&vd->vdev_indirect_rwlock, NULL, RW_DEFAULT, NULL);
518 mutex_init(&vd->vdev_obsolete_lock, NULL, MUTEX_DEFAULT, NULL);
519 vd->vdev_obsolete_segments = range_tree_create(NULL, NULL);
520
521 /*
522 * Initialize rate limit structs for events. We rate limit ZIO delay
523 * and checksum events so that we don't overwhelm ZED with thousands
524 * of events when a disk is acting up.
525 */
526 zfs_ratelimit_init(&vd->vdev_delay_rl, &zfs_slow_io_events_per_second,
527 1);
528 zfs_ratelimit_init(&vd->vdev_checksum_rl,
529 &zfs_checksum_events_per_second, 1);
530
531 list_link_init(&vd->vdev_config_dirty_node);
532 list_link_init(&vd->vdev_state_dirty_node);
533 list_link_init(&vd->vdev_initialize_node);
534 mutex_init(&vd->vdev_dtl_lock, NULL, MUTEX_NOLOCKDEP, NULL);
535 mutex_init(&vd->vdev_stat_lock, NULL, MUTEX_DEFAULT, NULL);
536 mutex_init(&vd->vdev_probe_lock, NULL, MUTEX_DEFAULT, NULL);
537 mutex_init(&vd->vdev_scan_io_queue_lock, NULL, MUTEX_DEFAULT, NULL);
538 mutex_init(&vd->vdev_initialize_lock, NULL, MUTEX_DEFAULT, NULL);
539 mutex_init(&vd->vdev_initialize_io_lock, NULL, MUTEX_DEFAULT, NULL);
540 cv_init(&vd->vdev_initialize_cv, NULL, CV_DEFAULT, NULL);
541 cv_init(&vd->vdev_initialize_io_cv, NULL, CV_DEFAULT, NULL);
542
543 for (int t = 0; t < DTL_TYPES; t++) {
544 vd->vdev_dtl[t] = range_tree_create(NULL, NULL);
545 }
546 txg_list_create(&vd->vdev_ms_list, spa,
547 offsetof(struct metaslab, ms_txg_node));
548 txg_list_create(&vd->vdev_dtl_list, spa,
549 offsetof(struct vdev, vdev_dtl_node));
550 vd->vdev_stat.vs_timestamp = gethrtime();
551 vdev_queue_init(vd);
552 vdev_cache_init(vd);
553
554 return (vd);
555 }
556
557 /*
558 * Allocate a new vdev. The 'alloctype' is used to control whether we are
559 * creating a new vdev or loading an existing one - the behavior is slightly
560 * different for each case.
561 */
562 int
563 vdev_alloc(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, uint_t id,
564 int alloctype)
565 {
566 vdev_ops_t *ops;
567 char *type;
568 uint64_t guid = 0, islog, nparity;
569 vdev_t *vd;
570 vdev_indirect_config_t *vic;
571 char *tmp = NULL;
572 int rc;
573 vdev_alloc_bias_t alloc_bias = VDEV_BIAS_NONE;
574 boolean_t top_level = (parent && !parent->vdev_parent);
575
576 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
577
578 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) != 0)
579 return (SET_ERROR(EINVAL));
580
581 if ((ops = vdev_getops(type)) == NULL)
582 return (SET_ERROR(EINVAL));
583
584 /*
585 * If this is a load, get the vdev guid from the nvlist.
586 * Otherwise, vdev_alloc_common() will generate one for us.
587 */
588 if (alloctype == VDEV_ALLOC_LOAD) {
589 uint64_t label_id;
590
591 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ID, &label_id) ||
592 label_id != id)
593 return (SET_ERROR(EINVAL));
594
595 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
596 return (SET_ERROR(EINVAL));
597 } else if (alloctype == VDEV_ALLOC_SPARE) {
598 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
599 return (SET_ERROR(EINVAL));
600 } else if (alloctype == VDEV_ALLOC_L2CACHE) {
601 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
602 return (SET_ERROR(EINVAL));
603 } else if (alloctype == VDEV_ALLOC_ROOTPOOL) {
604 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
605 return (SET_ERROR(EINVAL));
606 }
607
608 /*
609 * The first allocated vdev must be of type 'root'.
610 */
611 if (ops != &vdev_root_ops && spa->spa_root_vdev == NULL)
612 return (SET_ERROR(EINVAL));
613
614 /*
615 * Determine whether we're a log vdev.
616 */
617 islog = 0;
618 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_LOG, &islog);
619 if (islog && spa_version(spa) < SPA_VERSION_SLOGS)
620 return (SET_ERROR(ENOTSUP));
621
622 if (ops == &vdev_hole_ops && spa_version(spa) < SPA_VERSION_HOLES)
623 return (SET_ERROR(ENOTSUP));
624
625 /*
626 * Set the nparity property for RAID-Z vdevs.
627 */
628 nparity = -1ULL;
629 if (ops == &vdev_raidz_ops) {
630 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NPARITY,
631 &nparity) == 0) {
632 if (nparity == 0 || nparity > VDEV_RAIDZ_MAXPARITY)
633 return (SET_ERROR(EINVAL));
634 /*
635 * Previous versions could only support 1 or 2 parity
636 * device.
637 */
638 if (nparity > 1 &&
639 spa_version(spa) < SPA_VERSION_RAIDZ2)
640 return (SET_ERROR(ENOTSUP));
641 if (nparity > 2 &&
642 spa_version(spa) < SPA_VERSION_RAIDZ3)
643 return (SET_ERROR(ENOTSUP));
644 } else {
645 /*
646 * We require the parity to be specified for SPAs that
647 * support multiple parity levels.
648 */
649 if (spa_version(spa) >= SPA_VERSION_RAIDZ2)
650 return (SET_ERROR(EINVAL));
651 /*
652 * Otherwise, we default to 1 parity device for RAID-Z.
653 */
654 nparity = 1;
655 }
656 } else {
657 nparity = 0;
658 }
659 ASSERT(nparity != -1ULL);
660
661 /*
662 * If creating a top-level vdev, check for allocation classes input
663 */
664 if (top_level && alloctype == VDEV_ALLOC_ADD) {
665 char *bias;
666
667 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_ALLOCATION_BIAS,
668 &bias) == 0) {
669 alloc_bias = vdev_derive_alloc_bias(bias);
670
671 /* spa_vdev_add() expects feature to be enabled */
672 if (spa->spa_load_state != SPA_LOAD_CREATE &&
673 !spa_feature_is_enabled(spa,
674 SPA_FEATURE_ALLOCATION_CLASSES)) {
675 return (SET_ERROR(ENOTSUP));
676 }
677 }
678 }
679
680 vd = vdev_alloc_common(spa, id, guid, ops);
681 vic = &vd->vdev_indirect_config;
682
683 vd->vdev_islog = islog;
684 vd->vdev_nparity = nparity;
685 if (top_level && alloc_bias != VDEV_BIAS_NONE)
686 vd->vdev_alloc_bias = alloc_bias;
687
688 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &vd->vdev_path) == 0)
689 vd->vdev_path = spa_strdup(vd->vdev_path);
690
691 /*
692 * ZPOOL_CONFIG_AUX_STATE = "external" means we previously forced a
693 * fault on a vdev and want it to persist across imports (like with
694 * zpool offline -f).
695 */
696 rc = nvlist_lookup_string(nv, ZPOOL_CONFIG_AUX_STATE, &tmp);
697 if (rc == 0 && tmp != NULL && strcmp(tmp, "external") == 0) {
698 vd->vdev_stat.vs_aux = VDEV_AUX_EXTERNAL;
699 vd->vdev_faulted = 1;
700 vd->vdev_label_aux = VDEV_AUX_EXTERNAL;
701 }
702
703 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_DEVID, &vd->vdev_devid) == 0)
704 vd->vdev_devid = spa_strdup(vd->vdev_devid);
705 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PHYS_PATH,
706 &vd->vdev_physpath) == 0)
707 vd->vdev_physpath = spa_strdup(vd->vdev_physpath);
708
709 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_VDEV_ENC_SYSFS_PATH,
710 &vd->vdev_enc_sysfs_path) == 0)
711 vd->vdev_enc_sysfs_path = spa_strdup(vd->vdev_enc_sysfs_path);
712
713 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_FRU, &vd->vdev_fru) == 0)
714 vd->vdev_fru = spa_strdup(vd->vdev_fru);
715
716 /*
717 * Set the whole_disk property. If it's not specified, leave the value
718 * as -1.
719 */
720 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK,
721 &vd->vdev_wholedisk) != 0)
722 vd->vdev_wholedisk = -1ULL;
723
724 ASSERT0(vic->vic_mapping_object);
725 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_INDIRECT_OBJECT,
726 &vic->vic_mapping_object);
727 ASSERT0(vic->vic_births_object);
728 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_INDIRECT_BIRTHS,
729 &vic->vic_births_object);
730 ASSERT3U(vic->vic_prev_indirect_vdev, ==, UINT64_MAX);
731 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_PREV_INDIRECT_VDEV,
732 &vic->vic_prev_indirect_vdev);
733
734 /*
735 * Look for the 'not present' flag. This will only be set if the device
736 * was not present at the time of import.
737 */
738 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT,
739 &vd->vdev_not_present);
740
741 /*
742 * Get the alignment requirement.
743 */
744 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASHIFT, &vd->vdev_ashift);
745
746 /*
747 * Retrieve the vdev creation time.
748 */
749 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_CREATE_TXG,
750 &vd->vdev_crtxg);
751
752 /*
753 * If we're a top-level vdev, try to load the allocation parameters.
754 */
755 if (top_level &&
756 (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_SPLIT)) {
757 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY,
758 &vd->vdev_ms_array);
759 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT,
760 &vd->vdev_ms_shift);
761 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASIZE,
762 &vd->vdev_asize);
763 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVING,
764 &vd->vdev_removing);
765 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_VDEV_TOP_ZAP,
766 &vd->vdev_top_zap);
767 } else {
768 ASSERT0(vd->vdev_top_zap);
769 }
770
771 if (top_level && alloctype != VDEV_ALLOC_ATTACH) {
772 ASSERT(alloctype == VDEV_ALLOC_LOAD ||
773 alloctype == VDEV_ALLOC_ADD ||
774 alloctype == VDEV_ALLOC_SPLIT ||
775 alloctype == VDEV_ALLOC_ROOTPOOL);
776 /* Note: metaslab_group_create() is now deferred */
777 }
778
779 if (vd->vdev_ops->vdev_op_leaf &&
780 (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_SPLIT)) {
781 (void) nvlist_lookup_uint64(nv,
782 ZPOOL_CONFIG_VDEV_LEAF_ZAP, &vd->vdev_leaf_zap);
783 } else {
784 ASSERT0(vd->vdev_leaf_zap);
785 }
786
787 /*
788 * If we're a leaf vdev, try to load the DTL object and other state.
789 */
790
791 if (vd->vdev_ops->vdev_op_leaf &&
792 (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_L2CACHE ||
793 alloctype == VDEV_ALLOC_ROOTPOOL)) {
794 if (alloctype == VDEV_ALLOC_LOAD) {
795 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DTL,
796 &vd->vdev_dtl_object);
797 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_UNSPARE,
798 &vd->vdev_unspare);
799 }
800
801 if (alloctype == VDEV_ALLOC_ROOTPOOL) {
802 uint64_t spare = 0;
803
804 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_SPARE,
805 &spare) == 0 && spare)
806 spa_spare_add(vd);
807 }
808
809 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_OFFLINE,
810 &vd->vdev_offline);
811
812 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_RESILVER_TXG,
813 &vd->vdev_resilver_txg);
814
815 if (nvlist_exists(nv, ZPOOL_CONFIG_RESILVER_DEFER))
816 vdev_set_deferred_resilver(spa, vd);
817
818 /*
819 * In general, when importing a pool we want to ignore the
820 * persistent fault state, as the diagnosis made on another
821 * system may not be valid in the current context. The only
822 * exception is if we forced a vdev to a persistently faulted
823 * state with 'zpool offline -f'. The persistent fault will
824 * remain across imports until cleared.
825 *
826 * Local vdevs will remain in the faulted state.
827 */
828 if (spa_load_state(spa) == SPA_LOAD_OPEN ||
829 spa_load_state(spa) == SPA_LOAD_IMPORT) {
830 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_FAULTED,
831 &vd->vdev_faulted);
832 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DEGRADED,
833 &vd->vdev_degraded);
834 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVED,
835 &vd->vdev_removed);
836
837 if (vd->vdev_faulted || vd->vdev_degraded) {
838 char *aux;
839
840 vd->vdev_label_aux =
841 VDEV_AUX_ERR_EXCEEDED;
842 if (nvlist_lookup_string(nv,
843 ZPOOL_CONFIG_AUX_STATE, &aux) == 0 &&
844 strcmp(aux, "external") == 0)
845 vd->vdev_label_aux = VDEV_AUX_EXTERNAL;
846 else
847 vd->vdev_faulted = 0ULL;
848 }
849 }
850 }
851
852 /*
853 * Add ourselves to the parent's list of children.
854 */
855 vdev_add_child(parent, vd);
856
857 *vdp = vd;
858
859 return (0);
860 }
861
862 void
863 vdev_free(vdev_t *vd)
864 {
865 spa_t *spa = vd->vdev_spa;
866 ASSERT3P(vd->vdev_initialize_thread, ==, NULL);
867
868 /*
869 * Scan queues are normally destroyed at the end of a scan. If the
870 * queue exists here, that implies the vdev is being removed while
871 * the scan is still running.
872 */
873 if (vd->vdev_scan_io_queue != NULL) {
874 mutex_enter(&vd->vdev_scan_io_queue_lock);
875 dsl_scan_io_queue_destroy(vd->vdev_scan_io_queue);
876 vd->vdev_scan_io_queue = NULL;
877 mutex_exit(&vd->vdev_scan_io_queue_lock);
878 }
879
880 /*
881 * vdev_free() implies closing the vdev first. This is simpler than
882 * trying to ensure complicated semantics for all callers.
883 */
884 vdev_close(vd);
885
886 ASSERT(!list_link_active(&vd->vdev_config_dirty_node));
887 ASSERT(!list_link_active(&vd->vdev_state_dirty_node));
888
889 /*
890 * Free all children.
891 */
892 for (int c = 0; c < vd->vdev_children; c++)
893 vdev_free(vd->vdev_child[c]);
894
895 ASSERT(vd->vdev_child == NULL);
896 ASSERT(vd->vdev_guid_sum == vd->vdev_guid);
897 ASSERT(vd->vdev_initialize_thread == NULL);
898
899 /*
900 * Discard allocation state.
901 */
902 if (vd->vdev_mg != NULL) {
903 vdev_metaslab_fini(vd);
904 metaslab_group_destroy(vd->vdev_mg);
905 }
906
907 ASSERT0(vd->vdev_stat.vs_space);
908 ASSERT0(vd->vdev_stat.vs_dspace);
909 ASSERT0(vd->vdev_stat.vs_alloc);
910
911 /*
912 * Remove this vdev from its parent's child list.
913 */
914 vdev_remove_child(vd->vdev_parent, vd);
915
916 ASSERT(vd->vdev_parent == NULL);
917
918 /*
919 * Clean up vdev structure.
920 */
921 vdev_queue_fini(vd);
922 vdev_cache_fini(vd);
923
924 if (vd->vdev_path)
925 spa_strfree(vd->vdev_path);
926 if (vd->vdev_devid)
927 spa_strfree(vd->vdev_devid);
928 if (vd->vdev_physpath)
929 spa_strfree(vd->vdev_physpath);
930
931 if (vd->vdev_enc_sysfs_path)
932 spa_strfree(vd->vdev_enc_sysfs_path);
933
934 if (vd->vdev_fru)
935 spa_strfree(vd->vdev_fru);
936
937 if (vd->vdev_isspare)
938 spa_spare_remove(vd);
939 if (vd->vdev_isl2cache)
940 spa_l2cache_remove(vd);
941
942 txg_list_destroy(&vd->vdev_ms_list);
943 txg_list_destroy(&vd->vdev_dtl_list);
944
945 mutex_enter(&vd->vdev_dtl_lock);
946 space_map_close(vd->vdev_dtl_sm);
947 for (int t = 0; t < DTL_TYPES; t++) {
948 range_tree_vacate(vd->vdev_dtl[t], NULL, NULL);
949 range_tree_destroy(vd->vdev_dtl[t]);
950 }
951 mutex_exit(&vd->vdev_dtl_lock);
952
953 EQUIV(vd->vdev_indirect_births != NULL,
954 vd->vdev_indirect_mapping != NULL);
955 if (vd->vdev_indirect_births != NULL) {
956 vdev_indirect_mapping_close(vd->vdev_indirect_mapping);
957 vdev_indirect_births_close(vd->vdev_indirect_births);
958 }
959
960 if (vd->vdev_obsolete_sm != NULL) {
961 ASSERT(vd->vdev_removing ||
962 vd->vdev_ops == &vdev_indirect_ops);
963 space_map_close(vd->vdev_obsolete_sm);
964 vd->vdev_obsolete_sm = NULL;
965 }
966 range_tree_destroy(vd->vdev_obsolete_segments);
967 rw_destroy(&vd->vdev_indirect_rwlock);
968 mutex_destroy(&vd->vdev_obsolete_lock);
969
970 mutex_destroy(&vd->vdev_dtl_lock);
971 mutex_destroy(&vd->vdev_stat_lock);
972 mutex_destroy(&vd->vdev_probe_lock);
973 mutex_destroy(&vd->vdev_scan_io_queue_lock);
974 mutex_destroy(&vd->vdev_initialize_lock);
975 mutex_destroy(&vd->vdev_initialize_io_lock);
976 cv_destroy(&vd->vdev_initialize_io_cv);
977 cv_destroy(&vd->vdev_initialize_cv);
978
979 zfs_ratelimit_fini(&vd->vdev_delay_rl);
980 zfs_ratelimit_fini(&vd->vdev_checksum_rl);
981
982 if (vd == spa->spa_root_vdev)
983 spa->spa_root_vdev = NULL;
984
985 kmem_free(vd, sizeof (vdev_t));
986 }
987
988 /*
989 * Transfer top-level vdev state from svd to tvd.
990 */
991 static void
992 vdev_top_transfer(vdev_t *svd, vdev_t *tvd)
993 {
994 spa_t *spa = svd->vdev_spa;
995 metaslab_t *msp;
996 vdev_t *vd;
997 int t;
998
999 ASSERT(tvd == tvd->vdev_top);
1000
1001 tvd->vdev_pending_fastwrite = svd->vdev_pending_fastwrite;
1002 tvd->vdev_ms_array = svd->vdev_ms_array;
1003 tvd->vdev_ms_shift = svd->vdev_ms_shift;
1004 tvd->vdev_ms_count = svd->vdev_ms_count;
1005 tvd->vdev_top_zap = svd->vdev_top_zap;
1006
1007 svd->vdev_ms_array = 0;
1008 svd->vdev_ms_shift = 0;
1009 svd->vdev_ms_count = 0;
1010 svd->vdev_top_zap = 0;
1011
1012 if (tvd->vdev_mg)
1013 ASSERT3P(tvd->vdev_mg, ==, svd->vdev_mg);
1014 tvd->vdev_mg = svd->vdev_mg;
1015 tvd->vdev_ms = svd->vdev_ms;
1016
1017 svd->vdev_mg = NULL;
1018 svd->vdev_ms = NULL;
1019
1020 if (tvd->vdev_mg != NULL)
1021 tvd->vdev_mg->mg_vd = tvd;
1022
1023 tvd->vdev_checkpoint_sm = svd->vdev_checkpoint_sm;
1024 svd->vdev_checkpoint_sm = NULL;
1025
1026 tvd->vdev_alloc_bias = svd->vdev_alloc_bias;
1027 svd->vdev_alloc_bias = VDEV_BIAS_NONE;
1028
1029 tvd->vdev_stat.vs_alloc = svd->vdev_stat.vs_alloc;
1030 tvd->vdev_stat.vs_space = svd->vdev_stat.vs_space;
1031 tvd->vdev_stat.vs_dspace = svd->vdev_stat.vs_dspace;
1032
1033 svd->vdev_stat.vs_alloc = 0;
1034 svd->vdev_stat.vs_space = 0;
1035 svd->vdev_stat.vs_dspace = 0;
1036
1037 /*
1038 * State which may be set on a top-level vdev that's in the
1039 * process of being removed.
