]> git.proxmox.com Git - mirror_zfs.git/blob - module/zfs/vdev.c
Don't read space maps during import for readonly pools
[mirror_zfs.git] / module / zfs / vdev.c
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22 /*
23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
25 * Copyright (c) 2011, 2014 by Delphix. All rights reserved.
26 */
27
28 #include <sys/zfs_context.h>
29 #include <sys/fm/fs/zfs.h>
30 #include <sys/spa.h>
31 #include <sys/spa_impl.h>
32 #include <sys/dmu.h>
33 #include <sys/dmu_tx.h>
34 #include <sys/vdev_impl.h>
35 #include <sys/uberblock_impl.h>
36 #include <sys/metaslab.h>
37 #include <sys/metaslab_impl.h>
38 #include <sys/space_map.h>
39 #include <sys/space_reftree.h>
40 #include <sys/zio.h>
41 #include <sys/zap.h>
42 #include <sys/fs/zfs.h>
43 #include <sys/arc.h>
44 #include <sys/zil.h>
45 #include <sys/dsl_scan.h>
46 #include <sys/zvol.h>
47
48 /*
49 * When a vdev is added, it will be divided into approximately (but no
50 * more than) this number of metaslabs.
51 */
52 int metaslabs_per_vdev = 200;
53
54 /*
55 * Virtual device management.
56 */
57
58 static vdev_ops_t *vdev_ops_table[] = {
59 &vdev_root_ops,
60 &vdev_raidz_ops,
61 &vdev_mirror_ops,
62 &vdev_replacing_ops,
63 &vdev_spare_ops,
64 &vdev_disk_ops,
65 &vdev_file_ops,
66 &vdev_missing_ops,
67 &vdev_hole_ops,
68 NULL
69 };
70
71 /*
72 * Given a vdev type, return the appropriate ops vector.
73 */
74 static vdev_ops_t *
75 vdev_getops(const char *type)
76 {
77 vdev_ops_t *ops, **opspp;
78
79 for (opspp = vdev_ops_table; (ops = *opspp) != NULL; opspp++)
80 if (strcmp(ops->vdev_op_type, type) == 0)
81 break;
82
83 return (ops);
84 }
85
86 /*
87 * Default asize function: return the MAX of psize with the asize of
88 * all children. This is what's used by anything other than RAID-Z.
89 */
90 uint64_t
91 vdev_default_asize(vdev_t *vd, uint64_t psize)
92 {
93 uint64_t asize = P2ROUNDUP(psize, 1ULL << vd->vdev_top->vdev_ashift);
94 uint64_t csize;
95 int c;
96
97 for (c = 0; c < vd->vdev_children; c++) {
98 csize = vdev_psize_to_asize(vd->vdev_child[c], psize);
99 asize = MAX(asize, csize);
100 }
101
102 return (asize);
103 }
104
105 /*
106 * Get the minimum allocatable size. We define the allocatable size as
107 * the vdev's asize rounded to the nearest metaslab. This allows us to
108 * replace or attach devices which don't have the same physical size but
109 * can still satisfy the same number of allocations.
110 */
111 uint64_t
112 vdev_get_min_asize(vdev_t *vd)
113 {
114 vdev_t *pvd = vd->vdev_parent;
115
116 /*
117 * If our parent is NULL (inactive spare or cache) or is the root,
118 * just return our own asize.
119 */
120 if (pvd == NULL)
121 return (vd->vdev_asize);
122
123 /*
124 * The top-level vdev just returns the allocatable size rounded
125 * to the nearest metaslab.
126 */
127 if (vd == vd->vdev_top)
128 return (P2ALIGN(vd->vdev_asize, 1ULL << vd->vdev_ms_shift));
129
130 /*
131 * The allocatable space for a raidz vdev is N * sizeof(smallest child),
132 * so each child must provide at least 1/Nth of its asize.
133 */
134 if (pvd->vdev_ops == &vdev_raidz_ops)
135 return (pvd->vdev_min_asize / pvd->vdev_children);
136
137 return (pvd->vdev_min_asize);
138 }
139
140 void
141 vdev_set_min_asize(vdev_t *vd)
142 {
143 int c;
144 vd->vdev_min_asize = vdev_get_min_asize(vd);
145
146 for (c = 0; c < vd->vdev_children; c++)
147 vdev_set_min_asize(vd->vdev_child[c]);
148 }
149
150 vdev_t *
151 vdev_lookup_top(spa_t *spa, uint64_t vdev)
152 {
153 vdev_t *rvd = spa->spa_root_vdev;
154
155 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
156
157 if (vdev < rvd->vdev_children) {
158 ASSERT(rvd->vdev_child[vdev] != NULL);
159 return (rvd->vdev_child[vdev]);
160 }
161
162 return (NULL);
163 }
164
165 vdev_t *
166 vdev_lookup_by_guid(vdev_t *vd, uint64_t guid)
167 {
168 vdev_t *mvd;
169 int c;
170
171 if (vd->vdev_guid == guid)
172 return (vd);
173
174 for (c = 0; c < vd->vdev_children; c++)
175 if ((mvd = vdev_lookup_by_guid(vd->vdev_child[c], guid)) !=
176 NULL)
177 return (mvd);
178
179 return (NULL);
180 }
181
182 void
183 vdev_add_child(vdev_t *pvd, vdev_t *cvd)
184 {
185 size_t oldsize, newsize;
186 uint64_t id = cvd->vdev_id;
187 vdev_t **newchild;
188
189 ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
190 ASSERT(cvd->vdev_parent == NULL);
191
192 cvd->vdev_parent = pvd;
193
194 if (pvd == NULL)
195 return;
196
197 ASSERT(id >= pvd->vdev_children || pvd->vdev_child[id] == NULL);
198
199 oldsize = pvd->vdev_children * sizeof (vdev_t *);
200 pvd->vdev_children = MAX(pvd->vdev_children, id + 1);
201 newsize = pvd->vdev_children * sizeof (vdev_t *);
202
203 newchild = kmem_alloc(newsize, KM_SLEEP);
204 if (pvd->vdev_child != NULL) {
205 bcopy(pvd->vdev_child, newchild, oldsize);
206 kmem_free(pvd->vdev_child, oldsize);
207 }
208
209 pvd->vdev_child = newchild;
210 pvd->vdev_child[id] = cvd;
211
212 cvd->vdev_top = (pvd->vdev_top ? pvd->vdev_top: cvd);
213 ASSERT(cvd->vdev_top->vdev_parent->vdev_parent == NULL);
214
215 /*
216 * Walk up all ancestors to update guid sum.
217 */
218 for (; pvd != NULL; pvd = pvd->vdev_parent)
219 pvd->vdev_guid_sum += cvd->vdev_guid_sum;
220 }
221
222 void
223 vdev_remove_child(vdev_t *pvd, vdev_t *cvd)
224 {
225 int c;
226 uint_t id = cvd->vdev_id;
227
228 ASSERT(cvd->vdev_parent == pvd);
229
230 if (pvd == NULL)
231 return;
232
233 ASSERT(id < pvd->vdev_children);
234 ASSERT(pvd->vdev_child[id] == cvd);
235
236 pvd->vdev_child[id] = NULL;
237 cvd->vdev_parent = NULL;
238
239 for (c = 0; c < pvd->vdev_children; c++)
240 if (pvd->vdev_child[c])
241 break;
242
243 if (c == pvd->vdev_children) {
244 kmem_free(pvd->vdev_child, c * sizeof (vdev_t *));
245 pvd->vdev_child = NULL;
246 pvd->vdev_children = 0;
247 }
248
249 /*
250 * Walk up all ancestors to update guid sum.
251 */
252 for (; pvd != NULL; pvd = pvd->vdev_parent)
253 pvd->vdev_guid_sum -= cvd->vdev_guid_sum;
254 }
255
256 /*
257 * Remove any holes in the child array.
258 */
259 void
260 vdev_compact_children(vdev_t *pvd)
261 {
262 vdev_t **newchild, *cvd;
263 int oldc = pvd->vdev_children;
264 int newc;
265 int c;
266
267 ASSERT(spa_config_held(pvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
268
269 for (c = newc = 0; c < oldc; c++)
270 if (pvd->vdev_child[c])
271 newc++;
272
273 newchild = kmem_zalloc(newc * sizeof (vdev_t *), KM_SLEEP);
274
275 for (c = newc = 0; c < oldc; c++) {
276 if ((cvd = pvd->vdev_child[c]) != NULL) {
277 newchild[newc] = cvd;
278 cvd->vdev_id = newc++;
279 }
280 }
281
282 kmem_free(pvd->vdev_child, oldc * sizeof (vdev_t *));
283 pvd->vdev_child = newchild;
284 pvd->vdev_children = newc;
285 }
286
287 /*
288 * Allocate and minimally initialize a vdev_t.
289 */
290 vdev_t *
291 vdev_alloc_common(spa_t *spa, uint_t id, uint64_t guid, vdev_ops_t *ops)
292 {
293 vdev_t *vd;
294 int t;
295
296 vd = kmem_zalloc(sizeof (vdev_t), KM_SLEEP);
297
298 if (spa->spa_root_vdev == NULL) {
299 ASSERT(ops == &vdev_root_ops);
300 spa->spa_root_vdev = vd;
301 spa->spa_load_guid = spa_generate_guid(NULL);
302 }
303
304 if (guid == 0 && ops != &vdev_hole_ops) {
305 if (spa->spa_root_vdev == vd) {
306 /*
307 * The root vdev's guid will also be the pool guid,
308 * which must be unique among all pools.
309 */
310 guid = spa_generate_guid(NULL);
311 } else {
312 /*
313 * Any other vdev's guid must be unique within the pool.
314 */
315 guid = spa_generate_guid(spa);
316 }
317 ASSERT(!spa_guid_exists(spa_guid(spa), guid));
318 }
319
320 vd->vdev_spa = spa;
321 vd->vdev_id = id;
322 vd->vdev_guid = guid;
323 vd->vdev_guid_sum = guid;
324 vd->vdev_ops = ops;
325 vd->vdev_state = VDEV_STATE_CLOSED;
326 vd->vdev_ishole = (ops == &vdev_hole_ops);
327
328 list_link_init(&vd->vdev_config_dirty_node);
329 list_link_init(&vd->vdev_state_dirty_node);
330 mutex_init(&vd->vdev_dtl_lock, NULL, MUTEX_DEFAULT, NULL);
331 mutex_init(&vd->vdev_stat_lock, NULL, MUTEX_DEFAULT, NULL);
332 mutex_init(&vd->vdev_probe_lock, NULL, MUTEX_DEFAULT, NULL);
333 for (t = 0; t < DTL_TYPES; t++) {
334 vd->vdev_dtl[t] = range_tree_create(NULL, NULL,
335 &vd->vdev_dtl_lock);
336 }
337 txg_list_create(&vd->vdev_ms_list,
338 offsetof(struct metaslab, ms_txg_node));
339 txg_list_create(&vd->vdev_dtl_list,
340 offsetof(struct vdev, vdev_dtl_node));
341 vd->vdev_stat.vs_timestamp = gethrtime();
342 vdev_queue_init(vd);
343 vdev_cache_init(vd);
344
345 return (vd);
346 }
347
348 /*
349 * Allocate a new vdev. The 'alloctype' is used to control whether we are
350 * creating a new vdev or loading an existing one - the behavior is slightly
351 * different for each case.
352 */
353 int
354 vdev_alloc(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, uint_t id,
355 int alloctype)
356 {
357 vdev_ops_t *ops;
358 char *type;
359 uint64_t guid = 0, islog, nparity;
360 vdev_t *vd;
361
362 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
363
364 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) != 0)
365 return (SET_ERROR(EINVAL));
366
367 if ((ops = vdev_getops(type)) == NULL)
368 return (SET_ERROR(EINVAL));
369
370 /*
371 * If this is a load, get the vdev guid from the nvlist.
372 * Otherwise, vdev_alloc_common() will generate one for us.
373 */
374 if (alloctype == VDEV_ALLOC_LOAD) {
375 uint64_t label_id;
376
377 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ID, &label_id) ||
378 label_id != id)
379 return (SET_ERROR(EINVAL));
380
381 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
382 return (SET_ERROR(EINVAL));
383 } else if (alloctype == VDEV_ALLOC_SPARE) {
384 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
385 return (SET_ERROR(EINVAL));
386 } else if (alloctype == VDEV_ALLOC_L2CACHE) {
387 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
388 return (SET_ERROR(EINVAL));
389 } else if (alloctype == VDEV_ALLOC_ROOTPOOL) {
390 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
391 return (SET_ERROR(EINVAL));
392 }
393
394 /*
395 * The first allocated vdev must be of type 'root'.
396 */
397 if (ops != &vdev_root_ops && spa->spa_root_vdev == NULL)
398 return (SET_ERROR(EINVAL));
399
400 /*
401 * Determine whether we're a log vdev.
402 */
403 islog = 0;
404 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_LOG, &islog);
405 if (islog && spa_version(spa) < SPA_VERSION_SLOGS)
406 return (SET_ERROR(ENOTSUP));
407
408 if (ops == &vdev_hole_ops && spa_version(spa) < SPA_VERSION_HOLES)
409 return (SET_ERROR(ENOTSUP));
410
411 /*
412 * Set the nparity property for RAID-Z vdevs.
413 */
414 nparity = -1ULL;
415 if (ops == &vdev_raidz_ops) {
416 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NPARITY,
417 &nparity) == 0) {
418 if (nparity == 0 || nparity > VDEV_RAIDZ_MAXPARITY)
419 return (SET_ERROR(EINVAL));
420 /*
421 * Previous versions could only support 1 or 2 parity
422 * device.
423 */
424 if (nparity > 1 &&
425 spa_version(spa) < SPA_VERSION_RAIDZ2)
426 return (SET_ERROR(ENOTSUP));
427 if (nparity > 2 &&
428 spa_version(spa) < SPA_VERSION_RAIDZ3)
429 return (SET_ERROR(ENOTSUP));
430 } else {
431 /*
432 * We require the parity to be specified for SPAs that
433 * support multiple parity levels.
434 */
435 if (spa_version(spa) >= SPA_VERSION_RAIDZ2)
436 return (SET_ERROR(EINVAL));
437 /*
438 * Otherwise, we default to 1 parity device for RAID-Z.
439 */
440 nparity = 1;
441 }
442 } else {
443 nparity = 0;
444 }
445 ASSERT(nparity != -1ULL);
446
447 vd = vdev_alloc_common(spa, id, guid, ops);
448
449 vd->vdev_islog = islog;
450 vd->vdev_nparity = nparity;
451
452 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &vd->vdev_path) == 0)
453 vd->vdev_path = spa_strdup(vd->vdev_path);
454 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_DEVID, &vd->vdev_devid) == 0)
455 vd->vdev_devid = spa_strdup(vd->vdev_devid);
456 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PHYS_PATH,
457 &vd->vdev_physpath) == 0)
458 vd->vdev_physpath = spa_strdup(vd->vdev_physpath);
459 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_FRU, &vd->vdev_fru) == 0)
460 vd->vdev_fru = spa_strdup(vd->vdev_fru);
461
462 /*
463 * Set the whole_disk property. If it's not specified, leave the value
464 * as -1.
465 */
466 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK,
467 &vd->vdev_wholedisk) != 0)
468 vd->vdev_wholedisk = -1ULL;
469
470 /*
471 * Look for the 'not present' flag. This will only be set if the device
472 * was not present at the time of import.
473 */
474 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT,
475 &vd->vdev_not_present);
476
477 /*
478 * Get the alignment requirement.
479 */
480 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASHIFT, &vd->vdev_ashift);
481
482 /*
483 * Retrieve the vdev creation time.
484 */
485 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_CREATE_TXG,
486 &vd->vdev_crtxg);
487
488 /*
489 * If we're a top-level vdev, try to load the allocation parameters.
