]> git.proxmox.com Git - mirror_zfs.git/blob - module/zfs/vdev.c
OpenZFS 9591 - ms_shift can be incorrectly changed
[mirror_zfs.git] / module / zfs / vdev.c
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22 /*
23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright (c) 2011, 2018 by Delphix. All rights reserved.
25 * Copyright 2017 Nexenta Systems, Inc.
26 * Copyright (c) 2014 Integros [integros.com]
27 * Copyright 2016 Toomas Soome <tsoome@me.com>
28 * Copyright 2017 Joyent, Inc.
29 */
30
31 #include <sys/zfs_context.h>
32 #include <sys/fm/fs/zfs.h>
33 #include <sys/spa.h>
34 #include <sys/spa_impl.h>
35 #include <sys/bpobj.h>
36 #include <sys/dmu.h>
37 #include <sys/dmu_tx.h>
38 #include <sys/dsl_dir.h>
39 #include <sys/vdev_impl.h>
40 #include <sys/uberblock_impl.h>
41 #include <sys/metaslab.h>
42 #include <sys/metaslab_impl.h>
43 #include <sys/space_map.h>
44 #include <sys/space_reftree.h>
45 #include <sys/zio.h>
46 #include <sys/zap.h>
47 #include <sys/fs/zfs.h>
48 #include <sys/arc.h>
49 #include <sys/zil.h>
50 #include <sys/dsl_scan.h>
51 #include <sys/abd.h>
52 #include <sys/zvol.h>
53 #include <sys/zfs_ratelimit.h>
54
55 /*
56 * When a vdev is added, it will be divided into approximately (but no
57 * more than) this number of metaslabs.
58 */
59 int metaslabs_per_vdev = 200;
60
61 /*
62 * Rate limit delay events to this many IO delays per second.
63 */
64 unsigned int zfs_delays_per_second = 20;
65
66 /*
67 * Rate limit checksum events after this many checksum errors per second.
68 */
69 unsigned int zfs_checksums_per_second = 20;
70
71 /*
72 * Ignore errors during scrub/resilver. Allows to work around resilver
73 * upon import when there are pool errors.
74 */
75 int zfs_scan_ignore_errors = 0;
76
77 int vdev_validate_skip = B_FALSE;
78
79 /*PRINTFLIKE2*/
80 void
81 vdev_dbgmsg(vdev_t *vd, const char *fmt, ...)
82 {
83 va_list adx;
84 char buf[256];
85
86 va_start(adx, fmt);
87 (void) vsnprintf(buf, sizeof (buf), fmt, adx);
88 va_end(adx);
89
90 if (vd->vdev_path != NULL) {
91 zfs_dbgmsg("%s vdev '%s': %s", vd->vdev_ops->vdev_op_type,
92 vd->vdev_path, buf);
93 } else {
94 zfs_dbgmsg("%s-%llu vdev (guid %llu): %s",
95 vd->vdev_ops->vdev_op_type,
96 (u_longlong_t)vd->vdev_id,
97 (u_longlong_t)vd->vdev_guid, buf);
98 }
99 }
100
101 void
102 vdev_dbgmsg_print_tree(vdev_t *vd, int indent)
103 {
104 char state[20];
105
106 if (vd->vdev_ishole || vd->vdev_ops == &vdev_missing_ops) {
107 zfs_dbgmsg("%*svdev %u: %s", indent, "", vd->vdev_id,
108 vd->vdev_ops->vdev_op_type);
109 return;
110 }
111
112 switch (vd->vdev_state) {
113 case VDEV_STATE_UNKNOWN:
114 (void) snprintf(state, sizeof (state), "unknown");
115 break;
116 case VDEV_STATE_CLOSED:
117 (void) snprintf(state, sizeof (state), "closed");
118 break;
119 case VDEV_STATE_OFFLINE:
120 (void) snprintf(state, sizeof (state), "offline");
121 break;
122 case VDEV_STATE_REMOVED:
123 (void) snprintf(state, sizeof (state), "removed");
124 break;
125 case VDEV_STATE_CANT_OPEN:
126 (void) snprintf(state, sizeof (state), "can't open");
127 break;
128 case VDEV_STATE_FAULTED:
129 (void) snprintf(state, sizeof (state), "faulted");
130 break;
131 case VDEV_STATE_DEGRADED:
132 (void) snprintf(state, sizeof (state), "degraded");
133 break;
134 case VDEV_STATE_HEALTHY:
135 (void) snprintf(state, sizeof (state), "healthy");
136 break;
137 default:
138 (void) snprintf(state, sizeof (state), "<state %u>",
139 (uint_t)vd->vdev_state);
140 }
141
142 zfs_dbgmsg("%*svdev %u: %s%s, guid: %llu, path: %s, %s", indent,
143 "", vd->vdev_id, vd->vdev_ops->vdev_op_type,
144 vd->vdev_islog ? " (log)" : "",
145 (u_longlong_t)vd->vdev_guid,
146 vd->vdev_path ? vd->vdev_path : "N/A", state);
147
148 for (uint64_t i = 0; i < vd->vdev_children; i++)
149 vdev_dbgmsg_print_tree(vd->vdev_child[i], indent + 2);
150 }
151
152 /*
153 * Virtual device management.
154 */
155
156 static vdev_ops_t *vdev_ops_table[] = {
157 &vdev_root_ops,
158 &vdev_raidz_ops,
159 &vdev_mirror_ops,
160 &vdev_replacing_ops,
161 &vdev_spare_ops,
162 &vdev_disk_ops,
163 &vdev_file_ops,
164 &vdev_missing_ops,
165 &vdev_hole_ops,
166 &vdev_indirect_ops,
167 NULL
168 };
169
170 /*
171 * Given a vdev type, return the appropriate ops vector.
172 */
173 static vdev_ops_t *
174 vdev_getops(const char *type)
175 {
176 vdev_ops_t *ops, **opspp;
177
178 for (opspp = vdev_ops_table; (ops = *opspp) != NULL; opspp++)
179 if (strcmp(ops->vdev_op_type, type) == 0)
180 break;
181
182 return (ops);
183 }
184
185 /*
186 * Default asize function: return the MAX of psize with the asize of
187 * all children. This is what's used by anything other than RAID-Z.
188 */
189 uint64_t
190 vdev_default_asize(vdev_t *vd, uint64_t psize)
191 {
192 uint64_t asize = P2ROUNDUP(psize, 1ULL << vd->vdev_top->vdev_ashift);
193 uint64_t csize;
194
195 for (int c = 0; c < vd->vdev_children; c++) {
196 csize = vdev_psize_to_asize(vd->vdev_child[c], psize);
197 asize = MAX(asize, csize);
198 }
199
200 return (asize);
201 }
202
203 /*
204 * Get the minimum allocatable size. We define the allocatable size as
205 * the vdev's asize rounded to the nearest metaslab. This allows us to
206 * replace or attach devices which don't have the same physical size but
207 * can still satisfy the same number of allocations.
208 */
209 uint64_t
210 vdev_get_min_asize(vdev_t *vd)
211 {
212 vdev_t *pvd = vd->vdev_parent;
213
214 /*
215 * If our parent is NULL (inactive spare or cache) or is the root,
216 * just return our own asize.
217 */
218 if (pvd == NULL)
219 return (vd->vdev_asize);
220
221 /*
222 * The top-level vdev just returns the allocatable size rounded
223 * to the nearest metaslab.
224 */
225 if (vd == vd->vdev_top)
226 return (P2ALIGN(vd->vdev_asize, 1ULL << vd->vdev_ms_shift));
227
228 /*
229 * The allocatable space for a raidz vdev is N * sizeof(smallest child),
230 * so each child must provide at least 1/Nth of its asize.
231 */
232 if (pvd->vdev_ops == &vdev_raidz_ops)
233 return ((pvd->vdev_min_asize + pvd->vdev_children - 1) /
234 pvd->vdev_children);
235
236 return (pvd->vdev_min_asize);
237 }
238
239 void
240 vdev_set_min_asize(vdev_t *vd)
241 {
242 vd->vdev_min_asize = vdev_get_min_asize(vd);
243
244 for (int c = 0; c < vd->vdev_children; c++)
245 vdev_set_min_asize(vd->vdev_child[c]);
246 }
247
248 vdev_t *
249 vdev_lookup_top(spa_t *spa, uint64_t vdev)
250 {
251 vdev_t *rvd = spa->spa_root_vdev;
252
253 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
254
255 if (vdev < rvd->vdev_children) {
256 ASSERT(rvd->vdev_child[vdev] != NULL);
257 return (rvd->vdev_child[vdev]);
258 }
259
260 return (NULL);
261 }
262
263 vdev_t *
264 vdev_lookup_by_guid(vdev_t *vd, uint64_t guid)
265 {
266 vdev_t *mvd;
267
268 if (vd->vdev_guid == guid)
269 return (vd);
270
271 for (int c = 0; c < vd->vdev_children; c++)
272 if ((mvd = vdev_lookup_by_guid(vd->vdev_child[c], guid)) !=
273 NULL)
274 return (mvd);
275
276 return (NULL);
277 }
278
279 static int
280 vdev_count_leaves_impl(vdev_t *vd)
281 {
282 int n = 0;
283
284 if (vd->vdev_ops->vdev_op_leaf)
285 return (1);
286
287 for (int c = 0; c < vd->vdev_children; c++)
288 n += vdev_count_leaves_impl(vd->vdev_child[c]);
289
290 return (n);
291 }
292
293 int
294 vdev_count_leaves(spa_t *spa)
295 {
296 int rc;
297
298 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
299 rc = vdev_count_leaves_impl(spa->spa_root_vdev);
300 spa_config_exit(spa, SCL_VDEV, FTAG);
301
302 return (rc);
303 }
304
305 void
306 vdev_add_child(vdev_t *pvd, vdev_t *cvd)
307 {
308 size_t oldsize, newsize;
309 uint64_t id = cvd->vdev_id;
310 vdev_t **newchild;
311
312 ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
313 ASSERT(cvd->vdev_parent == NULL);
314
315 cvd->vdev_parent = pvd;
316
317 if (pvd == NULL)
318 return;
319
320 ASSERT(id >= pvd->vdev_children || pvd->vdev_child[id] == NULL);
321
322 oldsize = pvd->vdev_children * sizeof (vdev_t *);
323 pvd->vdev_children = MAX(pvd->vdev_children, id + 1);
324 newsize = pvd->vdev_children * sizeof (vdev_t *);
325
326 newchild = kmem_alloc(newsize, KM_SLEEP);
327 if (pvd->vdev_child != NULL) {
328 bcopy(pvd->vdev_child, newchild, oldsize);
329 kmem_free(pvd->vdev_child, oldsize);
330 }
331
332 pvd->vdev_child = newchild;
333 pvd->vdev_child[id] = cvd;
334
335 cvd->vdev_top = (pvd->vdev_top ? pvd->vdev_top: cvd);
336 ASSERT(cvd->vdev_top->vdev_parent->vdev_parent == NULL);
337
338 /*
339 * Walk up all ancestors to update guid sum.
340 */
341 for (; pvd != NULL; pvd = pvd->vdev_parent)
342 pvd->vdev_guid_sum += cvd->vdev_guid_sum;
343 }
344
345 void
346 vdev_remove_child(vdev_t *pvd, vdev_t *cvd)
347 {
348 int c;
349 uint_t id = cvd->vdev_id;
350
351 ASSERT(cvd->vdev_parent == pvd);
352
353 if (pvd == NULL)
354 return;
355
356 ASSERT(id < pvd->vdev_children);
357 ASSERT(pvd->vdev_child[id] == cvd);
358
359 pvd->vdev_child[id] = NULL;
360 cvd->vdev_parent = NULL;
361
362 for (c = 0; c < pvd->vdev_children; c++)
363 if (pvd->vdev_child[c])
364 break;
365
366 if (c == pvd->vdev_children) {
367 kmem_free(pvd->vdev_child, c * sizeof (vdev_t *));
368 pvd->vdev_child = NULL;
369 pvd->vdev_children = 0;
370 }
371
372 /*
373 * Walk up all ancestors to update guid sum.
374 */
375 for (; pvd != NULL; pvd = pvd->vdev_parent)
376 pvd->vdev_guid_sum -= cvd->vdev_guid_sum;
377 }
378
379 /*
380 * Remove any holes in the child array.
381 */
382 void
383 vdev_compact_children(vdev_t *pvd)
384 {
385 vdev_t **newchild, *cvd;
386 int oldc = pvd->vdev_children;
387 int newc;
388
389 ASSERT(spa_config_held(pvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
390
391 if (oldc == 0)
392 return;
393
394 for (int c = newc = 0; c < oldc; c++)
395 if (pvd->vdev_child[c])
396 newc++;
397
398 if (newc > 0) {
399 newchild = kmem_zalloc(newc * sizeof (vdev_t *), KM_SLEEP);
400
401 for (int c = newc = 0; c < oldc; c++) {
402 if ((cvd = pvd->vdev_child[c]) != NULL) {
403 newchild[newc] = cvd;
404 cvd->vdev_id = newc++;
405 }
406 }
407 } else {
408 newchild = NULL;
409 }
410
411 kmem_free(pvd->vdev_child, oldc * sizeof (vdev_t *));
412 pvd->vdev_child = newchild;
413 pvd->vdev_children = newc;
414 }
415
416 /*
417 * Allocate and minimally initialize a vdev_t.
418 */
419 vdev_t *
420 vdev_alloc_common(spa_t *spa, uint_t id, uint64_t guid, vdev_ops_t *ops)
421 {
422 vdev_t *vd;
423 vdev_indirect_config_t *vic;
424
425 vd = kmem_zalloc(sizeof (vdev_t), KM_SLEEP);
426 vic = &vd->vdev_indirect_config;
427
428 if (spa->spa_root_vdev == NULL) {
429 ASSERT(ops == &vdev_root_ops);
430 spa->spa_root_vdev = vd;
431 spa->spa_load_guid = spa_generate_guid(NULL);
432 }
433
434 if (guid == 0 && ops != &vdev_hole_ops) {
435 if (spa->spa_root_vdev == vd) {
436 /*
437 * The root vdev's guid will also be the pool guid,
438 * which must be unique among all pools.
439 */
440 guid = spa_generate_guid(NULL);
441 } else {
442 /*
443 * Any other vdev's guid must be unique within the pool.
444 */
445 guid = spa_generate_guid(spa);
446 }
447 ASSERT(!spa_guid_exists(spa_guid(spa), guid));
448 }
449
450 vd->vdev_spa = spa;
451 vd->vdev_id = id;
452 vd->vdev_guid = guid;
453 vd->vdev_guid_sum = guid;
454 vd->vdev_ops = ops;
455 vd->vdev_state = VDEV_STATE_CLOSED;
456 vd->vdev_ishole = (ops == &vdev_hole_ops);
457 vic->vic_prev_indirect_vdev = UINT64_MAX;
458
459 rw_init(&vd->vdev_indirect_rwlock, NULL, RW_DEFAULT, NULL);
460 mutex_init(&vd->vdev_obsolete_lock, NULL, MUTEX_DEFAULT, NULL);
461 vd->vdev_obsolete_segments = range_tree_create(NULL, NULL);
462
463 /*
464 * Initialize rate limit structs for events. We rate limit ZIO delay
465 * and checksum events so that we don't overwhelm ZED with thousands
466 * of events when a disk is acting up.
467 */
468 zfs_ratelimit_init(&vd->vdev_delay_rl, &zfs_delays_per_second, 1);
469 zfs_ratelimit_init(&vd->vdev_checksum_rl, &zfs_checksums_per_second, 1);
470
471 list_link_init(&vd->vdev_config_dirty_node);
472 list_link_init(&vd->vdev_state_dirty_node);
473 mutex_init(&vd->vdev_dtl_lock, NULL, MUTEX_NOLOCKDEP, NULL);
474 mutex_init(&vd->vdev_stat_lock, NULL, MUTEX_DEFAULT, NULL);
475 mutex_init(&vd->vdev_probe_lock, NULL, MUTEX_DEFAULT, NULL);
476 mutex_init(&vd->vdev_queue_lock, NULL, MUTEX_DEFAULT, NULL);
477 mutex_init(&vd->vdev_scan_io_queue_lock, NULL, MUTEX_DEFAULT, NULL);
478
479 for (int t = 0; t < DTL_TYPES; t++) {
480 vd->vdev_dtl[t] = range_tree_create(NULL, NULL);
481 }
482 txg_list_create(&vd->vdev_ms_list, spa,
483 offsetof(struct metaslab, ms_txg_node));
484 txg_list_create(&vd->vdev_dtl_list, spa,
485 offsetof(struct vdev, vdev_dtl_node));
486 vd->vdev_stat.vs_timestamp = gethrtime();
487 vdev_queue_init(vd);
488 vdev_cache_init(vd);
489
490 return (vd);
491 }
492
493 /*
494 * Allocate a new vdev. The 'alloctype' is used to control whether we are
495 * creating a new vdev or loading an existing one - the behavior is slightly
496 * different for each case.
497 */
498 int
499 vdev_alloc(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, uint_t id,
500 int alloctype)
501 {
502 vdev_ops_t *ops;
503 char *type;
504 uint64_t guid = 0, islog, nparity;
505 vdev_t *vd;
506 vdev_indirect_config_t *vic;
507 char *tmp = NULL;
508 int rc;
509
510 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
511
512 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) != 0)
513 return (SET_ERROR(EINVAL));
514
515 if ((ops = vdev_getops(type)) == NULL)
516 return (SET_ERROR(EINVAL));
517
518 /*
519 * If this is a load, get the vdev guid from the nvlist.
520 * Otherwise, vdev_alloc_common() will generate one for us.
521 */
522 if (alloctype == VDEV_ALLOC_LOAD) {
523 uint64_t label_id;
524
525 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ID, &label_id) ||
526 label_id != id)
527 return (SET_ERROR(EINVAL));
528
529 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
530 return (SET_ERROR(EINVAL));
531 } else if (alloctype == VDEV_ALLOC_SPARE) {
532 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
533 return (SET_ERROR(EINVAL));
534 } else if (alloctype == VDEV_ALLOC_L2CACHE) {
535 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
536 return (SET_ERROR(EINVAL));
537 } else if (alloctype == VDEV_ALLOC_ROOTPOOL) {
538 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
539 return (SET_ERROR(EINVAL));
540 }
541
542 /*
543 * The first allocated vdev must be of type 'root'.
544 */
545 if (ops != &vdev_root_ops && spa->spa_root_vdev == NULL)
546 return (SET_ERROR(EINVAL));
547
548 /*
549 * Determine whether we're a log vdev.
550 */
551 islog = 0;
552 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_LOG, &islog);
553 if (islog && spa_version(spa) < SPA_VERSION_SLOGS)
554 return (SET_ERROR(ENOTSUP));
555
556 if (ops == &vdev_hole_ops && spa_version(spa) < SPA_VERSION_HOLES)
557 return (SET_ERROR(ENOTSUP));
558
559 /*
560 * Set the nparity property for RAID-Z vdevs.
561 */
562 nparity = -1ULL;
563 if (ops == &vdev_raidz_ops) {
564 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NPARITY,
565 &nparity) == 0) {
566 if (nparity == 0 || nparity > VDEV_RAIDZ_MAXPARITY)
567 return (SET_ERROR(EINVAL));
568 /*
569 * Previous versions could only support 1 or 2 parity
570 * device.
571 */
572 if (nparity > 1 &&
573 spa_version(spa) < SPA_VERSION_RAIDZ2)
574 return (SET_ERROR(ENOTSUP));
575 if (nparity > 2 &&
576 spa_version(spa) < SPA_VERSION_RAIDZ3)
577 return (SET_ERROR(ENOTSUP));
578 } else {
579 /*
580 * We require the parity to be specified for SPAs that
581 * support multiple parity levels.
582 */
583 if (spa_version(spa) >= SPA_VERSION_RAIDZ2)
584 return (SET_ERROR(EINVAL));
585 /*
586 * Otherwise, we default to 1 parity device for RAID-Z.
587 */
588 nparity = 1;
589 }
590 } else {
591 nparity = 0;
592 }
593 ASSERT(nparity != -1ULL);
594
595 vd = vdev_alloc_common(spa, id, guid, ops);
596 vic = &vd->vdev_indirect_config;
597
598 vd->vdev_islog = islog;
599 vd->vdev_nparity = nparity;
600
601 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &vd->vdev_path) == 0)
602 vd->vdev_path = spa_strdup(vd->vdev_path);
603
604 /*
605 * ZPOOL_CONFIG_AUX_STATE = "external" means we previously forced a
606 * fault on a vdev and want it to persist across imports (like with
607 * zpool offline -f).