1040 */
1041 ASSERT0(tvd->vdev_indirect_config.vic_births_object);
1042 ASSERT0(tvd->vdev_indirect_config.vic_mapping_object);
1043 ASSERT3U(tvd->vdev_indirect_config.vic_prev_indirect_vdev, ==, -1ULL);
1044 ASSERT3P(tvd->vdev_indirect_mapping, ==, NULL);
1045 ASSERT3P(tvd->vdev_indirect_births, ==, NULL);
1046 ASSERT3P(tvd->vdev_obsolete_sm, ==, NULL);
1047 ASSERT0(tvd->vdev_removing);
1048 tvd->vdev_removing = svd->vdev_removing;
1049 tvd->vdev_indirect_config = svd->vdev_indirect_config;
1050 tvd->vdev_indirect_mapping = svd->vdev_indirect_mapping;
1051 tvd->vdev_indirect_births = svd->vdev_indirect_births;
1052 range_tree_swap(&svd->vdev_obsolete_segments,
1053 &tvd->vdev_obsolete_segments);
1054 tvd->vdev_obsolete_sm = svd->vdev_obsolete_sm;
1055 svd->vdev_indirect_config.vic_mapping_object = 0;
1056 svd->vdev_indirect_config.vic_births_object = 0;
1057 svd->vdev_indirect_config.vic_prev_indirect_vdev = -1ULL;
1058 svd->vdev_indirect_mapping = NULL;
1059 svd->vdev_indirect_births = NULL;
1060 svd->vdev_obsolete_sm = NULL;
1061 svd->vdev_removing = 0;
1062
1063 for (t = 0; t < TXG_SIZE; t++) {
1064 while ((msp = txg_list_remove(&svd->vdev_ms_list, t)) != NULL)
1065 (void) txg_list_add(&tvd->vdev_ms_list, msp, t);
1066 while ((vd = txg_list_remove(&svd->vdev_dtl_list, t)) != NULL)
1067 (void) txg_list_add(&tvd->vdev_dtl_list, vd, t);
1068 if (txg_list_remove_this(&spa->spa_vdev_txg_list, svd, t))
1069 (void) txg_list_add(&spa->spa_vdev_txg_list, tvd, t);
1070 }
1071
1072 if (list_link_active(&svd->vdev_config_dirty_node)) {
1073 vdev_config_clean(svd);
1074 vdev_config_dirty(tvd);
1075 }
1076
1077 if (list_link_active(&svd->vdev_state_dirty_node)) {
1078 vdev_state_clean(svd);
1079 vdev_state_dirty(tvd);
1080 }
1081
1082 tvd->vdev_deflate_ratio = svd->vdev_deflate_ratio;
1083 svd->vdev_deflate_ratio = 0;
1084
1085 tvd->vdev_islog = svd->vdev_islog;
1086 svd->vdev_islog = 0;
1087
1088 dsl_scan_io_queue_vdev_xfer(svd, tvd);
1089 }
1090
1091 static void
1092 vdev_top_update(vdev_t *tvd, vdev_t *vd)
1093 {
1094 if (vd == NULL)
1095 return;
1096
1097 vd->vdev_top = tvd;
1098
1099 for (int c = 0; c < vd->vdev_children; c++)
1100 vdev_top_update(tvd, vd->vdev_child[c]);
1101 }
1102
1103 /*
1104 * Add a mirror/replacing vdev above an existing vdev.
1105 */
1106 vdev_t *
1107 vdev_add_parent(vdev_t *cvd, vdev_ops_t *ops)
1108 {
1109 spa_t *spa = cvd->vdev_spa;
1110 vdev_t *pvd = cvd->vdev_parent;
1111 vdev_t *mvd;
1112
1113 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1114
1115 mvd = vdev_alloc_common(spa, cvd->vdev_id, 0, ops);
1116
1117 mvd->vdev_asize = cvd->vdev_asize;
1118 mvd->vdev_min_asize = cvd->vdev_min_asize;
1119 mvd->vdev_max_asize = cvd->vdev_max_asize;
1120 mvd->vdev_psize = cvd->vdev_psize;
1121 mvd->vdev_ashift = cvd->vdev_ashift;
1122 mvd->vdev_state = cvd->vdev_state;
1123 mvd->vdev_crtxg = cvd->vdev_crtxg;
1124
1125 vdev_remove_child(pvd, cvd);
1126 vdev_add_child(pvd, mvd);
1127 cvd->vdev_id = mvd->vdev_children;
1128 vdev_add_child(mvd, cvd);
1129 vdev_top_update(cvd->vdev_top, cvd->vdev_top);
1130
1131 if (mvd == mvd->vdev_top)
1132 vdev_top_transfer(cvd, mvd);
1133
1134 return (mvd);
1135 }
1136
1137 /*
1138 * Remove a 1-way mirror/replacing vdev from the tree.
1139 */
1140 void
1141 vdev_remove_parent(vdev_t *cvd)
1142 {
1143 vdev_t *mvd = cvd->vdev_parent;
1144 vdev_t *pvd = mvd->vdev_parent;
1145
1146 ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1147
1148 ASSERT(mvd->vdev_children == 1);
1149 ASSERT(mvd->vdev_ops == &vdev_mirror_ops ||
1150 mvd->vdev_ops == &vdev_replacing_ops ||
1151 mvd->vdev_ops == &vdev_spare_ops);
1152 cvd->vdev_ashift = mvd->vdev_ashift;
1153
1154 vdev_remove_child(mvd, cvd);
1155 vdev_remove_child(pvd, mvd);
1156
1157 /*
1158 * If cvd will replace mvd as a top-level vdev, preserve mvd's guid.
1159 * Otherwise, we could have detached an offline device, and when we
1160 * go to import the pool we'll think we have two top-level vdevs,
1161 * instead of a different version of the same top-level vdev.
1162 */
1163 if (mvd->vdev_top == mvd) {
1164 uint64_t guid_delta = mvd->vdev_guid - cvd->vdev_guid;
1165 cvd->vdev_orig_guid = cvd->vdev_guid;
1166 cvd->vdev_guid += guid_delta;
1167 cvd->vdev_guid_sum += guid_delta;
1168
1169 /*
1170 * If pool not set for autoexpand, we need to also preserve
1171 * mvd's asize to prevent automatic expansion of cvd.
1172 * Otherwise if we are adjusting the mirror by attaching and
1173 * detaching children of non-uniform sizes, the mirror could
1174 * autoexpand, unexpectedly requiring larger devices to
1175 * re-establish the mirror.
1176 */
1177 if (!cvd->vdev_spa->spa_autoexpand)
1178 cvd->vdev_asize = mvd->vdev_asize;
1179 }
1180 cvd->vdev_id = mvd->vdev_id;
1181 vdev_add_child(pvd, cvd);
1182 vdev_top_update(cvd->vdev_top, cvd->vdev_top);
1183
1184 if (cvd == cvd->vdev_top)
1185 vdev_top_transfer(mvd, cvd);
1186
1187 ASSERT(mvd->vdev_children == 0);
1188 vdev_free(mvd);
1189 }
1190
1191 static void
1192 vdev_metaslab_group_create(vdev_t *vd)
1193 {
1194 spa_t *spa = vd->vdev_spa;
1195
1196 /*
1197 * metaslab_group_create was delayed until allocation bias was available
1198 */
1199 if (vd->vdev_mg == NULL) {
1200 metaslab_class_t *mc;
1201
1202 if (vd->vdev_islog && vd->vdev_alloc_bias == VDEV_BIAS_NONE)
1203 vd->vdev_alloc_bias = VDEV_BIAS_LOG;
1204
1205 ASSERT3U(vd->vdev_islog, ==,
1206 (vd->vdev_alloc_bias == VDEV_BIAS_LOG));
1207
1208 switch (vd->vdev_alloc_bias) {
1209 case VDEV_BIAS_LOG:
1210 mc = spa_log_class(spa);
1211 break;
1212 case VDEV_BIAS_SPECIAL:
1213 mc = spa_special_class(spa);
1214 break;
1215 case VDEV_BIAS_DEDUP:
1216 mc = spa_dedup_class(spa);
1217 break;
1218 default:
1219 mc = spa_normal_class(spa);
1220 }
1221
1222 vd->vdev_mg = metaslab_group_create(mc, vd,
1223 spa->spa_alloc_count);
1224
1225 /*
1226 * The spa ashift values currently only reflect the
1227 * general vdev classes. Class destination is late
1228 * binding so ashift checking had to wait until now
1229 */
1230 if (vd->vdev_top == vd && vd->vdev_ashift != 0 &&
1231 mc == spa_normal_class(spa) && vd->vdev_aux == NULL) {
1232 if (vd->vdev_ashift > spa->spa_max_ashift)
1233 spa->spa_max_ashift = vd->vdev_ashift;
1234 if (vd->vdev_ashift < spa->spa_min_ashift)
1235 spa->spa_min_ashift = vd->vdev_ashift;
1236 }
1237 }
1238 }
1239
1240 int
1241 vdev_metaslab_init(vdev_t *vd, uint64_t txg)
1242 {
1243 spa_t *spa = vd->vdev_spa;
1244 objset_t *mos = spa->spa_meta_objset;
1245 uint64_t m;
1246 uint64_t oldc = vd->vdev_ms_count;
1247 uint64_t newc = vd->vdev_asize >> vd->vdev_ms_shift;
1248 metaslab_t **mspp;
1249 int error;
1250 boolean_t expanding = (oldc != 0);
1251
1252 ASSERT(txg == 0 || spa_config_held(spa, SCL_ALLOC, RW_WRITER));
1253
1254 /*
1255 * This vdev is not being allocated from yet or is a hole.
1256 */
1257 if (vd->vdev_ms_shift == 0)
1258 return (0);
1259
1260 ASSERT(!vd->vdev_ishole);
1261
1262 ASSERT(oldc <= newc);
1263
1264 mspp = vmem_zalloc(newc * sizeof (*mspp), KM_SLEEP);
1265
1266 if (expanding) {
1267 bcopy(vd->vdev_ms, mspp, oldc * sizeof (*mspp));
1268 vmem_free(vd->vdev_ms, oldc * sizeof (*mspp));
1269 }
1270
1271 vd->vdev_ms = mspp;
1272 vd->vdev_ms_count = newc;
1273 for (m = oldc; m < newc; m++) {
1274 uint64_t object = 0;
1275
1276 /*
1277 * vdev_ms_array may be 0 if we are creating the "fake"
1278 * metaslabs for an indirect vdev for zdb's leak detection.
1279 * See zdb_leak_init().
1280 */
1281 if (txg == 0 && vd->vdev_ms_array != 0) {
1282 error = dmu_read(mos, vd->vdev_ms_array,
1283 m * sizeof (uint64_t), sizeof (uint64_t), &object,
1284 DMU_READ_PREFETCH);
1285 if (error != 0) {
1286 vdev_dbgmsg(vd, "unable to read the metaslab "
1287 "array [error=%d]", error);
1288 return (error);
1289 }
1290 }
1291
1292 #ifndef _KERNEL
1293 /*
1294 * To accomodate zdb_leak_init() fake indirect
1295 * metaslabs, we allocate a metaslab group for
1296 * indirect vdevs which normally don't have one.
1297 */
1298 if (vd->vdev_mg == NULL) {
1299 ASSERT0(vdev_is_concrete(vd));
1300 vdev_metaslab_group_create(vd);
1301 }
1302 #endif
1303 error = metaslab_init(vd->vdev_mg, m, object, txg,
1304 &(vd->vdev_ms[m]));
1305 if (error != 0) {
1306 vdev_dbgmsg(vd, "metaslab_init failed [error=%d]",
1307 error);
1308 return (error);
1309 }
1310 }
1311
1312 if (txg == 0)
1313 spa_config_enter(spa, SCL_ALLOC, FTAG, RW_WRITER);
1314
1315 /*
1316 * If the vdev is being removed we don't activate
1317 * the metaslabs since we want to ensure that no new
1318 * allocations are performed on this device.
1319 */
1320 if (!expanding && !vd->vdev_removing) {
1321 metaslab_group_activate(vd->vdev_mg);
1322 }
1323
1324 if (txg == 0)
1325 spa_config_exit(spa, SCL_ALLOC, FTAG);
1326
1327 return (0);
1328 }
1329
1330 void
1331 vdev_metaslab_fini(vdev_t *vd)
1332 {
1333 if (vd->vdev_checkpoint_sm != NULL) {
1334 ASSERT(spa_feature_is_active(vd->vdev_spa,
1335 SPA_FEATURE_POOL_CHECKPOINT));
1336 space_map_close(vd->vdev_checkpoint_sm);
1337 /*
1338 * Even though we close the space map, we need to set its
1339 * pointer to NULL. The reason is that vdev_metaslab_fini()
1340 * may be called multiple times for certain operations
1341 * (i.e. when destroying a pool) so we need to ensure that
1342 * this clause never executes twice. This logic is similar
1343 * to the one used for the vdev_ms clause below.
1344 */
1345 vd->vdev_checkpoint_sm = NULL;
1346 }
1347
1348 if (vd->vdev_ms != NULL) {
1349 uint64_t count = vd->vdev_ms_count;
1350
1351 metaslab_group_passivate(vd->vdev_mg);
1352 for (uint64_t m = 0; m < count; m++) {
1353 metaslab_t *msp = vd->vdev_ms[m];
1354
1355 if (msp != NULL)
1356 metaslab_fini(msp);
1357 }
1358 vmem_free(vd->vdev_ms, count * sizeof (metaslab_t *));
1359 vd->vdev_ms = NULL;
1360
1361 vd->vdev_ms_count = 0;
1362 }
1363 ASSERT0(vd->vdev_ms_count);
1364 ASSERT3U(vd->vdev_pending_fastwrite, ==, 0);
1365 }
1366
1367 typedef struct vdev_probe_stats {
1368 boolean_t vps_readable;
1369 boolean_t vps_writeable;
1370 int vps_flags;
1371 } vdev_probe_stats_t;
1372
1373 static void
1374 vdev_probe_done(zio_t *zio)
1375 {
1376 spa_t *spa = zio->io_spa;
1377 vdev_t *vd = zio->io_vd;
1378 vdev_probe_stats_t *vps = zio->io_private;
1379
1380 ASSERT(vd->vdev_probe_zio != NULL);
1381
1382 if (zio->io_type == ZIO_TYPE_READ) {
1383 if (zio->io_error == 0)
1384 vps->vps_readable = 1;
1385 if (zio->io_error == 0 && spa_writeable(spa)) {
1386 zio_nowait(zio_write_phys(vd->vdev_probe_zio, vd,
1387 zio->io_offset, zio->io_size, zio->io_abd,
1388 ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
1389 ZIO_PRIORITY_SYNC_WRITE, vps->vps_flags, B_TRUE));
1390 } else {
1391 abd_free(zio->io_abd);
1392 }
1393 } else if (zio->io_type == ZIO_TYPE_WRITE) {
1394 if (zio->io_error == 0)
1395 vps->vps_writeable = 1;
1396 abd_free(zio->io_abd);
1397 } else if (zio->io_type == ZIO_TYPE_NULL) {
1398 zio_t *pio;
1399 zio_link_t *zl;
1400
1401 vd->vdev_cant_read |= !vps->vps_readable;
1402 vd->vdev_cant_write |= !vps->vps_writeable;
1403
1404 if (vdev_readable(vd) &&
1405 (vdev_writeable(vd) || !spa_writeable(spa))) {
1406 zio->io_error = 0;
1407 } else {
1408 ASSERT(zio->io_error != 0);
1409 vdev_dbgmsg(vd, "failed probe");
1410 zfs_ereport_post(FM_EREPORT_ZFS_PROBE_FAILURE,
1411 spa, vd, NULL, NULL, 0, 0);
1412 zio->io_error = SET_ERROR(ENXIO);
1413 }
1414
1415 mutex_enter(&vd->vdev_probe_lock);
1416 ASSERT(vd->vdev_probe_zio == zio);
1417 vd->vdev_probe_zio = NULL;
1418 mutex_exit(&vd->vdev_probe_lock);
1419
1420 zl = NULL;
1421 while ((pio = zio_walk_parents(zio, &zl)) != NULL)
1422 if (!vdev_accessible(vd, pio))
1423 pio->io_error = SET_ERROR(ENXIO);
1424
1425 kmem_free(vps, sizeof (*vps));
1426 }
1427 }
1428
1429 /*
1430 * Determine whether this device is accessible.
1431 *
1432 * Read and write to several known locations: the pad regions of each
1433 * vdev label but the first, which we leave alone in case it contains
1434 * a VTOC.
1435 */
1436 zio_t *
1437 vdev_probe(vdev_t *vd, zio_t *zio)
1438 {
1439 spa_t *spa = vd->vdev_spa;
1440 vdev_probe_stats_t *vps = NULL;
1441 zio_t *pio;
1442
1443 ASSERT(vd->vdev_ops->vdev_op_leaf);
1444
1445 /*
1446 * Don't probe the probe.
1447 */
1448 if (zio && (zio->io_flags & ZIO_FLAG_PROBE))
1449 return (NULL);
1450
1451 /*
1452 * To prevent 'probe storms' when a device fails, we create
1453 * just one probe i/o at a time. All zios that want to probe
1454 * this vdev will become parents of the probe io.
1455 */
1456 mutex_enter(&vd->vdev_probe_lock);
1457
1458 if ((pio = vd->vdev_probe_zio) == NULL) {
1459 vps = kmem_zalloc(sizeof (*vps), KM_SLEEP);
1460
1461 vps->vps_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_PROBE |
1462 ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_AGGREGATE |
1463 ZIO_FLAG_TRYHARD;
1464
1465 if (spa_config_held(spa, SCL_ZIO, RW_WRITER)) {
1466 /*
1467 * vdev_cant_read and vdev_cant_write can only
1468 * transition from TRUE to FALSE when we have the
1469 * SCL_ZIO lock as writer; otherwise they can only
1470 * transition from FALSE to TRUE. This ensures that
1471 * any zio looking at these values can assume that
1472 * failures persist for the life of the I/O. That's
1473 * important because when a device has intermittent
1474 * connectivity problems, we want to ensure that
1475 * they're ascribed to the device (ENXIO) and not
1476 * the zio (EIO).
1477 *
1478 * Since we hold SCL_ZIO as writer here, clear both
1479 * values so the probe can reevaluate from first
1480 * principles.
1481 */
1482 vps->vps_flags |= ZIO_FLAG_CONFIG_WRITER;
1483 vd->vdev_cant_read = B_FALSE;
1484 vd->vdev_cant_write = B_FALSE;
1485 }
1486
1487 vd->vdev_probe_zio = pio = zio_null(NULL, spa, vd,
1488 vdev_probe_done, vps,
1489 vps->vps_flags | ZIO_FLAG_DONT_PROPAGATE);
1490
1491 /*
1492 * We can't change the vdev state in this context, so we
1493 * kick off an async task to do it on our behalf.
1494 */
1495 if (zio != NULL) {
1496 vd->vdev_probe_wanted = B_TRUE;
1497 spa_async_request(spa, SPA_ASYNC_PROBE);
1498 }
1499 }
1500
1501 if (zio != NULL)
1502 zio_add_child(zio, pio);
1503
1504 mutex_exit(&vd->vdev_probe_lock);
1505
1506 if (vps == NULL) {
1507 ASSERT(zio != NULL);
1508 return (NULL);
1509 }
1510
1511 for (int l = 1; l < VDEV_LABELS; l++) {
1512 zio_nowait(zio_read_phys(pio, vd,
1513 vdev_label_offset(vd->vdev_psize, l,
1514 offsetof(vdev_label_t, vl_pad2)), VDEV_PAD_SIZE,
1515 abd_alloc_for_io(VDEV_PAD_SIZE, B_TRUE),
1516 ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
1517 ZIO_PRIORITY_SYNC_READ, vps->vps_flags, B_TRUE));
1518 }
1519
1520 if (zio == NULL)
1521 return (pio);
1522
1523 zio_nowait(pio);
1524 return (NULL);
1525 }
1526
1527 static void
1528 vdev_open_child(void *arg)
1529 {
1530 vdev_t *vd = arg;
1531
1532 vd->vdev_open_thread = curthread;
1533 vd->vdev_open_error = vdev_open(vd);
1534 vd->vdev_open_thread = NULL;
1535 }
1536
1537 static boolean_t
1538 vdev_uses_zvols(vdev_t *vd)
1539 {
1540 #ifdef _KERNEL
1541 if (zvol_is_zvol(vd->vdev_path))
1542 return (B_TRUE);
1543 #endif
1544
1545 for (int c = 0; c < vd->vdev_children; c++)
1546 if (vdev_uses_zvols(vd->vdev_child[c]))
1547 return (B_TRUE);
1548
1549 return (B_FALSE);
1550 }
1551
1552 void
1553 vdev_open_children(vdev_t *vd)
1554 {
1555 taskq_t *tq;
1556 int children = vd->vdev_children;
1557
1558 /*
1559 * in order to handle pools on top of zvols, do the opens
1560 * in a single thread so that the same thread holds the
1561 * spa_namespace_lock
1562 */
1563 if (vdev_uses_zvols(vd)) {
1564 retry_sync:
1565 for (int c = 0; c < children; c++)
1566 vd->vdev_child[c]->vdev_open_error =
1567 vdev_open(vd->vdev_child[c]);
1568 } else {
1569 tq = taskq_create("vdev_open", children, minclsyspri,
1570 children, children, TASKQ_PREPOPULATE);
1571 if (tq == NULL)
1572 goto retry_sync;
1573
1574 for (int c = 0; c < children; c++)
1575 VERIFY(taskq_dispatch(tq, vdev_open_child,
1576 vd->vdev_child[c], TQ_SLEEP) != TASKQID_INVALID);
1577
1578 taskq_destroy(tq);
1579 }
1580
1581 vd->vdev_nonrot = B_TRUE;
1582
1583 for (int c = 0; c < children; c++)
1584 vd->vdev_nonrot &= vd->vdev_child[c]->vdev_nonrot;
1585 }
1586
1587 /*
1588 * Compute the raidz-deflation ratio. Note, we hard-code
1589 * in 128k (1 << 17) because it is the "typical" blocksize.
