]> git.proxmox.com Git - mirror_zfs.git/blob - module/zfs/vdev.c
Write label 2,3 uberblocks when vdev expands
[mirror_zfs.git] / module / zfs / vdev.c
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22 /*
23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright (c) 2011, 2015 by Delphix. All rights reserved.
25 * Copyright 2017 Nexenta Systems, Inc.
26 * Copyright (c) 2014 Integros [integros.com]
27 * Copyright 2016 Toomas Soome <tsoome@me.com>
28 */
29
30 #include <sys/zfs_context.h>
31 #include <sys/fm/fs/zfs.h>
32 #include <sys/spa.h>
33 #include <sys/spa_impl.h>
34 #include <sys/dmu.h>
35 #include <sys/dmu_tx.h>
36 #include <sys/vdev_impl.h>
37 #include <sys/uberblock_impl.h>
38 #include <sys/metaslab.h>
39 #include <sys/metaslab_impl.h>
40 #include <sys/space_map.h>
41 #include <sys/space_reftree.h>
42 #include <sys/zio.h>
43 #include <sys/zap.h>
44 #include <sys/fs/zfs.h>
45 #include <sys/arc.h>
46 #include <sys/zil.h>
47 #include <sys/dsl_scan.h>
48 #include <sys/abd.h>
49 #include <sys/zvol.h>
50 #include <sys/zfs_ratelimit.h>
51
52 /*
53 * When a vdev is added, it will be divided into approximately (but no
54 * more than) this number of metaslabs.
55 */
56 int metaslabs_per_vdev = 200;
57
58 /*
59 * Virtual device management.
60 */
61
62 static vdev_ops_t *vdev_ops_table[] = {
63 &vdev_root_ops,
64 &vdev_raidz_ops,
65 &vdev_mirror_ops,
66 &vdev_replacing_ops,
67 &vdev_spare_ops,
68 &vdev_disk_ops,
69 &vdev_file_ops,
70 &vdev_missing_ops,
71 &vdev_hole_ops,
72 NULL
73 };
74
75 /*
76 * Given a vdev type, return the appropriate ops vector.
77 */
78 static vdev_ops_t *
79 vdev_getops(const char *type)
80 {
81 vdev_ops_t *ops, **opspp;
82
83 for (opspp = vdev_ops_table; (ops = *opspp) != NULL; opspp++)
84 if (strcmp(ops->vdev_op_type, type) == 0)
85 break;
86
87 return (ops);
88 }
89
90 /*
91 * Default asize function: return the MAX of psize with the asize of
92 * all children. This is what's used by anything other than RAID-Z.
93 */
94 uint64_t
95 vdev_default_asize(vdev_t *vd, uint64_t psize)
96 {
97 uint64_t asize = P2ROUNDUP(psize, 1ULL << vd->vdev_top->vdev_ashift);
98 uint64_t csize;
99 int c;
100
101 for (c = 0; c < vd->vdev_children; c++) {
102 csize = vdev_psize_to_asize(vd->vdev_child[c], psize);
103 asize = MAX(asize, csize);
104 }
105
106 return (asize);
107 }
108
109 /*
110 * Get the minimum allocatable size. We define the allocatable size as
111 * the vdev's asize rounded to the nearest metaslab. This allows us to
112 * replace or attach devices which don't have the same physical size but
113 * can still satisfy the same number of allocations.
114 */
115 uint64_t
116 vdev_get_min_asize(vdev_t *vd)
117 {
118 vdev_t *pvd = vd->vdev_parent;
119
120 /*
121 * If our parent is NULL (inactive spare or cache) or is the root,
122 * just return our own asize.
123 */
124 if (pvd == NULL)
125 return (vd->vdev_asize);
126
127 /*
128 * The top-level vdev just returns the allocatable size rounded
129 * to the nearest metaslab.
130 */
131 if (vd == vd->vdev_top)
132 return (P2ALIGN(vd->vdev_asize, 1ULL << vd->vdev_ms_shift));
133
134 /*
135 * The allocatable space for a raidz vdev is N * sizeof(smallest child),
136 * so each child must provide at least 1/Nth of its asize.
137 */
138 if (pvd->vdev_ops == &vdev_raidz_ops)
139 return ((pvd->vdev_min_asize + pvd->vdev_children - 1) /
140 pvd->vdev_children);
141
142 return (pvd->vdev_min_asize);
143 }
144
145 void
146 vdev_set_min_asize(vdev_t *vd)
147 {
148 int c;
149 vd->vdev_min_asize = vdev_get_min_asize(vd);
150
151 for (c = 0; c < vd->vdev_children; c++)
152 vdev_set_min_asize(vd->vdev_child[c]);
153 }
154
155 vdev_t *
156 vdev_lookup_top(spa_t *spa, uint64_t vdev)
157 {
158 vdev_t *rvd = spa->spa_root_vdev;
159
160 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
161
162 if (vdev < rvd->vdev_children) {
163 ASSERT(rvd->vdev_child[vdev] != NULL);
164 return (rvd->vdev_child[vdev]);
165 }
166
167 return (NULL);
168 }
169
170 vdev_t *
171 vdev_lookup_by_guid(vdev_t *vd, uint64_t guid)
172 {
173 vdev_t *mvd;
174 int c;
175
176 if (vd->vdev_guid == guid)
177 return (vd);
178
179 for (c = 0; c < vd->vdev_children; c++)
180 if ((mvd = vdev_lookup_by_guid(vd->vdev_child[c], guid)) !=
181 NULL)
182 return (mvd);
183
184 return (NULL);
185 }
186
187 static int
188 vdev_count_leaves_impl(vdev_t *vd)
189 {
190 int n = 0;
191 int c;
192
193 if (vd->vdev_ops->vdev_op_leaf)
194 return (1);
195
196 for (c = 0; c < vd->vdev_children; c++)
197 n += vdev_count_leaves_impl(vd->vdev_child[c]);
198
199 return (n);
200 }
201
202 int
203 vdev_count_leaves(spa_t *spa)
204 {
205 return (vdev_count_leaves_impl(spa->spa_root_vdev));
206 }
207
208 void
209 vdev_add_child(vdev_t *pvd, vdev_t *cvd)
210 {
211 size_t oldsize, newsize;
212 uint64_t id = cvd->vdev_id;
213 vdev_t **newchild;
214
215 ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
216 ASSERT(cvd->vdev_parent == NULL);
217
218 cvd->vdev_parent = pvd;
219
220 if (pvd == NULL)
221 return;
222
223 ASSERT(id >= pvd->vdev_children || pvd->vdev_child[id] == NULL);
224
225 oldsize = pvd->vdev_children * sizeof (vdev_t *);
226 pvd->vdev_children = MAX(pvd->vdev_children, id + 1);
227 newsize = pvd->vdev_children * sizeof (vdev_t *);
228
229 newchild = kmem_alloc(newsize, KM_SLEEP);
230 if (pvd->vdev_child != NULL) {
231 bcopy(pvd->vdev_child, newchild, oldsize);
232 kmem_free(pvd->vdev_child, oldsize);
233 }
234
235 pvd->vdev_child = newchild;
236 pvd->vdev_child[id] = cvd;
237
238 cvd->vdev_top = (pvd->vdev_top ? pvd->vdev_top: cvd);
239 ASSERT(cvd->vdev_top->vdev_parent->vdev_parent == NULL);
240
241 /*
242 * Walk up all ancestors to update guid sum.
243 */
244 for (; pvd != NULL; pvd = pvd->vdev_parent)
245 pvd->vdev_guid_sum += cvd->vdev_guid_sum;
246 }
247
248 void
249 vdev_remove_child(vdev_t *pvd, vdev_t *cvd)
250 {
251 int c;
252 uint_t id = cvd->vdev_id;
253
254 ASSERT(cvd->vdev_parent == pvd);
255
256 if (pvd == NULL)
257 return;
258
259 ASSERT(id < pvd->vdev_children);
260 ASSERT(pvd->vdev_child[id] == cvd);
261
262 pvd->vdev_child[id] = NULL;
263 cvd->vdev_parent = NULL;
264
265 for (c = 0; c < pvd->vdev_children; c++)
266 if (pvd->vdev_child[c])
267 break;
268
269 if (c == pvd->vdev_children) {
270 kmem_free(pvd->vdev_child, c * sizeof (vdev_t *));
271 pvd->vdev_child = NULL;
272 pvd->vdev_children = 0;
273 }
274
275 /*
276 * Walk up all ancestors to update guid sum.
277 */
278 for (; pvd != NULL; pvd = pvd->vdev_parent)
279 pvd->vdev_guid_sum -= cvd->vdev_guid_sum;
280 }
281
282 /*
283 * Remove any holes in the child array.
284 */
285 void
286 vdev_compact_children(vdev_t *pvd)
287 {
288 vdev_t **newchild, *cvd;
289 int oldc = pvd->vdev_children;
290 int newc;
291 int c;
292
293 ASSERT(spa_config_held(pvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
294
295 for (c = newc = 0; c < oldc; c++)
296 if (pvd->vdev_child[c])
297 newc++;
298
299 newchild = kmem_zalloc(newc * sizeof (vdev_t *), KM_SLEEP);
300
301 for (c = newc = 0; c < oldc; c++) {
302 if ((cvd = pvd->vdev_child[c]) != NULL) {
303 newchild[newc] = cvd;
304 cvd->vdev_id = newc++;
305 }
306 }
307
308 kmem_free(pvd->vdev_child, oldc * sizeof (vdev_t *));
309 pvd->vdev_child = newchild;
310 pvd->vdev_children = newc;
311 }
312
313 /*
314 * Allocate and minimally initialize a vdev_t.
315 */
316 vdev_t *
317 vdev_alloc_common(spa_t *spa, uint_t id, uint64_t guid, vdev_ops_t *ops)
318 {
319 vdev_t *vd;
320 int t;
321
322 vd = kmem_zalloc(sizeof (vdev_t), KM_SLEEP);
323
324 if (spa->spa_root_vdev == NULL) {
325 ASSERT(ops == &vdev_root_ops);
326 spa->spa_root_vdev = vd;
327 spa->spa_load_guid = spa_generate_guid(NULL);
328 }
329
330 if (guid == 0 && ops != &vdev_hole_ops) {
331 if (spa->spa_root_vdev == vd) {
332 /*
333 * The root vdev's guid will also be the pool guid,
334 * which must be unique among all pools.
335 */
336 guid = spa_generate_guid(NULL);
337 } else {
338 /*
339 * Any other vdev's guid must be unique within the pool.
340 */
341 guid = spa_generate_guid(spa);
342 }
343 ASSERT(!spa_guid_exists(spa_guid(spa), guid));
344 }
345
346 vd->vdev_spa = spa;
347 vd->vdev_id = id;
348 vd->vdev_guid = guid;
349 vd->vdev_guid_sum = guid;
350 vd->vdev_ops = ops;
351 vd->vdev_state = VDEV_STATE_CLOSED;
352 vd->vdev_ishole = (ops == &vdev_hole_ops);
353
354 /*
355 * Initialize rate limit structs for events. We rate limit ZIO delay
356 * and checksum events so that we don't overwhelm ZED with thousands
357 * of events when a disk is acting up.
358 */
359 zfs_ratelimit_init(&vd->vdev_delay_rl, DELAYS_PER_SECOND, 1);
360 zfs_ratelimit_init(&vd->vdev_checksum_rl, CHECKSUMS_PER_SECOND, 1);
361
362 list_link_init(&vd->vdev_config_dirty_node);
363 list_link_init(&vd->vdev_state_dirty_node);
364 mutex_init(&vd->vdev_dtl_lock, NULL, MUTEX_NOLOCKDEP, NULL);
365 mutex_init(&vd->vdev_stat_lock, NULL, MUTEX_DEFAULT, NULL);
366 mutex_init(&vd->vdev_probe_lock, NULL, MUTEX_DEFAULT, NULL);
367 mutex_init(&vd->vdev_queue_lock, NULL, MUTEX_DEFAULT, NULL);
368
369 for (t = 0; t < DTL_TYPES; t++) {
370 vd->vdev_dtl[t] = range_tree_create(NULL, NULL,
371 &vd->vdev_dtl_lock);
372 }
373 txg_list_create(&vd->vdev_ms_list,
374 offsetof(struct metaslab, ms_txg_node));
375 txg_list_create(&vd->vdev_dtl_list,
376 offsetof(struct vdev, vdev_dtl_node));
377 vd->vdev_stat.vs_timestamp = gethrtime();
378 vdev_queue_init(vd);
379 vdev_cache_init(vd);
380
381 return (vd);
382 }
383
384 /*
385 * Allocate a new vdev. The 'alloctype' is used to control whether we are
386 * creating a new vdev or loading an existing one - the behavior is slightly
387 * different for each case.
388 */
389 int
390 vdev_alloc(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, uint_t id,
391 int alloctype)
392 {
393 vdev_ops_t *ops;
394 char *type;
395 uint64_t guid = 0, islog, nparity;
396 vdev_t *vd;
397
398 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
399
400 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) != 0)
401 return (SET_ERROR(EINVAL));
402
403 if ((ops = vdev_getops(type)) == NULL)
404 return (SET_ERROR(EINVAL));
405
406 /*
407 * If this is a load, get the vdev guid from the nvlist.
408 * Otherwise, vdev_alloc_common() will generate one for us.
409 */
410 if (alloctype == VDEV_ALLOC_LOAD) {
411 uint64_t label_id;
412
413 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ID, &label_id) ||
414 label_id != id)
415 return (SET_ERROR(EINVAL));
416
417 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
418 return (SET_ERROR(EINVAL));
419 } else if (alloctype == VDEV_ALLOC_SPARE) {
420 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
421 return (SET_ERROR(EINVAL));
422 } else if (alloctype == VDEV_ALLOC_L2CACHE) {
423 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
424 return (SET_ERROR(EINVAL));
425 } else if (alloctype == VDEV_ALLOC_ROOTPOOL) {
426 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
427 return (SET_ERROR(EINVAL));
428 }
429
430 /*
431 * The first allocated vdev must be of type 'root'.
432 */
433 if (ops != &vdev_root_ops && spa->spa_root_vdev == NULL)
434 return (SET_ERROR(EINVAL));
435
436 /*
437 * Determine whether we're a log vdev.
438 */
439 islog = 0;
440 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_LOG, &islog);
441 if (islog && spa_version(spa) < SPA_VERSION_SLOGS)
442 return (SET_ERROR(ENOTSUP));
443
444 if (ops == &vdev_hole_ops && spa_version(spa) < SPA_VERSION_HOLES)
445 return (SET_ERROR(ENOTSUP));
446
447 /*
448 * Set the nparity property for RAID-Z vdevs.
449 */
450 nparity = -1ULL;
451 if (ops == &vdev_raidz_ops) {
452 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NPARITY,
453 &nparity) == 0) {
454 if (nparity == 0 || nparity > VDEV_RAIDZ_MAXPARITY)
455 return (SET_ERROR(EINVAL));
456 /*
457 * Previous versions could only support 1 or 2 parity
458 * device.
459 */
460 if (nparity > 1 &&
461 spa_version(spa) < SPA_VERSION_RAIDZ2)
462 return (SET_ERROR(ENOTSUP));
463 if (nparity > 2 &&
464 spa_version(spa) < SPA_VERSION_RAIDZ3)
465 return (SET_ERROR(ENOTSUP));
466 } else {
467 /*
468 * We require the parity to be specified for SPAs that
469 * support multiple parity levels.
470 */
471 if (spa_version(spa) >= SPA_VERSION_RAIDZ2)
472 return (SET_ERROR(EINVAL));
473 /*
474 * Otherwise, we default to 1 parity device for RAID-Z.
475 */
476 nparity = 1;
477 }
478 } else {
479 nparity = 0;
480 }
481 ASSERT(nparity != -1ULL);
482
483 vd = vdev_alloc_common(spa, id, guid, ops);
484
485 vd->vdev_islog = islog;
486 vd->vdev_nparity = nparity;
487
488 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &vd->vdev_path) == 0)
489 vd->vdev_path = spa_strdup(vd->vdev_path);
490 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_DEVID, &vd->vdev_devid) == 0)
491 vd->vdev_devid = spa_strdup(vd->vdev_devid);
492 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PHYS_PATH,
493 &vd->vdev_physpath) == 0)
494 vd->vdev_physpath = spa_strdup(vd->vdev_physpath);
495
496 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_VDEV_ENC_SYSFS_PATH,
497 &vd->vdev_enc_sysfs_path) == 0)
498 vd->vdev_enc_sysfs_path = spa_strdup(vd->vdev_enc_sysfs_path);
499
500 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_FRU, &vd->vdev_fru) == 0)
501 vd->vdev_fru = spa_strdup(vd->vdev_fru);
502
503 /*
504 * Set the whole_disk property. If it's not specified, leave the value
505 * as -1.
506 */
507 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK,
508 &vd->vdev_wholedisk) != 0)
509 vd->vdev_wholedisk = -1ULL;
510
511 /*
512 * Look for the 'not present' flag. This will only be set if the device
513 * was not present at the time of import.
514 */
515 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT,
516 &vd->vdev_not_present);
517
518 /*
519 * Get the alignment requirement.
520 */
521 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASHIFT, &vd->vdev_ashift);
522
523 /*
524 * Retrieve the vdev creation time.
525 */
526 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_CREATE_TXG,
527 &vd->vdev_crtxg);
528
529 /*
530 * If we're a top-level vdev, try to load the allocation parameters.