608 */
609 rc = nvlist_lookup_string(nv, ZPOOL_CONFIG_AUX_STATE, &tmp);
610 if (rc == 0 && tmp != NULL && strcmp(tmp, "external") == 0) {
611 vd->vdev_stat.vs_aux = VDEV_AUX_EXTERNAL;
612 vd->vdev_faulted = 1;
613 vd->vdev_label_aux = VDEV_AUX_EXTERNAL;
614 }
615
616 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_DEVID, &vd->vdev_devid) == 0)
617 vd->vdev_devid = spa_strdup(vd->vdev_devid);
618 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PHYS_PATH,
619 &vd->vdev_physpath) == 0)
620 vd->vdev_physpath = spa_strdup(vd->vdev_physpath);
621
622 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_VDEV_ENC_SYSFS_PATH,
623 &vd->vdev_enc_sysfs_path) == 0)
624 vd->vdev_enc_sysfs_path = spa_strdup(vd->vdev_enc_sysfs_path);
625
626 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_FRU, &vd->vdev_fru) == 0)
627 vd->vdev_fru = spa_strdup(vd->vdev_fru);
628
629 /*
630 * Set the whole_disk property. If it's not specified, leave the value
631 * as -1.
632 */
633 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK,
634 &vd->vdev_wholedisk) != 0)
635 vd->vdev_wholedisk = -1ULL;
636
637 ASSERT0(vic->vic_mapping_object);
638 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_INDIRECT_OBJECT,
639 &vic->vic_mapping_object);
640 ASSERT0(vic->vic_births_object);
641 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_INDIRECT_BIRTHS,
642 &vic->vic_births_object);
643 ASSERT3U(vic->vic_prev_indirect_vdev, ==, UINT64_MAX);
644 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_PREV_INDIRECT_VDEV,
645 &vic->vic_prev_indirect_vdev);
646
647 /*
648 * Look for the 'not present' flag. This will only be set if the device
649 * was not present at the time of import.
650 */
651 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT,
652 &vd->vdev_not_present);
653
654 /*
655 * Get the alignment requirement.
656 */
657 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASHIFT, &vd->vdev_ashift);
658
659 /*
660 * Retrieve the vdev creation time.
661 */
662 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_CREATE_TXG,
663 &vd->vdev_crtxg);
664
665 /*
666 * If we're a top-level vdev, try to load the allocation parameters.
667 */
668 if (parent && !parent->vdev_parent &&
669 (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_SPLIT)) {
670 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY,
671 &vd->vdev_ms_array);
672 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT,
673 &vd->vdev_ms_shift);
674 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASIZE,
675 &vd->vdev_asize);
676 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVING,
677 &vd->vdev_removing);
678 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_VDEV_TOP_ZAP,
679 &vd->vdev_top_zap);
680 } else {
681 ASSERT0(vd->vdev_top_zap);
682 }
683
684 if (parent && !parent->vdev_parent && alloctype != VDEV_ALLOC_ATTACH) {
685 ASSERT(alloctype == VDEV_ALLOC_LOAD ||
686 alloctype == VDEV_ALLOC_ADD ||
687 alloctype == VDEV_ALLOC_SPLIT ||
688 alloctype == VDEV_ALLOC_ROOTPOOL);
689 vd->vdev_mg = metaslab_group_create(islog ?
690 spa_log_class(spa) : spa_normal_class(spa), vd);
691 }
692
693 if (vd->vdev_ops->vdev_op_leaf &&
694 (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_SPLIT)) {
695 (void) nvlist_lookup_uint64(nv,
696 ZPOOL_CONFIG_VDEV_LEAF_ZAP, &vd->vdev_leaf_zap);
697 } else {
698 ASSERT0(vd->vdev_leaf_zap);
699 }
700
701 /*
702 * If we're a leaf vdev, try to load the DTL object and other state.
703 */
704
705 if (vd->vdev_ops->vdev_op_leaf &&
706 (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_L2CACHE ||
707 alloctype == VDEV_ALLOC_ROOTPOOL)) {
708 if (alloctype == VDEV_ALLOC_LOAD) {
709 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DTL,
710 &vd->vdev_dtl_object);
711 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_UNSPARE,
712 &vd->vdev_unspare);
713 }
714
715 if (alloctype == VDEV_ALLOC_ROOTPOOL) {
716 uint64_t spare = 0;
717
718 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_SPARE,
719 &spare) == 0 && spare)
720 spa_spare_add(vd);
721 }
722
723 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_OFFLINE,
724 &vd->vdev_offline);
725
726 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_RESILVER_TXG,
727 &vd->vdev_resilver_txg);
728
729 /*
730 * In general, when importing a pool we want to ignore the
731 * persistent fault state, as the diagnosis made on another
732 * system may not be valid in the current context. The only
733 * exception is if we forced a vdev to a persistently faulted
734 * state with 'zpool offline -f'. The persistent fault will
735 * remain across imports until cleared.
736 *
737 * Local vdevs will remain in the faulted state.
738 */
739 if (spa_load_state(spa) == SPA_LOAD_OPEN ||
740 spa_load_state(spa) == SPA_LOAD_IMPORT) {
741 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_FAULTED,
742 &vd->vdev_faulted);
743 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DEGRADED,
744 &vd->vdev_degraded);
745 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVED,
746 &vd->vdev_removed);
747
748 if (vd->vdev_faulted || vd->vdev_degraded) {
749 char *aux;
750
751 vd->vdev_label_aux =
752 VDEV_AUX_ERR_EXCEEDED;
753 if (nvlist_lookup_string(nv,
754 ZPOOL_CONFIG_AUX_STATE, &aux) == 0 &&
755 strcmp(aux, "external") == 0)
756 vd->vdev_label_aux = VDEV_AUX_EXTERNAL;
757 else
758 vd->vdev_faulted = 0ULL;
759 }
760 }
761 }
762
763 /*
764 * Add ourselves to the parent's list of children.
765 */
766 vdev_add_child(parent, vd);
767
768 *vdp = vd;
769
770 return (0);
771 }
772
773 void
774 vdev_free(vdev_t *vd)
775 {
776 spa_t *spa = vd->vdev_spa;
777
778 /*
779 * Scan queues are normally destroyed at the end of a scan. If the
780 * queue exists here, that implies the vdev is being removed while
781 * the scan is still running.
782 */
783 if (vd->vdev_scan_io_queue != NULL) {
784 mutex_enter(&vd->vdev_scan_io_queue_lock);
785 dsl_scan_io_queue_destroy(vd->vdev_scan_io_queue);
786 vd->vdev_scan_io_queue = NULL;
787 mutex_exit(&vd->vdev_scan_io_queue_lock);
788 }
789
790 /*
791 * vdev_free() implies closing the vdev first. This is simpler than
792 * trying to ensure complicated semantics for all callers.
793 */
794 vdev_close(vd);
795
796 ASSERT(!list_link_active(&vd->vdev_config_dirty_node));
797 ASSERT(!list_link_active(&vd->vdev_state_dirty_node));
798
799 /*
800 * Free all children.
801 */
802 for (int c = 0; c < vd->vdev_children; c++)
803 vdev_free(vd->vdev_child[c]);
804
805 ASSERT(vd->vdev_child == NULL);
806 ASSERT(vd->vdev_guid_sum == vd->vdev_guid);
807
808 /*
809 * Discard allocation state.
810 */
811 if (vd->vdev_mg != NULL) {
812 vdev_metaslab_fini(vd);
813 metaslab_group_destroy(vd->vdev_mg);
814 }
815
816 ASSERT0(vd->vdev_stat.vs_space);
817 ASSERT0(vd->vdev_stat.vs_dspace);
818 ASSERT0(vd->vdev_stat.vs_alloc);
819
820 /*
821 * Remove this vdev from its parent's child list.
822 */
823 vdev_remove_child(vd->vdev_parent, vd);
824
825 ASSERT(vd->vdev_parent == NULL);
826
827 /*
828 * Clean up vdev structure.
829 */
830 vdev_queue_fini(vd);
831 vdev_cache_fini(vd);
832
833 if (vd->vdev_path)
834 spa_strfree(vd->vdev_path);
835 if (vd->vdev_devid)
836 spa_strfree(vd->vdev_devid);
837 if (vd->vdev_physpath)
838 spa_strfree(vd->vdev_physpath);
839
840 if (vd->vdev_enc_sysfs_path)
841 spa_strfree(vd->vdev_enc_sysfs_path);
842
843 if (vd->vdev_fru)
844 spa_strfree(vd->vdev_fru);
845
846 if (vd->vdev_isspare)
847 spa_spare_remove(vd);
848 if (vd->vdev_isl2cache)
849 spa_l2cache_remove(vd);
850
851 txg_list_destroy(&vd->vdev_ms_list);
852 txg_list_destroy(&vd->vdev_dtl_list);
853
854 mutex_enter(&vd->vdev_dtl_lock);
855 space_map_close(vd->vdev_dtl_sm);
856 for (int t = 0; t < DTL_TYPES; t++) {
857 range_tree_vacate(vd->vdev_dtl[t], NULL, NULL);
858 range_tree_destroy(vd->vdev_dtl[t]);
859 }
860 mutex_exit(&vd->vdev_dtl_lock);
861
862 EQUIV(vd->vdev_indirect_births != NULL,
863 vd->vdev_indirect_mapping != NULL);
864 if (vd->vdev_indirect_births != NULL) {
865 vdev_indirect_mapping_close(vd->vdev_indirect_mapping);
866 vdev_indirect_births_close(vd->vdev_indirect_births);
867 }
868
869 if (vd->vdev_obsolete_sm != NULL) {
870 ASSERT(vd->vdev_removing ||
871 vd->vdev_ops == &vdev_indirect_ops);
872 space_map_close(vd->vdev_obsolete_sm);
873 vd->vdev_obsolete_sm = NULL;
874 }
875 range_tree_destroy(vd->vdev_obsolete_segments);
876 rw_destroy(&vd->vdev_indirect_rwlock);
877 mutex_destroy(&vd->vdev_obsolete_lock);
878
879 mutex_destroy(&vd->vdev_queue_lock);
880 mutex_destroy(&vd->vdev_dtl_lock);
881 mutex_destroy(&vd->vdev_stat_lock);
882 mutex_destroy(&vd->vdev_probe_lock);
883 mutex_destroy(&vd->vdev_scan_io_queue_lock);
884
885 zfs_ratelimit_fini(&vd->vdev_delay_rl);
886 zfs_ratelimit_fini(&vd->vdev_checksum_rl);
887
888 if (vd == spa->spa_root_vdev)
889 spa->spa_root_vdev = NULL;
890
891 kmem_free(vd, sizeof (vdev_t));
892 }
893
894 /*
895 * Transfer top-level vdev state from svd to tvd.
896 */
897 static void
898 vdev_top_transfer(vdev_t *svd, vdev_t *tvd)
899 {
900 spa_t *spa = svd->vdev_spa;
901 metaslab_t *msp;
902 vdev_t *vd;
903 int t;
904
905 ASSERT(tvd == tvd->vdev_top);
906
907 tvd->vdev_pending_fastwrite = svd->vdev_pending_fastwrite;
908 tvd->vdev_ms_array = svd->vdev_ms_array;
909 tvd->vdev_ms_shift = svd->vdev_ms_shift;
910 tvd->vdev_ms_count = svd->vdev_ms_count;
911 tvd->vdev_top_zap = svd->vdev_top_zap;
912
913 svd->vdev_ms_array = 0;
914 svd->vdev_ms_shift = 0;
915 svd->vdev_ms_count = 0;
916 svd->vdev_top_zap = 0;
917
918 if (tvd->vdev_mg)
919 ASSERT3P(tvd->vdev_mg, ==, svd->vdev_mg);
920 tvd->vdev_mg = svd->vdev_mg;
921 tvd->vdev_ms = svd->vdev_ms;
922
923 svd->vdev_mg = NULL;
924 svd->vdev_ms = NULL;
925
926 if (tvd->vdev_mg != NULL)
927 tvd->vdev_mg->mg_vd = tvd;
928
929 tvd->vdev_stat.vs_alloc = svd->vdev_stat.vs_alloc;
930 tvd->vdev_stat.vs_space = svd->vdev_stat.vs_space;
931 tvd->vdev_stat.vs_dspace = svd->vdev_stat.vs_dspace;
932
933 svd->vdev_stat.vs_alloc = 0;
934 svd->vdev_stat.vs_space = 0;
935 svd->vdev_stat.vs_dspace = 0;
936
937 /*
938 * State which may be set on a top-level vdev that's in the
939 * process of being removed.
940 */
941 ASSERT0(tvd->vdev_indirect_config.vic_births_object);
942 ASSERT0(tvd->vdev_indirect_config.vic_mapping_object);
943 ASSERT3U(tvd->vdev_indirect_config.vic_prev_indirect_vdev, ==, -1ULL);
944 ASSERT3P(tvd->vdev_indirect_mapping, ==, NULL);
945 ASSERT3P(tvd->vdev_indirect_births, ==, NULL);
946 ASSERT3P(tvd->vdev_obsolete_sm, ==, NULL);
947 ASSERT0(tvd->vdev_removing);
948 tvd->vdev_removing = svd->vdev_removing;
949 tvd->vdev_indirect_config = svd->vdev_indirect_config;
950 tvd->vdev_indirect_mapping = svd->vdev_indirect_mapping;
951 tvd->vdev_indirect_births = svd->vdev_indirect_births;
952 range_tree_swap(&svd->vdev_obsolete_segments,
953 &tvd->vdev_obsolete_segments);
954 tvd->vdev_obsolete_sm = svd->vdev_obsolete_sm;
955 svd->vdev_indirect_config.vic_mapping_object = 0;
956 svd->vdev_indirect_config.vic_births_object = 0;
957 svd->vdev_indirect_config.vic_prev_indirect_vdev = -1ULL;
958 svd->vdev_indirect_mapping = NULL;
959 svd->vdev_indirect_births = NULL;
960 svd->vdev_obsolete_sm = NULL;
961 svd->vdev_removing = 0;
962
963 for (t = 0; t < TXG_SIZE; t++) {
964 while ((msp = txg_list_remove(&svd->vdev_ms_list, t)) != NULL)
965 (void) txg_list_add(&tvd->vdev_ms_list, msp, t);
966 while ((vd = txg_list_remove(&svd->vdev_dtl_list, t)) != NULL)
967 (void) txg_list_add(&tvd->vdev_dtl_list, vd, t);
968 if (txg_list_remove_this(&spa->spa_vdev_txg_list, svd, t))
969 (void) txg_list_add(&spa->spa_vdev_txg_list, tvd, t);
970 }
971
972 if (list_link_active(&svd->vdev_config_dirty_node)) {
973 vdev_config_clean(svd);
974 vdev_config_dirty(tvd);
975 }
976
977 if (list_link_active(&svd->vdev_state_dirty_node)) {
978 vdev_state_clean(svd);
979 vdev_state_dirty(tvd);
980 }
981
982 tvd->vdev_deflate_ratio = svd->vdev_deflate_ratio;
983 svd->vdev_deflate_ratio = 0;
984
985 tvd->vdev_islog = svd->vdev_islog;
986 svd->vdev_islog = 0;
987
988 dsl_scan_io_queue_vdev_xfer(svd, tvd);
989 }
990
991 static void
992 vdev_top_update(vdev_t *tvd, vdev_t *vd)
993 {
994 if (vd == NULL)
995 return;
996
997 vd->vdev_top = tvd;
998
999 for (int c = 0; c < vd->vdev_children; c++)
1000 vdev_top_update(tvd, vd->vdev_child[c]);
1001 }
1002
1003 /*
1004 * Add a mirror/replacing vdev above an existing vdev.
1005 */
1006 vdev_t *
1007 vdev_add_parent(vdev_t *cvd, vdev_ops_t *ops)
1008 {
1009 spa_t *spa = cvd->vdev_spa;
1010 vdev_t *pvd = cvd->vdev_parent;
1011 vdev_t *mvd;
1012
1013 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1014
1015 mvd = vdev_alloc_common(spa, cvd->vdev_id, 0, ops);
1016
1017 mvd->vdev_asize = cvd->vdev_asize;
1018 mvd->vdev_min_asize = cvd->vdev_min_asize;
1019 mvd->vdev_max_asize = cvd->vdev_max_asize;
1020 mvd->vdev_psize = cvd->vdev_psize;
1021 mvd->vdev_ashift = cvd->vdev_ashift;
1022 mvd->vdev_state = cvd->vdev_state;
1023 mvd->vdev_crtxg = cvd->vdev_crtxg;
1024
1025 vdev_remove_child(pvd, cvd);
1026 vdev_add_child(pvd, mvd);
1027 cvd->vdev_id = mvd->vdev_children;
1028 vdev_add_child(mvd, cvd);
1029 vdev_top_update(cvd->vdev_top, cvd->vdev_top);
1030
1031 if (mvd == mvd->vdev_top)
1032 vdev_top_transfer(cvd, mvd);
1033
1034 return (mvd);
1035 }
1036
1037 /*
1038 * Remove a 1-way mirror/replacing vdev from the tree.
1039 */
1040 void
1041 vdev_remove_parent(vdev_t *cvd)
1042 {
1043 vdev_t *mvd = cvd->vdev_parent;
1044 vdev_t *pvd = mvd->vdev_parent;
1045
1046 ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1047
1048 ASSERT(mvd->vdev_children == 1);
1049 ASSERT(mvd->vdev_ops == &vdev_mirror_ops ||
1050 mvd->vdev_ops == &vdev_replacing_ops ||
1051 mvd->vdev_ops == &vdev_spare_ops);
1052 cvd->vdev_ashift = mvd->vdev_ashift;
1053
1054 vdev_remove_child(mvd, cvd);
1055 vdev_remove_child(pvd, mvd);
1056
1057 /*
1058 * If cvd will replace mvd as a top-level vdev, preserve mvd's guid.
1059 * Otherwise, we could have detached an offline device, and when we
1060 * go to import the pool we'll think we have two top-level vdevs,
1061 * instead of a different version of the same top-level vdev.
1062 */
1063 if (mvd->vdev_top == mvd) {
1064 uint64_t guid_delta = mvd->vdev_guid - cvd->vdev_guid;
1065 cvd->vdev_orig_guid = cvd->vdev_guid;
1066 cvd->vdev_guid += guid_delta;
1067 cvd->vdev_guid_sum += guid_delta;
1068
1069 /*
1070 * If pool not set for autoexpand, we need to also preserve
1071 * mvd's asize to prevent automatic expansion of cvd.
1072 * Otherwise if we are adjusting the mirror by attaching and
1073 * detaching children of non-uniform sizes, the mirror could
1074 * autoexpand, unexpectedly requiring larger devices to
1075 * re-establish the mirror.
1076 */
1077 if (!cvd->vdev_spa->spa_autoexpand)
1078 cvd->vdev_asize = mvd->vdev_asize;
1079 }
1080 cvd->vdev_id = mvd->vdev_id;
1081 vdev_add_child(pvd, cvd);
1082 vdev_top_update(cvd->vdev_top, cvd->vdev_top);
1083
1084 if (cvd == cvd->vdev_top)
1085 vdev_top_transfer(mvd, cvd);
1086
1087 ASSERT(mvd->vdev_children == 0);
1088 vdev_free(mvd);
1089 }
1090
1091 int
1092 vdev_metaslab_init(vdev_t *vd, uint64_t txg)
1093 {
1094 spa_t *spa = vd->vdev_spa;
1095 objset_t *mos = spa->spa_meta_objset;
1096 uint64_t m;
1097 uint64_t oldc = vd->vdev_ms_count;
1098 uint64_t newc = vd->vdev_asize >> vd->vdev_ms_shift;
1099 metaslab_t **mspp;
1100 int error;
1101
1102 ASSERT(txg == 0 || spa_config_held(spa, SCL_ALLOC, RW_WRITER));
1103
1104 /*
1105 * This vdev is not being allocated from yet or is a hole.
1106 */
1107 if (vd->vdev_ms_shift == 0)
1108 return (0);
1109
1110 ASSERT(!vd->vdev_ishole);
1111
1112 ASSERT(oldc <= newc);
1113
1114 mspp = vmem_zalloc(newc * sizeof (*mspp), KM_SLEEP);
1115
1116 if (oldc != 0) {
1117 bcopy(vd->vdev_ms, mspp, oldc * sizeof (*mspp));
1118 vmem_free(vd->vdev_ms, oldc * sizeof (*mspp));
1119 }
1120
1121 vd->vdev_ms = mspp;
1122 vd->vdev_ms_count = newc;
1123
1124 for (m = oldc; m < newc; m++) {
1125 uint64_t object = 0;
1126
1127 /*
1128 * vdev_ms_array may be 0 if we are creating the "fake"
1129 * metaslabs for an indirect vdev for zdb's leak detection.
1130 * See zdb_leak_init().