490 */
491 if (parent && !parent->vdev_parent &&
492 (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_SPLIT)) {
493 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY,
494 &vd->vdev_ms_array);
495 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT,
496 &vd->vdev_ms_shift);
497 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASIZE,
498 &vd->vdev_asize);
499 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVING,
500 &vd->vdev_removing);
501 }
502
503 if (parent && !parent->vdev_parent && alloctype != VDEV_ALLOC_ATTACH) {
504 ASSERT(alloctype == VDEV_ALLOC_LOAD ||
505 alloctype == VDEV_ALLOC_ADD ||
506 alloctype == VDEV_ALLOC_SPLIT ||
507 alloctype == VDEV_ALLOC_ROOTPOOL);
508 vd->vdev_mg = metaslab_group_create(islog ?
509 spa_log_class(spa) : spa_normal_class(spa), vd);
510 }
511
512 /*
513 * If we're a leaf vdev, try to load the DTL object and other state.
514 */
515 if (vd->vdev_ops->vdev_op_leaf &&
516 (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_L2CACHE ||
517 alloctype == VDEV_ALLOC_ROOTPOOL)) {
518 if (alloctype == VDEV_ALLOC_LOAD) {
519 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DTL,
520 &vd->vdev_dtl_object);
521 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_UNSPARE,
522 &vd->vdev_unspare);
523 }
524
525 if (alloctype == VDEV_ALLOC_ROOTPOOL) {
526 uint64_t spare = 0;
527
528 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_SPARE,
529 &spare) == 0 && spare)
530 spa_spare_add(vd);
531 }
532
533 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_OFFLINE,
534 &vd->vdev_offline);
535
536 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_RESILVER_TXG,
537 &vd->vdev_resilver_txg);
538
539 /*
540 * When importing a pool, we want to ignore the persistent fault
541 * state, as the diagnosis made on another system may not be
542 * valid in the current context. Local vdevs will
543 * remain in the faulted state.
544 */
545 if (spa_load_state(spa) == SPA_LOAD_OPEN) {
546 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_FAULTED,
547 &vd->vdev_faulted);
548 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DEGRADED,
549 &vd->vdev_degraded);
550 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVED,
551 &vd->vdev_removed);
552
553 if (vd->vdev_faulted || vd->vdev_degraded) {
554 char *aux;
555
556 vd->vdev_label_aux =
557 VDEV_AUX_ERR_EXCEEDED;
558 if (nvlist_lookup_string(nv,
559 ZPOOL_CONFIG_AUX_STATE, &aux) == 0 &&
560 strcmp(aux, "external") == 0)
561 vd->vdev_label_aux = VDEV_AUX_EXTERNAL;
562 }
563 }
564 }
565
566 /*
567 * Add ourselves to the parent's list of children.
568 */
569 vdev_add_child(parent, vd);
570
571 *vdp = vd;
572
573 return (0);
574 }
575
576 void
577 vdev_free(vdev_t *vd)
578 {
579 int c, t;
580 spa_t *spa = vd->vdev_spa;
581
582 /*
583 * vdev_free() implies closing the vdev first. This is simpler than
584 * trying to ensure complicated semantics for all callers.
585 */
586 vdev_close(vd);
587
588 ASSERT(!list_link_active(&vd->vdev_config_dirty_node));
589 ASSERT(!list_link_active(&vd->vdev_state_dirty_node));
590
591 /*
592 * Free all children.
593 */
594 for (c = 0; c < vd->vdev_children; c++)
595 vdev_free(vd->vdev_child[c]);
596
597 ASSERT(vd->vdev_child == NULL);
598 ASSERT(vd->vdev_guid_sum == vd->vdev_guid);
599
600 /*
601 * Discard allocation state.
602 */
603 if (vd->vdev_mg != NULL) {
604 vdev_metaslab_fini(vd);
605 metaslab_group_destroy(vd->vdev_mg);
606 }
607
608 ASSERT0(vd->vdev_stat.vs_space);
609 ASSERT0(vd->vdev_stat.vs_dspace);
610 ASSERT0(vd->vdev_stat.vs_alloc);
611
612 /*
613 * Remove this vdev from its parent's child list.
614 */
615 vdev_remove_child(vd->vdev_parent, vd);
616
617 ASSERT(vd->vdev_parent == NULL);
618
619 /*
620 * Clean up vdev structure.
621 */
622 vdev_queue_fini(vd);
623 vdev_cache_fini(vd);
624
625 if (vd->vdev_path)
626 spa_strfree(vd->vdev_path);
627 if (vd->vdev_devid)
628 spa_strfree(vd->vdev_devid);
629 if (vd->vdev_physpath)
630 spa_strfree(vd->vdev_physpath);
631 if (vd->vdev_fru)
632 spa_strfree(vd->vdev_fru);
633
634 if (vd->vdev_isspare)
635 spa_spare_remove(vd);
636 if (vd->vdev_isl2cache)
637 spa_l2cache_remove(vd);
638
639 txg_list_destroy(&vd->vdev_ms_list);
640 txg_list_destroy(&vd->vdev_dtl_list);
641
642 mutex_enter(&vd->vdev_dtl_lock);
643 space_map_close(vd->vdev_dtl_sm);
644 for (t = 0; t < DTL_TYPES; t++) {
645 range_tree_vacate(vd->vdev_dtl[t], NULL, NULL);
646 range_tree_destroy(vd->vdev_dtl[t]);
647 }
648 mutex_exit(&vd->vdev_dtl_lock);
649
650 mutex_destroy(&vd->vdev_dtl_lock);
651 mutex_destroy(&vd->vdev_stat_lock);
652 mutex_destroy(&vd->vdev_probe_lock);
653
654 if (vd == spa->spa_root_vdev)
655 spa->spa_root_vdev = NULL;
656
657 kmem_free(vd, sizeof (vdev_t));
658 }
659
660 /*
661 * Transfer top-level vdev state from svd to tvd.
662 */
663 static void
664 vdev_top_transfer(vdev_t *svd, vdev_t *tvd)
665 {
666 spa_t *spa = svd->vdev_spa;
667 metaslab_t *msp;
668 vdev_t *vd;
669 int t;
670
671 ASSERT(tvd == tvd->vdev_top);
672
673 tvd->vdev_ms_array = svd->vdev_ms_array;
674 tvd->vdev_ms_shift = svd->vdev_ms_shift;
675 tvd->vdev_ms_count = svd->vdev_ms_count;
676
677 svd->vdev_ms_array = 0;
678 svd->vdev_ms_shift = 0;
679 svd->vdev_ms_count = 0;
680
681 if (tvd->vdev_mg)
682 ASSERT3P(tvd->vdev_mg, ==, svd->vdev_mg);
683 tvd->vdev_mg = svd->vdev_mg;
684 tvd->vdev_ms = svd->vdev_ms;
685
686 svd->vdev_mg = NULL;
687 svd->vdev_ms = NULL;
688
689 if (tvd->vdev_mg != NULL)
690 tvd->vdev_mg->mg_vd = tvd;
691
692 tvd->vdev_stat.vs_alloc = svd->vdev_stat.vs_alloc;
693 tvd->vdev_stat.vs_space = svd->vdev_stat.vs_space;
694 tvd->vdev_stat.vs_dspace = svd->vdev_stat.vs_dspace;
695
696 svd->vdev_stat.vs_alloc = 0;
697 svd->vdev_stat.vs_space = 0;
698 svd->vdev_stat.vs_dspace = 0;
699
700 for (t = 0; t < TXG_SIZE; t++) {
701 while ((msp = txg_list_remove(&svd->vdev_ms_list, t)) != NULL)
702 (void) txg_list_add(&tvd->vdev_ms_list, msp, t);
703 while ((vd = txg_list_remove(&svd->vdev_dtl_list, t)) != NULL)
704 (void) txg_list_add(&tvd->vdev_dtl_list, vd, t);
705 if (txg_list_remove_this(&spa->spa_vdev_txg_list, svd, t))
706 (void) txg_list_add(&spa->spa_vdev_txg_list, tvd, t);
707 }
708
709 if (list_link_active(&svd->vdev_config_dirty_node)) {
710 vdev_config_clean(svd);
711 vdev_config_dirty(tvd);
712 }
713
714 if (list_link_active(&svd->vdev_state_dirty_node)) {
715 vdev_state_clean(svd);
716 vdev_state_dirty(tvd);
717 }
718
719 tvd->vdev_deflate_ratio = svd->vdev_deflate_ratio;
720 svd->vdev_deflate_ratio = 0;
721
722 tvd->vdev_islog = svd->vdev_islog;
723 svd->vdev_islog = 0;
724 }
725
726 static void
727 vdev_top_update(vdev_t *tvd, vdev_t *vd)
728 {
729 int c;
730
731 if (vd == NULL)
732 return;
733
734 vd->vdev_top = tvd;
735
736 for (c = 0; c < vd->vdev_children; c++)
737 vdev_top_update(tvd, vd->vdev_child[c]);
738 }
739
740 /*
741 * Add a mirror/replacing vdev above an existing vdev.
742 */
743 vdev_t *
744 vdev_add_parent(vdev_t *cvd, vdev_ops_t *ops)
745 {
746 spa_t *spa = cvd->vdev_spa;
747 vdev_t *pvd = cvd->vdev_parent;
748 vdev_t *mvd;
749
750 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
751
752 mvd = vdev_alloc_common(spa, cvd->vdev_id, 0, ops);
753
754 mvd->vdev_asize = cvd->vdev_asize;
755 mvd->vdev_min_asize = cvd->vdev_min_asize;
756 mvd->vdev_max_asize = cvd->vdev_max_asize;
757 mvd->vdev_ashift = cvd->vdev_ashift;
758 mvd->vdev_state = cvd->vdev_state;
759 mvd->vdev_crtxg = cvd->vdev_crtxg;
760
761 vdev_remove_child(pvd, cvd);
762 vdev_add_child(pvd, mvd);
763 cvd->vdev_id = mvd->vdev_children;
764 vdev_add_child(mvd, cvd);
765 vdev_top_update(cvd->vdev_top, cvd->vdev_top);
766
767 if (mvd == mvd->vdev_top)
768 vdev_top_transfer(cvd, mvd);
769
770 return (mvd);
771 }
772
773 /*
774 * Remove a 1-way mirror/replacing vdev from the tree.
775 */
776 void
777 vdev_remove_parent(vdev_t *cvd)
778 {
779 vdev_t *mvd = cvd->vdev_parent;
780 vdev_t *pvd = mvd->vdev_parent;
781
782 ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
783
784 ASSERT(mvd->vdev_children == 1);
785 ASSERT(mvd->vdev_ops == &vdev_mirror_ops ||
786 mvd->vdev_ops == &vdev_replacing_ops ||
787 mvd->vdev_ops == &vdev_spare_ops);
788 cvd->vdev_ashift = mvd->vdev_ashift;
789
790 vdev_remove_child(mvd, cvd);
791 vdev_remove_child(pvd, mvd);
792
793 /*
794 * If cvd will replace mvd as a top-level vdev, preserve mvd's guid.
795 * Otherwise, we could have detached an offline device, and when we
796 * go to import the pool we'll think we have two top-level vdevs,
797 * instead of a different version of the same top-level vdev.
798 */
799 if (mvd->vdev_top == mvd) {
800 uint64_t guid_delta = mvd->vdev_guid - cvd->vdev_guid;
801 cvd->vdev_orig_guid = cvd->vdev_guid;
802 cvd->vdev_guid += guid_delta;
803 cvd->vdev_guid_sum += guid_delta;
804
805 /*
806 * If pool not set for autoexpand, we need to also preserve
807 * mvd's asize to prevent automatic expansion of cvd.
808 * Otherwise if we are adjusting the mirror by attaching and
809 * detaching children of non-uniform sizes, the mirror could
810 * autoexpand, unexpectedly requiring larger devices to
811 * re-establish the mirror.
812 */
813 if (!cvd->vdev_spa->spa_autoexpand)
814 cvd->vdev_asize = mvd->vdev_asize;
815 }
816 cvd->vdev_id = mvd->vdev_id;
817 vdev_add_child(pvd, cvd);
818 vdev_top_update(cvd->vdev_top, cvd->vdev_top);
819
820 if (cvd == cvd->vdev_top)
821 vdev_top_transfer(mvd, cvd);
822
823 ASSERT(mvd->vdev_children == 0);
824 vdev_free(mvd);
825 }
826
827 int
828 vdev_metaslab_init(vdev_t *vd, uint64_t txg)
829 {
830 spa_t *spa = vd->vdev_spa;
831 objset_t *mos = spa->spa_meta_objset;
832 uint64_t m;
833 uint64_t oldc = vd->vdev_ms_count;
834 uint64_t newc = vd->vdev_asize >> vd->vdev_ms_shift;
835 metaslab_t **mspp;
836 int error;
837
838 ASSERT(txg == 0 || spa_config_held(spa, SCL_ALLOC, RW_WRITER));
839
840 /*
841 * This vdev is not being allocated from yet or is a hole.
842 */
843 if (vd->vdev_ms_shift == 0)
844 return (0);
845
846 ASSERT(!vd->vdev_ishole);
847
848 /*
849 * Compute the raidz-deflation ratio. Note, we hard-code
850 * in 128k (1 << 17) because it is the current "typical" blocksize.
851 * Even if SPA_MAXBLOCKSIZE changes, this algorithm must never change,
852 * or we will inconsistently account for existing bp's.
853 */
854 vd->vdev_deflate_ratio = (1 << 17) /
855 (vdev_psize_to_asize(vd, 1 << 17) >> SPA_MINBLOCKSHIFT);
856
857 ASSERT(oldc <= newc);
858
859 mspp = kmem_zalloc(newc * sizeof (*mspp), KM_SLEEP);
860
861 if (oldc != 0) {
862 bcopy(vd->vdev_ms, mspp, oldc * sizeof (*mspp));
863 kmem_free(vd->vdev_ms, oldc * sizeof (*mspp));
864 }
865
866 vd->vdev_ms = mspp;
867 vd->vdev_ms_count = newc;
868
869 for (m = oldc; m < newc; m++) {
870 uint64_t object = 0;
871
872 if (txg == 0) {
873 error = dmu_read(mos, vd->vdev_ms_array,
874 m * sizeof (uint64_t), sizeof (uint64_t), &object,
875 DMU_READ_PREFETCH);
876 if (error)
877 return (error);
878 }
879
880 error = metaslab_init(vd->vdev_mg, m, object, txg,
881 &(vd->vdev_ms[m]));
882 if (error)
883 return (error);
884 }
885
886 if (txg == 0)
887 spa_config_enter(spa, SCL_ALLOC, FTAG, RW_WRITER);
888
889 /*
890 * If the vdev is being removed we don't activate
891 * the metaslabs since we want to ensure that no new
892 * allocations are performed on this device.