531 */
532 if (parent && !parent->vdev_parent &&
533 (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_SPLIT)) {
534 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY,
535 &vd->vdev_ms_array);
536 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT,
537 &vd->vdev_ms_shift);
538 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASIZE,
539 &vd->vdev_asize);
540 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVING,
541 &vd->vdev_removing);
542 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_VDEV_TOP_ZAP,
543 &vd->vdev_top_zap);
544 } else {
545 ASSERT0(vd->vdev_top_zap);
546 }
547
548 if (parent && !parent->vdev_parent && alloctype != VDEV_ALLOC_ATTACH) {
549 ASSERT(alloctype == VDEV_ALLOC_LOAD ||
550 alloctype == VDEV_ALLOC_ADD ||
551 alloctype == VDEV_ALLOC_SPLIT ||
552 alloctype == VDEV_ALLOC_ROOTPOOL);
553 vd->vdev_mg = metaslab_group_create(islog ?
554 spa_log_class(spa) : spa_normal_class(spa), vd);
555 }
556
557 if (vd->vdev_ops->vdev_op_leaf &&
558 (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_SPLIT)) {
559 (void) nvlist_lookup_uint64(nv,
560 ZPOOL_CONFIG_VDEV_LEAF_ZAP, &vd->vdev_leaf_zap);
561 } else {
562 ASSERT0(vd->vdev_leaf_zap);
563 }
564
565 /*
566 * If we're a leaf vdev, try to load the DTL object and other state.
567 */
568
569 if (vd->vdev_ops->vdev_op_leaf &&
570 (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_L2CACHE ||
571 alloctype == VDEV_ALLOC_ROOTPOOL)) {
572 if (alloctype == VDEV_ALLOC_LOAD) {
573 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DTL,
574 &vd->vdev_dtl_object);
575 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_UNSPARE,
576 &vd->vdev_unspare);
577 }
578
579 if (alloctype == VDEV_ALLOC_ROOTPOOL) {
580 uint64_t spare = 0;
581
582 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_SPARE,
583 &spare) == 0 && spare)
584 spa_spare_add(vd);
585 }
586
587 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_OFFLINE,
588 &vd->vdev_offline);
589
590 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_RESILVER_TXG,
591 &vd->vdev_resilver_txg);
592
593 /*
594 * When importing a pool, we want to ignore the persistent fault
595 * state, as the diagnosis made on another system may not be
596 * valid in the current context. Local vdevs will
597 * remain in the faulted state.
598 */
599 if (spa_load_state(spa) == SPA_LOAD_OPEN) {
600 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_FAULTED,
601 &vd->vdev_faulted);
602 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DEGRADED,
603 &vd->vdev_degraded);
604 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVED,
605 &vd->vdev_removed);
606
607 if (vd->vdev_faulted || vd->vdev_degraded) {
608 char *aux;
609
610 vd->vdev_label_aux =
611 VDEV_AUX_ERR_EXCEEDED;
612 if (nvlist_lookup_string(nv,
613 ZPOOL_CONFIG_AUX_STATE, &aux) == 0 &&
614 strcmp(aux, "external") == 0)
615 vd->vdev_label_aux = VDEV_AUX_EXTERNAL;
616 }
617 }
618 }
619
620 /*
621 * Add ourselves to the parent's list of children.
622 */
623 vdev_add_child(parent, vd);
624
625 *vdp = vd;
626
627 return (0);
628 }
629
630 void
631 vdev_free(vdev_t *vd)
632 {
633 int c, t;
634 spa_t *spa = vd->vdev_spa;
635
636 /*
637 * vdev_free() implies closing the vdev first. This is simpler than
638 * trying to ensure complicated semantics for all callers.
639 */
640 vdev_close(vd);
641
642 ASSERT(!list_link_active(&vd->vdev_config_dirty_node));
643 ASSERT(!list_link_active(&vd->vdev_state_dirty_node));
644
645 /*
646 * Free all children.
647 */
648 for (c = 0; c < vd->vdev_children; c++)
649 vdev_free(vd->vdev_child[c]);
650
651 ASSERT(vd->vdev_child == NULL);
652 ASSERT(vd->vdev_guid_sum == vd->vdev_guid);
653
654 /*
655 * Discard allocation state.
656 */
657 if (vd->vdev_mg != NULL) {
658 vdev_metaslab_fini(vd);
659 metaslab_group_destroy(vd->vdev_mg);
660 }
661
662 ASSERT0(vd->vdev_stat.vs_space);
663 ASSERT0(vd->vdev_stat.vs_dspace);
664 ASSERT0(vd->vdev_stat.vs_alloc);
665
666 /*
667 * Remove this vdev from its parent's child list.
668 */
669 vdev_remove_child(vd->vdev_parent, vd);
670
671 ASSERT(vd->vdev_parent == NULL);
672
673 /*
674 * Clean up vdev structure.
675 */
676 vdev_queue_fini(vd);
677 vdev_cache_fini(vd);
678
679 if (vd->vdev_path)
680 spa_strfree(vd->vdev_path);
681 if (vd->vdev_devid)
682 spa_strfree(vd->vdev_devid);
683 if (vd->vdev_physpath)
684 spa_strfree(vd->vdev_physpath);
685
686 if (vd->vdev_enc_sysfs_path)
687 spa_strfree(vd->vdev_enc_sysfs_path);
688
689 if (vd->vdev_fru)
690 spa_strfree(vd->vdev_fru);
691
692 if (vd->vdev_isspare)
693 spa_spare_remove(vd);
694 if (vd->vdev_isl2cache)
695 spa_l2cache_remove(vd);
696
697 txg_list_destroy(&vd->vdev_ms_list);
698 txg_list_destroy(&vd->vdev_dtl_list);
699
700 mutex_enter(&vd->vdev_dtl_lock);
701 space_map_close(vd->vdev_dtl_sm);
702 for (t = 0; t < DTL_TYPES; t++) {
703 range_tree_vacate(vd->vdev_dtl[t], NULL, NULL);
704 range_tree_destroy(vd->vdev_dtl[t]);
705 }
706 mutex_exit(&vd->vdev_dtl_lock);
707
708 mutex_destroy(&vd->vdev_queue_lock);
709 mutex_destroy(&vd->vdev_dtl_lock);
710 mutex_destroy(&vd->vdev_stat_lock);
711 mutex_destroy(&vd->vdev_probe_lock);
712
713 if (vd == spa->spa_root_vdev)
714 spa->spa_root_vdev = NULL;
715
716 kmem_free(vd, sizeof (vdev_t));
717 }
718
719 /*
720 * Transfer top-level vdev state from svd to tvd.
721 */
722 static void
723 vdev_top_transfer(vdev_t *svd, vdev_t *tvd)
724 {
725 spa_t *spa = svd->vdev_spa;
726 metaslab_t *msp;
727 vdev_t *vd;
728 int t;
729
730 ASSERT(tvd == tvd->vdev_top);
731
732 tvd->vdev_pending_fastwrite = svd->vdev_pending_fastwrite;
733 tvd->vdev_ms_array = svd->vdev_ms_array;
734 tvd->vdev_ms_shift = svd->vdev_ms_shift;
735 tvd->vdev_ms_count = svd->vdev_ms_count;
736 tvd->vdev_top_zap = svd->vdev_top_zap;
737
738 svd->vdev_ms_array = 0;
739 svd->vdev_ms_shift = 0;
740 svd->vdev_ms_count = 0;
741 svd->vdev_top_zap = 0;
742
743 if (tvd->vdev_mg)
744 ASSERT3P(tvd->vdev_mg, ==, svd->vdev_mg);
745 tvd->vdev_mg = svd->vdev_mg;
746 tvd->vdev_ms = svd->vdev_ms;
747
748 svd->vdev_mg = NULL;
749 svd->vdev_ms = NULL;
750
751 if (tvd->vdev_mg != NULL)
752 tvd->vdev_mg->mg_vd = tvd;
753
754 tvd->vdev_stat.vs_alloc = svd->vdev_stat.vs_alloc;
755 tvd->vdev_stat.vs_space = svd->vdev_stat.vs_space;
756 tvd->vdev_stat.vs_dspace = svd->vdev_stat.vs_dspace;
757
758 svd->vdev_stat.vs_alloc = 0;
759 svd->vdev_stat.vs_space = 0;
760 svd->vdev_stat.vs_dspace = 0;
761
762 for (t = 0; t < TXG_SIZE; t++) {
763 while ((msp = txg_list_remove(&svd->vdev_ms_list, t)) != NULL)
764 (void) txg_list_add(&tvd->vdev_ms_list, msp, t);
765 while ((vd = txg_list_remove(&svd->vdev_dtl_list, t)) != NULL)
766 (void) txg_list_add(&tvd->vdev_dtl_list, vd, t);
767 if (txg_list_remove_this(&spa->spa_vdev_txg_list, svd, t))
768 (void) txg_list_add(&spa->spa_vdev_txg_list, tvd, t);
769 }
770
771 if (list_link_active(&svd->vdev_config_dirty_node)) {
772 vdev_config_clean(svd);
773 vdev_config_dirty(tvd);
774 }
775
776 if (list_link_active(&svd->vdev_state_dirty_node)) {
777 vdev_state_clean(svd);
778 vdev_state_dirty(tvd);
779 }
780
781 tvd->vdev_deflate_ratio = svd->vdev_deflate_ratio;
782 svd->vdev_deflate_ratio = 0;
783
784 tvd->vdev_islog = svd->vdev_islog;
785 svd->vdev_islog = 0;
786 }
787
788 static void
789 vdev_top_update(vdev_t *tvd, vdev_t *vd)
790 {
791 int c;
792
793 if (vd == NULL)
794 return;
795
796 vd->vdev_top = tvd;
797
798 for (c = 0; c < vd->vdev_children; c++)
799 vdev_top_update(tvd, vd->vdev_child[c]);
800 }
801
802 /*
803 * Add a mirror/replacing vdev above an existing vdev.
804 */
805 vdev_t *
806 vdev_add_parent(vdev_t *cvd, vdev_ops_t *ops)
807 {
808 spa_t *spa = cvd->vdev_spa;
809 vdev_t *pvd = cvd->vdev_parent;
810 vdev_t *mvd;
811
812 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
813
814 mvd = vdev_alloc_common(spa, cvd->vdev_id, 0, ops);
815
816 mvd->vdev_asize = cvd->vdev_asize;
817 mvd->vdev_min_asize = cvd->vdev_min_asize;
818 mvd->vdev_max_asize = cvd->vdev_max_asize;
819 mvd->vdev_ashift = cvd->vdev_ashift;
820 mvd->vdev_state = cvd->vdev_state;
821 mvd->vdev_crtxg = cvd->vdev_crtxg;
822
823 vdev_remove_child(pvd, cvd);
824 vdev_add_child(pvd, mvd);
825 cvd->vdev_id = mvd->vdev_children;
826 vdev_add_child(mvd, cvd);
827 vdev_top_update(cvd->vdev_top, cvd->vdev_top);
828
829 if (mvd == mvd->vdev_top)
830 vdev_top_transfer(cvd, mvd);
831
832 return (mvd);
833 }
834
835 /*
836 * Remove a 1-way mirror/replacing vdev from the tree.
837 */
838 void
839 vdev_remove_parent(vdev_t *cvd)
840 {
841 vdev_t *mvd = cvd->vdev_parent;
842 vdev_t *pvd = mvd->vdev_parent;
843
844 ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
845
846 ASSERT(mvd->vdev_children == 1);
847 ASSERT(mvd->vdev_ops == &vdev_mirror_ops ||
848 mvd->vdev_ops == &vdev_replacing_ops ||
849 mvd->vdev_ops == &vdev_spare_ops);
850 cvd->vdev_ashift = mvd->vdev_ashift;
851
852 vdev_remove_child(mvd, cvd);
853 vdev_remove_child(pvd, mvd);
854
855 /*
856 * If cvd will replace mvd as a top-level vdev, preserve mvd's guid.
857 * Otherwise, we could have detached an offline device, and when we
858 * go to import the pool we'll think we have two top-level vdevs,
859 * instead of a different version of the same top-level vdev.
860 */
861 if (mvd->vdev_top == mvd) {
862 uint64_t guid_delta = mvd->vdev_guid - cvd->vdev_guid;
863 cvd->vdev_orig_guid = cvd->vdev_guid;
864 cvd->vdev_guid += guid_delta;
865 cvd->vdev_guid_sum += guid_delta;
866
867 /*
868 * If pool not set for autoexpand, we need to also preserve
869 * mvd's asize to prevent automatic expansion of cvd.
870 * Otherwise if we are adjusting the mirror by attaching and
871 * detaching children of non-uniform sizes, the mirror could
872 * autoexpand, unexpectedly requiring larger devices to
873 * re-establish the mirror.
874 */
875 if (!cvd->vdev_spa->spa_autoexpand)
876 cvd->vdev_asize = mvd->vdev_asize;
877 }
878 cvd->vdev_id = mvd->vdev_id;
879 vdev_add_child(pvd, cvd);
880 vdev_top_update(cvd->vdev_top, cvd->vdev_top);
881
882 if (cvd == cvd->vdev_top)
883 vdev_top_transfer(mvd, cvd);
884
885 ASSERT(mvd->vdev_children == 0);
886 vdev_free(mvd);
887 }
888
889 int
890 vdev_metaslab_init(vdev_t *vd, uint64_t txg)
891 {
892 spa_t *spa = vd->vdev_spa;
893 objset_t *mos = spa->spa_meta_objset;
894 uint64_t m;
895 uint64_t oldc = vd->vdev_ms_count;
896 uint64_t newc = vd->vdev_asize >> vd->vdev_ms_shift;
897 metaslab_t **mspp;
898 int error;
899
900 ASSERT(txg == 0 || spa_config_held(spa, SCL_ALLOC, RW_WRITER));
901
902 /*
903 * This vdev is not being allocated from yet or is a hole.
904 */
905 if (vd->vdev_ms_shift == 0)
906 return (0);
907
908 ASSERT(!vd->vdev_ishole);
909
910 /*
911 * Compute the raidz-deflation ratio. Note, we hard-code
912 * in 128k (1 << 17) because it is the "typical" blocksize.
913 * Even though SPA_MAXBLOCKSIZE changed, this algorithm can not change,
914 * otherwise it would inconsistently account for existing bp's.
915 */
916 vd->vdev_deflate_ratio = (1 << 17) /
917 (vdev_psize_to_asize(vd, 1 << 17) >> SPA_MINBLOCKSHIFT);
918
919 ASSERT(oldc <= newc);
920
921 mspp = vmem_zalloc(newc * sizeof (*mspp), KM_SLEEP);
922
923 if (oldc != 0) {
924 bcopy(vd->vdev_ms, mspp, oldc * sizeof (*mspp));
925 vmem_free(vd->vdev_ms, oldc * sizeof (*mspp));
926 }
927
928 vd->vdev_ms = mspp;
929 vd->vdev_ms_count = newc;
930
931 for (m = oldc; m < newc; m++) {
932 uint64_t object = 0;
933
934 if (txg == 0) {
935 error = dmu_read(mos, vd->vdev_ms_array,
936 m * sizeof (uint64_t), sizeof (uint64_t), &object,
937 DMU_READ_PREFETCH);
938 if (error)
939 return (error);
940 }
941
942 error = metaslab_init(vd->vdev_mg, m, object, txg,
943 &(vd->vdev_ms[m]));
944 if (error)
945 return (error);
946 }
947
948 if (txg == 0)
949 spa_config_enter(spa, SCL_ALLOC, FTAG, RW_WRITER);
950
951 /*
952 * If the vdev is being removed we don't activate
953 * the metaslabs since we want to ensure that no new
954 * allocations are performed on this device.