1131 */
1132 if (txg == 0 && vd->vdev_ms_array != 0) {
1133 error = dmu_read(mos, vd->vdev_ms_array,
1134 m * sizeof (uint64_t), sizeof (uint64_t), &object,
1135 DMU_READ_PREFETCH);
1136 if (error != 0) {
1137 vdev_dbgmsg(vd, "unable to read the metaslab "
1138 "array [error=%d]", error);
1139 return (error);
1140 }
1141 }
1142
1143 error = metaslab_init(vd->vdev_mg, m, object, txg,
1144 &(vd->vdev_ms[m]));
1145 if (error != 0) {
1146 vdev_dbgmsg(vd, "metaslab_init failed [error=%d]",
1147 error);
1148 return (error);
1149 }
1150 }
1151
1152 if (txg == 0)
1153 spa_config_enter(spa, SCL_ALLOC, FTAG, RW_WRITER);
1154
1155 /*
1156 * If the vdev is being removed we don't activate
1157 * the metaslabs since we want to ensure that no new
1158 * allocations are performed on this device.
1159 */
1160 if (oldc == 0 && !vd->vdev_removing)
1161 metaslab_group_activate(vd->vdev_mg);
1162
1163 if (txg == 0)
1164 spa_config_exit(spa, SCL_ALLOC, FTAG);
1165
1166 return (0);
1167 }
1168
1169 void
1170 vdev_metaslab_fini(vdev_t *vd)
1171 {
1172 if (vd->vdev_ms != NULL) {
1173 uint64_t count = vd->vdev_ms_count;
1174
1175 metaslab_group_passivate(vd->vdev_mg);
1176 for (uint64_t m = 0; m < count; m++) {
1177 metaslab_t *msp = vd->vdev_ms[m];
1178
1179 if (msp != NULL)
1180 metaslab_fini(msp);
1181 }
1182 vmem_free(vd->vdev_ms, count * sizeof (metaslab_t *));
1183 vd->vdev_ms = NULL;
1184
1185 vd->vdev_ms_count = 0;
1186 }
1187 ASSERT0(vd->vdev_ms_count);
1188 ASSERT3U(vd->vdev_pending_fastwrite, ==, 0);
1189 }
1190
1191 typedef struct vdev_probe_stats {
1192 boolean_t vps_readable;
1193 boolean_t vps_writeable;
1194 int vps_flags;
1195 } vdev_probe_stats_t;
1196
1197 static void
1198 vdev_probe_done(zio_t *zio)
1199 {
1200 spa_t *spa = zio->io_spa;
1201 vdev_t *vd = zio->io_vd;
1202 vdev_probe_stats_t *vps = zio->io_private;
1203
1204 ASSERT(vd->vdev_probe_zio != NULL);
1205
1206 if (zio->io_type == ZIO_TYPE_READ) {
1207 if (zio->io_error == 0)
1208 vps->vps_readable = 1;
1209 if (zio->io_error == 0 && spa_writeable(spa)) {
1210 zio_nowait(zio_write_phys(vd->vdev_probe_zio, vd,
1211 zio->io_offset, zio->io_size, zio->io_abd,
1212 ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
1213 ZIO_PRIORITY_SYNC_WRITE, vps->vps_flags, B_TRUE));
1214 } else {
1215 abd_free(zio->io_abd);
1216 }
1217 } else if (zio->io_type == ZIO_TYPE_WRITE) {
1218 if (zio->io_error == 0)
1219 vps->vps_writeable = 1;
1220 abd_free(zio->io_abd);
1221 } else if (zio->io_type == ZIO_TYPE_NULL) {
1222 zio_t *pio;
1223 zio_link_t *zl;
1224
1225 vd->vdev_cant_read |= !vps->vps_readable;
1226 vd->vdev_cant_write |= !vps->vps_writeable;
1227
1228 if (vdev_readable(vd) &&
1229 (vdev_writeable(vd) || !spa_writeable(spa))) {
1230 zio->io_error = 0;
1231 } else {
1232 ASSERT(zio->io_error != 0);
1233 vdev_dbgmsg(vd, "failed probe");
1234 zfs_ereport_post(FM_EREPORT_ZFS_PROBE_FAILURE,
1235 spa, vd, NULL, NULL, 0, 0);
1236 zio->io_error = SET_ERROR(ENXIO);
1237 }
1238
1239 mutex_enter(&vd->vdev_probe_lock);
1240 ASSERT(vd->vdev_probe_zio == zio);
1241 vd->vdev_probe_zio = NULL;
1242 mutex_exit(&vd->vdev_probe_lock);
1243
1244 zl = NULL;
1245 while ((pio = zio_walk_parents(zio, &zl)) != NULL)
1246 if (!vdev_accessible(vd, pio))
1247 pio->io_error = SET_ERROR(ENXIO);
1248
1249 kmem_free(vps, sizeof (*vps));
1250 }
1251 }
1252
1253 /*
1254 * Determine whether this device is accessible.
1255 *
1256 * Read and write to several known locations: the pad regions of each
1257 * vdev label but the first, which we leave alone in case it contains
1258 * a VTOC.
1259 */
1260 zio_t *
1261 vdev_probe(vdev_t *vd, zio_t *zio)
1262 {
1263 spa_t *spa = vd->vdev_spa;
1264 vdev_probe_stats_t *vps = NULL;
1265 zio_t *pio;
1266
1267 ASSERT(vd->vdev_ops->vdev_op_leaf);
1268
1269 /*
1270 * Don't probe the probe.
1271 */
1272 if (zio && (zio->io_flags & ZIO_FLAG_PROBE))
1273 return (NULL);
1274
1275 /*
1276 * To prevent 'probe storms' when a device fails, we create
1277 * just one probe i/o at a time. All zios that want to probe
1278 * this vdev will become parents of the probe io.
1279 */
1280 mutex_enter(&vd->vdev_probe_lock);
1281
1282 if ((pio = vd->vdev_probe_zio) == NULL) {
1283 vps = kmem_zalloc(sizeof (*vps), KM_SLEEP);
1284
1285 vps->vps_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_PROBE |
1286 ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_AGGREGATE |
1287 ZIO_FLAG_TRYHARD;
1288
1289 if (spa_config_held(spa, SCL_ZIO, RW_WRITER)) {
1290 /*
1291 * vdev_cant_read and vdev_cant_write can only
1292 * transition from TRUE to FALSE when we have the
1293 * SCL_ZIO lock as writer; otherwise they can only
1294 * transition from FALSE to TRUE. This ensures that
1295 * any zio looking at these values can assume that
1296 * failures persist for the life of the I/O. That's
1297 * important because when a device has intermittent
1298 * connectivity problems, we want to ensure that
1299 * they're ascribed to the device (ENXIO) and not
1300 * the zio (EIO).
1301 *
1302 * Since we hold SCL_ZIO as writer here, clear both
1303 * values so the probe can reevaluate from first
1304 * principles.
1305 */
1306 vps->vps_flags |= ZIO_FLAG_CONFIG_WRITER;
1307 vd->vdev_cant_read = B_FALSE;
1308 vd->vdev_cant_write = B_FALSE;
1309 }
1310
1311 vd->vdev_probe_zio = pio = zio_null(NULL, spa, vd,
1312 vdev_probe_done, vps,
1313 vps->vps_flags | ZIO_FLAG_DONT_PROPAGATE);
1314
1315 /*
1316 * We can't change the vdev state in this context, so we
1317 * kick off an async task to do it on our behalf.
1318 */
1319 if (zio != NULL) {
1320 vd->vdev_probe_wanted = B_TRUE;
1321 spa_async_request(spa, SPA_ASYNC_PROBE);
1322 }
1323 }
1324
1325 if (zio != NULL)
1326 zio_add_child(zio, pio);
1327
1328 mutex_exit(&vd->vdev_probe_lock);
1329
1330 if (vps == NULL) {
1331 ASSERT(zio != NULL);
1332 return (NULL);
1333 }
1334
1335 for (int l = 1; l < VDEV_LABELS; l++) {
1336 zio_nowait(zio_read_phys(pio, vd,
1337 vdev_label_offset(vd->vdev_psize, l,
1338 offsetof(vdev_label_t, vl_pad2)), VDEV_PAD_SIZE,
1339 abd_alloc_for_io(VDEV_PAD_SIZE, B_TRUE),
1340 ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
1341 ZIO_PRIORITY_SYNC_READ, vps->vps_flags, B_TRUE));
1342 }
1343
1344 if (zio == NULL)
1345 return (pio);
1346
1347 zio_nowait(pio);
1348 return (NULL);
1349 }
1350
1351 static void
1352 vdev_open_child(void *arg)
1353 {
1354 vdev_t *vd = arg;
1355
1356 vd->vdev_open_thread = curthread;
1357 vd->vdev_open_error = vdev_open(vd);
1358 vd->vdev_open_thread = NULL;
1359 }
1360
1361 static boolean_t
1362 vdev_uses_zvols(vdev_t *vd)
1363 {
1364 #ifdef _KERNEL
1365 if (zvol_is_zvol(vd->vdev_path))
1366 return (B_TRUE);
1367 #endif
1368
1369 for (int c = 0; c < vd->vdev_children; c++)
1370 if (vdev_uses_zvols(vd->vdev_child[c]))
1371 return (B_TRUE);
1372
1373 return (B_FALSE);
1374 }
1375
1376 void
1377 vdev_open_children(vdev_t *vd)
1378 {
1379 taskq_t *tq;
1380 int children = vd->vdev_children;
1381
1382 /*
1383 * in order to handle pools on top of zvols, do the opens
1384 * in a single thread so that the same thread holds the
1385 * spa_namespace_lock
1386 */
1387 if (vdev_uses_zvols(vd)) {
1388 retry_sync:
1389 for (int c = 0; c < children; c++)
1390 vd->vdev_child[c]->vdev_open_error =
1391 vdev_open(vd->vdev_child[c]);
1392 } else {
1393 tq = taskq_create("vdev_open", children, minclsyspri,
1394 children, children, TASKQ_PREPOPULATE);
1395 if (tq == NULL)
1396 goto retry_sync;
1397
1398 for (int c = 0; c < children; c++)
1399 VERIFY(taskq_dispatch(tq, vdev_open_child,
1400 vd->vdev_child[c], TQ_SLEEP) != TASKQID_INVALID);
1401
1402 taskq_destroy(tq);
1403 }
1404
1405 vd->vdev_nonrot = B_TRUE;
1406
1407 for (int c = 0; c < children; c++)
1408 vd->vdev_nonrot &= vd->vdev_child[c]->vdev_nonrot;
1409 }
1410
1411 /*
1412 * Compute the raidz-deflation ratio. Note, we hard-code
1413 * in 128k (1 << 17) because it is the "typical" blocksize.
1414 * Even though SPA_MAXBLOCKSIZE changed, this algorithm can not change,
1415 * otherwise it would inconsistently account for existing bp's.
1416 */
1417 static void
1418 vdev_set_deflate_ratio(vdev_t *vd)
1419 {
1420 if (vd == vd->vdev_top && !vd->vdev_ishole && vd->vdev_ashift != 0) {
1421 vd->vdev_deflate_ratio = (1 << 17) /
1422 (vdev_psize_to_asize(vd, 1 << 17) >> SPA_MINBLOCKSHIFT);
1423 }
1424 }
1425
1426 /*
1427 * Prepare a virtual device for access.
1428 */
1429 int
1430 vdev_open(vdev_t *vd)
1431 {
1432 spa_t *spa = vd->vdev_spa;
1433 int error;
1434 uint64_t osize = 0;
1435 uint64_t max_osize = 0;
1436 uint64_t asize, max_asize, psize;
1437 uint64_t ashift = 0;
1438
1439 ASSERT(vd->vdev_open_thread == curthread ||
1440 spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1441 ASSERT(vd->vdev_state == VDEV_STATE_CLOSED ||
1442 vd->vdev_state == VDEV_STATE_CANT_OPEN ||
1443 vd->vdev_state == VDEV_STATE_OFFLINE);
1444
1445 vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
1446 vd->vdev_cant_read = B_FALSE;
1447 vd->vdev_cant_write = B_FALSE;
1448 vd->vdev_min_asize = vdev_get_min_asize(vd);
1449
1450 /*
1451 * If this vdev is not removed, check its fault status. If it's
1452 * faulted, bail out of the open.
1453 */
1454 if (!vd->vdev_removed && vd->vdev_faulted) {
1455 ASSERT(vd->vdev_children == 0);
1456 ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED ||
1457 vd->vdev_label_aux == VDEV_AUX_EXTERNAL);
1458 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1459 vd->vdev_label_aux);
1460 return (SET_ERROR(ENXIO));
1461 } else if (vd->vdev_offline) {
1462 ASSERT(vd->vdev_children == 0);
1463 vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE, VDEV_AUX_NONE);
1464 return (SET_ERROR(ENXIO));
1465 }
1466
1467 error = vd->vdev_ops->vdev_op_open(vd, &osize, &max_osize, &ashift);
1468
1469 /*
1470 * Reset the vdev_reopening flag so that we actually close
1471 * the vdev on error.
1472 */
1473 vd->vdev_reopening = B_FALSE;
1474 if (zio_injection_enabled && error == 0)
1475 error = zio_handle_device_injection(vd, NULL, ENXIO);
1476
1477 if (error) {
1478 if (vd->vdev_removed &&
1479 vd->vdev_stat.vs_aux != VDEV_AUX_OPEN_FAILED)
1480 vd->vdev_removed = B_FALSE;
1481
1482 if (vd->vdev_stat.vs_aux == VDEV_AUX_CHILDREN_OFFLINE) {
1483 vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE,
1484 vd->vdev_stat.vs_aux);
1485 } else {
1486 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1487 vd->vdev_stat.vs_aux);
1488 }
1489 return (error);
1490 }
1491
1492 vd->vdev_removed = B_FALSE;
1493
1494 /*
1495 * Recheck the faulted flag now that we have confirmed that
1496 * the vdev is accessible. If we're faulted, bail.
1497 */
1498 if (vd->vdev_faulted) {
1499 ASSERT(vd->vdev_children == 0);
1500 ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED ||
1501 vd->vdev_label_aux == VDEV_AUX_EXTERNAL);
1502 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1503 vd->vdev_label_aux);
1504 return (SET_ERROR(ENXIO));
1505 }
1506
1507 if (vd->vdev_degraded) {
1508 ASSERT(vd->vdev_children == 0);
1509 vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
1510 VDEV_AUX_ERR_EXCEEDED);
1511 } else {
1512 vdev_set_state(vd, B_TRUE, VDEV_STATE_HEALTHY, 0);
1513 }
1514
1515 /*
1516 * For hole or missing vdevs we just return success.
1517 */
1518 if (vd->vdev_ishole || vd->vdev_ops == &vdev_missing_ops)
1519 return (0);
1520
1521 for (int c = 0; c < vd->vdev_children; c++) {
1522 if (vd->vdev_child[c]->vdev_state != VDEV_STATE_HEALTHY) {
1523 vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
1524 VDEV_AUX_NONE);
1525 break;
1526 }
1527 }
1528
1529 osize = P2ALIGN(osize, (uint64_t)sizeof (vdev_label_t));
1530 max_osize = P2ALIGN(max_osize, (uint64_t)sizeof (vdev_label_t));
1531
1532 if (vd->vdev_children == 0) {
1533 if (osize < SPA_MINDEVSIZE) {
1534 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1535 VDEV_AUX_TOO_SMALL);
1536 return (SET_ERROR(EOVERFLOW));
1537 }
1538 psize = osize;
1539 asize = osize - (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE);
1540 max_asize = max_osize - (VDEV_LABEL_START_SIZE +
1541 VDEV_LABEL_END_SIZE);
1542 } else {
1543 if (vd->vdev_parent != NULL && osize < SPA_MINDEVSIZE -
1544 (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE)) {
1545 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1546 VDEV_AUX_TOO_SMALL);
1547 return (SET_ERROR(EOVERFLOW));
1548 }
1549 psize = 0;
1550 asize = osize;
1551 max_asize = max_osize;
1552 }
1553
1554 /*
1555 * If the vdev was expanded, record this so that we can re-create the
1556 * uberblock rings in labels {2,3}, during the next sync.
1557 */
1558 if ((psize > vd->vdev_psize) && (vd->vdev_psize != 0))
1559 vd->vdev_copy_uberblocks = B_TRUE;
1560
1561 vd->vdev_psize = psize;
1562
1563 /*
1564 * Make sure the allocatable size hasn't shrunk too much.
1565 */
1566 if (asize < vd->vdev_min_asize) {
1567 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1568 VDEV_AUX_BAD_LABEL);
1569 return (SET_ERROR(EINVAL));
1570 }
1571
1572 if (vd->vdev_asize == 0) {
1573 /*
1574 * This is the first-ever open, so use the computed values.
1575 * For compatibility, a different ashift can be requested.
1576 */
1577 vd->vdev_asize = asize;
1578 vd->vdev_max_asize = max_asize;
1579 if (vd->vdev_ashift == 0) {
1580 vd->vdev_ashift = ashift; /* use detected value */
1581 }
1582 if (vd->vdev_ashift != 0 && (vd->vdev_ashift < ASHIFT_MIN ||
1583 vd->vdev_ashift > ASHIFT_MAX)) {
1584 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1585 VDEV_AUX_BAD_ASHIFT);
1586 return (SET_ERROR(EDOM));
1587 }
1588 } else {
1589 /*
1590 * Detect if the alignment requirement has increased.
1591 * We don't want to make the pool unavailable, just
1592 * post an event instead.
1593 */
1594 if (ashift > vd->vdev_top->vdev_ashift &&
1595 vd->vdev_ops->vdev_op_leaf) {
1596 zfs_ereport_post(FM_EREPORT_ZFS_DEVICE_BAD_ASHIFT,
1597 spa, vd, NULL, NULL, 0, 0);
1598 }
1599
1600 vd->vdev_max_asize = max_asize;
1601 }
1602
1603 /*
1604 * If all children are healthy we update asize if either:
1605 * The asize has increased, due to a device expansion caused by dynamic
1606 * LUN growth or vdev replacement, and automatic expansion is enabled;
1607 * making the additional space available.
1608 *
1609 * The asize has decreased, due to a device shrink usually caused by a
1610 * vdev replace with a smaller device. This ensures that calculations
1611 * based of max_asize and asize e.g. esize are always valid. It's safe
1612 * to do this as we've already validated that asize is greater than
1613 * vdev_min_asize.
1614 */
1615 if (vd->vdev_state == VDEV_STATE_HEALTHY &&
1616 ((asize > vd->vdev_asize &&
1617 (vd->vdev_expanding || spa->spa_autoexpand)) ||
1618 (asize < vd->vdev_asize)))
1619 vd->vdev_asize = asize;
1620
1621 vdev_set_min_asize(vd);
1622
1623 /*
1624 * Ensure we can issue some IO before declaring the
1625 * vdev open for business.
1626 */
1627 if (vd->vdev_ops->vdev_op_leaf &&
1628 (error = zio_wait(vdev_probe(vd, NULL))) != 0) {
1629 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1630 VDEV_AUX_ERR_EXCEEDED);
1631 return (error);
1632 }
1633
1634 /*
1635 * Track the min and max ashift values for normal data devices.
1636 */
1637 if (vd->vdev_top == vd && vd->vdev_ashift != 0 &&
1638 !vd->vdev_islog && vd->vdev_aux == NULL) {
1639 if (vd->vdev_ashift > spa->spa_max_ashift)
1640 spa->spa_max_ashift = vd->vdev_ashift;
1641 if (vd->vdev_ashift < spa->spa_min_ashift)
1642 spa->spa_min_ashift = vd->vdev_ashift;
1643 }
1644
1645 /*
1646 * If a leaf vdev has a DTL, and seems healthy, then kick off a
1647 * resilver. But don't do this if we are doing a reopen for a scrub,
1648 * since this would just restart the scrub we are already doing.
1649 */
1650 if (vd->vdev_ops->vdev_op_leaf && !spa->spa_scrub_reopen &&
1651 vdev_resilver_needed(vd, NULL, NULL))
1652 spa_async_request(spa, SPA_ASYNC_RESILVER);
1653
1654 return (0);
1655 }
1656
1657 /*
1658 * Called once the vdevs are all opened, this routine validates the label
1659 * contents. This needs to be done before vdev_load() so that we don't
1660 * inadvertently do repair I/Os to the wrong device.
1661 *
1662 * This function will only return failure if one of the vdevs indicates that it
1663 * has since been destroyed or exported. This is only possible if
1664 * /etc/zfs/zpool.cache was readonly at the time. Otherwise, the vdev state
1665 * will be updated but the function will return 0.
1666 */
1667 int
1668 vdev_validate(vdev_t *vd)
1669 {
1670 spa_t *spa = vd->vdev_spa;
1671 nvlist_t *label;
1672 uint64_t guid = 0, aux_guid = 0, top_guid;
1673 uint64_t state;
1674 nvlist_t *nvl;
1675 uint64_t txg;
1676
1677 if (vdev_validate_skip)
1678 return (0);
1679
1680 for (uint64_t c = 0; c < vd->vdev_children; c++)
1681 if (vdev_validate(vd->vdev_child[c]) != 0)
1682 return (SET_ERROR(EBADF));
1683
1684 /*
1685 * If the device has already failed, or was marked offline, don't do
1686 * any further validation. Otherwise, label I/O will fail and we will
1687 * overwrite the previous state.
