]> git.proxmox.com Git - mirror_zfs.git/blob - module/zfs/vdev.c
Add illumos FMD ZFS logic to ZED -- phase 2
[mirror_zfs.git] / module / zfs / vdev.c
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22 /*
23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
25 * Copyright (c) 2011, 2015 by Delphix. All rights reserved.
26 */
27
28 #include <sys/zfs_context.h>
29 #include <sys/fm/fs/zfs.h>
30 #include <sys/spa.h>
31 #include <sys/spa_impl.h>
32 #include <sys/dmu.h>
33 #include <sys/dmu_tx.h>
34 #include <sys/vdev_impl.h>
35 #include <sys/uberblock_impl.h>
36 #include <sys/metaslab.h>
37 #include <sys/metaslab_impl.h>
38 #include <sys/space_map.h>
39 #include <sys/space_reftree.h>
40 #include <sys/zio.h>
41 #include <sys/zap.h>
42 #include <sys/fs/zfs.h>
43 #include <sys/arc.h>
44 #include <sys/zil.h>
45 #include <sys/dsl_scan.h>
46 #include <sys/zvol.h>
47 #include <sys/zfs_ratelimit.h>
48
49 /*
50 * When a vdev is added, it will be divided into approximately (but no
51 * more than) this number of metaslabs.
52 */
53 int metaslabs_per_vdev = 200;
54
55 /*
56 * Virtual device management.
57 */
58
59 static vdev_ops_t *vdev_ops_table[] = {
60 &vdev_root_ops,
61 &vdev_raidz_ops,
62 &vdev_mirror_ops,
63 &vdev_replacing_ops,
64 &vdev_spare_ops,
65 &vdev_disk_ops,
66 &vdev_file_ops,
67 &vdev_missing_ops,
68 &vdev_hole_ops,
69 NULL
70 };
71
72 /*
73 * Given a vdev type, return the appropriate ops vector.
74 */
75 static vdev_ops_t *
76 vdev_getops(const char *type)
77 {
78 vdev_ops_t *ops, **opspp;
79
80 for (opspp = vdev_ops_table; (ops = *opspp) != NULL; opspp++)
81 if (strcmp(ops->vdev_op_type, type) == 0)
82 break;
83
84 return (ops);
85 }
86
87 /*
88 * Default asize function: return the MAX of psize with the asize of
89 * all children. This is what's used by anything other than RAID-Z.
90 */
91 uint64_t
92 vdev_default_asize(vdev_t *vd, uint64_t psize)
93 {
94 uint64_t asize = P2ROUNDUP(psize, 1ULL << vd->vdev_top->vdev_ashift);
95 uint64_t csize;
96 int c;
97
98 for (c = 0; c < vd->vdev_children; c++) {
99 csize = vdev_psize_to_asize(vd->vdev_child[c], psize);
100 asize = MAX(asize, csize);
101 }
102
103 return (asize);
104 }
105
106 /*
107 * Get the minimum allocatable size. We define the allocatable size as
108 * the vdev's asize rounded to the nearest metaslab. This allows us to
109 * replace or attach devices which don't have the same physical size but
110 * can still satisfy the same number of allocations.
111 */
112 uint64_t
113 vdev_get_min_asize(vdev_t *vd)
114 {
115 vdev_t *pvd = vd->vdev_parent;
116
117 /*
118 * If our parent is NULL (inactive spare or cache) or is the root,
119 * just return our own asize.
120 */
121 if (pvd == NULL)
122 return (vd->vdev_asize);
123
124 /*
125 * The top-level vdev just returns the allocatable size rounded
126 * to the nearest metaslab.
127 */
128 if (vd == vd->vdev_top)
129 return (P2ALIGN(vd->vdev_asize, 1ULL << vd->vdev_ms_shift));
130
131 /*
132 * The allocatable space for a raidz vdev is N * sizeof(smallest child),
133 * so each child must provide at least 1/Nth of its asize.
134 */
135 if (pvd->vdev_ops == &vdev_raidz_ops)
136 return (pvd->vdev_min_asize / pvd->vdev_children);
137
138 return (pvd->vdev_min_asize);
139 }
140
141 void
142 vdev_set_min_asize(vdev_t *vd)
143 {
144 int c;
145 vd->vdev_min_asize = vdev_get_min_asize(vd);
146
147 for (c = 0; c < vd->vdev_children; c++)
148 vdev_set_min_asize(vd->vdev_child[c]);
149 }
150
151 vdev_t *
152 vdev_lookup_top(spa_t *spa, uint64_t vdev)
153 {
154 vdev_t *rvd = spa->spa_root_vdev;
155
156 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
157
158 if (vdev < rvd->vdev_children) {
159 ASSERT(rvd->vdev_child[vdev] != NULL);
160 return (rvd->vdev_child[vdev]);
161 }
162
163 return (NULL);
164 }
165
166 vdev_t *
167 vdev_lookup_by_guid(vdev_t *vd, uint64_t guid)
168 {
169 vdev_t *mvd;
170 int c;
171
172 if (vd->vdev_guid == guid)
173 return (vd);
174
175 for (c = 0; c < vd->vdev_children; c++)
176 if ((mvd = vdev_lookup_by_guid(vd->vdev_child[c], guid)) !=
177 NULL)
178 return (mvd);
179
180 return (NULL);
181 }
182
183 static int
184 vdev_count_leaves_impl(vdev_t *vd)
185 {
186 int n = 0;
187 int c;
188
189 if (vd->vdev_ops->vdev_op_leaf)
190 return (1);
191
192 for (c = 0; c < vd->vdev_children; c++)
193 n += vdev_count_leaves_impl(vd->vdev_child[c]);
194
195 return (n);
196 }
197
198 int
199 vdev_count_leaves(spa_t *spa)
200 {
201 return (vdev_count_leaves_impl(spa->spa_root_vdev));
202 }
203
204 void
205 vdev_add_child(vdev_t *pvd, vdev_t *cvd)
206 {
207 size_t oldsize, newsize;
208 uint64_t id = cvd->vdev_id;
209 vdev_t **newchild;
210
211 ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
212 ASSERT(cvd->vdev_parent == NULL);
213
214 cvd->vdev_parent = pvd;
215
216 if (pvd == NULL)
217 return;
218
219 ASSERT(id >= pvd->vdev_children || pvd->vdev_child[id] == NULL);
220
221 oldsize = pvd->vdev_children * sizeof (vdev_t *);
222 pvd->vdev_children = MAX(pvd->vdev_children, id + 1);
223 newsize = pvd->vdev_children * sizeof (vdev_t *);
224
225 newchild = kmem_alloc(newsize, KM_SLEEP);
226 if (pvd->vdev_child != NULL) {
227 bcopy(pvd->vdev_child, newchild, oldsize);
228 kmem_free(pvd->vdev_child, oldsize);
229 }
230
231 pvd->vdev_child = newchild;
232 pvd->vdev_child[id] = cvd;
233
234 cvd->vdev_top = (pvd->vdev_top ? pvd->vdev_top: cvd);
235 ASSERT(cvd->vdev_top->vdev_parent->vdev_parent == NULL);
236
237 /*
238 * Walk up all ancestors to update guid sum.
239 */
240 for (; pvd != NULL; pvd = pvd->vdev_parent)
241 pvd->vdev_guid_sum += cvd->vdev_guid_sum;
242 }
243
244 void
245 vdev_remove_child(vdev_t *pvd, vdev_t *cvd)
246 {
247 int c;
248 uint_t id = cvd->vdev_id;
249
250 ASSERT(cvd->vdev_parent == pvd);
251
252 if (pvd == NULL)
253 return;
254
255 ASSERT(id < pvd->vdev_children);
256 ASSERT(pvd->vdev_child[id] == cvd);
257
258 pvd->vdev_child[id] = NULL;
259 cvd->vdev_parent = NULL;
260
261 for (c = 0; c < pvd->vdev_children; c++)
262 if (pvd->vdev_child[c])
263 break;
264
265 if (c == pvd->vdev_children) {
266 kmem_free(pvd->vdev_child, c * sizeof (vdev_t *));
267 pvd->vdev_child = NULL;
268 pvd->vdev_children = 0;
269 }
270
271 /*
272 * Walk up all ancestors to update guid sum.
273 */
274 for (; pvd != NULL; pvd = pvd->vdev_parent)
275 pvd->vdev_guid_sum -= cvd->vdev_guid_sum;
276 }
277
278 /*
279 * Remove any holes in the child array.
280 */
281 void
282 vdev_compact_children(vdev_t *pvd)
283 {
284 vdev_t **newchild, *cvd;
285 int oldc = pvd->vdev_children;
286 int newc;
287 int c;
288
289 ASSERT(spa_config_held(pvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
290
291 for (c = newc = 0; c < oldc; c++)
292 if (pvd->vdev_child[c])
293 newc++;
294
295 newchild = kmem_zalloc(newc * sizeof (vdev_t *), KM_SLEEP);
296
297 for (c = newc = 0; c < oldc; c++) {
298 if ((cvd = pvd->vdev_child[c]) != NULL) {
299 newchild[newc] = cvd;
300 cvd->vdev_id = newc++;
301 }
302 }
303
304 kmem_free(pvd->vdev_child, oldc * sizeof (vdev_t *));
305 pvd->vdev_child = newchild;
306 pvd->vdev_children = newc;
307 }
308
309 /*
310 * Allocate and minimally initialize a vdev_t.
311 */
312 vdev_t *
313 vdev_alloc_common(spa_t *spa, uint_t id, uint64_t guid, vdev_ops_t *ops)
314 {
315 vdev_t *vd;
316 int t;
317
318 vd = kmem_zalloc(sizeof (vdev_t), KM_SLEEP);
319
320 if (spa->spa_root_vdev == NULL) {
321 ASSERT(ops == &vdev_root_ops);
322 spa->spa_root_vdev = vd;
323 spa->spa_load_guid = spa_generate_guid(NULL);
324 }
325
326 if (guid == 0 && ops != &vdev_hole_ops) {
327 if (spa->spa_root_vdev == vd) {
328 /*
329 * The root vdev's guid will also be the pool guid,
330 * which must be unique among all pools.
331 */
332 guid = spa_generate_guid(NULL);
333 } else {
334 /*
335 * Any other vdev's guid must be unique within the pool.
336 */
337 guid = spa_generate_guid(spa);
338 }
339 ASSERT(!spa_guid_exists(spa_guid(spa), guid));
340 }
341
342 vd->vdev_spa = spa;
343 vd->vdev_id = id;
344 vd->vdev_guid = guid;
345 vd->vdev_guid_sum = guid;
346 vd->vdev_ops = ops;
347 vd->vdev_state = VDEV_STATE_CLOSED;
348 vd->vdev_ishole = (ops == &vdev_hole_ops);
349
350 /*
351 * Initialize rate limit structs for events. We rate limit ZIO delay
352 * and checksum events so that we don't overwhelm ZED with thousands
353 * of events when a disk is acting up.
354 */
355 zfs_ratelimit_init(&vd->vdev_delay_rl, DELAYS_PER_SECOND, 1);
356 zfs_ratelimit_init(&vd->vdev_checksum_rl, CHECKSUMS_PER_SECOND, 1);
357
358 list_link_init(&vd->vdev_config_dirty_node);
359 list_link_init(&vd->vdev_state_dirty_node);
360 mutex_init(&vd->vdev_dtl_lock, NULL, MUTEX_NOLOCKDEP, NULL);
361 mutex_init(&vd->vdev_stat_lock, NULL, MUTEX_DEFAULT, NULL);
362 mutex_init(&vd->vdev_probe_lock, NULL, MUTEX_DEFAULT, NULL);
363 mutex_init(&vd->vdev_queue_lock, NULL, MUTEX_DEFAULT, NULL);
364
365 for (t = 0; t < DTL_TYPES; t++) {
366 vd->vdev_dtl[t] = range_tree_create(NULL, NULL,
367 &vd->vdev_dtl_lock);
368 }
369 txg_list_create(&vd->vdev_ms_list,
370 offsetof(struct metaslab, ms_txg_node));
371 txg_list_create(&vd->vdev_dtl_list,
372 offsetof(struct vdev, vdev_dtl_node));
373 vd->vdev_stat.vs_timestamp = gethrtime();
374 vdev_queue_init(vd);
375 vdev_cache_init(vd);
376
377 return (vd);
378 }
379
380 /*
381 * Allocate a new vdev. The 'alloctype' is used to control whether we are
382 * creating a new vdev or loading an existing one - the behavior is slightly
383 * different for each case.
384 */
385 int
386 vdev_alloc(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, uint_t id,
387 int alloctype)
388 {
389 vdev_ops_t *ops;
390 char *type;
391 uint64_t guid = 0, islog, nparity;
392 vdev_t *vd;
393
394 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
395
396 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) != 0)
397 return (SET_ERROR(EINVAL));
398
399 if ((ops = vdev_getops(type)) == NULL)
400 return (SET_ERROR(EINVAL));
401
402 /*
403 * If this is a load, get the vdev guid from the nvlist.
404 * Otherwise, vdev_alloc_common() will generate one for us.
405 */
406 if (alloctype == VDEV_ALLOC_LOAD) {
407 uint64_t label_id;
408
409 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ID, &label_id) ||
410 label_id != id)
411 return (SET_ERROR(EINVAL));
412
413 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
414 return (SET_ERROR(EINVAL));
415 } else if (alloctype == VDEV_ALLOC_SPARE) {
416 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
417 return (SET_ERROR(EINVAL));
418 } else if (alloctype == VDEV_ALLOC_L2CACHE) {
419 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
420 return (SET_ERROR(EINVAL));
421 } else if (alloctype == VDEV_ALLOC_ROOTPOOL) {
422 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
423 return (SET_ERROR(EINVAL));
424 }
425
426 /*
427 * The first allocated vdev must be of type 'root'.
428 */
429 if (ops != &vdev_root_ops && spa->spa_root_vdev == NULL)
430 return (SET_ERROR(EINVAL));
431
432 /*
433 * Determine whether we're a log vdev.
434 */
435 islog = 0;
436 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_LOG, &islog);
437 if (islog && spa_version(spa) < SPA_VERSION_SLOGS)
438 return (SET_ERROR(ENOTSUP));
439
440 if (ops == &vdev_hole_ops && spa_version(spa) < SPA_VERSION_HOLES)
441 return (SET_ERROR(ENOTSUP));
442
443 /*
444 * Set the nparity property for RAID-Z vdevs.
445 */
446 nparity = -1ULL;
447 if (ops == &vdev_raidz_ops) {
448 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NPARITY,
449 &nparity) == 0) {
450 if (nparity == 0 || nparity > VDEV_RAIDZ_MAXPARITY)
451 return (SET_ERROR(EINVAL));
452 /*
453 * Previous versions could only support 1 or 2 parity
454 * device.
455 */
456 if (nparity > 1 &&
457 spa_version(spa) < SPA_VERSION_RAIDZ2)
458 return (SET_ERROR(ENOTSUP));
459 if (nparity > 2 &&
460 spa_version(spa) < SPA_VERSION_RAIDZ3)
461 return (SET_ERROR(ENOTSUP));
462 } else {
463 /*
464 * We require the parity to be specified for SPAs that
465 * support multiple parity levels.
466 */
467 if (spa_version(spa) >= SPA_VERSION_RAIDZ2)
468 return (SET_ERROR(EINVAL));
469 /*
470 * Otherwise, we default to 1 parity device for RAID-Z.
471 */
472 nparity = 1;
473 }
474 } else {
475 nparity = 0;
476 }
477 ASSERT(nparity != -1ULL);
478
479 vd = vdev_alloc_common(spa, id, guid, ops);
480
481 vd->vdev_islog = islog;
482 vd->vdev_nparity = nparity;
483
484 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &vd->vdev_path) == 0)
485 vd->vdev_path = spa_strdup(vd->vdev_path);
486 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_DEVID, &vd->vdev_devid) == 0)
487 vd->vdev_devid = spa_strdup(vd->vdev_devid);
488 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PHYS_PATH,
489 &vd->vdev_physpath) == 0)
490 vd->vdev_physpath = spa_strdup(vd->vdev_physpath);
491
492 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_VDEV_ENC_SYSFS_PATH,
493 &vd->vdev_enc_sysfs_path) == 0)
494 vd->vdev_enc_sysfs_path = spa_strdup(vd->vdev_enc_sysfs_path);
495
496 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_FRU, &vd->vdev_fru) == 0)
497 vd->vdev_fru = spa_strdup(vd->vdev_fru);
498
499 /*
500 * Set the whole_disk property. If it's not specified, leave the value
501 * as -1.
502 */
503 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK,
504 &vd->vdev_wholedisk) != 0)
505 vd->vdev_wholedisk = -1ULL;
506
507 /*
508 * Look for the 'not present' flag. This will only be set if the device
509 * was not present at the time of import.
510 */
511 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT,
512 &vd->vdev_not_present);
513
514 /*
515 * Get the alignment requirement.
516 */
517 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASHIFT, &vd->vdev_ashift);
518
519 /*
520 * Retrieve the vdev creation time.
521 */
522 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_CREATE_TXG,
523 &vd->vdev_crtxg);
524
525 /*
526 * If we're a top-level vdev, try to load the allocation parameters.