1590 * Even though SPA_MAXBLOCKSIZE changed, this algorithm can not change,
1591 * otherwise it would inconsistently account for existing bp's.
1592 */
1593 static void
1594 vdev_set_deflate_ratio(vdev_t *vd)
1595 {
1596 if (vd == vd->vdev_top && !vd->vdev_ishole && vd->vdev_ashift != 0) {
1597 vd->vdev_deflate_ratio = (1 << 17) /
1598 (vdev_psize_to_asize(vd, 1 << 17) >> SPA_MINBLOCKSHIFT);
1599 }
1600 }
1601
1602 /*
1603 * Prepare a virtual device for access.
1604 */
1605 int
1606 vdev_open(vdev_t *vd)
1607 {
1608 spa_t *spa = vd->vdev_spa;
1609 int error;
1610 uint64_t osize = 0;
1611 uint64_t max_osize = 0;
1612 uint64_t asize, max_asize, psize;
1613 uint64_t ashift = 0;
1614
1615 ASSERT(vd->vdev_open_thread == curthread ||
1616 spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1617 ASSERT(vd->vdev_state == VDEV_STATE_CLOSED ||
1618 vd->vdev_state == VDEV_STATE_CANT_OPEN ||
1619 vd->vdev_state == VDEV_STATE_OFFLINE);
1620
1621 vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
1622 vd->vdev_cant_read = B_FALSE;
1623 vd->vdev_cant_write = B_FALSE;
1624 vd->vdev_min_asize = vdev_get_min_asize(vd);
1625
1626 /*
1627 * If this vdev is not removed, check its fault status. If it's
1628 * faulted, bail out of the open.
1629 */
1630 if (!vd->vdev_removed && vd->vdev_faulted) {
1631 ASSERT(vd->vdev_children == 0);
1632 ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED ||
1633 vd->vdev_label_aux == VDEV_AUX_EXTERNAL);
1634 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1635 vd->vdev_label_aux);
1636 return (SET_ERROR(ENXIO));
1637 } else if (vd->vdev_offline) {
1638 ASSERT(vd->vdev_children == 0);
1639 vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE, VDEV_AUX_NONE);
1640 return (SET_ERROR(ENXIO));
1641 }
1642
1643 error = vd->vdev_ops->vdev_op_open(vd, &osize, &max_osize, &ashift);
1644
1645 /*
1646 * Reset the vdev_reopening flag so that we actually close
1647 * the vdev on error.
1648 */
1649 vd->vdev_reopening = B_FALSE;
1650 if (zio_injection_enabled && error == 0)
1651 error = zio_handle_device_injection(vd, NULL, ENXIO);
1652
1653 if (error) {
1654 if (vd->vdev_removed &&
1655 vd->vdev_stat.vs_aux != VDEV_AUX_OPEN_FAILED)
1656 vd->vdev_removed = B_FALSE;
1657
1658 if (vd->vdev_stat.vs_aux == VDEV_AUX_CHILDREN_OFFLINE) {
1659 vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE,
1660 vd->vdev_stat.vs_aux);
1661 } else {
1662 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1663 vd->vdev_stat.vs_aux);
1664 }
1665 return (error);
1666 }
1667
1668 vd->vdev_removed = B_FALSE;
1669
1670 /*
1671 * Recheck the faulted flag now that we have confirmed that
1672 * the vdev is accessible. If we're faulted, bail.
1673 */
1674 if (vd->vdev_faulted) {
1675 ASSERT(vd->vdev_children == 0);
1676 ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED ||
1677 vd->vdev_label_aux == VDEV_AUX_EXTERNAL);
1678 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1679 vd->vdev_label_aux);
1680 return (SET_ERROR(ENXIO));
1681 }
1682
1683 if (vd->vdev_degraded) {
1684 ASSERT(vd->vdev_children == 0);
1685 vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
1686 VDEV_AUX_ERR_EXCEEDED);
1687 } else {
1688 vdev_set_state(vd, B_TRUE, VDEV_STATE_HEALTHY, 0);
1689 }
1690
1691 /*
1692 * For hole or missing vdevs we just return success.
1693 */
1694 if (vd->vdev_ishole || vd->vdev_ops == &vdev_missing_ops)
1695 return (0);
1696
1697 for (int c = 0; c < vd->vdev_children; c++) {
1698 if (vd->vdev_child[c]->vdev_state != VDEV_STATE_HEALTHY) {
1699 vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
1700 VDEV_AUX_NONE);
1701 break;
1702 }
1703 }
1704
1705 osize = P2ALIGN(osize, (uint64_t)sizeof (vdev_label_t));
1706 max_osize = P2ALIGN(max_osize, (uint64_t)sizeof (vdev_label_t));
1707
1708 if (vd->vdev_children == 0) {
1709 if (osize < SPA_MINDEVSIZE) {
1710 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1711 VDEV_AUX_TOO_SMALL);
1712 return (SET_ERROR(EOVERFLOW));
1713 }
1714 psize = osize;
1715 asize = osize - (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE);
1716 max_asize = max_osize - (VDEV_LABEL_START_SIZE +
1717 VDEV_LABEL_END_SIZE);
1718 } else {
1719 if (vd->vdev_parent != NULL && osize < SPA_MINDEVSIZE -
1720 (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE)) {
1721 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1722 VDEV_AUX_TOO_SMALL);
1723 return (SET_ERROR(EOVERFLOW));
1724 }
1725 psize = 0;
1726 asize = osize;
1727 max_asize = max_osize;
1728 }
1729
1730 /*
1731 * If the vdev was expanded, record this so that we can re-create the
1732 * uberblock rings in labels {2,3}, during the next sync.
1733 */
1734 if ((psize > vd->vdev_psize) && (vd->vdev_psize != 0))
1735 vd->vdev_copy_uberblocks = B_TRUE;
1736
1737 vd->vdev_psize = psize;
1738
1739 /*
1740 * Make sure the allocatable size hasn't shrunk too much.
1741 */
1742 if (asize < vd->vdev_min_asize) {
1743 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1744 VDEV_AUX_BAD_LABEL);
1745 return (SET_ERROR(EINVAL));
1746 }
1747
1748 if (vd->vdev_asize == 0) {
1749 /*
1750 * This is the first-ever open, so use the computed values.
1751 * For compatibility, a different ashift can be requested.
1752 */
1753 vd->vdev_asize = asize;
1754 vd->vdev_max_asize = max_asize;
1755 if (vd->vdev_ashift == 0) {
1756 vd->vdev_ashift = ashift; /* use detected value */
1757 }
1758 if (vd->vdev_ashift != 0 && (vd->vdev_ashift < ASHIFT_MIN ||
1759 vd->vdev_ashift > ASHIFT_MAX)) {
1760 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1761 VDEV_AUX_BAD_ASHIFT);
1762 return (SET_ERROR(EDOM));
1763 }
1764 } else {
1765 /*
1766 * Detect if the alignment requirement has increased.
1767 * We don't want to make the pool unavailable, just
1768 * post an event instead.
1769 */
1770 if (ashift > vd->vdev_top->vdev_ashift &&
1771 vd->vdev_ops->vdev_op_leaf) {
1772 zfs_ereport_post(FM_EREPORT_ZFS_DEVICE_BAD_ASHIFT,
1773 spa, vd, NULL, NULL, 0, 0);
1774 }
1775
1776 vd->vdev_max_asize = max_asize;
1777 }
1778
1779 /*
1780 * If all children are healthy we update asize if either:
1781 * The asize has increased, due to a device expansion caused by dynamic
1782 * LUN growth or vdev replacement, and automatic expansion is enabled;
1783 * making the additional space available.
1784 *
1785 * The asize has decreased, due to a device shrink usually caused by a
1786 * vdev replace with a smaller device. This ensures that calculations
1787 * based of max_asize and asize e.g. esize are always valid. It's safe
1788 * to do this as we've already validated that asize is greater than
1789 * vdev_min_asize.
1790 */
1791 if (vd->vdev_state == VDEV_STATE_HEALTHY &&
1792 ((asize > vd->vdev_asize &&
1793 (vd->vdev_expanding || spa->spa_autoexpand)) ||
1794 (asize < vd->vdev_asize)))
1795 vd->vdev_asize = asize;
1796
1797 vdev_set_min_asize(vd);
1798
1799 /*
1800 * Ensure we can issue some IO before declaring the
1801 * vdev open for business.
1802 */
1803 if (vd->vdev_ops->vdev_op_leaf &&
1804 (error = zio_wait(vdev_probe(vd, NULL))) != 0) {
1805 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1806 VDEV_AUX_ERR_EXCEEDED);
1807 return (error);
1808 }
1809
1810 /*
1811 * Track the min and max ashift values for normal data devices.
1812 *
1813 * DJB - TBD these should perhaps be tracked per allocation class
1814 * (e.g. spa_min_ashift is used to round up post compression buffers)
1815 */
1816 if (vd->vdev_top == vd && vd->vdev_ashift != 0 &&
1817 vd->vdev_alloc_bias == VDEV_BIAS_NONE &&
1818 vd->vdev_aux == NULL) {
1819 if (vd->vdev_ashift > spa->spa_max_ashift)
1820 spa->spa_max_ashift = vd->vdev_ashift;
1821 if (vd->vdev_ashift < spa->spa_min_ashift)
1822 spa->spa_min_ashift = vd->vdev_ashift;
1823 }
1824
1825 /*
1826 * If a leaf vdev has a DTL, and seems healthy, then kick off a
1827 * resilver. But don't do this if we are doing a reopen for a scrub,
1828 * since this would just restart the scrub we are already doing.
1829 */
1830 if (vd->vdev_ops->vdev_op_leaf && !spa->spa_scrub_reopen &&
1831 vdev_resilver_needed(vd, NULL, NULL)) {
1832 if (dsl_scan_resilvering(spa->spa_dsl_pool) &&
1833 spa_feature_is_enabled(spa, SPA_FEATURE_RESILVER_DEFER))
1834 vdev_set_deferred_resilver(spa, vd);
1835 else
1836 spa_async_request(spa, SPA_ASYNC_RESILVER);
1837 }
1838
1839 return (0);
1840 }
1841
1842 /*
1843 * Called once the vdevs are all opened, this routine validates the label
1844 * contents. This needs to be done before vdev_load() so that we don't
1845 * inadvertently do repair I/Os to the wrong device.
1846 *
1847 * This function will only return failure if one of the vdevs indicates that it
1848 * has since been destroyed or exported. This is only possible if
1849 * /etc/zfs/zpool.cache was readonly at the time. Otherwise, the vdev state
1850 * will be updated but the function will return 0.
1851 */
1852 int
1853 vdev_validate(vdev_t *vd)
1854 {
1855 spa_t *spa = vd->vdev_spa;
1856 nvlist_t *label;
1857 uint64_t guid = 0, aux_guid = 0, top_guid;
1858 uint64_t state;
1859 nvlist_t *nvl;
1860 uint64_t txg;
1861
1862 if (vdev_validate_skip)
1863 return (0);
1864
1865 for (uint64_t c = 0; c < vd->vdev_children; c++)
1866 if (vdev_validate(vd->vdev_child[c]) != 0)
1867 return (SET_ERROR(EBADF));
1868
1869 /*
1870 * If the device has already failed, or was marked offline, don't do
1871 * any further validation. Otherwise, label I/O will fail and we will
1872 * overwrite the previous state.
1873 */
1874 if (!vd->vdev_ops->vdev_op_leaf || !vdev_readable(vd))
1875 return (0);
1876
1877 /*
1878 * If we are performing an extreme rewind, we allow for a label that
1879 * was modified at a point after the current txg.
1880 * If config lock is not held do not check for the txg. spa_sync could
1881 * be updating the vdev's label before updating spa_last_synced_txg.
1882 */
1883 if (spa->spa_extreme_rewind || spa_last_synced_txg(spa) == 0 ||
1884 spa_config_held(spa, SCL_CONFIG, RW_WRITER) != SCL_CONFIG)
1885 txg = UINT64_MAX;
1886 else
1887 txg = spa_last_synced_txg(spa);
1888
1889 if ((label = vdev_label_read_config(vd, txg)) == NULL) {
1890 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1891 VDEV_AUX_BAD_LABEL);
1892 vdev_dbgmsg(vd, "vdev_validate: failed reading config for "
1893 "txg %llu", (u_longlong_t)txg);
1894 return (0);
1895 }
1896
1897 /*
1898 * Determine if this vdev has been split off into another
1899 * pool. If so, then refuse to open it.
1900 */
1901 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_SPLIT_GUID,
1902 &aux_guid) == 0 && aux_guid == spa_guid(spa)) {
1903 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1904 VDEV_AUX_SPLIT_POOL);
1905 nvlist_free(label);
1906 vdev_dbgmsg(vd, "vdev_validate: vdev split into other pool");
1907 return (0);
1908 }
1909
1910 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_GUID, &guid) != 0) {
1911 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1912 VDEV_AUX_CORRUPT_DATA);
1913 nvlist_free(label);
1914 vdev_dbgmsg(vd, "vdev_validate: '%s' missing from label",
1915 ZPOOL_CONFIG_POOL_GUID);
1916 return (0);
1917 }
1918
1919 /*
1920 * If config is not trusted then ignore the spa guid check. This is
1921 * necessary because if the machine crashed during a re-guid the new
1922 * guid might have been written to all of the vdev labels, but not the
1923 * cached config. The check will be performed again once we have the
1924 * trusted config from the MOS.
1925 */
1926 if (spa->spa_trust_config && guid != spa_guid(spa)) {
1927 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1928 VDEV_AUX_CORRUPT_DATA);
1929 nvlist_free(label);
1930 vdev_dbgmsg(vd, "vdev_validate: vdev label pool_guid doesn't "
1931 "match config (%llu != %llu)", (u_longlong_t)guid,
1932 (u_longlong_t)spa_guid(spa));
1933 return (0);
1934 }
1935
1936 if (nvlist_lookup_nvlist(label, ZPOOL_CONFIG_VDEV_TREE, &nvl)
1937 != 0 || nvlist_lookup_uint64(nvl, ZPOOL_CONFIG_ORIG_GUID,
1938 &aux_guid) != 0)
1939 aux_guid = 0;
1940
1941 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0) {
1942 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1943 VDEV_AUX_CORRUPT_DATA);
1944 nvlist_free(label);
1945 vdev_dbgmsg(vd, "vdev_validate: '%s' missing from label",
1946 ZPOOL_CONFIG_GUID);
1947 return (0);
1948 }
1949
1950 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_TOP_GUID, &top_guid)
1951 != 0) {
1952 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1953 VDEV_AUX_CORRUPT_DATA);
1954 nvlist_free(label);
1955 vdev_dbgmsg(vd, "vdev_validate: '%s' missing from label",
1956 ZPOOL_CONFIG_TOP_GUID);
1957 return (0);
1958 }
1959
1960 /*
1961 * If this vdev just became a top-level vdev because its sibling was
1962 * detached, it will have adopted the parent's vdev guid -- but the
1963 * label may or may not be on disk yet. Fortunately, either version
1964 * of the label will have the same top guid, so if we're a top-level
1965 * vdev, we can safely compare to that instead.
1966 * However, if the config comes from a cachefile that failed to update
1967 * after the detach, a top-level vdev will appear as a non top-level
1968 * vdev in the config. Also relax the constraints if we perform an
1969 * extreme rewind.
1970 *
1971 * If we split this vdev off instead, then we also check the
1972 * original pool's guid. We don't want to consider the vdev
1973 * corrupt if it is partway through a split operation.
1974 */
1975 if (vd->vdev_guid != guid && vd->vdev_guid != aux_guid) {
1976 boolean_t mismatch = B_FALSE;
1977 if (spa->spa_trust_config && !spa->spa_extreme_rewind) {
1978 if (vd != vd->vdev_top || vd->vdev_guid != top_guid)
1979 mismatch = B_TRUE;
1980 } else {
1981 if (vd->vdev_guid != top_guid &&
1982 vd->vdev_top->vdev_guid != guid)
1983 mismatch = B_TRUE;
1984 }
1985
1986 if (mismatch) {
1987 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1988 VDEV_AUX_CORRUPT_DATA);
1989 nvlist_free(label);
1990 vdev_dbgmsg(vd, "vdev_validate: config guid "
1991 "doesn't match label guid");
1992 vdev_dbgmsg(vd, "CONFIG: guid %llu, top_guid %llu",
1993 (u_longlong_t)vd->vdev_guid,
1994 (u_longlong_t)vd->vdev_top->vdev_guid);
1995 vdev_dbgmsg(vd, "LABEL: guid %llu, top_guid %llu, "
1996 "aux_guid %llu", (u_longlong_t)guid,
1997 (u_longlong_t)top_guid, (u_longlong_t)aux_guid);
1998 return (0);
1999 }
2000 }
2001
2002 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE,
2003 &state) != 0) {
2004 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2005 VDEV_AUX_CORRUPT_DATA);
2006 nvlist_free(label);
2007 vdev_dbgmsg(vd, "vdev_validate: '%s' missing from label",
2008 ZPOOL_CONFIG_POOL_STATE);
2009 return (0);
2010 }
2011
2012 nvlist_free(label);
2013
2014 /*
2015 * If this is a verbatim import, no need to check the
2016 * state of the pool.
2017 */
2018 if (!(spa->spa_import_flags & ZFS_IMPORT_VERBATIM) &&
2019 spa_load_state(spa) == SPA_LOAD_OPEN &&
2020 state != POOL_STATE_ACTIVE) {
2021 vdev_dbgmsg(vd, "vdev_validate: invalid pool state (%llu) "
2022 "for spa %s", (u_longlong_t)state, spa->spa_name);
2023 return (SET_ERROR(EBADF));
2024 }
2025
2026 /*
2027 * If we were able to open and validate a vdev that was
2028 * previously marked permanently unavailable, clear that state
2029 * now.
2030 */
2031 if (vd->vdev_not_present)
2032 vd->vdev_not_present = 0;
2033
2034 return (0);
2035 }
2036
2037 static void
2038 vdev_copy_path_impl(vdev_t *svd, vdev_t *dvd)
2039 {
2040 if (svd->vdev_path != NULL && dvd->vdev_path != NULL) {
2041 if (strcmp(svd->vdev_path, dvd->vdev_path) != 0) {
2042 zfs_dbgmsg("vdev_copy_path: vdev %llu: path changed "
2043 "from '%s' to '%s'", (u_longlong_t)dvd->vdev_guid,
2044 dvd->vdev_path, svd->vdev_path);
2045 spa_strfree(dvd->vdev_path);
2046 dvd->vdev_path = spa_strdup(svd->vdev_path);
2047 }
2048 } else if (svd->vdev_path != NULL) {
2049 dvd->vdev_path = spa_strdup(svd->vdev_path);
2050 zfs_dbgmsg("vdev_copy_path: vdev %llu: path set to '%s'",
2051 (u_longlong_t)dvd->vdev_guid, dvd->vdev_path);
2052 }
2053 }
2054
2055 /*
2056 * Recursively copy vdev paths from one vdev to another. Source and destination
2057 * vdev trees must have same geometry otherwise return error. Intended to copy
2058 * paths from userland config into MOS config.
2059 */
2060 int
2061 vdev_copy_path_strict(vdev_t *svd, vdev_t *dvd)
2062 {
2063 if ((svd->vdev_ops == &vdev_missing_ops) ||
2064 (svd->vdev_ishole && dvd->vdev_ishole) ||
2065 (dvd->vdev_ops == &vdev_indirect_ops))
2066 return (0);
2067
2068 if (svd->vdev_ops != dvd->vdev_ops) {
2069 vdev_dbgmsg(svd, "vdev_copy_path: vdev type mismatch: %s != %s",
2070 svd->vdev_ops->vdev_op_type, dvd->vdev_ops->vdev_op_type);
2071 return (SET_ERROR(EINVAL));
2072 }
2073
2074 if (svd->vdev_guid != dvd->vdev_guid) {
2075 vdev_dbgmsg(svd, "vdev_copy_path: guids mismatch (%llu != "
2076 "%llu)", (u_longlong_t)svd->vdev_guid,
2077 (u_longlong_t)dvd->vdev_guid);
2078 return (SET_ERROR(EINVAL));
2079 }
2080
2081 if (svd->vdev_children != dvd->vdev_children) {
2082 vdev_dbgmsg(svd, "vdev_copy_path: children count mismatch: "
2083 "%llu != %llu", (u_longlong_t)svd->vdev_children,
2084 (u_longlong_t)dvd->vdev_children);
2085 return (SET_ERROR(EINVAL));
2086 }
2087
2088 for (uint64_t i = 0; i < svd->vdev_children; i++) {
2089 int error = vdev_copy_path_strict(svd->vdev_child[i],
2090 dvd->vdev_child[i]);
2091 if (error != 0)
2092 return (error);
2093 }
2094
2095 if (svd->vdev_ops->vdev_op_leaf)
2096 vdev_copy_path_impl(svd, dvd);
2097
2098 return (0);
2099 }
2100
2101 static void
2102 vdev_copy_path_search(vdev_t *stvd, vdev_t *dvd)
2103 {
2104 ASSERT(stvd->vdev_top == stvd);
2105 ASSERT3U(stvd->vdev_id, ==, dvd->vdev_top->vdev_id);
2106
2107 for (uint64_t i = 0; i < dvd->vdev_children; i++) {
2108 vdev_copy_path_search(stvd, dvd->vdev_child[i]);
2109 }
2110
2111 if (!dvd->vdev_ops->vdev_op_leaf || !vdev_is_concrete(dvd))
2112 return;
2113
2114 /*
2115 * The idea here is that while a vdev can shift positions within
2116 * a top vdev (when replacing, attaching mirror, etc.) it cannot
2117 * step outside of it.