1688 */
1689 if (!vd->vdev_ops->vdev_op_leaf || !vdev_readable(vd))
1690 return (0);
1691
1692 /*
1693 * If we are performing an extreme rewind, we allow for a label that
1694 * was modified at a point after the current txg.
1695 * If config lock is not held do not check for the txg. spa_sync could
1696 * be updating the vdev's label before updating spa_last_synced_txg.
1697 */
1698 if (spa->spa_extreme_rewind || spa_last_synced_txg(spa) == 0 ||
1699 spa_config_held(spa, SCL_CONFIG, RW_WRITER) != SCL_CONFIG)
1700 txg = UINT64_MAX;
1701 else
1702 txg = spa_last_synced_txg(spa);
1703
1704 if ((label = vdev_label_read_config(vd, txg)) == NULL) {
1705 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1706 VDEV_AUX_BAD_LABEL);
1707 vdev_dbgmsg(vd, "vdev_validate: failed reading config for "
1708 "txg %llu", (u_longlong_t)txg);
1709 return (0);
1710 }
1711
1712 /*
1713 * Determine if this vdev has been split off into another
1714 * pool. If so, then refuse to open it.
1715 */
1716 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_SPLIT_GUID,
1717 &aux_guid) == 0 && aux_guid == spa_guid(spa)) {
1718 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1719 VDEV_AUX_SPLIT_POOL);
1720 nvlist_free(label);
1721 vdev_dbgmsg(vd, "vdev_validate: vdev split into other pool");
1722 return (0);
1723 }
1724
1725 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_GUID, &guid) != 0) {
1726 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1727 VDEV_AUX_CORRUPT_DATA);
1728 nvlist_free(label);
1729 vdev_dbgmsg(vd, "vdev_validate: '%s' missing from label",
1730 ZPOOL_CONFIG_POOL_GUID);
1731 return (0);
1732 }
1733
1734 /*
1735 * If config is not trusted then ignore the spa guid check. This is
1736 * necessary because if the machine crashed during a re-guid the new
1737 * guid might have been written to all of the vdev labels, but not the
1738 * cached config. The check will be performed again once we have the
1739 * trusted config from the MOS.
1740 */
1741 if (spa->spa_trust_config && guid != spa_guid(spa)) {
1742 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1743 VDEV_AUX_CORRUPT_DATA);
1744 nvlist_free(label);
1745 vdev_dbgmsg(vd, "vdev_validate: vdev label pool_guid doesn't "
1746 "match config (%llu != %llu)", (u_longlong_t)guid,
1747 (u_longlong_t)spa_guid(spa));
1748 return (0);
1749 }
1750
1751 if (nvlist_lookup_nvlist(label, ZPOOL_CONFIG_VDEV_TREE, &nvl)
1752 != 0 || nvlist_lookup_uint64(nvl, ZPOOL_CONFIG_ORIG_GUID,
1753 &aux_guid) != 0)
1754 aux_guid = 0;
1755
1756 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0) {
1757 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1758 VDEV_AUX_CORRUPT_DATA);
1759 nvlist_free(label);
1760 vdev_dbgmsg(vd, "vdev_validate: '%s' missing from label",
1761 ZPOOL_CONFIG_GUID);
1762 return (0);
1763 }
1764
1765 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_TOP_GUID, &top_guid)
1766 != 0) {
1767 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1768 VDEV_AUX_CORRUPT_DATA);
1769 nvlist_free(label);
1770 vdev_dbgmsg(vd, "vdev_validate: '%s' missing from label",
1771 ZPOOL_CONFIG_TOP_GUID);
1772 return (0);
1773 }
1774
1775 /*
1776 * If this vdev just became a top-level vdev because its sibling was
1777 * detached, it will have adopted the parent's vdev guid -- but the
1778 * label may or may not be on disk yet. Fortunately, either version
1779 * of the label will have the same top guid, so if we're a top-level
1780 * vdev, we can safely compare to that instead.
1781 * However, if the config comes from a cachefile that failed to update
1782 * after the detach, a top-level vdev will appear as a non top-level
1783 * vdev in the config. Also relax the constraints if we perform an
1784 * extreme rewind.
1785 *
1786 * If we split this vdev off instead, then we also check the
1787 * original pool's guid. We don't want to consider the vdev
1788 * corrupt if it is partway through a split operation.
1789 */
1790 if (vd->vdev_guid != guid && vd->vdev_guid != aux_guid) {
1791 boolean_t mismatch = B_FALSE;
1792 if (spa->spa_trust_config && !spa->spa_extreme_rewind) {
1793 if (vd != vd->vdev_top || vd->vdev_guid != top_guid)
1794 mismatch = B_TRUE;
1795 } else {
1796 if (vd->vdev_guid != top_guid &&
1797 vd->vdev_top->vdev_guid != guid)
1798 mismatch = B_TRUE;
1799 }
1800
1801 if (mismatch) {
1802 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1803 VDEV_AUX_CORRUPT_DATA);
1804 nvlist_free(label);
1805 vdev_dbgmsg(vd, "vdev_validate: config guid "
1806 "doesn't match label guid");
1807 vdev_dbgmsg(vd, "CONFIG: guid %llu, top_guid %llu",
1808 (u_longlong_t)vd->vdev_guid,
1809 (u_longlong_t)vd->vdev_top->vdev_guid);
1810 vdev_dbgmsg(vd, "LABEL: guid %llu, top_guid %llu, "
1811 "aux_guid %llu", (u_longlong_t)guid,
1812 (u_longlong_t)top_guid, (u_longlong_t)aux_guid);
1813 return (0);
1814 }
1815 }
1816
1817 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE,
1818 &state) != 0) {
1819 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1820 VDEV_AUX_CORRUPT_DATA);
1821 nvlist_free(label);
1822 vdev_dbgmsg(vd, "vdev_validate: '%s' missing from label",
1823 ZPOOL_CONFIG_POOL_STATE);
1824 return (0);
1825 }
1826
1827 nvlist_free(label);
1828
1829 /*
1830 * If this is a verbatim import, no need to check the
1831 * state of the pool.
1832 */
1833 if (!(spa->spa_import_flags & ZFS_IMPORT_VERBATIM) &&
1834 spa_load_state(spa) == SPA_LOAD_OPEN &&
1835 state != POOL_STATE_ACTIVE) {
1836 vdev_dbgmsg(vd, "vdev_validate: invalid pool state (%llu) "
1837 "for spa %s", (u_longlong_t)state, spa->spa_name);
1838 return (SET_ERROR(EBADF));
1839 }
1840
1841 /*
1842 * If we were able to open and validate a vdev that was
1843 * previously marked permanently unavailable, clear that state
1844 * now.
1845 */
1846 if (vd->vdev_not_present)
1847 vd->vdev_not_present = 0;
1848
1849 return (0);
1850 }
1851
1852 static void
1853 vdev_copy_path_impl(vdev_t *svd, vdev_t *dvd)
1854 {
1855 if (svd->vdev_path != NULL && dvd->vdev_path != NULL) {
1856 if (strcmp(svd->vdev_path, dvd->vdev_path) != 0) {
1857 zfs_dbgmsg("vdev_copy_path: vdev %llu: path changed "
1858 "from '%s' to '%s'", (u_longlong_t)dvd->vdev_guid,
1859 dvd->vdev_path, svd->vdev_path);
1860 spa_strfree(dvd->vdev_path);
1861 dvd->vdev_path = spa_strdup(svd->vdev_path);
1862 }
1863 } else if (svd->vdev_path != NULL) {
1864 dvd->vdev_path = spa_strdup(svd->vdev_path);
1865 zfs_dbgmsg("vdev_copy_path: vdev %llu: path set to '%s'",
1866 (u_longlong_t)dvd->vdev_guid, dvd->vdev_path);
1867 }
1868 }
1869
1870 /*
1871 * Recursively copy vdev paths from one vdev to another. Source and destination
1872 * vdev trees must have same geometry otherwise return error. Intended to copy
1873 * paths from userland config into MOS config.
1874 */
1875 int
1876 vdev_copy_path_strict(vdev_t *svd, vdev_t *dvd)
1877 {
1878 if ((svd->vdev_ops == &vdev_missing_ops) ||
1879 (svd->vdev_ishole && dvd->vdev_ishole) ||
1880 (dvd->vdev_ops == &vdev_indirect_ops))
1881 return (0);
1882
1883 if (svd->vdev_ops != dvd->vdev_ops) {
1884 vdev_dbgmsg(svd, "vdev_copy_path: vdev type mismatch: %s != %s",
1885 svd->vdev_ops->vdev_op_type, dvd->vdev_ops->vdev_op_type);
1886 return (SET_ERROR(EINVAL));
1887 }
1888
1889 if (svd->vdev_guid != dvd->vdev_guid) {
1890 vdev_dbgmsg(svd, "vdev_copy_path: guids mismatch (%llu != "
1891 "%llu)", (u_longlong_t)svd->vdev_guid,
1892 (u_longlong_t)dvd->vdev_guid);
1893 return (SET_ERROR(EINVAL));
1894 }
1895
1896 if (svd->vdev_children != dvd->vdev_children) {
1897 vdev_dbgmsg(svd, "vdev_copy_path: children count mismatch: "
1898 "%llu != %llu", (u_longlong_t)svd->vdev_children,
1899 (u_longlong_t)dvd->vdev_children);
1900 return (SET_ERROR(EINVAL));
1901 }
1902
1903 for (uint64_t i = 0; i < svd->vdev_children; i++) {
1904 int error = vdev_copy_path_strict(svd->vdev_child[i],
1905 dvd->vdev_child[i]);
1906 if (error != 0)
1907 return (error);
1908 }
1909
1910 if (svd->vdev_ops->vdev_op_leaf)
1911 vdev_copy_path_impl(svd, dvd);
1912
1913 return (0);
1914 }
1915
1916 static void
1917 vdev_copy_path_search(vdev_t *stvd, vdev_t *dvd)
1918 {
1919 ASSERT(stvd->vdev_top == stvd);
1920 ASSERT3U(stvd->vdev_id, ==, dvd->vdev_top->vdev_id);
1921
1922 for (uint64_t i = 0; i < dvd->vdev_children; i++) {
1923 vdev_copy_path_search(stvd, dvd->vdev_child[i]);
1924 }
1925
1926 if (!dvd->vdev_ops->vdev_op_leaf || !vdev_is_concrete(dvd))
1927 return;
1928
1929 /*
1930 * The idea here is that while a vdev can shift positions within
1931 * a top vdev (when replacing, attaching mirror, etc.) it cannot
1932 * step outside of it.
1933 */
1934 vdev_t *vd = vdev_lookup_by_guid(stvd, dvd->vdev_guid);
1935
1936 if (vd == NULL || vd->vdev_ops != dvd->vdev_ops)
1937 return;
1938
1939 ASSERT(vd->vdev_ops->vdev_op_leaf);
1940
1941 vdev_copy_path_impl(vd, dvd);
1942 }
1943
1944 /*
1945 * Recursively copy vdev paths from one root vdev to another. Source and
1946 * destination vdev trees may differ in geometry. For each destination leaf
1947 * vdev, search a vdev with the same guid and top vdev id in the source.
1948 * Intended to copy paths from userland config into MOS config.
1949 */
1950 void
1951 vdev_copy_path_relaxed(vdev_t *srvd, vdev_t *drvd)
1952 {
1953 uint64_t children = MIN(srvd->vdev_children, drvd->vdev_children);
1954 ASSERT(srvd->vdev_ops == &vdev_root_ops);
1955 ASSERT(drvd->vdev_ops == &vdev_root_ops);
1956
1957 for (uint64_t i = 0; i < children; i++) {
1958 vdev_copy_path_search(srvd->vdev_child[i],
1959 drvd->vdev_child[i]);
1960 }
1961 }
1962
1963 /*
1964 * Close a virtual device.
1965 */
1966 void
1967 vdev_close(vdev_t *vd)
1968 {
1969 vdev_t *pvd = vd->vdev_parent;
1970 ASSERTV(spa_t *spa = vd->vdev_spa);
1971
1972 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1973
1974 /*
1975 * If our parent is reopening, then we are as well, unless we are
1976 * going offline.
1977 */
1978 if (pvd != NULL && pvd->vdev_reopening)
1979 vd->vdev_reopening = (pvd->vdev_reopening && !vd->vdev_offline);
1980
1981 vd->vdev_ops->vdev_op_close(vd);
1982
1983 vdev_cache_purge(vd);
1984
1985 /*
1986 * We record the previous state before we close it, so that if we are
1987 * doing a reopen(), we don't generate FMA ereports if we notice that
1988 * it's still faulted.
1989 */
1990 vd->vdev_prevstate = vd->vdev_state;
1991
1992 if (vd->vdev_offline)
1993 vd->vdev_state = VDEV_STATE_OFFLINE;
1994 else
1995 vd->vdev_state = VDEV_STATE_CLOSED;
1996 vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
1997 }
1998
1999 void
2000 vdev_hold(vdev_t *vd)
2001 {
2002 spa_t *spa = vd->vdev_spa;
2003
2004 ASSERT(spa_is_root(spa));
2005 if (spa->spa_state == POOL_STATE_UNINITIALIZED)
2006 return;
2007
2008 for (int c = 0; c < vd->vdev_children; c++)
2009 vdev_hold(vd->vdev_child[c]);
2010
2011 if (vd->vdev_ops->vdev_op_leaf)
2012 vd->vdev_ops->vdev_op_hold(vd);
2013 }
2014
2015 void
2016 vdev_rele(vdev_t *vd)
2017 {
2018 ASSERT(spa_is_root(vd->vdev_spa));
2019 for (int c = 0; c < vd->vdev_children; c++)
2020 vdev_rele(vd->vdev_child[c]);
2021
2022 if (vd->vdev_ops->vdev_op_leaf)
2023 vd->vdev_ops->vdev_op_rele(vd);
2024 }
2025
2026 /*
2027 * Reopen all interior vdevs and any unopened leaves. We don't actually
2028 * reopen leaf vdevs which had previously been opened as they might deadlock
2029 * on the spa_config_lock. Instead we only obtain the leaf's physical size.
2030 * If the leaf has never been opened then open it, as usual.
2031 */
2032 void
2033 vdev_reopen(vdev_t *vd)
2034 {
2035 spa_t *spa = vd->vdev_spa;
2036
2037 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
2038
2039 /* set the reopening flag unless we're taking the vdev offline */
2040 vd->vdev_reopening = !vd->vdev_offline;
2041 vdev_close(vd);
2042 (void) vdev_open(vd);
2043
2044 /*
2045 * Call vdev_validate() here to make sure we have the same device.
2046 * Otherwise, a device with an invalid label could be successfully
2047 * opened in response to vdev_reopen().
2048 */
2049 if (vd->vdev_aux) {
2050 (void) vdev_validate_aux(vd);
2051 if (vdev_readable(vd) && vdev_writeable(vd) &&
2052 vd->vdev_aux == &spa->spa_l2cache &&
2053 !l2arc_vdev_present(vd))
2054 l2arc_add_vdev(spa, vd);
2055 } else {
2056 (void) vdev_validate(vd);
2057 }
2058
2059 /*
2060 * Reassess parent vdev's health.
2061 */
2062 vdev_propagate_state(vd);
2063 }
2064
2065 int
2066 vdev_create(vdev_t *vd, uint64_t txg, boolean_t isreplacing)
2067 {
2068 int error;
2069
2070 /*
2071 * Normally, partial opens (e.g. of a mirror) are allowed.
2072 * For a create, however, we want to fail the request if
2073 * there are any components we can't open.
2074 */
2075 error = vdev_open(vd);
2076
2077 if (error || vd->vdev_state != VDEV_STATE_HEALTHY) {
2078 vdev_close(vd);
2079 return (error ? error : ENXIO);
2080 }
2081
2082 /*
2083 * Recursively load DTLs and initialize all labels.
2084 */
2085 if ((error = vdev_dtl_load(vd)) != 0 ||
2086 (error = vdev_label_init(vd, txg, isreplacing ?
2087 VDEV_LABEL_REPLACE : VDEV_LABEL_CREATE)) != 0) {
2088 vdev_close(vd);
2089 return (error);
2090 }
2091
2092 return (0);
2093 }
2094
2095 void
2096 vdev_metaslab_set_size(vdev_t *vd)
2097 {
2098 /*
2099 * Aim for roughly metaslabs_per_vdev (default 200) metaslabs per vdev.
2100 */
2101 vd->vdev_ms_shift = highbit64(vd->vdev_asize / metaslabs_per_vdev);
2102 vd->vdev_ms_shift = MAX(vd->vdev_ms_shift, SPA_MAXBLOCKSHIFT);
2103 }
2104
2105 void
2106 vdev_dirty(vdev_t *vd, int flags, void *arg, uint64_t txg)
2107 {
2108 ASSERT(vd == vd->vdev_top);
2109 /* indirect vdevs don't have metaslabs or dtls */
2110 ASSERT(vdev_is_concrete(vd) || flags == 0);
2111 ASSERT(ISP2(flags));
2112 ASSERT(spa_writeable(vd->vdev_spa));
2113
2114 if (flags & VDD_METASLAB)
2115 (void) txg_list_add(&vd->vdev_ms_list, arg, txg);
2116
2117 if (flags & VDD_DTL)
2118 (void) txg_list_add(&vd->vdev_dtl_list, arg, txg);
2119
2120 (void) txg_list_add(&vd->vdev_spa->spa_vdev_txg_list, vd, txg);
2121 }
2122
2123 void
2124 vdev_dirty_leaves(vdev_t *vd, int flags, uint64_t txg)
2125 {
2126 for (int c = 0; c < vd->vdev_children; c++)
2127 vdev_dirty_leaves(vd->vdev_child[c], flags, txg);
2128
2129 if (vd->vdev_ops->vdev_op_leaf)
2130 vdev_dirty(vd->vdev_top, flags, vd, txg);
2131 }
2132
2133 /*
2134 * DTLs.
2135 *
2136 * A vdev's DTL (dirty time log) is the set of transaction groups for which
2137 * the vdev has less than perfect replication. There are four kinds of DTL:
2138 *
2139 * DTL_MISSING: txgs for which the vdev has no valid copies of the data
2140 *
2141 * DTL_PARTIAL: txgs for which data is available, but not fully replicated
2142 *
2143 * DTL_SCRUB: the txgs that could not be repaired by the last scrub; upon
2144 * scrub completion, DTL_SCRUB replaces DTL_MISSING in the range of
2145 * txgs that was scrubbed.
2146 *
2147 * DTL_OUTAGE: txgs which cannot currently be read, whether due to
2148 * persistent errors or just some device being offline.
2149 * Unlike the other three, the DTL_OUTAGE map is not generally
2150 * maintained; it's only computed when needed, typically to
2151 * determine whether a device can be detached.
2152 *
2153 * For leaf vdevs, DTL_MISSING and DTL_PARTIAL are identical: the device
2154 * either has the data or it doesn't.
2155 *
2156 * For interior vdevs such as mirror and RAID-Z the picture is more complex.
2157 * A vdev's DTL_PARTIAL is the union of its children's DTL_PARTIALs, because
2158 * if any child is less than fully replicated, then so is its parent.
2159 * A vdev's DTL_MISSING is a modified union of its children's DTL_MISSINGs,
2160 * comprising only those txgs which appear in 'maxfaults' or more children;
2161 * those are the txgs we don't have enough replication to read. For example,
2162 * double-parity RAID-Z can tolerate up to two missing devices (maxfaults == 2);
2163 * thus, its DTL_MISSING consists of the set of txgs that appear in more than
2164 * two child DTL_MISSING maps.
2165 *
2166 * It should be clear from the above that to compute the DTLs and outage maps
2167 * for all vdevs, it suffices to know just the leaf vdevs' DTL_MISSING maps.
2168 * Therefore, that is all we keep on disk. When loading the pool, or after
2169 * a configuration change, we generate all other DTLs from first principles.
2170 */
2171 void
2172 vdev_dtl_dirty(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
2173 {
2174 range_tree_t *rt = vd->vdev_dtl[t];
2175
2176 ASSERT(t < DTL_TYPES);
2177 ASSERT(vd != vd->vdev_spa->spa_root_vdev);
2178 ASSERT(spa_writeable(vd->vdev_spa));
2179
2180 mutex_enter(&vd->vdev_dtl_lock);
2181 if (!range_tree_contains(rt, txg, size))
2182 range_tree_add(rt, txg, size);
2183 mutex_exit(&vd->vdev_dtl_lock);
2184 }
2185
2186 boolean_t
2187 vdev_dtl_contains(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
2188 {
2189 range_tree_t *rt = vd->vdev_dtl[t];
2190 boolean_t dirty = B_FALSE;
2191
2192 ASSERT(t < DTL_TYPES);
2193 ASSERT(vd != vd->vdev_spa->spa_root_vdev);
2194
2195 /*
2196 * While we are loading the pool, the DTLs have not been loaded yet.