527 */
528 if (parent && !parent->vdev_parent &&
529 (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_SPLIT)) {
530 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY,
531 &vd->vdev_ms_array);
532 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT,
533 &vd->vdev_ms_shift);
534 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASIZE,
535 &vd->vdev_asize);
536 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVING,
537 &vd->vdev_removing);
538 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_VDEV_TOP_ZAP,
539 &vd->vdev_top_zap);
540 } else {
541 ASSERT0(vd->vdev_top_zap);
542 }
543
544 if (parent && !parent->vdev_parent && alloctype != VDEV_ALLOC_ATTACH) {
545 ASSERT(alloctype == VDEV_ALLOC_LOAD ||
546 alloctype == VDEV_ALLOC_ADD ||
547 alloctype == VDEV_ALLOC_SPLIT ||
548 alloctype == VDEV_ALLOC_ROOTPOOL);
549 vd->vdev_mg = metaslab_group_create(islog ?
550 spa_log_class(spa) : spa_normal_class(spa), vd);
551 }
552
553 if (vd->vdev_ops->vdev_op_leaf &&
554 (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_SPLIT)) {
555 (void) nvlist_lookup_uint64(nv,
556 ZPOOL_CONFIG_VDEV_LEAF_ZAP, &vd->vdev_leaf_zap);
557 } else {
558 ASSERT0(vd->vdev_leaf_zap);
559 }
560
561 /*
562 * If we're a leaf vdev, try to load the DTL object and other state.
563 */
564
565 if (vd->vdev_ops->vdev_op_leaf &&
566 (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_L2CACHE ||
567 alloctype == VDEV_ALLOC_ROOTPOOL)) {
568 if (alloctype == VDEV_ALLOC_LOAD) {
569 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DTL,
570 &vd->vdev_dtl_object);
571 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_UNSPARE,
572 &vd->vdev_unspare);
573 }
574
575 if (alloctype == VDEV_ALLOC_ROOTPOOL) {
576 uint64_t spare = 0;
577
578 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_SPARE,
579 &spare) == 0 && spare)
580 spa_spare_add(vd);
581 }
582
583 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_OFFLINE,
584 &vd->vdev_offline);
585
586 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_RESILVER_TXG,
587 &vd->vdev_resilver_txg);
588
589 /*
590 * When importing a pool, we want to ignore the persistent fault
591 * state, as the diagnosis made on another system may not be
592 * valid in the current context. Local vdevs will
593 * remain in the faulted state.
594 */
595 if (spa_load_state(spa) == SPA_LOAD_OPEN) {
596 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_FAULTED,
597 &vd->vdev_faulted);
598 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DEGRADED,
599 &vd->vdev_degraded);
600 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVED,
601 &vd->vdev_removed);
602
603 if (vd->vdev_faulted || vd->vdev_degraded) {
604 char *aux;
605
606 vd->vdev_label_aux =
607 VDEV_AUX_ERR_EXCEEDED;
608 if (nvlist_lookup_string(nv,
609 ZPOOL_CONFIG_AUX_STATE, &aux) == 0 &&
610 strcmp(aux, "external") == 0)
611 vd->vdev_label_aux = VDEV_AUX_EXTERNAL;
612 }
613 }
614 }
615
616 /*
617 * Add ourselves to the parent's list of children.
618 */
619 vdev_add_child(parent, vd);
620
621 *vdp = vd;
622
623 return (0);
624 }
625
626 void
627 vdev_free(vdev_t *vd)
628 {
629 int c, t;
630 spa_t *spa = vd->vdev_spa;
631
632 /*
633 * vdev_free() implies closing the vdev first. This is simpler than
634 * trying to ensure complicated semantics for all callers.
635 */
636 vdev_close(vd);
637
638 ASSERT(!list_link_active(&vd->vdev_config_dirty_node));
639 ASSERT(!list_link_active(&vd->vdev_state_dirty_node));
640
641 /*
642 * Free all children.
643 */
644 for (c = 0; c < vd->vdev_children; c++)
645 vdev_free(vd->vdev_child[c]);
646
647 ASSERT(vd->vdev_child == NULL);
648 ASSERT(vd->vdev_guid_sum == vd->vdev_guid);
649
650 /*
651 * Discard allocation state.
652 */
653 if (vd->vdev_mg != NULL) {
654 vdev_metaslab_fini(vd);
655 metaslab_group_destroy(vd->vdev_mg);
656 }
657
658 ASSERT0(vd->vdev_stat.vs_space);
659 ASSERT0(vd->vdev_stat.vs_dspace);
660 ASSERT0(vd->vdev_stat.vs_alloc);
661
662 /*
663 * Remove this vdev from its parent's child list.
664 */
665 vdev_remove_child(vd->vdev_parent, vd);
666
667 ASSERT(vd->vdev_parent == NULL);
668
669 /*
670 * Clean up vdev structure.
671 */
672 vdev_queue_fini(vd);
673 vdev_cache_fini(vd);
674
675 if (vd->vdev_path)
676 spa_strfree(vd->vdev_path);
677 if (vd->vdev_devid)
678 spa_strfree(vd->vdev_devid);
679 if (vd->vdev_physpath)
680 spa_strfree(vd->vdev_physpath);
681
682 if (vd->vdev_enc_sysfs_path)
683 spa_strfree(vd->vdev_enc_sysfs_path);
684
685 if (vd->vdev_fru)
686 spa_strfree(vd->vdev_fru);
687
688 if (vd->vdev_isspare)
689 spa_spare_remove(vd);
690 if (vd->vdev_isl2cache)
691 spa_l2cache_remove(vd);
692
693 txg_list_destroy(&vd->vdev_ms_list);
694 txg_list_destroy(&vd->vdev_dtl_list);
695
696 mutex_enter(&vd->vdev_dtl_lock);
697 space_map_close(vd->vdev_dtl_sm);
698 for (t = 0; t < DTL_TYPES; t++) {
699 range_tree_vacate(vd->vdev_dtl[t], NULL, NULL);
700 range_tree_destroy(vd->vdev_dtl[t]);
701 }
702 mutex_exit(&vd->vdev_dtl_lock);
703
704 mutex_destroy(&vd->vdev_queue_lock);
705 mutex_destroy(&vd->vdev_dtl_lock);
706 mutex_destroy(&vd->vdev_stat_lock);
707 mutex_destroy(&vd->vdev_probe_lock);
708
709 if (vd == spa->spa_root_vdev)
710 spa->spa_root_vdev = NULL;
711
712 kmem_free(vd, sizeof (vdev_t));
713 }
714
715 /*
716 * Transfer top-level vdev state from svd to tvd.
717 */
718 static void
719 vdev_top_transfer(vdev_t *svd, vdev_t *tvd)
720 {
721 spa_t *spa = svd->vdev_spa;
722 metaslab_t *msp;
723 vdev_t *vd;
724 int t;
725
726 ASSERT(tvd == tvd->vdev_top);
727
728 tvd->vdev_pending_fastwrite = svd->vdev_pending_fastwrite;
729 tvd->vdev_ms_array = svd->vdev_ms_array;
730 tvd->vdev_ms_shift = svd->vdev_ms_shift;
731 tvd->vdev_ms_count = svd->vdev_ms_count;
732 tvd->vdev_top_zap = svd->vdev_top_zap;
733
734 svd->vdev_ms_array = 0;
735 svd->vdev_ms_shift = 0;
736 svd->vdev_ms_count = 0;
737 svd->vdev_top_zap = 0;
738
739 if (tvd->vdev_mg)
740 ASSERT3P(tvd->vdev_mg, ==, svd->vdev_mg);
741 tvd->vdev_mg = svd->vdev_mg;
742 tvd->vdev_ms = svd->vdev_ms;
743
744 svd->vdev_mg = NULL;
745 svd->vdev_ms = NULL;
746
747 if (tvd->vdev_mg != NULL)
748 tvd->vdev_mg->mg_vd = tvd;
749
750 tvd->vdev_stat.vs_alloc = svd->vdev_stat.vs_alloc;
751 tvd->vdev_stat.vs_space = svd->vdev_stat.vs_space;
752 tvd->vdev_stat.vs_dspace = svd->vdev_stat.vs_dspace;
753
754 svd->vdev_stat.vs_alloc = 0;
755 svd->vdev_stat.vs_space = 0;
756 svd->vdev_stat.vs_dspace = 0;
757
758 for (t = 0; t < TXG_SIZE; t++) {
759 while ((msp = txg_list_remove(&svd->vdev_ms_list, t)) != NULL)
760 (void) txg_list_add(&tvd->vdev_ms_list, msp, t);
761 while ((vd = txg_list_remove(&svd->vdev_dtl_list, t)) != NULL)
762 (void) txg_list_add(&tvd->vdev_dtl_list, vd, t);
763 if (txg_list_remove_this(&spa->spa_vdev_txg_list, svd, t))
764 (void) txg_list_add(&spa->spa_vdev_txg_list, tvd, t);
765 }
766
767 if (list_link_active(&svd->vdev_config_dirty_node)) {
768 vdev_config_clean(svd);
769 vdev_config_dirty(tvd);
770 }
771
772 if (list_link_active(&svd->vdev_state_dirty_node)) {
773 vdev_state_clean(svd);
774 vdev_state_dirty(tvd);
775 }
776
777 tvd->vdev_deflate_ratio = svd->vdev_deflate_ratio;
778 svd->vdev_deflate_ratio = 0;
779
780 tvd->vdev_islog = svd->vdev_islog;
781 svd->vdev_islog = 0;
782 }
783
784 static void
785 vdev_top_update(vdev_t *tvd, vdev_t *vd)
786 {
787 int c;
788
789 if (vd == NULL)
790 return;
791
792 vd->vdev_top = tvd;
793
794 for (c = 0; c < vd->vdev_children; c++)
795 vdev_top_update(tvd, vd->vdev_child[c]);
796 }
797
798 /*
799 * Add a mirror/replacing vdev above an existing vdev.
800 */
801 vdev_t *
802 vdev_add_parent(vdev_t *cvd, vdev_ops_t *ops)
803 {
804 spa_t *spa = cvd->vdev_spa;
805 vdev_t *pvd = cvd->vdev_parent;
806 vdev_t *mvd;
807
808 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
809
810 mvd = vdev_alloc_common(spa, cvd->vdev_id, 0, ops);
811
812 mvd->vdev_asize = cvd->vdev_asize;
813 mvd->vdev_min_asize = cvd->vdev_min_asize;
814 mvd->vdev_max_asize = cvd->vdev_max_asize;
815 mvd->vdev_ashift = cvd->vdev_ashift;
816 mvd->vdev_state = cvd->vdev_state;
817 mvd->vdev_crtxg = cvd->vdev_crtxg;
818
819 vdev_remove_child(pvd, cvd);
820 vdev_add_child(pvd, mvd);
821 cvd->vdev_id = mvd->vdev_children;
822 vdev_add_child(mvd, cvd);
823 vdev_top_update(cvd->vdev_top, cvd->vdev_top);
824
825 if (mvd == mvd->vdev_top)
826 vdev_top_transfer(cvd, mvd);
827
828 return (mvd);
829 }
830
831 /*
832 * Remove a 1-way mirror/replacing vdev from the tree.
833 */
834 void
835 vdev_remove_parent(vdev_t *cvd)
836 {
837 vdev_t *mvd = cvd->vdev_parent;
838 vdev_t *pvd = mvd->vdev_parent;
839
840 ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
841
842 ASSERT(mvd->vdev_children == 1);
843 ASSERT(mvd->vdev_ops == &vdev_mirror_ops ||
844 mvd->vdev_ops == &vdev_replacing_ops ||
845 mvd->vdev_ops == &vdev_spare_ops);
846 cvd->vdev_ashift = mvd->vdev_ashift;
847
848 vdev_remove_child(mvd, cvd);
849 vdev_remove_child(pvd, mvd);
850
851 /*
852 * If cvd will replace mvd as a top-level vdev, preserve mvd's guid.
853 * Otherwise, we could have detached an offline device, and when we
854 * go to import the pool we'll think we have two top-level vdevs,
855 * instead of a different version of the same top-level vdev.
856 */
857 if (mvd->vdev_top == mvd) {
858 uint64_t guid_delta = mvd->vdev_guid - cvd->vdev_guid;
859 cvd->vdev_orig_guid = cvd->vdev_guid;
860 cvd->vdev_guid += guid_delta;
861 cvd->vdev_guid_sum += guid_delta;
862
863 /*
864 * If pool not set for autoexpand, we need to also preserve
865 * mvd's asize to prevent automatic expansion of cvd.
866 * Otherwise if we are adjusting the mirror by attaching and
867 * detaching children of non-uniform sizes, the mirror could
868 * autoexpand, unexpectedly requiring larger devices to
869 * re-establish the mirror.
870 */
871 if (!cvd->vdev_spa->spa_autoexpand)
872 cvd->vdev_asize = mvd->vdev_asize;
873 }
874 cvd->vdev_id = mvd->vdev_id;
875 vdev_add_child(pvd, cvd);
876 vdev_top_update(cvd->vdev_top, cvd->vdev_top);
877
878 if (cvd == cvd->vdev_top)
879 vdev_top_transfer(mvd, cvd);
880
881 ASSERT(mvd->vdev_children == 0);
882 vdev_free(mvd);
883 }
884
885 int
886 vdev_metaslab_init(vdev_t *vd, uint64_t txg)
887 {
888 spa_t *spa = vd->vdev_spa;
889 objset_t *mos = spa->spa_meta_objset;
890 uint64_t m;
891 uint64_t oldc = vd->vdev_ms_count;
892 uint64_t newc = vd->vdev_asize >> vd->vdev_ms_shift;
893 metaslab_t **mspp;
894 int error;
895
896 ASSERT(txg == 0 || spa_config_held(spa, SCL_ALLOC, RW_WRITER));
897
898 /*
899 * This vdev is not being allocated from yet or is a hole.
900 */
901 if (vd->vdev_ms_shift == 0)
902 return (0);
903
904 ASSERT(!vd->vdev_ishole);
905
906 /*
907 * Compute the raidz-deflation ratio. Note, we hard-code
908 * in 128k (1 << 17) because it is the "typical" blocksize.
909 * Even though SPA_MAXBLOCKSIZE changed, this algorithm can not change,
910 * otherwise it would inconsistently account for existing bp's.
911 */
912 vd->vdev_deflate_ratio = (1 << 17) /
913 (vdev_psize_to_asize(vd, 1 << 17) >> SPA_MINBLOCKSHIFT);
914
915 ASSERT(oldc <= newc);
916
917 mspp = vmem_zalloc(newc * sizeof (*mspp), KM_SLEEP);
918
919 if (oldc != 0) {
920 bcopy(vd->vdev_ms, mspp, oldc * sizeof (*mspp));
921 vmem_free(vd->vdev_ms, oldc * sizeof (*mspp));
922 }
923
924 vd->vdev_ms = mspp;
925 vd->vdev_ms_count = newc;
926
927 for (m = oldc; m < newc; m++) {
928 uint64_t object = 0;
929
930 if (txg == 0) {
931 error = dmu_read(mos, vd->vdev_ms_array,
932 m * sizeof (uint64_t), sizeof (uint64_t), &object,
933 DMU_READ_PREFETCH);
934 if (error)
935 return (error);
936 }
937
938 error = metaslab_init(vd->vdev_mg, m, object, txg,
939 &(vd->vdev_ms[m]));
940 if (error)
941 return (error);
942 }
943
944 if (txg == 0)
945 spa_config_enter(spa, SCL_ALLOC, FTAG, RW_WRITER);
946
947 /*
948 * If the vdev is being removed we don't activate
949 * the metaslabs since we want to ensure that no new
950 * allocations are performed on this device.
951 */
952 if (oldc == 0 && !vd->vdev_removing)
953 metaslab_group_activate(vd->vdev_mg);
954
955 if (txg == 0)
956 spa_config_exit(spa, SCL_ALLOC, FTAG);
957
958 return (0);
959 }
960
961 void
962 vdev_metaslab_fini(vdev_t *vd)
963 {
964 uint64_t m;
965 uint64_t count = vd->vdev_ms_count;
966
967 if (vd->vdev_ms != NULL) {
968 metaslab_group_passivate(vd->vdev_mg);
969 for (m = 0; m < count; m++) {
970 metaslab_t *msp = vd->vdev_ms[m];
971
972 if (msp != NULL)
973 metaslab_fini(msp);
974 }
975 vmem_free(vd->vdev_ms, count * sizeof (metaslab_t *));
976 vd->vdev_ms = NULL;
977 }
978
979 ASSERT3U(vd->vdev_pending_fastwrite, ==, 0);
980 }
981
982 typedef struct vdev_probe_stats {
983 boolean_t vps_readable;
984 boolean_t vps_writeable;
985 int vps_flags;
986 } vdev_probe_stats_t;
987
988 static void
989 vdev_probe_done(zio_t *zio)
990 {
991 spa_t *spa = zio->io_spa;
992 vdev_t *vd = zio->io_vd;
993 vdev_probe_stats_t *vps = zio->io_private;
994
995 ASSERT(vd->vdev_probe_zio != NULL);
996
997 if (zio->io_type == ZIO_TYPE_READ) {
998 if (zio->io_error == 0)
999 vps->vps_readable = 1;
1000 if (zio->io_error == 0 && spa_writeable(spa)) {
1001 zio_nowait(zio_write_phys(vd->vdev_probe_zio, vd,
1002 zio->io_offset, zio->io_size, zio->io_data,
1003 ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
1004 ZIO_PRIORITY_SYNC_WRITE, vps->vps_flags, B_TRUE));
1005 } else {
1006 zio_buf_free(zio->io_data, zio->io_size);
1007 }
1008 } else if (zio->io_type == ZIO_TYPE_WRITE) {
1009 if (zio->io_error == 0)
1010 vps->vps_writeable = 1;
1011 zio_buf_free(zio->io_data, zio->io_size);
1012 } else if (zio->io_type == ZIO_TYPE_NULL) {
1013 zio_t *pio;
1014 zio_link_t *zl;
1015
1016 vd->vdev_cant_read |= !vps->vps_readable;
1017 vd->vdev_cant_write |= !vps->vps_writeable;
1018
1019 if (vdev_readable(vd) &&
1020 (vdev_writeable(vd) || !spa_writeable(spa))) {
1021 zio->io_error = 0;
1022 } else {
1023 ASSERT(zio->io_error != 0);
1024 zfs_ereport_post(FM_EREPORT_ZFS_PROBE_FAILURE,
1025 spa, vd, NULL, 0, 0);
1026 zio->io_error = SET_ERROR(ENXIO);
1027 }
1028
1029 mutex_enter(&vd->vdev_probe_lock);
1030 ASSERT(vd->vdev_probe_zio == zio);
1031 vd->vdev_probe_zio = NULL;
1032 mutex_exit(&vd->vdev_probe_lock);
1033
1034 zl = NULL;
1035 while ((pio = zio_walk_parents(zio, &zl)) != NULL)
1036 if (!vdev_accessible(vd, pio))
1037 pio->io_error = SET_ERROR(ENXIO);
1038
1039 kmem_free(vps, sizeof (*vps));
1040 }
1041 }
1042
1043 /*
1044 * Determine whether this device is accessible.