893 */
894 if (oldc == 0 && !vd->vdev_removing)
895 metaslab_group_activate(vd->vdev_mg);
896
897 if (txg == 0)
898 spa_config_exit(spa, SCL_ALLOC, FTAG);
899
900 return (0);
901 }
902
903 void
904 vdev_metaslab_fini(vdev_t *vd)
905 {
906 uint64_t m;
907 uint64_t count = vd->vdev_ms_count;
908
909 if (vd->vdev_ms != NULL) {
910 metaslab_group_passivate(vd->vdev_mg);
911 for (m = 0; m < count; m++) {
912 metaslab_t *msp = vd->vdev_ms[m];
913
914 if (msp != NULL)
915 metaslab_fini(msp);
916 }
917 kmem_free(vd->vdev_ms, count * sizeof (metaslab_t *));
918 vd->vdev_ms = NULL;
919 }
920
921 ASSERT3U(vd->vdev_pending_fastwrite, ==, 0);
922 }
923
924 typedef struct vdev_probe_stats {
925 boolean_t vps_readable;
926 boolean_t vps_writeable;
927 int vps_flags;
928 } vdev_probe_stats_t;
929
930 static void
931 vdev_probe_done(zio_t *zio)
932 {
933 spa_t *spa = zio->io_spa;
934 vdev_t *vd = zio->io_vd;
935 vdev_probe_stats_t *vps = zio->io_private;
936
937 ASSERT(vd->vdev_probe_zio != NULL);
938
939 if (zio->io_type == ZIO_TYPE_READ) {
940 if (zio->io_error == 0)
941 vps->vps_readable = 1;
942 if (zio->io_error == 0 && spa_writeable(spa)) {
943 zio_nowait(zio_write_phys(vd->vdev_probe_zio, vd,
944 zio->io_offset, zio->io_size, zio->io_data,
945 ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
946 ZIO_PRIORITY_SYNC_WRITE, vps->vps_flags, B_TRUE));
947 } else {
948 zio_buf_free(zio->io_data, zio->io_size);
949 }
950 } else if (zio->io_type == ZIO_TYPE_WRITE) {
951 if (zio->io_error == 0)
952 vps->vps_writeable = 1;
953 zio_buf_free(zio->io_data, zio->io_size);
954 } else if (zio->io_type == ZIO_TYPE_NULL) {
955 zio_t *pio;
956
957 vd->vdev_cant_read |= !vps->vps_readable;
958 vd->vdev_cant_write |= !vps->vps_writeable;
959
960 if (vdev_readable(vd) &&
961 (vdev_writeable(vd) || !spa_writeable(spa))) {
962 zio->io_error = 0;
963 } else {
964 ASSERT(zio->io_error != 0);
965 zfs_ereport_post(FM_EREPORT_ZFS_PROBE_FAILURE,
966 spa, vd, NULL, 0, 0);
967 zio->io_error = SET_ERROR(ENXIO);
968 }
969
970 mutex_enter(&vd->vdev_probe_lock);
971 ASSERT(vd->vdev_probe_zio == zio);
972 vd->vdev_probe_zio = NULL;
973 mutex_exit(&vd->vdev_probe_lock);
974
975 while ((pio = zio_walk_parents(zio)) != NULL)
976 if (!vdev_accessible(vd, pio))
977 pio->io_error = SET_ERROR(ENXIO);
978
979 kmem_free(vps, sizeof (*vps));
980 }
981 }
982
983 /*
984 * Determine whether this device is accessible.
985 *
986 * Read and write to several known locations: the pad regions of each
987 * vdev label but the first, which we leave alone in case it contains
988 * a VTOC.
989 */
990 zio_t *
991 vdev_probe(vdev_t *vd, zio_t *zio)
992 {
993 spa_t *spa = vd->vdev_spa;
994 vdev_probe_stats_t *vps = NULL;
995 zio_t *pio;
996 int l;
997
998 ASSERT(vd->vdev_ops->vdev_op_leaf);
999
1000 /*
1001 * Don't probe the probe.
1002 */
1003 if (zio && (zio->io_flags & ZIO_FLAG_PROBE))
1004 return (NULL);
1005
1006 /*
1007 * To prevent 'probe storms' when a device fails, we create
1008 * just one probe i/o at a time. All zios that want to probe
1009 * this vdev will become parents of the probe io.
1010 */
1011 mutex_enter(&vd->vdev_probe_lock);
1012
1013 if ((pio = vd->vdev_probe_zio) == NULL) {
1014 vps = kmem_zalloc(sizeof (*vps), KM_SLEEP);
1015
1016 vps->vps_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_PROBE |
1017 ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_AGGREGATE |
1018 ZIO_FLAG_TRYHARD;
1019
1020 if (spa_config_held(spa, SCL_ZIO, RW_WRITER)) {
1021 /*
1022 * vdev_cant_read and vdev_cant_write can only
1023 * transition from TRUE to FALSE when we have the
1024 * SCL_ZIO lock as writer; otherwise they can only
1025 * transition from FALSE to TRUE. This ensures that
1026 * any zio looking at these values can assume that
1027 * failures persist for the life of the I/O. That's
1028 * important because when a device has intermittent
1029 * connectivity problems, we want to ensure that
1030 * they're ascribed to the device (ENXIO) and not
1031 * the zio (EIO).
1032 *
1033 * Since we hold SCL_ZIO as writer here, clear both
1034 * values so the probe can reevaluate from first
1035 * principles.
1036 */
1037 vps->vps_flags |= ZIO_FLAG_CONFIG_WRITER;
1038 vd->vdev_cant_read = B_FALSE;
1039 vd->vdev_cant_write = B_FALSE;
1040 }
1041
1042 vd->vdev_probe_zio = pio = zio_null(NULL, spa, vd,
1043 vdev_probe_done, vps,
1044 vps->vps_flags | ZIO_FLAG_DONT_PROPAGATE);
1045
1046 /*
1047 * We can't change the vdev state in this context, so we
1048 * kick off an async task to do it on our behalf.
1049 */
1050 if (zio != NULL) {
1051 vd->vdev_probe_wanted = B_TRUE;
1052 spa_async_request(spa, SPA_ASYNC_PROBE);
1053 }
1054 }
1055
1056 if (zio != NULL)
1057 zio_add_child(zio, pio);
1058
1059 mutex_exit(&vd->vdev_probe_lock);
1060
1061 if (vps == NULL) {
1062 ASSERT(zio != NULL);
1063 return (NULL);
1064 }
1065
1066 for (l = 1; l < VDEV_LABELS; l++) {
1067 zio_nowait(zio_read_phys(pio, vd,
1068 vdev_label_offset(vd->vdev_psize, l,
1069 offsetof(vdev_label_t, vl_pad2)),
1070 VDEV_PAD_SIZE, zio_buf_alloc(VDEV_PAD_SIZE),
1071 ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
1072 ZIO_PRIORITY_SYNC_READ, vps->vps_flags, B_TRUE));
1073 }
1074
1075 if (zio == NULL)
1076 return (pio);
1077
1078 zio_nowait(pio);
1079 return (NULL);
1080 }
1081
1082 static void
1083 vdev_open_child(void *arg)
1084 {
1085 vdev_t *vd = arg;
1086
1087 vd->vdev_open_thread = curthread;
1088 vd->vdev_open_error = vdev_open(vd);
1089 vd->vdev_open_thread = NULL;
1090 }
1091
1092 static boolean_t
1093 vdev_uses_zvols(vdev_t *vd)
1094 {
1095 int c;
1096
1097 #ifdef _KERNEL
1098 if (zvol_is_zvol(vd->vdev_path))
1099 return (B_TRUE);
1100 #endif
1101
1102 for (c = 0; c < vd->vdev_children; c++)
1103 if (vdev_uses_zvols(vd->vdev_child[c]))
1104 return (B_TRUE);
1105
1106 return (B_FALSE);
1107 }
1108
1109 void
1110 vdev_open_children(vdev_t *vd)
1111 {
1112 taskq_t *tq;
1113 int children = vd->vdev_children;
1114 int c;
1115
1116 /*
1117 * in order to handle pools on top of zvols, do the opens
1118 * in a single thread so that the same thread holds the
1119 * spa_namespace_lock
1120 */
1121 if (vdev_uses_zvols(vd)) {
1122 for (c = 0; c < children; c++)
1123 vd->vdev_child[c]->vdev_open_error =
1124 vdev_open(vd->vdev_child[c]);
1125 return;
1126 }
1127 tq = taskq_create("vdev_open", children, minclsyspri,
1128 children, children, TASKQ_PREPOPULATE);
1129
1130 for (c = 0; c < children; c++)
1131 VERIFY(taskq_dispatch(tq, vdev_open_child, vd->vdev_child[c],
1132 TQ_SLEEP) != 0);
1133
1134 taskq_destroy(tq);
1135 }
1136
1137 /*
1138 * Prepare a virtual device for access.
1139 */
1140 int
1141 vdev_open(vdev_t *vd)
1142 {
1143 spa_t *spa = vd->vdev_spa;
1144 int error;
1145 uint64_t osize = 0;
1146 uint64_t max_osize = 0;
1147 uint64_t asize, max_asize, psize;
1148 uint64_t ashift = 0;
1149 int c;
1150
1151 ASSERT(vd->vdev_open_thread == curthread ||
1152 spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1153 ASSERT(vd->vdev_state == VDEV_STATE_CLOSED ||
1154 vd->vdev_state == VDEV_STATE_CANT_OPEN ||
1155 vd->vdev_state == VDEV_STATE_OFFLINE);
1156
1157 vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
1158 vd->vdev_cant_read = B_FALSE;
1159 vd->vdev_cant_write = B_FALSE;
1160 vd->vdev_min_asize = vdev_get_min_asize(vd);
1161
1162 /*
1163 * If this vdev is not removed, check its fault status. If it's
1164 * faulted, bail out of the open.
1165 */
1166 if (!vd->vdev_removed && vd->vdev_faulted) {
1167 ASSERT(vd->vdev_children == 0);
1168 ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED ||
1169 vd->vdev_label_aux == VDEV_AUX_EXTERNAL);
1170 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1171 vd->vdev_label_aux);
1172 return (SET_ERROR(ENXIO));
1173 } else if (vd->vdev_offline) {
1174 ASSERT(vd->vdev_children == 0);
1175 vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE, VDEV_AUX_NONE);
1176 return (SET_ERROR(ENXIO));
1177 }
1178
1179 error = vd->vdev_ops->vdev_op_open(vd, &osize, &max_osize, &ashift);
1180
1181 /*
1182 * Reset the vdev_reopening flag so that we actually close
1183 * the vdev on error.
1184 */
1185 vd->vdev_reopening = B_FALSE;
1186 if (zio_injection_enabled && error == 0)
1187 error = zio_handle_device_injection(vd, NULL, ENXIO);
1188
1189 if (error) {
1190 if (vd->vdev_removed &&
1191 vd->vdev_stat.vs_aux != VDEV_AUX_OPEN_FAILED)
1192 vd->vdev_removed = B_FALSE;
1193
1194 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1195 vd->vdev_stat.vs_aux);
1196 return (error);
1197 }
1198
1199 vd->vdev_removed = B_FALSE;
1200
1201 /*
1202 * Recheck the faulted flag now that we have confirmed that
1203 * the vdev is accessible. If we're faulted, bail.
1204 */
1205 if (vd->vdev_faulted) {
1206 ASSERT(vd->vdev_children == 0);
1207 ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED ||
1208 vd->vdev_label_aux == VDEV_AUX_EXTERNAL);
1209 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1210 vd->vdev_label_aux);
1211 return (SET_ERROR(ENXIO));
1212 }
1213
1214 if (vd->vdev_degraded) {
1215 ASSERT(vd->vdev_children == 0);
1216 vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
1217 VDEV_AUX_ERR_EXCEEDED);
1218 } else {
1219 vdev_set_state(vd, B_TRUE, VDEV_STATE_HEALTHY, 0);
1220 }
1221
1222 /*
1223 * For hole or missing vdevs we just return success.
1224 */
1225 if (vd->vdev_ishole || vd->vdev_ops == &vdev_missing_ops)
1226 return (0);
1227
1228 for (c = 0; c < vd->vdev_children; c++) {
1229 if (vd->vdev_child[c]->vdev_state != VDEV_STATE_HEALTHY) {
1230 vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
1231 VDEV_AUX_NONE);
1232 break;
1233 }
1234 }
1235
1236 osize = P2ALIGN(osize, (uint64_t)sizeof (vdev_label_t));
1237 max_osize = P2ALIGN(max_osize, (uint64_t)sizeof (vdev_label_t));
1238
1239 if (vd->vdev_children == 0) {
1240 if (osize < SPA_MINDEVSIZE) {
1241 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1242 VDEV_AUX_TOO_SMALL);
1243 return (SET_ERROR(EOVERFLOW));
1244 }
1245 psize = osize;
1246 asize = osize - (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE);
1247 max_asize = max_osize - (VDEV_LABEL_START_SIZE +
1248 VDEV_LABEL_END_SIZE);
1249 } else {
1250 if (vd->vdev_parent != NULL && osize < SPA_MINDEVSIZE -
1251 (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE)) {
1252 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1253 VDEV_AUX_TOO_SMALL);
1254 return (SET_ERROR(EOVERFLOW));
1255 }
1256 psize = 0;
1257 asize = osize;
1258 max_asize = max_osize;
1259 }
1260
1261 vd->vdev_psize = psize;
1262
1263 /*
1264 * Make sure the allocatable size hasn't shrunk.
1265 */
1266 if (asize < vd->vdev_min_asize) {
1267 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1268 VDEV_AUX_BAD_LABEL);
1269 return (SET_ERROR(EINVAL));
1270 }
1271
1272 if (vd->vdev_asize == 0) {
1273 /*
1274 * This is the first-ever open, so use the computed values.
1275 * For compatibility, a different ashift can be requested.
1276 */
1277 vd->vdev_asize = asize;
1278 vd->vdev_max_asize = max_asize;
1279 if (vd->vdev_ashift == 0)
1280 vd->vdev_ashift = ashift;
1281 } else {
1282 /*
1283 * Detect if the alignment requirement has increased.
1284 * We don't want to make the pool unavailable, just
1285 * post an event instead.
1286 */
1287 if (ashift > vd->vdev_top->vdev_ashift &&
1288 vd->vdev_ops->vdev_op_leaf) {
1289 zfs_ereport_post(FM_EREPORT_ZFS_DEVICE_BAD_ASHIFT,
1290 spa, vd, NULL, 0, 0);
1291 }
1292
1293 vd->vdev_max_asize = max_asize;
1294 }
1295
1296 /*
1297 * If all children are healthy and the asize has increased,
1298 * then we've experienced dynamic LUN growth. If automatic
1299 * expansion is enabled then use the additional space.
1300 */
1301 if (vd->vdev_state == VDEV_STATE_HEALTHY && asize > vd->vdev_asize &&
1302 (vd->vdev_expanding || spa->spa_autoexpand))
1303 vd->vdev_asize = asize;
1304
1305 vdev_set_min_asize(vd);
1306
1307 /*
1308 * Ensure we can issue some IO before declaring the
1309 * vdev open for business.
1310 */
1311 if (vd->vdev_ops->vdev_op_leaf &&
1312 (error = zio_wait(vdev_probe(vd, NULL))) != 0) {
1313 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1314 VDEV_AUX_ERR_EXCEEDED);
1315 return (error);
1316 }
1317
1318 /*
1319 * If a leaf vdev has a DTL, and seems healthy, then kick off a
1320 * resilver. But don't do this if we are doing a reopen for a scrub,
1321 * since this would just restart the scrub we are already doing.
1322 */
1323 if (vd->vdev_ops->vdev_op_leaf && !spa->spa_scrub_reopen &&
1324 vdev_resilver_needed(vd, NULL, NULL))
1325 spa_async_request(spa, SPA_ASYNC_RESILVER);
1326
1327 return (0);
1328 }
1329
1330 /*
1331 * Called once the vdevs are all opened, this routine validates the label
1332 * contents. This needs to be done before vdev_load() so that we don't
1333 * inadvertently do repair I/Os to the wrong device.
1334 *
1335 * If 'strict' is false ignore the spa guid check. This is necessary because
1336 * if the machine crashed during a re-guid the new guid might have been written
1337 * to all of the vdev labels, but not the cached config. The strict check
1338 * will be performed when the pool is opened again using the mos config.
1339 *
1340 * This function will only return failure if one of the vdevs indicates that it
1341 * has since been destroyed or exported. This is only possible if
1342 * /etc/zfs/zpool.cache was readonly at the time. Otherwise, the vdev state
1343 * will be updated but the function will return 0.
1344 */
1345 int
1346 vdev_validate(vdev_t *vd, boolean_t strict)
1347 {
1348 spa_t *spa = vd->vdev_spa;
1349 nvlist_t *label;
1350 uint64_t guid = 0, top_guid;
1351 uint64_t state;
1352 int c;
1353
1354 for (c = 0; c < vd->vdev_children; c++)
1355 if (vdev_validate(vd->vdev_child[c], strict) != 0)
1356 return (SET_ERROR(EBADF));
1357
1358 /*
1359 * If the device has already failed, or was marked offline, don't do
1360 * any further validation. Otherwise, label I/O will fail and we will
1361 * overwrite the previous state.
1362 */
1363 if (vd->vdev_ops->vdev_op_leaf && vdev_readable(vd)) {
1364 uint64_t aux_guid = 0;
1365 nvlist_t *nvl;
1366 uint64_t txg = spa_last_synced_txg(spa) != 0 ?