2197 * Ignore the DTLs and try all devices. This avoids a recursive
2198 * mutex enter on the vdev_dtl_lock, and also makes us try hard
2199 * when loading the pool (relying on the checksum to ensure that
2200 * we get the right data -- note that we while loading, we are
2201 * only reading the MOS, which is always checksummed).
2202 */
2203 if (vd->vdev_spa->spa_load_state != SPA_LOAD_NONE)
2204 return (B_FALSE);
2205
2206 mutex_enter(&vd->vdev_dtl_lock);
2207 if (range_tree_space(rt) != 0)
2208 dirty = range_tree_contains(rt, txg, size);
2209 mutex_exit(&vd->vdev_dtl_lock);
2210
2211 return (dirty);
2212 }
2213
2214 boolean_t
2215 vdev_dtl_empty(vdev_t *vd, vdev_dtl_type_t t)
2216 {
2217 range_tree_t *rt = vd->vdev_dtl[t];
2218 boolean_t empty;
2219
2220 mutex_enter(&vd->vdev_dtl_lock);
2221 empty = (range_tree_space(rt) == 0);
2222 mutex_exit(&vd->vdev_dtl_lock);
2223
2224 return (empty);
2225 }
2226
2227 /*
2228 * Returns B_TRUE if vdev determines offset needs to be resilvered.
2229 */
2230 boolean_t
2231 vdev_dtl_need_resilver(vdev_t *vd, uint64_t offset, size_t psize)
2232 {
2233 ASSERT(vd != vd->vdev_spa->spa_root_vdev);
2234
2235 if (vd->vdev_ops->vdev_op_need_resilver == NULL ||
2236 vd->vdev_ops->vdev_op_leaf)
2237 return (B_TRUE);
2238
2239 return (vd->vdev_ops->vdev_op_need_resilver(vd, offset, psize));
2240 }
2241
2242 /*
2243 * Returns the lowest txg in the DTL range.
2244 */
2245 static uint64_t
2246 vdev_dtl_min(vdev_t *vd)
2247 {
2248 range_seg_t *rs;
2249
2250 ASSERT(MUTEX_HELD(&vd->vdev_dtl_lock));
2251 ASSERT3U(range_tree_space(vd->vdev_dtl[DTL_MISSING]), !=, 0);
2252 ASSERT0(vd->vdev_children);
2253
2254 rs = avl_first(&vd->vdev_dtl[DTL_MISSING]->rt_root);
2255 return (rs->rs_start - 1);
2256 }
2257
2258 /*
2259 * Returns the highest txg in the DTL.
2260 */
2261 static uint64_t
2262 vdev_dtl_max(vdev_t *vd)
2263 {
2264 range_seg_t *rs;
2265
2266 ASSERT(MUTEX_HELD(&vd->vdev_dtl_lock));
2267 ASSERT3U(range_tree_space(vd->vdev_dtl[DTL_MISSING]), !=, 0);
2268 ASSERT0(vd->vdev_children);
2269
2270 rs = avl_last(&vd->vdev_dtl[DTL_MISSING]->rt_root);
2271 return (rs->rs_end);
2272 }
2273
2274 /*
2275 * Determine if a resilvering vdev should remove any DTL entries from
2276 * its range. If the vdev was resilvering for the entire duration of the
2277 * scan then it should excise that range from its DTLs. Otherwise, this
2278 * vdev is considered partially resilvered and should leave its DTL
2279 * entries intact. The comment in vdev_dtl_reassess() describes how we
2280 * excise the DTLs.
2281 */
2282 static boolean_t
2283 vdev_dtl_should_excise(vdev_t *vd)
2284 {
2285 spa_t *spa = vd->vdev_spa;
2286 dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan;
2287
2288 ASSERT0(scn->scn_phys.scn_errors);
2289 ASSERT0(vd->vdev_children);
2290
2291 if (vd->vdev_state < VDEV_STATE_DEGRADED)
2292 return (B_FALSE);
2293
2294 if (vd->vdev_resilver_txg == 0 ||
2295 range_tree_space(vd->vdev_dtl[DTL_MISSING]) == 0)
2296 return (B_TRUE);
2297
2298 /*
2299 * When a resilver is initiated the scan will assign the scn_max_txg
2300 * value to the highest txg value that exists in all DTLs. If this
2301 * device's max DTL is not part of this scan (i.e. it is not in
2302 * the range (scn_min_txg, scn_max_txg] then it is not eligible
2303 * for excision.
2304 */
2305 if (vdev_dtl_max(vd) <= scn->scn_phys.scn_max_txg) {
2306 ASSERT3U(scn->scn_phys.scn_min_txg, <=, vdev_dtl_min(vd));
2307 ASSERT3U(scn->scn_phys.scn_min_txg, <, vd->vdev_resilver_txg);
2308 ASSERT3U(vd->vdev_resilver_txg, <=, scn->scn_phys.scn_max_txg);
2309 return (B_TRUE);
2310 }
2311 return (B_FALSE);
2312 }
2313
2314 /*
2315 * Reassess DTLs after a config change or scrub completion.
2316 */
2317 void
2318 vdev_dtl_reassess(vdev_t *vd, uint64_t txg, uint64_t scrub_txg, int scrub_done)
2319 {
2320 spa_t *spa = vd->vdev_spa;
2321 avl_tree_t reftree;
2322 int minref;
2323
2324 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
2325
2326 for (int c = 0; c < vd->vdev_children; c++)
2327 vdev_dtl_reassess(vd->vdev_child[c], txg,
2328 scrub_txg, scrub_done);
2329
2330 if (vd == spa->spa_root_vdev || !vdev_is_concrete(vd) || vd->vdev_aux)
2331 return;
2332
2333 if (vd->vdev_ops->vdev_op_leaf) {
2334 dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan;
2335
2336 mutex_enter(&vd->vdev_dtl_lock);
2337
2338 /*
2339 * If requested, pretend the scan completed cleanly.
2340 */
2341 if (zfs_scan_ignore_errors && scn)
2342 scn->scn_phys.scn_errors = 0;
2343
2344 /*
2345 * If we've completed a scan cleanly then determine
2346 * if this vdev should remove any DTLs. We only want to
2347 * excise regions on vdevs that were available during
2348 * the entire duration of this scan.
2349 */
2350 if (scrub_txg != 0 &&
2351 (spa->spa_scrub_started ||
2352 (scn != NULL && scn->scn_phys.scn_errors == 0)) &&
2353 vdev_dtl_should_excise(vd)) {
2354 /*
2355 * We completed a scrub up to scrub_txg. If we
2356 * did it without rebooting, then the scrub dtl
2357 * will be valid, so excise the old region and
2358 * fold in the scrub dtl. Otherwise, leave the
2359 * dtl as-is if there was an error.
2360 *
2361 * There's little trick here: to excise the beginning
2362 * of the DTL_MISSING map, we put it into a reference
2363 * tree and then add a segment with refcnt -1 that
2364 * covers the range [0, scrub_txg). This means
2365 * that each txg in that range has refcnt -1 or 0.
2366 * We then add DTL_SCRUB with a refcnt of 2, so that
2367 * entries in the range [0, scrub_txg) will have a
2368 * positive refcnt -- either 1 or 2. We then convert
2369 * the reference tree into the new DTL_MISSING map.
2370 */
2371 space_reftree_create(&reftree);
2372 space_reftree_add_map(&reftree,
2373 vd->vdev_dtl[DTL_MISSING], 1);
2374 space_reftree_add_seg(&reftree, 0, scrub_txg, -1);
2375 space_reftree_add_map(&reftree,
2376 vd->vdev_dtl[DTL_SCRUB], 2);
2377 space_reftree_generate_map(&reftree,
2378 vd->vdev_dtl[DTL_MISSING], 1);
2379 space_reftree_destroy(&reftree);
2380 }
2381 range_tree_vacate(vd->vdev_dtl[DTL_PARTIAL], NULL, NULL);
2382 range_tree_walk(vd->vdev_dtl[DTL_MISSING],
2383 range_tree_add, vd->vdev_dtl[DTL_PARTIAL]);
2384 if (scrub_done)
2385 range_tree_vacate(vd->vdev_dtl[DTL_SCRUB], NULL, NULL);
2386 range_tree_vacate(vd->vdev_dtl[DTL_OUTAGE], NULL, NULL);
2387 if (!vdev_readable(vd))
2388 range_tree_add(vd->vdev_dtl[DTL_OUTAGE], 0, -1ULL);
2389 else
2390 range_tree_walk(vd->vdev_dtl[DTL_MISSING],
2391 range_tree_add, vd->vdev_dtl[DTL_OUTAGE]);
2392
2393 /*
2394 * If the vdev was resilvering and no longer has any
2395 * DTLs then reset its resilvering flag and dirty
2396 * the top level so that we persist the change.
2397 */
2398 if (vd->vdev_resilver_txg != 0 &&
2399 range_tree_space(vd->vdev_dtl[DTL_MISSING]) == 0 &&
2400 range_tree_space(vd->vdev_dtl[DTL_OUTAGE]) == 0) {
2401 vd->vdev_resilver_txg = 0;
2402 vdev_config_dirty(vd->vdev_top);
2403 }
2404
2405 mutex_exit(&vd->vdev_dtl_lock);
2406
2407 if (txg != 0)
2408 vdev_dirty(vd->vdev_top, VDD_DTL, vd, txg);
2409 return;
2410 }
2411
2412 mutex_enter(&vd->vdev_dtl_lock);
2413 for (int t = 0; t < DTL_TYPES; t++) {
2414 /* account for child's outage in parent's missing map */
2415 int s = (t == DTL_MISSING) ? DTL_OUTAGE: t;
2416 if (t == DTL_SCRUB)
2417 continue; /* leaf vdevs only */
2418 if (t == DTL_PARTIAL)
2419 minref = 1; /* i.e. non-zero */
2420 else if (vd->vdev_nparity != 0)
2421 minref = vd->vdev_nparity + 1; /* RAID-Z */
2422 else
2423 minref = vd->vdev_children; /* any kind of mirror */
2424 space_reftree_create(&reftree);
2425 for (int c = 0; c < vd->vdev_children; c++) {
2426 vdev_t *cvd = vd->vdev_child[c];
2427 mutex_enter(&cvd->vdev_dtl_lock);
2428 space_reftree_add_map(&reftree, cvd->vdev_dtl[s], 1);
2429 mutex_exit(&cvd->vdev_dtl_lock);
2430 }
2431 space_reftree_generate_map(&reftree, vd->vdev_dtl[t], minref);
2432 space_reftree_destroy(&reftree);
2433 }
2434 mutex_exit(&vd->vdev_dtl_lock);
2435 }
2436
2437 int
2438 vdev_dtl_load(vdev_t *vd)
2439 {
2440 spa_t *spa = vd->vdev_spa;
2441 objset_t *mos = spa->spa_meta_objset;
2442 int error = 0;
2443
2444 if (vd->vdev_ops->vdev_op_leaf && vd->vdev_dtl_object != 0) {
2445 ASSERT(vdev_is_concrete(vd));
2446
2447 error = space_map_open(&vd->vdev_dtl_sm, mos,
2448 vd->vdev_dtl_object, 0, -1ULL, 0);
2449 if (error)
2450 return (error);
2451 ASSERT(vd->vdev_dtl_sm != NULL);
2452
2453 mutex_enter(&vd->vdev_dtl_lock);
2454
2455 /*
2456 * Now that we've opened the space_map we need to update
2457 * the in-core DTL.
2458 */
2459 space_map_update(vd->vdev_dtl_sm);
2460
2461 error = space_map_load(vd->vdev_dtl_sm,
2462 vd->vdev_dtl[DTL_MISSING], SM_ALLOC);
2463 mutex_exit(&vd->vdev_dtl_lock);
2464
2465 return (error);
2466 }
2467
2468 for (int c = 0; c < vd->vdev_children; c++) {
2469 error = vdev_dtl_load(vd->vdev_child[c]);
2470 if (error != 0)
2471 break;
2472 }
2473
2474 return (error);
2475 }
2476
2477 void
2478 vdev_destroy_unlink_zap(vdev_t *vd, uint64_t zapobj, dmu_tx_t *tx)
2479 {
2480 spa_t *spa = vd->vdev_spa;
2481
2482 VERIFY0(zap_destroy(spa->spa_meta_objset, zapobj, tx));
2483 VERIFY0(zap_remove_int(spa->spa_meta_objset, spa->spa_all_vdev_zaps,
2484 zapobj, tx));
2485 }
2486
2487 uint64_t
2488 vdev_create_link_zap(vdev_t *vd, dmu_tx_t *tx)
2489 {
2490 spa_t *spa = vd->vdev_spa;
2491 uint64_t zap = zap_create(spa->spa_meta_objset, DMU_OTN_ZAP_METADATA,
2492 DMU_OT_NONE, 0, tx);
2493
2494 ASSERT(zap != 0);
2495 VERIFY0(zap_add_int(spa->spa_meta_objset, spa->spa_all_vdev_zaps,
2496 zap, tx));
2497
2498 return (zap);
2499 }
2500
2501 void
2502 vdev_construct_zaps(vdev_t *vd, dmu_tx_t *tx)
2503 {
2504 if (vd->vdev_ops != &vdev_hole_ops &&
2505 vd->vdev_ops != &vdev_missing_ops &&
2506 vd->vdev_ops != &vdev_root_ops &&
2507 !vd->vdev_top->vdev_removing) {
2508 if (vd->vdev_ops->vdev_op_leaf && vd->vdev_leaf_zap == 0) {
2509 vd->vdev_leaf_zap = vdev_create_link_zap(vd, tx);
2510 }
2511 if (vd == vd->vdev_top && vd->vdev_top_zap == 0) {
2512 vd->vdev_top_zap = vdev_create_link_zap(vd, tx);
2513 }
2514 }
2515 for (uint64_t i = 0; i < vd->vdev_children; i++) {
2516 vdev_construct_zaps(vd->vdev_child[i], tx);
2517 }
2518 }
2519
2520 void
2521 vdev_dtl_sync(vdev_t *vd, uint64_t txg)
2522 {
2523 spa_t *spa = vd->vdev_spa;
2524 range_tree_t *rt = vd->vdev_dtl[DTL_MISSING];
2525 objset_t *mos = spa->spa_meta_objset;
2526 range_tree_t *rtsync;
2527 dmu_tx_t *tx;
2528 uint64_t object = space_map_object(vd->vdev_dtl_sm);
2529
2530 ASSERT(vdev_is_concrete(vd));
2531 ASSERT(vd->vdev_ops->vdev_op_leaf);
2532
2533 tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
2534
2535 if (vd->vdev_detached || vd->vdev_top->vdev_removing) {
2536 mutex_enter(&vd->vdev_dtl_lock);
2537 space_map_free(vd->vdev_dtl_sm, tx);
2538 space_map_close(vd->vdev_dtl_sm);
2539 vd->vdev_dtl_sm = NULL;
2540 mutex_exit(&vd->vdev_dtl_lock);
2541
2542 /*
2543 * We only destroy the leaf ZAP for detached leaves or for
2544 * removed log devices. Removed data devices handle leaf ZAP
2545 * cleanup later, once cancellation is no longer possible.
2546 */
2547 if (vd->vdev_leaf_zap != 0 && (vd->vdev_detached ||
2548 vd->vdev_top->vdev_islog)) {
2549 vdev_destroy_unlink_zap(vd, vd->vdev_leaf_zap, tx);
2550 vd->vdev_leaf_zap = 0;
2551 }
2552
2553 dmu_tx_commit(tx);
2554 return;
2555 }
2556
2557 if (vd->vdev_dtl_sm == NULL) {
2558 uint64_t new_object;
2559
2560 new_object = space_map_alloc(mos, tx);
2561 VERIFY3U(new_object, !=, 0);
2562
2563 VERIFY0(space_map_open(&vd->vdev_dtl_sm, mos, new_object,
2564 0, -1ULL, 0));
2565 ASSERT(vd->vdev_dtl_sm != NULL);
2566 }
2567
2568 rtsync = range_tree_create(NULL, NULL);
2569
2570 mutex_enter(&vd->vdev_dtl_lock);
2571 range_tree_walk(rt, range_tree_add, rtsync);
2572 mutex_exit(&vd->vdev_dtl_lock);
2573
2574 space_map_truncate(vd->vdev_dtl_sm, tx);
2575 space_map_write(vd->vdev_dtl_sm, rtsync, SM_ALLOC, tx);
2576 range_tree_vacate(rtsync, NULL, NULL);
2577
2578 range_tree_destroy(rtsync);
2579
2580 /*
2581 * If the object for the space map has changed then dirty
2582 * the top level so that we update the config.
2583 */
2584 if (object != space_map_object(vd->vdev_dtl_sm)) {
2585 vdev_dbgmsg(vd, "txg %llu, spa %s, DTL old object %llu, "
2586 "new object %llu", (u_longlong_t)txg, spa_name(spa),
2587 (u_longlong_t)object,
2588 (u_longlong_t)space_map_object(vd->vdev_dtl_sm));
2589 vdev_config_dirty(vd->vdev_top);
2590 }
2591
2592 dmu_tx_commit(tx);
2593
2594 mutex_enter(&vd->vdev_dtl_lock);
2595 space_map_update(vd->vdev_dtl_sm);
2596 mutex_exit(&vd->vdev_dtl_lock);
2597 }
2598
2599 /*
2600 * Determine whether the specified vdev can be offlined/detached/removed
2601 * without losing data.
2602 */
2603 boolean_t
2604 vdev_dtl_required(vdev_t *vd)
2605 {
2606 spa_t *spa = vd->vdev_spa;
2607 vdev_t *tvd = vd->vdev_top;
2608 uint8_t cant_read = vd->vdev_cant_read;
2609 boolean_t required;
2610
2611 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
2612
2613 if (vd == spa->spa_root_vdev || vd == tvd)
2614 return (B_TRUE);
2615
2616 /*
2617 * Temporarily mark the device as unreadable, and then determine
2618 * whether this results in any DTL outages in the top-level vdev.
2619 * If not, we can safely offline/detach/remove the device.
2620 */
2621 vd->vdev_cant_read = B_TRUE;
2622 vdev_dtl_reassess(tvd, 0, 0, B_FALSE);
2623 required = !vdev_dtl_empty(tvd, DTL_OUTAGE);
2624 vd->vdev_cant_read = cant_read;
2625 vdev_dtl_reassess(tvd, 0, 0, B_FALSE);
2626
2627 if (!required && zio_injection_enabled)
2628 required = !!zio_handle_device_injection(vd, NULL, ECHILD);
2629
2630 return (required);
2631 }
2632
2633 /*
2634 * Determine if resilver is needed, and if so the txg range.
2635 */
2636 boolean_t
2637 vdev_resilver_needed(vdev_t *vd, uint64_t *minp, uint64_t *maxp)
2638 {
2639 boolean_t needed = B_FALSE;
2640 uint64_t thismin = UINT64_MAX;
2641 uint64_t thismax = 0;
2642
2643 if (vd->vdev_children == 0) {
2644 mutex_enter(&vd->vdev_dtl_lock);
2645 if (range_tree_space(vd->vdev_dtl[DTL_MISSING]) != 0 &&
2646 vdev_writeable(vd)) {
2647
2648 thismin = vdev_dtl_min(vd);
2649 thismax = vdev_dtl_max(vd);
2650 needed = B_TRUE;
2651 }
2652 mutex_exit(&vd->vdev_dtl_lock);
2653 } else {
2654 for (int c = 0; c < vd->vdev_children; c++) {
2655 vdev_t *cvd = vd->vdev_child[c];
2656 uint64_t cmin, cmax;
2657
2658 if (vdev_resilver_needed(cvd, &cmin, &cmax)) {
2659 thismin = MIN(thismin, cmin);
2660 thismax = MAX(thismax, cmax);
2661 needed = B_TRUE;
2662 }
2663 }
2664 }
2665
2666 if (needed && minp) {
2667 *minp = thismin;
2668 *maxp = thismax;
2669 }
2670 return (needed);
2671 }
2672
2673 int
2674 vdev_load(vdev_t *vd)
2675 {
2676 int error = 0;
2677
2678 /*
2679 * Recursively load all children.
2680 */
2681 for (int c = 0; c < vd->vdev_children; c++) {
2682 error = vdev_load(vd->vdev_child[c]);
2683 if (error != 0) {
2684 return (error);
2685 }
2686 }
2687
2688 vdev_set_deflate_ratio(vd);
2689
2690 /*
2691 * If this is a top-level vdev, initialize its metaslabs.
2692 */
2693 if (vd == vd->vdev_top && vdev_is_concrete(vd)) {
2694 if (vd->vdev_ashift == 0 || vd->vdev_asize == 0) {
2695 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2696 VDEV_AUX_CORRUPT_DATA);
2697 vdev_dbgmsg(vd, "vdev_load: invalid size. ashift=%llu, "
2698 "asize=%llu", (u_longlong_t)vd->vdev_ashift,
2699 (u_longlong_t)vd->vdev_asize);
2700 return (SET_ERROR(ENXIO));
2701 } else if ((error = vdev_metaslab_init(vd, 0)) != 0) {
2702 vdev_dbgmsg(vd, "vdev_load: metaslab_init failed "
2703 "[error=%d]", error);
2704 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2705 VDEV_AUX_CORRUPT_DATA);
2706 return (error);
2707 }
2708 }
2709
2710 /*
2711 * If this is a leaf vdev, load its DTL.