1045 *
1046 * Read and write to several known locations: the pad regions of each
1047 * vdev label but the first, which we leave alone in case it contains
1048 * a VTOC.
1049 */
1050 zio_t *
1051 vdev_probe(vdev_t *vd, zio_t *zio)
1052 {
1053 spa_t *spa = vd->vdev_spa;
1054 vdev_probe_stats_t *vps = NULL;
1055 zio_t *pio;
1056 int l;
1057
1058 ASSERT(vd->vdev_ops->vdev_op_leaf);
1059
1060 /*
1061 * Don't probe the probe.
1062 */
1063 if (zio && (zio->io_flags & ZIO_FLAG_PROBE))
1064 return (NULL);
1065
1066 /*
1067 * To prevent 'probe storms' when a device fails, we create
1068 * just one probe i/o at a time. All zios that want to probe
1069 * this vdev will become parents of the probe io.
1070 */
1071 mutex_enter(&vd->vdev_probe_lock);
1072
1073 if ((pio = vd->vdev_probe_zio) == NULL) {
1074 vps = kmem_zalloc(sizeof (*vps), KM_SLEEP);
1075
1076 vps->vps_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_PROBE |
1077 ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_AGGREGATE |
1078 ZIO_FLAG_TRYHARD;
1079
1080 if (spa_config_held(spa, SCL_ZIO, RW_WRITER)) {
1081 /*
1082 * vdev_cant_read and vdev_cant_write can only
1083 * transition from TRUE to FALSE when we have the
1084 * SCL_ZIO lock as writer; otherwise they can only
1085 * transition from FALSE to TRUE. This ensures that
1086 * any zio looking at these values can assume that
1087 * failures persist for the life of the I/O. That's
1088 * important because when a device has intermittent
1089 * connectivity problems, we want to ensure that
1090 * they're ascribed to the device (ENXIO) and not
1091 * the zio (EIO).
1092 *
1093 * Since we hold SCL_ZIO as writer here, clear both
1094 * values so the probe can reevaluate from first
1095 * principles.
1096 */
1097 vps->vps_flags |= ZIO_FLAG_CONFIG_WRITER;
1098 vd->vdev_cant_read = B_FALSE;
1099 vd->vdev_cant_write = B_FALSE;
1100 }
1101
1102 vd->vdev_probe_zio = pio = zio_null(NULL, spa, vd,
1103 vdev_probe_done, vps,
1104 vps->vps_flags | ZIO_FLAG_DONT_PROPAGATE);
1105
1106 /*
1107 * We can't change the vdev state in this context, so we
1108 * kick off an async task to do it on our behalf.
1109 */
1110 if (zio != NULL) {
1111 vd->vdev_probe_wanted = B_TRUE;
1112 spa_async_request(spa, SPA_ASYNC_PROBE);
1113 }
1114 }
1115
1116 if (zio != NULL)
1117 zio_add_child(zio, pio);
1118
1119 mutex_exit(&vd->vdev_probe_lock);
1120
1121 if (vps == NULL) {
1122 ASSERT(zio != NULL);
1123 return (NULL);
1124 }
1125
1126 for (l = 1; l < VDEV_LABELS; l++) {
1127 zio_nowait(zio_read_phys(pio, vd,
1128 vdev_label_offset(vd->vdev_psize, l,
1129 offsetof(vdev_label_t, vl_pad2)),
1130 VDEV_PAD_SIZE, zio_buf_alloc(VDEV_PAD_SIZE),
1131 ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
1132 ZIO_PRIORITY_SYNC_READ, vps->vps_flags, B_TRUE));
1133 }
1134
1135 if (zio == NULL)
1136 return (pio);
1137
1138 zio_nowait(pio);
1139 return (NULL);
1140 }
1141
1142 static void
1143 vdev_open_child(void *arg)
1144 {
1145 vdev_t *vd = arg;
1146
1147 vd->vdev_open_thread = curthread;
1148 vd->vdev_open_error = vdev_open(vd);
1149 vd->vdev_open_thread = NULL;
1150 }
1151
1152 static boolean_t
1153 vdev_uses_zvols(vdev_t *vd)
1154 {
1155 int c;
1156
1157 #ifdef _KERNEL
1158 if (zvol_is_zvol(vd->vdev_path))
1159 return (B_TRUE);
1160 #endif
1161
1162 for (c = 0; c < vd->vdev_children; c++)
1163 if (vdev_uses_zvols(vd->vdev_child[c]))
1164 return (B_TRUE);
1165
1166 return (B_FALSE);
1167 }
1168
1169 void
1170 vdev_open_children(vdev_t *vd)
1171 {
1172 taskq_t *tq;
1173 int children = vd->vdev_children;
1174 int c;
1175
1176 /*
1177 * in order to handle pools on top of zvols, do the opens
1178 * in a single thread so that the same thread holds the
1179 * spa_namespace_lock
1180 */
1181 if (vdev_uses_zvols(vd)) {
1182 retry_sync:
1183 for (c = 0; c < children; c++)
1184 vd->vdev_child[c]->vdev_open_error =
1185 vdev_open(vd->vdev_child[c]);
1186 } else {
1187 tq = taskq_create("vdev_open", children, minclsyspri,
1188 children, children, TASKQ_PREPOPULATE);
1189 if (tq == NULL)
1190 goto retry_sync;
1191
1192 for (c = 0; c < children; c++)
1193 VERIFY(taskq_dispatch(tq, vdev_open_child,
1194 vd->vdev_child[c], TQ_SLEEP) != TASKQID_INVALID);
1195
1196 taskq_destroy(tq);
1197 }
1198
1199 vd->vdev_nonrot = B_TRUE;
1200
1201 for (c = 0; c < children; c++)
1202 vd->vdev_nonrot &= vd->vdev_child[c]->vdev_nonrot;
1203 }
1204
1205 /*
1206 * Prepare a virtual device for access.
1207 */
1208 int
1209 vdev_open(vdev_t *vd)
1210 {
1211 spa_t *spa = vd->vdev_spa;
1212 int error;
1213 uint64_t osize = 0;
1214 uint64_t max_osize = 0;
1215 uint64_t asize, max_asize, psize;
1216 uint64_t ashift = 0;
1217 int c;
1218
1219 ASSERT(vd->vdev_open_thread == curthread ||
1220 spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1221 ASSERT(vd->vdev_state == VDEV_STATE_CLOSED ||
1222 vd->vdev_state == VDEV_STATE_CANT_OPEN ||
1223 vd->vdev_state == VDEV_STATE_OFFLINE);
1224
1225 vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
1226 vd->vdev_cant_read = B_FALSE;
1227 vd->vdev_cant_write = B_FALSE;
1228 vd->vdev_min_asize = vdev_get_min_asize(vd);
1229
1230 /*
1231 * If this vdev is not removed, check its fault status. If it's
1232 * faulted, bail out of the open.
1233 */
1234 if (!vd->vdev_removed && vd->vdev_faulted) {
1235 ASSERT(vd->vdev_children == 0);
1236 ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED ||
1237 vd->vdev_label_aux == VDEV_AUX_EXTERNAL);
1238 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1239 vd->vdev_label_aux);
1240 return (SET_ERROR(ENXIO));
1241 } else if (vd->vdev_offline) {
1242 ASSERT(vd->vdev_children == 0);
1243 vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE, VDEV_AUX_NONE);
1244 return (SET_ERROR(ENXIO));
1245 }
1246
1247 error = vd->vdev_ops->vdev_op_open(vd, &osize, &max_osize, &ashift);
1248
1249 /*
1250 * Reset the vdev_reopening flag so that we actually close
1251 * the vdev on error.
1252 */
1253 vd->vdev_reopening = B_FALSE;
1254 if (zio_injection_enabled && error == 0)
1255 error = zio_handle_device_injection(vd, NULL, ENXIO);
1256
1257 if (error) {
1258 if (vd->vdev_removed &&
1259 vd->vdev_stat.vs_aux != VDEV_AUX_OPEN_FAILED)
1260 vd->vdev_removed = B_FALSE;
1261
1262 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1263 vd->vdev_stat.vs_aux);
1264 return (error);
1265 }
1266
1267 vd->vdev_removed = B_FALSE;
1268
1269 /*
1270 * Recheck the faulted flag now that we have confirmed that
1271 * the vdev is accessible. If we're faulted, bail.
1272 */
1273 if (vd->vdev_faulted) {
1274 ASSERT(vd->vdev_children == 0);
1275 ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED ||
1276 vd->vdev_label_aux == VDEV_AUX_EXTERNAL);
1277 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1278 vd->vdev_label_aux);
1279 return (SET_ERROR(ENXIO));
1280 }
1281
1282 if (vd->vdev_degraded) {
1283 ASSERT(vd->vdev_children == 0);
1284 vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
1285 VDEV_AUX_ERR_EXCEEDED);
1286 } else {
1287 vdev_set_state(vd, B_TRUE, VDEV_STATE_HEALTHY, 0);
1288 }
1289
1290 /*
1291 * For hole or missing vdevs we just return success.
1292 */
1293 if (vd->vdev_ishole || vd->vdev_ops == &vdev_missing_ops)
1294 return (0);
1295
1296 for (c = 0; c < vd->vdev_children; c++) {
1297 if (vd->vdev_child[c]->vdev_state != VDEV_STATE_HEALTHY) {
1298 vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
1299 VDEV_AUX_NONE);
1300 break;
1301 }
1302 }
1303
1304 osize = P2ALIGN(osize, (uint64_t)sizeof (vdev_label_t));
1305 max_osize = P2ALIGN(max_osize, (uint64_t)sizeof (vdev_label_t));
1306
1307 if (vd->vdev_children == 0) {
1308 if (osize < SPA_MINDEVSIZE) {
1309 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1310 VDEV_AUX_TOO_SMALL);
1311 return (SET_ERROR(EOVERFLOW));
1312 }
1313 psize = osize;
1314 asize = osize - (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE);
1315 max_asize = max_osize - (VDEV_LABEL_START_SIZE +
1316 VDEV_LABEL_END_SIZE);
1317 } else {
1318 if (vd->vdev_parent != NULL && osize < SPA_MINDEVSIZE -
1319 (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE)) {
1320 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1321 VDEV_AUX_TOO_SMALL);
1322 return (SET_ERROR(EOVERFLOW));
1323 }
1324 psize = 0;
1325 asize = osize;
1326 max_asize = max_osize;
1327 }
1328
1329 vd->vdev_psize = psize;
1330
1331 /*
1332 * Make sure the allocatable size hasn't shrunk.
1333 */
1334 if (asize < vd->vdev_min_asize) {
1335 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1336 VDEV_AUX_BAD_LABEL);
1337 return (SET_ERROR(EINVAL));
1338 }
1339
1340 if (vd->vdev_asize == 0) {
1341 /*
1342 * This is the first-ever open, so use the computed values.
1343 * For compatibility, a different ashift can be requested.
1344 */
1345 vd->vdev_asize = asize;
1346 vd->vdev_max_asize = max_asize;
1347 if (vd->vdev_ashift == 0)
1348 vd->vdev_ashift = ashift;
1349 } else {
1350 /*
1351 * Detect if the alignment requirement has increased.
1352 * We don't want to make the pool unavailable, just
1353 * post an event instead.
1354 */
1355 if (ashift > vd->vdev_top->vdev_ashift &&
1356 vd->vdev_ops->vdev_op_leaf) {
1357 zfs_ereport_post(FM_EREPORT_ZFS_DEVICE_BAD_ASHIFT,
1358 spa, vd, NULL, 0, 0);
1359 }
1360
1361 vd->vdev_max_asize = max_asize;
1362 }
1363
1364 /*
1365 * If all children are healthy and the asize has increased,
1366 * then we've experienced dynamic LUN growth. If automatic
1367 * expansion is enabled then use the additional space.
1368 */
1369 if (vd->vdev_state == VDEV_STATE_HEALTHY && asize > vd->vdev_asize &&
1370 (vd->vdev_expanding || spa->spa_autoexpand))
1371 vd->vdev_asize = asize;
1372
1373 vdev_set_min_asize(vd);
1374
1375 /*
1376 * Ensure we can issue some IO before declaring the
1377 * vdev open for business.
1378 */
1379 if (vd->vdev_ops->vdev_op_leaf &&
1380 (error = zio_wait(vdev_probe(vd, NULL))) != 0) {
1381 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1382 VDEV_AUX_ERR_EXCEEDED);
1383 return (error);
1384 }
1385
1386 /*
1387 * Track the min and max ashift values for normal data devices.
1388 */
1389 if (vd->vdev_top == vd && vd->vdev_ashift != 0 &&
1390 !vd->vdev_islog && vd->vdev_aux == NULL) {
1391 if (vd->vdev_ashift > spa->spa_max_ashift)
1392 spa->spa_max_ashift = vd->vdev_ashift;
1393 if (vd->vdev_ashift < spa->spa_min_ashift)
1394 spa->spa_min_ashift = vd->vdev_ashift;
1395 }
1396
1397 /*
1398 * If a leaf vdev has a DTL, and seems healthy, then kick off a
1399 * resilver. But don't do this if we are doing a reopen for a scrub,
1400 * since this would just restart the scrub we are already doing.
1401 */
1402 if (vd->vdev_ops->vdev_op_leaf && !spa->spa_scrub_reopen &&
1403 vdev_resilver_needed(vd, NULL, NULL))
1404 spa_async_request(spa, SPA_ASYNC_RESILVER);
1405
1406 return (0);
1407 }
1408
1409 /*
1410 * Called once the vdevs are all opened, this routine validates the label
1411 * contents. This needs to be done before vdev_load() so that we don't
1412 * inadvertently do repair I/Os to the wrong device.
1413 *
1414 * If 'strict' is false ignore the spa guid check. This is necessary because
1415 * if the machine crashed during a re-guid the new guid might have been written
1416 * to all of the vdev labels, but not the cached config. The strict check
1417 * will be performed when the pool is opened again using the mos config.
1418 *
1419 * This function will only return failure if one of the vdevs indicates that it
1420 * has since been destroyed or exported. This is only possible if
1421 * /etc/zfs/zpool.cache was readonly at the time. Otherwise, the vdev state
1422 * will be updated but the function will return 0.
1423 */
1424 int
1425 vdev_validate(vdev_t *vd, boolean_t strict)
1426 {
1427 spa_t *spa = vd->vdev_spa;
1428 nvlist_t *label;
1429 uint64_t guid = 0, top_guid;
1430 uint64_t state;
1431 int c;
1432
1433 for (c = 0; c < vd->vdev_children; c++)
1434 if (vdev_validate(vd->vdev_child[c], strict) != 0)
1435 return (SET_ERROR(EBADF));
1436
1437 /*
1438 * If the device has already failed, or was marked offline, don't do
1439 * any further validation. Otherwise, label I/O will fail and we will
1440 * overwrite the previous state.
1441 */
1442 if (vd->vdev_ops->vdev_op_leaf && vdev_readable(vd)) {
1443 uint64_t aux_guid = 0;
1444 nvlist_t *nvl;
1445 uint64_t txg = spa_last_synced_txg(spa) != 0 ?
1446 spa_last_synced_txg(spa) : -1ULL;
1447
1448 if ((label = vdev_label_read_config(vd, txg)) == NULL) {
1449 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1450 VDEV_AUX_BAD_LABEL);
1451 return (0);
1452 }
1453
1454 /*
1455 * Determine if this vdev has been split off into another
1456 * pool. If so, then refuse to open it.
1457 */
1458 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_SPLIT_GUID,
1459 &aux_guid) == 0 && aux_guid == spa_guid(spa)) {
1460 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1461 VDEV_AUX_SPLIT_POOL);
1462 nvlist_free(label);
1463 return (0);
1464 }
1465
1466 if (strict && (nvlist_lookup_uint64(label,
1467 ZPOOL_CONFIG_POOL_GUID, &guid) != 0 ||
1468 guid != spa_guid(spa))) {
1469 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1470 VDEV_AUX_CORRUPT_DATA);
1471 nvlist_free(label);
1472 return (0);
1473 }
1474
1475 if (nvlist_lookup_nvlist(label, ZPOOL_CONFIG_VDEV_TREE, &nvl)
1476 != 0 || nvlist_lookup_uint64(nvl, ZPOOL_CONFIG_ORIG_GUID,
1477 &aux_guid) != 0)
1478 aux_guid = 0;
1479
1480 /*
1481 * If this vdev just became a top-level vdev because its
1482 * sibling was detached, it will have adopted the parent's
1483 * vdev guid -- but the label may or may not be on disk yet.