2118 */
2119 vdev_t *vd = vdev_lookup_by_guid(stvd, dvd->vdev_guid);
2120
2121 if (vd == NULL || vd->vdev_ops != dvd->vdev_ops)
2122 return;
2123
2124 ASSERT(vd->vdev_ops->vdev_op_leaf);
2125
2126 vdev_copy_path_impl(vd, dvd);
2127 }
2128
2129 /*
2130 * Recursively copy vdev paths from one root vdev to another. Source and
2131 * destination vdev trees may differ in geometry. For each destination leaf
2132 * vdev, search a vdev with the same guid and top vdev id in the source.
2133 * Intended to copy paths from userland config into MOS config.
2134 */
2135 void
2136 vdev_copy_path_relaxed(vdev_t *srvd, vdev_t *drvd)
2137 {
2138 uint64_t children = MIN(srvd->vdev_children, drvd->vdev_children);
2139 ASSERT(srvd->vdev_ops == &vdev_root_ops);
2140 ASSERT(drvd->vdev_ops == &vdev_root_ops);
2141
2142 for (uint64_t i = 0; i < children; i++) {
2143 vdev_copy_path_search(srvd->vdev_child[i],
2144 drvd->vdev_child[i]);
2145 }
2146 }
2147
2148 /*
2149 * Close a virtual device.
2150 */
2151 void
2152 vdev_close(vdev_t *vd)
2153 {
2154 vdev_t *pvd = vd->vdev_parent;
2155 ASSERTV(spa_t *spa = vd->vdev_spa);
2156
2157 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
2158
2159 /*
2160 * If our parent is reopening, then we are as well, unless we are
2161 * going offline.
2162 */
2163 if (pvd != NULL && pvd->vdev_reopening)
2164 vd->vdev_reopening = (pvd->vdev_reopening && !vd->vdev_offline);
2165
2166 vd->vdev_ops->vdev_op_close(vd);
2167
2168 vdev_cache_purge(vd);
2169
2170 /*
2171 * We record the previous state before we close it, so that if we are
2172 * doing a reopen(), we don't generate FMA ereports if we notice that
2173 * it's still faulted.
2174 */
2175 vd->vdev_prevstate = vd->vdev_state;
2176
2177 if (vd->vdev_offline)
2178 vd->vdev_state = VDEV_STATE_OFFLINE;
2179 else
2180 vd->vdev_state = VDEV_STATE_CLOSED;
2181 vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
2182 }
2183
2184 void
2185 vdev_hold(vdev_t *vd)
2186 {
2187 spa_t *spa = vd->vdev_spa;
2188
2189 ASSERT(spa_is_root(spa));
2190 if (spa->spa_state == POOL_STATE_UNINITIALIZED)
2191 return;
2192
2193 for (int c = 0; c < vd->vdev_children; c++)
2194 vdev_hold(vd->vdev_child[c]);
2195
2196 if (vd->vdev_ops->vdev_op_leaf)
2197 vd->vdev_ops->vdev_op_hold(vd);
2198 }
2199
2200 void
2201 vdev_rele(vdev_t *vd)
2202 {
2203 ASSERT(spa_is_root(vd->vdev_spa));
2204 for (int c = 0; c < vd->vdev_children; c++)
2205 vdev_rele(vd->vdev_child[c]);
2206
2207 if (vd->vdev_ops->vdev_op_leaf)
2208 vd->vdev_ops->vdev_op_rele(vd);
2209 }
2210
2211 /*
2212 * Reopen all interior vdevs and any unopened leaves. We don't actually
2213 * reopen leaf vdevs which had previously been opened as they might deadlock
2214 * on the spa_config_lock. Instead we only obtain the leaf's physical size.
2215 * If the leaf has never been opened then open it, as usual.
2216 */
2217 void
2218 vdev_reopen(vdev_t *vd)
2219 {
2220 spa_t *spa = vd->vdev_spa;
2221
2222 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
2223
2224 /* set the reopening flag unless we're taking the vdev offline */
2225 vd->vdev_reopening = !vd->vdev_offline;
2226 vdev_close(vd);
2227 (void) vdev_open(vd);
2228
2229 /*
2230 * Call vdev_validate() here to make sure we have the same device.
2231 * Otherwise, a device with an invalid label could be successfully
2232 * opened in response to vdev_reopen().
2233 */
2234 if (vd->vdev_aux) {
2235 (void) vdev_validate_aux(vd);
2236 if (vdev_readable(vd) && vdev_writeable(vd) &&
2237 vd->vdev_aux == &spa->spa_l2cache &&
2238 !l2arc_vdev_present(vd))
2239 l2arc_add_vdev(spa, vd);
2240 } else {
2241 (void) vdev_validate(vd);
2242 }
2243
2244 /*
2245 * Reassess parent vdev's health.
2246 */
2247 vdev_propagate_state(vd);
2248 }
2249
2250 int
2251 vdev_create(vdev_t *vd, uint64_t txg, boolean_t isreplacing)
2252 {
2253 int error;
2254
2255 /*
2256 * Normally, partial opens (e.g. of a mirror) are allowed.
2257 * For a create, however, we want to fail the request if
2258 * there are any components we can't open.
2259 */
2260 error = vdev_open(vd);
2261
2262 if (error || vd->vdev_state != VDEV_STATE_HEALTHY) {
2263 vdev_close(vd);
2264 return (error ? error : ENXIO);
2265 }
2266
2267 /*
2268 * Recursively load DTLs and initialize all labels.
2269 */
2270 if ((error = vdev_dtl_load(vd)) != 0 ||
2271 (error = vdev_label_init(vd, txg, isreplacing ?
2272 VDEV_LABEL_REPLACE : VDEV_LABEL_CREATE)) != 0) {
2273 vdev_close(vd);
2274 return (error);
2275 }
2276
2277 return (0);
2278 }
2279
2280 void
2281 vdev_metaslab_set_size(vdev_t *vd)
2282 {
2283 uint64_t asize = vd->vdev_asize;
2284 uint64_t ms_count = asize >> vdev_default_ms_shift;
2285 uint64_t ms_shift;
2286
2287 /*
2288 * There are two dimensions to the metaslab sizing calculation:
2289 * the size of the metaslab and the count of metaslabs per vdev.
2290 * In general, we aim for vdev_max_ms_count (200) metaslabs. The
2291 * range of the dimensions are as follows:
2292 *
2293 * 2^29 <= ms_size <= 2^38
2294 * 16 <= ms_count <= 131,072
2295 *
2296 * On the lower end of vdev sizes, we aim for metaslabs sizes of
2297 * at least 512MB (2^29) to minimize fragmentation effects when
2298 * testing with smaller devices. However, the count constraint
2299 * of at least 16 metaslabs will override this minimum size goal.
2300 *
2301 * On the upper end of vdev sizes, we aim for a maximum metaslab
2302 * size of 256GB. However, we will cap the total count to 2^17
2303 * metaslabs to keep our memory footprint in check.
2304 *
2305 * The net effect of applying above constrains is summarized below.
2306 *
2307 * vdev size metaslab count
2308 * -------------|-----------------
2309 * < 8GB ~16
2310 * 8GB - 100GB one per 512MB
2311 * 100GB - 50TB ~200
2312 * 50TB - 32PB one per 256GB
2313 * > 32PB ~131,072
2314 * -------------------------------
2315 */
2316
2317 if (ms_count < vdev_min_ms_count)
2318 ms_shift = highbit64(asize / vdev_min_ms_count);
2319 else if (ms_count > vdev_max_ms_count)
2320 ms_shift = highbit64(asize / vdev_max_ms_count);
2321 else
2322 ms_shift = vdev_default_ms_shift;
2323
2324 if (ms_shift < SPA_MAXBLOCKSHIFT) {
2325 ms_shift = SPA_MAXBLOCKSHIFT;
2326 } else if (ms_shift > vdev_max_ms_shift) {
2327 ms_shift = vdev_max_ms_shift;
2328 /* cap the total count to constrain memory footprint */
2329 if ((asize >> ms_shift) > vdev_ms_count_limit)
2330 ms_shift = highbit64(asize / vdev_ms_count_limit);
2331 }
2332
2333 vd->vdev_ms_shift = ms_shift;
2334 ASSERT3U(vd->vdev_ms_shift, >=, SPA_MAXBLOCKSHIFT);
2335 }
2336
2337 void
2338 vdev_dirty(vdev_t *vd, int flags, void *arg, uint64_t txg)
2339 {
2340 ASSERT(vd == vd->vdev_top);
2341 /* indirect vdevs don't have metaslabs or dtls */
2342 ASSERT(vdev_is_concrete(vd) || flags == 0);
2343 ASSERT(ISP2(flags));
2344 ASSERT(spa_writeable(vd->vdev_spa));
2345
2346 if (flags & VDD_METASLAB)
2347 (void) txg_list_add(&vd->vdev_ms_list, arg, txg);
2348
2349 if (flags & VDD_DTL)
2350 (void) txg_list_add(&vd->vdev_dtl_list, arg, txg);
2351
2352 (void) txg_list_add(&vd->vdev_spa->spa_vdev_txg_list, vd, txg);
2353 }
2354
2355 void
2356 vdev_dirty_leaves(vdev_t *vd, int flags, uint64_t txg)
2357 {
2358 for (int c = 0; c < vd->vdev_children; c++)
2359 vdev_dirty_leaves(vd->vdev_child[c], flags, txg);
2360
2361 if (vd->vdev_ops->vdev_op_leaf)
2362 vdev_dirty(vd->vdev_top, flags, vd, txg);
2363 }
2364
2365 /*
2366 * DTLs.
2367 *
2368 * A vdev's DTL (dirty time log) is the set of transaction groups for which
2369 * the vdev has less than perfect replication. There are four kinds of DTL:
2370 *
2371 * DTL_MISSING: txgs for which the vdev has no valid copies of the data
2372 *
2373 * DTL_PARTIAL: txgs for which data is available, but not fully replicated
2374 *
2375 * DTL_SCRUB: the txgs that could not be repaired by the last scrub; upon
2376 * scrub completion, DTL_SCRUB replaces DTL_MISSING in the range of
2377 * txgs that was scrubbed.
2378 *
2379 * DTL_OUTAGE: txgs which cannot currently be read, whether due to
2380 * persistent errors or just some device being offline.
2381 * Unlike the other three, the DTL_OUTAGE map is not generally
2382 * maintained; it's only computed when needed, typically to
2383 * determine whether a device can be detached.
2384 *
2385 * For leaf vdevs, DTL_MISSING and DTL_PARTIAL are identical: the device
2386 * either has the data or it doesn't.
2387 *
2388 * For interior vdevs such as mirror and RAID-Z the picture is more complex.
2389 * A vdev's DTL_PARTIAL is the union of its children's DTL_PARTIALs, because
2390 * if any child is less than fully replicated, then so is its parent.
2391 * A vdev's DTL_MISSING is a modified union of its children's DTL_MISSINGs,
2392 * comprising only those txgs which appear in 'maxfaults' or more children;
2393 * those are the txgs we don't have enough replication to read. For example,
2394 * double-parity RAID-Z can tolerate up to two missing devices (maxfaults == 2);
2395 * thus, its DTL_MISSING consists of the set of txgs that appear in more than
2396 * two child DTL_MISSING maps.
2397 *
2398 * It should be clear from the above that to compute the DTLs and outage maps
2399 * for all vdevs, it suffices to know just the leaf vdevs' DTL_MISSING maps.
2400 * Therefore, that is all we keep on disk. When loading the pool, or after
2401 * a configuration change, we generate all other DTLs from first principles.
2402 */
2403 void
2404 vdev_dtl_dirty(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
2405 {
2406 range_tree_t *rt = vd->vdev_dtl[t];
2407
2408 ASSERT(t < DTL_TYPES);
2409 ASSERT(vd != vd->vdev_spa->spa_root_vdev);
2410 ASSERT(spa_writeable(vd->vdev_spa));
2411
2412 mutex_enter(&vd->vdev_dtl_lock);
2413 if (!range_tree_contains(rt, txg, size))
2414 range_tree_add(rt, txg, size);
2415 mutex_exit(&vd->vdev_dtl_lock);
2416 }
2417
2418 boolean_t
2419 vdev_dtl_contains(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
2420 {
2421 range_tree_t *rt = vd->vdev_dtl[t];
2422 boolean_t dirty = B_FALSE;
2423
2424 ASSERT(t < DTL_TYPES);
2425 ASSERT(vd != vd->vdev_spa->spa_root_vdev);
2426
2427 /*
2428 * While we are loading the pool, the DTLs have not been loaded yet.
2429 * Ignore the DTLs and try all devices. This avoids a recursive
2430 * mutex enter on the vdev_dtl_lock, and also makes us try hard
2431 * when loading the pool (relying on the checksum to ensure that
2432 * we get the right data -- note that we while loading, we are
2433 * only reading the MOS, which is always checksummed).
2434 */
2435 if (vd->vdev_spa->spa_load_state != SPA_LOAD_NONE)
2436 return (B_FALSE);
2437
2438 mutex_enter(&vd->vdev_dtl_lock);
2439 if (!range_tree_is_empty(rt))
2440 dirty = range_tree_contains(rt, txg, size);
2441 mutex_exit(&vd->vdev_dtl_lock);
2442
2443 return (dirty);
2444 }
2445
2446 boolean_t
2447 vdev_dtl_empty(vdev_t *vd, vdev_dtl_type_t t)
2448 {
2449 range_tree_t *rt = vd->vdev_dtl[t];
2450 boolean_t empty;
2451
2452 mutex_enter(&vd->vdev_dtl_lock);
2453 empty = range_tree_is_empty(rt);
2454 mutex_exit(&vd->vdev_dtl_lock);
2455
2456 return (empty);
2457 }
2458
2459 /*
2460 * Returns B_TRUE if vdev determines offset needs to be resilvered.
2461 */
2462 boolean_t
2463 vdev_dtl_need_resilver(vdev_t *vd, uint64_t offset, size_t psize)
2464 {
2465 ASSERT(vd != vd->vdev_spa->spa_root_vdev);
2466
2467 if (vd->vdev_ops->vdev_op_need_resilver == NULL ||
2468 vd->vdev_ops->vdev_op_leaf)
2469 return (B_TRUE);
2470
2471 return (vd->vdev_ops->vdev_op_need_resilver(vd, offset, psize));
2472 }
2473
2474 /*
2475 * Returns the lowest txg in the DTL range.
2476 */
2477 static uint64_t
2478 vdev_dtl_min(vdev_t *vd)
2479 {
2480 range_seg_t *rs;
2481
2482 ASSERT(MUTEX_HELD(&vd->vdev_dtl_lock));
2483 ASSERT3U(range_tree_space(vd->vdev_dtl[DTL_MISSING]), !=, 0);
2484 ASSERT0(vd->vdev_children);
2485
2486 rs = avl_first(&vd->vdev_dtl[DTL_MISSING]->rt_root);
2487 return (rs->rs_start - 1);
2488 }
2489
2490 /*
2491 * Returns the highest txg in the DTL.
2492 */
2493 static uint64_t
2494 vdev_dtl_max(vdev_t *vd)
2495 {
2496 range_seg_t *rs;
2497
2498 ASSERT(MUTEX_HELD(&vd->vdev_dtl_lock));
2499 ASSERT3U(range_tree_space(vd->vdev_dtl[DTL_MISSING]), !=, 0);
2500 ASSERT0(vd->vdev_children);
2501
2502 rs = avl_last(&vd->vdev_dtl[DTL_MISSING]->rt_root);
2503 return (rs->rs_end);
2504 }
2505
2506 /*
2507 * Determine if a resilvering vdev should remove any DTL entries from
2508 * its range. If the vdev was resilvering for the entire duration of the
2509 * scan then it should excise that range from its DTLs. Otherwise, this
2510 * vdev is considered partially resilvered and should leave its DTL
2511 * entries intact. The comment in vdev_dtl_reassess() describes how we
2512 * excise the DTLs.
2513 */
2514 static boolean_t
2515 vdev_dtl_should_excise(vdev_t *vd)
2516 {
2517 spa_t *spa = vd->vdev_spa;
2518 dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan;
2519
2520 ASSERT0(scn->scn_phys.scn_errors);
2521 ASSERT0(vd->vdev_children);
2522
2523 if (vd->vdev_state < VDEV_STATE_DEGRADED)
2524 return (B_FALSE);
2525
2526 if (vd->vdev_resilver_deferred)
2527 return (B_FALSE);
2528
2529 if (vd->vdev_resilver_txg == 0 ||
2530 range_tree_is_empty(vd->vdev_dtl[DTL_MISSING]))
2531 return (B_TRUE);
2532
2533 /*
2534 * When a resilver is initiated the scan will assign the scn_max_txg
2535 * value to the highest txg value that exists in all DTLs. If this
2536 * device's max DTL is not part of this scan (i.e. it is not in
2537 * the range (scn_min_txg, scn_max_txg] then it is not eligible
2538 * for excision.
2539 */
2540 if (vdev_dtl_max(vd) <= scn->scn_phys.scn_max_txg) {
2541 ASSERT3U(scn->scn_phys.scn_min_txg, <=, vdev_dtl_min(vd));
2542 ASSERT3U(scn->scn_phys.scn_min_txg, <, vd->vdev_resilver_txg);
2543 ASSERT3U(vd->vdev_resilver_txg, <=, scn->scn_phys.scn_max_txg);
2544 return (B_TRUE);
2545 }
2546 return (B_FALSE);
2547 }
2548
2549 /*
2550 * Reassess DTLs after a config change or scrub completion. If txg == 0 no
2551 * write operations will be issued to the pool.
2552 */
2553 void
2554 vdev_dtl_reassess(vdev_t *vd, uint64_t txg, uint64_t scrub_txg, int scrub_done)
2555 {
2556 spa_t *spa = vd->vdev_spa;
2557 avl_tree_t reftree;
2558 int minref;
2559
2560 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
2561
2562 for (int c = 0; c < vd->vdev_children; c++)
2563 vdev_dtl_reassess(vd->vdev_child[c], txg,
2564 scrub_txg, scrub_done);
2565
2566 if (vd == spa->spa_root_vdev || !vdev_is_concrete(vd) || vd->vdev_aux)
2567 return;
2568
2569 if (vd->vdev_ops->vdev_op_leaf) {
2570 dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan;
2571
2572 mutex_enter(&vd->vdev_dtl_lock);
2573
2574 /*
2575 * If requested, pretend the scan completed cleanly.
2576 */
2577 if (zfs_scan_ignore_errors && scn)
2578 scn->scn_phys.scn_errors = 0;
2579
2580 /*
2581 * If we've completed a scan cleanly then determine
2582 * if this vdev should remove any DTLs. We only want to
2583 * excise regions on vdevs that were available during
2584 * the entire duration of this scan.
2585 */
2586 if (scrub_txg != 0 &&
2587 (spa->spa_scrub_started ||
2588 (scn != NULL && scn->scn_phys.scn_errors == 0)) &&
2589 vdev_dtl_should_excise(vd)) {
2590 /*
2591 * We completed a scrub up to scrub_txg. If we
2592 * did it without rebooting, then the scrub dtl
2593 * will be valid, so excise the old region and
2594 * fold in the scrub dtl. Otherwise, leave the
2595 * dtl as-is if there was an error.
2596 *
2597 * There's little trick here: to excise the beginning
2598 * of the DTL_MISSING map, we put it into a reference
2599 * tree and then add a segment with refcnt -1 that
2600 * covers the range [0, scrub_txg). This means
2601 * that each txg in that range has refcnt -1 or 0.
2602 * We then add DTL_SCRUB with a refcnt of 2, so that
2603 * entries in the range [0, scrub_txg) will have a
2604 * positive refcnt -- either 1 or 2. We then convert
2605 * the reference tree into the new DTL_MISSING map.
2606 */
2607 space_reftree_create(&reftree);
2608 space_reftree_add_map(&reftree,
2609 vd->vdev_dtl[DTL_MISSING], 1);
2610 space_reftree_add_seg(&reftree, 0, scrub_txg, -1);
2611 space_reftree_add_map(&reftree,
2612 vd->vdev_dtl[DTL_SCRUB], 2);
2613 space_reftree_generate_map(&reftree,
2614 vd->vdev_dtl[DTL_MISSING], 1);
2615 space_reftree_destroy(&reftree);
2616 }
2617 range_tree_vacate(vd->vdev_dtl[DTL_PARTIAL], NULL, NULL);
2618 range_tree_walk(vd->vdev_dtl[DTL_MISSING],
2619 range_tree_add, vd->vdev_dtl[DTL_PARTIAL]);
2620 if (scrub_done)
2621 range_tree_vacate(vd->vdev_dtl[DTL_SCRUB], NULL, NULL);
2622 range_tree_vacate(vd->vdev_dtl[DTL_OUTAGE], NULL, NULL);
2623 if (!vdev_readable(vd))
2624 range_tree_add(vd->vdev_dtl[DTL_OUTAGE], 0, -1ULL);
2625 else
2626 range_tree_walk(vd->vdev_dtl[DTL_MISSING],
2627 range_tree_add, vd->vdev_dtl[DTL_OUTAGE]);
2628
2629 /*
2630 * If the vdev was resilvering and no longer has any
2631 * DTLs then reset its resilvering flag and dirty
2632 * the top level so that we persist the change.