2712 */
2713 if (vd->vdev_ops->vdev_op_leaf && (error = vdev_dtl_load(vd)) != 0) {
2714 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2715 VDEV_AUX_CORRUPT_DATA);
2716 vdev_dbgmsg(vd, "vdev_load: vdev_dtl_load failed "
2717 "[error=%d]", error);
2718 return (error);
2719 }
2720
2721 uint64_t obsolete_sm_object = vdev_obsolete_sm_object(vd);
2722 if (obsolete_sm_object != 0) {
2723 objset_t *mos = vd->vdev_spa->spa_meta_objset;
2724 ASSERT(vd->vdev_asize != 0);
2725 ASSERT(vd->vdev_obsolete_sm == NULL);
2726
2727 if ((error = space_map_open(&vd->vdev_obsolete_sm, mos,
2728 obsolete_sm_object, 0, vd->vdev_asize, 0))) {
2729 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2730 VDEV_AUX_CORRUPT_DATA);
2731 vdev_dbgmsg(vd, "vdev_load: space_map_open failed for "
2732 "obsolete spacemap (obj %llu) [error=%d]",
2733 (u_longlong_t)obsolete_sm_object, error);
2734 return (error);
2735 }
2736 space_map_update(vd->vdev_obsolete_sm);
2737 }
2738
2739 return (0);
2740 }
2741
2742 /*
2743 * The special vdev case is used for hot spares and l2cache devices. Its
2744 * sole purpose it to set the vdev state for the associated vdev. To do this,
2745 * we make sure that we can open the underlying device, then try to read the
2746 * label, and make sure that the label is sane and that it hasn't been
2747 * repurposed to another pool.
2748 */
2749 int
2750 vdev_validate_aux(vdev_t *vd)
2751 {
2752 nvlist_t *label;
2753 uint64_t guid, version;
2754 uint64_t state;
2755
2756 if (!vdev_readable(vd))
2757 return (0);
2758
2759 if ((label = vdev_label_read_config(vd, -1ULL)) == NULL) {
2760 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2761 VDEV_AUX_CORRUPT_DATA);
2762 return (-1);
2763 }
2764
2765 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_VERSION, &version) != 0 ||
2766 !SPA_VERSION_IS_SUPPORTED(version) ||
2767 nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0 ||
2768 guid != vd->vdev_guid ||
2769 nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, &state) != 0) {
2770 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2771 VDEV_AUX_CORRUPT_DATA);
2772 nvlist_free(label);
2773 return (-1);
2774 }
2775
2776 /*
2777 * We don't actually check the pool state here. If it's in fact in
2778 * use by another pool, we update this fact on the fly when requested.
2779 */
2780 nvlist_free(label);
2781 return (0);
2782 }
2783
2784 /*
2785 * Free the objects used to store this vdev's spacemaps, and the array
2786 * that points to them.
2787 */
2788 void
2789 vdev_destroy_spacemaps(vdev_t *vd, dmu_tx_t *tx)
2790 {
2791 if (vd->vdev_ms_array == 0)
2792 return;
2793
2794 objset_t *mos = vd->vdev_spa->spa_meta_objset;
2795 uint64_t array_count = vd->vdev_asize >> vd->vdev_ms_shift;
2796 size_t array_bytes = array_count * sizeof (uint64_t);
2797 uint64_t *smobj_array = kmem_alloc(array_bytes, KM_SLEEP);
2798 VERIFY0(dmu_read(mos, vd->vdev_ms_array, 0,
2799 array_bytes, smobj_array, 0));
2800
2801 for (uint64_t i = 0; i < array_count; i++) {
2802 uint64_t smobj = smobj_array[i];
2803 if (smobj == 0)
2804 continue;
2805
2806 space_map_free_obj(mos, smobj, tx);
2807 }
2808
2809 kmem_free(smobj_array, array_bytes);
2810 VERIFY0(dmu_object_free(mos, vd->vdev_ms_array, tx));
2811 vd->vdev_ms_array = 0;
2812 }
2813
2814 static void
2815 vdev_remove_empty(vdev_t *vd, uint64_t txg)
2816 {
2817 spa_t *spa = vd->vdev_spa;
2818 dmu_tx_t *tx;
2819
2820 ASSERT(vd == vd->vdev_top);
2821 ASSERT3U(txg, ==, spa_syncing_txg(spa));
2822
2823 if (vd->vdev_ms != NULL) {
2824 metaslab_group_t *mg = vd->vdev_mg;
2825
2826 metaslab_group_histogram_verify(mg);
2827 metaslab_class_histogram_verify(mg->mg_class);
2828
2829 for (int m = 0; m < vd->vdev_ms_count; m++) {
2830 metaslab_t *msp = vd->vdev_ms[m];
2831
2832 if (msp == NULL || msp->ms_sm == NULL)
2833 continue;
2834
2835 mutex_enter(&msp->ms_lock);
2836 /*
2837 * If the metaslab was not loaded when the vdev
2838 * was removed then the histogram accounting may
2839 * not be accurate. Update the histogram information
2840 * here so that we ensure that the metaslab group
2841 * and metaslab class are up-to-date.
2842 */
2843 metaslab_group_histogram_remove(mg, msp);
2844
2845 VERIFY0(space_map_allocated(msp->ms_sm));
2846 space_map_close(msp->ms_sm);
2847 msp->ms_sm = NULL;
2848 mutex_exit(&msp->ms_lock);
2849 }
2850
2851 metaslab_group_histogram_verify(mg);
2852 metaslab_class_histogram_verify(mg->mg_class);
2853 for (int i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i++)
2854 ASSERT0(mg->mg_histogram[i]);
2855 }
2856
2857 tx = dmu_tx_create_assigned(spa_get_dsl(spa), txg);
2858 vdev_destroy_spacemaps(vd, tx);
2859
2860 if (vd->vdev_islog && vd->vdev_top_zap != 0) {
2861 vdev_destroy_unlink_zap(vd, vd->vdev_top_zap, tx);
2862 vd->vdev_top_zap = 0;
2863 }
2864 dmu_tx_commit(tx);
2865 }
2866
2867 void
2868 vdev_sync_done(vdev_t *vd, uint64_t txg)
2869 {
2870 metaslab_t *msp;
2871 boolean_t reassess = !txg_list_empty(&vd->vdev_ms_list, TXG_CLEAN(txg));
2872
2873 ASSERT(vdev_is_concrete(vd));
2874
2875 while ((msp = txg_list_remove(&vd->vdev_ms_list, TXG_CLEAN(txg))))
2876 metaslab_sync_done(msp, txg);
2877
2878 if (reassess)
2879 metaslab_sync_reassess(vd->vdev_mg);
2880 }
2881
2882 void
2883 vdev_sync(vdev_t *vd, uint64_t txg)
2884 {
2885 spa_t *spa = vd->vdev_spa;
2886 vdev_t *lvd;
2887 metaslab_t *msp;
2888 dmu_tx_t *tx;
2889
2890 if (range_tree_space(vd->vdev_obsolete_segments) > 0) {
2891 dmu_tx_t *tx;
2892
2893 ASSERT(vd->vdev_removing ||
2894 vd->vdev_ops == &vdev_indirect_ops);
2895
2896 tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
2897 vdev_indirect_sync_obsolete(vd, tx);
2898 dmu_tx_commit(tx);
2899
2900 /*
2901 * If the vdev is indirect, it can't have dirty
2902 * metaslabs or DTLs.
2903 */
2904 if (vd->vdev_ops == &vdev_indirect_ops) {
2905 ASSERT(txg_list_empty(&vd->vdev_ms_list, txg));
2906 ASSERT(txg_list_empty(&vd->vdev_dtl_list, txg));
2907 return;
2908 }
2909 }
2910
2911 ASSERT(vdev_is_concrete(vd));
2912
2913 if (vd->vdev_ms_array == 0 && vd->vdev_ms_shift != 0 &&
2914 !vd->vdev_removing) {
2915 ASSERT(vd == vd->vdev_top);
2916 ASSERT0(vd->vdev_indirect_config.vic_mapping_object);
2917 tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
2918 vd->vdev_ms_array = dmu_object_alloc(spa->spa_meta_objset,
2919 DMU_OT_OBJECT_ARRAY, 0, DMU_OT_NONE, 0, tx);
2920 ASSERT(vd->vdev_ms_array != 0);
2921 vdev_config_dirty(vd);
2922 dmu_tx_commit(tx);
2923 }
2924
2925 while ((msp = txg_list_remove(&vd->vdev_ms_list, txg)) != NULL) {
2926 metaslab_sync(msp, txg);
2927 (void) txg_list_add(&vd->vdev_ms_list, msp, TXG_CLEAN(txg));
2928 }
2929
2930 while ((lvd = txg_list_remove(&vd->vdev_dtl_list, txg)) != NULL)
2931 vdev_dtl_sync(lvd, txg);
2932
2933 /*
2934 * Remove the metadata associated with this vdev once it's empty.
2935 * Note that this is typically used for log/cache device removal;
2936 * we don't empty toplevel vdevs when removing them. But if
2937 * a toplevel happens to be emptied, this is not harmful.
2938 */
2939 if (vd->vdev_stat.vs_alloc == 0 && vd->vdev_removing) {
2940 vdev_remove_empty(vd, txg);
2941 }
2942
2943 (void) txg_list_add(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg));
2944 }
2945
2946 uint64_t
2947 vdev_psize_to_asize(vdev_t *vd, uint64_t psize)
2948 {
2949 return (vd->vdev_ops->vdev_op_asize(vd, psize));
2950 }
2951
2952 /*
2953 * Mark the given vdev faulted. A faulted vdev behaves as if the device could
2954 * not be opened, and no I/O is attempted.
2955 */
2956 int
2957 vdev_fault(spa_t *spa, uint64_t guid, vdev_aux_t aux)
2958 {
2959 vdev_t *vd, *tvd;
2960
2961 spa_vdev_state_enter(spa, SCL_NONE);
2962
2963 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2964 return (spa_vdev_state_exit(spa, NULL, ENODEV));
2965
2966 if (!vd->vdev_ops->vdev_op_leaf)
2967 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2968
2969 tvd = vd->vdev_top;
2970
2971 /*
2972 * If user did a 'zpool offline -f' then make the fault persist across
2973 * reboots.
2974 */
2975 if (aux == VDEV_AUX_EXTERNAL_PERSIST) {
2976 /*
2977 * There are two kinds of forced faults: temporary and
2978 * persistent. Temporary faults go away at pool import, while
2979 * persistent faults stay set. Both types of faults can be
2980 * cleared with a zpool clear.
2981 *
2982 * We tell if a vdev is persistently faulted by looking at the
2983 * ZPOOL_CONFIG_AUX_STATE nvpair. If it's set to "external" at
2984 * import then it's a persistent fault. Otherwise, it's
2985 * temporary. We get ZPOOL_CONFIG_AUX_STATE set to "external"
2986 * by setting vd.vdev_stat.vs_aux to VDEV_AUX_EXTERNAL. This
2987 * tells vdev_config_generate() (which gets run later) to set
2988 * ZPOOL_CONFIG_AUX_STATE to "external" in the nvlist.
2989 */
2990 vd->vdev_stat.vs_aux = VDEV_AUX_EXTERNAL;
2991 vd->vdev_tmpoffline = B_FALSE;
2992 aux = VDEV_AUX_EXTERNAL;
2993 } else {
2994 vd->vdev_tmpoffline = B_TRUE;
2995 }
2996
2997 /*
2998 * We don't directly use the aux state here, but if we do a
2999 * vdev_reopen(), we need this value to be present to remember why we
3000 * were faulted.
3001 */
3002 vd->vdev_label_aux = aux;
3003
3004 /*
3005 * Faulted state takes precedence over degraded.
3006 */
3007 vd->vdev_delayed_close = B_FALSE;
3008 vd->vdev_faulted = 1ULL;
3009 vd->vdev_degraded = 0ULL;
3010 vdev_set_state(vd, B_FALSE, VDEV_STATE_FAULTED, aux);
3011
3012 /*
3013 * If this device has the only valid copy of the data, then
3014 * back off and simply mark the vdev as degraded instead.
3015 */
3016 if (!tvd->vdev_islog && vd->vdev_aux == NULL && vdev_dtl_required(vd)) {
3017 vd->vdev_degraded = 1ULL;
3018 vd->vdev_faulted = 0ULL;
3019
3020 /*
3021 * If we reopen the device and it's not dead, only then do we
3022 * mark it degraded.
3023 */
3024 vdev_reopen(tvd);
3025
3026 if (vdev_readable(vd))
3027 vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, aux);
3028 }
3029
3030 return (spa_vdev_state_exit(spa, vd, 0));
3031 }
3032
3033 /*
3034 * Mark the given vdev degraded. A degraded vdev is purely an indication to the
3035 * user that something is wrong. The vdev continues to operate as normal as far
3036 * as I/O is concerned.
3037 */
3038 int
3039 vdev_degrade(spa_t *spa, uint64_t guid, vdev_aux_t aux)
3040 {
3041 vdev_t *vd;
3042
3043 spa_vdev_state_enter(spa, SCL_NONE);
3044
3045 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
3046 return (spa_vdev_state_exit(spa, NULL, ENODEV));
3047
3048 if (!vd->vdev_ops->vdev_op_leaf)
3049 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
3050
3051 /*
3052 * If the vdev is already faulted, then don't do anything.
3053 */
3054 if (vd->vdev_faulted || vd->vdev_degraded)
3055 return (spa_vdev_state_exit(spa, NULL, 0));
3056
3057 vd->vdev_degraded = 1ULL;
3058 if (!vdev_is_dead(vd))
3059 vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED,
3060 aux);
3061
3062 return (spa_vdev_state_exit(spa, vd, 0));
3063 }
3064
3065 /*
3066 * Online the given vdev.
3067 *
3068 * If 'ZFS_ONLINE_UNSPARE' is set, it implies two things. First, any attached
3069 * spare device should be detached when the device finishes resilvering.
3070 * Second, the online should be treated like a 'test' online case, so no FMA
3071 * events are generated if the device fails to open.
3072 */
3073 int
3074 vdev_online(spa_t *spa, uint64_t guid, uint64_t flags, vdev_state_t *newstate)
3075 {
3076 vdev_t *vd, *tvd, *pvd, *rvd = spa->spa_root_vdev;
3077 boolean_t wasoffline;
3078 vdev_state_t oldstate;
3079
3080 spa_vdev_state_enter(spa, SCL_NONE);
3081
3082 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
3083 return (spa_vdev_state_exit(spa, NULL, ENODEV));
3084
3085 if (!vd->vdev_ops->vdev_op_leaf)
3086 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
3087
3088 wasoffline = (vd->vdev_offline || vd->vdev_tmpoffline);
3089 oldstate = vd->vdev_state;
3090
3091 tvd = vd->vdev_top;
3092 vd->vdev_offline = B_FALSE;
3093 vd->vdev_tmpoffline = B_FALSE;
3094 vd->vdev_checkremove = !!(flags & ZFS_ONLINE_CHECKREMOVE);
3095 vd->vdev_forcefault = !!(flags & ZFS_ONLINE_FORCEFAULT);
3096
3097 /* XXX - L2ARC 1.0 does not support expansion */
3098 if (!vd->vdev_aux) {
3099 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
3100 pvd->vdev_expanding = !!(flags & ZFS_ONLINE_EXPAND);
3101 }
3102
3103 vdev_reopen(tvd);
3104 vd->vdev_checkremove = vd->vdev_forcefault = B_FALSE;
3105
3106 if (!vd->vdev_aux) {
3107 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
3108 pvd->vdev_expanding = B_FALSE;
3109 }
3110
3111 if (newstate)
3112 *newstate = vd->vdev_state;
3113 if ((flags & ZFS_ONLINE_UNSPARE) &&
3114 !vdev_is_dead(vd) && vd->vdev_parent &&
3115 vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
3116 vd->vdev_parent->vdev_child[0] == vd)
3117 vd->vdev_unspare = B_TRUE;
3118
3119 if ((flags & ZFS_ONLINE_EXPAND) || spa->spa_autoexpand) {
3120
3121 /* XXX - L2ARC 1.0 does not support expansion */
3122 if (vd->vdev_aux)
3123 return (spa_vdev_state_exit(spa, vd, ENOTSUP));
3124 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
3125 }
3126
3127 if (wasoffline ||
3128 (oldstate < VDEV_STATE_DEGRADED &&
3129 vd->vdev_state >= VDEV_STATE_DEGRADED))
3130 spa_event_notify(spa, vd, NULL, ESC_ZFS_VDEV_ONLINE);
3131
3132 return (spa_vdev_state_exit(spa, vd, 0));
3133 }
3134
3135 static int
3136 vdev_offline_locked(spa_t *spa, uint64_t guid, uint64_t flags)
3137 {
3138 vdev_t *vd, *tvd;
3139 int error = 0;
3140 uint64_t generation;
3141 metaslab_group_t *mg;
3142
3143 top:
3144 spa_vdev_state_enter(spa, SCL_ALLOC);
3145
3146 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
3147 return (spa_vdev_state_exit(spa, NULL, ENODEV));
3148
3149 if (!vd->vdev_ops->vdev_op_leaf)
3150 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
3151
3152 tvd = vd->vdev_top;
3153 mg = tvd->vdev_mg;
3154 generation = spa->spa_config_generation + 1;
3155
3156 /*
3157 * If the device isn't already offline, try to offline it.
3158 */
3159 if (!vd->vdev_offline) {
3160 /*
3161 * If this device has the only valid copy of some data,
3162 * don't allow it to be offlined. Log devices are always
3163 * expendable.
3164 */
3165 if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
3166 vdev_dtl_required(vd))
3167 return (spa_vdev_state_exit(spa, NULL, EBUSY));
3168
3169 /*
3170 * If the top-level is a slog and it has had allocations
3171 * then proceed. We check that the vdev's metaslab group
3172 * is not NULL since it's possible that we may have just
3173 * added this vdev but not yet initialized its metaslabs.
3174 */
3175 if (tvd->vdev_islog && mg != NULL) {
3176 /*
3177 * Prevent any future allocations.
3178 */
3179 metaslab_group_passivate(mg);
3180 (void) spa_vdev_state_exit(spa, vd, 0);
3181
3182 error = spa_reset_logs(spa);
3183
3184 spa_vdev_state_enter(spa, SCL_ALLOC);
3185
3186 /*
3187 * Check to see if the config has changed.
3188 */
3189 if (error || generation != spa->spa_config_generation) {
3190 metaslab_group_activate(mg);
3191 if (error)
3192 return (spa_vdev_state_exit(spa,
3193 vd, error));
3194 (void) spa_vdev_state_exit(spa, vd, 0);
3195 goto top;
3196 }
3197 ASSERT0(tvd->vdev_stat.vs_alloc);
3198 }
3199
3200 /*
3201 * Offline this device and reopen its top-level vdev.
3202 * If the top-level vdev is a log device then just offline
3203 * it. Otherwise, if this action results in the top-level
3204 * vdev becoming unusable, undo it and fail the request.
3205 */
3206 vd->vdev_offline = B_TRUE;
3207 vdev_reopen(tvd);
3208
3209 if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
3210 vdev_is_dead(tvd)) {
3211 vd->vdev_offline = B_FALSE;
3212 vdev_reopen(tvd);
3213 return (spa_vdev_state_exit(spa, NULL, EBUSY));
3214 }
3215
3216 /*
3217 * Add the device back into the metaslab rotor so that
3218 * once we online the device it's open for business.
3219 */
3220 if (tvd->vdev_islog && mg != NULL)
3221 metaslab_group_activate(mg);
3222 }
3223
3224 vd->vdev_tmpoffline = !!(flags & ZFS_OFFLINE_TEMPORARY);
3225
3226 return (spa_vdev_state_exit(spa, vd, 0));
3227 }
3228
3229 int
3230 vdev_offline(spa_t *spa, uint64_t guid, uint64_t flags)
3231 {
3232 int error;
3233
3234 mutex_enter(&spa->spa_vdev_top_lock);
3235 error = vdev_offline_locked(spa, guid, flags);
3236 mutex_exit(&spa->spa_vdev_top_lock);
3237
3238 return (error);
3239 }
3240
3241 /*
3242 * Clear the error counts associated with this vdev. Unlike vdev_online() and
3243 * vdev_offline(), we assume the spa config is locked. We also clear all
3244 * children. If 'vd' is NULL, then the user wants to clear all vdevs.