1484 * Fortunately, either version of the label will have the
1485 * same top guid, so if we're a top-level vdev, we can
1486 * safely compare to that instead.
1487 *
1488 * If we split this vdev off instead, then we also check the
1489 * original pool's guid. We don't want to consider the vdev
1490 * corrupt if it is partway through a split operation.
1491 */
1492 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID,
1493 &guid) != 0 ||
1494 nvlist_lookup_uint64(label, ZPOOL_CONFIG_TOP_GUID,
1495 &top_guid) != 0 ||
1496 ((vd->vdev_guid != guid && vd->vdev_guid != aux_guid) &&
1497 (vd->vdev_guid != top_guid || vd != vd->vdev_top))) {
1498 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1499 VDEV_AUX_CORRUPT_DATA);
1500 nvlist_free(label);
1501 return (0);
1502 }
1503
1504 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE,
1505 &state) != 0) {
1506 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1507 VDEV_AUX_CORRUPT_DATA);
1508 nvlist_free(label);
1509 return (0);
1510 }
1511
1512 nvlist_free(label);
1513
1514 /*
1515 * If this is a verbatim import, no need to check the
1516 * state of the pool.
1517 */
1518 if (!(spa->spa_import_flags & ZFS_IMPORT_VERBATIM) &&
1519 spa_load_state(spa) == SPA_LOAD_OPEN &&
1520 state != POOL_STATE_ACTIVE)
1521 return (SET_ERROR(EBADF));
1522
1523 /*
1524 * If we were able to open and validate a vdev that was
1525 * previously marked permanently unavailable, clear that state
1526 * now.
1527 */
1528 if (vd->vdev_not_present)
1529 vd->vdev_not_present = 0;
1530 }
1531
1532 return (0);
1533 }
1534
1535 /*
1536 * Close a virtual device.
1537 */
1538 void
1539 vdev_close(vdev_t *vd)
1540 {
1541 vdev_t *pvd = vd->vdev_parent;
1542 ASSERTV(spa_t *spa = vd->vdev_spa);
1543
1544 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1545
1546 /*
1547 * If our parent is reopening, then we are as well, unless we are
1548 * going offline.
1549 */
1550 if (pvd != NULL && pvd->vdev_reopening)
1551 vd->vdev_reopening = (pvd->vdev_reopening && !vd->vdev_offline);
1552
1553 vd->vdev_ops->vdev_op_close(vd);
1554
1555 vdev_cache_purge(vd);
1556
1557 /*
1558 * We record the previous state before we close it, so that if we are
1559 * doing a reopen(), we don't generate FMA ereports if we notice that
1560 * it's still faulted.
1561 */
1562 vd->vdev_prevstate = vd->vdev_state;
1563
1564 if (vd->vdev_offline)
1565 vd->vdev_state = VDEV_STATE_OFFLINE;
1566 else
1567 vd->vdev_state = VDEV_STATE_CLOSED;
1568 vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
1569 }
1570
1571 void
1572 vdev_hold(vdev_t *vd)
1573 {
1574 spa_t *spa = vd->vdev_spa;
1575 int c;
1576
1577 ASSERT(spa_is_root(spa));
1578 if (spa->spa_state == POOL_STATE_UNINITIALIZED)
1579 return;
1580
1581 for (c = 0; c < vd->vdev_children; c++)
1582 vdev_hold(vd->vdev_child[c]);
1583
1584 if (vd->vdev_ops->vdev_op_leaf)
1585 vd->vdev_ops->vdev_op_hold(vd);
1586 }
1587
1588 void
1589 vdev_rele(vdev_t *vd)
1590 {
1591 int c;
1592
1593 ASSERT(spa_is_root(vd->vdev_spa));
1594 for (c = 0; c < vd->vdev_children; c++)
1595 vdev_rele(vd->vdev_child[c]);
1596
1597 if (vd->vdev_ops->vdev_op_leaf)
1598 vd->vdev_ops->vdev_op_rele(vd);
1599 }
1600
1601 /*
1602 * Reopen all interior vdevs and any unopened leaves. We don't actually
1603 * reopen leaf vdevs which had previously been opened as they might deadlock
1604 * on the spa_config_lock. Instead we only obtain the leaf's physical size.
1605 * If the leaf has never been opened then open it, as usual.
1606 */
1607 void
1608 vdev_reopen(vdev_t *vd)
1609 {
1610 spa_t *spa = vd->vdev_spa;
1611
1612 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1613
1614 /* set the reopening flag unless we're taking the vdev offline */
1615 vd->vdev_reopening = !vd->vdev_offline;
1616 vdev_close(vd);
1617 (void) vdev_open(vd);
1618
1619 /*
1620 * Call vdev_validate() here to make sure we have the same device.
1621 * Otherwise, a device with an invalid label could be successfully
1622 * opened in response to vdev_reopen().
1623 */
1624 if (vd->vdev_aux) {
1625 (void) vdev_validate_aux(vd);
1626 if (vdev_readable(vd) && vdev_writeable(vd) &&
1627 vd->vdev_aux == &spa->spa_l2cache &&
1628 !l2arc_vdev_present(vd))
1629 l2arc_add_vdev(spa, vd);
1630 } else {
1631 (void) vdev_validate(vd, B_TRUE);
1632 }
1633
1634 /*
1635 * Reassess parent vdev's health.
1636 */
1637 vdev_propagate_state(vd);
1638 }
1639
1640 int
1641 vdev_create(vdev_t *vd, uint64_t txg, boolean_t isreplacing)
1642 {
1643 int error;
1644
1645 /*
1646 * Normally, partial opens (e.g. of a mirror) are allowed.
1647 * For a create, however, we want to fail the request if
1648 * there are any components we can't open.
1649 */
1650 error = vdev_open(vd);
1651
1652 if (error || vd->vdev_state != VDEV_STATE_HEALTHY) {
1653 vdev_close(vd);
1654 return (error ? error : ENXIO);
1655 }
1656
1657 /*
1658 * Recursively load DTLs and initialize all labels.
1659 */
1660 if ((error = vdev_dtl_load(vd)) != 0 ||
1661 (error = vdev_label_init(vd, txg, isreplacing ?
1662 VDEV_LABEL_REPLACE : VDEV_LABEL_CREATE)) != 0) {
1663 vdev_close(vd);
1664 return (error);
1665 }
1666
1667 return (0);
1668 }
1669
1670 void
1671 vdev_metaslab_set_size(vdev_t *vd)
1672 {
1673 /*
1674 * Aim for roughly metaslabs_per_vdev (default 200) metaslabs per vdev.
1675 */
1676 vd->vdev_ms_shift = highbit64(vd->vdev_asize / metaslabs_per_vdev);
1677 vd->vdev_ms_shift = MAX(vd->vdev_ms_shift, SPA_MAXBLOCKSHIFT);
1678 }
1679
1680 void
1681 vdev_dirty(vdev_t *vd, int flags, void *arg, uint64_t txg)
1682 {
1683 ASSERT(vd == vd->vdev_top);
1684 ASSERT(!vd->vdev_ishole);
1685 ASSERT(ISP2(flags));
1686 ASSERT(spa_writeable(vd->vdev_spa));
1687
1688 if (flags & VDD_METASLAB)
1689 (void) txg_list_add(&vd->vdev_ms_list, arg, txg);
1690
1691 if (flags & VDD_DTL)
1692 (void) txg_list_add(&vd->vdev_dtl_list, arg, txg);
1693
1694 (void) txg_list_add(&vd->vdev_spa->spa_vdev_txg_list, vd, txg);
1695 }
1696
1697 void
1698 vdev_dirty_leaves(vdev_t *vd, int flags, uint64_t txg)
1699 {
1700 int c;
1701
1702 for (c = 0; c < vd->vdev_children; c++)
1703 vdev_dirty_leaves(vd->vdev_child[c], flags, txg);
1704
1705 if (vd->vdev_ops->vdev_op_leaf)
1706 vdev_dirty(vd->vdev_top, flags, vd, txg);
1707 }
1708
1709 /*
1710 * DTLs.
1711 *
1712 * A vdev's DTL (dirty time log) is the set of transaction groups for which
1713 * the vdev has less than perfect replication. There are four kinds of DTL:
1714 *
1715 * DTL_MISSING: txgs for which the vdev has no valid copies of the data
1716 *
1717 * DTL_PARTIAL: txgs for which data is available, but not fully replicated
1718 *
1719 * DTL_SCRUB: the txgs that could not be repaired by the last scrub; upon
1720 * scrub completion, DTL_SCRUB replaces DTL_MISSING in the range of
1721 * txgs that was scrubbed.
1722 *
1723 * DTL_OUTAGE: txgs which cannot currently be read, whether due to
1724 * persistent errors or just some device being offline.
1725 * Unlike the other three, the DTL_OUTAGE map is not generally
1726 * maintained; it's only computed when needed, typically to
1727 * determine whether a device can be detached.
1728 *
1729 * For leaf vdevs, DTL_MISSING and DTL_PARTIAL are identical: the device
1730 * either has the data or it doesn't.
1731 *
1732 * For interior vdevs such as mirror and RAID-Z the picture is more complex.
1733 * A vdev's DTL_PARTIAL is the union of its children's DTL_PARTIALs, because
1734 * if any child is less than fully replicated, then so is its parent.
1735 * A vdev's DTL_MISSING is a modified union of its children's DTL_MISSINGs,
1736 * comprising only those txgs which appear in 'maxfaults' or more children;
1737 * those are the txgs we don't have enough replication to read. For example,
1738 * double-parity RAID-Z can tolerate up to two missing devices (maxfaults == 2);
1739 * thus, its DTL_MISSING consists of the set of txgs that appear in more than
1740 * two child DTL_MISSING maps.
1741 *
1742 * It should be clear from the above that to compute the DTLs and outage maps
1743 * for all vdevs, it suffices to know just the leaf vdevs' DTL_MISSING maps.
1744 * Therefore, that is all we keep on disk. When loading the pool, or after
1745 * a configuration change, we generate all other DTLs from first principles.
1746 */
1747 void
1748 vdev_dtl_dirty(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
1749 {
1750 range_tree_t *rt = vd->vdev_dtl[t];
1751
1752 ASSERT(t < DTL_TYPES);
1753 ASSERT(vd != vd->vdev_spa->spa_root_vdev);
1754 ASSERT(spa_writeable(vd->vdev_spa));
1755
1756 mutex_enter(rt->rt_lock);
1757 if (!range_tree_contains(rt, txg, size))
1758 range_tree_add(rt, txg, size);
1759 mutex_exit(rt->rt_lock);
1760 }
1761
1762 boolean_t
1763 vdev_dtl_contains(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
1764 {
1765 range_tree_t *rt = vd->vdev_dtl[t];
1766 boolean_t dirty = B_FALSE;
1767
1768 ASSERT(t < DTL_TYPES);
1769 ASSERT(vd != vd->vdev_spa->spa_root_vdev);
1770
1771 mutex_enter(rt->rt_lock);
1772 if (range_tree_space(rt) != 0)
1773 dirty = range_tree_contains(rt, txg, size);
1774 mutex_exit(rt->rt_lock);
1775
1776 return (dirty);
1777 }
1778
1779 boolean_t
1780 vdev_dtl_empty(vdev_t *vd, vdev_dtl_type_t t)
1781 {
1782 range_tree_t *rt = vd->vdev_dtl[t];
1783 boolean_t empty;
1784
1785 mutex_enter(rt->rt_lock);
1786 empty = (range_tree_space(rt) == 0);
1787 mutex_exit(rt->rt_lock);
1788
1789 return (empty);
1790 }
1791
1792 /*
1793 * Returns the lowest txg in the DTL range.
1794 */
1795 static uint64_t
1796 vdev_dtl_min(vdev_t *vd)
1797 {
1798 range_seg_t *rs;
1799
1800 ASSERT(MUTEX_HELD(&vd->vdev_dtl_lock));
1801 ASSERT3U(range_tree_space(vd->vdev_dtl[DTL_MISSING]), !=, 0);
1802 ASSERT0(vd->vdev_children);
1803
1804 rs = avl_first(&vd->vdev_dtl[DTL_MISSING]->rt_root);
1805 return (rs->rs_start - 1);
1806 }
1807
1808 /*
1809 * Returns the highest txg in the DTL.
1810 */
1811 static uint64_t
1812 vdev_dtl_max(vdev_t *vd)
1813 {
1814 range_seg_t *rs;
1815
1816 ASSERT(MUTEX_HELD(&vd->vdev_dtl_lock));
1817 ASSERT3U(range_tree_space(vd->vdev_dtl[DTL_MISSING]), !=, 0);
1818 ASSERT0(vd->vdev_children);
1819
1820 rs = avl_last(&vd->vdev_dtl[DTL_MISSING]->rt_root);
1821 return (rs->rs_end);
1822 }
1823
1824 /*
1825 * Determine if a resilvering vdev should remove any DTL entries from
1826 * its range. If the vdev was resilvering for the entire duration of the
1827 * scan then it should excise that range from its DTLs. Otherwise, this
1828 * vdev is considered partially resilvered and should leave its DTL
1829 * entries intact. The comment in vdev_dtl_reassess() describes how we
1830 * excise the DTLs.
1831 */
1832 static boolean_t
1833 vdev_dtl_should_excise(vdev_t *vd)
1834 {
1835 spa_t *spa = vd->vdev_spa;
1836 dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan;
1837
1838 ASSERT0(scn->scn_phys.scn_errors);
1839 ASSERT0(vd->vdev_children);
1840
1841 if (vd->vdev_resilver_txg == 0 ||
1842 range_tree_space(vd->vdev_dtl[DTL_MISSING]) == 0)
1843 return (B_TRUE);
1844
1845 /*
1846 * When a resilver is initiated the scan will assign the scn_max_txg
1847 * value to the highest txg value that exists in all DTLs. If this
1848 * device's max DTL is not part of this scan (i.e. it is not in
1849 * the range (scn_min_txg, scn_max_txg] then it is not eligible
1850 * for excision.
1851 */
1852 if (vdev_dtl_max(vd) <= scn->scn_phys.scn_max_txg) {
1853 ASSERT3U(scn->scn_phys.scn_min_txg, <=, vdev_dtl_min(vd));
1854 ASSERT3U(scn->scn_phys.scn_min_txg, <, vd->vdev_resilver_txg);
1855 ASSERT3U(vd->vdev_resilver_txg, <=, scn->scn_phys.scn_max_txg);
1856 return (B_TRUE);
1857 }
1858 return (B_FALSE);
1859 }
1860
1861 /*
1862 * Reassess DTLs after a config change or scrub completion.
1863 */
1864 void
1865 vdev_dtl_reassess(vdev_t *vd, uint64_t txg, uint64_t scrub_txg, int scrub_done)
1866 {
1867 spa_t *spa = vd->vdev_spa;
1868 avl_tree_t reftree;
1869 int c, t, minref;
1870
1871 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
1872
1873 for (c = 0; c < vd->vdev_children; c++)
1874 vdev_dtl_reassess(vd->vdev_child[c], txg,
1875 scrub_txg, scrub_done);
1876
1877 if (vd == spa->spa_root_vdev || vd->vdev_ishole || vd->vdev_aux)
1878 return;
1879
1880 if (vd->vdev_ops->vdev_op_leaf) {
1881 dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan;
1882
1883 mutex_enter(&vd->vdev_dtl_lock);
1884
1885 /*
1886 * If we've completed a scan cleanly then determine
1887 * if this vdev should remove any DTLs. We only want to
1888 * excise regions on vdevs that were available during
1889 * the entire duration of this scan.
1890 */
1891 if (scrub_txg != 0 &&
1892 (spa->spa_scrub_started ||
1893 (scn != NULL && scn->scn_phys.scn_errors == 0)) &&
1894 vdev_dtl_should_excise(vd)) {
1895 /*
1896 * We completed a scrub up to scrub_txg. If we
1897 * did it without rebooting, then the scrub dtl
1898 * will be valid, so excise the old region and
1899 * fold in the scrub dtl. Otherwise, leave the
1900 * dtl as-is if there was an error.
1901 *
1902 * There's little trick here: to excise the beginning
1903 * of the DTL_MISSING map, we put it into a reference
1904 * tree and then add a segment with refcnt -1 that
1905 * covers the range [0, scrub_txg). This means
1906 * that each txg in that range has refcnt -1 or 0.
1907 * We then add DTL_SCRUB with a refcnt of 2, so that
1908 * entries in the range [0, scrub_txg) will have a
1909 * positive refcnt -- either 1 or 2. We then convert
1910 * the reference tree into the new DTL_MISSING map.