1367 spa_last_synced_txg(spa) : -1ULL;
1368
1369 if ((label = vdev_label_read_config(vd, txg)) == NULL) {
1370 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1371 VDEV_AUX_BAD_LABEL);
1372 return (0);
1373 }
1374
1375 /*
1376 * Determine if this vdev has been split off into another
1377 * pool. If so, then refuse to open it.
1378 */
1379 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_SPLIT_GUID,
1380 &aux_guid) == 0 && aux_guid == spa_guid(spa)) {
1381 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1382 VDEV_AUX_SPLIT_POOL);
1383 nvlist_free(label);
1384 return (0);
1385 }
1386
1387 if (strict && (nvlist_lookup_uint64(label,
1388 ZPOOL_CONFIG_POOL_GUID, &guid) != 0 ||
1389 guid != spa_guid(spa))) {
1390 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1391 VDEV_AUX_CORRUPT_DATA);
1392 nvlist_free(label);
1393 return (0);
1394 }
1395
1396 if (nvlist_lookup_nvlist(label, ZPOOL_CONFIG_VDEV_TREE, &nvl)
1397 != 0 || nvlist_lookup_uint64(nvl, ZPOOL_CONFIG_ORIG_GUID,
1398 &aux_guid) != 0)
1399 aux_guid = 0;
1400
1401 /*
1402 * If this vdev just became a top-level vdev because its
1403 * sibling was detached, it will have adopted the parent's
1404 * vdev guid -- but the label may or may not be on disk yet.
1405 * Fortunately, either version of the label will have the
1406 * same top guid, so if we're a top-level vdev, we can
1407 * safely compare to that instead.
1408 *
1409 * If we split this vdev off instead, then we also check the
1410 * original pool's guid. We don't want to consider the vdev
1411 * corrupt if it is partway through a split operation.
1412 */
1413 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID,
1414 &guid) != 0 ||
1415 nvlist_lookup_uint64(label, ZPOOL_CONFIG_TOP_GUID,
1416 &top_guid) != 0 ||
1417 ((vd->vdev_guid != guid && vd->vdev_guid != aux_guid) &&
1418 (vd->vdev_guid != top_guid || vd != vd->vdev_top))) {
1419 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1420 VDEV_AUX_CORRUPT_DATA);
1421 nvlist_free(label);
1422 return (0);
1423 }
1424
1425 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE,
1426 &state) != 0) {
1427 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1428 VDEV_AUX_CORRUPT_DATA);
1429 nvlist_free(label);
1430 return (0);
1431 }
1432
1433 nvlist_free(label);
1434
1435 /*
1436 * If this is a verbatim import, no need to check the
1437 * state of the pool.
1438 */
1439 if (!(spa->spa_import_flags & ZFS_IMPORT_VERBATIM) &&
1440 spa_load_state(spa) == SPA_LOAD_OPEN &&
1441 state != POOL_STATE_ACTIVE)
1442 return (SET_ERROR(EBADF));
1443
1444 /*
1445 * If we were able to open and validate a vdev that was
1446 * previously marked permanently unavailable, clear that state
1447 * now.
1448 */
1449 if (vd->vdev_not_present)
1450 vd->vdev_not_present = 0;
1451 }
1452
1453 return (0);
1454 }
1455
1456 /*
1457 * Close a virtual device.
1458 */
1459 void
1460 vdev_close(vdev_t *vd)
1461 {
1462 vdev_t *pvd = vd->vdev_parent;
1463 ASSERTV(spa_t *spa = vd->vdev_spa);
1464
1465 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1466
1467 /*
1468 * If our parent is reopening, then we are as well, unless we are
1469 * going offline.
1470 */
1471 if (pvd != NULL && pvd->vdev_reopening)
1472 vd->vdev_reopening = (pvd->vdev_reopening && !vd->vdev_offline);
1473
1474 vd->vdev_ops->vdev_op_close(vd);
1475
1476 vdev_cache_purge(vd);
1477
1478 /*
1479 * We record the previous state before we close it, so that if we are
1480 * doing a reopen(), we don't generate FMA ereports if we notice that
1481 * it's still faulted.
1482 */
1483 vd->vdev_prevstate = vd->vdev_state;
1484
1485 if (vd->vdev_offline)
1486 vd->vdev_state = VDEV_STATE_OFFLINE;
1487 else
1488 vd->vdev_state = VDEV_STATE_CLOSED;
1489 vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
1490 }
1491
1492 void
1493 vdev_hold(vdev_t *vd)
1494 {
1495 spa_t *spa = vd->vdev_spa;
1496 int c;
1497
1498 ASSERT(spa_is_root(spa));
1499 if (spa->spa_state == POOL_STATE_UNINITIALIZED)
1500 return;
1501
1502 for (c = 0; c < vd->vdev_children; c++)
1503 vdev_hold(vd->vdev_child[c]);
1504
1505 if (vd->vdev_ops->vdev_op_leaf)
1506 vd->vdev_ops->vdev_op_hold(vd);
1507 }
1508
1509 void
1510 vdev_rele(vdev_t *vd)
1511 {
1512 int c;
1513
1514 ASSERT(spa_is_root(vd->vdev_spa));
1515 for (c = 0; c < vd->vdev_children; c++)
1516 vdev_rele(vd->vdev_child[c]);
1517
1518 if (vd->vdev_ops->vdev_op_leaf)
1519 vd->vdev_ops->vdev_op_rele(vd);
1520 }
1521
1522 /*
1523 * Reopen all interior vdevs and any unopened leaves. We don't actually
1524 * reopen leaf vdevs which had previously been opened as they might deadlock
1525 * on the spa_config_lock. Instead we only obtain the leaf's physical size.
1526 * If the leaf has never been opened then open it, as usual.
1527 */
1528 void
1529 vdev_reopen(vdev_t *vd)
1530 {
1531 spa_t *spa = vd->vdev_spa;
1532
1533 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1534
1535 /* set the reopening flag unless we're taking the vdev offline */
1536 vd->vdev_reopening = !vd->vdev_offline;
1537 vdev_close(vd);
1538 (void) vdev_open(vd);
1539
1540 /*
1541 * Call vdev_validate() here to make sure we have the same device.
1542 * Otherwise, a device with an invalid label could be successfully
1543 * opened in response to vdev_reopen().
1544 */
1545 if (vd->vdev_aux) {
1546 (void) vdev_validate_aux(vd);
1547 if (vdev_readable(vd) && vdev_writeable(vd) &&
1548 vd->vdev_aux == &spa->spa_l2cache &&
1549 !l2arc_vdev_present(vd))
1550 l2arc_add_vdev(spa, vd);
1551 } else {
1552 (void) vdev_validate(vd, B_TRUE);
1553 }
1554
1555 /*
1556 * Reassess parent vdev's health.
1557 */
1558 vdev_propagate_state(vd);
1559 }
1560
1561 int
1562 vdev_create(vdev_t *vd, uint64_t txg, boolean_t isreplacing)
1563 {
1564 int error;
1565
1566 /*
1567 * Normally, partial opens (e.g. of a mirror) are allowed.
1568 * For a create, however, we want to fail the request if
1569 * there are any components we can't open.
1570 */
1571 error = vdev_open(vd);
1572
1573 if (error || vd->vdev_state != VDEV_STATE_HEALTHY) {
1574 vdev_close(vd);
1575 return (error ? error : ENXIO);
1576 }
1577
1578 /*
1579 * Recursively load DTLs and initialize all labels.
1580 */
1581 if ((error = vdev_dtl_load(vd)) != 0 ||
1582 (error = vdev_label_init(vd, txg, isreplacing ?
1583 VDEV_LABEL_REPLACE : VDEV_LABEL_CREATE)) != 0) {
1584 vdev_close(vd);
1585 return (error);
1586 }
1587
1588 return (0);
1589 }
1590
1591 void
1592 vdev_metaslab_set_size(vdev_t *vd)
1593 {
1594 /*
1595 * Aim for roughly metaslabs_per_vdev (default 200) metaslabs per vdev.
1596 */
1597 vd->vdev_ms_shift = highbit64(vd->vdev_asize / metaslabs_per_vdev);
1598 vd->vdev_ms_shift = MAX(vd->vdev_ms_shift, SPA_MAXBLOCKSHIFT);
1599 }
1600
1601 void
1602 vdev_dirty(vdev_t *vd, int flags, void *arg, uint64_t txg)
1603 {
1604 ASSERT(vd == vd->vdev_top);
1605 ASSERT(!vd->vdev_ishole);
1606 ASSERT(ISP2(flags));
1607 ASSERT(spa_writeable(vd->vdev_spa));
1608
1609 if (flags & VDD_METASLAB)
1610 (void) txg_list_add(&vd->vdev_ms_list, arg, txg);
1611
1612 if (flags & VDD_DTL)
1613 (void) txg_list_add(&vd->vdev_dtl_list, arg, txg);
1614
1615 (void) txg_list_add(&vd->vdev_spa->spa_vdev_txg_list, vd, txg);
1616 }
1617
1618 void
1619 vdev_dirty_leaves(vdev_t *vd, int flags, uint64_t txg)
1620 {
1621 int c;
1622
1623 for (c = 0; c < vd->vdev_children; c++)
1624 vdev_dirty_leaves(vd->vdev_child[c], flags, txg);
1625
1626 if (vd->vdev_ops->vdev_op_leaf)
1627 vdev_dirty(vd->vdev_top, flags, vd, txg);
1628 }
1629
1630 /*
1631 * DTLs.
1632 *
1633 * A vdev's DTL (dirty time log) is the set of transaction groups for which
1634 * the vdev has less than perfect replication. There are four kinds of DTL:
1635 *
1636 * DTL_MISSING: txgs for which the vdev has no valid copies of the data
1637 *
1638 * DTL_PARTIAL: txgs for which data is available, but not fully replicated
1639 *
1640 * DTL_SCRUB: the txgs that could not be repaired by the last scrub; upon
1641 * scrub completion, DTL_SCRUB replaces DTL_MISSING in the range of
1642 * txgs that was scrubbed.
1643 *
1644 * DTL_OUTAGE: txgs which cannot currently be read, whether due to
1645 * persistent errors or just some device being offline.
1646 * Unlike the other three, the DTL_OUTAGE map is not generally
1647 * maintained; it's only computed when needed, typically to
1648 * determine whether a device can be detached.
1649 *
1650 * For leaf vdevs, DTL_MISSING and DTL_PARTIAL are identical: the device
1651 * either has the data or it doesn't.
1652 *
1653 * For interior vdevs such as mirror and RAID-Z the picture is more complex.
1654 * A vdev's DTL_PARTIAL is the union of its children's DTL_PARTIALs, because
1655 * if any child is less than fully replicated, then so is its parent.
1656 * A vdev's DTL_MISSING is a modified union of its children's DTL_MISSINGs,
1657 * comprising only those txgs which appear in 'maxfaults' or more children;
1658 * those are the txgs we don't have enough replication to read. For example,
1659 * double-parity RAID-Z can tolerate up to two missing devices (maxfaults == 2);
1660 * thus, its DTL_MISSING consists of the set of txgs that appear in more than
1661 * two child DTL_MISSING maps.
1662 *
1663 * It should be clear from the above that to compute the DTLs and outage maps
1664 * for all vdevs, it suffices to know just the leaf vdevs' DTL_MISSING maps.
1665 * Therefore, that is all we keep on disk. When loading the pool, or after
1666 * a configuration change, we generate all other DTLs from first principles.
1667 */
1668 void
1669 vdev_dtl_dirty(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
1670 {
1671 range_tree_t *rt = vd->vdev_dtl[t];
1672
1673 ASSERT(t < DTL_TYPES);
1674 ASSERT(vd != vd->vdev_spa->spa_root_vdev);
1675 ASSERT(spa_writeable(vd->vdev_spa));
1676
1677 mutex_enter(rt->rt_lock);
1678 if (!range_tree_contains(rt, txg, size))
1679 range_tree_add(rt, txg, size);
1680 mutex_exit(rt->rt_lock);
1681 }
1682
1683 boolean_t
1684 vdev_dtl_contains(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
1685 {
1686 range_tree_t *rt = vd->vdev_dtl[t];
1687 boolean_t dirty = B_FALSE;
1688
1689 ASSERT(t < DTL_TYPES);
1690 ASSERT(vd != vd->vdev_spa->spa_root_vdev);
1691
1692 mutex_enter(rt->rt_lock);
1693 if (range_tree_space(rt) != 0)
1694 dirty = range_tree_contains(rt, txg, size);
1695 mutex_exit(rt->rt_lock);
1696
1697 return (dirty);
1698 }
1699
1700 boolean_t
1701 vdev_dtl_empty(vdev_t *vd, vdev_dtl_type_t t)
1702 {
1703 range_tree_t *rt = vd->vdev_dtl[t];
1704 boolean_t empty;
1705
1706 mutex_enter(rt->rt_lock);
1707 empty = (range_tree_space(rt) == 0);
1708 mutex_exit(rt->rt_lock);
1709
1710 return (empty);
1711 }
1712
1713 /*
1714 * Returns the lowest txg in the DTL range.
1715 */
1716 static uint64_t
1717 vdev_dtl_min(vdev_t *vd)
1718 {
1719 range_seg_t *rs;
1720
1721 ASSERT(MUTEX_HELD(&vd->vdev_dtl_lock));
1722 ASSERT3U(range_tree_space(vd->vdev_dtl[DTL_MISSING]), !=, 0);
1723 ASSERT0(vd->vdev_children);
1724
1725 rs = avl_first(&vd->vdev_dtl[DTL_MISSING]->rt_root);
1726 return (rs->rs_start - 1);
1727 }
1728
1729 /*
1730 * Returns the highest txg in the DTL.
1731 */
1732 static uint64_t
1733 vdev_dtl_max(vdev_t *vd)
1734 {
1735 range_seg_t *rs;
1736
1737 ASSERT(MUTEX_HELD(&vd->vdev_dtl_lock));
1738 ASSERT3U(range_tree_space(vd->vdev_dtl[DTL_MISSING]), !=, 0);
1739 ASSERT0(vd->vdev_children);
1740
1741 rs = avl_last(&vd->vdev_dtl[DTL_MISSING]->rt_root);
1742 return (rs->rs_end);
1743 }
1744
1745 /*
1746 * Determine if a resilvering vdev should remove any DTL entries from
1747 * its range. If the vdev was resilvering for the entire duration of the
1748 * scan then it should excise that range from its DTLs. Otherwise, this
1749 * vdev is considered partially resilvered and should leave its DTL
1750 * entries intact. The comment in vdev_dtl_reassess() describes how we
1751 * excise the DTLs.
1752 */
1753 static boolean_t
1754 vdev_dtl_should_excise(vdev_t *vd)
1755 {
1756 spa_t *spa = vd->vdev_spa;
1757 dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan;
1758
1759 ASSERT0(scn->scn_phys.scn_errors);
1760 ASSERT0(vd->vdev_children);
1761
1762 if (vd->vdev_resilver_txg == 0 ||
1763 range_tree_space(vd->vdev_dtl[DTL_MISSING]) == 0)
1764 return (B_TRUE);
1765
1766 /*
1767 * When a resilver is initiated the scan will assign the scn_max_txg
1768 * value to the highest txg value that exists in all DTLs. If this
1769 * device's max DTL is not part of this scan (i.e. it is not in
1770 * the range (scn_min_txg, scn_max_txg] then it is not eligible
1771 * for excision.
1772 */
1773 if (vdev_dtl_max(vd) <= scn->scn_phys.scn_max_txg) {
1774 ASSERT3U(scn->scn_phys.scn_min_txg, <=, vdev_dtl_min(vd));
1775 ASSERT3U(scn->scn_phys.scn_min_txg, <, vd->vdev_resilver_txg);
1776 ASSERT3U(vd->vdev_resilver_txg, <=, scn->scn_phys.scn_max_txg);
1777 return (B_TRUE);
1778 }
1779 return (B_FALSE);
1780 }
1781
1782 /*
1783 * Reassess DTLs after a config change or scrub completion.