3245 */
3246 void
3247 vdev_clear(spa_t *spa, vdev_t *vd)
3248 {
3249 vdev_t *rvd = spa->spa_root_vdev;
3250
3251 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
3252
3253 if (vd == NULL)
3254 vd = rvd;
3255
3256 vd->vdev_stat.vs_read_errors = 0;
3257 vd->vdev_stat.vs_write_errors = 0;
3258 vd->vdev_stat.vs_checksum_errors = 0;
3259
3260 for (int c = 0; c < vd->vdev_children; c++)
3261 vdev_clear(spa, vd->vdev_child[c]);
3262
3263 /*
3264 * It makes no sense to "clear" an indirect vdev.
3265 */
3266 if (!vdev_is_concrete(vd))
3267 return;
3268
3269 /*
3270 * If we're in the FAULTED state or have experienced failed I/O, then
3271 * clear the persistent state and attempt to reopen the device. We
3272 * also mark the vdev config dirty, so that the new faulted state is
3273 * written out to disk.
3274 */
3275 if (vd->vdev_faulted || vd->vdev_degraded ||
3276 !vdev_readable(vd) || !vdev_writeable(vd)) {
3277 /*
3278 * When reopening in response to a clear event, it may be due to
3279 * a fmadm repair request. In this case, if the device is
3280 * still broken, we want to still post the ereport again.
3281 */
3282 vd->vdev_forcefault = B_TRUE;
3283
3284 vd->vdev_faulted = vd->vdev_degraded = 0ULL;
3285 vd->vdev_cant_read = B_FALSE;
3286 vd->vdev_cant_write = B_FALSE;
3287 vd->vdev_stat.vs_aux = 0;
3288
3289 vdev_reopen(vd == rvd ? rvd : vd->vdev_top);
3290
3291 vd->vdev_forcefault = B_FALSE;
3292
3293 if (vd != rvd && vdev_writeable(vd->vdev_top))
3294 vdev_state_dirty(vd->vdev_top);
3295
3296 if (vd->vdev_aux == NULL && !vdev_is_dead(vd))
3297 spa_async_request(spa, SPA_ASYNC_RESILVER);
3298
3299 spa_event_notify(spa, vd, NULL, ESC_ZFS_VDEV_CLEAR);
3300 }
3301
3302 /*
3303 * When clearing a FMA-diagnosed fault, we always want to
3304 * unspare the device, as we assume that the original spare was
3305 * done in response to the FMA fault.
3306 */
3307 if (!vdev_is_dead(vd) && vd->vdev_parent != NULL &&
3308 vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
3309 vd->vdev_parent->vdev_child[0] == vd)
3310 vd->vdev_unspare = B_TRUE;
3311 }
3312
3313 boolean_t
3314 vdev_is_dead(vdev_t *vd)
3315 {
3316 /*
3317 * Holes and missing devices are always considered "dead".
3318 * This simplifies the code since we don't have to check for
3319 * these types of devices in the various code paths.
3320 * Instead we rely on the fact that we skip over dead devices
3321 * before issuing I/O to them.
3322 */
3323 return (vd->vdev_state < VDEV_STATE_DEGRADED ||
3324 vd->vdev_ops == &vdev_hole_ops ||
3325 vd->vdev_ops == &vdev_missing_ops);
3326 }
3327
3328 boolean_t
3329 vdev_readable(vdev_t *vd)
3330 {
3331 return (!vdev_is_dead(vd) && !vd->vdev_cant_read);
3332 }
3333
3334 boolean_t
3335 vdev_writeable(vdev_t *vd)
3336 {
3337 return (!vdev_is_dead(vd) && !vd->vdev_cant_write &&
3338 vdev_is_concrete(vd));
3339 }
3340
3341 boolean_t
3342 vdev_allocatable(vdev_t *vd)
3343 {
3344 uint64_t state = vd->vdev_state;
3345
3346 /*
3347 * We currently allow allocations from vdevs which may be in the
3348 * process of reopening (i.e. VDEV_STATE_CLOSED). If the device
3349 * fails to reopen then we'll catch it later when we're holding
3350 * the proper locks. Note that we have to get the vdev state
3351 * in a local variable because although it changes atomically,
3352 * we're asking two separate questions about it.
3353 */
3354 return (!(state < VDEV_STATE_DEGRADED && state != VDEV_STATE_CLOSED) &&
3355 !vd->vdev_cant_write && vdev_is_concrete(vd) &&
3356 vd->vdev_mg->mg_initialized);
3357 }
3358
3359 boolean_t
3360 vdev_accessible(vdev_t *vd, zio_t *zio)
3361 {
3362 ASSERT(zio->io_vd == vd);
3363
3364 if (vdev_is_dead(vd) || vd->vdev_remove_wanted)
3365 return (B_FALSE);
3366
3367 if (zio->io_type == ZIO_TYPE_READ)
3368 return (!vd->vdev_cant_read);
3369
3370 if (zio->io_type == ZIO_TYPE_WRITE)
3371 return (!vd->vdev_cant_write);
3372
3373 return (B_TRUE);
3374 }
3375
3376 static void
3377 vdev_get_child_stat(vdev_t *cvd, vdev_stat_t *vs, vdev_stat_t *cvs)
3378 {
3379 int t;
3380 for (t = 0; t < ZIO_TYPES; t++) {
3381 vs->vs_ops[t] += cvs->vs_ops[t];
3382 vs->vs_bytes[t] += cvs->vs_bytes[t];
3383 }
3384
3385 cvs->vs_scan_removing = cvd->vdev_removing;
3386 }
3387
3388 /*
3389 * Get extended stats
3390 */
3391 static void
3392 vdev_get_child_stat_ex(vdev_t *cvd, vdev_stat_ex_t *vsx, vdev_stat_ex_t *cvsx)
3393 {
3394 int t, b;
3395 for (t = 0; t < ZIO_TYPES; t++) {
3396 for (b = 0; b < ARRAY_SIZE(vsx->vsx_disk_histo[0]); b++)
3397 vsx->vsx_disk_histo[t][b] += cvsx->vsx_disk_histo[t][b];
3398
3399 for (b = 0; b < ARRAY_SIZE(vsx->vsx_total_histo[0]); b++) {
3400 vsx->vsx_total_histo[t][b] +=
3401 cvsx->vsx_total_histo[t][b];
3402 }
3403 }
3404
3405 for (t = 0; t < ZIO_PRIORITY_NUM_QUEUEABLE; t++) {
3406 for (b = 0; b < ARRAY_SIZE(vsx->vsx_queue_histo[0]); b++) {
3407 vsx->vsx_queue_histo[t][b] +=
3408 cvsx->vsx_queue_histo[t][b];
3409 }
3410 vsx->vsx_active_queue[t] += cvsx->vsx_active_queue[t];
3411 vsx->vsx_pend_queue[t] += cvsx->vsx_pend_queue[t];
3412
3413 for (b = 0; b < ARRAY_SIZE(vsx->vsx_ind_histo[0]); b++)
3414 vsx->vsx_ind_histo[t][b] += cvsx->vsx_ind_histo[t][b];
3415
3416 for (b = 0; b < ARRAY_SIZE(vsx->vsx_agg_histo[0]); b++)
3417 vsx->vsx_agg_histo[t][b] += cvsx->vsx_agg_histo[t][b];
3418 }
3419
3420 }
3421
3422 /*
3423 * Get statistics for the given vdev.
3424 */
3425 static void
3426 vdev_get_stats_ex_impl(vdev_t *vd, vdev_stat_t *vs, vdev_stat_ex_t *vsx)
3427 {
3428 int t;
3429 /*
3430 * If we're getting stats on the root vdev, aggregate the I/O counts
3431 * over all top-level vdevs (i.e. the direct children of the root).
3432 */
3433 if (!vd->vdev_ops->vdev_op_leaf) {
3434 if (vs) {
3435 memset(vs->vs_ops, 0, sizeof (vs->vs_ops));
3436 memset(vs->vs_bytes, 0, sizeof (vs->vs_bytes));
3437 }
3438 if (vsx)
3439 memset(vsx, 0, sizeof (*vsx));
3440
3441 for (int c = 0; c < vd->vdev_children; c++) {
3442 vdev_t *cvd = vd->vdev_child[c];
3443 vdev_stat_t *cvs = &cvd->vdev_stat;
3444 vdev_stat_ex_t *cvsx = &cvd->vdev_stat_ex;
3445
3446 vdev_get_stats_ex_impl(cvd, cvs, cvsx);
3447 if (vs)
3448 vdev_get_child_stat(cvd, vs, cvs);
3449 if (vsx)
3450 vdev_get_child_stat_ex(cvd, vsx, cvsx);
3451
3452 }
3453 } else {
3454 /*
3455 * We're a leaf. Just copy our ZIO active queue stats in. The
3456 * other leaf stats are updated in vdev_stat_update().
3457 */
3458 if (!vsx)
3459 return;
3460
3461 memcpy(vsx, &vd->vdev_stat_ex, sizeof (vd->vdev_stat_ex));
3462
3463 for (t = 0; t < ARRAY_SIZE(vd->vdev_queue.vq_class); t++) {
3464 vsx->vsx_active_queue[t] =
3465 vd->vdev_queue.vq_class[t].vqc_active;
3466 vsx->vsx_pend_queue[t] = avl_numnodes(
3467 &vd->vdev_queue.vq_class[t].vqc_queued_tree);
3468 }
3469 }
3470 }
3471
3472 void
3473 vdev_get_stats_ex(vdev_t *vd, vdev_stat_t *vs, vdev_stat_ex_t *vsx)
3474 {
3475 vdev_t *tvd = vd->vdev_top;
3476 mutex_enter(&vd->vdev_stat_lock);
3477 if (vs) {
3478 bcopy(&vd->vdev_stat, vs, sizeof (*vs));
3479 vs->vs_timestamp = gethrtime() - vs->vs_timestamp;
3480 vs->vs_state = vd->vdev_state;
3481 vs->vs_rsize = vdev_get_min_asize(vd);
3482 if (vd->vdev_ops->vdev_op_leaf)
3483 vs->vs_rsize += VDEV_LABEL_START_SIZE +
3484 VDEV_LABEL_END_SIZE;
3485 /*
3486 * Report expandable space on top-level, non-auxillary devices
3487 * only. The expandable space is reported in terms of metaslab
3488 * sized units since that determines how much space the pool
3489 * can expand.
3490 */
3491 if (vd->vdev_aux == NULL && tvd != NULL) {
3492 vs->vs_esize = P2ALIGN(
3493 vd->vdev_max_asize - vd->vdev_asize,
3494 1ULL << tvd->vdev_ms_shift);
3495 }
3496 if (vd->vdev_aux == NULL && vd == vd->vdev_top &&
3497 vdev_is_concrete(vd)) {
3498 vs->vs_fragmentation = vd->vdev_mg->mg_fragmentation;
3499 }
3500 }
3501
3502 ASSERT(spa_config_held(vd->vdev_spa, SCL_ALL, RW_READER) != 0);
3503 vdev_get_stats_ex_impl(vd, vs, vsx);
3504 mutex_exit(&vd->vdev_stat_lock);
3505 }
3506
3507 void
3508 vdev_get_stats(vdev_t *vd, vdev_stat_t *vs)
3509 {
3510 return (vdev_get_stats_ex(vd, vs, NULL));
3511 }
3512
3513 void
3514 vdev_clear_stats(vdev_t *vd)
3515 {
3516 mutex_enter(&vd->vdev_stat_lock);
3517 vd->vdev_stat.vs_space = 0;
3518 vd->vdev_stat.vs_dspace = 0;
3519 vd->vdev_stat.vs_alloc = 0;
3520 mutex_exit(&vd->vdev_stat_lock);
3521 }
3522
3523 void
3524 vdev_scan_stat_init(vdev_t *vd)
3525 {
3526 vdev_stat_t *vs = &vd->vdev_stat;
3527
3528 for (int c = 0; c < vd->vdev_children; c++)
3529 vdev_scan_stat_init(vd->vdev_child[c]);
3530
3531 mutex_enter(&vd->vdev_stat_lock);
3532 vs->vs_scan_processed = 0;
3533 mutex_exit(&vd->vdev_stat_lock);
3534 }
3535
3536 void
3537 vdev_stat_update(zio_t *zio, uint64_t psize)
3538 {
3539 spa_t *spa = zio->io_spa;
3540 vdev_t *rvd = spa->spa_root_vdev;
3541 vdev_t *vd = zio->io_vd ? zio->io_vd : rvd;
3542 vdev_t *pvd;
3543 uint64_t txg = zio->io_txg;
3544 vdev_stat_t *vs = &vd->vdev_stat;
3545 vdev_stat_ex_t *vsx = &vd->vdev_stat_ex;
3546 zio_type_t type = zio->io_type;
3547 int flags = zio->io_flags;
3548
3549 /*
3550 * If this i/o is a gang leader, it didn't do any actual work.
3551 */
3552 if (zio->io_gang_tree)
3553 return;
3554
3555 if (zio->io_error == 0) {
3556 /*
3557 * If this is a root i/o, don't count it -- we've already
3558 * counted the top-level vdevs, and vdev_get_stats() will
3559 * aggregate them when asked. This reduces contention on
3560 * the root vdev_stat_lock and implicitly handles blocks
3561 * that compress away to holes, for which there is no i/o.
3562 * (Holes never create vdev children, so all the counters
3563 * remain zero, which is what we want.)
3564 *
3565 * Note: this only applies to successful i/o (io_error == 0)
3566 * because unlike i/o counts, errors are not additive.
3567 * When reading a ditto block, for example, failure of
3568 * one top-level vdev does not imply a root-level error.
3569 */
3570 if (vd == rvd)
3571 return;
3572
3573 ASSERT(vd == zio->io_vd);
3574
3575 if (flags & ZIO_FLAG_IO_BYPASS)
3576 return;
3577
3578 mutex_enter(&vd->vdev_stat_lock);
3579
3580 if (flags & ZIO_FLAG_IO_REPAIR) {
3581 if (flags & ZIO_FLAG_SCAN_THREAD) {
3582 dsl_scan_phys_t *scn_phys =
3583 &spa->spa_dsl_pool->dp_scan->scn_phys;
3584 uint64_t *processed = &scn_phys->scn_processed;
3585
3586 /* XXX cleanup? */
3587 if (vd->vdev_ops->vdev_op_leaf)
3588 atomic_add_64(processed, psize);
3589 vs->vs_scan_processed += psize;
3590 }
3591
3592 if (flags & ZIO_FLAG_SELF_HEAL)
3593 vs->vs_self_healed += psize;
3594 }
3595
3596 /*
3597 * The bytes/ops/histograms are recorded at the leaf level and
3598 * aggregated into the higher level vdevs in vdev_get_stats().
3599 */
3600 if (vd->vdev_ops->vdev_op_leaf &&
3601 (zio->io_priority < ZIO_PRIORITY_NUM_QUEUEABLE)) {
3602
3603 vs->vs_ops[type]++;
3604 vs->vs_bytes[type] += psize;
3605
3606 if (flags & ZIO_FLAG_DELEGATED) {
3607 vsx->vsx_agg_histo[zio->io_priority]
3608 [RQ_HISTO(zio->io_size)]++;
3609 } else {
3610 vsx->vsx_ind_histo[zio->io_priority]
3611 [RQ_HISTO(zio->io_size)]++;
3612 }
3613
3614 if (zio->io_delta && zio->io_delay) {
3615 vsx->vsx_queue_histo[zio->io_priority]
3616 [L_HISTO(zio->io_delta - zio->io_delay)]++;
3617 vsx->vsx_disk_histo[type]
3618 [L_HISTO(zio->io_delay)]++;
3619 vsx->vsx_total_histo[type]
3620 [L_HISTO(zio->io_delta)]++;
3621 }
3622 }
3623
3624 mutex_exit(&vd->vdev_stat_lock);
3625 return;
3626 }
3627
3628 if (flags & ZIO_FLAG_SPECULATIVE)
3629 return;
3630
3631 /*
3632 * If this is an I/O error that is going to be retried, then ignore the
3633 * error. Otherwise, the user may interpret B_FAILFAST I/O errors as
3634 * hard errors, when in reality they can happen for any number of
3635 * innocuous reasons (bus resets, MPxIO link failure, etc).
3636 */
3637 if (zio->io_error == EIO &&
3638 !(zio->io_flags & ZIO_FLAG_IO_RETRY))
3639 return;
3640
3641 /*
3642 * Intent logs writes won't propagate their error to the root
3643 * I/O so don't mark these types of failures as pool-level
3644 * errors.
3645 */
3646 if (zio->io_vd == NULL && (zio->io_flags & ZIO_FLAG_DONT_PROPAGATE))
3647 return;
3648
3649 mutex_enter(&vd->vdev_stat_lock);
3650 if (type == ZIO_TYPE_READ && !vdev_is_dead(vd)) {
3651 if (zio->io_error == ECKSUM)
3652 vs->vs_checksum_errors++;
3653 else
3654 vs->vs_read_errors++;
3655 }
3656 if (type == ZIO_TYPE_WRITE && !vdev_is_dead(vd))
3657 vs->vs_write_errors++;
3658 mutex_exit(&vd->vdev_stat_lock);
3659
3660 if (spa->spa_load_state == SPA_LOAD_NONE &&
3661 type == ZIO_TYPE_WRITE && txg != 0 &&
3662 (!(flags & ZIO_FLAG_IO_REPAIR) ||
3663 (flags & ZIO_FLAG_SCAN_THREAD) ||
3664 spa->spa_claiming)) {
3665 /*
3666 * This is either a normal write (not a repair), or it's
3667 * a repair induced by the scrub thread, or it's a repair
3668 * made by zil_claim() during spa_load() in the first txg.
3669 * In the normal case, we commit the DTL change in the same
3670 * txg as the block was born. In the scrub-induced repair
3671 * case, we know that scrubs run in first-pass syncing context,
3672 * so we commit the DTL change in spa_syncing_txg(spa).
3673 * In the zil_claim() case, we commit in spa_first_txg(spa).
3674 *
3675 * We currently do not make DTL entries for failed spontaneous
3676 * self-healing writes triggered by normal (non-scrubbing)
3677 * reads, because we have no transactional context in which to
3678 * do so -- and it's not clear that it'd be desirable anyway.
3679 */
3680 if (vd->vdev_ops->vdev_op_leaf) {
3681 uint64_t commit_txg = txg;
3682 if (flags & ZIO_FLAG_SCAN_THREAD) {
3683 ASSERT(flags & ZIO_FLAG_IO_REPAIR);
3684 ASSERT(spa_sync_pass(spa) == 1);
3685 vdev_dtl_dirty(vd, DTL_SCRUB, txg, 1);
3686 commit_txg = spa_syncing_txg(spa);
3687 } else if (spa->spa_claiming) {
3688 ASSERT(flags & ZIO_FLAG_IO_REPAIR);
3689 commit_txg = spa_first_txg(spa);
3690 }
3691 ASSERT(commit_txg >= spa_syncing_txg(spa));
3692 if (vdev_dtl_contains(vd, DTL_MISSING, txg, 1))
3693 return;
3694 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
3695 vdev_dtl_dirty(pvd, DTL_PARTIAL, txg, 1);
3696 vdev_dirty(vd->vdev_top, VDD_DTL, vd, commit_txg);
3697 }
3698 if (vd != rvd)
3699 vdev_dtl_dirty(vd, DTL_MISSING, txg, 1);
3700 }
3701 }
3702
3703 /*
3704 * Update the in-core space usage stats for this vdev, its metaslab class,
3705 * and the root vdev.
3706 */
3707 void
3708 vdev_space_update(vdev_t *vd, int64_t alloc_delta, int64_t defer_delta,
3709 int64_t space_delta)
3710 {
3711 int64_t dspace_delta = space_delta;
3712 spa_t *spa = vd->vdev_spa;
3713 vdev_t *rvd = spa->spa_root_vdev;
3714 metaslab_group_t *mg = vd->vdev_mg;
3715 metaslab_class_t *mc = mg ? mg->mg_class : NULL;
3716
3717 ASSERT(vd == vd->vdev_top);
3718
3719 /*
3720 * Apply the inverse of the psize-to-asize (ie. RAID-Z) space-expansion
3721 * factor. We must calculate this here and not at the root vdev
3722 * because the root vdev's psize-to-asize is simply the max of its
3723 * childrens', thus not accurate enough for us.