1911 */
1912 space_reftree_create(&reftree);
1913 space_reftree_add_map(&reftree,
1914 vd->vdev_dtl[DTL_MISSING], 1);
1915 space_reftree_add_seg(&reftree, 0, scrub_txg, -1);
1916 space_reftree_add_map(&reftree,
1917 vd->vdev_dtl[DTL_SCRUB], 2);
1918 space_reftree_generate_map(&reftree,
1919 vd->vdev_dtl[DTL_MISSING], 1);
1920 space_reftree_destroy(&reftree);
1921 }
1922 range_tree_vacate(vd->vdev_dtl[DTL_PARTIAL], NULL, NULL);
1923 range_tree_walk(vd->vdev_dtl[DTL_MISSING],
1924 range_tree_add, vd->vdev_dtl[DTL_PARTIAL]);
1925 if (scrub_done)
1926 range_tree_vacate(vd->vdev_dtl[DTL_SCRUB], NULL, NULL);
1927 range_tree_vacate(vd->vdev_dtl[DTL_OUTAGE], NULL, NULL);
1928 if (!vdev_readable(vd))
1929 range_tree_add(vd->vdev_dtl[DTL_OUTAGE], 0, -1ULL);
1930 else
1931 range_tree_walk(vd->vdev_dtl[DTL_MISSING],
1932 range_tree_add, vd->vdev_dtl[DTL_OUTAGE]);
1933
1934 /*
1935 * If the vdev was resilvering and no longer has any
1936 * DTLs then reset its resilvering flag and dirty
1937 * the top level so that we persist the change.
1938 */
1939 if (vd->vdev_resilver_txg != 0 &&
1940 range_tree_space(vd->vdev_dtl[DTL_MISSING]) == 0 &&
1941 range_tree_space(vd->vdev_dtl[DTL_OUTAGE]) == 0) {
1942 vd->vdev_resilver_txg = 0;
1943 vdev_config_dirty(vd->vdev_top);
1944 }
1945
1946 mutex_exit(&vd->vdev_dtl_lock);
1947
1948 if (txg != 0)
1949 vdev_dirty(vd->vdev_top, VDD_DTL, vd, txg);
1950 return;
1951 }
1952
1953 mutex_enter(&vd->vdev_dtl_lock);
1954 for (t = 0; t < DTL_TYPES; t++) {
1955 int c;
1956
1957 /* account for child's outage in parent's missing map */
1958 int s = (t == DTL_MISSING) ? DTL_OUTAGE: t;
1959 if (t == DTL_SCRUB)
1960 continue; /* leaf vdevs only */
1961 if (t == DTL_PARTIAL)
1962 minref = 1; /* i.e. non-zero */
1963 else if (vd->vdev_nparity != 0)
1964 minref = vd->vdev_nparity + 1; /* RAID-Z */
1965 else
1966 minref = vd->vdev_children; /* any kind of mirror */
1967 space_reftree_create(&reftree);
1968 for (c = 0; c < vd->vdev_children; c++) {
1969 vdev_t *cvd = vd->vdev_child[c];
1970 mutex_enter(&cvd->vdev_dtl_lock);
1971 space_reftree_add_map(&reftree, cvd->vdev_dtl[s], 1);
1972 mutex_exit(&cvd->vdev_dtl_lock);
1973 }
1974 space_reftree_generate_map(&reftree, vd->vdev_dtl[t], minref);
1975 space_reftree_destroy(&reftree);
1976 }
1977 mutex_exit(&vd->vdev_dtl_lock);
1978 }
1979
1980 int
1981 vdev_dtl_load(vdev_t *vd)
1982 {
1983 spa_t *spa = vd->vdev_spa;
1984 objset_t *mos = spa->spa_meta_objset;
1985 int error = 0;
1986 int c;
1987
1988 if (vd->vdev_ops->vdev_op_leaf && vd->vdev_dtl_object != 0) {
1989 ASSERT(!vd->vdev_ishole);
1990
1991 error = space_map_open(&vd->vdev_dtl_sm, mos,
1992 vd->vdev_dtl_object, 0, -1ULL, 0, &vd->vdev_dtl_lock);
1993 if (error)
1994 return (error);
1995 ASSERT(vd->vdev_dtl_sm != NULL);
1996
1997 mutex_enter(&vd->vdev_dtl_lock);
1998
1999 /*
2000 * Now that we've opened the space_map we need to update
2001 * the in-core DTL.
2002 */
2003 space_map_update(vd->vdev_dtl_sm);
2004
2005 error = space_map_load(vd->vdev_dtl_sm,
2006 vd->vdev_dtl[DTL_MISSING], SM_ALLOC);
2007 mutex_exit(&vd->vdev_dtl_lock);
2008
2009 return (error);
2010 }
2011
2012 for (c = 0; c < vd->vdev_children; c++) {
2013 error = vdev_dtl_load(vd->vdev_child[c]);
2014 if (error != 0)
2015 break;
2016 }
2017
2018 return (error);
2019 }
2020
2021 void
2022 vdev_destroy_unlink_zap(vdev_t *vd, uint64_t zapobj, dmu_tx_t *tx)
2023 {
2024 spa_t *spa = vd->vdev_spa;
2025
2026 VERIFY0(zap_destroy(spa->spa_meta_objset, zapobj, tx));
2027 VERIFY0(zap_remove_int(spa->spa_meta_objset, spa->spa_all_vdev_zaps,
2028 zapobj, tx));
2029 }
2030
2031 uint64_t
2032 vdev_create_link_zap(vdev_t *vd, dmu_tx_t *tx)
2033 {
2034 spa_t *spa = vd->vdev_spa;
2035 uint64_t zap = zap_create(spa->spa_meta_objset, DMU_OTN_ZAP_METADATA,
2036 DMU_OT_NONE, 0, tx);
2037
2038 ASSERT(zap != 0);
2039 VERIFY0(zap_add_int(spa->spa_meta_objset, spa->spa_all_vdev_zaps,
2040 zap, tx));
2041
2042 return (zap);
2043 }
2044
2045 void
2046 vdev_construct_zaps(vdev_t *vd, dmu_tx_t *tx)
2047 {
2048 uint64_t i;
2049
2050 if (vd->vdev_ops != &vdev_hole_ops &&
2051 vd->vdev_ops != &vdev_missing_ops &&
2052 vd->vdev_ops != &vdev_root_ops &&
2053 !vd->vdev_top->vdev_removing) {
2054 if (vd->vdev_ops->vdev_op_leaf && vd->vdev_leaf_zap == 0) {
2055 vd->vdev_leaf_zap = vdev_create_link_zap(vd, tx);
2056 }
2057 if (vd == vd->vdev_top && vd->vdev_top_zap == 0) {
2058 vd->vdev_top_zap = vdev_create_link_zap(vd, tx);
2059 }
2060 }
2061 for (i = 0; i < vd->vdev_children; i++) {
2062 vdev_construct_zaps(vd->vdev_child[i], tx);
2063 }
2064 }
2065
2066 void
2067 vdev_dtl_sync(vdev_t *vd, uint64_t txg)
2068 {
2069 spa_t *spa = vd->vdev_spa;
2070 range_tree_t *rt = vd->vdev_dtl[DTL_MISSING];
2071 objset_t *mos = spa->spa_meta_objset;
2072 range_tree_t *rtsync;
2073 kmutex_t rtlock;
2074 dmu_tx_t *tx;
2075 uint64_t object = space_map_object(vd->vdev_dtl_sm);
2076
2077 ASSERT(!vd->vdev_ishole);
2078 ASSERT(vd->vdev_ops->vdev_op_leaf);
2079
2080 tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
2081
2082 if (vd->vdev_detached || vd->vdev_top->vdev_removing) {
2083 mutex_enter(&vd->vdev_dtl_lock);
2084 space_map_free(vd->vdev_dtl_sm, tx);
2085 space_map_close(vd->vdev_dtl_sm);
2086 vd->vdev_dtl_sm = NULL;
2087 mutex_exit(&vd->vdev_dtl_lock);
2088
2089 /*
2090 * We only destroy the leaf ZAP for detached leaves or for
2091 * removed log devices. Removed data devices handle leaf ZAP
2092 * cleanup later, once cancellation is no longer possible.
2093 */
2094 if (vd->vdev_leaf_zap != 0 && (vd->vdev_detached ||
2095 vd->vdev_top->vdev_islog)) {
2096 vdev_destroy_unlink_zap(vd, vd->vdev_leaf_zap, tx);
2097 vd->vdev_leaf_zap = 0;
2098 }
2099
2100 dmu_tx_commit(tx);
2101 return;
2102 }
2103
2104 if (vd->vdev_dtl_sm == NULL) {
2105 uint64_t new_object;
2106
2107 new_object = space_map_alloc(mos, tx);
2108 VERIFY3U(new_object, !=, 0);
2109
2110 VERIFY0(space_map_open(&vd->vdev_dtl_sm, mos, new_object,
2111 0, -1ULL, 0, &vd->vdev_dtl_lock));
2112 ASSERT(vd->vdev_dtl_sm != NULL);
2113 }
2114
2115 mutex_init(&rtlock, NULL, MUTEX_DEFAULT, NULL);
2116
2117 rtsync = range_tree_create(NULL, NULL, &rtlock);
2118
2119 mutex_enter(&rtlock);
2120
2121 mutex_enter(&vd->vdev_dtl_lock);
2122 range_tree_walk(rt, range_tree_add, rtsync);
2123 mutex_exit(&vd->vdev_dtl_lock);
2124
2125 space_map_truncate(vd->vdev_dtl_sm, tx);
2126 space_map_write(vd->vdev_dtl_sm, rtsync, SM_ALLOC, tx);
2127 range_tree_vacate(rtsync, NULL, NULL);
2128
2129 range_tree_destroy(rtsync);
2130
2131 mutex_exit(&rtlock);
2132 mutex_destroy(&rtlock);
2133
2134 /*
2135 * If the object for the space map has changed then dirty
2136 * the top level so that we update the config.
2137 */
2138 if (object != space_map_object(vd->vdev_dtl_sm)) {
2139 zfs_dbgmsg("txg %llu, spa %s, DTL old object %llu, "
2140 "new object %llu", txg, spa_name(spa), object,
2141 space_map_object(vd->vdev_dtl_sm));
2142 vdev_config_dirty(vd->vdev_top);
2143 }
2144
2145 dmu_tx_commit(tx);
2146
2147 mutex_enter(&vd->vdev_dtl_lock);
2148 space_map_update(vd->vdev_dtl_sm);
2149 mutex_exit(&vd->vdev_dtl_lock);
2150 }
2151
2152 /*
2153 * Determine whether the specified vdev can be offlined/detached/removed
2154 * without losing data.
2155 */
2156 boolean_t
2157 vdev_dtl_required(vdev_t *vd)
2158 {
2159 spa_t *spa = vd->vdev_spa;
2160 vdev_t *tvd = vd->vdev_top;
2161 uint8_t cant_read = vd->vdev_cant_read;
2162 boolean_t required;
2163
2164 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
2165
2166 if (vd == spa->spa_root_vdev || vd == tvd)
2167 return (B_TRUE);
2168
2169 /*
2170 * Temporarily mark the device as unreadable, and then determine
2171 * whether this results in any DTL outages in the top-level vdev.
2172 * If not, we can safely offline/detach/remove the device.
2173 */
2174 vd->vdev_cant_read = B_TRUE;
2175 vdev_dtl_reassess(tvd, 0, 0, B_FALSE);
2176 required = !vdev_dtl_empty(tvd, DTL_OUTAGE);
2177 vd->vdev_cant_read = cant_read;
2178 vdev_dtl_reassess(tvd, 0, 0, B_FALSE);
2179
2180 if (!required && zio_injection_enabled)
2181 required = !!zio_handle_device_injection(vd, NULL, ECHILD);
2182
2183 return (required);
2184 }
2185
2186 /*
2187 * Determine if resilver is needed, and if so the txg range.
2188 */
2189 boolean_t
2190 vdev_resilver_needed(vdev_t *vd, uint64_t *minp, uint64_t *maxp)
2191 {
2192 boolean_t needed = B_FALSE;
2193 uint64_t thismin = UINT64_MAX;
2194 uint64_t thismax = 0;
2195 int c;
2196
2197 if (vd->vdev_children == 0) {
2198 mutex_enter(&vd->vdev_dtl_lock);
2199 if (range_tree_space(vd->vdev_dtl[DTL_MISSING]) != 0 &&
2200 vdev_writeable(vd)) {
2201
2202 thismin = vdev_dtl_min(vd);
2203 thismax = vdev_dtl_max(vd);
2204 needed = B_TRUE;
2205 }
2206 mutex_exit(&vd->vdev_dtl_lock);
2207 } else {
2208 for (c = 0; c < vd->vdev_children; c++) {
2209 vdev_t *cvd = vd->vdev_child[c];
2210 uint64_t cmin, cmax;
2211
2212 if (vdev_resilver_needed(cvd, &cmin, &cmax)) {
2213 thismin = MIN(thismin, cmin);
2214 thismax = MAX(thismax, cmax);
2215 needed = B_TRUE;
2216 }
2217 }
2218 }
2219
2220 if (needed && minp) {
2221 *minp = thismin;
2222 *maxp = thismax;
2223 }
2224 return (needed);
2225 }
2226
2227 void
2228 vdev_load(vdev_t *vd)
2229 {
2230 int c;
2231
2232 /*
2233 * Recursively load all children.
2234 */
2235 for (c = 0; c < vd->vdev_children; c++)
2236 vdev_load(vd->vdev_child[c]);
2237
2238 /*
2239 * If this is a top-level vdev, initialize its metaslabs.
2240 */
2241 if (vd == vd->vdev_top && !vd->vdev_ishole &&
2242 (vd->vdev_ashift == 0 || vd->vdev_asize == 0 ||
2243 vdev_metaslab_init(vd, 0) != 0))
2244 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2245 VDEV_AUX_CORRUPT_DATA);
2246 /*
2247 * If this is a leaf vdev, load its DTL.
2248 */
2249 if (vd->vdev_ops->vdev_op_leaf && vdev_dtl_load(vd) != 0)
2250 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2251 VDEV_AUX_CORRUPT_DATA);
2252 }
2253
2254 /*
2255 * The special vdev case is used for hot spares and l2cache devices. Its
2256 * sole purpose it to set the vdev state for the associated vdev. To do this,
2257 * we make sure that we can open the underlying device, then try to read the
2258 * label, and make sure that the label is sane and that it hasn't been
2259 * repurposed to another pool.
2260 */
2261 int
2262 vdev_validate_aux(vdev_t *vd)
2263 {
2264 nvlist_t *label;
2265 uint64_t guid, version;
2266 uint64_t state;
2267
2268 if (!vdev_readable(vd))
2269 return (0);
2270
2271 if ((label = vdev_label_read_config(vd, -1ULL)) == NULL) {
2272 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2273 VDEV_AUX_CORRUPT_DATA);
2274 return (-1);
2275 }
2276
2277 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_VERSION, &version) != 0 ||
2278 !SPA_VERSION_IS_SUPPORTED(version) ||
2279 nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0 ||
2280 guid != vd->vdev_guid ||
2281 nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, &state) != 0) {
2282 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2283 VDEV_AUX_CORRUPT_DATA);
2284 nvlist_free(label);
2285 return (-1);
2286 }
2287
2288 /*
2289 * We don't actually check the pool state here. If it's in fact in
2290 * use by another pool, we update this fact on the fly when requested.
2291 */
2292 nvlist_free(label);
2293 return (0);
2294 }
2295
2296 void
2297 vdev_remove(vdev_t *vd, uint64_t txg)
2298 {
2299 spa_t *spa = vd->vdev_spa;
2300 objset_t *mos = spa->spa_meta_objset;
2301 dmu_tx_t *tx;
2302 int m, i;
2303
2304 tx = dmu_tx_create_assigned(spa_get_dsl(spa), txg);
2305 ASSERT(vd == vd->vdev_top);
2306 ASSERT3U(txg, ==, spa_syncing_txg(spa));
2307
2308 if (vd->vdev_ms != NULL) {
2309 metaslab_group_t *mg = vd->vdev_mg;
2310
2311 metaslab_group_histogram_verify(mg);
2312 metaslab_class_histogram_verify(mg->mg_class);
2313
2314 for (m = 0; m < vd->vdev_ms_count; m++) {
2315 metaslab_t *msp = vd->vdev_ms[m];
2316
2317 if (msp == NULL || msp->ms_sm == NULL)
2318 continue;
2319
2320 mutex_enter(&msp->ms_lock);
2321 /*
2322 * If the metaslab was not loaded when the vdev
2323 * was removed then the histogram accounting may
2324 * not be accurate. Update the histogram information
2325 * here so that we ensure that the metaslab group
2326 * and metaslab class are up-to-date.
2327 */
2328 metaslab_group_histogram_remove(mg, msp);
2329
2330 VERIFY0(space_map_allocated(msp->ms_sm));
2331 space_map_free(msp->ms_sm, tx);
2332 space_map_close(msp->ms_sm);
2333 msp->ms_sm = NULL;
2334 mutex_exit(&msp->ms_lock);
2335 }
2336
2337 metaslab_group_histogram_verify(mg);
2338 metaslab_class_histogram_verify(mg->mg_class);
2339 for (i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i++)
2340 ASSERT0(mg->mg_histogram[i]);
2341
2342 }
2343
2344 if (vd->vdev_ms_array) {
2345 (void) dmu_object_free(mos, vd->vdev_ms_array, tx);
2346 vd->vdev_ms_array = 0;
2347 }
2348
2349 if (vd->vdev_islog && vd->vdev_top_zap != 0) {
2350 vdev_destroy_unlink_zap(vd, vd->vdev_top_zap, tx);
2351 vd->vdev_top_zap = 0;
2352 }
2353 dmu_tx_commit(tx);
2354 }
2355
2356 void
2357 vdev_sync_done(vdev_t *vd, uint64_t txg)
2358 {
2359 metaslab_t *msp;
2360 boolean_t reassess = !txg_list_empty(&vd->vdev_ms_list, TXG_CLEAN(txg));
2361
2362 ASSERT(!vd->vdev_ishole);
2363
2364 while ((msp = txg_list_remove(&vd->vdev_ms_list, TXG_CLEAN(txg))))
2365 metaslab_sync_done(msp, txg);
2366
2367 if (reassess)
2368 metaslab_sync_reassess(vd->vdev_mg);
2369 }
2370
2371 void
2372 vdev_sync(vdev_t *vd, uint64_t txg)
2373 {
2374 spa_t *spa = vd->vdev_spa;
2375 vdev_t *lvd;
2376 metaslab_t *msp;
2377 dmu_tx_t *tx;
2378
2379 ASSERT(!vd->vdev_ishole);
2380
2381 if (vd->vdev_ms_array == 0 && vd->vdev_ms_shift != 0) {
2382 ASSERT(vd == vd->vdev_top);
2383 tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
2384 vd->vdev_ms_array = dmu_object_alloc(spa->spa_meta_objset,
2385 DMU_OT_OBJECT_ARRAY, 0, DMU_OT_NONE, 0, tx);
2386 ASSERT(vd->vdev_ms_array != 0);
2387 vdev_config_dirty(vd);
2388 dmu_tx_commit(tx);
2389 }
2390
2391 /*
2392 * Remove the metadata associated with this vdev once it's empty.