1784 */
1785 void
1786 vdev_dtl_reassess(vdev_t *vd, uint64_t txg, uint64_t scrub_txg, int scrub_done)
1787 {
1788 spa_t *spa = vd->vdev_spa;
1789 avl_tree_t reftree;
1790 int c, t, minref;
1791
1792 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
1793
1794 for (c = 0; c < vd->vdev_children; c++)
1795 vdev_dtl_reassess(vd->vdev_child[c], txg,
1796 scrub_txg, scrub_done);
1797
1798 if (vd == spa->spa_root_vdev || vd->vdev_ishole || vd->vdev_aux)
1799 return;
1800
1801 if (vd->vdev_ops->vdev_op_leaf) {
1802 dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan;
1803
1804 mutex_enter(&vd->vdev_dtl_lock);
1805
1806 /*
1807 * If we've completed a scan cleanly then determine
1808 * if this vdev should remove any DTLs. We only want to
1809 * excise regions on vdevs that were available during
1810 * the entire duration of this scan.
1811 */
1812 if (scrub_txg != 0 &&
1813 (spa->spa_scrub_started ||
1814 (scn != NULL && scn->scn_phys.scn_errors == 0)) &&
1815 vdev_dtl_should_excise(vd)) {
1816 /*
1817 * We completed a scrub up to scrub_txg. If we
1818 * did it without rebooting, then the scrub dtl
1819 * will be valid, so excise the old region and
1820 * fold in the scrub dtl. Otherwise, leave the
1821 * dtl as-is if there was an error.
1822 *
1823 * There's little trick here: to excise the beginning
1824 * of the DTL_MISSING map, we put it into a reference
1825 * tree and then add a segment with refcnt -1 that
1826 * covers the range [0, scrub_txg). This means
1827 * that each txg in that range has refcnt -1 or 0.
1828 * We then add DTL_SCRUB with a refcnt of 2, so that
1829 * entries in the range [0, scrub_txg) will have a
1830 * positive refcnt -- either 1 or 2. We then convert
1831 * the reference tree into the new DTL_MISSING map.
1832 */
1833 space_reftree_create(&reftree);
1834 space_reftree_add_map(&reftree,
1835 vd->vdev_dtl[DTL_MISSING], 1);
1836 space_reftree_add_seg(&reftree, 0, scrub_txg, -1);
1837 space_reftree_add_map(&reftree,
1838 vd->vdev_dtl[DTL_SCRUB], 2);
1839 space_reftree_generate_map(&reftree,
1840 vd->vdev_dtl[DTL_MISSING], 1);
1841 space_reftree_destroy(&reftree);
1842 }
1843 range_tree_vacate(vd->vdev_dtl[DTL_PARTIAL], NULL, NULL);
1844 range_tree_walk(vd->vdev_dtl[DTL_MISSING],
1845 range_tree_add, vd->vdev_dtl[DTL_PARTIAL]);
1846 if (scrub_done)
1847 range_tree_vacate(vd->vdev_dtl[DTL_SCRUB], NULL, NULL);
1848 range_tree_vacate(vd->vdev_dtl[DTL_OUTAGE], NULL, NULL);
1849 if (!vdev_readable(vd))
1850 range_tree_add(vd->vdev_dtl[DTL_OUTAGE], 0, -1ULL);
1851 else
1852 range_tree_walk(vd->vdev_dtl[DTL_MISSING],
1853 range_tree_add, vd->vdev_dtl[DTL_OUTAGE]);
1854
1855 /*
1856 * If the vdev was resilvering and no longer has any
1857 * DTLs then reset its resilvering flag.
1858 */
1859 if (vd->vdev_resilver_txg != 0 &&
1860 range_tree_space(vd->vdev_dtl[DTL_MISSING]) == 0 &&
1861 range_tree_space(vd->vdev_dtl[DTL_OUTAGE]) == 0)
1862 vd->vdev_resilver_txg = 0;
1863
1864 mutex_exit(&vd->vdev_dtl_lock);
1865
1866 if (txg != 0)
1867 vdev_dirty(vd->vdev_top, VDD_DTL, vd, txg);
1868 return;
1869 }
1870
1871 mutex_enter(&vd->vdev_dtl_lock);
1872 for (t = 0; t < DTL_TYPES; t++) {
1873 int c;
1874
1875 /* account for child's outage in parent's missing map */
1876 int s = (t == DTL_MISSING) ? DTL_OUTAGE: t;
1877 if (t == DTL_SCRUB)
1878 continue; /* leaf vdevs only */
1879 if (t == DTL_PARTIAL)
1880 minref = 1; /* i.e. non-zero */
1881 else if (vd->vdev_nparity != 0)
1882 minref = vd->vdev_nparity + 1; /* RAID-Z */
1883 else
1884 minref = vd->vdev_children; /* any kind of mirror */
1885 space_reftree_create(&reftree);
1886 for (c = 0; c < vd->vdev_children; c++) {
1887 vdev_t *cvd = vd->vdev_child[c];
1888 mutex_enter(&cvd->vdev_dtl_lock);
1889 space_reftree_add_map(&reftree, cvd->vdev_dtl[s], 1);
1890 mutex_exit(&cvd->vdev_dtl_lock);
1891 }
1892 space_reftree_generate_map(&reftree, vd->vdev_dtl[t], minref);
1893 space_reftree_destroy(&reftree);
1894 }
1895 mutex_exit(&vd->vdev_dtl_lock);
1896 }
1897
1898 int
1899 vdev_dtl_load(vdev_t *vd)
1900 {
1901 spa_t *spa = vd->vdev_spa;
1902 objset_t *mos = spa->spa_meta_objset;
1903 int error = 0;
1904 int c;
1905
1906 if (vd->vdev_ops->vdev_op_leaf && vd->vdev_dtl_object != 0) {
1907 ASSERT(!vd->vdev_ishole);
1908
1909 /*
1910 * If the dtl cannot be sync'd there is no need to open it.
1911 */
1912 if (!spa_writeable(spa))
1913 return (0);
1914
1915 error = space_map_open(&vd->vdev_dtl_sm, mos,
1916 vd->vdev_dtl_object, 0, -1ULL, 0, &vd->vdev_dtl_lock);
1917 if (error)
1918 return (error);
1919 ASSERT(vd->vdev_dtl_sm != NULL);
1920
1921 mutex_enter(&vd->vdev_dtl_lock);
1922
1923 /*
1924 * Now that we've opened the space_map we need to update
1925 * the in-core DTL.
1926 */
1927 space_map_update(vd->vdev_dtl_sm);
1928
1929 error = space_map_load(vd->vdev_dtl_sm,
1930 vd->vdev_dtl[DTL_MISSING], SM_ALLOC);
1931 mutex_exit(&vd->vdev_dtl_lock);
1932
1933 return (error);
1934 }
1935
1936 for (c = 0; c < vd->vdev_children; c++) {
1937 error = vdev_dtl_load(vd->vdev_child[c]);
1938 if (error != 0)
1939 break;
1940 }
1941
1942 return (error);
1943 }
1944
1945 void
1946 vdev_dtl_sync(vdev_t *vd, uint64_t txg)
1947 {
1948 spa_t *spa = vd->vdev_spa;
1949 range_tree_t *rt = vd->vdev_dtl[DTL_MISSING];
1950 objset_t *mos = spa->spa_meta_objset;
1951 range_tree_t *rtsync;
1952 kmutex_t rtlock;
1953 dmu_tx_t *tx;
1954 uint64_t object = space_map_object(vd->vdev_dtl_sm);
1955
1956 ASSERT(!vd->vdev_ishole);
1957 ASSERT(vd->vdev_ops->vdev_op_leaf);
1958
1959 tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
1960
1961 if (vd->vdev_detached || vd->vdev_top->vdev_removing) {
1962 mutex_enter(&vd->vdev_dtl_lock);
1963 space_map_free(vd->vdev_dtl_sm, tx);
1964 space_map_close(vd->vdev_dtl_sm);
1965 vd->vdev_dtl_sm = NULL;
1966 mutex_exit(&vd->vdev_dtl_lock);
1967 dmu_tx_commit(tx);
1968 return;
1969 }
1970
1971 if (vd->vdev_dtl_sm == NULL) {
1972 uint64_t new_object;
1973
1974 new_object = space_map_alloc(mos, tx);
1975 VERIFY3U(new_object, !=, 0);
1976
1977 VERIFY0(space_map_open(&vd->vdev_dtl_sm, mos, new_object,
1978 0, -1ULL, 0, &vd->vdev_dtl_lock));
1979 ASSERT(vd->vdev_dtl_sm != NULL);
1980 }
1981
1982 mutex_init(&rtlock, NULL, MUTEX_DEFAULT, NULL);
1983
1984 rtsync = range_tree_create(NULL, NULL, &rtlock);
1985
1986 mutex_enter(&rtlock);
1987
1988 mutex_enter(&vd->vdev_dtl_lock);
1989 range_tree_walk(rt, range_tree_add, rtsync);
1990 mutex_exit(&vd->vdev_dtl_lock);
1991
1992 space_map_truncate(vd->vdev_dtl_sm, tx);
1993 space_map_write(vd->vdev_dtl_sm, rtsync, SM_ALLOC, tx);
1994 range_tree_vacate(rtsync, NULL, NULL);
1995
1996 range_tree_destroy(rtsync);
1997
1998 mutex_exit(&rtlock);
1999 mutex_destroy(&rtlock);
2000
2001 /*
2002 * If the object for the space map has changed then dirty
2003 * the top level so that we update the config.
2004 */
2005 if (object != space_map_object(vd->vdev_dtl_sm)) {
2006 zfs_dbgmsg("txg %llu, spa %s, DTL old object %llu, "
2007 "new object %llu", txg, spa_name(spa), object,
2008 space_map_object(vd->vdev_dtl_sm));
2009 vdev_config_dirty(vd->vdev_top);
2010 }
2011
2012 dmu_tx_commit(tx);
2013
2014 mutex_enter(&vd->vdev_dtl_lock);
2015 space_map_update(vd->vdev_dtl_sm);
2016 mutex_exit(&vd->vdev_dtl_lock);
2017 }
2018
2019 /*
2020 * Determine whether the specified vdev can be offlined/detached/removed
2021 * without losing data.
2022 */
2023 boolean_t
2024 vdev_dtl_required(vdev_t *vd)
2025 {
2026 spa_t *spa = vd->vdev_spa;
2027 vdev_t *tvd = vd->vdev_top;
2028 uint8_t cant_read = vd->vdev_cant_read;
2029 boolean_t required;
2030
2031 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
2032
2033 if (vd == spa->spa_root_vdev || vd == tvd)
2034 return (B_TRUE);
2035
2036 /*
2037 * Temporarily mark the device as unreadable, and then determine
2038 * whether this results in any DTL outages in the top-level vdev.
2039 * If not, we can safely offline/detach/remove the device.
2040 */
2041 vd->vdev_cant_read = B_TRUE;
2042 vdev_dtl_reassess(tvd, 0, 0, B_FALSE);
2043 required = !vdev_dtl_empty(tvd, DTL_OUTAGE);
2044 vd->vdev_cant_read = cant_read;
2045 vdev_dtl_reassess(tvd, 0, 0, B_FALSE);
2046
2047 if (!required && zio_injection_enabled)
2048 required = !!zio_handle_device_injection(vd, NULL, ECHILD);
2049
2050 return (required);
2051 }
2052
2053 /*
2054 * Determine if resilver is needed, and if so the txg range.
2055 */
2056 boolean_t
2057 vdev_resilver_needed(vdev_t *vd, uint64_t *minp, uint64_t *maxp)
2058 {
2059 boolean_t needed = B_FALSE;
2060 uint64_t thismin = UINT64_MAX;
2061 uint64_t thismax = 0;
2062 int c;
2063
2064 if (vd->vdev_children == 0) {
2065 mutex_enter(&vd->vdev_dtl_lock);
2066 if (range_tree_space(vd->vdev_dtl[DTL_MISSING]) != 0 &&
2067 vdev_writeable(vd)) {
2068
2069 thismin = vdev_dtl_min(vd);
2070 thismax = vdev_dtl_max(vd);
2071 needed = B_TRUE;
2072 }
2073 mutex_exit(&vd->vdev_dtl_lock);
2074 } else {
2075 for (c = 0; c < vd->vdev_children; c++) {
2076 vdev_t *cvd = vd->vdev_child[c];
2077 uint64_t cmin, cmax;
2078
2079 if (vdev_resilver_needed(cvd, &cmin, &cmax)) {
2080 thismin = MIN(thismin, cmin);
2081 thismax = MAX(thismax, cmax);
2082 needed = B_TRUE;
2083 }
2084 }
2085 }
2086
2087 if (needed && minp) {
2088 *minp = thismin;
2089 *maxp = thismax;
2090 }
2091 return (needed);
2092 }
2093
2094 void
2095 vdev_load(vdev_t *vd)
2096 {
2097 int c;
2098
2099 /*
2100 * Recursively load all children.
2101 */
2102 for (c = 0; c < vd->vdev_children; c++)
2103 vdev_load(vd->vdev_child[c]);
2104
2105 /*
2106 * If this is a top-level vdev, initialize its metaslabs.
2107 */
2108 if (vd == vd->vdev_top && !vd->vdev_ishole &&
2109 (vd->vdev_ashift == 0 || vd->vdev_asize == 0 ||
2110 vdev_metaslab_init(vd, 0) != 0))
2111 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2112 VDEV_AUX_CORRUPT_DATA);
2113
2114 /*
2115 * If this is a leaf vdev, load its DTL.
2116 */
2117 if (vd->vdev_ops->vdev_op_leaf && vdev_dtl_load(vd) != 0)
2118 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2119 VDEV_AUX_CORRUPT_DATA);
2120 }
2121
2122 /*
2123 * The special vdev case is used for hot spares and l2cache devices. Its
2124 * sole purpose it to set the vdev state for the associated vdev. To do this,
2125 * we make sure that we can open the underlying device, then try to read the
2126 * label, and make sure that the label is sane and that it hasn't been
2127 * repurposed to another pool.
2128 */
2129 int
2130 vdev_validate_aux(vdev_t *vd)
2131 {
2132 nvlist_t *label;
2133 uint64_t guid, version;
2134 uint64_t state;
2135
2136 if (!vdev_readable(vd))
2137 return (0);
2138
2139 if ((label = vdev_label_read_config(vd, -1ULL)) == NULL) {
2140 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2141 VDEV_AUX_CORRUPT_DATA);
2142 return (-1);
2143 }
2144
2145 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_VERSION, &version) != 0 ||
2146 !SPA_VERSION_IS_SUPPORTED(version) ||
2147 nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0 ||
2148 guid != vd->vdev_guid ||
2149 nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, &state) != 0) {
2150 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2151 VDEV_AUX_CORRUPT_DATA);
2152 nvlist_free(label);
2153 return (-1);
2154 }
2155
2156 /*
2157 * We don't actually check the pool state here. If it's in fact in
2158 * use by another pool, we update this fact on the fly when requested.
2159 */
2160 nvlist_free(label);
2161 return (0);
2162 }
2163
2164 void
2165 vdev_remove(vdev_t *vd, uint64_t txg)
2166 {
2167 spa_t *spa = vd->vdev_spa;
2168 objset_t *mos = spa->spa_meta_objset;
2169 dmu_tx_t *tx;
2170 int m, i;
2171
2172 tx = dmu_tx_create_assigned(spa_get_dsl(spa), txg);
2173
2174 if (vd->vdev_ms != NULL) {
2175 metaslab_group_t *mg = vd->vdev_mg;
2176
2177 metaslab_group_histogram_verify(mg);
2178 metaslab_class_histogram_verify(mg->mg_class);
2179
2180 for (m = 0; m < vd->vdev_ms_count; m++) {
2181 metaslab_t *msp = vd->vdev_ms[m];
2182
2183 if (msp == NULL || msp->ms_sm == NULL)
2184 continue;
2185
2186 mutex_enter(&msp->ms_lock);
2187 /*
2188 * If the metaslab was not loaded when the vdev
2189 * was removed then the histogram accounting may
2190 * not be accurate. Update the histogram information
2191 * here so that we ensure that the metaslab group
2192 * and metaslab class are up-to-date.