3724 */
3725 ASSERT((dspace_delta & (SPA_MINBLOCKSIZE-1)) == 0);
3726 ASSERT(vd->vdev_deflate_ratio != 0 || vd->vdev_isl2cache);
3727 dspace_delta = (dspace_delta >> SPA_MINBLOCKSHIFT) *
3728 vd->vdev_deflate_ratio;
3729
3730 mutex_enter(&vd->vdev_stat_lock);
3731 vd->vdev_stat.vs_alloc += alloc_delta;
3732 vd->vdev_stat.vs_space += space_delta;
3733 vd->vdev_stat.vs_dspace += dspace_delta;
3734 mutex_exit(&vd->vdev_stat_lock);
3735
3736 if (mc == spa_normal_class(spa)) {
3737 mutex_enter(&rvd->vdev_stat_lock);
3738 rvd->vdev_stat.vs_alloc += alloc_delta;
3739 rvd->vdev_stat.vs_space += space_delta;
3740 rvd->vdev_stat.vs_dspace += dspace_delta;
3741 mutex_exit(&rvd->vdev_stat_lock);
3742 }
3743
3744 if (mc != NULL) {
3745 ASSERT(rvd == vd->vdev_parent);
3746 ASSERT(vd->vdev_ms_count != 0);
3747
3748 metaslab_class_space_update(mc,
3749 alloc_delta, defer_delta, space_delta, dspace_delta);
3750 }
3751 }
3752
3753 /*
3754 * Mark a top-level vdev's config as dirty, placing it on the dirty list
3755 * so that it will be written out next time the vdev configuration is synced.
3756 * If the root vdev is specified (vdev_top == NULL), dirty all top-level vdevs.
3757 */
3758 void
3759 vdev_config_dirty(vdev_t *vd)
3760 {
3761 spa_t *spa = vd->vdev_spa;
3762 vdev_t *rvd = spa->spa_root_vdev;
3763 int c;
3764
3765 ASSERT(spa_writeable(spa));
3766
3767 /*
3768 * If this is an aux vdev (as with l2cache and spare devices), then we
3769 * update the vdev config manually and set the sync flag.
3770 */
3771 if (vd->vdev_aux != NULL) {
3772 spa_aux_vdev_t *sav = vd->vdev_aux;
3773 nvlist_t **aux;
3774 uint_t naux;
3775
3776 for (c = 0; c < sav->sav_count; c++) {
3777 if (sav->sav_vdevs[c] == vd)
3778 break;
3779 }
3780
3781 if (c == sav->sav_count) {
3782 /*
3783 * We're being removed. There's nothing more to do.
3784 */
3785 ASSERT(sav->sav_sync == B_TRUE);
3786 return;
3787 }
3788
3789 sav->sav_sync = B_TRUE;
3790
3791 if (nvlist_lookup_nvlist_array(sav->sav_config,
3792 ZPOOL_CONFIG_L2CACHE, &aux, &naux) != 0) {
3793 VERIFY(nvlist_lookup_nvlist_array(sav->sav_config,
3794 ZPOOL_CONFIG_SPARES, &aux, &naux) == 0);
3795 }
3796
3797 ASSERT(c < naux);
3798
3799 /*
3800 * Setting the nvlist in the middle if the array is a little
3801 * sketchy, but it will work.
3802 */
3803 nvlist_free(aux[c]);
3804 aux[c] = vdev_config_generate(spa, vd, B_TRUE, 0);
3805
3806 return;
3807 }
3808
3809 /*
3810 * The dirty list is protected by the SCL_CONFIG lock. The caller
3811 * must either hold SCL_CONFIG as writer, or must be the sync thread
3812 * (which holds SCL_CONFIG as reader). There's only one sync thread,
3813 * so this is sufficient to ensure mutual exclusion.
3814 */
3815 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
3816 (dsl_pool_sync_context(spa_get_dsl(spa)) &&
3817 spa_config_held(spa, SCL_CONFIG, RW_READER)));
3818
3819 if (vd == rvd) {
3820 for (c = 0; c < rvd->vdev_children; c++)
3821 vdev_config_dirty(rvd->vdev_child[c]);
3822 } else {
3823 ASSERT(vd == vd->vdev_top);
3824
3825 if (!list_link_active(&vd->vdev_config_dirty_node) &&
3826 vdev_is_concrete(vd)) {
3827 list_insert_head(&spa->spa_config_dirty_list, vd);
3828 }
3829 }
3830 }
3831
3832 void
3833 vdev_config_clean(vdev_t *vd)
3834 {
3835 spa_t *spa = vd->vdev_spa;
3836
3837 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
3838 (dsl_pool_sync_context(spa_get_dsl(spa)) &&
3839 spa_config_held(spa, SCL_CONFIG, RW_READER)));
3840
3841 ASSERT(list_link_active(&vd->vdev_config_dirty_node));
3842 list_remove(&spa->spa_config_dirty_list, vd);
3843 }
3844
3845 /*
3846 * Mark a top-level vdev's state as dirty, so that the next pass of
3847 * spa_sync() can convert this into vdev_config_dirty(). We distinguish
3848 * the state changes from larger config changes because they require
3849 * much less locking, and are often needed for administrative actions.
3850 */
3851 void
3852 vdev_state_dirty(vdev_t *vd)
3853 {
3854 spa_t *spa = vd->vdev_spa;
3855
3856 ASSERT(spa_writeable(spa));
3857 ASSERT(vd == vd->vdev_top);
3858
3859 /*
3860 * The state list is protected by the SCL_STATE lock. The caller
3861 * must either hold SCL_STATE as writer, or must be the sync thread
3862 * (which holds SCL_STATE as reader). There's only one sync thread,
3863 * so this is sufficient to ensure mutual exclusion.
3864 */
3865 ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
3866 (dsl_pool_sync_context(spa_get_dsl(spa)) &&
3867 spa_config_held(spa, SCL_STATE, RW_READER)));
3868
3869 if (!list_link_active(&vd->vdev_state_dirty_node) &&
3870 vdev_is_concrete(vd))
3871 list_insert_head(&spa->spa_state_dirty_list, vd);
3872 }
3873
3874 void
3875 vdev_state_clean(vdev_t *vd)
3876 {
3877 spa_t *spa = vd->vdev_spa;
3878
3879 ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
3880 (dsl_pool_sync_context(spa_get_dsl(spa)) &&
3881 spa_config_held(spa, SCL_STATE, RW_READER)));
3882
3883 ASSERT(list_link_active(&vd->vdev_state_dirty_node));
3884 list_remove(&spa->spa_state_dirty_list, vd);
3885 }
3886
3887 /*
3888 * Propagate vdev state up from children to parent.
3889 */
3890 void
3891 vdev_propagate_state(vdev_t *vd)
3892 {
3893 spa_t *spa = vd->vdev_spa;
3894 vdev_t *rvd = spa->spa_root_vdev;
3895 int degraded = 0, faulted = 0;
3896 int corrupted = 0;
3897 vdev_t *child;
3898
3899 if (vd->vdev_children > 0) {
3900 for (int c = 0; c < vd->vdev_children; c++) {
3901 child = vd->vdev_child[c];
3902
3903 /*
3904 * Don't factor holes or indirect vdevs into the
3905 * decision.
3906 */
3907 if (!vdev_is_concrete(child))
3908 continue;
3909
3910 if (!vdev_readable(child) ||
3911 (!vdev_writeable(child) && spa_writeable(spa))) {
3912 /*
3913 * Root special: if there is a top-level log
3914 * device, treat the root vdev as if it were
3915 * degraded.
3916 */
3917 if (child->vdev_islog && vd == rvd)
3918 degraded++;
3919 else
3920 faulted++;
3921 } else if (child->vdev_state <= VDEV_STATE_DEGRADED) {
3922 degraded++;
3923 }
3924
3925 if (child->vdev_stat.vs_aux == VDEV_AUX_CORRUPT_DATA)
3926 corrupted++;
3927 }
3928
3929 vd->vdev_ops->vdev_op_state_change(vd, faulted, degraded);
3930
3931 /*
3932 * Root special: if there is a top-level vdev that cannot be
3933 * opened due to corrupted metadata, then propagate the root
3934 * vdev's aux state as 'corrupt' rather than 'insufficient
3935 * replicas'.
3936 */
3937 if (corrupted && vd == rvd &&
3938 rvd->vdev_state == VDEV_STATE_CANT_OPEN)
3939 vdev_set_state(rvd, B_FALSE, VDEV_STATE_CANT_OPEN,
3940 VDEV_AUX_CORRUPT_DATA);
3941 }
3942
3943 if (vd->vdev_parent)
3944 vdev_propagate_state(vd->vdev_parent);
3945 }
3946
3947 /*
3948 * Set a vdev's state. If this is during an open, we don't update the parent
3949 * state, because we're in the process of opening children depth-first.
3950 * Otherwise, we propagate the change to the parent.
3951 *
3952 * If this routine places a device in a faulted state, an appropriate ereport is
3953 * generated.
3954 */
3955 void
3956 vdev_set_state(vdev_t *vd, boolean_t isopen, vdev_state_t state, vdev_aux_t aux)
3957 {
3958 uint64_t save_state;
3959 spa_t *spa = vd->vdev_spa;
3960
3961 if (state == vd->vdev_state) {
3962 /*
3963 * Since vdev_offline() code path is already in an offline
3964 * state we can miss a statechange event to OFFLINE. Check
3965 * the previous state to catch this condition.
3966 */
3967 if (vd->vdev_ops->vdev_op_leaf &&
3968 (state == VDEV_STATE_OFFLINE) &&
3969 (vd->vdev_prevstate >= VDEV_STATE_FAULTED)) {
3970 /* post an offline state change */
3971 zfs_post_state_change(spa, vd, vd->vdev_prevstate);
3972 }
3973 vd->vdev_stat.vs_aux = aux;
3974 return;
3975 }
3976
3977 save_state = vd->vdev_state;
3978
3979 vd->vdev_state = state;
3980 vd->vdev_stat.vs_aux = aux;
3981
3982 /*
3983 * If we are setting the vdev state to anything but an open state, then
3984 * always close the underlying device unless the device has requested
3985 * a delayed close (i.e. we're about to remove or fault the device).
3986 * Otherwise, we keep accessible but invalid devices open forever.
3987 * We don't call vdev_close() itself, because that implies some extra
3988 * checks (offline, etc) that we don't want here. This is limited to
3989 * leaf devices, because otherwise closing the device will affect other
3990 * children.
3991 */
3992 if (!vd->vdev_delayed_close && vdev_is_dead(vd) &&
3993 vd->vdev_ops->vdev_op_leaf)
3994 vd->vdev_ops->vdev_op_close(vd);
3995
3996 if (vd->vdev_removed &&
3997 state == VDEV_STATE_CANT_OPEN &&
3998 (aux == VDEV_AUX_OPEN_FAILED || vd->vdev_checkremove)) {
3999 /*
4000 * If the previous state is set to VDEV_STATE_REMOVED, then this
4001 * device was previously marked removed and someone attempted to
4002 * reopen it. If this failed due to a nonexistent device, then
4003 * keep the device in the REMOVED state. We also let this be if
4004 * it is one of our special test online cases, which is only
4005 * attempting to online the device and shouldn't generate an FMA
4006 * fault.
4007 */
4008 vd->vdev_state = VDEV_STATE_REMOVED;
4009 vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
4010 } else if (state == VDEV_STATE_REMOVED) {
4011 vd->vdev_removed = B_TRUE;
4012 } else if (state == VDEV_STATE_CANT_OPEN) {
4013 /*
4014 * If we fail to open a vdev during an import or recovery, we
4015 * mark it as "not available", which signifies that it was
4016 * never there to begin with. Failure to open such a device
4017 * is not considered an error.
4018 */
4019 if ((spa_load_state(spa) == SPA_LOAD_IMPORT ||
4020 spa_load_state(spa) == SPA_LOAD_RECOVER) &&
4021 vd->vdev_ops->vdev_op_leaf)
4022 vd->vdev_not_present = 1;
4023
4024 /*
4025 * Post the appropriate ereport. If the 'prevstate' field is
4026 * set to something other than VDEV_STATE_UNKNOWN, it indicates
4027 * that this is part of a vdev_reopen(). In this case, we don't
4028 * want to post the ereport if the device was already in the
4029 * CANT_OPEN state beforehand.
4030 *
4031 * If the 'checkremove' flag is set, then this is an attempt to
4032 * online the device in response to an insertion event. If we
4033 * hit this case, then we have detected an insertion event for a
4034 * faulted or offline device that wasn't in the removed state.
4035 * In this scenario, we don't post an ereport because we are
4036 * about to replace the device, or attempt an online with
4037 * vdev_forcefault, which will generate the fault for us.
4038 */
4039 if ((vd->vdev_prevstate != state || vd->vdev_forcefault) &&
4040 !vd->vdev_not_present && !vd->vdev_checkremove &&
4041 vd != spa->spa_root_vdev) {
4042 const char *class;
4043
4044 switch (aux) {
4045 case VDEV_AUX_OPEN_FAILED:
4046 class = FM_EREPORT_ZFS_DEVICE_OPEN_FAILED;
4047 break;
4048 case VDEV_AUX_CORRUPT_DATA:
4049 class = FM_EREPORT_ZFS_DEVICE_CORRUPT_DATA;
4050 break;
4051 case VDEV_AUX_NO_REPLICAS:
4052 class = FM_EREPORT_ZFS_DEVICE_NO_REPLICAS;
4053 break;
4054 case VDEV_AUX_BAD_GUID_SUM:
4055 class = FM_EREPORT_ZFS_DEVICE_BAD_GUID_SUM;
4056 break;
4057 case VDEV_AUX_TOO_SMALL:
4058 class = FM_EREPORT_ZFS_DEVICE_TOO_SMALL;
4059 break;
4060 case VDEV_AUX_BAD_LABEL:
4061 class = FM_EREPORT_ZFS_DEVICE_BAD_LABEL;
4062 break;
4063 case VDEV_AUX_BAD_ASHIFT:
4064 class = FM_EREPORT_ZFS_DEVICE_BAD_ASHIFT;
4065 break;
4066 default:
4067 class = FM_EREPORT_ZFS_DEVICE_UNKNOWN;
4068 }
4069
4070 zfs_ereport_post(class, spa, vd, NULL, NULL,
4071 save_state, 0);
4072 }
4073
4074 /* Erase any notion of persistent removed state */
4075 vd->vdev_removed = B_FALSE;
4076 } else {
4077 vd->vdev_removed = B_FALSE;
4078 }
4079
4080 /*
4081 * Notify ZED of any significant state-change on a leaf vdev.
4082 *
4083 */
4084 if (vd->vdev_ops->vdev_op_leaf) {
4085 /* preserve original state from a vdev_reopen() */
4086 if ((vd->vdev_prevstate != VDEV_STATE_UNKNOWN) &&
4087 (vd->vdev_prevstate != vd->vdev_state) &&
4088 (save_state <= VDEV_STATE_CLOSED))
4089 save_state = vd->vdev_prevstate;
4090
4091 /* filter out state change due to initial vdev_open */
4092 if (save_state > VDEV_STATE_CLOSED)
4093 zfs_post_state_change(spa, vd, save_state);
4094 }
4095
4096 if (!isopen && vd->vdev_parent)
4097 vdev_propagate_state(vd->vdev_parent);
4098 }
4099
4100 boolean_t
4101 vdev_children_are_offline(vdev_t *vd)
4102 {
4103 ASSERT(!vd->vdev_ops->vdev_op_leaf);
4104
4105 for (uint64_t i = 0; i < vd->vdev_children; i++) {
4106 if (vd->vdev_child[i]->vdev_state != VDEV_STATE_OFFLINE)
4107 return (B_FALSE);
4108 }
4109
4110 return (B_TRUE);
4111 }
4112
4113 /*
4114 * Check the vdev configuration to ensure that it's capable of supporting
4115 * a root pool. We do not support partial configuration.
4116 */
4117 boolean_t
4118 vdev_is_bootable(vdev_t *vd)
4119 {
4120 if (!vd->vdev_ops->vdev_op_leaf) {
4121 const char *vdev_type = vd->vdev_ops->vdev_op_type;
4122
4123 if (strcmp(vdev_type, VDEV_TYPE_MISSING) == 0 ||
4124 strcmp(vdev_type, VDEV_TYPE_INDIRECT) == 0) {
4125 return (B_FALSE);
4126 }
4127 }
4128
4129 for (int c = 0; c < vd->vdev_children; c++) {
4130 if (!vdev_is_bootable(vd->vdev_child[c]))
4131 return (B_FALSE);
4132 }
4133 return (B_TRUE);
4134 }
4135
4136 boolean_t
4137 vdev_is_concrete(vdev_t *vd)
4138 {
4139 vdev_ops_t *ops = vd->vdev_ops;
4140 if (ops == &vdev_indirect_ops || ops == &vdev_hole_ops ||
4141 ops == &vdev_missing_ops || ops == &vdev_root_ops) {
4142 return (B_FALSE);
4143 } else {
4144 return (B_TRUE);
4145 }
4146 }
4147
4148 /*
4149 * Determine if a log device has valid content. If the vdev was
4150 * removed or faulted in the MOS config then we know that
4151 * the content on the log device has already been written to the pool.
4152 */
4153 boolean_t
4154 vdev_log_state_valid(vdev_t *vd)
4155 {
4156 if (vd->vdev_ops->vdev_op_leaf && !vd->vdev_faulted &&
4157 !vd->vdev_removed)
4158 return (B_TRUE);
4159
4160 for (int c = 0; c < vd->vdev_children; c++)
4161 if (vdev_log_state_valid(vd->vdev_child[c]))
4162 return (B_TRUE);
4163
4164 return (B_FALSE);
4165 }
4166
4167 /*
4168 * Expand a vdev if possible.
4169 */
4170 void
4171 vdev_expand(vdev_t *vd, uint64_t txg)
4172 {
4173 ASSERT(vd->vdev_top == vd);
4174 ASSERT(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
4175 ASSERT(vdev_is_concrete(vd));
4176
4177 vdev_set_deflate_ratio(vd);
4178
4179 if ((vd->vdev_asize >> vd->vdev_ms_shift) > vd->vdev_ms_count) {
4180 VERIFY(vdev_metaslab_init(vd, txg) == 0);
4181 vdev_config_dirty(vd);
4182 }
4183 }
4184
4185 /*
4186 * Split a vdev.
4187 */
4188 void
4189 vdev_split(vdev_t *vd)
4190 {
4191 vdev_t *cvd, *pvd = vd->vdev_parent;
4192
4193 vdev_remove_child(pvd, vd);
4194 vdev_compact_children(pvd);
4195
4196 cvd = pvd->vdev_child[0];
4197 if (pvd->vdev_children == 1) {
4198 vdev_remove_parent(cvd);
4199 cvd->vdev_splitting = B_TRUE;
4200 }
4201 vdev_propagate_state(cvd);
4202 }
4203
4204 void
4205 vdev_deadman(vdev_t *vd, char *tag)
4206 {
4207 for (int c = 0; c < vd->vdev_children; c++) {
4208 vdev_t *cvd = vd->vdev_child[c];
4209
4210 vdev_deadman(cvd, tag);
4211 }
4212
4213 if (vd->vdev_ops->vdev_op_leaf) {
4214 vdev_queue_t *vq = &vd->vdev_queue;
4215
4216 mutex_enter(&vq->vq_lock);
4217 if (avl_numnodes(&vq->vq_active_tree) > 0) {
4218 spa_t *spa = vd->vdev_spa;
4219 zio_t *fio;
4220 uint64_t delta;
4221
4222 zfs_dbgmsg("slow vdev: %s has %d active IOs",
4223 vd->vdev_path, avl_numnodes(&vq->vq_active_tree));
4224
4225 /*
4226 * Look at the head of all the pending queues,
4227 * if any I/O has been outstanding for longer than
4228 * the spa_deadman_synctime invoke the deadman logic.
4229 */
4230 fio = avl_first(&vq->vq_active_tree);
4231 delta = gethrtime() - fio->io_timestamp;
4232 if (delta > spa_deadman_synctime(spa))
4233 zio_deadman(fio, tag);
4234 }
4235 mutex_exit(&vq->vq_lock);
4236 }
4237 }
4238
4239 #if defined(_KERNEL)
4240 EXPORT_SYMBOL(vdev_fault);
4241 EXPORT_SYMBOL(vdev_degrade);
4242 EXPORT_SYMBOL(vdev_online);
4243 EXPORT_SYMBOL(vdev_offline);
4244 EXPORT_SYMBOL(vdev_clear);
4245 /* BEGIN CSTYLED */
4246 module_param(metaslabs_per_vdev, int, 0644);
4247 MODULE_PARM_DESC(metaslabs_per_vdev,
4248 "Divide added vdev into approximately (but no more than) this number "
4249 "of metaslabs");
4250
4251 module_param(zfs_delays_per_second, uint, 0644);
4252 MODULE_PARM_DESC(zfs_delays_per_second, "Rate limit delay events to this many "
4253 "IO delays per second");
4254
4255 module_param(zfs_checksums_per_second, uint, 0644);
4256 MODULE_PARM_DESC(zfs_checksums_per_second, "Rate limit checksum events "
4257 "to this many checksum errors per second (do not set below zed"
4258 "threshold).");
4259
4260 module_param(zfs_scan_ignore_errors, int, 0644);
4261 MODULE_PARM_DESC(zfs_scan_ignore_errors,
4262 "Ignore errors during resilver/scrub");
4263
4264 module_param(vdev_validate_skip, int, 0644);
4265 MODULE_PARM_DESC(vdev_validate_skip,
4266 "Bypass vdev_validate()");
4267 /* END CSTYLED */
4268 #endif