955 */
956 if (oldc == 0 && !vd->vdev_removing)
957 metaslab_group_activate(vd->vdev_mg);
958
959 if (txg == 0)
960 spa_config_exit(spa, SCL_ALLOC, FTAG);
961
962 return (0);
963 }
964
965 void
966 vdev_metaslab_fini(vdev_t *vd)
967 {
968 uint64_t m;
969 uint64_t count = vd->vdev_ms_count;
970
971 if (vd->vdev_ms != NULL) {
972 metaslab_group_passivate(vd->vdev_mg);
973 for (m = 0; m < count; m++) {
974 metaslab_t *msp = vd->vdev_ms[m];
975
976 if (msp != NULL)
977 metaslab_fini(msp);
978 }
979 vmem_free(vd->vdev_ms, count * sizeof (metaslab_t *));
980 vd->vdev_ms = NULL;
981 }
982
983 ASSERT3U(vd->vdev_pending_fastwrite, ==, 0);
984 }
985
986 typedef struct vdev_probe_stats {
987 boolean_t vps_readable;
988 boolean_t vps_writeable;
989 int vps_flags;
990 } vdev_probe_stats_t;
991
992 static void
993 vdev_probe_done(zio_t *zio)
994 {
995 spa_t *spa = zio->io_spa;
996 vdev_t *vd = zio->io_vd;
997 vdev_probe_stats_t *vps = zio->io_private;
998
999 ASSERT(vd->vdev_probe_zio != NULL);
1000
1001 if (zio->io_type == ZIO_TYPE_READ) {
1002 if (zio->io_error == 0)
1003 vps->vps_readable = 1;
1004 if (zio->io_error == 0 && spa_writeable(spa)) {
1005 zio_nowait(zio_write_phys(vd->vdev_probe_zio, vd,
1006 zio->io_offset, zio->io_size, zio->io_abd,
1007 ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
1008 ZIO_PRIORITY_SYNC_WRITE, vps->vps_flags, B_TRUE));
1009 } else {
1010 abd_free(zio->io_abd);
1011 }
1012 } else if (zio->io_type == ZIO_TYPE_WRITE) {
1013 if (zio->io_error == 0)
1014 vps->vps_writeable = 1;
1015 abd_free(zio->io_abd);
1016 } else if (zio->io_type == ZIO_TYPE_NULL) {
1017 zio_t *pio;
1018 zio_link_t *zl;
1019
1020 vd->vdev_cant_read |= !vps->vps_readable;
1021 vd->vdev_cant_write |= !vps->vps_writeable;
1022
1023 if (vdev_readable(vd) &&
1024 (vdev_writeable(vd) || !spa_writeable(spa))) {
1025 zio->io_error = 0;
1026 } else {
1027 ASSERT(zio->io_error != 0);
1028 zfs_ereport_post(FM_EREPORT_ZFS_PROBE_FAILURE,
1029 spa, vd, NULL, 0, 0);
1030 zio->io_error = SET_ERROR(ENXIO);
1031 }
1032
1033 mutex_enter(&vd->vdev_probe_lock);
1034 ASSERT(vd->vdev_probe_zio == zio);
1035 vd->vdev_probe_zio = NULL;
1036 mutex_exit(&vd->vdev_probe_lock);
1037
1038 zl = NULL;
1039 while ((pio = zio_walk_parents(zio, &zl)) != NULL)
1040 if (!vdev_accessible(vd, pio))
1041 pio->io_error = SET_ERROR(ENXIO);
1042
1043 kmem_free(vps, sizeof (*vps));
1044 }
1045 }
1046
1047 /*
1048 * Determine whether this device is accessible.
1049 *
1050 * Read and write to several known locations: the pad regions of each
1051 * vdev label but the first, which we leave alone in case it contains
1052 * a VTOC.
1053 */
1054 zio_t *
1055 vdev_probe(vdev_t *vd, zio_t *zio)
1056 {
1057 spa_t *spa = vd->vdev_spa;
1058 vdev_probe_stats_t *vps = NULL;
1059 zio_t *pio;
1060 int l;
1061
1062 ASSERT(vd->vdev_ops->vdev_op_leaf);
1063
1064 /*
1065 * Don't probe the probe.
1066 */
1067 if (zio && (zio->io_flags & ZIO_FLAG_PROBE))
1068 return (NULL);
1069
1070 /*
1071 * To prevent 'probe storms' when a device fails, we create
1072 * just one probe i/o at a time. All zios that want to probe
1073 * this vdev will become parents of the probe io.
1074 */
1075 mutex_enter(&vd->vdev_probe_lock);
1076
1077 if ((pio = vd->vdev_probe_zio) == NULL) {
1078 vps = kmem_zalloc(sizeof (*vps), KM_SLEEP);
1079
1080 vps->vps_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_PROBE |
1081 ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_AGGREGATE |
1082 ZIO_FLAG_TRYHARD;
1083
1084 if (spa_config_held(spa, SCL_ZIO, RW_WRITER)) {
1085 /*
1086 * vdev_cant_read and vdev_cant_write can only
1087 * transition from TRUE to FALSE when we have the
1088 * SCL_ZIO lock as writer; otherwise they can only
1089 * transition from FALSE to TRUE. This ensures that
1090 * any zio looking at these values can assume that
1091 * failures persist for the life of the I/O. That's
1092 * important because when a device has intermittent
1093 * connectivity problems, we want to ensure that
1094 * they're ascribed to the device (ENXIO) and not
1095 * the zio (EIO).
1096 *
1097 * Since we hold SCL_ZIO as writer here, clear both
1098 * values so the probe can reevaluate from first
1099 * principles.
1100 */
1101 vps->vps_flags |= ZIO_FLAG_CONFIG_WRITER;
1102 vd->vdev_cant_read = B_FALSE;
1103 vd->vdev_cant_write = B_FALSE;
1104 }
1105
1106 vd->vdev_probe_zio = pio = zio_null(NULL, spa, vd,
1107 vdev_probe_done, vps,
1108 vps->vps_flags | ZIO_FLAG_DONT_PROPAGATE);
1109
1110 /*
1111 * We can't change the vdev state in this context, so we
1112 * kick off an async task to do it on our behalf.
1113 */
1114 if (zio != NULL) {
1115 vd->vdev_probe_wanted = B_TRUE;
1116 spa_async_request(spa, SPA_ASYNC_PROBE);
1117 }
1118 }
1119
1120 if (zio != NULL)
1121 zio_add_child(zio, pio);
1122
1123 mutex_exit(&vd->vdev_probe_lock);
1124
1125 if (vps == NULL) {
1126 ASSERT(zio != NULL);
1127 return (NULL);
1128 }
1129
1130 for (l = 1; l < VDEV_LABELS; l++) {
1131 zio_nowait(zio_read_phys(pio, vd,
1132 vdev_label_offset(vd->vdev_psize, l,
1133 offsetof(vdev_label_t, vl_pad2)), VDEV_PAD_SIZE,
1134 abd_alloc_for_io(VDEV_PAD_SIZE, B_TRUE),
1135 ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
1136 ZIO_PRIORITY_SYNC_READ, vps->vps_flags, B_TRUE));
1137 }
1138
1139 if (zio == NULL)
1140 return (pio);
1141
1142 zio_nowait(pio);
1143 return (NULL);
1144 }
1145
1146 static void
1147 vdev_open_child(void *arg)
1148 {
1149 vdev_t *vd = arg;
1150
1151 vd->vdev_open_thread = curthread;
1152 vd->vdev_open_error = vdev_open(vd);
1153 vd->vdev_open_thread = NULL;
1154 }
1155
1156 static boolean_t
1157 vdev_uses_zvols(vdev_t *vd)
1158 {
1159 int c;
1160
1161 #ifdef _KERNEL
1162 if (zvol_is_zvol(vd->vdev_path))
1163 return (B_TRUE);
1164 #endif
1165
1166 for (c = 0; c < vd->vdev_children; c++)
1167 if (vdev_uses_zvols(vd->vdev_child[c]))
1168 return (B_TRUE);
1169
1170 return (B_FALSE);
1171 }
1172
1173 void
1174 vdev_open_children(vdev_t *vd)
1175 {
1176 taskq_t *tq;
1177 int children = vd->vdev_children;
1178 int c;
1179
1180 /*
1181 * in order to handle pools on top of zvols, do the opens
1182 * in a single thread so that the same thread holds the
1183 * spa_namespace_lock
1184 */
1185 if (vdev_uses_zvols(vd)) {
1186 retry_sync:
1187 for (c = 0; c < children; c++)
1188 vd->vdev_child[c]->vdev_open_error =
1189 vdev_open(vd->vdev_child[c]);
1190 } else {
1191 tq = taskq_create("vdev_open", children, minclsyspri,
1192 children, children, TASKQ_PREPOPULATE);
1193 if (tq == NULL)
1194 goto retry_sync;
1195
1196 for (c = 0; c < children; c++)
1197 VERIFY(taskq_dispatch(tq, vdev_open_child,
1198 vd->vdev_child[c], TQ_SLEEP) != TASKQID_INVALID);
1199
1200 taskq_destroy(tq);
1201 }
1202
1203 vd->vdev_nonrot = B_TRUE;
1204
1205 for (c = 0; c < children; c++)
1206 vd->vdev_nonrot &= vd->vdev_child[c]->vdev_nonrot;
1207 }
1208
1209 /*
1210 * Prepare a virtual device for access.
1211 */
1212 int
1213 vdev_open(vdev_t *vd)
1214 {
1215 spa_t *spa = vd->vdev_spa;
1216 int error;
1217 uint64_t osize = 0;
1218 uint64_t max_osize = 0;
1219 uint64_t asize, max_asize, psize;
1220 uint64_t ashift = 0;
1221 int c;
1222
1223 ASSERT(vd->vdev_open_thread == curthread ||
1224 spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1225 ASSERT(vd->vdev_state == VDEV_STATE_CLOSED ||
1226 vd->vdev_state == VDEV_STATE_CANT_OPEN ||
1227 vd->vdev_state == VDEV_STATE_OFFLINE);
1228
1229 vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
1230 vd->vdev_cant_read = B_FALSE;
1231 vd->vdev_cant_write = B_FALSE;
1232 vd->vdev_min_asize = vdev_get_min_asize(vd);
1233
1234 /*
1235 * If this vdev is not removed, check its fault status. If it's
1236 * faulted, bail out of the open.
1237 */
1238 if (!vd->vdev_removed && vd->vdev_faulted) {
1239 ASSERT(vd->vdev_children == 0);
1240 ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED ||
1241 vd->vdev_label_aux == VDEV_AUX_EXTERNAL);
1242 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1243 vd->vdev_label_aux);
1244 return (SET_ERROR(ENXIO));
1245 } else if (vd->vdev_offline) {
1246 ASSERT(vd->vdev_children == 0);
1247 vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE, VDEV_AUX_NONE);
1248 return (SET_ERROR(ENXIO));
1249 }
1250
1251 error = vd->vdev_ops->vdev_op_open(vd, &osize, &max_osize, &ashift);
1252
1253 /*
1254 * Reset the vdev_reopening flag so that we actually close
1255 * the vdev on error.
1256 */
1257 vd->vdev_reopening = B_FALSE;
1258 if (zio_injection_enabled && error == 0)
1259 error = zio_handle_device_injection(vd, NULL, ENXIO);
1260
1261 if (error) {
1262 if (vd->vdev_removed &&
1263 vd->vdev_stat.vs_aux != VDEV_AUX_OPEN_FAILED)
1264 vd->vdev_removed = B_FALSE;
1265
1266 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1267 vd->vdev_stat.vs_aux);
1268 return (error);
1269 }
1270
1271 vd->vdev_removed = B_FALSE;
1272
1273 /*
1274 * Recheck the faulted flag now that we have confirmed that
1275 * the vdev is accessible. If we're faulted, bail.
1276 */
1277 if (vd->vdev_faulted) {
1278 ASSERT(vd->vdev_children == 0);
1279 ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED ||
1280 vd->vdev_label_aux == VDEV_AUX_EXTERNAL);
1281 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1282 vd->vdev_label_aux);
1283 return (SET_ERROR(ENXIO));
1284 }
1285
1286 if (vd->vdev_degraded) {
1287 ASSERT(vd->vdev_children == 0);
1288 vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
1289 VDEV_AUX_ERR_EXCEEDED);
1290 } else {
1291 vdev_set_state(vd, B_TRUE, VDEV_STATE_HEALTHY, 0);
1292 }
1293
1294 /*
1295 * For hole or missing vdevs we just return success.
1296 */
1297 if (vd->vdev_ishole || vd->vdev_ops == &vdev_missing_ops)
1298 return (0);
1299
1300 for (c = 0; c < vd->vdev_children; c++) {
1301 if (vd->vdev_child[c]->vdev_state != VDEV_STATE_HEALTHY) {
1302 vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
1303 VDEV_AUX_NONE);
1304 break;
1305 }
1306 }
1307
1308 osize = P2ALIGN(osize, (uint64_t)sizeof (vdev_label_t));
1309 max_osize = P2ALIGN(max_osize, (uint64_t)sizeof (vdev_label_t));
1310
1311 if (vd->vdev_children == 0) {
1312 if (osize < SPA_MINDEVSIZE) {
1313 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1314 VDEV_AUX_TOO_SMALL);
1315 return (SET_ERROR(EOVERFLOW));
1316 }
1317 psize = osize;
1318 asize = osize - (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE);
1319 max_asize = max_osize - (VDEV_LABEL_START_SIZE +
1320 VDEV_LABEL_END_SIZE);
1321 } else {
1322 if (vd->vdev_parent != NULL && osize < SPA_MINDEVSIZE -
1323 (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE)) {
1324 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1325 VDEV_AUX_TOO_SMALL);
1326 return (SET_ERROR(EOVERFLOW));
1327 }
1328 psize = 0;
1329 asize = osize;
1330 max_asize = max_osize;
1331 }
1332
1333 /*
1334 * If the vdev was expanded, record this so that we can re-create the
1335 * uberblock rings in labels {2,3}, during the next sync.
1336 */
1337 if ((psize > vd->vdev_psize) && (vd->vdev_psize != 0))
1338 vd->vdev_copy_uberblocks = B_TRUE;
1339
1340 vd->vdev_psize = psize;
1341
1342 /*
1343 * Make sure the allocatable size hasn't shrunk too much.
1344 */
1345 if (asize < vd->vdev_min_asize) {
1346 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1347 VDEV_AUX_BAD_LABEL);
1348 return (SET_ERROR(EINVAL));
1349 }
1350
1351 if (vd->vdev_asize == 0) {
1352 /*
1353 * This is the first-ever open, so use the computed values.
1354 * For compatibility, a different ashift can be requested.
1355 */
1356 vd->vdev_asize = asize;
1357 vd->vdev_max_asize = max_asize;
1358 if (vd->vdev_ashift == 0) {
1359 vd->vdev_ashift = ashift; /* use detected value */
1360 }
1361 if (vd->vdev_ashift != 0 && (vd->vdev_ashift < ASHIFT_MIN ||
1362 vd->vdev_ashift > ASHIFT_MAX)) {
1363 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1364 VDEV_AUX_BAD_ASHIFT);
1365 return (SET_ERROR(EDOM));
1366 }
1367 } else {
1368 /*
1369 * Detect if the alignment requirement has increased.
1370 * We don't want to make the pool unavailable, just
1371 * post an event instead.
1372 */
1373 if (ashift > vd->vdev_top->vdev_ashift &&
1374 vd->vdev_ops->vdev_op_leaf) {
1375 zfs_ereport_post(FM_EREPORT_ZFS_DEVICE_BAD_ASHIFT,
1376 spa, vd, NULL, 0, 0);
1377 }
1378
1379 vd->vdev_max_asize = max_asize;
1380 }
1381
1382 /*
1383 * If all children are healthy we update asize if either:
1384 * The asize has increased, due to a device expansion caused by dynamic
1385 * LUN growth or vdev replacement, and automatic expansion is enabled;
1386 * making the additional space available.
1387 *
1388 * The asize has decreased, due to a device shrink usually caused by a
1389 * vdev replace with a smaller device. This ensures that calculations
1390 * based of max_asize and asize e.g. esize are always valid. It's safe
1391 * to do this as we've already validated that asize is greater than
1392 * vdev_min_asize.
1393 */
1394 if (vd->vdev_state == VDEV_STATE_HEALTHY &&
1395 ((asize > vd->vdev_asize &&
1396 (vd->vdev_expanding || spa->spa_autoexpand)) ||
1397 (asize < vd->vdev_asize)))
1398 vd->vdev_asize = asize;
1399
1400 vdev_set_min_asize(vd);
1401
1402 /*
1403 * Ensure we can issue some IO before declaring the
1404 * vdev open for business.
1405 */
1406 if (vd->vdev_ops->vdev_op_leaf &&
1407 (error = zio_wait(vdev_probe(vd, NULL))) != 0) {
1408 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1409 VDEV_AUX_ERR_EXCEEDED);
1410 return (error);
1411 }
1412
1413 /*
1414 * Track the min and max ashift values for normal data devices.
1415 */
1416 if (vd->vdev_top == vd && vd->vdev_ashift != 0 &&
1417 !vd->vdev_islog && vd->vdev_aux == NULL) {
1418 if (vd->vdev_ashift > spa->spa_max_ashift)
1419 spa->spa_max_ashift = vd->vdev_ashift;
1420 if (vd->vdev_ashift < spa->spa_min_ashift)
1421 spa->spa_min_ashift = vd->vdev_ashift;
1422 }
1423
1424 /*
1425 * If a leaf vdev has a DTL, and seems healthy, then kick off a
1426 * resilver. But don't do this if we are doing a reopen for a scrub,
1427 * since this would just restart the scrub we are already doing.
1428 */
1429 if (vd->vdev_ops->vdev_op_leaf && !spa->spa_scrub_reopen &&
1430 vdev_resilver_needed(vd, NULL, NULL))
1431 spa_async_request(spa, SPA_ASYNC_RESILVER);
1432
1433 return (0);
1434 }
1435
1436 /*
1437 * Called once the vdevs are all opened, this routine validates the label
1438 * contents. This needs to be done before vdev_load() so that we don't
1439 * inadvertently do repair I/Os to the wrong device.
1440 *
1441 * If 'strict' is false ignore the spa guid check. This is necessary because
1442 * if the machine crashed during a re-guid the new guid might have been written
1443 * to all of the vdev labels, but not the cached config. The strict check
1444 * will be performed when the pool is opened again using the mos config.
1445 *
1446 * This function will only return failure if one of the vdevs indicates that it
1447 * has since been destroyed or exported. This is only possible if
1448 * /etc/zfs/zpool.cache was readonly at the time. Otherwise, the vdev state
1449 * will be updated but the function will return 0.