2193 */
2194 metaslab_group_histogram_remove(mg, msp);
2195
2196 VERIFY0(space_map_allocated(msp->ms_sm));
2197 space_map_free(msp->ms_sm, tx);
2198 space_map_close(msp->ms_sm);
2199 msp->ms_sm = NULL;
2200 mutex_exit(&msp->ms_lock);
2201 }
2202
2203 metaslab_group_histogram_verify(mg);
2204 metaslab_class_histogram_verify(mg->mg_class);
2205 for (i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i++)
2206 ASSERT0(mg->mg_histogram[i]);
2207
2208 }
2209
2210 if (vd->vdev_ms_array) {
2211 (void) dmu_object_free(mos, vd->vdev_ms_array, tx);
2212 vd->vdev_ms_array = 0;
2213 }
2214 dmu_tx_commit(tx);
2215 }
2216
2217 void
2218 vdev_sync_done(vdev_t *vd, uint64_t txg)
2219 {
2220 metaslab_t *msp;
2221 boolean_t reassess = !txg_list_empty(&vd->vdev_ms_list, TXG_CLEAN(txg));
2222
2223 ASSERT(!vd->vdev_ishole);
2224
2225 while ((msp = txg_list_remove(&vd->vdev_ms_list, TXG_CLEAN(txg))))
2226 metaslab_sync_done(msp, txg);
2227
2228 if (reassess)
2229 metaslab_sync_reassess(vd->vdev_mg);
2230 }
2231
2232 void
2233 vdev_sync(vdev_t *vd, uint64_t txg)
2234 {
2235 spa_t *spa = vd->vdev_spa;
2236 vdev_t *lvd;
2237 metaslab_t *msp;
2238 dmu_tx_t *tx;
2239
2240 ASSERT(!vd->vdev_ishole);
2241
2242 if (vd->vdev_ms_array == 0 && vd->vdev_ms_shift != 0) {
2243 ASSERT(vd == vd->vdev_top);
2244 tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
2245 vd->vdev_ms_array = dmu_object_alloc(spa->spa_meta_objset,
2246 DMU_OT_OBJECT_ARRAY, 0, DMU_OT_NONE, 0, tx);
2247 ASSERT(vd->vdev_ms_array != 0);
2248 vdev_config_dirty(vd);
2249 dmu_tx_commit(tx);
2250 }
2251
2252 /*
2253 * Remove the metadata associated with this vdev once it's empty.
2254 */
2255 if (vd->vdev_stat.vs_alloc == 0 && vd->vdev_removing)
2256 vdev_remove(vd, txg);
2257
2258 while ((msp = txg_list_remove(&vd->vdev_ms_list, txg)) != NULL) {
2259 metaslab_sync(msp, txg);
2260 (void) txg_list_add(&vd->vdev_ms_list, msp, TXG_CLEAN(txg));
2261 }
2262
2263 while ((lvd = txg_list_remove(&vd->vdev_dtl_list, txg)) != NULL)
2264 vdev_dtl_sync(lvd, txg);
2265
2266 (void) txg_list_add(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg));
2267 }
2268
2269 uint64_t
2270 vdev_psize_to_asize(vdev_t *vd, uint64_t psize)
2271 {
2272 return (vd->vdev_ops->vdev_op_asize(vd, psize));
2273 }
2274
2275 /*
2276 * Mark the given vdev faulted. A faulted vdev behaves as if the device could
2277 * not be opened, and no I/O is attempted.
2278 */
2279 int
2280 vdev_fault(spa_t *spa, uint64_t guid, vdev_aux_t aux)
2281 {
2282 vdev_t *vd, *tvd;
2283
2284 spa_vdev_state_enter(spa, SCL_NONE);
2285
2286 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2287 return (spa_vdev_state_exit(spa, NULL, ENODEV));
2288
2289 if (!vd->vdev_ops->vdev_op_leaf)
2290 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2291
2292 tvd = vd->vdev_top;
2293
2294 /*
2295 * We don't directly use the aux state here, but if we do a
2296 * vdev_reopen(), we need this value to be present to remember why we
2297 * were faulted.
2298 */
2299 vd->vdev_label_aux = aux;
2300
2301 /*
2302 * Faulted state takes precedence over degraded.
2303 */
2304 vd->vdev_delayed_close = B_FALSE;
2305 vd->vdev_faulted = 1ULL;
2306 vd->vdev_degraded = 0ULL;
2307 vdev_set_state(vd, B_FALSE, VDEV_STATE_FAULTED, aux);
2308
2309 /*
2310 * If this device has the only valid copy of the data, then
2311 * back off and simply mark the vdev as degraded instead.
2312 */
2313 if (!tvd->vdev_islog && vd->vdev_aux == NULL && vdev_dtl_required(vd)) {
2314 vd->vdev_degraded = 1ULL;
2315 vd->vdev_faulted = 0ULL;
2316
2317 /*
2318 * If we reopen the device and it's not dead, only then do we
2319 * mark it degraded.
2320 */
2321 vdev_reopen(tvd);
2322
2323 if (vdev_readable(vd))
2324 vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, aux);
2325 }
2326
2327 return (spa_vdev_state_exit(spa, vd, 0));
2328 }
2329
2330 /*
2331 * Mark the given vdev degraded. A degraded vdev is purely an indication to the
2332 * user that something is wrong. The vdev continues to operate as normal as far
2333 * as I/O is concerned.
2334 */
2335 int
2336 vdev_degrade(spa_t *spa, uint64_t guid, vdev_aux_t aux)
2337 {
2338 vdev_t *vd;
2339
2340 spa_vdev_state_enter(spa, SCL_NONE);
2341
2342 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2343 return (spa_vdev_state_exit(spa, NULL, ENODEV));
2344
2345 if (!vd->vdev_ops->vdev_op_leaf)
2346 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2347
2348 /*
2349 * If the vdev is already faulted, then don't do anything.
2350 */
2351 if (vd->vdev_faulted || vd->vdev_degraded)
2352 return (spa_vdev_state_exit(spa, NULL, 0));
2353
2354 vd->vdev_degraded = 1ULL;
2355 if (!vdev_is_dead(vd))
2356 vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED,
2357 aux);
2358
2359 return (spa_vdev_state_exit(spa, vd, 0));
2360 }
2361
2362 /*
2363 * Online the given vdev.
2364 *
2365 * If 'ZFS_ONLINE_UNSPARE' is set, it implies two things. First, any attached
2366 * spare device should be detached when the device finishes resilvering.
2367 * Second, the online should be treated like a 'test' online case, so no FMA
2368 * events are generated if the device fails to open.
2369 */
2370 int
2371 vdev_online(spa_t *spa, uint64_t guid, uint64_t flags, vdev_state_t *newstate)
2372 {
2373 vdev_t *vd, *tvd, *pvd, *rvd = spa->spa_root_vdev;
2374
2375 spa_vdev_state_enter(spa, SCL_NONE);
2376
2377 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2378 return (spa_vdev_state_exit(spa, NULL, ENODEV));
2379
2380 if (!vd->vdev_ops->vdev_op_leaf)
2381 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2382
2383 tvd = vd->vdev_top;
2384 vd->vdev_offline = B_FALSE;
2385 vd->vdev_tmpoffline = B_FALSE;
2386 vd->vdev_checkremove = !!(flags & ZFS_ONLINE_CHECKREMOVE);
2387 vd->vdev_forcefault = !!(flags & ZFS_ONLINE_FORCEFAULT);
2388
2389 /* XXX - L2ARC 1.0 does not support expansion */
2390 if (!vd->vdev_aux) {
2391 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
2392 pvd->vdev_expanding = !!(flags & ZFS_ONLINE_EXPAND);
2393 }
2394
2395 vdev_reopen(tvd);
2396 vd->vdev_checkremove = vd->vdev_forcefault = B_FALSE;
2397
2398 if (!vd->vdev_aux) {
2399 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
2400 pvd->vdev_expanding = B_FALSE;
2401 }
2402
2403 if (newstate)
2404 *newstate = vd->vdev_state;
2405 if ((flags & ZFS_ONLINE_UNSPARE) &&
2406 !vdev_is_dead(vd) && vd->vdev_parent &&
2407 vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
2408 vd->vdev_parent->vdev_child[0] == vd)
2409 vd->vdev_unspare = B_TRUE;
2410
2411 if ((flags & ZFS_ONLINE_EXPAND) || spa->spa_autoexpand) {
2412
2413 /* XXX - L2ARC 1.0 does not support expansion */
2414 if (vd->vdev_aux)
2415 return (spa_vdev_state_exit(spa, vd, ENOTSUP));
2416 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
2417 }
2418 return (spa_vdev_state_exit(spa, vd, 0));
2419 }
2420
2421 static int
2422 vdev_offline_locked(spa_t *spa, uint64_t guid, uint64_t flags)
2423 {
2424 vdev_t *vd, *tvd;
2425 int error = 0;
2426 uint64_t generation;
2427 metaslab_group_t *mg;
2428
2429 top:
2430 spa_vdev_state_enter(spa, SCL_ALLOC);
2431
2432 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2433 return (spa_vdev_state_exit(spa, NULL, ENODEV));
2434
2435 if (!vd->vdev_ops->vdev_op_leaf)
2436 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2437
2438 tvd = vd->vdev_top;
2439 mg = tvd->vdev_mg;
2440 generation = spa->spa_config_generation + 1;
2441
2442 /*
2443 * If the device isn't already offline, try to offline it.
2444 */
2445 if (!vd->vdev_offline) {
2446 /*
2447 * If this device has the only valid copy of some data,
2448 * don't allow it to be offlined. Log devices are always
2449 * expendable.
2450 */
2451 if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
2452 vdev_dtl_required(vd))
2453 return (spa_vdev_state_exit(spa, NULL, EBUSY));
2454
2455 /*
2456 * If the top-level is a slog and it has had allocations
2457 * then proceed. We check that the vdev's metaslab group
2458 * is not NULL since it's possible that we may have just
2459 * added this vdev but not yet initialized its metaslabs.
2460 */
2461 if (tvd->vdev_islog && mg != NULL) {
2462 /*
2463 * Prevent any future allocations.
2464 */
2465 metaslab_group_passivate(mg);
2466 (void) spa_vdev_state_exit(spa, vd, 0);
2467
2468 error = spa_offline_log(spa);
2469
2470 spa_vdev_state_enter(spa, SCL_ALLOC);
2471
2472 /*
2473 * Check to see if the config has changed.
2474 */
2475 if (error || generation != spa->spa_config_generation) {
2476 metaslab_group_activate(mg);
2477 if (error)
2478 return (spa_vdev_state_exit(spa,
2479 vd, error));
2480 (void) spa_vdev_state_exit(spa, vd, 0);
2481 goto top;
2482 }
2483 ASSERT0(tvd->vdev_stat.vs_alloc);
2484 }
2485
2486 /*
2487 * Offline this device and reopen its top-level vdev.
2488 * If the top-level vdev is a log device then just offline
2489 * it. Otherwise, if this action results in the top-level
2490 * vdev becoming unusable, undo it and fail the request.
2491 */
2492 vd->vdev_offline = B_TRUE;
2493 vdev_reopen(tvd);
2494
2495 if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
2496 vdev_is_dead(tvd)) {
2497 vd->vdev_offline = B_FALSE;
2498 vdev_reopen(tvd);
2499 return (spa_vdev_state_exit(spa, NULL, EBUSY));
2500 }
2501
2502 /*
2503 * Add the device back into the metaslab rotor so that
2504 * once we online the device it's open for business.
2505 */
2506 if (tvd->vdev_islog && mg != NULL)
2507 metaslab_group_activate(mg);
2508 }
2509
2510 vd->vdev_tmpoffline = !!(flags & ZFS_OFFLINE_TEMPORARY);
2511
2512 return (spa_vdev_state_exit(spa, vd, 0));
2513 }
2514
2515 int
2516 vdev_offline(spa_t *spa, uint64_t guid, uint64_t flags)
2517 {
2518 int error;
2519
2520 mutex_enter(&spa->spa_vdev_top_lock);
2521 error = vdev_offline_locked(spa, guid, flags);
2522 mutex_exit(&spa->spa_vdev_top_lock);
2523
2524 return (error);
2525 }
2526
2527 /*
2528 * Clear the error counts associated with this vdev. Unlike vdev_online() and
2529 * vdev_offline(), we assume the spa config is locked. We also clear all
2530 * children. If 'vd' is NULL, then the user wants to clear all vdevs.
2531 */
2532 void
2533 vdev_clear(spa_t *spa, vdev_t *vd)
2534 {
2535 vdev_t *rvd = spa->spa_root_vdev;
2536 int c;
2537
2538 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
2539
2540 if (vd == NULL)
2541 vd = rvd;
2542
2543 vd->vdev_stat.vs_read_errors = 0;
2544 vd->vdev_stat.vs_write_errors = 0;
2545 vd->vdev_stat.vs_checksum_errors = 0;
2546
2547 for (c = 0; c < vd->vdev_children; c++)
2548 vdev_clear(spa, vd->vdev_child[c]);
2549
2550 /*
2551 * If we're in the FAULTED state or have experienced failed I/O, then
2552 * clear the persistent state and attempt to reopen the device. We
2553 * also mark the vdev config dirty, so that the new faulted state is
2554 * written out to disk.
2555 */
2556 if (vd->vdev_faulted || vd->vdev_degraded ||
2557 !vdev_readable(vd) || !vdev_writeable(vd)) {
2558
2559 /*
2560 * When reopening in reponse to a clear event, it may be due to
2561 * a fmadm repair request. In this case, if the device is
2562 * still broken, we want to still post the ereport again.
2563 */
2564 vd->vdev_forcefault = B_TRUE;
2565
2566 vd->vdev_faulted = vd->vdev_degraded = 0ULL;
2567 vd->vdev_cant_read = B_FALSE;
2568 vd->vdev_cant_write = B_FALSE;
2569
2570 vdev_reopen(vd == rvd ? rvd : vd->vdev_top);
2571
2572 vd->vdev_forcefault = B_FALSE;
2573
2574 if (vd != rvd && vdev_writeable(vd->vdev_top))
2575 vdev_state_dirty(vd->vdev_top);
2576
2577 if (vd->vdev_aux == NULL && !vdev_is_dead(vd))
2578 spa_async_request(spa, SPA_ASYNC_RESILVER);
2579
2580 spa_event_notify(spa, vd, FM_EREPORT_ZFS_DEVICE_CLEAR);
2581 }
2582
2583 /*
2584 * When clearing a FMA-diagnosed fault, we always want to
2585 * unspare the device, as we assume that the original spare was
2586 * done in response to the FMA fault.
2587 */
2588 if (!vdev_is_dead(vd) && vd->vdev_parent != NULL &&
2589 vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
2590 vd->vdev_parent->vdev_child[0] == vd)
2591 vd->vdev_unspare = B_TRUE;
2592 }
2593
2594 boolean_t
2595 vdev_is_dead(vdev_t *vd)
2596 {
2597 /*
2598 * Holes and missing devices are always considered "dead".
2599 * This simplifies the code since we don't have to check for
2600 * these types of devices in the various code paths.
2601 * Instead we rely on the fact that we skip over dead devices
2602 * before issuing I/O to them.
2603 */
2604 return (vd->vdev_state < VDEV_STATE_DEGRADED || vd->vdev_ishole ||
2605 vd->vdev_ops == &vdev_missing_ops);
2606 }
2607
2608 boolean_t
2609 vdev_readable(vdev_t *vd)
2610 {
2611 return (!vdev_is_dead(vd) && !vd->vdev_cant_read);
2612 }
2613
2614 boolean_t
2615 vdev_writeable(vdev_t *vd)
2616 {
2617 return (!vdev_is_dead(vd) && !vd->vdev_cant_write);
2618 }
2619
2620 boolean_t
2621 vdev_allocatable(vdev_t *vd)
2622 {
2623 uint64_t state = vd->vdev_state;
2624
2625 /*
2626 * We currently allow allocations from vdevs which may be in the
2627 * process of reopening (i.e. VDEV_STATE_CLOSED). If the device
2628 * fails to reopen then we'll catch it later when we're holding
2629 * the proper locks. Note that we have to get the vdev state
2630 * in a local variable because although it changes atomically,
2631 * we're asking two separate questions about it.