2633 */
2634 if (txg != 0 && vd->vdev_resilver_txg != 0 &&
2635 range_tree_is_empty(vd->vdev_dtl[DTL_MISSING]) &&
2636 range_tree_is_empty(vd->vdev_dtl[DTL_OUTAGE])) {
2637 vd->vdev_resilver_txg = 0;
2638 vdev_config_dirty(vd->vdev_top);
2639 }
2640
2641 mutex_exit(&vd->vdev_dtl_lock);
2642
2643 if (txg != 0)
2644 vdev_dirty(vd->vdev_top, VDD_DTL, vd, txg);
2645 return;
2646 }
2647
2648 mutex_enter(&vd->vdev_dtl_lock);
2649 for (int t = 0; t < DTL_TYPES; t++) {
2650 /* account for child's outage in parent's missing map */
2651 int s = (t == DTL_MISSING) ? DTL_OUTAGE: t;
2652 if (t == DTL_SCRUB)
2653 continue; /* leaf vdevs only */
2654 if (t == DTL_PARTIAL)
2655 minref = 1; /* i.e. non-zero */
2656 else if (vd->vdev_nparity != 0)
2657 minref = vd->vdev_nparity + 1; /* RAID-Z */
2658 else
2659 minref = vd->vdev_children; /* any kind of mirror */
2660 space_reftree_create(&reftree);
2661 for (int c = 0; c < vd->vdev_children; c++) {
2662 vdev_t *cvd = vd->vdev_child[c];
2663 mutex_enter(&cvd->vdev_dtl_lock);
2664 space_reftree_add_map(&reftree, cvd->vdev_dtl[s], 1);
2665 mutex_exit(&cvd->vdev_dtl_lock);
2666 }
2667 space_reftree_generate_map(&reftree, vd->vdev_dtl[t], minref);
2668 space_reftree_destroy(&reftree);
2669 }
2670 mutex_exit(&vd->vdev_dtl_lock);
2671 }
2672
2673 int
2674 vdev_dtl_load(vdev_t *vd)
2675 {
2676 spa_t *spa = vd->vdev_spa;
2677 objset_t *mos = spa->spa_meta_objset;
2678 int error = 0;
2679
2680 if (vd->vdev_ops->vdev_op_leaf && vd->vdev_dtl_object != 0) {
2681 ASSERT(vdev_is_concrete(vd));
2682
2683 error = space_map_open(&vd->vdev_dtl_sm, mos,
2684 vd->vdev_dtl_object, 0, -1ULL, 0);
2685 if (error)
2686 return (error);
2687 ASSERT(vd->vdev_dtl_sm != NULL);
2688
2689 mutex_enter(&vd->vdev_dtl_lock);
2690
2691 /*
2692 * Now that we've opened the space_map we need to update
2693 * the in-core DTL.
2694 */
2695 space_map_update(vd->vdev_dtl_sm);
2696
2697 error = space_map_load(vd->vdev_dtl_sm,
2698 vd->vdev_dtl[DTL_MISSING], SM_ALLOC);
2699 mutex_exit(&vd->vdev_dtl_lock);
2700
2701 return (error);
2702 }
2703
2704 for (int c = 0; c < vd->vdev_children; c++) {
2705 error = vdev_dtl_load(vd->vdev_child[c]);
2706 if (error != 0)
2707 break;
2708 }
2709
2710 return (error);
2711 }
2712
2713 static void
2714 vdev_zap_allocation_data(vdev_t *vd, dmu_tx_t *tx)
2715 {
2716 spa_t *spa = vd->vdev_spa;
2717 objset_t *mos = spa->spa_meta_objset;
2718 vdev_alloc_bias_t alloc_bias = vd->vdev_alloc_bias;
2719 const char *string;
2720
2721 ASSERT(alloc_bias != VDEV_BIAS_NONE);
2722
2723 string =
2724 (alloc_bias == VDEV_BIAS_LOG) ? VDEV_ALLOC_BIAS_LOG :
2725 (alloc_bias == VDEV_BIAS_SPECIAL) ? VDEV_ALLOC_BIAS_SPECIAL :
2726 (alloc_bias == VDEV_BIAS_DEDUP) ? VDEV_ALLOC_BIAS_DEDUP : NULL;
2727
2728 ASSERT(string != NULL);
2729 VERIFY0(zap_add(mos, vd->vdev_top_zap, VDEV_TOP_ZAP_ALLOCATION_BIAS,
2730 1, strlen(string) + 1, string, tx));
2731
2732 if (alloc_bias == VDEV_BIAS_SPECIAL || alloc_bias == VDEV_BIAS_DEDUP) {
2733 spa_activate_allocation_classes(spa, tx);
2734 }
2735 }
2736
2737 void
2738 vdev_destroy_unlink_zap(vdev_t *vd, uint64_t zapobj, dmu_tx_t *tx)
2739 {
2740 spa_t *spa = vd->vdev_spa;
2741
2742 VERIFY0(zap_destroy(spa->spa_meta_objset, zapobj, tx));
2743 VERIFY0(zap_remove_int(spa->spa_meta_objset, spa->spa_all_vdev_zaps,
2744 zapobj, tx));
2745 }
2746
2747 uint64_t
2748 vdev_create_link_zap(vdev_t *vd, dmu_tx_t *tx)
2749 {
2750 spa_t *spa = vd->vdev_spa;
2751 uint64_t zap = zap_create(spa->spa_meta_objset, DMU_OTN_ZAP_METADATA,
2752 DMU_OT_NONE, 0, tx);
2753
2754 ASSERT(zap != 0);
2755 VERIFY0(zap_add_int(spa->spa_meta_objset, spa->spa_all_vdev_zaps,
2756 zap, tx));
2757
2758 return (zap);
2759 }
2760
2761 void
2762 vdev_construct_zaps(vdev_t *vd, dmu_tx_t *tx)
2763 {
2764 if (vd->vdev_ops != &vdev_hole_ops &&
2765 vd->vdev_ops != &vdev_missing_ops &&
2766 vd->vdev_ops != &vdev_root_ops &&
2767 !vd->vdev_top->vdev_removing) {
2768 if (vd->vdev_ops->vdev_op_leaf && vd->vdev_leaf_zap == 0) {
2769 vd->vdev_leaf_zap = vdev_create_link_zap(vd, tx);
2770 }
2771 if (vd == vd->vdev_top && vd->vdev_top_zap == 0) {
2772 vd->vdev_top_zap = vdev_create_link_zap(vd, tx);
2773 if (vd->vdev_alloc_bias != VDEV_BIAS_NONE)
2774 vdev_zap_allocation_data(vd, tx);
2775 }
2776 }
2777
2778 for (uint64_t i = 0; i < vd->vdev_children; i++) {
2779 vdev_construct_zaps(vd->vdev_child[i], tx);
2780 }
2781 }
2782
2783 void
2784 vdev_dtl_sync(vdev_t *vd, uint64_t txg)
2785 {
2786 spa_t *spa = vd->vdev_spa;
2787 range_tree_t *rt = vd->vdev_dtl[DTL_MISSING];
2788 objset_t *mos = spa->spa_meta_objset;
2789 range_tree_t *rtsync;
2790 dmu_tx_t *tx;
2791 uint64_t object = space_map_object(vd->vdev_dtl_sm);
2792
2793 ASSERT(vdev_is_concrete(vd));
2794 ASSERT(vd->vdev_ops->vdev_op_leaf);
2795
2796 tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
2797
2798 if (vd->vdev_detached || vd->vdev_top->vdev_removing) {
2799 mutex_enter(&vd->vdev_dtl_lock);
2800 space_map_free(vd->vdev_dtl_sm, tx);
2801 space_map_close(vd->vdev_dtl_sm);
2802 vd->vdev_dtl_sm = NULL;
2803 mutex_exit(&vd->vdev_dtl_lock);
2804
2805 /*
2806 * We only destroy the leaf ZAP for detached leaves or for
2807 * removed log devices. Removed data devices handle leaf ZAP
2808 * cleanup later, once cancellation is no longer possible.
2809 */
2810 if (vd->vdev_leaf_zap != 0 && (vd->vdev_detached ||
2811 vd->vdev_top->vdev_islog)) {
2812 vdev_destroy_unlink_zap(vd, vd->vdev_leaf_zap, tx);
2813 vd->vdev_leaf_zap = 0;
2814 }
2815
2816 dmu_tx_commit(tx);
2817 return;
2818 }
2819
2820 if (vd->vdev_dtl_sm == NULL) {
2821 uint64_t new_object;
2822
2823 new_object = space_map_alloc(mos, vdev_dtl_sm_blksz, tx);
2824 VERIFY3U(new_object, !=, 0);
2825
2826 VERIFY0(space_map_open(&vd->vdev_dtl_sm, mos, new_object,
2827 0, -1ULL, 0));
2828 ASSERT(vd->vdev_dtl_sm != NULL);
2829 }
2830
2831 rtsync = range_tree_create(NULL, NULL);
2832
2833 mutex_enter(&vd->vdev_dtl_lock);
2834 range_tree_walk(rt, range_tree_add, rtsync);
2835 mutex_exit(&vd->vdev_dtl_lock);
2836
2837 space_map_truncate(vd->vdev_dtl_sm, vdev_dtl_sm_blksz, tx);
2838 space_map_write(vd->vdev_dtl_sm, rtsync, SM_ALLOC, SM_NO_VDEVID, tx);
2839 range_tree_vacate(rtsync, NULL, NULL);
2840
2841 range_tree_destroy(rtsync);
2842
2843 /*
2844 * If the object for the space map has changed then dirty
2845 * the top level so that we update the config.
2846 */
2847 if (object != space_map_object(vd->vdev_dtl_sm)) {
2848 vdev_dbgmsg(vd, "txg %llu, spa %s, DTL old object %llu, "
2849 "new object %llu", (u_longlong_t)txg, spa_name(spa),
2850 (u_longlong_t)object,
2851 (u_longlong_t)space_map_object(vd->vdev_dtl_sm));
2852 vdev_config_dirty(vd->vdev_top);
2853 }
2854
2855 dmu_tx_commit(tx);
2856
2857 mutex_enter(&vd->vdev_dtl_lock);
2858 space_map_update(vd->vdev_dtl_sm);
2859 mutex_exit(&vd->vdev_dtl_lock);
2860 }
2861
2862 /*
2863 * Determine whether the specified vdev can be offlined/detached/removed
2864 * without losing data.
2865 */
2866 boolean_t
2867 vdev_dtl_required(vdev_t *vd)
2868 {
2869 spa_t *spa = vd->vdev_spa;
2870 vdev_t *tvd = vd->vdev_top;
2871 uint8_t cant_read = vd->vdev_cant_read;
2872 boolean_t required;
2873
2874 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
2875
2876 if (vd == spa->spa_root_vdev || vd == tvd)
2877 return (B_TRUE);
2878
2879 /*
2880 * Temporarily mark the device as unreadable, and then determine
2881 * whether this results in any DTL outages in the top-level vdev.
2882 * If not, we can safely offline/detach/remove the device.
2883 */
2884 vd->vdev_cant_read = B_TRUE;
2885 vdev_dtl_reassess(tvd, 0, 0, B_FALSE);
2886 required = !vdev_dtl_empty(tvd, DTL_OUTAGE);
2887 vd->vdev_cant_read = cant_read;
2888 vdev_dtl_reassess(tvd, 0, 0, B_FALSE);
2889
2890 if (!required && zio_injection_enabled)
2891 required = !!zio_handle_device_injection(vd, NULL, ECHILD);
2892
2893 return (required);
2894 }
2895
2896 /*
2897 * Determine if resilver is needed, and if so the txg range.
2898 */
2899 boolean_t
2900 vdev_resilver_needed(vdev_t *vd, uint64_t *minp, uint64_t *maxp)
2901 {
2902 boolean_t needed = B_FALSE;
2903 uint64_t thismin = UINT64_MAX;
2904 uint64_t thismax = 0;
2905
2906 if (vd->vdev_children == 0) {
2907 mutex_enter(&vd->vdev_dtl_lock);
2908 if (!range_tree_is_empty(vd->vdev_dtl[DTL_MISSING]) &&
2909 vdev_writeable(vd)) {
2910
2911 thismin = vdev_dtl_min(vd);
2912 thismax = vdev_dtl_max(vd);
2913 needed = B_TRUE;
2914 }
2915 mutex_exit(&vd->vdev_dtl_lock);
2916 } else {
2917 for (int c = 0; c < vd->vdev_children; c++) {
2918 vdev_t *cvd = vd->vdev_child[c];
2919 uint64_t cmin, cmax;
2920
2921 if (vdev_resilver_needed(cvd, &cmin, &cmax)) {
2922 thismin = MIN(thismin, cmin);
2923 thismax = MAX(thismax, cmax);
2924 needed = B_TRUE;
2925 }
2926 }
2927 }
2928
2929 if (needed && minp) {
2930 *minp = thismin;
2931 *maxp = thismax;
2932 }
2933 return (needed);
2934 }
2935
2936 /*
2937 * Gets the checkpoint space map object from the vdev's ZAP. On success sm_obj
2938 * will contain either the checkpoint spacemap object or zero if none exists.
2939 * All other errors are returned to the caller.
2940 */
2941 int
2942 vdev_checkpoint_sm_object(vdev_t *vd, uint64_t *sm_obj)
2943 {
2944 ASSERT0(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER));
2945
2946 if (vd->vdev_top_zap == 0) {
2947 *sm_obj = 0;
2948 return (0);
2949 }
2950
2951 int error = zap_lookup(spa_meta_objset(vd->vdev_spa), vd->vdev_top_zap,
2952 VDEV_TOP_ZAP_POOL_CHECKPOINT_SM, sizeof (uint64_t), 1, sm_obj);
2953 if (error == ENOENT) {
2954 *sm_obj = 0;
2955 error = 0;
2956 }
2957
2958 return (error);
2959 }
2960
2961 int
2962 vdev_load(vdev_t *vd)
2963 {
2964 int error = 0;
2965
2966 /*
2967 * Recursively load all children.
2968 */
2969 for (int c = 0; c < vd->vdev_children; c++) {
2970 error = vdev_load(vd->vdev_child[c]);
2971 if (error != 0) {
2972 return (error);
2973 }
2974 }
2975
2976 vdev_set_deflate_ratio(vd);
2977
2978 /*
2979 * On spa_load path, grab the allocation bias from our zap
2980 */
2981 if (vd == vd->vdev_top && vd->vdev_top_zap != 0) {
2982 spa_t *spa = vd->vdev_spa;
2983 char bias_str[64];
2984
2985 if (zap_lookup(spa->spa_meta_objset, vd->vdev_top_zap,
2986 VDEV_TOP_ZAP_ALLOCATION_BIAS, 1, sizeof (bias_str),
2987 bias_str) == 0) {
2988 ASSERT(vd->vdev_alloc_bias == VDEV_BIAS_NONE);
2989 vd->vdev_alloc_bias = vdev_derive_alloc_bias(bias_str);
2990 }
2991 }
2992
2993 /*
2994 * If this is a top-level vdev, initialize its metaslabs.
2995 */
2996 if (vd == vd->vdev_top && vdev_is_concrete(vd)) {
2997 vdev_metaslab_group_create(vd);
2998
2999 if (vd->vdev_ashift == 0 || vd->vdev_asize == 0) {
3000 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
3001 VDEV_AUX_CORRUPT_DATA);
3002 vdev_dbgmsg(vd, "vdev_load: invalid size. ashift=%llu, "
3003 "asize=%llu", (u_longlong_t)vd->vdev_ashift,
3004 (u_longlong_t)vd->vdev_asize);
3005 return (SET_ERROR(ENXIO));
3006 } else if ((error = vdev_metaslab_init(vd, 0)) != 0) {
3007 vdev_dbgmsg(vd, "vdev_load: metaslab_init failed "
3008 "[error=%d]", error);
3009 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
3010 VDEV_AUX_CORRUPT_DATA);
3011 return (error);
3012 }
3013
3014 uint64_t checkpoint_sm_obj;
3015 error = vdev_checkpoint_sm_object(vd, &checkpoint_sm_obj);
3016 if (error == 0 && checkpoint_sm_obj != 0) {
3017 objset_t *mos = spa_meta_objset(vd->vdev_spa);
3018 ASSERT(vd->vdev_asize != 0);
3019 ASSERT3P(vd->vdev_checkpoint_sm, ==, NULL);
3020
3021 if ((error = space_map_open(&vd->vdev_checkpoint_sm,
3022 mos, checkpoint_sm_obj, 0, vd->vdev_asize,
3023 vd->vdev_ashift))) {
3024 vdev_dbgmsg(vd, "vdev_load: space_map_open "
3025 "failed for checkpoint spacemap (obj %llu) "
3026 "[error=%d]",
3027 (u_longlong_t)checkpoint_sm_obj, error);
3028 return (error);
3029 }
3030 ASSERT3P(vd->vdev_checkpoint_sm, !=, NULL);
3031 space_map_update(vd->vdev_checkpoint_sm);
3032
3033 /*
3034 * Since the checkpoint_sm contains free entries
3035 * exclusively we can use sm_alloc to indicate the
3036 * cumulative checkpointed space that has been freed.
3037 */
3038 vd->vdev_stat.vs_checkpoint_space =
3039 -vd->vdev_checkpoint_sm->sm_alloc;
3040 vd->vdev_spa->spa_checkpoint_info.sci_dspace +=
3041 vd->vdev_stat.vs_checkpoint_space;
3042 } else if (error != 0) {
3043 vdev_dbgmsg(vd, "vdev_load: failed to retrieve "
3044 "checkpoint space map object from vdev ZAP "
3045 "[error=%d]", error);
3046 return (error);
3047 }
3048 }
3049
3050 /*
3051 * If this is a leaf vdev, load its DTL.
3052 */
3053 if (vd->vdev_ops->vdev_op_leaf && (error = vdev_dtl_load(vd)) != 0) {
3054 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
3055 VDEV_AUX_CORRUPT_DATA);
3056 vdev_dbgmsg(vd, "vdev_load: vdev_dtl_load failed "
3057 "[error=%d]", error);
3058 return (error);
3059 }
3060
3061 uint64_t obsolete_sm_object;
3062 error = vdev_obsolete_sm_object(vd, &obsolete_sm_object);
3063 if (error == 0 && obsolete_sm_object != 0) {
3064 objset_t *mos = vd->vdev_spa->spa_meta_objset;
3065 ASSERT(vd->vdev_asize != 0);
3066 ASSERT3P(vd->vdev_obsolete_sm, ==, NULL);
3067
3068 if ((error = space_map_open(&vd->vdev_obsolete_sm, mos,
3069 obsolete_sm_object, 0, vd->vdev_asize, 0))) {
3070 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
3071 VDEV_AUX_CORRUPT_DATA);
3072 vdev_dbgmsg(vd, "vdev_load: space_map_open failed for "
3073 "obsolete spacemap (obj %llu) [error=%d]",
3074 (u_longlong_t)obsolete_sm_object, error);
3075 return (error);
3076 }
3077 space_map_update(vd->vdev_obsolete_sm);
3078 } else if (error != 0) {
3079 vdev_dbgmsg(vd, "vdev_load: failed to retrieve obsolete "
3080 "space map object from vdev ZAP [error=%d]", error);
3081 return (error);
3082 }
3083
3084 return (0);
3085 }
3086
3087 /*
3088 * The special vdev case is used for hot spares and l2cache devices. Its
3089 * sole purpose it to set the vdev state for the associated vdev. To do this,
3090 * we make sure that we can open the underlying device, then try to read the
3091 * label, and make sure that the label is sane and that it hasn't been
3092 * repurposed to another pool.
3093 */
3094 int
3095 vdev_validate_aux(vdev_t *vd)
3096 {
3097 nvlist_t *label;
3098 uint64_t guid, version;
3099 uint64_t state;
3100
3101 if (!vdev_readable(vd))
3102 return (0);
3103
3104 if ((label = vdev_label_read_config(vd, -1ULL)) == NULL) {
3105 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
3106 VDEV_AUX_CORRUPT_DATA);
3107 return (-1);
3108 }
3109
3110 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_VERSION, &version) != 0 ||
3111 !SPA_VERSION_IS_SUPPORTED(version) ||
3112 nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0 ||
3113 guid != vd->vdev_guid ||
3114 nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, &state) != 0) {
3115 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
3116 VDEV_AUX_CORRUPT_DATA);
3117 nvlist_free(label);
3118 return (-1);
3119 }
3120
3121 /*
3122 * We don't actually check the pool state here. If it's in fact in
3123 * use by another pool, we update this fact on the fly when requested.
3124 */
3125 nvlist_free(label);
3126 return (0);
3127 }
3128
3129 /*
3130 * Free the objects used to store this vdev's spacemaps, and the array
3131 * that points to them.