1450 */
1451 int
1452 vdev_validate(vdev_t *vd, boolean_t strict)
1453 {
1454 spa_t *spa = vd->vdev_spa;
1455 nvlist_t *label;
1456 uint64_t guid = 0, top_guid;
1457 uint64_t state;
1458 int c;
1459
1460 for (c = 0; c < vd->vdev_children; c++)
1461 if (vdev_validate(vd->vdev_child[c], strict) != 0)
1462 return (SET_ERROR(EBADF));
1463
1464 /*
1465 * If the device has already failed, or was marked offline, don't do
1466 * any further validation. Otherwise, label I/O will fail and we will
1467 * overwrite the previous state.
1468 */
1469 if (vd->vdev_ops->vdev_op_leaf && vdev_readable(vd)) {
1470 uint64_t aux_guid = 0;
1471 nvlist_t *nvl;
1472 uint64_t txg = spa_last_synced_txg(spa) != 0 ?
1473 spa_last_synced_txg(spa) : -1ULL;
1474
1475 if ((label = vdev_label_read_config(vd, txg)) == NULL) {
1476 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1477 VDEV_AUX_BAD_LABEL);
1478 return (0);
1479 }
1480
1481 /*
1482 * Determine if this vdev has been split off into another
1483 * pool. If so, then refuse to open it.
1484 */
1485 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_SPLIT_GUID,
1486 &aux_guid) == 0 && aux_guid == spa_guid(spa)) {
1487 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1488 VDEV_AUX_SPLIT_POOL);
1489 nvlist_free(label);
1490 return (0);
1491 }
1492
1493 if (strict && (nvlist_lookup_uint64(label,
1494 ZPOOL_CONFIG_POOL_GUID, &guid) != 0 ||
1495 guid != spa_guid(spa))) {
1496 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1497 VDEV_AUX_CORRUPT_DATA);
1498 nvlist_free(label);
1499 return (0);
1500 }
1501
1502 if (nvlist_lookup_nvlist(label, ZPOOL_CONFIG_VDEV_TREE, &nvl)
1503 != 0 || nvlist_lookup_uint64(nvl, ZPOOL_CONFIG_ORIG_GUID,
1504 &aux_guid) != 0)
1505 aux_guid = 0;
1506
1507 /*
1508 * If this vdev just became a top-level vdev because its
1509 * sibling was detached, it will have adopted the parent's
1510 * vdev guid -- but the label may or may not be on disk yet.
1511 * Fortunately, either version of the label will have the
1512 * same top guid, so if we're a top-level vdev, we can
1513 * safely compare to that instead.
1514 *
1515 * If we split this vdev off instead, then we also check the
1516 * original pool's guid. We don't want to consider the vdev
1517 * corrupt if it is partway through a split operation.
1518 */
1519 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID,
1520 &guid) != 0 ||
1521 nvlist_lookup_uint64(label, ZPOOL_CONFIG_TOP_GUID,
1522 &top_guid) != 0 ||
1523 ((vd->vdev_guid != guid && vd->vdev_guid != aux_guid) &&
1524 (vd->vdev_guid != top_guid || vd != vd->vdev_top))) {
1525 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1526 VDEV_AUX_CORRUPT_DATA);
1527 nvlist_free(label);
1528 return (0);
1529 }
1530
1531 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE,
1532 &state) != 0) {
1533 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1534 VDEV_AUX_CORRUPT_DATA);
1535 nvlist_free(label);
1536 return (0);
1537 }
1538
1539 nvlist_free(label);
1540
1541 /*
1542 * If this is a verbatim import, no need to check the
1543 * state of the pool.
1544 */
1545 if (!(spa->spa_import_flags & ZFS_IMPORT_VERBATIM) &&
1546 spa_load_state(spa) == SPA_LOAD_OPEN &&
1547 state != POOL_STATE_ACTIVE)
1548 return (SET_ERROR(EBADF));
1549
1550 /*
1551 * If we were able to open and validate a vdev that was
1552 * previously marked permanently unavailable, clear that state
1553 * now.
1554 */
1555 if (vd->vdev_not_present)
1556 vd->vdev_not_present = 0;
1557 }
1558
1559 return (0);
1560 }
1561
1562 /*
1563 * Close a virtual device.
1564 */
1565 void
1566 vdev_close(vdev_t *vd)
1567 {
1568 vdev_t *pvd = vd->vdev_parent;
1569 ASSERTV(spa_t *spa = vd->vdev_spa);
1570
1571 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1572
1573 /*
1574 * If our parent is reopening, then we are as well, unless we are
1575 * going offline.
1576 */
1577 if (pvd != NULL && pvd->vdev_reopening)
1578 vd->vdev_reopening = (pvd->vdev_reopening && !vd->vdev_offline);
1579
1580 vd->vdev_ops->vdev_op_close(vd);
1581
1582 vdev_cache_purge(vd);
1583
1584 /*
1585 * We record the previous state before we close it, so that if we are
1586 * doing a reopen(), we don't generate FMA ereports if we notice that
1587 * it's still faulted.
1588 */
1589 vd->vdev_prevstate = vd->vdev_state;
1590
1591 if (vd->vdev_offline)
1592 vd->vdev_state = VDEV_STATE_OFFLINE;
1593 else
1594 vd->vdev_state = VDEV_STATE_CLOSED;
1595 vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
1596 }
1597
1598 void
1599 vdev_hold(vdev_t *vd)
1600 {
1601 spa_t *spa = vd->vdev_spa;
1602 int c;
1603
1604 ASSERT(spa_is_root(spa));
1605 if (spa->spa_state == POOL_STATE_UNINITIALIZED)
1606 return;
1607
1608 for (c = 0; c < vd->vdev_children; c++)
1609 vdev_hold(vd->vdev_child[c]);
1610
1611 if (vd->vdev_ops->vdev_op_leaf)
1612 vd->vdev_ops->vdev_op_hold(vd);
1613 }
1614
1615 void
1616 vdev_rele(vdev_t *vd)
1617 {
1618 int c;
1619
1620 ASSERT(spa_is_root(vd->vdev_spa));
1621 for (c = 0; c < vd->vdev_children; c++)
1622 vdev_rele(vd->vdev_child[c]);
1623
1624 if (vd->vdev_ops->vdev_op_leaf)
1625 vd->vdev_ops->vdev_op_rele(vd);
1626 }
1627
1628 /*
1629 * Reopen all interior vdevs and any unopened leaves. We don't actually
1630 * reopen leaf vdevs which had previously been opened as they might deadlock
1631 * on the spa_config_lock. Instead we only obtain the leaf's physical size.
1632 * If the leaf has never been opened then open it, as usual.
1633 */
1634 void
1635 vdev_reopen(vdev_t *vd)
1636 {
1637 spa_t *spa = vd->vdev_spa;
1638
1639 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1640
1641 /* set the reopening flag unless we're taking the vdev offline */
1642 vd->vdev_reopening = !vd->vdev_offline;
1643 vdev_close(vd);
1644 (void) vdev_open(vd);
1645
1646 /*
1647 * Call vdev_validate() here to make sure we have the same device.
1648 * Otherwise, a device with an invalid label could be successfully
1649 * opened in response to vdev_reopen().
1650 */
1651 if (vd->vdev_aux) {
1652 (void) vdev_validate_aux(vd);
1653 if (vdev_readable(vd) && vdev_writeable(vd) &&
1654 vd->vdev_aux == &spa->spa_l2cache &&
1655 !l2arc_vdev_present(vd))
1656 l2arc_add_vdev(spa, vd);
1657 } else {
1658 (void) vdev_validate(vd, B_TRUE);
1659 }
1660
1661 /*
1662 * Reassess parent vdev's health.
1663 */
1664 vdev_propagate_state(vd);
1665 }
1666
1667 int
1668 vdev_create(vdev_t *vd, uint64_t txg, boolean_t isreplacing)
1669 {
1670 int error;
1671
1672 /*
1673 * Normally, partial opens (e.g. of a mirror) are allowed.
1674 * For a create, however, we want to fail the request if
1675 * there are any components we can't open.
1676 */
1677 error = vdev_open(vd);
1678
1679 if (error || vd->vdev_state != VDEV_STATE_HEALTHY) {
1680 vdev_close(vd);
1681 return (error ? error : ENXIO);
1682 }
1683
1684 /*
1685 * Recursively load DTLs and initialize all labels.
1686 */
1687 if ((error = vdev_dtl_load(vd)) != 0 ||
1688 (error = vdev_label_init(vd, txg, isreplacing ?
1689 VDEV_LABEL_REPLACE : VDEV_LABEL_CREATE)) != 0) {
1690 vdev_close(vd);
1691 return (error);
1692 }
1693
1694 return (0);
1695 }
1696
1697 void
1698 vdev_metaslab_set_size(vdev_t *vd)
1699 {
1700 /*
1701 * Aim for roughly metaslabs_per_vdev (default 200) metaslabs per vdev.
1702 */
1703 vd->vdev_ms_shift = highbit64(vd->vdev_asize / metaslabs_per_vdev);
1704 vd->vdev_ms_shift = MAX(vd->vdev_ms_shift, SPA_MAXBLOCKSHIFT);
1705 }
1706
1707 void
1708 vdev_dirty(vdev_t *vd, int flags, void *arg, uint64_t txg)
1709 {
1710 ASSERT(vd == vd->vdev_top);
1711 ASSERT(!vd->vdev_ishole);
1712 ASSERT(ISP2(flags));
1713 ASSERT(spa_writeable(vd->vdev_spa));
1714
1715 if (flags & VDD_METASLAB)
1716 (void) txg_list_add(&vd->vdev_ms_list, arg, txg);
1717
1718 if (flags & VDD_DTL)
1719 (void) txg_list_add(&vd->vdev_dtl_list, arg, txg);
1720
1721 (void) txg_list_add(&vd->vdev_spa->spa_vdev_txg_list, vd, txg);
1722 }
1723
1724 void
1725 vdev_dirty_leaves(vdev_t *vd, int flags, uint64_t txg)
1726 {
1727 int c;
1728
1729 for (c = 0; c < vd->vdev_children; c++)
1730 vdev_dirty_leaves(vd->vdev_child[c], flags, txg);
1731
1732 if (vd->vdev_ops->vdev_op_leaf)
1733 vdev_dirty(vd->vdev_top, flags, vd, txg);
1734 }
1735
1736 /*
1737 * DTLs.
1738 *
1739 * A vdev's DTL (dirty time log) is the set of transaction groups for which
1740 * the vdev has less than perfect replication. There are four kinds of DTL:
1741 *
1742 * DTL_MISSING: txgs for which the vdev has no valid copies of the data
1743 *
1744 * DTL_PARTIAL: txgs for which data is available, but not fully replicated
1745 *
1746 * DTL_SCRUB: the txgs that could not be repaired by the last scrub; upon
1747 * scrub completion, DTL_SCRUB replaces DTL_MISSING in the range of
1748 * txgs that was scrubbed.
1749 *
1750 * DTL_OUTAGE: txgs which cannot currently be read, whether due to
1751 * persistent errors or just some device being offline.
1752 * Unlike the other three, the DTL_OUTAGE map is not generally
1753 * maintained; it's only computed when needed, typically to
1754 * determine whether a device can be detached.
1755 *
1756 * For leaf vdevs, DTL_MISSING and DTL_PARTIAL are identical: the device
1757 * either has the data or it doesn't.
1758 *
1759 * For interior vdevs such as mirror and RAID-Z the picture is more complex.
1760 * A vdev's DTL_PARTIAL is the union of its children's DTL_PARTIALs, because
1761 * if any child is less than fully replicated, then so is its parent.
1762 * A vdev's DTL_MISSING is a modified union of its children's DTL_MISSINGs,
1763 * comprising only those txgs which appear in 'maxfaults' or more children;
1764 * those are the txgs we don't have enough replication to read. For example,
1765 * double-parity RAID-Z can tolerate up to two missing devices (maxfaults == 2);
1766 * thus, its DTL_MISSING consists of the set of txgs that appear in more than
1767 * two child DTL_MISSING maps.
1768 *
1769 * It should be clear from the above that to compute the DTLs and outage maps
1770 * for all vdevs, it suffices to know just the leaf vdevs' DTL_MISSING maps.
1771 * Therefore, that is all we keep on disk. When loading the pool, or after
1772 * a configuration change, we generate all other DTLs from first principles.
1773 */
1774 void
1775 vdev_dtl_dirty(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
1776 {
1777 range_tree_t *rt = vd->vdev_dtl[t];
1778
1779 ASSERT(t < DTL_TYPES);
1780 ASSERT(vd != vd->vdev_spa->spa_root_vdev);
1781 ASSERT(spa_writeable(vd->vdev_spa));
1782
1783 mutex_enter(rt->rt_lock);
1784 if (!range_tree_contains(rt, txg, size))
1785 range_tree_add(rt, txg, size);
1786 mutex_exit(rt->rt_lock);
1787 }
1788
1789 boolean_t
1790 vdev_dtl_contains(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
1791 {
1792 range_tree_t *rt = vd->vdev_dtl[t];
1793 boolean_t dirty = B_FALSE;
1794
1795 ASSERT(t < DTL_TYPES);
1796 ASSERT(vd != vd->vdev_spa->spa_root_vdev);
1797
1798 mutex_enter(rt->rt_lock);
1799 if (range_tree_space(rt) != 0)
1800 dirty = range_tree_contains(rt, txg, size);
1801 mutex_exit(rt->rt_lock);
1802
1803 return (dirty);
1804 }
1805
1806 boolean_t
1807 vdev_dtl_empty(vdev_t *vd, vdev_dtl_type_t t)
1808 {
1809 range_tree_t *rt = vd->vdev_dtl[t];
1810 boolean_t empty;
1811
1812 mutex_enter(rt->rt_lock);
1813 empty = (range_tree_space(rt) == 0);
1814 mutex_exit(rt->rt_lock);
1815
1816 return (empty);
1817 }
1818
1819 /*
1820 * Returns the lowest txg in the DTL range.
1821 */
1822 static uint64_t
1823 vdev_dtl_min(vdev_t *vd)
1824 {
1825 range_seg_t *rs;
1826
1827 ASSERT(MUTEX_HELD(&vd->vdev_dtl_lock));
1828 ASSERT3U(range_tree_space(vd->vdev_dtl[DTL_MISSING]), !=, 0);
1829 ASSERT0(vd->vdev_children);
1830
1831 rs = avl_first(&vd->vdev_dtl[DTL_MISSING]->rt_root);
1832 return (rs->rs_start - 1);
1833 }
1834
1835 /*
1836 * Returns the highest txg in the DTL.
1837 */
1838 static uint64_t
1839 vdev_dtl_max(vdev_t *vd)
1840 {
1841 range_seg_t *rs;
1842
1843 ASSERT(MUTEX_HELD(&vd->vdev_dtl_lock));
1844 ASSERT3U(range_tree_space(vd->vdev_dtl[DTL_MISSING]), !=, 0);
1845 ASSERT0(vd->vdev_children);
1846
1847 rs = avl_last(&vd->vdev_dtl[DTL_MISSING]->rt_root);
1848 return (rs->rs_end);
1849 }
1850
1851 /*
1852 * Determine if a resilvering vdev should remove any DTL entries from
1853 * its range. If the vdev was resilvering for the entire duration of the
1854 * scan then it should excise that range from its DTLs. Otherwise, this
1855 * vdev is considered partially resilvered and should leave its DTL
1856 * entries intact. The comment in vdev_dtl_reassess() describes how we
1857 * excise the DTLs.
1858 */
1859 static boolean_t
1860 vdev_dtl_should_excise(vdev_t *vd)
1861 {
1862 spa_t *spa = vd->vdev_spa;
1863 dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan;
1864
1865 ASSERT0(scn->scn_phys.scn_errors);
1866 ASSERT0(vd->vdev_children);
1867
1868 if (vd->vdev_resilver_txg == 0 ||
1869 range_tree_space(vd->vdev_dtl[DTL_MISSING]) == 0)
1870 return (B_TRUE);
1871
1872 /*
1873 * When a resilver is initiated the scan will assign the scn_max_txg
1874 * value to the highest txg value that exists in all DTLs. If this
1875 * device's max DTL is not part of this scan (i.e. it is not in
1876 * the range (scn_min_txg, scn_max_txg] then it is not eligible
1877 * for excision.
1878 */
1879 if (vdev_dtl_max(vd) <= scn->scn_phys.scn_max_txg) {
1880 ASSERT3U(scn->scn_phys.scn_min_txg, <=, vdev_dtl_min(vd));
1881 ASSERT3U(scn->scn_phys.scn_min_txg, <, vd->vdev_resilver_txg);
1882 ASSERT3U(vd->vdev_resilver_txg, <=, scn->scn_phys.scn_max_txg);
1883 return (B_TRUE);
1884 }
1885 return (B_FALSE);
1886 }
1887
1888 /*
1889 * Reassess DTLs after a config change or scrub completion.
1890 */
1891 void
1892 vdev_dtl_reassess(vdev_t *vd, uint64_t txg, uint64_t scrub_txg, int scrub_done)
1893 {
1894 spa_t *spa = vd->vdev_spa;
1895 avl_tree_t reftree;
1896 int c, t, minref;
1897
1898 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
1899
1900 for (c = 0; c < vd->vdev_children; c++)
1901 vdev_dtl_reassess(vd->vdev_child[c], txg,
1902 scrub_txg, scrub_done);
1903
1904 if (vd == spa->spa_root_vdev || vd->vdev_ishole || vd->vdev_aux)
1905 return;
1906
1907 if (vd->vdev_ops->vdev_op_leaf) {
1908 dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan;
1909
1910 mutex_enter(&vd->vdev_dtl_lock);
1911
1912 /*
1913 * If we've completed a scan cleanly then determine
1914 * if this vdev should remove any DTLs. We only want to
1915 * excise regions on vdevs that were available during
1916 * the entire duration of this scan.