2393 */
2394 if (vd->vdev_stat.vs_alloc == 0 && vd->vdev_removing)
2395 vdev_remove(vd, txg);
2396
2397 while ((msp = txg_list_remove(&vd->vdev_ms_list, txg)) != NULL) {
2398 metaslab_sync(msp, txg);
2399 (void) txg_list_add(&vd->vdev_ms_list, msp, TXG_CLEAN(txg));
2400 }
2401
2402 while ((lvd = txg_list_remove(&vd->vdev_dtl_list, txg)) != NULL)
2403 vdev_dtl_sync(lvd, txg);
2404
2405 (void) txg_list_add(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg));
2406 }
2407
2408 uint64_t
2409 vdev_psize_to_asize(vdev_t *vd, uint64_t psize)
2410 {
2411 return (vd->vdev_ops->vdev_op_asize(vd, psize));
2412 }
2413
2414 /*
2415 * Mark the given vdev faulted. A faulted vdev behaves as if the device could
2416 * not be opened, and no I/O is attempted.
2417 */
2418 int
2419 vdev_fault(spa_t *spa, uint64_t guid, vdev_aux_t aux)
2420 {
2421 vdev_t *vd, *tvd;
2422
2423 spa_vdev_state_enter(spa, SCL_NONE);
2424
2425 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2426 return (spa_vdev_state_exit(spa, NULL, ENODEV));
2427
2428 if (!vd->vdev_ops->vdev_op_leaf)
2429 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2430
2431 tvd = vd->vdev_top;
2432
2433 /*
2434 * We don't directly use the aux state here, but if we do a
2435 * vdev_reopen(), we need this value to be present to remember why we
2436 * were faulted.
2437 */
2438 vd->vdev_label_aux = aux;
2439
2440 /*
2441 * Faulted state takes precedence over degraded.
2442 */
2443 vd->vdev_delayed_close = B_FALSE;
2444 vd->vdev_faulted = 1ULL;
2445 vd->vdev_degraded = 0ULL;
2446 vdev_set_state(vd, B_FALSE, VDEV_STATE_FAULTED, aux);
2447
2448 /*
2449 * If this device has the only valid copy of the data, then
2450 * back off and simply mark the vdev as degraded instead.
2451 */
2452 if (!tvd->vdev_islog && vd->vdev_aux == NULL && vdev_dtl_required(vd)) {
2453 vd->vdev_degraded = 1ULL;
2454 vd->vdev_faulted = 0ULL;
2455
2456 /*
2457 * If we reopen the device and it's not dead, only then do we
2458 * mark it degraded.
2459 */
2460 vdev_reopen(tvd);
2461
2462 if (vdev_readable(vd))
2463 vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, aux);
2464 }
2465
2466 return (spa_vdev_state_exit(spa, vd, 0));
2467 }
2468
2469 /*
2470 * Mark the given vdev degraded. A degraded vdev is purely an indication to the
2471 * user that something is wrong. The vdev continues to operate as normal as far
2472 * as I/O is concerned.
2473 */
2474 int
2475 vdev_degrade(spa_t *spa, uint64_t guid, vdev_aux_t aux)
2476 {
2477 vdev_t *vd;
2478
2479 spa_vdev_state_enter(spa, SCL_NONE);
2480
2481 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2482 return (spa_vdev_state_exit(spa, NULL, ENODEV));
2483
2484 if (!vd->vdev_ops->vdev_op_leaf)
2485 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2486
2487 /*
2488 * If the vdev is already faulted, then don't do anything.
2489 */
2490 if (vd->vdev_faulted || vd->vdev_degraded)
2491 return (spa_vdev_state_exit(spa, NULL, 0));
2492
2493 vd->vdev_degraded = 1ULL;
2494 if (!vdev_is_dead(vd))
2495 vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED,
2496 aux);
2497
2498 return (spa_vdev_state_exit(spa, vd, 0));
2499 }
2500
2501 /*
2502 * Online the given vdev.
2503 *
2504 * If 'ZFS_ONLINE_UNSPARE' is set, it implies two things. First, any attached
2505 * spare device should be detached when the device finishes resilvering.
2506 * Second, the online should be treated like a 'test' online case, so no FMA
2507 * events are generated if the device fails to open.
2508 */
2509 int
2510 vdev_online(spa_t *spa, uint64_t guid, uint64_t flags, vdev_state_t *newstate)
2511 {
2512 vdev_t *vd, *tvd, *pvd, *rvd = spa->spa_root_vdev;
2513 boolean_t postevent = B_FALSE;
2514
2515 spa_vdev_state_enter(spa, SCL_NONE);
2516
2517 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2518 return (spa_vdev_state_exit(spa, NULL, ENODEV));
2519
2520 if (!vd->vdev_ops->vdev_op_leaf)
2521 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2522
2523 postevent =
2524 (vd->vdev_offline == B_TRUE || vd->vdev_tmpoffline == B_TRUE) ?
2525 B_TRUE : B_FALSE;
2526
2527 tvd = vd->vdev_top;
2528 vd->vdev_offline = B_FALSE;
2529 vd->vdev_tmpoffline = B_FALSE;
2530 vd->vdev_checkremove = !!(flags & ZFS_ONLINE_CHECKREMOVE);
2531 vd->vdev_forcefault = !!(flags & ZFS_ONLINE_FORCEFAULT);
2532
2533 /* XXX - L2ARC 1.0 does not support expansion */
2534 if (!vd->vdev_aux) {
2535 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
2536 pvd->vdev_expanding = !!(flags & ZFS_ONLINE_EXPAND);
2537 }
2538
2539 vdev_reopen(tvd);
2540 vd->vdev_checkremove = vd->vdev_forcefault = B_FALSE;
2541
2542 if (!vd->vdev_aux) {
2543 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
2544 pvd->vdev_expanding = B_FALSE;
2545 }
2546
2547 if (newstate)
2548 *newstate = vd->vdev_state;
2549 if ((flags & ZFS_ONLINE_UNSPARE) &&
2550 !vdev_is_dead(vd) && vd->vdev_parent &&
2551 vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
2552 vd->vdev_parent->vdev_child[0] == vd)
2553 vd->vdev_unspare = B_TRUE;
2554
2555 if ((flags & ZFS_ONLINE_EXPAND) || spa->spa_autoexpand) {
2556
2557 /* XXX - L2ARC 1.0 does not support expansion */
2558 if (vd->vdev_aux)
2559 return (spa_vdev_state_exit(spa, vd, ENOTSUP));
2560 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
2561 }
2562
2563 if (postevent)
2564 spa_event_notify(spa, vd, ESC_ZFS_VDEV_ONLINE);
2565
2566 return (spa_vdev_state_exit(spa, vd, 0));
2567 }
2568
2569 static int
2570 vdev_offline_locked(spa_t *spa, uint64_t guid, uint64_t flags)
2571 {
2572 vdev_t *vd, *tvd;
2573 int error = 0;
2574 uint64_t generation;
2575 metaslab_group_t *mg;
2576
2577 top:
2578 spa_vdev_state_enter(spa, SCL_ALLOC);
2579
2580 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2581 return (spa_vdev_state_exit(spa, NULL, ENODEV));
2582
2583 if (!vd->vdev_ops->vdev_op_leaf)
2584 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2585
2586 tvd = vd->vdev_top;
2587 mg = tvd->vdev_mg;
2588 generation = spa->spa_config_generation + 1;
2589
2590 /*
2591 * If the device isn't already offline, try to offline it.
2592 */
2593 if (!vd->vdev_offline) {
2594 /*
2595 * If this device has the only valid copy of some data,
2596 * don't allow it to be offlined. Log devices are always
2597 * expendable.
2598 */
2599 if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
2600 vdev_dtl_required(vd))
2601 return (spa_vdev_state_exit(spa, NULL, EBUSY));
2602
2603 /*
2604 * If the top-level is a slog and it has had allocations
2605 * then proceed. We check that the vdev's metaslab group
2606 * is not NULL since it's possible that we may have just
2607 * added this vdev but not yet initialized its metaslabs.
2608 */
2609 if (tvd->vdev_islog && mg != NULL) {
2610 /*
2611 * Prevent any future allocations.
2612 */
2613 metaslab_group_passivate(mg);
2614 (void) spa_vdev_state_exit(spa, vd, 0);
2615
2616 error = spa_offline_log(spa);
2617
2618 spa_vdev_state_enter(spa, SCL_ALLOC);
2619
2620 /*
2621 * Check to see if the config has changed.
2622 */
2623 if (error || generation != spa->spa_config_generation) {
2624 metaslab_group_activate(mg);
2625 if (error)
2626 return (spa_vdev_state_exit(spa,
2627 vd, error));
2628 (void) spa_vdev_state_exit(spa, vd, 0);
2629 goto top;
2630 }
2631 ASSERT0(tvd->vdev_stat.vs_alloc);
2632 }
2633
2634 /*
2635 * Offline this device and reopen its top-level vdev.
2636 * If the top-level vdev is a log device then just offline
2637 * it. Otherwise, if this action results in the top-level
2638 * vdev becoming unusable, undo it and fail the request.
2639 */
2640 vd->vdev_offline = B_TRUE;
2641 vdev_reopen(tvd);
2642
2643 if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
2644 vdev_is_dead(tvd)) {
2645 vd->vdev_offline = B_FALSE;
2646 vdev_reopen(tvd);
2647 return (spa_vdev_state_exit(spa, NULL, EBUSY));
2648 }
2649
2650 /*
2651 * Add the device back into the metaslab rotor so that
2652 * once we online the device it's open for business.
2653 */
2654 if (tvd->vdev_islog && mg != NULL)
2655 metaslab_group_activate(mg);
2656 }
2657
2658 vd->vdev_tmpoffline = !!(flags & ZFS_OFFLINE_TEMPORARY);
2659
2660 return (spa_vdev_state_exit(spa, vd, 0));
2661 }
2662
2663 int
2664 vdev_offline(spa_t *spa, uint64_t guid, uint64_t flags)
2665 {
2666 int error;
2667
2668 mutex_enter(&spa->spa_vdev_top_lock);
2669 error = vdev_offline_locked(spa, guid, flags);
2670 mutex_exit(&spa->spa_vdev_top_lock);
2671
2672 return (error);
2673 }
2674
2675 /*
2676 * Clear the error counts associated with this vdev. Unlike vdev_online() and
2677 * vdev_offline(), we assume the spa config is locked. We also clear all
2678 * children. If 'vd' is NULL, then the user wants to clear all vdevs.
2679 */
2680 void
2681 vdev_clear(spa_t *spa, vdev_t *vd)
2682 {
2683 vdev_t *rvd = spa->spa_root_vdev;
2684 int c;
2685
2686 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
2687
2688 if (vd == NULL)
2689 vd = rvd;
2690
2691 vd->vdev_stat.vs_read_errors = 0;
2692 vd->vdev_stat.vs_write_errors = 0;
2693 vd->vdev_stat.vs_checksum_errors = 0;
2694
2695 for (c = 0; c < vd->vdev_children; c++)
2696 vdev_clear(spa, vd->vdev_child[c]);
2697
2698 /*
2699 * If we're in the FAULTED state or have experienced failed I/O, then
2700 * clear the persistent state and attempt to reopen the device. We
2701 * also mark the vdev config dirty, so that the new faulted state is
2702 * written out to disk.
2703 */
2704 if (vd->vdev_faulted || vd->vdev_degraded ||
2705 !vdev_readable(vd) || !vdev_writeable(vd)) {
2706
2707 /*
2708 * When reopening in reponse to a clear event, it may be due to
2709 * a fmadm repair request. In this case, if the device is
2710 * still broken, we want to still post the ereport again.
2711 */
2712 vd->vdev_forcefault = B_TRUE;
2713
2714 vd->vdev_faulted = vd->vdev_degraded = 0ULL;
2715 vd->vdev_cant_read = B_FALSE;
2716 vd->vdev_cant_write = B_FALSE;
2717
2718 vdev_reopen(vd == rvd ? rvd : vd->vdev_top);
2719
2720 vd->vdev_forcefault = B_FALSE;
2721
2722 if (vd != rvd && vdev_writeable(vd->vdev_top))
2723 vdev_state_dirty(vd->vdev_top);
2724
2725 if (vd->vdev_aux == NULL && !vdev_is_dead(vd))
2726 spa_async_request(spa, SPA_ASYNC_RESILVER);
2727
2728 spa_event_notify(spa, vd, ESC_ZFS_VDEV_CLEAR);
2729 }
2730
2731 /*
2732 * When clearing a FMA-diagnosed fault, we always want to
2733 * unspare the device, as we assume that the original spare was
2734 * done in response to the FMA fault.
2735 */
2736 if (!vdev_is_dead(vd) && vd->vdev_parent != NULL &&
2737 vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
2738 vd->vdev_parent->vdev_child[0] == vd)
2739 vd->vdev_unspare = B_TRUE;
2740 }
2741
2742 boolean_t
2743 vdev_is_dead(vdev_t *vd)
2744 {
2745 /*
2746 * Holes and missing devices are always considered "dead".
2747 * This simplifies the code since we don't have to check for
2748 * these types of devices in the various code paths.
2749 * Instead we rely on the fact that we skip over dead devices
2750 * before issuing I/O to them.
2751 */
2752 return (vd->vdev_state < VDEV_STATE_DEGRADED || vd->vdev_ishole ||
2753 vd->vdev_ops == &vdev_missing_ops);
2754 }
2755
2756 boolean_t
2757 vdev_readable(vdev_t *vd)
2758 {
2759 return (!vdev_is_dead(vd) && !vd->vdev_cant_read);
2760 }
2761
2762 boolean_t
2763 vdev_writeable(vdev_t *vd)
2764 {
2765 return (!vdev_is_dead(vd) && !vd->vdev_cant_write);
2766 }
2767
2768 boolean_t
2769 vdev_allocatable(vdev_t *vd)
2770 {
2771 uint64_t state = vd->vdev_state;
2772
2773 /*
2774 * We currently allow allocations from vdevs which may be in the
2775 * process of reopening (i.e. VDEV_STATE_CLOSED). If the device
2776 * fails to reopen then we'll catch it later when we're holding
2777 * the proper locks. Note that we have to get the vdev state
2778 * in a local variable because although it changes atomically,
2779 * we're asking two separate questions about it.
2780 */
2781 return (!(state < VDEV_STATE_DEGRADED && state != VDEV_STATE_CLOSED) &&
2782 !vd->vdev_cant_write && !vd->vdev_ishole &&
2783 vd->vdev_mg->mg_initialized);
2784 }
2785
2786 boolean_t
2787 vdev_accessible(vdev_t *vd, zio_t *zio)
2788 {
2789 ASSERT(zio->io_vd == vd);
2790
2791 if (vdev_is_dead(vd) || vd->vdev_remove_wanted)
2792 return (B_FALSE);
2793
2794 if (zio->io_type == ZIO_TYPE_READ)
2795 return (!vd->vdev_cant_read);
2796
2797 if (zio->io_type == ZIO_TYPE_WRITE)
2798 return (!vd->vdev_cant_write);
2799
2800 return (B_TRUE);
2801 }
2802
2803 static void
2804 vdev_get_child_stat(vdev_t *cvd, vdev_stat_t *vs, vdev_stat_t *cvs)
2805 {
2806 int t;
2807 for (t = 0; t < ZIO_TYPES; t++) {
2808 vs->vs_ops[t] += cvs->vs_ops[t];
2809 vs->vs_bytes[t] += cvs->vs_bytes[t];
2810 }
2811
2812 cvs->vs_scan_removing = cvd->vdev_removing;
2813 }
2814
2815 /*
2816 * Get extended stats
2817 */
2818 static void
2819 vdev_get_child_stat_ex(vdev_t *cvd, vdev_stat_ex_t *vsx, vdev_stat_ex_t *cvsx)
2820 {
2821 int t, b;
2822 for (t = 0; t < ZIO_TYPES; t++) {
2823 for (b = 0; b < ARRAY_SIZE(vsx->vsx_disk_histo[0]); b++)
2824 vsx->vsx_disk_histo[t][b] += cvsx->vsx_disk_histo[t][b];
2825
2826 for (b = 0; b < ARRAY_SIZE(vsx->vsx_total_histo[0]); b++) {
2827 vsx->vsx_total_histo[t][b] +=
2828 cvsx->vsx_total_histo[t][b];
2829 }
2830 }
2831
2832 for (t = 0; t < ZIO_PRIORITY_NUM_QUEUEABLE; t++) {
2833 for (b = 0; b < ARRAY_SIZE(vsx->vsx_queue_histo[0]); b++) {
2834 vsx->vsx_queue_histo[t][b] +=
2835 cvsx->vsx_queue_histo[t][b];
2836 }
2837 vsx->vsx_active_queue[t] += cvsx->vsx_active_queue[t];
2838 vsx->vsx_pend_queue[t] += cvsx->vsx_pend_queue[t];
2839
2840 for (b = 0; b < ARRAY_SIZE(vsx->vsx_ind_histo[0]); b++)
2841 vsx->vsx_ind_histo[t][b] += cvsx->vsx_ind_histo[t][b];
2842
2843 for (b = 0; b < ARRAY_SIZE(vsx->vsx_agg_histo[0]); b++)
2844 vsx->vsx_agg_histo[t][b] += cvsx->vsx_agg_histo[t][b];
2845 }
2846
2847 }
2848
2849 /*
2850 * Get statistics for the given vdev.