3132 */
3133 void
3134 vdev_destroy_spacemaps(vdev_t *vd, dmu_tx_t *tx)
3135 {
3136 if (vd->vdev_ms_array == 0)
3137 return;
3138
3139 objset_t *mos = vd->vdev_spa->spa_meta_objset;
3140 uint64_t array_count = vd->vdev_asize >> vd->vdev_ms_shift;
3141 size_t array_bytes = array_count * sizeof (uint64_t);
3142 uint64_t *smobj_array = kmem_alloc(array_bytes, KM_SLEEP);
3143 VERIFY0(dmu_read(mos, vd->vdev_ms_array, 0,
3144 array_bytes, smobj_array, 0));
3145
3146 for (uint64_t i = 0; i < array_count; i++) {
3147 uint64_t smobj = smobj_array[i];
3148 if (smobj == 0)
3149 continue;
3150
3151 space_map_free_obj(mos, smobj, tx);
3152 }
3153
3154 kmem_free(smobj_array, array_bytes);
3155 VERIFY0(dmu_object_free(mos, vd->vdev_ms_array, tx));
3156 vd->vdev_ms_array = 0;
3157 }
3158
3159 static void
3160 vdev_remove_empty_log(vdev_t *vd, uint64_t txg)
3161 {
3162 spa_t *spa = vd->vdev_spa;
3163
3164 ASSERT(vd->vdev_islog);
3165 ASSERT(vd == vd->vdev_top);
3166 ASSERT3U(txg, ==, spa_syncing_txg(spa));
3167
3168 if (vd->vdev_ms != NULL) {
3169 metaslab_group_t *mg = vd->vdev_mg;
3170
3171 metaslab_group_histogram_verify(mg);
3172 metaslab_class_histogram_verify(mg->mg_class);
3173
3174 for (int m = 0; m < vd->vdev_ms_count; m++) {
3175 metaslab_t *msp = vd->vdev_ms[m];
3176
3177 if (msp == NULL || msp->ms_sm == NULL)
3178 continue;
3179
3180 mutex_enter(&msp->ms_lock);
3181 /*
3182 * If the metaslab was not loaded when the vdev
3183 * was removed then the histogram accounting may
3184 * not be accurate. Update the histogram information
3185 * here so that we ensure that the metaslab group
3186 * and metaslab class are up-to-date.
3187 */
3188 metaslab_group_histogram_remove(mg, msp);
3189
3190 VERIFY0(space_map_allocated(msp->ms_sm));
3191 space_map_close(msp->ms_sm);
3192 msp->ms_sm = NULL;
3193 mutex_exit(&msp->ms_lock);
3194 }
3195
3196 if (vd->vdev_checkpoint_sm != NULL) {
3197 ASSERT(spa_has_checkpoint(spa));
3198 space_map_close(vd->vdev_checkpoint_sm);
3199 vd->vdev_checkpoint_sm = NULL;
3200 }
3201
3202 metaslab_group_histogram_verify(mg);
3203 metaslab_class_histogram_verify(mg->mg_class);
3204
3205 for (int i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i++)
3206 ASSERT0(mg->mg_histogram[i]);
3207 }
3208
3209 dmu_tx_t *tx = dmu_tx_create_assigned(spa_get_dsl(spa), txg);
3210
3211 vdev_destroy_spacemaps(vd, tx);
3212 if (vd->vdev_top_zap != 0) {
3213 vdev_destroy_unlink_zap(vd, vd->vdev_top_zap, tx);
3214 vd->vdev_top_zap = 0;
3215 }
3216
3217 dmu_tx_commit(tx);
3218 }
3219
3220 void
3221 vdev_sync_done(vdev_t *vd, uint64_t txg)
3222 {
3223 metaslab_t *msp;
3224 boolean_t reassess = !txg_list_empty(&vd->vdev_ms_list, TXG_CLEAN(txg));
3225
3226 ASSERT(vdev_is_concrete(vd));
3227
3228 while ((msp = txg_list_remove(&vd->vdev_ms_list, TXG_CLEAN(txg)))
3229 != NULL)
3230 metaslab_sync_done(msp, txg);
3231
3232 if (reassess)
3233 metaslab_sync_reassess(vd->vdev_mg);
3234 }
3235
3236 void
3237 vdev_sync(vdev_t *vd, uint64_t txg)
3238 {
3239 spa_t *spa = vd->vdev_spa;
3240 vdev_t *lvd;
3241 metaslab_t *msp;
3242 dmu_tx_t *tx;
3243
3244 if (range_tree_space(vd->vdev_obsolete_segments) > 0) {
3245 dmu_tx_t *tx;
3246
3247 ASSERT(vd->vdev_removing ||
3248 vd->vdev_ops == &vdev_indirect_ops);
3249
3250 tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
3251 vdev_indirect_sync_obsolete(vd, tx);
3252 dmu_tx_commit(tx);
3253
3254 /*
3255 * If the vdev is indirect, it can't have dirty
3256 * metaslabs or DTLs.
3257 */
3258 if (vd->vdev_ops == &vdev_indirect_ops) {
3259 ASSERT(txg_list_empty(&vd->vdev_ms_list, txg));
3260 ASSERT(txg_list_empty(&vd->vdev_dtl_list, txg));
3261 return;
3262 }
3263 }
3264
3265 ASSERT(vdev_is_concrete(vd));
3266
3267 if (vd->vdev_ms_array == 0 && vd->vdev_ms_shift != 0 &&
3268 !vd->vdev_removing) {
3269 ASSERT(vd == vd->vdev_top);
3270 ASSERT0(vd->vdev_indirect_config.vic_mapping_object);
3271 tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
3272 vd->vdev_ms_array = dmu_object_alloc(spa->spa_meta_objset,
3273 DMU_OT_OBJECT_ARRAY, 0, DMU_OT_NONE, 0, tx);
3274 ASSERT(vd->vdev_ms_array != 0);
3275 vdev_config_dirty(vd);
3276 dmu_tx_commit(tx);
3277 }
3278
3279 while ((msp = txg_list_remove(&vd->vdev_ms_list, txg)) != NULL) {
3280 metaslab_sync(msp, txg);
3281 (void) txg_list_add(&vd->vdev_ms_list, msp, TXG_CLEAN(txg));
3282 }
3283
3284 while ((lvd = txg_list_remove(&vd->vdev_dtl_list, txg)) != NULL)
3285 vdev_dtl_sync(lvd, txg);
3286
3287 /*
3288 * If this is an empty log device being removed, destroy the
3289 * metadata associated with it.
3290 */
3291 if (vd->vdev_islog && vd->vdev_stat.vs_alloc == 0 && vd->vdev_removing)
3292 vdev_remove_empty_log(vd, txg);
3293
3294 (void) txg_list_add(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg));
3295 }
3296
3297 uint64_t
3298 vdev_psize_to_asize(vdev_t *vd, uint64_t psize)
3299 {
3300 return (vd->vdev_ops->vdev_op_asize(vd, psize));
3301 }
3302
3303 /*
3304 * Mark the given vdev faulted. A faulted vdev behaves as if the device could
3305 * not be opened, and no I/O is attempted.
3306 */
3307 int
3308 vdev_fault(spa_t *spa, uint64_t guid, vdev_aux_t aux)
3309 {
3310 vdev_t *vd, *tvd;
3311
3312 spa_vdev_state_enter(spa, SCL_NONE);
3313
3314 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
3315 return (spa_vdev_state_exit(spa, NULL, ENODEV));
3316
3317 if (!vd->vdev_ops->vdev_op_leaf)
3318 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
3319
3320 tvd = vd->vdev_top;
3321
3322 /*
3323 * If user did a 'zpool offline -f' then make the fault persist across
3324 * reboots.
3325 */
3326 if (aux == VDEV_AUX_EXTERNAL_PERSIST) {
3327 /*
3328 * There are two kinds of forced faults: temporary and
3329 * persistent. Temporary faults go away at pool import, while
3330 * persistent faults stay set. Both types of faults can be
3331 * cleared with a zpool clear.
3332 *
3333 * We tell if a vdev is persistently faulted by looking at the
3334 * ZPOOL_CONFIG_AUX_STATE nvpair. If it's set to "external" at
3335 * import then it's a persistent fault. Otherwise, it's
3336 * temporary. We get ZPOOL_CONFIG_AUX_STATE set to "external"
3337 * by setting vd.vdev_stat.vs_aux to VDEV_AUX_EXTERNAL. This
3338 * tells vdev_config_generate() (which gets run later) to set
3339 * ZPOOL_CONFIG_AUX_STATE to "external" in the nvlist.
3340 */
3341 vd->vdev_stat.vs_aux = VDEV_AUX_EXTERNAL;
3342 vd->vdev_tmpoffline = B_FALSE;
3343 aux = VDEV_AUX_EXTERNAL;
3344 } else {
3345 vd->vdev_tmpoffline = B_TRUE;
3346 }
3347
3348 /*
3349 * We don't directly use the aux state here, but if we do a
3350 * vdev_reopen(), we need this value to be present to remember why we
3351 * were faulted.
3352 */
3353 vd->vdev_label_aux = aux;
3354
3355 /*
3356 * Faulted state takes precedence over degraded.
3357 */
3358 vd->vdev_delayed_close = B_FALSE;
3359 vd->vdev_faulted = 1ULL;
3360 vd->vdev_degraded = 0ULL;
3361 vdev_set_state(vd, B_FALSE, VDEV_STATE_FAULTED, aux);
3362
3363 /*
3364 * If this device has the only valid copy of the data, then
3365 * back off and simply mark the vdev as degraded instead.
3366 */
3367 if (!tvd->vdev_islog && vd->vdev_aux == NULL && vdev_dtl_required(vd)) {
3368 vd->vdev_degraded = 1ULL;
3369 vd->vdev_faulted = 0ULL;
3370
3371 /*
3372 * If we reopen the device and it's not dead, only then do we
3373 * mark it degraded.
3374 */
3375 vdev_reopen(tvd);
3376
3377 if (vdev_readable(vd))
3378 vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, aux);
3379 }
3380
3381 return (spa_vdev_state_exit(spa, vd, 0));
3382 }
3383
3384 /*
3385 * Mark the given vdev degraded. A degraded vdev is purely an indication to the
3386 * user that something is wrong. The vdev continues to operate as normal as far
3387 * as I/O is concerned.
3388 */
3389 int
3390 vdev_degrade(spa_t *spa, uint64_t guid, vdev_aux_t aux)
3391 {
3392 vdev_t *vd;
3393
3394 spa_vdev_state_enter(spa, SCL_NONE);
3395
3396 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
3397 return (spa_vdev_state_exit(spa, NULL, ENODEV));
3398
3399 if (!vd->vdev_ops->vdev_op_leaf)
3400 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
3401
3402 /*
3403 * If the vdev is already faulted, then don't do anything.
3404 */
3405 if (vd->vdev_faulted || vd->vdev_degraded)
3406 return (spa_vdev_state_exit(spa, NULL, 0));
3407
3408 vd->vdev_degraded = 1ULL;
3409 if (!vdev_is_dead(vd))
3410 vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED,
3411 aux);
3412
3413 return (spa_vdev_state_exit(spa, vd, 0));
3414 }
3415
3416 /*
3417 * Online the given vdev.
3418 *
3419 * If 'ZFS_ONLINE_UNSPARE' is set, it implies two things. First, any attached
3420 * spare device should be detached when the device finishes resilvering.
3421 * Second, the online should be treated like a 'test' online case, so no FMA
3422 * events are generated if the device fails to open.
3423 */
3424 int
3425 vdev_online(spa_t *spa, uint64_t guid, uint64_t flags, vdev_state_t *newstate)
3426 {
3427 vdev_t *vd, *tvd, *pvd, *rvd = spa->spa_root_vdev;
3428 boolean_t wasoffline;
3429 vdev_state_t oldstate;
3430
3431 spa_vdev_state_enter(spa, SCL_NONE);
3432
3433 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
3434 return (spa_vdev_state_exit(spa, NULL, ENODEV));
3435
3436 if (!vd->vdev_ops->vdev_op_leaf)
3437 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
3438
3439 wasoffline = (vd->vdev_offline || vd->vdev_tmpoffline);
3440 oldstate = vd->vdev_state;
3441
3442 tvd = vd->vdev_top;
3443 vd->vdev_offline = B_FALSE;
3444 vd->vdev_tmpoffline = B_FALSE;
3445 vd->vdev_checkremove = !!(flags & ZFS_ONLINE_CHECKREMOVE);
3446 vd->vdev_forcefault = !!(flags & ZFS_ONLINE_FORCEFAULT);
3447
3448 /* XXX - L2ARC 1.0 does not support expansion */
3449 if (!vd->vdev_aux) {
3450 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
3451 pvd->vdev_expanding = !!((flags & ZFS_ONLINE_EXPAND) ||
3452 spa->spa_autoexpand);
3453 vd->vdev_expansion_time = gethrestime_sec();
3454 }
3455
3456 vdev_reopen(tvd);
3457 vd->vdev_checkremove = vd->vdev_forcefault = B_FALSE;
3458
3459 if (!vd->vdev_aux) {
3460 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
3461 pvd->vdev_expanding = B_FALSE;
3462 }
3463
3464 if (newstate)
3465 *newstate = vd->vdev_state;
3466 if ((flags & ZFS_ONLINE_UNSPARE) &&
3467 !vdev_is_dead(vd) && vd->vdev_parent &&
3468 vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
3469 vd->vdev_parent->vdev_child[0] == vd)
3470 vd->vdev_unspare = B_TRUE;
3471
3472 if ((flags & ZFS_ONLINE_EXPAND) || spa->spa_autoexpand) {
3473
3474 /* XXX - L2ARC 1.0 does not support expansion */
3475 if (vd->vdev_aux)
3476 return (spa_vdev_state_exit(spa, vd, ENOTSUP));
3477 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
3478 }
3479
3480 /* Restart initializing if necessary */
3481 mutex_enter(&vd->vdev_initialize_lock);
3482 if (vdev_writeable(vd) &&
3483 vd->vdev_initialize_thread == NULL &&
3484 vd->vdev_initialize_state == VDEV_INITIALIZE_ACTIVE) {
3485 (void) vdev_initialize(vd);
3486 }
3487 mutex_exit(&vd->vdev_initialize_lock);
3488
3489 if (wasoffline ||
3490 (oldstate < VDEV_STATE_DEGRADED &&
3491 vd->vdev_state >= VDEV_STATE_DEGRADED))
3492 spa_event_notify(spa, vd, NULL, ESC_ZFS_VDEV_ONLINE);
3493
3494 return (spa_vdev_state_exit(spa, vd, 0));
3495 }
3496
3497 static int
3498 vdev_offline_locked(spa_t *spa, uint64_t guid, uint64_t flags)
3499 {
3500 vdev_t *vd, *tvd;
3501 int error = 0;
3502 uint64_t generation;
3503 metaslab_group_t *mg;
3504
3505 top:
3506 spa_vdev_state_enter(spa, SCL_ALLOC);
3507
3508 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
3509 return (spa_vdev_state_exit(spa, NULL, ENODEV));
3510
3511 if (!vd->vdev_ops->vdev_op_leaf)
3512 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
3513
3514 tvd = vd->vdev_top;
3515 mg = tvd->vdev_mg;
3516 generation = spa->spa_config_generation + 1;
3517
3518 /*
3519 * If the device isn't already offline, try to offline it.
3520 */
3521 if (!vd->vdev_offline) {
3522 /*
3523 * If this device has the only valid copy of some data,
3524 * don't allow it to be offlined. Log devices are always
3525 * expendable.
3526 */
3527 if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
3528 vdev_dtl_required(vd))
3529 return (spa_vdev_state_exit(spa, NULL, EBUSY));
3530
3531 /*
3532 * If the top-level is a slog and it has had allocations
3533 * then proceed. We check that the vdev's metaslab group
3534 * is not NULL since it's possible that we may have just
3535 * added this vdev but not yet initialized its metaslabs.
3536 */
3537 if (tvd->vdev_islog && mg != NULL) {
3538 /*
3539 * Prevent any future allocations.
3540 */
3541 metaslab_group_passivate(mg);
3542 (void) spa_vdev_state_exit(spa, vd, 0);
3543
3544 error = spa_reset_logs(spa);
3545
3546 /*
3547 * If the log device was successfully reset but has
3548 * checkpointed data, do not offline it.
3549 */
3550 if (error == 0 &&
3551 tvd->vdev_checkpoint_sm != NULL) {
3552 ASSERT3U(tvd->vdev_checkpoint_sm->sm_alloc,
3553 !=, 0);
3554 error = ZFS_ERR_CHECKPOINT_EXISTS;
3555 }
3556
3557 spa_vdev_state_enter(spa, SCL_ALLOC);
3558
3559 /*
3560 * Check to see if the config has changed.
3561 */
3562 if (error || generation != spa->spa_config_generation) {
3563 metaslab_group_activate(mg);
3564 if (error)
3565 return (spa_vdev_state_exit(spa,
3566 vd, error));
3567 (void) spa_vdev_state_exit(spa, vd, 0);
3568 goto top;
3569 }
3570 ASSERT0(tvd->vdev_stat.vs_alloc);
3571 }
3572
3573 /*
3574 * Offline this device and reopen its top-level vdev.
3575 * If the top-level vdev is a log device then just offline
3576 * it. Otherwise, if this action results in the top-level
3577 * vdev becoming unusable, undo it and fail the request.
3578 */
3579 vd->vdev_offline = B_TRUE;
3580 vdev_reopen(tvd);
3581
3582 if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
3583 vdev_is_dead(tvd)) {
3584 vd->vdev_offline = B_FALSE;
3585 vdev_reopen(tvd);
3586 return (spa_vdev_state_exit(spa, NULL, EBUSY));
3587 }
3588
3589 /*
3590 * Add the device back into the metaslab rotor so that
3591 * once we online the device it's open for business.
3592 */
3593 if (tvd->vdev_islog && mg != NULL)
3594 metaslab_group_activate(mg);
3595 }
3596
3597 vd->vdev_tmpoffline = !!(flags & ZFS_OFFLINE_TEMPORARY);
3598
3599 return (spa_vdev_state_exit(spa, vd, 0));
3600 }
3601
3602 int
3603 vdev_offline(spa_t *spa, uint64_t guid, uint64_t flags)
3604 {
3605 int error;
3606
3607 mutex_enter(&spa->spa_vdev_top_lock);
3608 error = vdev_offline_locked(spa, guid, flags);
3609 mutex_exit(&spa->spa_vdev_top_lock);
3610
3611 return (error);
3612 }
3613
3614 /*
3615 * Clear the error counts associated with this vdev. Unlike vdev_online() and
3616 * vdev_offline(), we assume the spa config is locked. We also clear all
3617 * children. If 'vd' is NULL, then the user wants to clear all vdevs.
3618 */
3619 void
3620 vdev_clear(spa_t *spa, vdev_t *vd)
3621 {
3622 vdev_t *rvd = spa->spa_root_vdev;
3623
3624 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
3625
3626 if (vd == NULL)
3627 vd = rvd;
3628
3629 vd->vdev_stat.vs_read_errors = 0;
3630 vd->vdev_stat.vs_write_errors = 0;
3631 vd->vdev_stat.vs_checksum_errors = 0;
3632 vd->vdev_stat.vs_slow_ios = 0;
3633
3634 for (int c = 0; c < vd->vdev_children; c++)
3635 vdev_clear(spa, vd->vdev_child[c]);
3636
3637 /*
3638 * It makes no sense to "clear" an indirect vdev.
3639 */
3640 if (!vdev_is_concrete(vd))
3641 return;
3642
3643 /*
3644 * If we're in the FAULTED state or have experienced failed I/O, then
3645 * clear the persistent state and attempt to reopen the device. We
3646 * also mark the vdev config dirty, so that the new faulted state is
3647 * written out to disk.
3648 */
3649 if (vd->vdev_faulted || vd->vdev_degraded ||
3650 !vdev_readable(vd) || !vdev_writeable(vd)) {
3651 /*
3652 * When reopening in response to a clear event, it may be due to
3653 * a fmadm repair request. In this case, if the device is
3654 * still broken, we want to still post the ereport again.
3655 */
3656 vd->vdev_forcefault = B_TRUE;
3657
3658 vd->vdev_faulted = vd->vdev_degraded = 0ULL;
3659 vd->vdev_cant_read = B_FALSE;
3660 vd->vdev_cant_write = B_FALSE;
3661 vd->vdev_stat.vs_aux = 0;
3662
3663 vdev_reopen(vd == rvd ? rvd : vd->vdev_top);
3664
3665 vd->vdev_forcefault = B_FALSE;
3666
3667 if (vd != rvd && vdev_writeable(vd->vdev_top))
3668 vdev_state_dirty(vd->vdev_top);
3669
3670 if (vd->vdev_aux == NULL && !vdev_is_dead(vd)) {
3671 if (dsl_scan_resilvering(spa->spa_dsl_pool) &&
3672 spa_feature_is_enabled(spa,
3673 SPA_FEATURE_RESILVER_DEFER))
3674 vdev_set_deferred_resilver(spa, vd);
3675 else
3676 spa_async_request(spa, SPA_ASYNC_RESILVER);
3677 }
3678
3679 spa_event_notify(spa, vd, NULL, ESC_ZFS_VDEV_CLEAR);
3680 }
3681
3682 /*
3683 * When clearing a FMA-diagnosed fault, we always want to
3684 * unspare the device, as we assume that the original spare was
3685 * done in response to the FMA fault.