1917 */
1918 if (scrub_txg != 0 &&
1919 (spa->spa_scrub_started ||
1920 (scn != NULL && scn->scn_phys.scn_errors == 0)) &&
1921 vdev_dtl_should_excise(vd)) {
1922 /*
1923 * We completed a scrub up to scrub_txg. If we
1924 * did it without rebooting, then the scrub dtl
1925 * will be valid, so excise the old region and
1926 * fold in the scrub dtl. Otherwise, leave the
1927 * dtl as-is if there was an error.
1928 *
1929 * There's little trick here: to excise the beginning
1930 * of the DTL_MISSING map, we put it into a reference
1931 * tree and then add a segment with refcnt -1 that
1932 * covers the range [0, scrub_txg). This means
1933 * that each txg in that range has refcnt -1 or 0.
1934 * We then add DTL_SCRUB with a refcnt of 2, so that
1935 * entries in the range [0, scrub_txg) will have a
1936 * positive refcnt -- either 1 or 2. We then convert
1937 * the reference tree into the new DTL_MISSING map.
1938 */
1939 space_reftree_create(&reftree);
1940 space_reftree_add_map(&reftree,
1941 vd->vdev_dtl[DTL_MISSING], 1);
1942 space_reftree_add_seg(&reftree, 0, scrub_txg, -1);
1943 space_reftree_add_map(&reftree,
1944 vd->vdev_dtl[DTL_SCRUB], 2);
1945 space_reftree_generate_map(&reftree,
1946 vd->vdev_dtl[DTL_MISSING], 1);
1947 space_reftree_destroy(&reftree);
1948 }
1949 range_tree_vacate(vd->vdev_dtl[DTL_PARTIAL], NULL, NULL);
1950 range_tree_walk(vd->vdev_dtl[DTL_MISSING],
1951 range_tree_add, vd->vdev_dtl[DTL_PARTIAL]);
1952 if (scrub_done)
1953 range_tree_vacate(vd->vdev_dtl[DTL_SCRUB], NULL, NULL);
1954 range_tree_vacate(vd->vdev_dtl[DTL_OUTAGE], NULL, NULL);
1955 if (!vdev_readable(vd))
1956 range_tree_add(vd->vdev_dtl[DTL_OUTAGE], 0, -1ULL);
1957 else
1958 range_tree_walk(vd->vdev_dtl[DTL_MISSING],
1959 range_tree_add, vd->vdev_dtl[DTL_OUTAGE]);
1960
1961 /*
1962 * If the vdev was resilvering and no longer has any
1963 * DTLs then reset its resilvering flag and dirty
1964 * the top level so that we persist the change.
1965 */
1966 if (vd->vdev_resilver_txg != 0 &&
1967 range_tree_space(vd->vdev_dtl[DTL_MISSING]) == 0 &&
1968 range_tree_space(vd->vdev_dtl[DTL_OUTAGE]) == 0) {
1969 vd->vdev_resilver_txg = 0;
1970 vdev_config_dirty(vd->vdev_top);
1971 }
1972
1973 mutex_exit(&vd->vdev_dtl_lock);
1974
1975 if (txg != 0)
1976 vdev_dirty(vd->vdev_top, VDD_DTL, vd, txg);
1977 return;
1978 }
1979
1980 mutex_enter(&vd->vdev_dtl_lock);
1981 for (t = 0; t < DTL_TYPES; t++) {
1982 int c;
1983
1984 /* account for child's outage in parent's missing map */
1985 int s = (t == DTL_MISSING) ? DTL_OUTAGE: t;
1986 if (t == DTL_SCRUB)
1987 continue; /* leaf vdevs only */
1988 if (t == DTL_PARTIAL)
1989 minref = 1; /* i.e. non-zero */
1990 else if (vd->vdev_nparity != 0)
1991 minref = vd->vdev_nparity + 1; /* RAID-Z */
1992 else
1993 minref = vd->vdev_children; /* any kind of mirror */
1994 space_reftree_create(&reftree);
1995 for (c = 0; c < vd->vdev_children; c++) {
1996 vdev_t *cvd = vd->vdev_child[c];
1997 mutex_enter(&cvd->vdev_dtl_lock);
1998 space_reftree_add_map(&reftree, cvd->vdev_dtl[s], 1);
1999 mutex_exit(&cvd->vdev_dtl_lock);
2000 }
2001 space_reftree_generate_map(&reftree, vd->vdev_dtl[t], minref);
2002 space_reftree_destroy(&reftree);
2003 }
2004 mutex_exit(&vd->vdev_dtl_lock);
2005 }
2006
2007 int
2008 vdev_dtl_load(vdev_t *vd)
2009 {
2010 spa_t *spa = vd->vdev_spa;
2011 objset_t *mos = spa->spa_meta_objset;
2012 int error = 0;
2013 int c;
2014
2015 if (vd->vdev_ops->vdev_op_leaf && vd->vdev_dtl_object != 0) {
2016 ASSERT(!vd->vdev_ishole);
2017
2018 error = space_map_open(&vd->vdev_dtl_sm, mos,
2019 vd->vdev_dtl_object, 0, -1ULL, 0, &vd->vdev_dtl_lock);
2020 if (error)
2021 return (error);
2022 ASSERT(vd->vdev_dtl_sm != NULL);
2023
2024 mutex_enter(&vd->vdev_dtl_lock);
2025
2026 /*
2027 * Now that we've opened the space_map we need to update
2028 * the in-core DTL.
2029 */
2030 space_map_update(vd->vdev_dtl_sm);
2031
2032 error = space_map_load(vd->vdev_dtl_sm,
2033 vd->vdev_dtl[DTL_MISSING], SM_ALLOC);
2034 mutex_exit(&vd->vdev_dtl_lock);
2035
2036 return (error);
2037 }
2038
2039 for (c = 0; c < vd->vdev_children; c++) {
2040 error = vdev_dtl_load(vd->vdev_child[c]);
2041 if (error != 0)
2042 break;
2043 }
2044
2045 return (error);
2046 }
2047
2048 void
2049 vdev_destroy_unlink_zap(vdev_t *vd, uint64_t zapobj, dmu_tx_t *tx)
2050 {
2051 spa_t *spa = vd->vdev_spa;
2052
2053 VERIFY0(zap_destroy(spa->spa_meta_objset, zapobj, tx));
2054 VERIFY0(zap_remove_int(spa->spa_meta_objset, spa->spa_all_vdev_zaps,
2055 zapobj, tx));
2056 }
2057
2058 uint64_t
2059 vdev_create_link_zap(vdev_t *vd, dmu_tx_t *tx)
2060 {
2061 spa_t *spa = vd->vdev_spa;
2062 uint64_t zap = zap_create(spa->spa_meta_objset, DMU_OTN_ZAP_METADATA,
2063 DMU_OT_NONE, 0, tx);
2064
2065 ASSERT(zap != 0);
2066 VERIFY0(zap_add_int(spa->spa_meta_objset, spa->spa_all_vdev_zaps,
2067 zap, tx));
2068
2069 return (zap);
2070 }
2071
2072 void
2073 vdev_construct_zaps(vdev_t *vd, dmu_tx_t *tx)
2074 {
2075 uint64_t i;
2076
2077 if (vd->vdev_ops != &vdev_hole_ops &&
2078 vd->vdev_ops != &vdev_missing_ops &&
2079 vd->vdev_ops != &vdev_root_ops &&
2080 !vd->vdev_top->vdev_removing) {
2081 if (vd->vdev_ops->vdev_op_leaf && vd->vdev_leaf_zap == 0) {
2082 vd->vdev_leaf_zap = vdev_create_link_zap(vd, tx);
2083 }
2084 if (vd == vd->vdev_top && vd->vdev_top_zap == 0) {
2085 vd->vdev_top_zap = vdev_create_link_zap(vd, tx);
2086 }
2087 }
2088 for (i = 0; i < vd->vdev_children; i++) {
2089 vdev_construct_zaps(vd->vdev_child[i], tx);
2090 }
2091 }
2092
2093 void
2094 vdev_dtl_sync(vdev_t *vd, uint64_t txg)
2095 {
2096 spa_t *spa = vd->vdev_spa;
2097 range_tree_t *rt = vd->vdev_dtl[DTL_MISSING];
2098 objset_t *mos = spa->spa_meta_objset;
2099 range_tree_t *rtsync;
2100 kmutex_t rtlock;
2101 dmu_tx_t *tx;
2102 uint64_t object = space_map_object(vd->vdev_dtl_sm);
2103
2104 ASSERT(!vd->vdev_ishole);
2105 ASSERT(vd->vdev_ops->vdev_op_leaf);
2106
2107 tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
2108
2109 if (vd->vdev_detached || vd->vdev_top->vdev_removing) {
2110 mutex_enter(&vd->vdev_dtl_lock);
2111 space_map_free(vd->vdev_dtl_sm, tx);
2112 space_map_close(vd->vdev_dtl_sm);
2113 vd->vdev_dtl_sm = NULL;
2114 mutex_exit(&vd->vdev_dtl_lock);
2115
2116 /*
2117 * We only destroy the leaf ZAP for detached leaves or for
2118 * removed log devices. Removed data devices handle leaf ZAP
2119 * cleanup later, once cancellation is no longer possible.
2120 */
2121 if (vd->vdev_leaf_zap != 0 && (vd->vdev_detached ||
2122 vd->vdev_top->vdev_islog)) {
2123 vdev_destroy_unlink_zap(vd, vd->vdev_leaf_zap, tx);
2124 vd->vdev_leaf_zap = 0;
2125 }
2126
2127 dmu_tx_commit(tx);
2128 return;
2129 }
2130
2131 if (vd->vdev_dtl_sm == NULL) {
2132 uint64_t new_object;
2133
2134 new_object = space_map_alloc(mos, tx);
2135 VERIFY3U(new_object, !=, 0);
2136
2137 VERIFY0(space_map_open(&vd->vdev_dtl_sm, mos, new_object,
2138 0, -1ULL, 0, &vd->vdev_dtl_lock));
2139 ASSERT(vd->vdev_dtl_sm != NULL);
2140 }
2141
2142 mutex_init(&rtlock, NULL, MUTEX_DEFAULT, NULL);
2143
2144 rtsync = range_tree_create(NULL, NULL, &rtlock);
2145
2146 mutex_enter(&rtlock);
2147
2148 mutex_enter(&vd->vdev_dtl_lock);
2149 range_tree_walk(rt, range_tree_add, rtsync);
2150 mutex_exit(&vd->vdev_dtl_lock);
2151
2152 space_map_truncate(vd->vdev_dtl_sm, tx);
2153 space_map_write(vd->vdev_dtl_sm, rtsync, SM_ALLOC, tx);
2154 range_tree_vacate(rtsync, NULL, NULL);
2155
2156 range_tree_destroy(rtsync);
2157
2158 mutex_exit(&rtlock);
2159 mutex_destroy(&rtlock);
2160
2161 /*
2162 * If the object for the space map has changed then dirty
2163 * the top level so that we update the config.
2164 */
2165 if (object != space_map_object(vd->vdev_dtl_sm)) {
2166 zfs_dbgmsg("txg %llu, spa %s, DTL old object %llu, "
2167 "new object %llu", txg, spa_name(spa), object,
2168 space_map_object(vd->vdev_dtl_sm));
2169 vdev_config_dirty(vd->vdev_top);
2170 }
2171
2172 dmu_tx_commit(tx);
2173
2174 mutex_enter(&vd->vdev_dtl_lock);
2175 space_map_update(vd->vdev_dtl_sm);
2176 mutex_exit(&vd->vdev_dtl_lock);
2177 }
2178
2179 /*
2180 * Determine whether the specified vdev can be offlined/detached/removed
2181 * without losing data.
2182 */
2183 boolean_t
2184 vdev_dtl_required(vdev_t *vd)
2185 {
2186 spa_t *spa = vd->vdev_spa;
2187 vdev_t *tvd = vd->vdev_top;
2188 uint8_t cant_read = vd->vdev_cant_read;
2189 boolean_t required;
2190
2191 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
2192
2193 if (vd == spa->spa_root_vdev || vd == tvd)
2194 return (B_TRUE);
2195
2196 /*
2197 * Temporarily mark the device as unreadable, and then determine
2198 * whether this results in any DTL outages in the top-level vdev.
2199 * If not, we can safely offline/detach/remove the device.
2200 */
2201 vd->vdev_cant_read = B_TRUE;
2202 vdev_dtl_reassess(tvd, 0, 0, B_FALSE);
2203 required = !vdev_dtl_empty(tvd, DTL_OUTAGE);
2204 vd->vdev_cant_read = cant_read;
2205 vdev_dtl_reassess(tvd, 0, 0, B_FALSE);
2206
2207 if (!required && zio_injection_enabled)
2208 required = !!zio_handle_device_injection(vd, NULL, ECHILD);
2209
2210 return (required);
2211 }
2212
2213 /*
2214 * Determine if resilver is needed, and if so the txg range.
2215 */
2216 boolean_t
2217 vdev_resilver_needed(vdev_t *vd, uint64_t *minp, uint64_t *maxp)
2218 {
2219 boolean_t needed = B_FALSE;
2220 uint64_t thismin = UINT64_MAX;
2221 uint64_t thismax = 0;
2222 int c;
2223
2224 if (vd->vdev_children == 0) {
2225 mutex_enter(&vd->vdev_dtl_lock);
2226 if (range_tree_space(vd->vdev_dtl[DTL_MISSING]) != 0 &&
2227 vdev_writeable(vd)) {
2228
2229 thismin = vdev_dtl_min(vd);
2230 thismax = vdev_dtl_max(vd);
2231 needed = B_TRUE;
2232 }
2233 mutex_exit(&vd->vdev_dtl_lock);
2234 } else {
2235 for (c = 0; c < vd->vdev_children; c++) {
2236 vdev_t *cvd = vd->vdev_child[c];
2237 uint64_t cmin, cmax;
2238
2239 if (vdev_resilver_needed(cvd, &cmin, &cmax)) {
2240 thismin = MIN(thismin, cmin);
2241 thismax = MAX(thismax, cmax);
2242 needed = B_TRUE;
2243 }
2244 }
2245 }
2246
2247 if (needed && minp) {
2248 *minp = thismin;
2249 *maxp = thismax;
2250 }
2251 return (needed);
2252 }
2253
2254 void
2255 vdev_load(vdev_t *vd)
2256 {
2257 int c;
2258
2259 /*
2260 * Recursively load all children.
2261 */
2262 for (c = 0; c < vd->vdev_children; c++)
2263 vdev_load(vd->vdev_child[c]);
2264
2265 /*
2266 * If this is a top-level vdev, initialize its metaslabs.
2267 */
2268 if (vd == vd->vdev_top && !vd->vdev_ishole &&
2269 (vd->vdev_ashift == 0 || vd->vdev_asize == 0 ||
2270 vdev_metaslab_init(vd, 0) != 0))
2271 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2272 VDEV_AUX_CORRUPT_DATA);
2273 /*
2274 * If this is a leaf vdev, load its DTL.
2275 */
2276 if (vd->vdev_ops->vdev_op_leaf && vdev_dtl_load(vd) != 0)
2277 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2278 VDEV_AUX_CORRUPT_DATA);
2279 }
2280
2281 /*
2282 * The special vdev case is used for hot spares and l2cache devices. Its
2283 * sole purpose it to set the vdev state for the associated vdev. To do this,
2284 * we make sure that we can open the underlying device, then try to read the
2285 * label, and make sure that the label is sane and that it hasn't been
2286 * repurposed to another pool.
2287 */
2288 int
2289 vdev_validate_aux(vdev_t *vd)
2290 {
2291 nvlist_t *label;
2292 uint64_t guid, version;
2293 uint64_t state;
2294
2295 if (!vdev_readable(vd))
2296 return (0);
2297
2298 if ((label = vdev_label_read_config(vd, -1ULL)) == NULL) {
2299 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2300 VDEV_AUX_CORRUPT_DATA);
2301 return (-1);
2302 }
2303
2304 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_VERSION, &version) != 0 ||
2305 !SPA_VERSION_IS_SUPPORTED(version) ||
2306 nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0 ||
2307 guid != vd->vdev_guid ||
2308 nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, &state) != 0) {
2309 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2310 VDEV_AUX_CORRUPT_DATA);
2311 nvlist_free(label);
2312 return (-1);
2313 }
2314
2315 /*
2316 * We don't actually check the pool state here. If it's in fact in
2317 * use by another pool, we update this fact on the fly when requested.
2318 */
2319 nvlist_free(label);
2320 return (0);
2321 }
2322
2323 void
2324 vdev_remove(vdev_t *vd, uint64_t txg)
2325 {
2326 spa_t *spa = vd->vdev_spa;
2327 objset_t *mos = spa->spa_meta_objset;
2328 dmu_tx_t *tx;
2329 int m, i;
2330
2331 tx = dmu_tx_create_assigned(spa_get_dsl(spa), txg);
2332 ASSERT(vd == vd->vdev_top);
2333 ASSERT3U(txg, ==, spa_syncing_txg(spa));
2334
2335 if (vd->vdev_ms != NULL) {
2336 metaslab_group_t *mg = vd->vdev_mg;
2337
2338 metaslab_group_histogram_verify(mg);
2339 metaslab_class_histogram_verify(mg->mg_class);
2340
2341 for (m = 0; m < vd->vdev_ms_count; m++) {
2342 metaslab_t *msp = vd->vdev_ms[m];
2343
2344 if (msp == NULL || msp->ms_sm == NULL)
2345 continue;
2346
2347 mutex_enter(&msp->ms_lock);
2348 /*
2349 * If the metaslab was not loaded when the vdev
2350 * was removed then the histogram accounting may
2351 * not be accurate. Update the histogram information
2352 * here so that we ensure that the metaslab group
2353 * and metaslab class are up-to-date.