2632 */
2633 return (!(state < VDEV_STATE_DEGRADED && state != VDEV_STATE_CLOSED) &&
2634 !vd->vdev_cant_write && !vd->vdev_ishole);
2635 }
2636
2637 boolean_t
2638 vdev_accessible(vdev_t *vd, zio_t *zio)
2639 {
2640 ASSERT(zio->io_vd == vd);
2641
2642 if (vdev_is_dead(vd) || vd->vdev_remove_wanted)
2643 return (B_FALSE);
2644
2645 if (zio->io_type == ZIO_TYPE_READ)
2646 return (!vd->vdev_cant_read);
2647
2648 if (zio->io_type == ZIO_TYPE_WRITE)
2649 return (!vd->vdev_cant_write);
2650
2651 return (B_TRUE);
2652 }
2653
2654 /*
2655 * Get statistics for the given vdev.
2656 */
2657 void
2658 vdev_get_stats(vdev_t *vd, vdev_stat_t *vs)
2659 {
2660 spa_t *spa = vd->vdev_spa;
2661 vdev_t *rvd = spa->spa_root_vdev;
2662 int c, t;
2663
2664 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
2665
2666 mutex_enter(&vd->vdev_stat_lock);
2667 bcopy(&vd->vdev_stat, vs, sizeof (*vs));
2668 vs->vs_timestamp = gethrtime() - vs->vs_timestamp;
2669 vs->vs_state = vd->vdev_state;
2670 vs->vs_rsize = vdev_get_min_asize(vd);
2671 if (vd->vdev_ops->vdev_op_leaf)
2672 vs->vs_rsize += VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE;
2673 vs->vs_esize = vd->vdev_max_asize - vd->vdev_asize;
2674 if (vd->vdev_aux == NULL && vd == vd->vdev_top && !vd->vdev_ishole) {
2675 vs->vs_fragmentation = vd->vdev_mg->mg_fragmentation;
2676 }
2677
2678 /*
2679 * If we're getting stats on the root vdev, aggregate the I/O counts
2680 * over all top-level vdevs (i.e. the direct children of the root).
2681 */
2682 if (vd == rvd) {
2683 for (c = 0; c < rvd->vdev_children; c++) {
2684 vdev_t *cvd = rvd->vdev_child[c];
2685 vdev_stat_t *cvs = &cvd->vdev_stat;
2686
2687 for (t = 0; t < ZIO_TYPES; t++) {
2688 vs->vs_ops[t] += cvs->vs_ops[t];
2689 vs->vs_bytes[t] += cvs->vs_bytes[t];
2690 }
2691 cvs->vs_scan_removing = cvd->vdev_removing;
2692 }
2693 }
2694 mutex_exit(&vd->vdev_stat_lock);
2695 }
2696
2697 void
2698 vdev_clear_stats(vdev_t *vd)
2699 {
2700 mutex_enter(&vd->vdev_stat_lock);
2701 vd->vdev_stat.vs_space = 0;
2702 vd->vdev_stat.vs_dspace = 0;
2703 vd->vdev_stat.vs_alloc = 0;
2704 mutex_exit(&vd->vdev_stat_lock);
2705 }
2706
2707 void
2708 vdev_scan_stat_init(vdev_t *vd)
2709 {
2710 vdev_stat_t *vs = &vd->vdev_stat;
2711 int c;
2712
2713 for (c = 0; c < vd->vdev_children; c++)
2714 vdev_scan_stat_init(vd->vdev_child[c]);
2715
2716 mutex_enter(&vd->vdev_stat_lock);
2717 vs->vs_scan_processed = 0;
2718 mutex_exit(&vd->vdev_stat_lock);
2719 }
2720
2721 void
2722 vdev_stat_update(zio_t *zio, uint64_t psize)
2723 {
2724 spa_t *spa = zio->io_spa;
2725 vdev_t *rvd = spa->spa_root_vdev;
2726 vdev_t *vd = zio->io_vd ? zio->io_vd : rvd;
2727 vdev_t *pvd;
2728 uint64_t txg = zio->io_txg;
2729 vdev_stat_t *vs = &vd->vdev_stat;
2730 zio_type_t type = zio->io_type;
2731 int flags = zio->io_flags;
2732
2733 /*
2734 * If this i/o is a gang leader, it didn't do any actual work.
2735 */
2736 if (zio->io_gang_tree)
2737 return;
2738
2739 if (zio->io_error == 0) {
2740 /*
2741 * If this is a root i/o, don't count it -- we've already
2742 * counted the top-level vdevs, and vdev_get_stats() will
2743 * aggregate them when asked. This reduces contention on
2744 * the root vdev_stat_lock and implicitly handles blocks
2745 * that compress away to holes, for which there is no i/o.
2746 * (Holes never create vdev children, so all the counters
2747 * remain zero, which is what we want.)
2748 *
2749 * Note: this only applies to successful i/o (io_error == 0)
2750 * because unlike i/o counts, errors are not additive.
2751 * When reading a ditto block, for example, failure of
2752 * one top-level vdev does not imply a root-level error.
2753 */
2754 if (vd == rvd)
2755 return;
2756
2757 ASSERT(vd == zio->io_vd);
2758
2759 if (flags & ZIO_FLAG_IO_BYPASS)
2760 return;
2761
2762 mutex_enter(&vd->vdev_stat_lock);
2763
2764 if (flags & ZIO_FLAG_IO_REPAIR) {
2765 if (flags & ZIO_FLAG_SCAN_THREAD) {
2766 dsl_scan_phys_t *scn_phys =
2767 &spa->spa_dsl_pool->dp_scan->scn_phys;
2768 uint64_t *processed = &scn_phys->scn_processed;
2769
2770 /* XXX cleanup? */
2771 if (vd->vdev_ops->vdev_op_leaf)
2772 atomic_add_64(processed, psize);
2773 vs->vs_scan_processed += psize;
2774 }
2775
2776 if (flags & ZIO_FLAG_SELF_HEAL)
2777 vs->vs_self_healed += psize;
2778 }
2779
2780 vs->vs_ops[type]++;
2781 vs->vs_bytes[type] += psize;
2782
2783 mutex_exit(&vd->vdev_stat_lock);
2784 return;
2785 }
2786
2787 if (flags & ZIO_FLAG_SPECULATIVE)
2788 return;
2789
2790 /*
2791 * If this is an I/O error that is going to be retried, then ignore the
2792 * error. Otherwise, the user may interpret B_FAILFAST I/O errors as
2793 * hard errors, when in reality they can happen for any number of
2794 * innocuous reasons (bus resets, MPxIO link failure, etc).
2795 */
2796 if (zio->io_error == EIO &&
2797 !(zio->io_flags & ZIO_FLAG_IO_RETRY))
2798 return;
2799
2800 /*
2801 * Intent logs writes won't propagate their error to the root
2802 * I/O so don't mark these types of failures as pool-level
2803 * errors.
2804 */
2805 if (zio->io_vd == NULL && (zio->io_flags & ZIO_FLAG_DONT_PROPAGATE))
2806 return;
2807
2808 mutex_enter(&vd->vdev_stat_lock);
2809 if (type == ZIO_TYPE_READ && !vdev_is_dead(vd)) {
2810 if (zio->io_error == ECKSUM)
2811 vs->vs_checksum_errors++;
2812 else
2813 vs->vs_read_errors++;
2814 }
2815 if (type == ZIO_TYPE_WRITE && !vdev_is_dead(vd))
2816 vs->vs_write_errors++;
2817 mutex_exit(&vd->vdev_stat_lock);
2818
2819 if (type == ZIO_TYPE_WRITE && txg != 0 &&
2820 (!(flags & ZIO_FLAG_IO_REPAIR) ||
2821 (flags & ZIO_FLAG_SCAN_THREAD) ||
2822 spa->spa_claiming)) {
2823 /*
2824 * This is either a normal write (not a repair), or it's
2825 * a repair induced by the scrub thread, or it's a repair
2826 * made by zil_claim() during spa_load() in the first txg.
2827 * In the normal case, we commit the DTL change in the same
2828 * txg as the block was born. In the scrub-induced repair
2829 * case, we know that scrubs run in first-pass syncing context,
2830 * so we commit the DTL change in spa_syncing_txg(spa).
2831 * In the zil_claim() case, we commit in spa_first_txg(spa).
2832 *
2833 * We currently do not make DTL entries for failed spontaneous
2834 * self-healing writes triggered by normal (non-scrubbing)
2835 * reads, because we have no transactional context in which to
2836 * do so -- and it's not clear that it'd be desirable anyway.
2837 */
2838 if (vd->vdev_ops->vdev_op_leaf) {
2839 uint64_t commit_txg = txg;
2840 if (flags & ZIO_FLAG_SCAN_THREAD) {
2841 ASSERT(flags & ZIO_FLAG_IO_REPAIR);
2842 ASSERT(spa_sync_pass(spa) == 1);
2843 vdev_dtl_dirty(vd, DTL_SCRUB, txg, 1);
2844 commit_txg = spa_syncing_txg(spa);
2845 } else if (spa->spa_claiming) {
2846 ASSERT(flags & ZIO_FLAG_IO_REPAIR);
2847 commit_txg = spa_first_txg(spa);
2848 }
2849 ASSERT(commit_txg >= spa_syncing_txg(spa));
2850 if (vdev_dtl_contains(vd, DTL_MISSING, txg, 1))
2851 return;
2852 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
2853 vdev_dtl_dirty(pvd, DTL_PARTIAL, txg, 1);
2854 vdev_dirty(vd->vdev_top, VDD_DTL, vd, commit_txg);
2855 }
2856 if (vd != rvd)
2857 vdev_dtl_dirty(vd, DTL_MISSING, txg, 1);
2858 }
2859 }
2860
2861 /*
2862 * Update the in-core space usage stats for this vdev, its metaslab class,
2863 * and the root vdev.
2864 */
2865 void
2866 vdev_space_update(vdev_t *vd, int64_t alloc_delta, int64_t defer_delta,
2867 int64_t space_delta)
2868 {
2869 int64_t dspace_delta = space_delta;
2870 spa_t *spa = vd->vdev_spa;
2871 vdev_t *rvd = spa->spa_root_vdev;
2872 metaslab_group_t *mg = vd->vdev_mg;
2873 metaslab_class_t *mc = mg ? mg->mg_class : NULL;
2874
2875 ASSERT(vd == vd->vdev_top);
2876
2877 /*
2878 * Apply the inverse of the psize-to-asize (ie. RAID-Z) space-expansion
2879 * factor. We must calculate this here and not at the root vdev
2880 * because the root vdev's psize-to-asize is simply the max of its
2881 * childrens', thus not accurate enough for us.
2882 */
2883 ASSERT((dspace_delta & (SPA_MINBLOCKSIZE-1)) == 0);
2884 ASSERT(vd->vdev_deflate_ratio != 0 || vd->vdev_isl2cache);
2885 dspace_delta = (dspace_delta >> SPA_MINBLOCKSHIFT) *
2886 vd->vdev_deflate_ratio;
2887
2888 mutex_enter(&vd->vdev_stat_lock);
2889 vd->vdev_stat.vs_alloc += alloc_delta;
2890 vd->vdev_stat.vs_space += space_delta;
2891 vd->vdev_stat.vs_dspace += dspace_delta;
2892 mutex_exit(&vd->vdev_stat_lock);
2893
2894 if (mc == spa_normal_class(spa)) {
2895 mutex_enter(&rvd->vdev_stat_lock);
2896 rvd->vdev_stat.vs_alloc += alloc_delta;
2897 rvd->vdev_stat.vs_space += space_delta;
2898 rvd->vdev_stat.vs_dspace += dspace_delta;
2899 mutex_exit(&rvd->vdev_stat_lock);
2900 }
2901
2902 if (mc != NULL) {
2903 ASSERT(rvd == vd->vdev_parent);
2904 ASSERT(vd->vdev_ms_count != 0);
2905
2906 metaslab_class_space_update(mc,
2907 alloc_delta, defer_delta, space_delta, dspace_delta);
2908 }
2909 }
2910
2911 /*
2912 * Mark a top-level vdev's config as dirty, placing it on the dirty list
2913 * so that it will be written out next time the vdev configuration is synced.
2914 * If the root vdev is specified (vdev_top == NULL), dirty all top-level vdevs.
2915 */
2916 void
2917 vdev_config_dirty(vdev_t *vd)
2918 {
2919 spa_t *spa = vd->vdev_spa;
2920 vdev_t *rvd = spa->spa_root_vdev;
2921 int c;
2922
2923 ASSERT(spa_writeable(spa));
2924
2925 /*
2926 * If this is an aux vdev (as with l2cache and spare devices), then we
2927 * update the vdev config manually and set the sync flag.
2928 */
2929 if (vd->vdev_aux != NULL) {
2930 spa_aux_vdev_t *sav = vd->vdev_aux;
2931 nvlist_t **aux;
2932 uint_t naux;
2933
2934 for (c = 0; c < sav->sav_count; c++) {
2935 if (sav->sav_vdevs[c] == vd)
2936 break;
2937 }
2938
2939 if (c == sav->sav_count) {
2940 /*
2941 * We're being removed. There's nothing more to do.
2942 */
2943 ASSERT(sav->sav_sync == B_TRUE);
2944 return;
2945 }
2946
2947 sav->sav_sync = B_TRUE;
2948
2949 if (nvlist_lookup_nvlist_array(sav->sav_config,
2950 ZPOOL_CONFIG_L2CACHE, &aux, &naux) != 0) {
2951 VERIFY(nvlist_lookup_nvlist_array(sav->sav_config,
2952 ZPOOL_CONFIG_SPARES, &aux, &naux) == 0);
2953 }
2954
2955 ASSERT(c < naux);
2956
2957 /*
2958 * Setting the nvlist in the middle if the array is a little
2959 * sketchy, but it will work.
2960 */
2961 nvlist_free(aux[c]);
2962 aux[c] = vdev_config_generate(spa, vd, B_TRUE, 0);
2963
2964 return;
2965 }
2966
2967 /*
2968 * The dirty list is protected by the SCL_CONFIG lock. The caller
2969 * must either hold SCL_CONFIG as writer, or must be the sync thread
2970 * (which holds SCL_CONFIG as reader). There's only one sync thread,
2971 * so this is sufficient to ensure mutual exclusion.
2972 */
2973 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
2974 (dsl_pool_sync_context(spa_get_dsl(spa)) &&
2975 spa_config_held(spa, SCL_CONFIG, RW_READER)));
2976
2977 if (vd == rvd) {
2978 for (c = 0; c < rvd->vdev_children; c++)
2979 vdev_config_dirty(rvd->vdev_child[c]);
2980 } else {
2981 ASSERT(vd == vd->vdev_top);
2982
2983 if (!list_link_active(&vd->vdev_config_dirty_node) &&
2984 !vd->vdev_ishole)
2985 list_insert_head(&spa->spa_config_dirty_list, vd);
2986 }
2987 }
2988
2989 void
2990 vdev_config_clean(vdev_t *vd)
2991 {
2992 spa_t *spa = vd->vdev_spa;
2993
2994 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
2995 (dsl_pool_sync_context(spa_get_dsl(spa)) &&
2996 spa_config_held(spa, SCL_CONFIG, RW_READER)));
2997
2998 ASSERT(list_link_active(&vd->vdev_config_dirty_node));
2999 list_remove(&spa->spa_config_dirty_list, vd);
3000 }
3001
3002 /*
3003 * Mark a top-level vdev's state as dirty, so that the next pass of
3004 * spa_sync() can convert this into vdev_config_dirty(). We distinguish
3005 * the state changes from larger config changes because they require
3006 * much less locking, and are often needed for administrative actions.