3686 */
3687 if (!vdev_is_dead(vd) && vd->vdev_parent != NULL &&
3688 vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
3689 vd->vdev_parent->vdev_child[0] == vd)
3690 vd->vdev_unspare = B_TRUE;
3691 }
3692
3693 boolean_t
3694 vdev_is_dead(vdev_t *vd)
3695 {
3696 /*
3697 * Holes and missing devices are always considered "dead".
3698 * This simplifies the code since we don't have to check for
3699 * these types of devices in the various code paths.
3700 * Instead we rely on the fact that we skip over dead devices
3701 * before issuing I/O to them.
3702 */
3703 return (vd->vdev_state < VDEV_STATE_DEGRADED ||
3704 vd->vdev_ops == &vdev_hole_ops ||
3705 vd->vdev_ops == &vdev_missing_ops);
3706 }
3707
3708 boolean_t
3709 vdev_readable(vdev_t *vd)
3710 {
3711 return (!vdev_is_dead(vd) && !vd->vdev_cant_read);
3712 }
3713
3714 boolean_t
3715 vdev_writeable(vdev_t *vd)
3716 {
3717 return (!vdev_is_dead(vd) && !vd->vdev_cant_write &&
3718 vdev_is_concrete(vd));
3719 }
3720
3721 boolean_t
3722 vdev_allocatable(vdev_t *vd)
3723 {
3724 uint64_t state = vd->vdev_state;
3725
3726 /*
3727 * We currently allow allocations from vdevs which may be in the
3728 * process of reopening (i.e. VDEV_STATE_CLOSED). If the device
3729 * fails to reopen then we'll catch it later when we're holding
3730 * the proper locks. Note that we have to get the vdev state
3731 * in a local variable because although it changes atomically,
3732 * we're asking two separate questions about it.
3733 */
3734 return (!(state < VDEV_STATE_DEGRADED && state != VDEV_STATE_CLOSED) &&
3735 !vd->vdev_cant_write && vdev_is_concrete(vd) &&
3736 vd->vdev_mg->mg_initialized);
3737 }
3738
3739 boolean_t
3740 vdev_accessible(vdev_t *vd, zio_t *zio)
3741 {
3742 ASSERT(zio->io_vd == vd);
3743
3744 if (vdev_is_dead(vd) || vd->vdev_remove_wanted)
3745 return (B_FALSE);
3746
3747 if (zio->io_type == ZIO_TYPE_READ)
3748 return (!vd->vdev_cant_read);
3749
3750 if (zio->io_type == ZIO_TYPE_WRITE)
3751 return (!vd->vdev_cant_write);
3752
3753 return (B_TRUE);
3754 }
3755
3756 static void
3757 vdev_get_child_stat(vdev_t *cvd, vdev_stat_t *vs, vdev_stat_t *cvs)
3758 {
3759 int t;
3760 for (t = 0; t < ZIO_TYPES; t++) {
3761 vs->vs_ops[t] += cvs->vs_ops[t];
3762 vs->vs_bytes[t] += cvs->vs_bytes[t];
3763 }
3764
3765 cvs->vs_scan_removing = cvd->vdev_removing;
3766 }
3767
3768 /*
3769 * Get extended stats
3770 */
3771 static void
3772 vdev_get_child_stat_ex(vdev_t *cvd, vdev_stat_ex_t *vsx, vdev_stat_ex_t *cvsx)
3773 {
3774 int t, b;
3775 for (t = 0; t < ZIO_TYPES; t++) {
3776 for (b = 0; b < ARRAY_SIZE(vsx->vsx_disk_histo[0]); b++)
3777 vsx->vsx_disk_histo[t][b] += cvsx->vsx_disk_histo[t][b];
3778
3779 for (b = 0; b < ARRAY_SIZE(vsx->vsx_total_histo[0]); b++) {
3780 vsx->vsx_total_histo[t][b] +=
3781 cvsx->vsx_total_histo[t][b];
3782 }
3783 }
3784
3785 for (t = 0; t < ZIO_PRIORITY_NUM_QUEUEABLE; t++) {
3786 for (b = 0; b < ARRAY_SIZE(vsx->vsx_queue_histo[0]); b++) {
3787 vsx->vsx_queue_histo[t][b] +=
3788 cvsx->vsx_queue_histo[t][b];
3789 }
3790 vsx->vsx_active_queue[t] += cvsx->vsx_active_queue[t];
3791 vsx->vsx_pend_queue[t] += cvsx->vsx_pend_queue[t];
3792
3793 for (b = 0; b < ARRAY_SIZE(vsx->vsx_ind_histo[0]); b++)
3794 vsx->vsx_ind_histo[t][b] += cvsx->vsx_ind_histo[t][b];
3795
3796 for (b = 0; b < ARRAY_SIZE(vsx->vsx_agg_histo[0]); b++)
3797 vsx->vsx_agg_histo[t][b] += cvsx->vsx_agg_histo[t][b];
3798 }
3799
3800 }
3801
3802 boolean_t
3803 vdev_is_spacemap_addressable(vdev_t *vd)
3804 {
3805 if (spa_feature_is_active(vd->vdev_spa, SPA_FEATURE_SPACEMAP_V2))
3806 return (B_TRUE);
3807
3808 /*
3809 * If double-word space map entries are not enabled we assume
3810 * 47 bits of the space map entry are dedicated to the entry's
3811 * offset (see SM_OFFSET_BITS in space_map.h). We then use that
3812 * to calculate the maximum address that can be described by a
3813 * space map entry for the given device.
3814 */
3815 uint64_t shift = vd->vdev_ashift + SM_OFFSET_BITS;
3816
3817 if (shift >= 63) /* detect potential overflow */
3818 return (B_TRUE);
3819
3820 return (vd->vdev_asize < (1ULL << shift));
3821 }
3822
3823 /*
3824 * Get statistics for the given vdev.
3825 */
3826 static void
3827 vdev_get_stats_ex_impl(vdev_t *vd, vdev_stat_t *vs, vdev_stat_ex_t *vsx)
3828 {
3829 int t;
3830 /*
3831 * If we're getting stats on the root vdev, aggregate the I/O counts
3832 * over all top-level vdevs (i.e. the direct children of the root).
3833 */
3834 if (!vd->vdev_ops->vdev_op_leaf) {
3835 if (vs) {
3836 memset(vs->vs_ops, 0, sizeof (vs->vs_ops));
3837 memset(vs->vs_bytes, 0, sizeof (vs->vs_bytes));
3838 }
3839 if (vsx)
3840 memset(vsx, 0, sizeof (*vsx));
3841
3842 for (int c = 0; c < vd->vdev_children; c++) {
3843 vdev_t *cvd = vd->vdev_child[c];
3844 vdev_stat_t *cvs = &cvd->vdev_stat;
3845 vdev_stat_ex_t *cvsx = &cvd->vdev_stat_ex;
3846
3847 vdev_get_stats_ex_impl(cvd, cvs, cvsx);
3848 if (vs)
3849 vdev_get_child_stat(cvd, vs, cvs);
3850 if (vsx)
3851 vdev_get_child_stat_ex(cvd, vsx, cvsx);
3852
3853 }
3854 } else {
3855 /*
3856 * We're a leaf. Just copy our ZIO active queue stats in. The
3857 * other leaf stats are updated in vdev_stat_update().
3858 */
3859 if (!vsx)
3860 return;
3861
3862 memcpy(vsx, &vd->vdev_stat_ex, sizeof (vd->vdev_stat_ex));
3863
3864 for (t = 0; t < ARRAY_SIZE(vd->vdev_queue.vq_class); t++) {
3865 vsx->vsx_active_queue[t] =
3866 vd->vdev_queue.vq_class[t].vqc_active;
3867 vsx->vsx_pend_queue[t] = avl_numnodes(
3868 &vd->vdev_queue.vq_class[t].vqc_queued_tree);
3869 }
3870 }
3871 }
3872
3873 void
3874 vdev_get_stats_ex(vdev_t *vd, vdev_stat_t *vs, vdev_stat_ex_t *vsx)
3875 {
3876 vdev_t *tvd = vd->vdev_top;
3877 mutex_enter(&vd->vdev_stat_lock);
3878 if (vs) {
3879 bcopy(&vd->vdev_stat, vs, sizeof (*vs));
3880 vs->vs_timestamp = gethrtime() - vs->vs_timestamp;
3881 vs->vs_state = vd->vdev_state;
3882 vs->vs_rsize = vdev_get_min_asize(vd);
3883 if (vd->vdev_ops->vdev_op_leaf) {
3884 vs->vs_rsize += VDEV_LABEL_START_SIZE +
3885 VDEV_LABEL_END_SIZE;
3886 /*
3887 * Report intializing progress. Since we don't
3888 * have the initializing locks held, this is only
3889 * an estimate (although a fairly accurate one).
3890 */
3891 vs->vs_initialize_bytes_done =
3892 vd->vdev_initialize_bytes_done;
3893 vs->vs_initialize_bytes_est =
3894 vd->vdev_initialize_bytes_est;
3895 vs->vs_initialize_state = vd->vdev_initialize_state;
3896 vs->vs_initialize_action_time =
3897 vd->vdev_initialize_action_time;
3898 }
3899 /*
3900 * Report expandable space on top-level, non-auxillary devices
3901 * only. The expandable space is reported in terms of metaslab
3902 * sized units since that determines how much space the pool
3903 * can expand.
3904 */
3905 if (vd->vdev_aux == NULL && tvd != NULL) {
3906 vs->vs_esize = P2ALIGN(
3907 vd->vdev_max_asize - vd->vdev_asize,
3908 1ULL << tvd->vdev_ms_shift);
3909 }
3910 if (vd->vdev_aux == NULL && vd == vd->vdev_top &&
3911 vdev_is_concrete(vd)) {
3912 vs->vs_fragmentation = (vd->vdev_mg != NULL) ?
3913 vd->vdev_mg->mg_fragmentation : 0;
3914 }
3915 if (vd->vdev_ops->vdev_op_leaf)
3916 vs->vs_resilver_deferred = vd->vdev_resilver_deferred;
3917 }
3918
3919 ASSERT(spa_config_held(vd->vdev_spa, SCL_ALL, RW_READER) != 0);
3920 vdev_get_stats_ex_impl(vd, vs, vsx);
3921 mutex_exit(&vd->vdev_stat_lock);
3922 }
3923
3924 void
3925 vdev_get_stats(vdev_t *vd, vdev_stat_t *vs)
3926 {
3927 return (vdev_get_stats_ex(vd, vs, NULL));
3928 }
3929
3930 void
3931 vdev_clear_stats(vdev_t *vd)
3932 {
3933 mutex_enter(&vd->vdev_stat_lock);
3934 vd->vdev_stat.vs_space = 0;
3935 vd->vdev_stat.vs_dspace = 0;
3936 vd->vdev_stat.vs_alloc = 0;
3937 mutex_exit(&vd->vdev_stat_lock);
3938 }
3939
3940 void
3941 vdev_scan_stat_init(vdev_t *vd)
3942 {
3943 vdev_stat_t *vs = &vd->vdev_stat;
3944
3945 for (int c = 0; c < vd->vdev_children; c++)
3946 vdev_scan_stat_init(vd->vdev_child[c]);
3947
3948 mutex_enter(&vd->vdev_stat_lock);
3949 vs->vs_scan_processed = 0;
3950 mutex_exit(&vd->vdev_stat_lock);
3951 }
3952
3953 void
3954 vdev_stat_update(zio_t *zio, uint64_t psize)
3955 {
3956 spa_t *spa = zio->io_spa;
3957 vdev_t *rvd = spa->spa_root_vdev;
3958 vdev_t *vd = zio->io_vd ? zio->io_vd : rvd;
3959 vdev_t *pvd;
3960 uint64_t txg = zio->io_txg;
3961 vdev_stat_t *vs = &vd->vdev_stat;
3962 vdev_stat_ex_t *vsx = &vd->vdev_stat_ex;
3963 zio_type_t type = zio->io_type;
3964 int flags = zio->io_flags;
3965
3966 /*
3967 * If this i/o is a gang leader, it didn't do any actual work.
3968 */
3969 if (zio->io_gang_tree)
3970 return;
3971
3972 if (zio->io_error == 0) {
3973 /*
3974 * If this is a root i/o, don't count it -- we've already
3975 * counted the top-level vdevs, and vdev_get_stats() will
3976 * aggregate them when asked. This reduces contention on
3977 * the root vdev_stat_lock and implicitly handles blocks
3978 * that compress away to holes, for which there is no i/o.
3979 * (Holes never create vdev children, so all the counters
3980 * remain zero, which is what we want.)
3981 *
3982 * Note: this only applies to successful i/o (io_error == 0)
3983 * because unlike i/o counts, errors are not additive.
3984 * When reading a ditto block, for example, failure of
3985 * one top-level vdev does not imply a root-level error.
3986 */
3987 if (vd == rvd)
3988 return;
3989
3990 ASSERT(vd == zio->io_vd);
3991
3992 if (flags & ZIO_FLAG_IO_BYPASS)
3993 return;
3994
3995 mutex_enter(&vd->vdev_stat_lock);
3996
3997 if (flags & ZIO_FLAG_IO_REPAIR) {
3998 if (flags & ZIO_FLAG_SCAN_THREAD) {
3999 dsl_scan_phys_t *scn_phys =
4000 &spa->spa_dsl_pool->dp_scan->scn_phys;
4001 uint64_t *processed = &scn_phys->scn_processed;
4002
4003 /* XXX cleanup? */
4004 if (vd->vdev_ops->vdev_op_leaf)
4005 atomic_add_64(processed, psize);
4006 vs->vs_scan_processed += psize;
4007 }
4008
4009 if (flags & ZIO_FLAG_SELF_HEAL)
4010 vs->vs_self_healed += psize;
4011 }
4012
4013 /*
4014 * The bytes/ops/histograms are recorded at the leaf level and
4015 * aggregated into the higher level vdevs in vdev_get_stats().
4016 */
4017 if (vd->vdev_ops->vdev_op_leaf &&
4018 (zio->io_priority < ZIO_PRIORITY_NUM_QUEUEABLE)) {
4019
4020 vs->vs_ops[type]++;
4021 vs->vs_bytes[type] += psize;
4022
4023 if (flags & ZIO_FLAG_DELEGATED) {
4024 vsx->vsx_agg_histo[zio->io_priority]
4025 [RQ_HISTO(zio->io_size)]++;
4026 } else {
4027 vsx->vsx_ind_histo[zio->io_priority]
4028 [RQ_HISTO(zio->io_size)]++;
4029 }
4030
4031 if (zio->io_delta && zio->io_delay) {
4032 vsx->vsx_queue_histo[zio->io_priority]
4033 [L_HISTO(zio->io_delta - zio->io_delay)]++;
4034 vsx->vsx_disk_histo[type]
4035 [L_HISTO(zio->io_delay)]++;
4036 vsx->vsx_total_histo[type]
4037 [L_HISTO(zio->io_delta)]++;
4038 }
4039 }
4040
4041 mutex_exit(&vd->vdev_stat_lock);
4042 return;
4043 }
4044
4045 if (flags & ZIO_FLAG_SPECULATIVE)
4046 return;
4047
4048 /*
4049 * If this is an I/O error that is going to be retried, then ignore the
4050 * error. Otherwise, the user may interpret B_FAILFAST I/O errors as
4051 * hard errors, when in reality they can happen for any number of
4052 * innocuous reasons (bus resets, MPxIO link failure, etc).
4053 */
4054 if (zio->io_error == EIO &&
4055 !(zio->io_flags & ZIO_FLAG_IO_RETRY))
4056 return;
4057
4058 /*
4059 * Intent logs writes won't propagate their error to the root
4060 * I/O so don't mark these types of failures as pool-level
4061 * errors.
4062 */
4063 if (zio->io_vd == NULL && (zio->io_flags & ZIO_FLAG_DONT_PROPAGATE))
4064 return;
4065
4066 mutex_enter(&vd->vdev_stat_lock);
4067 if (type == ZIO_TYPE_READ && !vdev_is_dead(vd)) {
4068 if (zio->io_error == ECKSUM)
4069 vs->vs_checksum_errors++;
4070 else
4071 vs->vs_read_errors++;
4072 }
4073 if (type == ZIO_TYPE_WRITE && !vdev_is_dead(vd))
4074 vs->vs_write_errors++;
4075 mutex_exit(&vd->vdev_stat_lock);
4076
4077 if (spa->spa_load_state == SPA_LOAD_NONE &&
4078 type == ZIO_TYPE_WRITE && txg != 0 &&
4079 (!(flags & ZIO_FLAG_IO_REPAIR) ||
4080 (flags & ZIO_FLAG_SCAN_THREAD) ||
4081 spa->spa_claiming)) {
4082 /*
4083 * This is either a normal write (not a repair), or it's
4084 * a repair induced by the scrub thread, or it's a repair
4085 * made by zil_claim() during spa_load() in the first txg.
4086 * In the normal case, we commit the DTL change in the same
4087 * txg as the block was born. In the scrub-induced repair
4088 * case, we know that scrubs run in first-pass syncing context,
4089 * so we commit the DTL change in spa_syncing_txg(spa).
4090 * In the zil_claim() case, we commit in spa_first_txg(spa).
4091 *
4092 * We currently do not make DTL entries for failed spontaneous
4093 * self-healing writes triggered by normal (non-scrubbing)
4094 * reads, because we have no transactional context in which to
4095 * do so -- and it's not clear that it'd be desirable anyway.
4096 */
4097 if (vd->vdev_ops->vdev_op_leaf) {
4098 uint64_t commit_txg = txg;
4099 if (flags & ZIO_FLAG_SCAN_THREAD) {
4100 ASSERT(flags & ZIO_FLAG_IO_REPAIR);
4101 ASSERT(spa_sync_pass(spa) == 1);
4102 vdev_dtl_dirty(vd, DTL_SCRUB, txg, 1);
4103 commit_txg = spa_syncing_txg(spa);
4104 } else if (spa->spa_claiming) {
4105 ASSERT(flags & ZIO_FLAG_IO_REPAIR);
4106 commit_txg = spa_first_txg(spa);
4107 }
4108 ASSERT(commit_txg >= spa_syncing_txg(spa));
4109 if (vdev_dtl_contains(vd, DTL_MISSING, txg, 1))
4110 return;
4111 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
4112 vdev_dtl_dirty(pvd, DTL_PARTIAL, txg, 1);
4113 vdev_dirty(vd->vdev_top, VDD_DTL, vd, commit_txg);
4114 }
4115 if (vd != rvd)
4116 vdev_dtl_dirty(vd, DTL_MISSING, txg, 1);
4117 }
4118 }
4119
4120 int64_t
4121 vdev_deflated_space(vdev_t *vd, int64_t space)
4122 {
4123 ASSERT((space & (SPA_MINBLOCKSIZE-1)) == 0);
4124 ASSERT(vd->vdev_deflate_ratio != 0 || vd->vdev_isl2cache);
4125
4126 return ((space >> SPA_MINBLOCKSHIFT) * vd->vdev_deflate_ratio);
4127 }
4128
4129 /*
4130 * Update the in-core space usage stats for this vdev and the root vdev.
4131 */
4132 void
4133 vdev_space_update(vdev_t *vd, int64_t alloc_delta, int64_t defer_delta,
4134 int64_t space_delta)
4135 {
4136 int64_t dspace_delta;
4137 spa_t *spa = vd->vdev_spa;
4138 vdev_t *rvd = spa->spa_root_vdev;
4139
4140 ASSERT(vd == vd->vdev_top);
4141
4142 /*
4143 * Apply the inverse of the psize-to-asize (ie. RAID-Z) space-expansion
4144 * factor. We must calculate this here and not at the root vdev
4145 * because the root vdev's psize-to-asize is simply the max of its
4146 * childrens', thus not accurate enough for us.
4147 */
4148 dspace_delta = vdev_deflated_space(vd, space_delta);
4149
4150 mutex_enter(&vd->vdev_stat_lock);
4151 vd->vdev_stat.vs_alloc += alloc_delta;
4152 vd->vdev_stat.vs_space += space_delta;
4153 vd->vdev_stat.vs_dspace += dspace_delta;
4154 mutex_exit(&vd->vdev_stat_lock);
4155
4156 /* every class but log contributes to root space stats */
4157 if (vd->vdev_mg != NULL && !vd->vdev_islog) {
4158 mutex_enter(&rvd->vdev_stat_lock);
4159 rvd->vdev_stat.vs_alloc += alloc_delta;
4160 rvd->vdev_stat.vs_space += space_delta;
4161 rvd->vdev_stat.vs_dspace += dspace_delta;
4162 mutex_exit(&rvd->vdev_stat_lock);
4163 }
4164 /* Note: metaslab_class_space_update moved to metaslab_space_update */
4165 }
4166
4167 /*
4168 * Mark a top-level vdev's config as dirty, placing it on the dirty list
4169 * so that it will be written out next time the vdev configuration is synced.
4170 * If the root vdev is specified (vdev_top == NULL), dirty all top-level vdevs.