2354 */
2355 metaslab_group_histogram_remove(mg, msp);
2356
2357 VERIFY0(space_map_allocated(msp->ms_sm));
2358 space_map_free(msp->ms_sm, tx);
2359 space_map_close(msp->ms_sm);
2360 msp->ms_sm = NULL;
2361 mutex_exit(&msp->ms_lock);
2362 }
2363
2364 metaslab_group_histogram_verify(mg);
2365 metaslab_class_histogram_verify(mg->mg_class);
2366 for (i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i++)
2367 ASSERT0(mg->mg_histogram[i]);
2368
2369 }
2370
2371 if (vd->vdev_ms_array) {
2372 (void) dmu_object_free(mos, vd->vdev_ms_array, tx);
2373 vd->vdev_ms_array = 0;
2374 }
2375
2376 if (vd->vdev_islog && vd->vdev_top_zap != 0) {
2377 vdev_destroy_unlink_zap(vd, vd->vdev_top_zap, tx);
2378 vd->vdev_top_zap = 0;
2379 }
2380 dmu_tx_commit(tx);
2381 }
2382
2383 void
2384 vdev_sync_done(vdev_t *vd, uint64_t txg)
2385 {
2386 metaslab_t *msp;
2387 boolean_t reassess = !txg_list_empty(&vd->vdev_ms_list, TXG_CLEAN(txg));
2388
2389 ASSERT(!vd->vdev_ishole);
2390
2391 while ((msp = txg_list_remove(&vd->vdev_ms_list, TXG_CLEAN(txg))))
2392 metaslab_sync_done(msp, txg);
2393
2394 if (reassess)
2395 metaslab_sync_reassess(vd->vdev_mg);
2396 }
2397
2398 void
2399 vdev_sync(vdev_t *vd, uint64_t txg)
2400 {
2401 spa_t *spa = vd->vdev_spa;
2402 vdev_t *lvd;
2403 metaslab_t *msp;
2404 dmu_tx_t *tx;
2405
2406 ASSERT(!vd->vdev_ishole);
2407
2408 if (vd->vdev_ms_array == 0 && vd->vdev_ms_shift != 0) {
2409 ASSERT(vd == vd->vdev_top);
2410 tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
2411 vd->vdev_ms_array = dmu_object_alloc(spa->spa_meta_objset,
2412 DMU_OT_OBJECT_ARRAY, 0, DMU_OT_NONE, 0, tx);
2413 ASSERT(vd->vdev_ms_array != 0);
2414 vdev_config_dirty(vd);
2415 dmu_tx_commit(tx);
2416 }
2417
2418 /*
2419 * Remove the metadata associated with this vdev once it's empty.
2420 */
2421 if (vd->vdev_stat.vs_alloc == 0 && vd->vdev_removing)
2422 vdev_remove(vd, txg);
2423
2424 while ((msp = txg_list_remove(&vd->vdev_ms_list, txg)) != NULL) {
2425 metaslab_sync(msp, txg);
2426 (void) txg_list_add(&vd->vdev_ms_list, msp, TXG_CLEAN(txg));
2427 }
2428
2429 while ((lvd = txg_list_remove(&vd->vdev_dtl_list, txg)) != NULL)
2430 vdev_dtl_sync(lvd, txg);
2431
2432 (void) txg_list_add(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg));
2433 }
2434
2435 uint64_t
2436 vdev_psize_to_asize(vdev_t *vd, uint64_t psize)
2437 {
2438 return (vd->vdev_ops->vdev_op_asize(vd, psize));
2439 }
2440
2441 /*
2442 * Mark the given vdev faulted. A faulted vdev behaves as if the device could
2443 * not be opened, and no I/O is attempted.
2444 */
2445 int
2446 vdev_fault(spa_t *spa, uint64_t guid, vdev_aux_t aux)
2447 {
2448 vdev_t *vd, *tvd;
2449
2450 spa_vdev_state_enter(spa, SCL_NONE);
2451
2452 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2453 return (spa_vdev_state_exit(spa, NULL, ENODEV));
2454
2455 if (!vd->vdev_ops->vdev_op_leaf)
2456 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2457
2458 tvd = vd->vdev_top;
2459
2460 /*
2461 * We don't directly use the aux state here, but if we do a
2462 * vdev_reopen(), we need this value to be present to remember why we
2463 * were faulted.
2464 */
2465 vd->vdev_label_aux = aux;
2466
2467 /*
2468 * Faulted state takes precedence over degraded.
2469 */
2470 vd->vdev_delayed_close = B_FALSE;
2471 vd->vdev_faulted = 1ULL;
2472 vd->vdev_degraded = 0ULL;
2473 vdev_set_state(vd, B_FALSE, VDEV_STATE_FAULTED, aux);
2474
2475 /*
2476 * If this device has the only valid copy of the data, then
2477 * back off and simply mark the vdev as degraded instead.
2478 */
2479 if (!tvd->vdev_islog && vd->vdev_aux == NULL && vdev_dtl_required(vd)) {
2480 vd->vdev_degraded = 1ULL;
2481 vd->vdev_faulted = 0ULL;
2482
2483 /*
2484 * If we reopen the device and it's not dead, only then do we
2485 * mark it degraded.
2486 */
2487 vdev_reopen(tvd);
2488
2489 if (vdev_readable(vd))
2490 vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, aux);
2491 }
2492
2493 return (spa_vdev_state_exit(spa, vd, 0));
2494 }
2495
2496 /*
2497 * Mark the given vdev degraded. A degraded vdev is purely an indication to the
2498 * user that something is wrong. The vdev continues to operate as normal as far
2499 * as I/O is concerned.
2500 */
2501 int
2502 vdev_degrade(spa_t *spa, uint64_t guid, vdev_aux_t aux)
2503 {
2504 vdev_t *vd;
2505
2506 spa_vdev_state_enter(spa, SCL_NONE);
2507
2508 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2509 return (spa_vdev_state_exit(spa, NULL, ENODEV));
2510
2511 if (!vd->vdev_ops->vdev_op_leaf)
2512 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2513
2514 /*
2515 * If the vdev is already faulted, then don't do anything.
2516 */
2517 if (vd->vdev_faulted || vd->vdev_degraded)
2518 return (spa_vdev_state_exit(spa, NULL, 0));
2519
2520 vd->vdev_degraded = 1ULL;
2521 if (!vdev_is_dead(vd))
2522 vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED,
2523 aux);
2524
2525 return (spa_vdev_state_exit(spa, vd, 0));
2526 }
2527
2528 /*
2529 * Online the given vdev.
2530 *
2531 * If 'ZFS_ONLINE_UNSPARE' is set, it implies two things. First, any attached
2532 * spare device should be detached when the device finishes resilvering.
2533 * Second, the online should be treated like a 'test' online case, so no FMA
2534 * events are generated if the device fails to open.
2535 */
2536 int
2537 vdev_online(spa_t *spa, uint64_t guid, uint64_t flags, vdev_state_t *newstate)
2538 {
2539 vdev_t *vd, *tvd, *pvd, *rvd = spa->spa_root_vdev;
2540 boolean_t wasoffline;
2541 vdev_state_t oldstate;
2542
2543 spa_vdev_state_enter(spa, SCL_NONE);
2544
2545 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2546 return (spa_vdev_state_exit(spa, NULL, ENODEV));
2547
2548 if (!vd->vdev_ops->vdev_op_leaf)
2549 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2550
2551 wasoffline = (vd->vdev_offline || vd->vdev_tmpoffline);
2552 oldstate = vd->vdev_state;
2553
2554 tvd = vd->vdev_top;
2555 vd->vdev_offline = B_FALSE;
2556 vd->vdev_tmpoffline = B_FALSE;
2557 vd->vdev_checkremove = !!(flags & ZFS_ONLINE_CHECKREMOVE);
2558 vd->vdev_forcefault = !!(flags & ZFS_ONLINE_FORCEFAULT);
2559
2560 /* XXX - L2ARC 1.0 does not support expansion */
2561 if (!vd->vdev_aux) {
2562 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
2563 pvd->vdev_expanding = !!(flags & ZFS_ONLINE_EXPAND);
2564 }
2565
2566 vdev_reopen(tvd);
2567 vd->vdev_checkremove = vd->vdev_forcefault = B_FALSE;
2568
2569 if (!vd->vdev_aux) {
2570 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
2571 pvd->vdev_expanding = B_FALSE;
2572 }
2573
2574 if (newstate)
2575 *newstate = vd->vdev_state;
2576 if ((flags & ZFS_ONLINE_UNSPARE) &&
2577 !vdev_is_dead(vd) && vd->vdev_parent &&
2578 vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
2579 vd->vdev_parent->vdev_child[0] == vd)
2580 vd->vdev_unspare = B_TRUE;
2581
2582 if ((flags & ZFS_ONLINE_EXPAND) || spa->spa_autoexpand) {
2583
2584 /* XXX - L2ARC 1.0 does not support expansion */
2585 if (vd->vdev_aux)
2586 return (spa_vdev_state_exit(spa, vd, ENOTSUP));
2587 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
2588 }
2589
2590 if (wasoffline ||
2591 (oldstate < VDEV_STATE_DEGRADED &&
2592 vd->vdev_state >= VDEV_STATE_DEGRADED))
2593 spa_event_notify(spa, vd, ESC_ZFS_VDEV_ONLINE);
2594
2595 return (spa_vdev_state_exit(spa, vd, 0));
2596 }
2597
2598 static int
2599 vdev_offline_locked(spa_t *spa, uint64_t guid, uint64_t flags)
2600 {
2601 vdev_t *vd, *tvd;
2602 int error = 0;
2603 uint64_t generation;
2604 metaslab_group_t *mg;
2605
2606 top:
2607 spa_vdev_state_enter(spa, SCL_ALLOC);
2608
2609 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2610 return (spa_vdev_state_exit(spa, NULL, ENODEV));
2611
2612 if (!vd->vdev_ops->vdev_op_leaf)
2613 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2614
2615 tvd = vd->vdev_top;
2616 mg = tvd->vdev_mg;
2617 generation = spa->spa_config_generation + 1;
2618
2619 /*
2620 * If the device isn't already offline, try to offline it.
2621 */
2622 if (!vd->vdev_offline) {
2623 /*
2624 * If this device has the only valid copy of some data,
2625 * don't allow it to be offlined. Log devices are always
2626 * expendable.
2627 */
2628 if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
2629 vdev_dtl_required(vd))
2630 return (spa_vdev_state_exit(spa, NULL, EBUSY));
2631
2632 /*
2633 * If the top-level is a slog and it has had allocations
2634 * then proceed. We check that the vdev's metaslab group
2635 * is not NULL since it's possible that we may have just
2636 * added this vdev but not yet initialized its metaslabs.
2637 */
2638 if (tvd->vdev_islog && mg != NULL) {
2639 /*
2640 * Prevent any future allocations.
2641 */
2642 metaslab_group_passivate(mg);
2643 (void) spa_vdev_state_exit(spa, vd, 0);
2644
2645 error = spa_offline_log(spa);
2646
2647 spa_vdev_state_enter(spa, SCL_ALLOC);
2648
2649 /*
2650 * Check to see if the config has changed.
2651 */
2652 if (error || generation != spa->spa_config_generation) {
2653 metaslab_group_activate(mg);
2654 if (error)
2655 return (spa_vdev_state_exit(spa,
2656 vd, error));
2657 (void) spa_vdev_state_exit(spa, vd, 0);
2658 goto top;
2659 }
2660 ASSERT0(tvd->vdev_stat.vs_alloc);
2661 }
2662
2663 /*
2664 * Offline this device and reopen its top-level vdev.
2665 * If the top-level vdev is a log device then just offline
2666 * it. Otherwise, if this action results in the top-level
2667 * vdev becoming unusable, undo it and fail the request.
2668 */
2669 vd->vdev_offline = B_TRUE;
2670 vdev_reopen(tvd);
2671
2672 if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
2673 vdev_is_dead(tvd)) {
2674 vd->vdev_offline = B_FALSE;
2675 vdev_reopen(tvd);
2676 return (spa_vdev_state_exit(spa, NULL, EBUSY));
2677 }
2678
2679 /*
2680 * Add the device back into the metaslab rotor so that
2681 * once we online the device it's open for business.
2682 */
2683 if (tvd->vdev_islog && mg != NULL)
2684 metaslab_group_activate(mg);
2685 }
2686
2687 vd->vdev_tmpoffline = !!(flags & ZFS_OFFLINE_TEMPORARY);
2688
2689 return (spa_vdev_state_exit(spa, vd, 0));
2690 }
2691
2692 int
2693 vdev_offline(spa_t *spa, uint64_t guid, uint64_t flags)
2694 {
2695 int error;
2696
2697 mutex_enter(&spa->spa_vdev_top_lock);
2698 error = vdev_offline_locked(spa, guid, flags);
2699 mutex_exit(&spa->spa_vdev_top_lock);
2700
2701 return (error);
2702 }
2703
2704 /*
2705 * Clear the error counts associated with this vdev. Unlike vdev_online() and
2706 * vdev_offline(), we assume the spa config is locked. We also clear all
2707 * children. If 'vd' is NULL, then the user wants to clear all vdevs.
2708 */
2709 void
2710 vdev_clear(spa_t *spa, vdev_t *vd)
2711 {
2712 vdev_t *rvd = spa->spa_root_vdev;
2713 int c;
2714
2715 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
2716
2717 if (vd == NULL)
2718 vd = rvd;
2719
2720 vd->vdev_stat.vs_read_errors = 0;
2721 vd->vdev_stat.vs_write_errors = 0;
2722 vd->vdev_stat.vs_checksum_errors = 0;
2723
2724 for (c = 0; c < vd->vdev_children; c++)
2725 vdev_clear(spa, vd->vdev_child[c]);
2726
2727 /*
2728 * If we're in the FAULTED state or have experienced failed I/O, then
2729 * clear the persistent state and attempt to reopen the device. We
2730 * also mark the vdev config dirty, so that the new faulted state is
2731 * written out to disk.
2732 */
2733 if (vd->vdev_faulted || vd->vdev_degraded ||
2734 !vdev_readable(vd) || !vdev_writeable(vd)) {
2735
2736 /*
2737 * When reopening in response to a clear event, it may be due to
2738 * a fmadm repair request. In this case, if the device is
2739 * still broken, we want to still post the ereport again.
2740 */
2741 vd->vdev_forcefault = B_TRUE;
2742
2743 vd->vdev_faulted = vd->vdev_degraded = 0ULL;
2744 vd->vdev_cant_read = B_FALSE;
2745 vd->vdev_cant_write = B_FALSE;
2746
2747 vdev_reopen(vd == rvd ? rvd : vd->vdev_top);
2748
2749 vd->vdev_forcefault = B_FALSE;
2750
2751 if (vd != rvd && vdev_writeable(vd->vdev_top))
2752 vdev_state_dirty(vd->vdev_top);
2753
2754 if (vd->vdev_aux == NULL && !vdev_is_dead(vd))
2755 spa_async_request(spa, SPA_ASYNC_RESILVER);
2756
2757 spa_event_notify(spa, vd, ESC_ZFS_VDEV_CLEAR);
2758 }
2759
2760 /*
2761 * When clearing a FMA-diagnosed fault, we always want to
2762 * unspare the device, as we assume that the original spare was
2763 * done in response to the FMA fault.
2764 */
2765 if (!vdev_is_dead(vd) && vd->vdev_parent != NULL &&
2766 vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
2767 vd->vdev_parent->vdev_child[0] == vd)
2768 vd->vdev_unspare = B_TRUE;
2769 }
2770
2771 boolean_t
2772 vdev_is_dead(vdev_t *vd)
2773 {
2774 /*
2775 * Holes and missing devices are always considered "dead".
2776 * This simplifies the code since we don't have to check for
2777 * these types of devices in the various code paths.
2778 * Instead we rely on the fact that we skip over dead devices
2779 * before issuing I/O to them.
2780 */
2781 return (vd->vdev_state < VDEV_STATE_DEGRADED || vd->vdev_ishole ||
2782 vd->vdev_ops == &vdev_missing_ops);
2783 }
2784
2785 boolean_t
2786 vdev_readable(vdev_t *vd)
2787 {
2788 return (!vdev_is_dead(vd) && !vd->vdev_cant_read);
2789 }
2790
2791 boolean_t
2792 vdev_writeable(vdev_t *vd)
2793 {
2794 return (!vdev_is_dead(vd) && !vd->vdev_cant_write);
2795 }
2796
2797 boolean_t
2798 vdev_allocatable(vdev_t *vd)
2799 {
2800 uint64_t state = vd->vdev_state;
2801
2802 /*
2803 * We currently allow allocations from vdevs which may be in the
2804 * process of reopening (i.e. VDEV_STATE_CLOSED). If the device
2805 * fails to reopen then we'll catch it later when we're holding
2806 * the proper locks. Note that we have to get the vdev state
2807 * in a local variable because although it changes atomically,
2808 * we're asking two separate questions about it.