3007 */
3008 void
3009 vdev_state_dirty(vdev_t *vd)
3010 {
3011 spa_t *spa = vd->vdev_spa;
3012
3013 ASSERT(spa_writeable(spa));
3014 ASSERT(vd == vd->vdev_top);
3015
3016 /*
3017 * The state list is protected by the SCL_STATE lock. The caller
3018 * must either hold SCL_STATE as writer, or must be the sync thread
3019 * (which holds SCL_STATE as reader). There's only one sync thread,
3020 * so this is sufficient to ensure mutual exclusion.
3021 */
3022 ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
3023 (dsl_pool_sync_context(spa_get_dsl(spa)) &&
3024 spa_config_held(spa, SCL_STATE, RW_READER)));
3025
3026 if (!list_link_active(&vd->vdev_state_dirty_node) && !vd->vdev_ishole)
3027 list_insert_head(&spa->spa_state_dirty_list, vd);
3028 }
3029
3030 void
3031 vdev_state_clean(vdev_t *vd)
3032 {
3033 spa_t *spa = vd->vdev_spa;
3034
3035 ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
3036 (dsl_pool_sync_context(spa_get_dsl(spa)) &&
3037 spa_config_held(spa, SCL_STATE, RW_READER)));
3038
3039 ASSERT(list_link_active(&vd->vdev_state_dirty_node));
3040 list_remove(&spa->spa_state_dirty_list, vd);
3041 }
3042
3043 /*
3044 * Propagate vdev state up from children to parent.
3045 */
3046 void
3047 vdev_propagate_state(vdev_t *vd)
3048 {
3049 spa_t *spa = vd->vdev_spa;
3050 vdev_t *rvd = spa->spa_root_vdev;
3051 int degraded = 0, faulted = 0;
3052 int corrupted = 0;
3053 vdev_t *child;
3054 int c;
3055
3056 if (vd->vdev_children > 0) {
3057 for (c = 0; c < vd->vdev_children; c++) {
3058 child = vd->vdev_child[c];
3059
3060 /*
3061 * Don't factor holes into the decision.
3062 */
3063 if (child->vdev_ishole)
3064 continue;
3065
3066 if (!vdev_readable(child) ||
3067 (!vdev_writeable(child) && spa_writeable(spa))) {
3068 /*
3069 * Root special: if there is a top-level log
3070 * device, treat the root vdev as if it were
3071 * degraded.
3072 */
3073 if (child->vdev_islog && vd == rvd)
3074 degraded++;
3075 else
3076 faulted++;
3077 } else if (child->vdev_state <= VDEV_STATE_DEGRADED) {
3078 degraded++;
3079 }
3080
3081 if (child->vdev_stat.vs_aux == VDEV_AUX_CORRUPT_DATA)
3082 corrupted++;
3083 }
3084
3085 vd->vdev_ops->vdev_op_state_change(vd, faulted, degraded);
3086
3087 /*
3088 * Root special: if there is a top-level vdev that cannot be
3089 * opened due to corrupted metadata, then propagate the root
3090 * vdev's aux state as 'corrupt' rather than 'insufficient
3091 * replicas'.
3092 */
3093 if (corrupted && vd == rvd &&
3094 rvd->vdev_state == VDEV_STATE_CANT_OPEN)
3095 vdev_set_state(rvd, B_FALSE, VDEV_STATE_CANT_OPEN,
3096 VDEV_AUX_CORRUPT_DATA);
3097 }
3098
3099 if (vd->vdev_parent)
3100 vdev_propagate_state(vd->vdev_parent);
3101 }
3102
3103 /*
3104 * Set a vdev's state. If this is during an open, we don't update the parent
3105 * state, because we're in the process of opening children depth-first.
3106 * Otherwise, we propagate the change to the parent.
3107 *
3108 * If this routine places a device in a faulted state, an appropriate ereport is
3109 * generated.
3110 */
3111 void
3112 vdev_set_state(vdev_t *vd, boolean_t isopen, vdev_state_t state, vdev_aux_t aux)
3113 {
3114 uint64_t save_state;
3115 spa_t *spa = vd->vdev_spa;
3116
3117 if (state == vd->vdev_state) {
3118 vd->vdev_stat.vs_aux = aux;
3119 return;
3120 }
3121
3122 save_state = vd->vdev_state;
3123
3124 vd->vdev_state = state;
3125 vd->vdev_stat.vs_aux = aux;
3126
3127 /*
3128 * If we are setting the vdev state to anything but an open state, then
3129 * always close the underlying device unless the device has requested
3130 * a delayed close (i.e. we're about to remove or fault the device).
3131 * Otherwise, we keep accessible but invalid devices open forever.
3132 * We don't call vdev_close() itself, because that implies some extra
3133 * checks (offline, etc) that we don't want here. This is limited to
3134 * leaf devices, because otherwise closing the device will affect other
3135 * children.
3136 */
3137 if (!vd->vdev_delayed_close && vdev_is_dead(vd) &&
3138 vd->vdev_ops->vdev_op_leaf)
3139 vd->vdev_ops->vdev_op_close(vd);
3140
3141 /*
3142 * If we have brought this vdev back into service, we need
3143 * to notify fmd so that it can gracefully repair any outstanding
3144 * cases due to a missing device. We do this in all cases, even those
3145 * that probably don't correlate to a repaired fault. This is sure to
3146 * catch all cases, and we let the zfs-retire agent sort it out. If
3147 * this is a transient state it's OK, as the retire agent will
3148 * double-check the state of the vdev before repairing it.
3149 */
3150 if (state == VDEV_STATE_HEALTHY && vd->vdev_ops->vdev_op_leaf &&
3151 vd->vdev_prevstate != state)
3152 zfs_post_state_change(spa, vd);
3153
3154 if (vd->vdev_removed &&
3155 state == VDEV_STATE_CANT_OPEN &&
3156 (aux == VDEV_AUX_OPEN_FAILED || vd->vdev_checkremove)) {
3157 /*
3158 * If the previous state is set to VDEV_STATE_REMOVED, then this
3159 * device was previously marked removed and someone attempted to
3160 * reopen it. If this failed due to a nonexistent device, then
3161 * keep the device in the REMOVED state. We also let this be if
3162 * it is one of our special test online cases, which is only
3163 * attempting to online the device and shouldn't generate an FMA
3164 * fault.
3165 */
3166 vd->vdev_state = VDEV_STATE_REMOVED;
3167 vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
3168 } else if (state == VDEV_STATE_REMOVED) {
3169 vd->vdev_removed = B_TRUE;
3170 } else if (state == VDEV_STATE_CANT_OPEN) {
3171 /*
3172 * If we fail to open a vdev during an import or recovery, we
3173 * mark it as "not available", which signifies that it was
3174 * never there to begin with. Failure to open such a device
3175 * is not considered an error.
3176 */
3177 if ((spa_load_state(spa) == SPA_LOAD_IMPORT ||
3178 spa_load_state(spa) == SPA_LOAD_RECOVER) &&
3179 vd->vdev_ops->vdev_op_leaf)
3180 vd->vdev_not_present = 1;
3181
3182 /*
3183 * Post the appropriate ereport. If the 'prevstate' field is
3184 * set to something other than VDEV_STATE_UNKNOWN, it indicates
3185 * that this is part of a vdev_reopen(). In this case, we don't
3186 * want to post the ereport if the device was already in the
3187 * CANT_OPEN state beforehand.
3188 *
3189 * If the 'checkremove' flag is set, then this is an attempt to
3190 * online the device in response to an insertion event. If we
3191 * hit this case, then we have detected an insertion event for a
3192 * faulted or offline device that wasn't in the removed state.
3193 * In this scenario, we don't post an ereport because we are
3194 * about to replace the device, or attempt an online with
3195 * vdev_forcefault, which will generate the fault for us.
3196 */
3197 if ((vd->vdev_prevstate != state || vd->vdev_forcefault) &&
3198 !vd->vdev_not_present && !vd->vdev_checkremove &&
3199 vd != spa->spa_root_vdev) {
3200 const char *class;
3201
3202 switch (aux) {
3203 case VDEV_AUX_OPEN_FAILED:
3204 class = FM_EREPORT_ZFS_DEVICE_OPEN_FAILED;
3205 break;
3206 case VDEV_AUX_CORRUPT_DATA:
3207 class = FM_EREPORT_ZFS_DEVICE_CORRUPT_DATA;
3208 break;
3209 case VDEV_AUX_NO_REPLICAS:
3210 class = FM_EREPORT_ZFS_DEVICE_NO_REPLICAS;
3211 break;
3212 case VDEV_AUX_BAD_GUID_SUM:
3213 class = FM_EREPORT_ZFS_DEVICE_BAD_GUID_SUM;
3214 break;
3215 case VDEV_AUX_TOO_SMALL:
3216 class = FM_EREPORT_ZFS_DEVICE_TOO_SMALL;
3217 break;
3218 case VDEV_AUX_BAD_LABEL:
3219 class = FM_EREPORT_ZFS_DEVICE_BAD_LABEL;
3220 break;
3221 default:
3222 class = FM_EREPORT_ZFS_DEVICE_UNKNOWN;
3223 }
3224
3225 zfs_ereport_post(class, spa, vd, NULL, save_state, 0);
3226 }
3227
3228 /* Erase any notion of persistent removed state */
3229 vd->vdev_removed = B_FALSE;
3230 } else {
3231 vd->vdev_removed = B_FALSE;
3232 }
3233
3234 if (!isopen && vd->vdev_parent)
3235 vdev_propagate_state(vd->vdev_parent);
3236 }
3237
3238 /*
3239 * Check the vdev configuration to ensure that it's capable of supporting
3240 * a root pool.
3241 */
3242 boolean_t
3243 vdev_is_bootable(vdev_t *vd)
3244 {
3245 #if defined(__sun__) || defined(__sun)
3246 /*
3247 * Currently, we do not support RAID-Z or partial configuration.
3248 * In addition, only a single top-level vdev is allowed and none of the
3249 * leaves can be wholedisks.
3250 */
3251 int c;
3252
3253 if (!vd->vdev_ops->vdev_op_leaf) {
3254 char *vdev_type = vd->vdev_ops->vdev_op_type;
3255
3256 if (strcmp(vdev_type, VDEV_TYPE_ROOT) == 0 &&
3257 vd->vdev_children > 1) {
3258 return (B_FALSE);
3259 } else if (strcmp(vdev_type, VDEV_TYPE_RAIDZ) == 0 ||
3260 strcmp(vdev_type, VDEV_TYPE_MISSING) == 0) {
3261 return (B_FALSE);
3262 }
3263 } else if (vd->vdev_wholedisk == 1) {
3264 return (B_FALSE);
3265 }
3266
3267 for (c = 0; c < vd->vdev_children; c++) {
3268 if (!vdev_is_bootable(vd->vdev_child[c]))
3269 return (B_FALSE);
3270 }
3271 #endif /* __sun__ || __sun */
3272 return (B_TRUE);
3273 }
3274
3275 /*
3276 * Load the state from the original vdev tree (ovd) which
3277 * we've retrieved from the MOS config object. If the original
3278 * vdev was offline or faulted then we transfer that state to the
3279 * device in the current vdev tree (nvd).
3280 */
3281 void
3282 vdev_load_log_state(vdev_t *nvd, vdev_t *ovd)
3283 {
3284 int c;
3285
3286 ASSERT(nvd->vdev_top->vdev_islog);
3287 ASSERT(spa_config_held(nvd->vdev_spa,
3288 SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
3289 ASSERT3U(nvd->vdev_guid, ==, ovd->vdev_guid);
3290
3291 for (c = 0; c < nvd->vdev_children; c++)
3292 vdev_load_log_state(nvd->vdev_child[c], ovd->vdev_child[c]);
3293
3294 if (nvd->vdev_ops->vdev_op_leaf) {
3295 /*
3296 * Restore the persistent vdev state
3297 */
3298 nvd->vdev_offline = ovd->vdev_offline;
3299 nvd->vdev_faulted = ovd->vdev_faulted;
3300 nvd->vdev_degraded = ovd->vdev_degraded;
3301 nvd->vdev_removed = ovd->vdev_removed;
3302 }
3303 }
3304
3305 /*
3306 * Determine if a log device has valid content. If the vdev was
3307 * removed or faulted in the MOS config then we know that
3308 * the content on the log device has already been written to the pool.
3309 */
3310 boolean_t
3311 vdev_log_state_valid(vdev_t *vd)
3312 {
3313 int c;
3314
3315 if (vd->vdev_ops->vdev_op_leaf && !vd->vdev_faulted &&
3316 !vd->vdev_removed)
3317 return (B_TRUE);
3318
3319 for (c = 0; c < vd->vdev_children; c++)
3320 if (vdev_log_state_valid(vd->vdev_child[c]))
3321 return (B_TRUE);
3322
3323 return (B_FALSE);
3324 }
3325
3326 /*
3327 * Expand a vdev if possible.
3328 */
3329 void
3330 vdev_expand(vdev_t *vd, uint64_t txg)
3331 {
3332 ASSERT(vd->vdev_top == vd);
3333 ASSERT(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
3334
3335 if ((vd->vdev_asize >> vd->vdev_ms_shift) > vd->vdev_ms_count) {
3336 VERIFY(vdev_metaslab_init(vd, txg) == 0);
3337 vdev_config_dirty(vd);
3338 }
3339 }
3340
3341 /*
3342 * Split a vdev.
3343 */
3344 void
3345 vdev_split(vdev_t *vd)
3346 {
3347 vdev_t *cvd, *pvd = vd->vdev_parent;
3348
3349 vdev_remove_child(pvd, vd);
3350 vdev_compact_children(pvd);
3351
3352 cvd = pvd->vdev_child[0];
3353 if (pvd->vdev_children == 1) {
3354 vdev_remove_parent(cvd);
3355 cvd->vdev_splitting = B_TRUE;
3356 }
3357 vdev_propagate_state(cvd);
3358 }
3359
3360 void
3361 vdev_deadman(vdev_t *vd)
3362 {
3363 int c;
3364
3365 for (c = 0; c < vd->vdev_children; c++) {
3366 vdev_t *cvd = vd->vdev_child[c];
3367
3368 vdev_deadman(cvd);
3369 }
3370
3371 if (vd->vdev_ops->vdev_op_leaf) {
3372 vdev_queue_t *vq = &vd->vdev_queue;
3373
3374 mutex_enter(&vq->vq_lock);
3375 if (avl_numnodes(&vq->vq_active_tree) > 0) {
3376 spa_t *spa = vd->vdev_spa;
3377 zio_t *fio;
3378 uint64_t delta;
3379
3380 /*
3381 * Look at the head of all the pending queues,
3382 * if any I/O has been outstanding for longer than
3383 * the spa_deadman_synctime we log a zevent.
3384 */
3385 fio = avl_first(&vq->vq_active_tree);
3386 delta = gethrtime() - fio->io_timestamp;
3387 if (delta > spa_deadman_synctime(spa)) {
3388 zfs_dbgmsg("SLOW IO: zio timestamp %lluns, "
3389 "delta %lluns, last io %lluns",
3390 fio->io_timestamp, delta,
3391 vq->vq_io_complete_ts);
3392 zfs_ereport_post(FM_EREPORT_ZFS_DELAY,
3393 spa, vd, fio, 0, 0);
3394 }
3395 }
3396 mutex_exit(&vq->vq_lock);
3397 }
3398 }
3399
3400 #if defined(_KERNEL) && defined(HAVE_SPL)
3401 EXPORT_SYMBOL(vdev_fault);
3402 EXPORT_SYMBOL(vdev_degrade);
3403 EXPORT_SYMBOL(vdev_online);
3404 EXPORT_SYMBOL(vdev_offline);
3405 EXPORT_SYMBOL(vdev_clear);
3406
3407 module_param(metaslabs_per_vdev, int, 0644);
3408 MODULE_PARM_DESC(metaslabs_per_vdev,
3409 "Divide added vdev into approximately (but no more than) this number "
3410 "of metaslabs");
3411 #endif