4171 */
4172 void
4173 vdev_config_dirty(vdev_t *vd)
4174 {
4175 spa_t *spa = vd->vdev_spa;
4176 vdev_t *rvd = spa->spa_root_vdev;
4177 int c;
4178
4179 ASSERT(spa_writeable(spa));
4180
4181 /*
4182 * If this is an aux vdev (as with l2cache and spare devices), then we
4183 * update the vdev config manually and set the sync flag.
4184 */
4185 if (vd->vdev_aux != NULL) {
4186 spa_aux_vdev_t *sav = vd->vdev_aux;
4187 nvlist_t **aux;
4188 uint_t naux;
4189
4190 for (c = 0; c < sav->sav_count; c++) {
4191 if (sav->sav_vdevs[c] == vd)
4192 break;
4193 }
4194
4195 if (c == sav->sav_count) {
4196 /*
4197 * We're being removed. There's nothing more to do.
4198 */
4199 ASSERT(sav->sav_sync == B_TRUE);
4200 return;
4201 }
4202
4203 sav->sav_sync = B_TRUE;
4204
4205 if (nvlist_lookup_nvlist_array(sav->sav_config,
4206 ZPOOL_CONFIG_L2CACHE, &aux, &naux) != 0) {
4207 VERIFY(nvlist_lookup_nvlist_array(sav->sav_config,
4208 ZPOOL_CONFIG_SPARES, &aux, &naux) == 0);
4209 }
4210
4211 ASSERT(c < naux);
4212
4213 /*
4214 * Setting the nvlist in the middle if the array is a little
4215 * sketchy, but it will work.
4216 */
4217 nvlist_free(aux[c]);
4218 aux[c] = vdev_config_generate(spa, vd, B_TRUE, 0);
4219
4220 return;
4221 }
4222
4223 /*
4224 * The dirty list is protected by the SCL_CONFIG lock. The caller
4225 * must either hold SCL_CONFIG as writer, or must be the sync thread
4226 * (which holds SCL_CONFIG as reader). There's only one sync thread,
4227 * so this is sufficient to ensure mutual exclusion.
4228 */
4229 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
4230 (dsl_pool_sync_context(spa_get_dsl(spa)) &&
4231 spa_config_held(spa, SCL_CONFIG, RW_READER)));
4232
4233 if (vd == rvd) {
4234 for (c = 0; c < rvd->vdev_children; c++)
4235 vdev_config_dirty(rvd->vdev_child[c]);
4236 } else {
4237 ASSERT(vd == vd->vdev_top);
4238
4239 if (!list_link_active(&vd->vdev_config_dirty_node) &&
4240 vdev_is_concrete(vd)) {
4241 list_insert_head(&spa->spa_config_dirty_list, vd);
4242 }
4243 }
4244 }
4245
4246 void
4247 vdev_config_clean(vdev_t *vd)
4248 {
4249 spa_t *spa = vd->vdev_spa;
4250
4251 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
4252 (dsl_pool_sync_context(spa_get_dsl(spa)) &&
4253 spa_config_held(spa, SCL_CONFIG, RW_READER)));
4254
4255 ASSERT(list_link_active(&vd->vdev_config_dirty_node));
4256 list_remove(&spa->spa_config_dirty_list, vd);
4257 }
4258
4259 /*
4260 * Mark a top-level vdev's state as dirty, so that the next pass of
4261 * spa_sync() can convert this into vdev_config_dirty(). We distinguish
4262 * the state changes from larger config changes because they require
4263 * much less locking, and are often needed for administrative actions.
4264 */
4265 void
4266 vdev_state_dirty(vdev_t *vd)
4267 {
4268 spa_t *spa = vd->vdev_spa;
4269
4270 ASSERT(spa_writeable(spa));
4271 ASSERT(vd == vd->vdev_top);
4272
4273 /*
4274 * The state list is protected by the SCL_STATE lock. The caller
4275 * must either hold SCL_STATE as writer, or must be the sync thread
4276 * (which holds SCL_STATE as reader). There's only one sync thread,
4277 * so this is sufficient to ensure mutual exclusion.
4278 */
4279 ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
4280 (dsl_pool_sync_context(spa_get_dsl(spa)) &&
4281 spa_config_held(spa, SCL_STATE, RW_READER)));
4282
4283 if (!list_link_active(&vd->vdev_state_dirty_node) &&
4284 vdev_is_concrete(vd))
4285 list_insert_head(&spa->spa_state_dirty_list, vd);
4286 }
4287
4288 void
4289 vdev_state_clean(vdev_t *vd)
4290 {
4291 spa_t *spa = vd->vdev_spa;
4292
4293 ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
4294 (dsl_pool_sync_context(spa_get_dsl(spa)) &&
4295 spa_config_held(spa, SCL_STATE, RW_READER)));
4296
4297 ASSERT(list_link_active(&vd->vdev_state_dirty_node));
4298 list_remove(&spa->spa_state_dirty_list, vd);
4299 }
4300
4301 /*
4302 * Propagate vdev state up from children to parent.
4303 */
4304 void
4305 vdev_propagate_state(vdev_t *vd)
4306 {
4307 spa_t *spa = vd->vdev_spa;
4308 vdev_t *rvd = spa->spa_root_vdev;
4309 int degraded = 0, faulted = 0;
4310 int corrupted = 0;
4311 vdev_t *child;
4312
4313 if (vd->vdev_children > 0) {
4314 for (int c = 0; c < vd->vdev_children; c++) {
4315 child = vd->vdev_child[c];
4316
4317 /*
4318 * Don't factor holes or indirect vdevs into the
4319 * decision.
4320 */
4321 if (!vdev_is_concrete(child))
4322 continue;
4323
4324 if (!vdev_readable(child) ||
4325 (!vdev_writeable(child) && spa_writeable(spa))) {
4326 /*
4327 * Root special: if there is a top-level log
4328 * device, treat the root vdev as if it were
4329 * degraded.
4330 */
4331 if (child->vdev_islog && vd == rvd)
4332 degraded++;
4333 else
4334 faulted++;
4335 } else if (child->vdev_state <= VDEV_STATE_DEGRADED) {
4336 degraded++;
4337 }
4338
4339 if (child->vdev_stat.vs_aux == VDEV_AUX_CORRUPT_DATA)
4340 corrupted++;
4341 }
4342
4343 vd->vdev_ops->vdev_op_state_change(vd, faulted, degraded);
4344
4345 /*
4346 * Root special: if there is a top-level vdev that cannot be
4347 * opened due to corrupted metadata, then propagate the root
4348 * vdev's aux state as 'corrupt' rather than 'insufficient
4349 * replicas'.
4350 */
4351 if (corrupted && vd == rvd &&
4352 rvd->vdev_state == VDEV_STATE_CANT_OPEN)
4353 vdev_set_state(rvd, B_FALSE, VDEV_STATE_CANT_OPEN,
4354 VDEV_AUX_CORRUPT_DATA);
4355 }
4356
4357 if (vd->vdev_parent)
4358 vdev_propagate_state(vd->vdev_parent);
4359 }
4360
4361 /*
4362 * Set a vdev's state. If this is during an open, we don't update the parent
4363 * state, because we're in the process of opening children depth-first.
4364 * Otherwise, we propagate the change to the parent.
4365 *
4366 * If this routine places a device in a faulted state, an appropriate ereport is
4367 * generated.
4368 */
4369 void
4370 vdev_set_state(vdev_t *vd, boolean_t isopen, vdev_state_t state, vdev_aux_t aux)
4371 {
4372 uint64_t save_state;
4373 spa_t *spa = vd->vdev_spa;
4374
4375 if (state == vd->vdev_state) {
4376 /*
4377 * Since vdev_offline() code path is already in an offline
4378 * state we can miss a statechange event to OFFLINE. Check
4379 * the previous state to catch this condition.
4380 */
4381 if (vd->vdev_ops->vdev_op_leaf &&
4382 (state == VDEV_STATE_OFFLINE) &&
4383 (vd->vdev_prevstate >= VDEV_STATE_FAULTED)) {
4384 /* post an offline state change */
4385 zfs_post_state_change(spa, vd, vd->vdev_prevstate);
4386 }
4387 vd->vdev_stat.vs_aux = aux;
4388 return;
4389 }
4390
4391 save_state = vd->vdev_state;
4392
4393 vd->vdev_state = state;
4394 vd->vdev_stat.vs_aux = aux;
4395
4396 /*
4397 * If we are setting the vdev state to anything but an open state, then
4398 * always close the underlying device unless the device has requested
4399 * a delayed close (i.e. we're about to remove or fault the device).
4400 * Otherwise, we keep accessible but invalid devices open forever.
4401 * We don't call vdev_close() itself, because that implies some extra
4402 * checks (offline, etc) that we don't want here. This is limited to
4403 * leaf devices, because otherwise closing the device will affect other
4404 * children.
4405 */
4406 if (!vd->vdev_delayed_close && vdev_is_dead(vd) &&
4407 vd->vdev_ops->vdev_op_leaf)
4408 vd->vdev_ops->vdev_op_close(vd);
4409
4410 if (vd->vdev_removed &&
4411 state == VDEV_STATE_CANT_OPEN &&
4412 (aux == VDEV_AUX_OPEN_FAILED || vd->vdev_checkremove)) {
4413 /*
4414 * If the previous state is set to VDEV_STATE_REMOVED, then this
4415 * device was previously marked removed and someone attempted to
4416 * reopen it. If this failed due to a nonexistent device, then
4417 * keep the device in the REMOVED state. We also let this be if
4418 * it is one of our special test online cases, which is only
4419 * attempting to online the device and shouldn't generate an FMA
4420 * fault.
4421 */
4422 vd->vdev_state = VDEV_STATE_REMOVED;
4423 vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
4424 } else if (state == VDEV_STATE_REMOVED) {
4425 vd->vdev_removed = B_TRUE;
4426 } else if (state == VDEV_STATE_CANT_OPEN) {
4427 /*
4428 * If we fail to open a vdev during an import or recovery, we
4429 * mark it as "not available", which signifies that it was
4430 * never there to begin with. Failure to open such a device
4431 * is not considered an error.
4432 */
4433 if ((spa_load_state(spa) == SPA_LOAD_IMPORT ||
4434 spa_load_state(spa) == SPA_LOAD_RECOVER) &&
4435 vd->vdev_ops->vdev_op_leaf)
4436 vd->vdev_not_present = 1;
4437
4438 /*
4439 * Post the appropriate ereport. If the 'prevstate' field is
4440 * set to something other than VDEV_STATE_UNKNOWN, it indicates
4441 * that this is part of a vdev_reopen(). In this case, we don't
4442 * want to post the ereport if the device was already in the
4443 * CANT_OPEN state beforehand.
4444 *
4445 * If the 'checkremove' flag is set, then this is an attempt to
4446 * online the device in response to an insertion event. If we
4447 * hit this case, then we have detected an insertion event for a
4448 * faulted or offline device that wasn't in the removed state.
4449 * In this scenario, we don't post an ereport because we are
4450 * about to replace the device, or attempt an online with
4451 * vdev_forcefault, which will generate the fault for us.
4452 */
4453 if ((vd->vdev_prevstate != state || vd->vdev_forcefault) &&
4454 !vd->vdev_not_present && !vd->vdev_checkremove &&
4455 vd != spa->spa_root_vdev) {
4456 const char *class;
4457
4458 switch (aux) {
4459 case VDEV_AUX_OPEN_FAILED:
4460 class = FM_EREPORT_ZFS_DEVICE_OPEN_FAILED;
4461 break;
4462 case VDEV_AUX_CORRUPT_DATA:
4463 class = FM_EREPORT_ZFS_DEVICE_CORRUPT_DATA;
4464 break;
4465 case VDEV_AUX_NO_REPLICAS:
4466 class = FM_EREPORT_ZFS_DEVICE_NO_REPLICAS;
4467 break;
4468 case VDEV_AUX_BAD_GUID_SUM:
4469 class = FM_EREPORT_ZFS_DEVICE_BAD_GUID_SUM;
4470 break;
4471 case VDEV_AUX_TOO_SMALL:
4472 class = FM_EREPORT_ZFS_DEVICE_TOO_SMALL;
4473 break;
4474 case VDEV_AUX_BAD_LABEL:
4475 class = FM_EREPORT_ZFS_DEVICE_BAD_LABEL;
4476 break;
4477 case VDEV_AUX_BAD_ASHIFT:
4478 class = FM_EREPORT_ZFS_DEVICE_BAD_ASHIFT;
4479 break;
4480 default:
4481 class = FM_EREPORT_ZFS_DEVICE_UNKNOWN;
4482 }
4483
4484 zfs_ereport_post(class, spa, vd, NULL, NULL,
4485 save_state, 0);
4486 }
4487
4488 /* Erase any notion of persistent removed state */
4489 vd->vdev_removed = B_FALSE;
4490 } else {
4491 vd->vdev_removed = B_FALSE;
4492 }
4493
4494 /*
4495 * Notify ZED of any significant state-change on a leaf vdev.
4496 *
4497 */
4498 if (vd->vdev_ops->vdev_op_leaf) {
4499 /* preserve original state from a vdev_reopen() */
4500 if ((vd->vdev_prevstate != VDEV_STATE_UNKNOWN) &&
4501 (vd->vdev_prevstate != vd->vdev_state) &&
4502 (save_state <= VDEV_STATE_CLOSED))
4503 save_state = vd->vdev_prevstate;
4504
4505 /* filter out state change due to initial vdev_open */
4506 if (save_state > VDEV_STATE_CLOSED)
4507 zfs_post_state_change(spa, vd, save_state);
4508 }
4509
4510 if (!isopen && vd->vdev_parent)
4511 vdev_propagate_state(vd->vdev_parent);
4512 }
4513
4514 boolean_t
4515 vdev_children_are_offline(vdev_t *vd)
4516 {
4517 ASSERT(!vd->vdev_ops->vdev_op_leaf);
4518
4519 for (uint64_t i = 0; i < vd->vdev_children; i++) {
4520 if (vd->vdev_child[i]->vdev_state != VDEV_STATE_OFFLINE)
4521 return (B_FALSE);
4522 }
4523
4524 return (B_TRUE);
4525 }
4526
4527 /*
4528 * Check the vdev configuration to ensure that it's capable of supporting
4529 * a root pool. We do not support partial configuration.
4530 */
4531 boolean_t
4532 vdev_is_bootable(vdev_t *vd)
4533 {
4534 if (!vd->vdev_ops->vdev_op_leaf) {
4535 const char *vdev_type = vd->vdev_ops->vdev_op_type;
4536
4537 if (strcmp(vdev_type, VDEV_TYPE_MISSING) == 0 ||
4538 strcmp(vdev_type, VDEV_TYPE_INDIRECT) == 0) {
4539 return (B_FALSE);
4540 }
4541 }
4542
4543 for (int c = 0; c < vd->vdev_children; c++) {
4544 if (!vdev_is_bootable(vd->vdev_child[c]))
4545 return (B_FALSE);
4546 }
4547 return (B_TRUE);
4548 }
4549
4550 boolean_t
4551 vdev_is_concrete(vdev_t *vd)
4552 {
4553 vdev_ops_t *ops = vd->vdev_ops;
4554 if (ops == &vdev_indirect_ops || ops == &vdev_hole_ops ||
4555 ops == &vdev_missing_ops || ops == &vdev_root_ops) {
4556 return (B_FALSE);
4557 } else {
4558 return (B_TRUE);
4559 }
4560 }
4561
4562 /*
4563 * Determine if a log device has valid content. If the vdev was
4564 * removed or faulted in the MOS config then we know that
4565 * the content on the log device has already been written to the pool.
4566 */
4567 boolean_t
4568 vdev_log_state_valid(vdev_t *vd)
4569 {
4570 if (vd->vdev_ops->vdev_op_leaf && !vd->vdev_faulted &&
4571 !vd->vdev_removed)
4572 return (B_TRUE);
4573
4574 for (int c = 0; c < vd->vdev_children; c++)
4575 if (vdev_log_state_valid(vd->vdev_child[c]))
4576 return (B_TRUE);
4577
4578 return (B_FALSE);
4579 }
4580
4581 /*
4582 * Expand a vdev if possible.
4583 */
4584 void
4585 vdev_expand(vdev_t *vd, uint64_t txg)
4586 {
4587 ASSERT(vd->vdev_top == vd);
4588 ASSERT(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
4589 ASSERT(vdev_is_concrete(vd));
4590
4591 vdev_set_deflate_ratio(vd);
4592
4593 if ((vd->vdev_asize >> vd->vdev_ms_shift) > vd->vdev_ms_count &&
4594 vdev_is_concrete(vd)) {
4595 vdev_metaslab_group_create(vd);
4596 VERIFY(vdev_metaslab_init(vd, txg) == 0);
4597 vdev_config_dirty(vd);
4598 }
4599 }
4600
4601 /*
4602 * Split a vdev.
4603 */
4604 void
4605 vdev_split(vdev_t *vd)
4606 {
4607 vdev_t *cvd, *pvd = vd->vdev_parent;
4608
4609 vdev_remove_child(pvd, vd);
4610 vdev_compact_children(pvd);
4611
4612 cvd = pvd->vdev_child[0];
4613 if (pvd->vdev_children == 1) {
4614 vdev_remove_parent(cvd);
4615 cvd->vdev_splitting = B_TRUE;
4616 }
4617 vdev_propagate_state(cvd);
4618 }
4619
4620 void
4621 vdev_deadman(vdev_t *vd, char *tag)
4622 {
4623 for (int c = 0; c < vd->vdev_children; c++) {
4624 vdev_t *cvd = vd->vdev_child[c];
4625
4626 vdev_deadman(cvd, tag);
4627 }
4628
4629 if (vd->vdev_ops->vdev_op_leaf) {
4630 vdev_queue_t *vq = &vd->vdev_queue;
4631
4632 mutex_enter(&vq->vq_lock);
4633 if (avl_numnodes(&vq->vq_active_tree) > 0) {
4634 spa_t *spa = vd->vdev_spa;
4635 zio_t *fio;
4636 uint64_t delta;
4637
4638 zfs_dbgmsg("slow vdev: %s has %d active IOs",
4639 vd->vdev_path, avl_numnodes(&vq->vq_active_tree));
4640
4641 /*
4642 * Look at the head of all the pending queues,
4643 * if any I/O has been outstanding for longer than
4644 * the spa_deadman_synctime invoke the deadman logic.
4645 */
4646 fio = avl_first(&vq->vq_active_tree);
4647 delta = gethrtime() - fio->io_timestamp;
4648 if (delta > spa_deadman_synctime(spa))
4649 zio_deadman(fio, tag);
4650 }
4651 mutex_exit(&vq->vq_lock);
4652 }
4653 }
4654
4655 void
4656 vdev_set_deferred_resilver(spa_t *spa, vdev_t *vd)
4657 {
4658 for (uint64_t i = 0; i < vd->vdev_children; i++)
4659 vdev_set_deferred_resilver(spa, vd->vdev_child[i]);
4660
4661 if (!vd->vdev_ops->vdev_op_leaf || !vdev_writeable(vd) ||
4662 range_tree_is_empty(vd->vdev_dtl[DTL_MISSING])) {
4663 return;
4664 }
4665
4666 vd->vdev_resilver_deferred = B_TRUE;
4667 spa->spa_resilver_deferred = B_TRUE;
4668 }
4669
4670 #if defined(_KERNEL)
4671 EXPORT_SYMBOL(vdev_fault);
4672 EXPORT_SYMBOL(vdev_degrade);
4673 EXPORT_SYMBOL(vdev_online);
4674 EXPORT_SYMBOL(vdev_offline);
4675 EXPORT_SYMBOL(vdev_clear);
4676 /* BEGIN CSTYLED */
4677 module_param(vdev_max_ms_count, int, 0644);
4678 MODULE_PARM_DESC(vdev_max_ms_count,
4679 "Target number of metaslabs per top-level vdev");
4680
4681 module_param(vdev_min_ms_count, int, 0644);
4682 MODULE_PARM_DESC(vdev_min_ms_count,
4683 "Minimum number of metaslabs per top-level vdev");
4684
4685 module_param(vdev_ms_count_limit, int, 0644);
4686 MODULE_PARM_DESC(vdev_ms_count_limit,
4687 "Practical upper limit of total metaslabs per top-level vdev");
4688
4689 module_param(zfs_slow_io_events_per_second, uint, 0644);
4690 MODULE_PARM_DESC(zfs_slow_io_events_per_second,
4691 "Rate limit slow IO (delay) events to this many per second");
4692
4693 module_param(zfs_checksum_events_per_second, uint, 0644);
4694 MODULE_PARM_DESC(zfs_checksum_events_per_second, "Rate limit checksum events "
4695 "to this many checksum errors per second (do not set below zed"
4696 "threshold).");
4697
4698 module_param(zfs_scan_ignore_errors, int, 0644);
4699 MODULE_PARM_DESC(zfs_scan_ignore_errors,
4700 "Ignore errors during resilver/scrub");
4701
4702 module_param(vdev_validate_skip, int, 0644);
4703 MODULE_PARM_DESC(vdev_validate_skip,
4704 "Bypass vdev_validate()");
4705
4706 module_param(zfs_nocacheflush, int, 0644);
4707 MODULE_PARM_DESC(zfs_nocacheflush, "Disable cache flushes");
4708 /* END CSTYLED */
4709 #endif