2809 */
2810 return (!(state < VDEV_STATE_DEGRADED && state != VDEV_STATE_CLOSED) &&
2811 !vd->vdev_cant_write && !vd->vdev_ishole &&
2812 vd->vdev_mg->mg_initialized);
2813 }
2814
2815 boolean_t
2816 vdev_accessible(vdev_t *vd, zio_t *zio)
2817 {
2818 ASSERT(zio->io_vd == vd);
2819
2820 if (vdev_is_dead(vd) || vd->vdev_remove_wanted)
2821 return (B_FALSE);
2822
2823 if (zio->io_type == ZIO_TYPE_READ)
2824 return (!vd->vdev_cant_read);
2825
2826 if (zio->io_type == ZIO_TYPE_WRITE)
2827 return (!vd->vdev_cant_write);
2828
2829 return (B_TRUE);
2830 }
2831
2832 static void
2833 vdev_get_child_stat(vdev_t *cvd, vdev_stat_t *vs, vdev_stat_t *cvs)
2834 {
2835 int t;
2836 for (t = 0; t < ZIO_TYPES; t++) {
2837 vs->vs_ops[t] += cvs->vs_ops[t];
2838 vs->vs_bytes[t] += cvs->vs_bytes[t];
2839 }
2840
2841 cvs->vs_scan_removing = cvd->vdev_removing;
2842 }
2843
2844 /*
2845 * Get extended stats
2846 */
2847 static void
2848 vdev_get_child_stat_ex(vdev_t *cvd, vdev_stat_ex_t *vsx, vdev_stat_ex_t *cvsx)
2849 {
2850 int t, b;
2851 for (t = 0; t < ZIO_TYPES; t++) {
2852 for (b = 0; b < ARRAY_SIZE(vsx->vsx_disk_histo[0]); b++)
2853 vsx->vsx_disk_histo[t][b] += cvsx->vsx_disk_histo[t][b];
2854
2855 for (b = 0; b < ARRAY_SIZE(vsx->vsx_total_histo[0]); b++) {
2856 vsx->vsx_total_histo[t][b] +=
2857 cvsx->vsx_total_histo[t][b];
2858 }
2859 }
2860
2861 for (t = 0; t < ZIO_PRIORITY_NUM_QUEUEABLE; t++) {
2862 for (b = 0; b < ARRAY_SIZE(vsx->vsx_queue_histo[0]); b++) {
2863 vsx->vsx_queue_histo[t][b] +=
2864 cvsx->vsx_queue_histo[t][b];
2865 }
2866 vsx->vsx_active_queue[t] += cvsx->vsx_active_queue[t];
2867 vsx->vsx_pend_queue[t] += cvsx->vsx_pend_queue[t];
2868
2869 for (b = 0; b < ARRAY_SIZE(vsx->vsx_ind_histo[0]); b++)
2870 vsx->vsx_ind_histo[t][b] += cvsx->vsx_ind_histo[t][b];
2871
2872 for (b = 0; b < ARRAY_SIZE(vsx->vsx_agg_histo[0]); b++)
2873 vsx->vsx_agg_histo[t][b] += cvsx->vsx_agg_histo[t][b];
2874 }
2875
2876 }
2877
2878 /*
2879 * Get statistics for the given vdev.
2880 */
2881 static void
2882 vdev_get_stats_ex_impl(vdev_t *vd, vdev_stat_t *vs, vdev_stat_ex_t *vsx)
2883 {
2884 int c, t;
2885 /*
2886 * If we're getting stats on the root vdev, aggregate the I/O counts
2887 * over all top-level vdevs (i.e. the direct children of the root).
2888 */
2889 if (!vd->vdev_ops->vdev_op_leaf) {
2890 if (vs) {
2891 memset(vs->vs_ops, 0, sizeof (vs->vs_ops));
2892 memset(vs->vs_bytes, 0, sizeof (vs->vs_bytes));
2893 }
2894 if (vsx)
2895 memset(vsx, 0, sizeof (*vsx));
2896
2897 for (c = 0; c < vd->vdev_children; c++) {
2898 vdev_t *cvd = vd->vdev_child[c];
2899 vdev_stat_t *cvs = &cvd->vdev_stat;
2900 vdev_stat_ex_t *cvsx = &cvd->vdev_stat_ex;
2901
2902 vdev_get_stats_ex_impl(cvd, cvs, cvsx);
2903 if (vs)
2904 vdev_get_child_stat(cvd, vs, cvs);
2905 if (vsx)
2906 vdev_get_child_stat_ex(cvd, vsx, cvsx);
2907
2908 }
2909 } else {
2910 /*
2911 * We're a leaf. Just copy our ZIO active queue stats in. The
2912 * other leaf stats are updated in vdev_stat_update().
2913 */
2914 if (!vsx)
2915 return;
2916
2917 memcpy(vsx, &vd->vdev_stat_ex, sizeof (vd->vdev_stat_ex));
2918
2919 for (t = 0; t < ARRAY_SIZE(vd->vdev_queue.vq_class); t++) {
2920 vsx->vsx_active_queue[t] =
2921 vd->vdev_queue.vq_class[t].vqc_active;
2922 vsx->vsx_pend_queue[t] = avl_numnodes(
2923 &vd->vdev_queue.vq_class[t].vqc_queued_tree);
2924 }
2925 }
2926 }
2927
2928 void
2929 vdev_get_stats_ex(vdev_t *vd, vdev_stat_t *vs, vdev_stat_ex_t *vsx)
2930 {
2931 vdev_t *tvd = vd->vdev_top;
2932 mutex_enter(&vd->vdev_stat_lock);
2933 if (vs) {
2934 bcopy(&vd->vdev_stat, vs, sizeof (*vs));
2935 vs->vs_timestamp = gethrtime() - vs->vs_timestamp;
2936 vs->vs_state = vd->vdev_state;
2937 vs->vs_rsize = vdev_get_min_asize(vd);
2938 if (vd->vdev_ops->vdev_op_leaf)
2939 vs->vs_rsize += VDEV_LABEL_START_SIZE +
2940 VDEV_LABEL_END_SIZE;
2941 /*
2942 * Report expandable space on top-level, non-auxillary devices
2943 * only. The expandable space is reported in terms of metaslab
2944 * sized units since that determines how much space the pool
2945 * can expand.
2946 */
2947 if (vd->vdev_aux == NULL && tvd != NULL) {
2948 vs->vs_esize = P2ALIGN(
2949 vd->vdev_max_asize - vd->vdev_asize,
2950 1ULL << tvd->vdev_ms_shift);
2951 }
2952 vs->vs_esize = vd->vdev_max_asize - vd->vdev_asize;
2953 if (vd->vdev_aux == NULL && vd == vd->vdev_top &&
2954 !vd->vdev_ishole) {
2955 vs->vs_fragmentation = vd->vdev_mg->mg_fragmentation;
2956 }
2957 }
2958
2959 ASSERT(spa_config_held(vd->vdev_spa, SCL_ALL, RW_READER) != 0);
2960 vdev_get_stats_ex_impl(vd, vs, vsx);
2961 mutex_exit(&vd->vdev_stat_lock);
2962 }
2963
2964 void
2965 vdev_get_stats(vdev_t *vd, vdev_stat_t *vs)
2966 {
2967 return (vdev_get_stats_ex(vd, vs, NULL));
2968 }
2969
2970 void
2971 vdev_clear_stats(vdev_t *vd)
2972 {
2973 mutex_enter(&vd->vdev_stat_lock);
2974 vd->vdev_stat.vs_space = 0;
2975 vd->vdev_stat.vs_dspace = 0;
2976 vd->vdev_stat.vs_alloc = 0;
2977 mutex_exit(&vd->vdev_stat_lock);
2978 }
2979
2980 void
2981 vdev_scan_stat_init(vdev_t *vd)
2982 {
2983 vdev_stat_t *vs = &vd->vdev_stat;
2984 int c;
2985
2986 for (c = 0; c < vd->vdev_children; c++)
2987 vdev_scan_stat_init(vd->vdev_child[c]);
2988
2989 mutex_enter(&vd->vdev_stat_lock);
2990 vs->vs_scan_processed = 0;
2991 mutex_exit(&vd->vdev_stat_lock);
2992 }
2993
2994 void
2995 vdev_stat_update(zio_t *zio, uint64_t psize)
2996 {
2997 spa_t *spa = zio->io_spa;
2998 vdev_t *rvd = spa->spa_root_vdev;
2999 vdev_t *vd = zio->io_vd ? zio->io_vd : rvd;
3000 vdev_t *pvd;
3001 uint64_t txg = zio->io_txg;
3002 vdev_stat_t *vs = &vd->vdev_stat;
3003 vdev_stat_ex_t *vsx = &vd->vdev_stat_ex;
3004 zio_type_t type = zio->io_type;
3005 int flags = zio->io_flags;
3006
3007 /*
3008 * If this i/o is a gang leader, it didn't do any actual work.
3009 */
3010 if (zio->io_gang_tree)
3011 return;
3012
3013 if (zio->io_error == 0) {
3014 /*
3015 * If this is a root i/o, don't count it -- we've already
3016 * counted the top-level vdevs, and vdev_get_stats() will
3017 * aggregate them when asked. This reduces contention on
3018 * the root vdev_stat_lock and implicitly handles blocks
3019 * that compress away to holes, for which there is no i/o.
3020 * (Holes never create vdev children, so all the counters
3021 * remain zero, which is what we want.)
3022 *
3023 * Note: this only applies to successful i/o (io_error == 0)
3024 * because unlike i/o counts, errors are not additive.
3025 * When reading a ditto block, for example, failure of
3026 * one top-level vdev does not imply a root-level error.
3027 */
3028 if (vd == rvd)
3029 return;
3030
3031 ASSERT(vd == zio->io_vd);
3032
3033 if (flags & ZIO_FLAG_IO_BYPASS)
3034 return;
3035
3036 mutex_enter(&vd->vdev_stat_lock);
3037
3038 if (flags & ZIO_FLAG_IO_REPAIR) {
3039 if (flags & ZIO_FLAG_SCAN_THREAD) {
3040 dsl_scan_phys_t *scn_phys =
3041 &spa->spa_dsl_pool->dp_scan->scn_phys;
3042 uint64_t *processed = &scn_phys->scn_processed;
3043
3044 /* XXX cleanup? */
3045 if (vd->vdev_ops->vdev_op_leaf)
3046 atomic_add_64(processed, psize);
3047 vs->vs_scan_processed += psize;
3048 }
3049
3050 if (flags & ZIO_FLAG_SELF_HEAL)
3051 vs->vs_self_healed += psize;
3052 }
3053
3054 /*
3055 * The bytes/ops/histograms are recorded at the leaf level and
3056 * aggregated into the higher level vdevs in vdev_get_stats().
3057 */
3058 if (vd->vdev_ops->vdev_op_leaf &&
3059 (zio->io_priority < ZIO_PRIORITY_NUM_QUEUEABLE)) {
3060
3061 vs->vs_ops[type]++;
3062 vs->vs_bytes[type] += psize;
3063
3064 if (flags & ZIO_FLAG_DELEGATED) {
3065 vsx->vsx_agg_histo[zio->io_priority]
3066 [RQ_HISTO(zio->io_size)]++;
3067 } else {
3068 vsx->vsx_ind_histo[zio->io_priority]
3069 [RQ_HISTO(zio->io_size)]++;
3070 }
3071
3072 if (zio->io_delta && zio->io_delay) {
3073 vsx->vsx_queue_histo[zio->io_priority]
3074 [L_HISTO(zio->io_delta - zio->io_delay)]++;
3075 vsx->vsx_disk_histo[type]
3076 [L_HISTO(zio->io_delay)]++;
3077 vsx->vsx_total_histo[type]
3078 [L_HISTO(zio->io_delta)]++;
3079 }
3080 }
3081
3082 mutex_exit(&vd->vdev_stat_lock);
3083 return;
3084 }
3085
3086 if (flags & ZIO_FLAG_SPECULATIVE)
3087 return;
3088
3089 /*
3090 * If this is an I/O error that is going to be retried, then ignore the
3091 * error. Otherwise, the user may interpret B_FAILFAST I/O errors as
3092 * hard errors, when in reality they can happen for any number of
3093 * innocuous reasons (bus resets, MPxIO link failure, etc).
3094 */
3095 if (zio->io_error == EIO &&
3096 !(zio->io_flags & ZIO_FLAG_IO_RETRY))
3097 return;
3098
3099 /*
3100 * Intent logs writes won't propagate their error to the root
3101 * I/O so don't mark these types of failures as pool-level
3102 * errors.
3103 */
3104 if (zio->io_vd == NULL && (zio->io_flags & ZIO_FLAG_DONT_PROPAGATE))
3105 return;
3106
3107 mutex_enter(&vd->vdev_stat_lock);
3108 if (type == ZIO_TYPE_READ && !vdev_is_dead(vd)) {
3109 if (zio->io_error == ECKSUM)
3110 vs->vs_checksum_errors++;
3111 else
3112 vs->vs_read_errors++;
3113 }
3114 if (type == ZIO_TYPE_WRITE && !vdev_is_dead(vd))
3115 vs->vs_write_errors++;
3116 mutex_exit(&vd->vdev_stat_lock);
3117
3118 if (type == ZIO_TYPE_WRITE && txg != 0 &&
3119 (!(flags & ZIO_FLAG_IO_REPAIR) ||
3120 (flags & ZIO_FLAG_SCAN_THREAD) ||
3121 spa->spa_claiming)) {
3122 /*
3123 * This is either a normal write (not a repair), or it's
3124 * a repair induced by the scrub thread, or it's a repair
3125 * made by zil_claim() during spa_load() in the first txg.
3126 * In the normal case, we commit the DTL change in the same
3127 * txg as the block was born. In the scrub-induced repair
3128 * case, we know that scrubs run in first-pass syncing context,
3129 * so we commit the DTL change in spa_syncing_txg(spa).
3130 * In the zil_claim() case, we commit in spa_first_txg(spa).
3131 *
3132 * We currently do not make DTL entries for failed spontaneous
3133 * self-healing writes triggered by normal (non-scrubbing)
3134 * reads, because we have no transactional context in which to
3135 * do so -- and it's not clear that it'd be desirable anyway.
3136 */
3137 if (vd->vdev_ops->vdev_op_leaf) {
3138 uint64_t commit_txg = txg;
3139 if (flags & ZIO_FLAG_SCAN_THREAD) {
3140 ASSERT(flags & ZIO_FLAG_IO_REPAIR);
3141 ASSERT(spa_sync_pass(spa) == 1);
3142 vdev_dtl_dirty(vd, DTL_SCRUB, txg, 1);
3143 commit_txg = spa_syncing_txg(spa);
3144 } else if (spa->spa_claiming) {
3145 ASSERT(flags & ZIO_FLAG_IO_REPAIR);
3146 commit_txg = spa_first_txg(spa);
3147 }
3148 ASSERT(commit_txg >= spa_syncing_txg(spa));
3149 if (vdev_dtl_contains(vd, DTL_MISSING, txg, 1))
3150 return;
3151 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
3152 vdev_dtl_dirty(pvd, DTL_PARTIAL, txg, 1);
3153 vdev_dirty(vd->vdev_top, VDD_DTL, vd, commit_txg);
3154 }
3155 if (vd != rvd)
3156 vdev_dtl_dirty(vd, DTL_MISSING, txg, 1);
3157 }
3158 }
3159
3160 /*
3161 * Update the in-core space usage stats for this vdev, its metaslab class,
3162 * and the root vdev.
3163 */
3164 void
3165 vdev_space_update(vdev_t *vd, int64_t alloc_delta, int64_t defer_delta,
3166 int64_t space_delta)
3167 {
3168 int64_t dspace_delta = space_delta;
3169 spa_t *spa = vd->vdev_spa;
3170 vdev_t *rvd = spa->spa_root_vdev;
3171 metaslab_group_t *mg = vd->vdev_mg;
3172 metaslab_class_t *mc = mg ? mg->mg_class : NULL;
3173
3174 ASSERT(vd == vd->vdev_top);
3175
3176 /*
3177 * Apply the inverse of the psize-to-asize (ie. RAID-Z) space-expansion
3178 * factor. We must calculate this here and not at the root vdev
3179 * because the root vdev's psize-to-asize is simply the max of its
3180 * childrens', thus not accurate enough for us.
3181 */
3182 ASSERT((dspace_delta & (SPA_MINBLOCKSIZE-1)) == 0);
3183 ASSERT(vd->vdev_deflate_ratio != 0 || vd->vdev_isl2cache);
3184 dspace_delta = (dspace_delta >> SPA_MINBLOCKSHIFT) *
3185 vd->vdev_deflate_ratio;
3186
3187 mutex_enter(&vd->vdev_stat_lock);
3188 vd->vdev_stat.vs_alloc += alloc_delta;
3189 vd->vdev_stat.vs_space += space_delta;
3190 vd->vdev_stat.vs_dspace += dspace_delta;
3191 mutex_exit(&vd->vdev_stat_lock);
3192
3193 if (mc == spa_normal_class(spa)) {
3194 mutex_enter(&rvd->vdev_stat_lock);
3195 rvd->vdev_stat.vs_alloc += alloc_delta;
3196 rvd->vdev_stat.vs_space += space_delta;
3197 rvd->vdev_stat.vs_dspace += dspace_delta;
3198 mutex_exit(&rvd->vdev_stat_lock);
3199 }
3200
3201 if (mc != NULL) {
3202 ASSERT(rvd == vd->vdev_parent);
3203 ASSERT(vd->vdev_ms_count != 0);
3204
3205 metaslab_class_space_update(mc,
3206 alloc_delta, defer_delta, space_delta, dspace_delta);
3207 }
3208 }
3209
3210 /*
3211 * Mark a top-level vdev's config as dirty, placing it on the dirty list
3212 * so that it will be written out next time the vdev configuration is synced.