2851 */
2852 static void
2853 vdev_get_stats_ex_impl(vdev_t *vd, vdev_stat_t *vs, vdev_stat_ex_t *vsx)
2854 {
2855 int c, t;
2856 /*
2857 * If we're getting stats on the root vdev, aggregate the I/O counts
2858 * over all top-level vdevs (i.e. the direct children of the root).
2859 */
2860 if (!vd->vdev_ops->vdev_op_leaf) {
2861 if (vs) {
2862 memset(vs->vs_ops, 0, sizeof (vs->vs_ops));
2863 memset(vs->vs_bytes, 0, sizeof (vs->vs_bytes));
2864 }
2865 if (vsx)
2866 memset(vsx, 0, sizeof (*vsx));
2867
2868 for (c = 0; c < vd->vdev_children; c++) {
2869 vdev_t *cvd = vd->vdev_child[c];
2870 vdev_stat_t *cvs = &cvd->vdev_stat;
2871 vdev_stat_ex_t *cvsx = &cvd->vdev_stat_ex;
2872
2873 vdev_get_stats_ex_impl(cvd, cvs, cvsx);
2874 if (vs)
2875 vdev_get_child_stat(cvd, vs, cvs);
2876 if (vsx)
2877 vdev_get_child_stat_ex(cvd, vsx, cvsx);
2878
2879 }
2880 } else {
2881 /*
2882 * We're a leaf. Just copy our ZIO active queue stats in. The
2883 * other leaf stats are updated in vdev_stat_update().
2884 */
2885 if (!vsx)
2886 return;
2887
2888 memcpy(vsx, &vd->vdev_stat_ex, sizeof (vd->vdev_stat_ex));
2889
2890 for (t = 0; t < ARRAY_SIZE(vd->vdev_queue.vq_class); t++) {
2891 vsx->vsx_active_queue[t] =
2892 vd->vdev_queue.vq_class[t].vqc_active;
2893 vsx->vsx_pend_queue[t] = avl_numnodes(
2894 &vd->vdev_queue.vq_class[t].vqc_queued_tree);
2895 }
2896 }
2897 }
2898
2899 void
2900 vdev_get_stats_ex(vdev_t *vd, vdev_stat_t *vs, vdev_stat_ex_t *vsx)
2901 {
2902 mutex_enter(&vd->vdev_stat_lock);
2903 if (vs) {
2904 bcopy(&vd->vdev_stat, vs, sizeof (*vs));
2905 vs->vs_timestamp = gethrtime() - vs->vs_timestamp;
2906 vs->vs_state = vd->vdev_state;
2907 vs->vs_rsize = vdev_get_min_asize(vd);
2908 if (vd->vdev_ops->vdev_op_leaf)
2909 vs->vs_rsize += VDEV_LABEL_START_SIZE +
2910 VDEV_LABEL_END_SIZE;
2911 vs->vs_esize = vd->vdev_max_asize - vd->vdev_asize;
2912 if (vd->vdev_aux == NULL && vd == vd->vdev_top &&
2913 !vd->vdev_ishole) {
2914 vs->vs_fragmentation = vd->vdev_mg->mg_fragmentation;
2915 }
2916 }
2917
2918 ASSERT(spa_config_held(vd->vdev_spa, SCL_ALL, RW_READER) != 0);
2919 vdev_get_stats_ex_impl(vd, vs, vsx);
2920 mutex_exit(&vd->vdev_stat_lock);
2921 }
2922
2923 void
2924 vdev_get_stats(vdev_t *vd, vdev_stat_t *vs)
2925 {
2926 return (vdev_get_stats_ex(vd, vs, NULL));
2927 }
2928
2929 void
2930 vdev_clear_stats(vdev_t *vd)
2931 {
2932 mutex_enter(&vd->vdev_stat_lock);
2933 vd->vdev_stat.vs_space = 0;
2934 vd->vdev_stat.vs_dspace = 0;
2935 vd->vdev_stat.vs_alloc = 0;
2936 mutex_exit(&vd->vdev_stat_lock);
2937 }
2938
2939 void
2940 vdev_scan_stat_init(vdev_t *vd)
2941 {
2942 vdev_stat_t *vs = &vd->vdev_stat;
2943 int c;
2944
2945 for (c = 0; c < vd->vdev_children; c++)
2946 vdev_scan_stat_init(vd->vdev_child[c]);
2947
2948 mutex_enter(&vd->vdev_stat_lock);
2949 vs->vs_scan_processed = 0;
2950 mutex_exit(&vd->vdev_stat_lock);
2951 }
2952
2953 void
2954 vdev_stat_update(zio_t *zio, uint64_t psize)
2955 {
2956 spa_t *spa = zio->io_spa;
2957 vdev_t *rvd = spa->spa_root_vdev;
2958 vdev_t *vd = zio->io_vd ? zio->io_vd : rvd;
2959 vdev_t *pvd;
2960 uint64_t txg = zio->io_txg;
2961 vdev_stat_t *vs = &vd->vdev_stat;
2962 vdev_stat_ex_t *vsx = &vd->vdev_stat_ex;
2963 zio_type_t type = zio->io_type;
2964 int flags = zio->io_flags;
2965
2966 /*
2967 * If this i/o is a gang leader, it didn't do any actual work.
2968 */
2969 if (zio->io_gang_tree)
2970 return;
2971
2972 if (zio->io_error == 0) {
2973 /*
2974 * If this is a root i/o, don't count it -- we've already
2975 * counted the top-level vdevs, and vdev_get_stats() will
2976 * aggregate them when asked. This reduces contention on
2977 * the root vdev_stat_lock and implicitly handles blocks
2978 * that compress away to holes, for which there is no i/o.
2979 * (Holes never create vdev children, so all the counters
2980 * remain zero, which is what we want.)
2981 *
2982 * Note: this only applies to successful i/o (io_error == 0)
2983 * because unlike i/o counts, errors are not additive.
2984 * When reading a ditto block, for example, failure of
2985 * one top-level vdev does not imply a root-level error.
2986 */
2987 if (vd == rvd)
2988 return;
2989
2990 ASSERT(vd == zio->io_vd);
2991
2992 if (flags & ZIO_FLAG_IO_BYPASS)
2993 return;
2994
2995 mutex_enter(&vd->vdev_stat_lock);
2996
2997 if (flags & ZIO_FLAG_IO_REPAIR) {
2998 if (flags & ZIO_FLAG_SCAN_THREAD) {
2999 dsl_scan_phys_t *scn_phys =
3000 &spa->spa_dsl_pool->dp_scan->scn_phys;
3001 uint64_t *processed = &scn_phys->scn_processed;
3002
3003 /* XXX cleanup? */
3004 if (vd->vdev_ops->vdev_op_leaf)
3005 atomic_add_64(processed, psize);
3006 vs->vs_scan_processed += psize;
3007 }
3008
3009 if (flags & ZIO_FLAG_SELF_HEAL)
3010 vs->vs_self_healed += psize;
3011 }
3012
3013 /*
3014 * The bytes/ops/histograms are recorded at the leaf level and
3015 * aggregated into the higher level vdevs in vdev_get_stats().
3016 */
3017 if (vd->vdev_ops->vdev_op_leaf &&
3018 (zio->io_priority < ZIO_PRIORITY_NUM_QUEUEABLE)) {
3019
3020 vs->vs_ops[type]++;
3021 vs->vs_bytes[type] += psize;
3022
3023 if (flags & ZIO_FLAG_DELEGATED) {
3024 vsx->vsx_agg_histo[zio->io_priority]
3025 [RQ_HISTO(zio->io_size)]++;
3026 } else {
3027 vsx->vsx_ind_histo[zio->io_priority]
3028 [RQ_HISTO(zio->io_size)]++;
3029 }
3030
3031 if (zio->io_delta && zio->io_delay) {
3032 vsx->vsx_queue_histo[zio->io_priority]
3033 [L_HISTO(zio->io_delta - zio->io_delay)]++;
3034 vsx->vsx_disk_histo[type]
3035 [L_HISTO(zio->io_delay)]++;
3036 vsx->vsx_total_histo[type]
3037 [L_HISTO(zio->io_delta)]++;
3038 }
3039 }
3040
3041 mutex_exit(&vd->vdev_stat_lock);
3042 return;
3043 }
3044
3045 if (flags & ZIO_FLAG_SPECULATIVE)
3046 return;
3047
3048 /*
3049 * If this is an I/O error that is going to be retried, then ignore the
3050 * error. Otherwise, the user may interpret B_FAILFAST I/O errors as
3051 * hard errors, when in reality they can happen for any number of
3052 * innocuous reasons (bus resets, MPxIO link failure, etc).
3053 */
3054 if (zio->io_error == EIO &&
3055 !(zio->io_flags & ZIO_FLAG_IO_RETRY))
3056 return;
3057
3058 /*
3059 * Intent logs writes won't propagate their error to the root
3060 * I/O so don't mark these types of failures as pool-level
3061 * errors.
3062 */
3063 if (zio->io_vd == NULL && (zio->io_flags & ZIO_FLAG_DONT_PROPAGATE))
3064 return;
3065
3066 mutex_enter(&vd->vdev_stat_lock);
3067 if (type == ZIO_TYPE_READ && !vdev_is_dead(vd)) {
3068 if (zio->io_error == ECKSUM)
3069 vs->vs_checksum_errors++;
3070 else
3071 vs->vs_read_errors++;
3072 }
3073 if (type == ZIO_TYPE_WRITE && !vdev_is_dead(vd))
3074 vs->vs_write_errors++;
3075 mutex_exit(&vd->vdev_stat_lock);
3076
3077 if (type == ZIO_TYPE_WRITE && txg != 0 &&
3078 (!(flags & ZIO_FLAG_IO_REPAIR) ||
3079 (flags & ZIO_FLAG_SCAN_THREAD) ||
3080 spa->spa_claiming)) {
3081 /*
3082 * This is either a normal write (not a repair), or it's
3083 * a repair induced by the scrub thread, or it's a repair
3084 * made by zil_claim() during spa_load() in the first txg.
3085 * In the normal case, we commit the DTL change in the same
3086 * txg as the block was born. In the scrub-induced repair
3087 * case, we know that scrubs run in first-pass syncing context,
3088 * so we commit the DTL change in spa_syncing_txg(spa).
3089 * In the zil_claim() case, we commit in spa_first_txg(spa).
3090 *
3091 * We currently do not make DTL entries for failed spontaneous
3092 * self-healing writes triggered by normal (non-scrubbing)
3093 * reads, because we have no transactional context in which to
3094 * do so -- and it's not clear that it'd be desirable anyway.
3095 */
3096 if (vd->vdev_ops->vdev_op_leaf) {
3097 uint64_t commit_txg = txg;
3098 if (flags & ZIO_FLAG_SCAN_THREAD) {
3099 ASSERT(flags & ZIO_FLAG_IO_REPAIR);
3100 ASSERT(spa_sync_pass(spa) == 1);
3101 vdev_dtl_dirty(vd, DTL_SCRUB, txg, 1);
3102 commit_txg = spa_syncing_txg(spa);
3103 } else if (spa->spa_claiming) {
3104 ASSERT(flags & ZIO_FLAG_IO_REPAIR);
3105 commit_txg = spa_first_txg(spa);
3106 }
3107 ASSERT(commit_txg >= spa_syncing_txg(spa));
3108 if (vdev_dtl_contains(vd, DTL_MISSING, txg, 1))
3109 return;
3110 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
3111 vdev_dtl_dirty(pvd, DTL_PARTIAL, txg, 1);
3112 vdev_dirty(vd->vdev_top, VDD_DTL, vd, commit_txg);
3113 }
3114 if (vd != rvd)
3115 vdev_dtl_dirty(vd, DTL_MISSING, txg, 1);
3116 }
3117 }
3118
3119 /*
3120 * Update the in-core space usage stats for this vdev, its metaslab class,
3121 * and the root vdev.
3122 */
3123 void
3124 vdev_space_update(vdev_t *vd, int64_t alloc_delta, int64_t defer_delta,
3125 int64_t space_delta)
3126 {
3127 int64_t dspace_delta = space_delta;
3128 spa_t *spa = vd->vdev_spa;
3129 vdev_t *rvd = spa->spa_root_vdev;
3130 metaslab_group_t *mg = vd->vdev_mg;
3131 metaslab_class_t *mc = mg ? mg->mg_class : NULL;
3132
3133 ASSERT(vd == vd->vdev_top);
3134
3135 /*
3136 * Apply the inverse of the psize-to-asize (ie. RAID-Z) space-expansion
3137 * factor. We must calculate this here and not at the root vdev
3138 * because the root vdev's psize-to-asize is simply the max of its
3139 * childrens', thus not accurate enough for us.
3140 */
3141 ASSERT((dspace_delta & (SPA_MINBLOCKSIZE-1)) == 0);
3142 ASSERT(vd->vdev_deflate_ratio != 0 || vd->vdev_isl2cache);
3143 dspace_delta = (dspace_delta >> SPA_MINBLOCKSHIFT) *
3144 vd->vdev_deflate_ratio;
3145
3146 mutex_enter(&vd->vdev_stat_lock);
3147 vd->vdev_stat.vs_alloc += alloc_delta;
3148 vd->vdev_stat.vs_space += space_delta;
3149 vd->vdev_stat.vs_dspace += dspace_delta;
3150 mutex_exit(&vd->vdev_stat_lock);
3151
3152 if (mc == spa_normal_class(spa)) {
3153 mutex_enter(&rvd->vdev_stat_lock);
3154 rvd->vdev_stat.vs_alloc += alloc_delta;
3155 rvd->vdev_stat.vs_space += space_delta;
3156 rvd->vdev_stat.vs_dspace += dspace_delta;
3157 mutex_exit(&rvd->vdev_stat_lock);
3158 }
3159
3160 if (mc != NULL) {
3161 ASSERT(rvd == vd->vdev_parent);
3162 ASSERT(vd->vdev_ms_count != 0);
3163
3164 metaslab_class_space_update(mc,
3165 alloc_delta, defer_delta, space_delta, dspace_delta);
3166 }
3167 }
3168
3169 /*
3170 * Mark a top-level vdev's config as dirty, placing it on the dirty list
3171 * so that it will be written out next time the vdev configuration is synced.
3172 * If the root vdev is specified (vdev_top == NULL), dirty all top-level vdevs.
3173 */
3174 void
3175 vdev_config_dirty(vdev_t *vd)
3176 {
3177 spa_t *spa = vd->vdev_spa;
3178 vdev_t *rvd = spa->spa_root_vdev;
3179 int c;
3180
3181 ASSERT(spa_writeable(spa));
3182
3183 /*
3184 * If this is an aux vdev (as with l2cache and spare devices), then we
3185 * update the vdev config manually and set the sync flag.
3186 */
3187 if (vd->vdev_aux != NULL) {
3188 spa_aux_vdev_t *sav = vd->vdev_aux;
3189 nvlist_t **aux;
3190 uint_t naux;
3191
3192 for (c = 0; c < sav->sav_count; c++) {
3193 if (sav->sav_vdevs[c] == vd)
3194 break;
3195 }
3196
3197 if (c == sav->sav_count) {
3198 /*
3199 * We're being removed. There's nothing more to do.
3200 */
3201 ASSERT(sav->sav_sync == B_TRUE);
3202 return;
3203 }
3204
3205 sav->sav_sync = B_TRUE;
3206
3207 if (nvlist_lookup_nvlist_array(sav->sav_config,
3208 ZPOOL_CONFIG_L2CACHE, &aux, &naux) != 0) {
3209 VERIFY(nvlist_lookup_nvlist_array(sav->sav_config,
3210 ZPOOL_CONFIG_SPARES, &aux, &naux) == 0);
3211 }
3212
3213 ASSERT(c < naux);
3214
3215 /*
3216 * Setting the nvlist in the middle if the array is a little
3217 * sketchy, but it will work.
3218 */
3219 nvlist_free(aux[c]);
3220 aux[c] = vdev_config_generate(spa, vd, B_TRUE, 0);
3221
3222 return;
3223 }
3224
3225 /*
3226 * The dirty list is protected by the SCL_CONFIG lock. The caller
3227 * must either hold SCL_CONFIG as writer, or must be the sync thread
3228 * (which holds SCL_CONFIG as reader). There's only one sync thread,
3229 * so this is sufficient to ensure mutual exclusion.
3230 */
3231 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
3232 (dsl_pool_sync_context(spa_get_dsl(spa)) &&
3233 spa_config_held(spa, SCL_CONFIG, RW_READER)));
3234
3235 if (vd == rvd) {
3236 for (c = 0; c < rvd->vdev_children; c++)
3237 vdev_config_dirty(rvd->vdev_child[c]);
3238 } else {
3239 ASSERT(vd == vd->vdev_top);
3240
3241 if (!list_link_active(&vd->vdev_config_dirty_node) &&
3242 !vd->vdev_ishole)
3243 list_insert_head(&spa->spa_config_dirty_list, vd);
3244 }
3245 }
3246
3247 void
3248 vdev_config_clean(vdev_t *vd)
3249 {
3250 spa_t *spa = vd->vdev_spa;
3251
3252 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
3253 (dsl_pool_sync_context(spa_get_dsl(spa)) &&
3254 spa_config_held(spa, SCL_CONFIG, RW_READER)));
3255
3256 ASSERT(list_link_active(&vd->vdev_config_dirty_node));
3257 list_remove(&spa->spa_config_dirty_list, vd);
3258 }
3259
3260 /*
3261 * Mark a top-level vdev's state as dirty, so that the next pass of
3262 * spa_sync() can convert this into vdev_config_dirty(). We distinguish
3263 * the state changes from larger config changes because they require
3264 * much less locking, and are often needed for administrative actions.
3265 */
3266 void
3267 vdev_state_dirty(vdev_t *vd)
3268 {
3269 spa_t *spa = vd->vdev_spa;
3270
3271 ASSERT(spa_writeable(spa));
3272 ASSERT(vd == vd->vdev_top);
3273
3274 /*
3275 * The state list is protected by the SCL_STATE lock. The caller
3276 * must either hold SCL_STATE as writer, or must be the sync thread
3277 * (which holds SCL_STATE as reader). There's only one sync thread,
3278 * so this is sufficient to ensure mutual exclusion.
3279 */
3280 ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
3281 (dsl_pool_sync_context(spa_get_dsl(spa)) &&
3282 spa_config_held(spa, SCL_STATE, RW_READER)));
3283
3284 if (!list_link_active(&vd->vdev_state_dirty_node) && !vd->vdev_ishole)
3285 list_insert_head(&spa->spa_state_dirty_list, vd);
3286 }
3287
3288 void
3289 vdev_state_clean(vdev_t *vd)
3290 {
3291 spa_t *spa = vd->vdev_spa;
3292
3293 ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
3294 (dsl_pool_sync_context(spa_get_dsl(spa)) &&
3295 spa_config_held(spa, SCL_STATE, RW_READER)));
3296
3297 ASSERT(list_link_active(&vd->vdev_state_dirty_node));
3298 list_remove(&spa->spa_state_dirty_list, vd);
3299 }
3300
3301 /*
3302 * Propagate vdev state up from children to parent.
3303 */
3304 void
3305 vdev_propagate_state(vdev_t *vd)
3306 {
3307 spa_t *spa = vd->vdev_spa;
3308 vdev_t *rvd = spa->spa_root_vdev;
3309 int degraded = 0, faulted = 0;
3310 int corrupted = 0;
3311 vdev_t *child;
3312 int c;
3313
3314 if (vd->vdev_children > 0) {
3315 for (c = 0; c < vd->vdev_children; c++) {
3316 child = vd->vdev_child[c];
3317
3318 /*
3319 * Don't factor holes into the decision.
3320 */
3321 if (child->vdev_ishole)
3322 continue;
3323
3324 if (!vdev_readable(child) ||
3325 (!vdev_writeable(child) && spa_writeable(spa))) {
3326 /*
3327 * Root special: if there is a top-level log
3328 * device, treat the root vdev as if it were
3329 * degraded.
3330 */
3331 if (child->vdev_islog && vd == rvd)
3332 degraded++;
3333 else
3334 faulted++;
3335 } else if (child->vdev_state <= VDEV_STATE_DEGRADED) {
3336 degraded++;
3337 }
3338
3339 if (child->vdev_stat.vs_aux == VDEV_AUX_CORRUPT_DATA)
3340 corrupted++;
3341 }
3342
3343 vd->vdev_ops->vdev_op_state_change(vd, faulted, degraded);
3344
3345 /*
3346 * Root special: if there is a top-level vdev that cannot be
3347 * opened due to corrupted metadata, then propagate the root
3348 * vdev's aux state as 'corrupt' rather than 'insufficient
3349 * replicas'.
3350 */
3351 if (corrupted && vd == rvd &&
3352 rvd->vdev_state == VDEV_STATE_CANT_OPEN)
3353 vdev_set_state(rvd, B_FALSE, VDEV_STATE_CANT_OPEN,
3354 VDEV_AUX_CORRUPT_DATA);
3355 }
3356
3357 if (vd->vdev_parent)
3358 vdev_propagate_state(vd->vdev_parent);
3359 }
3360
3361 /*
3362 * Set a vdev's state. If this is during an open, we don't update the parent
3363 * state, because we're in the process of opening children depth-first.
3364 * Otherwise, we propagate the change to the parent.
3365 *
3366 * If this routine places a device in a faulted state, an appropriate ereport is
3367 * generated.
3368 */
3369 void
3370 vdev_set_state(vdev_t *vd, boolean_t isopen, vdev_state_t state, vdev_aux_t aux)
3371 {
3372 uint64_t save_state;
3373 spa_t *spa = vd->vdev_spa;
3374
3375 if (state == vd->vdev_state) {
3376 /*
3377 * Since vdev_offline() code path is already in an offline
3378 * state we can miss a statechange event to OFFLINE. Check
3379 * the previous state to catch this condition.
3380 */
3381 if (vd->vdev_ops->vdev_op_leaf &&
3382 (state == VDEV_STATE_OFFLINE) &&
3383 (vd->vdev_prevstate >= VDEV_STATE_FAULTED)) {
3384 /* post an offline state change */
3385 zfs_post_state_change(spa, vd, vd->vdev_prevstate);
3386 }
3387 vd->vdev_stat.vs_aux = aux;
3388 return;
3389 }
3390
3391 save_state = vd->vdev_state;
3392
3393 vd->vdev_state = state;
3394 vd->vdev_stat.vs_aux = aux;
3395
3396 /*
3397 * If we are setting the vdev state to anything but an open state, then
3398 * always close the underlying device unless the device has requested
3399 * a delayed close (i.e. we're about to remove or fault the device).
3400 * Otherwise, we keep accessible but invalid devices open forever.
3401 * We don't call vdev_close() itself, because that implies some extra
3402 * checks (offline, etc) that we don't want here. This is limited to
3403 * leaf devices, because otherwise closing the device will affect other
3404 * children.
3405 */
3406 if (!vd->vdev_delayed_close && vdev_is_dead(vd) &&
3407 vd->vdev_ops->vdev_op_leaf)
3408 vd->vdev_ops->vdev_op_close(vd);
3409
3410 if (vd->vdev_removed &&
3411 state == VDEV_STATE_CANT_OPEN &&
3412 (aux == VDEV_AUX_OPEN_FAILED || vd->vdev_checkremove)) {
3413 /*
3414 * If the previous state is set to VDEV_STATE_REMOVED, then this
3415 * device was previously marked removed and someone attempted to
3416 * reopen it. If this failed due to a nonexistent device, then
3417 * keep the device in the REMOVED state. We also let this be if
3418 * it is one of our special test online cases, which is only
3419 * attempting to online the device and shouldn't generate an FMA
3420 * fault.
3421 */
3422 vd->vdev_state = VDEV_STATE_REMOVED;
3423 vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
3424 } else if (state == VDEV_STATE_REMOVED) {
3425 vd->vdev_removed = B_TRUE;
3426 } else if (state == VDEV_STATE_CANT_OPEN) {
3427 /*
3428 * If we fail to open a vdev during an import or recovery, we
3429 * mark it as "not available", which signifies that it was
3430 * never there to begin with. Failure to open such a device
3431 * is not considered an error.
3432 */
3433 if ((spa_load_state(spa) == SPA_LOAD_IMPORT ||
3434 spa_load_state(spa) == SPA_LOAD_RECOVER) &&
3435 vd->vdev_ops->vdev_op_leaf)
3436 vd->vdev_not_present = 1;
3437
3438 /*
3439 * Post the appropriate ereport. If the 'prevstate' field is
3440 * set to something other than VDEV_STATE_UNKNOWN, it indicates
3441 * that this is part of a vdev_reopen(). In this case, we don't
3442 * want to post the ereport if the device was already in the
3443 * CANT_OPEN state beforehand.
3444 *
3445 * If the 'checkremove' flag is set, then this is an attempt to
3446 * online the device in response to an insertion event. If we
3447 * hit this case, then we have detected an insertion event for a
3448 * faulted or offline device that wasn't in the removed state.
3449 * In this scenario, we don't post an ereport because we are
3450 * about to replace the device, or attempt an online with
3451 * vdev_forcefault, which will generate the fault for us.
3452 */
3453 if ((vd->vdev_prevstate != state || vd->vdev_forcefault) &&
3454 !vd->vdev_not_present && !vd->vdev_checkremove &&
3455 vd != spa->spa_root_vdev) {
3456 const char *class;
3457
3458 switch (aux) {
3459 case VDEV_AUX_OPEN_FAILED:
3460 class = FM_EREPORT_ZFS_DEVICE_OPEN_FAILED;
3461 break;
3462 case VDEV_AUX_CORRUPT_DATA:
3463 class = FM_EREPORT_ZFS_DEVICE_CORRUPT_DATA;
3464 break;
3465 case VDEV_AUX_NO_REPLICAS:
3466 class = FM_EREPORT_ZFS_DEVICE_NO_REPLICAS;
3467 break;
3468 case VDEV_AUX_BAD_GUID_SUM:
3469 class = FM_EREPORT_ZFS_DEVICE_BAD_GUID_SUM;
3470 break;
3471 case VDEV_AUX_TOO_SMALL:
3472 class = FM_EREPORT_ZFS_DEVICE_TOO_SMALL;
3473 break;
3474 case VDEV_AUX_BAD_LABEL:
3475 class = FM_EREPORT_ZFS_DEVICE_BAD_LABEL;
3476 break;
3477 default:
3478 class = FM_EREPORT_ZFS_DEVICE_UNKNOWN;
3479 }
3480
3481 zfs_ereport_post(class, spa, vd, NULL, save_state, 0);
3482 }
3483
3484 /* Erase any notion of persistent removed state */
3485 vd->vdev_removed = B_FALSE;
3486 } else {
3487 vd->vdev_removed = B_FALSE;
3488 }
3489
3490 /*
3491 * Notify ZED of any significant state-change on a leaf vdev.
3492 *
3493 */
3494 if (vd->vdev_ops->vdev_op_leaf) {
3495 /* preserve original state from a vdev_reopen() */
3496 if ((vd->vdev_prevstate != VDEV_STATE_UNKNOWN) &&
3497 (vd->vdev_prevstate != vd->vdev_state) &&
3498 (save_state <= VDEV_STATE_CLOSED))
3499 save_state = vd->vdev_prevstate;
3500
3501 /* filter out state change due to initial vdev_open */
3502 if (save_state > VDEV_STATE_CLOSED)
3503 zfs_post_state_change(spa, vd, save_state);
3504 }
3505
3506 if (!isopen && vd->vdev_parent)
3507 vdev_propagate_state(vd->vdev_parent);
3508 }
3509
3510 /*
3511 * Check the vdev configuration to ensure that it's capable of supporting
3512 * a root pool.
3513 */
3514 boolean_t
3515 vdev_is_bootable(vdev_t *vd)
3516 {
3517 #if defined(__sun__) || defined(__sun)
3518 /*
3519 * Currently, we do not support RAID-Z or partial configuration.
3520 * In addition, only a single top-level vdev is allowed and none of the
3521 * leaves can be wholedisks.
3522 */
3523 int c;
3524
3525 if (!vd->vdev_ops->vdev_op_leaf) {
3526 char *vdev_type = vd->vdev_ops->vdev_op_type;
3527
3528 if (strcmp(vdev_type, VDEV_TYPE_ROOT) == 0 &&
3529 vd->vdev_children > 1) {
3530 return (B_FALSE);
3531 } else if (strcmp(vdev_type, VDEV_TYPE_RAIDZ) == 0 ||
3532 strcmp(vdev_type, VDEV_TYPE_MISSING) == 0) {
3533 return (B_FALSE);
3534 }
3535 } else if (vd->vdev_wholedisk == 1) {
3536 return (B_FALSE);
3537 }
3538
3539 for (c = 0; c < vd->vdev_children; c++) {
3540 if (!vdev_is_bootable(vd->vdev_child[c]))
3541 return (B_FALSE);
3542 }
3543 #endif /* __sun__ || __sun */
3544 return (B_TRUE);
3545 }
3546
3547 /*
3548 * Load the state from the original vdev tree (ovd) which
3549 * we've retrieved from the MOS config object. If the original
3550 * vdev was offline or faulted then we transfer that state to the
3551 * device in the current vdev tree (nvd).
3552 */
3553 void
3554 vdev_load_log_state(vdev_t *nvd, vdev_t *ovd)
3555 {
3556 int c;
3557
3558 ASSERT(nvd->vdev_top->vdev_islog);
3559 ASSERT(spa_config_held(nvd->vdev_spa,
3560 SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
3561 ASSERT3U(nvd->vdev_guid, ==, ovd->vdev_guid);
3562
3563 for (c = 0; c < nvd->vdev_children; c++)
3564 vdev_load_log_state(nvd->vdev_child[c], ovd->vdev_child[c]);
3565
3566 if (nvd->vdev_ops->vdev_op_leaf) {
3567 /*
3568 * Restore the persistent vdev state
3569 */
3570 nvd->vdev_offline = ovd->vdev_offline;
3571 nvd->vdev_faulted = ovd->vdev_faulted;
3572 nvd->vdev_degraded = ovd->vdev_degraded;
3573 nvd->vdev_removed = ovd->vdev_removed;
3574 }
3575 }
3576
3577 /*
3578 * Determine if a log device has valid content. If the vdev was
3579 * removed or faulted in the MOS config then we know that
3580 * the content on the log device has already been written to the pool.
3581 */
3582 boolean_t
3583 vdev_log_state_valid(vdev_t *vd)
3584 {
3585 int c;
3586
3587 if (vd->vdev_ops->vdev_op_leaf && !vd->vdev_faulted &&
3588 !vd->vdev_removed)
3589 return (B_TRUE);
3590
3591 for (c = 0; c < vd->vdev_children; c++)
3592 if (vdev_log_state_valid(vd->vdev_child[c]))
3593 return (B_TRUE);
3594
3595 return (B_FALSE);
3596 }
3597
3598 /*
3599 * Expand a vdev if possible.
3600 */
3601 void
3602 vdev_expand(vdev_t *vd, uint64_t txg)
3603 {
3604 ASSERT(vd->vdev_top == vd);
3605 ASSERT(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
3606
3607 if ((vd->vdev_asize >> vd->vdev_ms_shift) > vd->vdev_ms_count) {
3608 VERIFY(vdev_metaslab_init(vd, txg) == 0);
3609 vdev_config_dirty(vd);
3610 }
3611 }
3612
3613 /*
3614 * Split a vdev.
3615 */
3616 void
3617 vdev_split(vdev_t *vd)
3618 {
3619 vdev_t *cvd, *pvd = vd->vdev_parent;
3620
3621 vdev_remove_child(pvd, vd);
3622 vdev_compact_children(pvd);
3623
3624 cvd = pvd->vdev_child[0];
3625 if (pvd->vdev_children == 1) {
3626 vdev_remove_parent(cvd);
3627 cvd->vdev_splitting = B_TRUE;
3628 }
3629 vdev_propagate_state(cvd);
3630 }
3631
3632 void
3633 vdev_deadman(vdev_t *vd)
3634 {
3635 int c;
3636
3637 for (c = 0; c < vd->vdev_children; c++) {
3638 vdev_t *cvd = vd->vdev_child[c];
3639
3640 vdev_deadman(cvd);
3641 }
3642
3643 if (vd->vdev_ops->vdev_op_leaf) {
3644 vdev_queue_t *vq = &vd->vdev_queue;
3645
3646 mutex_enter(&vq->vq_lock);
3647 if (avl_numnodes(&vq->vq_active_tree) > 0) {
3648 spa_t *spa = vd->vdev_spa;
3649 zio_t *fio;
3650 uint64_t delta;
3651
3652 /*
3653 * Look at the head of all the pending queues,
3654 * if any I/O has been outstanding for longer than
3655 * the spa_deadman_synctime we log a zevent.
3656 */
3657 fio = avl_first(&vq->vq_active_tree);
3658 delta = gethrtime() - fio->io_timestamp;
3659 if (delta > spa_deadman_synctime(spa)) {
3660 zfs_dbgmsg("SLOW IO: zio timestamp %lluns, "
3661 "delta %lluns, last io %lluns",
3662 fio->io_timestamp, delta,
3663 vq->vq_io_complete_ts);
3664 zfs_ereport_post(FM_EREPORT_ZFS_DELAY,
3665 spa, vd, fio, 0, 0);
3666 }
3667 }
3668 mutex_exit(&vq->vq_lock);
3669 }
3670 }
3671
3672 #if defined(_KERNEL) && defined(HAVE_SPL)
3673 EXPORT_SYMBOL(vdev_fault);
3674 EXPORT_SYMBOL(vdev_degrade);
3675 EXPORT_SYMBOL(vdev_online);
3676 EXPORT_SYMBOL(vdev_offline);
3677 EXPORT_SYMBOL(vdev_clear);
3678
3679 module_param(metaslabs_per_vdev, int, 0644);
3680 MODULE_PARM_DESC(metaslabs_per_vdev,
3681 "Divide added vdev into approximately (but no more than) this number "
3682 "of metaslabs");
3683 #endif