3213 * If the root vdev is specified (vdev_top == NULL), dirty all top-level vdevs.
3214 */
3215 void
3216 vdev_config_dirty(vdev_t *vd)
3217 {
3218 spa_t *spa = vd->vdev_spa;
3219 vdev_t *rvd = spa->spa_root_vdev;
3220 int c;
3221
3222 ASSERT(spa_writeable(spa));
3223
3224 /*
3225 * If this is an aux vdev (as with l2cache and spare devices), then we
3226 * update the vdev config manually and set the sync flag.
3227 */
3228 if (vd->vdev_aux != NULL) {
3229 spa_aux_vdev_t *sav = vd->vdev_aux;
3230 nvlist_t **aux;
3231 uint_t naux;
3232
3233 for (c = 0; c < sav->sav_count; c++) {
3234 if (sav->sav_vdevs[c] == vd)
3235 break;
3236 }
3237
3238 if (c == sav->sav_count) {
3239 /*
3240 * We're being removed. There's nothing more to do.
3241 */
3242 ASSERT(sav->sav_sync == B_TRUE);
3243 return;
3244 }
3245
3246 sav->sav_sync = B_TRUE;
3247
3248 if (nvlist_lookup_nvlist_array(sav->sav_config,
3249 ZPOOL_CONFIG_L2CACHE, &aux, &naux) != 0) {
3250 VERIFY(nvlist_lookup_nvlist_array(sav->sav_config,
3251 ZPOOL_CONFIG_SPARES, &aux, &naux) == 0);
3252 }
3253
3254 ASSERT(c < naux);
3255
3256 /*
3257 * Setting the nvlist in the middle if the array is a little
3258 * sketchy, but it will work.
3259 */
3260 nvlist_free(aux[c]);
3261 aux[c] = vdev_config_generate(spa, vd, B_TRUE, 0);
3262
3263 return;
3264 }
3265
3266 /*
3267 * The dirty list is protected by the SCL_CONFIG lock. The caller
3268 * must either hold SCL_CONFIG as writer, or must be the sync thread
3269 * (which holds SCL_CONFIG as reader). There's only one sync thread,
3270 * so this is sufficient to ensure mutual exclusion.
3271 */
3272 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
3273 (dsl_pool_sync_context(spa_get_dsl(spa)) &&
3274 spa_config_held(spa, SCL_CONFIG, RW_READER)));
3275
3276 if (vd == rvd) {
3277 for (c = 0; c < rvd->vdev_children; c++)
3278 vdev_config_dirty(rvd->vdev_child[c]);
3279 } else {
3280 ASSERT(vd == vd->vdev_top);
3281
3282 if (!list_link_active(&vd->vdev_config_dirty_node) &&
3283 !vd->vdev_ishole)
3284 list_insert_head(&spa->spa_config_dirty_list, vd);
3285 }
3286 }
3287
3288 void
3289 vdev_config_clean(vdev_t *vd)
3290 {
3291 spa_t *spa = vd->vdev_spa;
3292
3293 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
3294 (dsl_pool_sync_context(spa_get_dsl(spa)) &&
3295 spa_config_held(spa, SCL_CONFIG, RW_READER)));
3296
3297 ASSERT(list_link_active(&vd->vdev_config_dirty_node));
3298 list_remove(&spa->spa_config_dirty_list, vd);
3299 }
3300
3301 /*
3302 * Mark a top-level vdev's state as dirty, so that the next pass of
3303 * spa_sync() can convert this into vdev_config_dirty(). We distinguish
3304 * the state changes from larger config changes because they require
3305 * much less locking, and are often needed for administrative actions.
3306 */
3307 void
3308 vdev_state_dirty(vdev_t *vd)
3309 {
3310 spa_t *spa = vd->vdev_spa;
3311
3312 ASSERT(spa_writeable(spa));
3313 ASSERT(vd == vd->vdev_top);
3314
3315 /*
3316 * The state list is protected by the SCL_STATE lock. The caller
3317 * must either hold SCL_STATE as writer, or must be the sync thread
3318 * (which holds SCL_STATE as reader). There's only one sync thread,
3319 * so this is sufficient to ensure mutual exclusion.
3320 */
3321 ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
3322 (dsl_pool_sync_context(spa_get_dsl(spa)) &&
3323 spa_config_held(spa, SCL_STATE, RW_READER)));
3324
3325 if (!list_link_active(&vd->vdev_state_dirty_node) && !vd->vdev_ishole)
3326 list_insert_head(&spa->spa_state_dirty_list, vd);
3327 }
3328
3329 void
3330 vdev_state_clean(vdev_t *vd)
3331 {
3332 spa_t *spa = vd->vdev_spa;
3333
3334 ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
3335 (dsl_pool_sync_context(spa_get_dsl(spa)) &&
3336 spa_config_held(spa, SCL_STATE, RW_READER)));
3337
3338 ASSERT(list_link_active(&vd->vdev_state_dirty_node));
3339 list_remove(&spa->spa_state_dirty_list, vd);
3340 }
3341
3342 /*
3343 * Propagate vdev state up from children to parent.
3344 */
3345 void
3346 vdev_propagate_state(vdev_t *vd)
3347 {
3348 spa_t *spa = vd->vdev_spa;
3349 vdev_t *rvd = spa->spa_root_vdev;
3350 int degraded = 0, faulted = 0;
3351 int corrupted = 0;
3352 vdev_t *child;
3353 int c;
3354
3355 if (vd->vdev_children > 0) {
3356 for (c = 0; c < vd->vdev_children; c++) {
3357 child = vd->vdev_child[c];
3358
3359 /*
3360 * Don't factor holes into the decision.
3361 */
3362 if (child->vdev_ishole)
3363 continue;
3364
3365 if (!vdev_readable(child) ||
3366 (!vdev_writeable(child) && spa_writeable(spa))) {
3367 /*
3368 * Root special: if there is a top-level log
3369 * device, treat the root vdev as if it were
3370 * degraded.
3371 */
3372 if (child->vdev_islog && vd == rvd)
3373 degraded++;
3374 else
3375 faulted++;
3376 } else if (child->vdev_state <= VDEV_STATE_DEGRADED) {
3377 degraded++;
3378 }
3379
3380 if (child->vdev_stat.vs_aux == VDEV_AUX_CORRUPT_DATA)
3381 corrupted++;
3382 }
3383
3384 vd->vdev_ops->vdev_op_state_change(vd, faulted, degraded);
3385
3386 /*
3387 * Root special: if there is a top-level vdev that cannot be
3388 * opened due to corrupted metadata, then propagate the root
3389 * vdev's aux state as 'corrupt' rather than 'insufficient
3390 * replicas'.
3391 */
3392 if (corrupted && vd == rvd &&
3393 rvd->vdev_state == VDEV_STATE_CANT_OPEN)
3394 vdev_set_state(rvd, B_FALSE, VDEV_STATE_CANT_OPEN,
3395 VDEV_AUX_CORRUPT_DATA);
3396 }
3397
3398 if (vd->vdev_parent)
3399 vdev_propagate_state(vd->vdev_parent);
3400 }
3401
3402 /*
3403 * Set a vdev's state. If this is during an open, we don't update the parent
3404 * state, because we're in the process of opening children depth-first.
3405 * Otherwise, we propagate the change to the parent.
3406 *
3407 * If this routine places a device in a faulted state, an appropriate ereport is
3408 * generated.
3409 */
3410 void
3411 vdev_set_state(vdev_t *vd, boolean_t isopen, vdev_state_t state, vdev_aux_t aux)
3412 {
3413 uint64_t save_state;
3414 spa_t *spa = vd->vdev_spa;
3415
3416 if (state == vd->vdev_state) {
3417 /*
3418 * Since vdev_offline() code path is already in an offline
3419 * state we can miss a statechange event to OFFLINE. Check
3420 * the previous state to catch this condition.
3421 */
3422 if (vd->vdev_ops->vdev_op_leaf &&
3423 (state == VDEV_STATE_OFFLINE) &&
3424 (vd->vdev_prevstate >= VDEV_STATE_FAULTED)) {
3425 /* post an offline state change */
3426 zfs_post_state_change(spa, vd, vd->vdev_prevstate);
3427 }
3428 vd->vdev_stat.vs_aux = aux;
3429 return;
3430 }
3431
3432 save_state = vd->vdev_state;
3433
3434 vd->vdev_state = state;
3435 vd->vdev_stat.vs_aux = aux;
3436
3437 /*
3438 * If we are setting the vdev state to anything but an open state, then
3439 * always close the underlying device unless the device has requested
3440 * a delayed close (i.e. we're about to remove or fault the device).
3441 * Otherwise, we keep accessible but invalid devices open forever.
3442 * We don't call vdev_close() itself, because that implies some extra
3443 * checks (offline, etc) that we don't want here. This is limited to
3444 * leaf devices, because otherwise closing the device will affect other
3445 * children.
3446 */
3447 if (!vd->vdev_delayed_close && vdev_is_dead(vd) &&
3448 vd->vdev_ops->vdev_op_leaf)
3449 vd->vdev_ops->vdev_op_close(vd);
3450
3451 if (vd->vdev_removed &&
3452 state == VDEV_STATE_CANT_OPEN &&
3453 (aux == VDEV_AUX_OPEN_FAILED || vd->vdev_checkremove)) {
3454 /*
3455 * If the previous state is set to VDEV_STATE_REMOVED, then this
3456 * device was previously marked removed and someone attempted to
3457 * reopen it. If this failed due to a nonexistent device, then
3458 * keep the device in the REMOVED state. We also let this be if
3459 * it is one of our special test online cases, which is only
3460 * attempting to online the device and shouldn't generate an FMA
3461 * fault.
3462 */
3463 vd->vdev_state = VDEV_STATE_REMOVED;
3464 vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
3465 } else if (state == VDEV_STATE_REMOVED) {
3466 vd->vdev_removed = B_TRUE;
3467 } else if (state == VDEV_STATE_CANT_OPEN) {
3468 /*
3469 * If we fail to open a vdev during an import or recovery, we
3470 * mark it as "not available", which signifies that it was
3471 * never there to begin with. Failure to open such a device
3472 * is not considered an error.
3473 */
3474 if ((spa_load_state(spa) == SPA_LOAD_IMPORT ||
3475 spa_load_state(spa) == SPA_LOAD_RECOVER) &&
3476 vd->vdev_ops->vdev_op_leaf)
3477 vd->vdev_not_present = 1;
3478
3479 /*
3480 * Post the appropriate ereport. If the 'prevstate' field is
3481 * set to something other than VDEV_STATE_UNKNOWN, it indicates
3482 * that this is part of a vdev_reopen(). In this case, we don't
3483 * want to post the ereport if the device was already in the
3484 * CANT_OPEN state beforehand.
3485 *
3486 * If the 'checkremove' flag is set, then this is an attempt to
3487 * online the device in response to an insertion event. If we
3488 * hit this case, then we have detected an insertion event for a
3489 * faulted or offline device that wasn't in the removed state.
3490 * In this scenario, we don't post an ereport because we are
3491 * about to replace the device, or attempt an online with
3492 * vdev_forcefault, which will generate the fault for us.
3493 */
3494 if ((vd->vdev_prevstate != state || vd->vdev_forcefault) &&
3495 !vd->vdev_not_present && !vd->vdev_checkremove &&
3496 vd != spa->spa_root_vdev) {
3497 const char *class;
3498
3499 switch (aux) {
3500 case VDEV_AUX_OPEN_FAILED:
3501 class = FM_EREPORT_ZFS_DEVICE_OPEN_FAILED;
3502 break;
3503 case VDEV_AUX_CORRUPT_DATA:
3504 class = FM_EREPORT_ZFS_DEVICE_CORRUPT_DATA;
3505 break;
3506 case VDEV_AUX_NO_REPLICAS:
3507 class = FM_EREPORT_ZFS_DEVICE_NO_REPLICAS;
3508 break;
3509 case VDEV_AUX_BAD_GUID_SUM:
3510 class = FM_EREPORT_ZFS_DEVICE_BAD_GUID_SUM;
3511 break;
3512 case VDEV_AUX_TOO_SMALL:
3513 class = FM_EREPORT_ZFS_DEVICE_TOO_SMALL;
3514 break;
3515 case VDEV_AUX_BAD_LABEL:
3516 class = FM_EREPORT_ZFS_DEVICE_BAD_LABEL;
3517 break;
3518 case VDEV_AUX_BAD_ASHIFT:
3519 class = FM_EREPORT_ZFS_DEVICE_BAD_ASHIFT;
3520 break;
3521 default:
3522 class = FM_EREPORT_ZFS_DEVICE_UNKNOWN;
3523 }
3524
3525 zfs_ereport_post(class, spa, vd, NULL, save_state, 0);
3526 }
3527
3528 /* Erase any notion of persistent removed state */
3529 vd->vdev_removed = B_FALSE;
3530 } else {
3531 vd->vdev_removed = B_FALSE;
3532 }
3533
3534 /*
3535 * Notify ZED of any significant state-change on a leaf vdev.
3536 *
3537 */
3538 if (vd->vdev_ops->vdev_op_leaf) {
3539 /* preserve original state from a vdev_reopen() */
3540 if ((vd->vdev_prevstate != VDEV_STATE_UNKNOWN) &&
3541 (vd->vdev_prevstate != vd->vdev_state) &&
3542 (save_state <= VDEV_STATE_CLOSED))
3543 save_state = vd->vdev_prevstate;
3544
3545 /* filter out state change due to initial vdev_open */
3546 if (save_state > VDEV_STATE_CLOSED)
3547 zfs_post_state_change(spa, vd, save_state);
3548 }
3549
3550 if (!isopen && vd->vdev_parent)
3551 vdev_propagate_state(vd->vdev_parent);
3552 }
3553
3554 /*
3555 * Check the vdev configuration to ensure that it's capable of supporting
3556 * a root pool. We do not support partial configuration.
3557 */
3558 boolean_t
3559 vdev_is_bootable(vdev_t *vd)
3560 {
3561 if (!vd->vdev_ops->vdev_op_leaf) {
3562 const char *vdev_type = vd->vdev_ops->vdev_op_type;
3563
3564 if (strcmp(vdev_type, VDEV_TYPE_MISSING) == 0)
3565 return (B_FALSE);
3566 }
3567
3568 for (int c = 0; c < vd->vdev_children; c++) {
3569 if (!vdev_is_bootable(vd->vdev_child[c]))
3570 return (B_FALSE);
3571 }
3572 return (B_TRUE);
3573 }
3574
3575 /*
3576 * Load the state from the original vdev tree (ovd) which
3577 * we've retrieved from the MOS config object. If the original
3578 * vdev was offline or faulted then we transfer that state to the
3579 * device in the current vdev tree (nvd).
3580 */
3581 void
3582 vdev_load_log_state(vdev_t *nvd, vdev_t *ovd)
3583 {
3584 int c;
3585
3586 ASSERT(nvd->vdev_top->vdev_islog);
3587 ASSERT(spa_config_held(nvd->vdev_spa,
3588 SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
3589 ASSERT3U(nvd->vdev_guid, ==, ovd->vdev_guid);
3590
3591 for (c = 0; c < nvd->vdev_children; c++)
3592 vdev_load_log_state(nvd->vdev_child[c], ovd->vdev_child[c]);
3593
3594 if (nvd->vdev_ops->vdev_op_leaf) {
3595 /*
3596 * Restore the persistent vdev state
3597 */
3598 nvd->vdev_offline = ovd->vdev_offline;
3599 nvd->vdev_faulted = ovd->vdev_faulted;
3600 nvd->vdev_degraded = ovd->vdev_degraded;
3601 nvd->vdev_removed = ovd->vdev_removed;
3602 }
3603 }
3604
3605 /*
3606 * Determine if a log device has valid content. If the vdev was
3607 * removed or faulted in the MOS config then we know that
3608 * the content on the log device has already been written to the pool.
3609 */
3610 boolean_t
3611 vdev_log_state_valid(vdev_t *vd)
3612 {
3613 int c;
3614
3615 if (vd->vdev_ops->vdev_op_leaf && !vd->vdev_faulted &&
3616 !vd->vdev_removed)
3617 return (B_TRUE);
3618
3619 for (c = 0; c < vd->vdev_children; c++)
3620 if (vdev_log_state_valid(vd->vdev_child[c]))
3621 return (B_TRUE);
3622
3623 return (B_FALSE);
3624 }
3625
3626 /*
3627 * Expand a vdev if possible.
3628 */
3629 void
3630 vdev_expand(vdev_t *vd, uint64_t txg)
3631 {
3632 ASSERT(vd->vdev_top == vd);
3633 ASSERT(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
3634
3635 if ((vd->vdev_asize >> vd->vdev_ms_shift) > vd->vdev_ms_count) {
3636 VERIFY(vdev_metaslab_init(vd, txg) == 0);
3637 vdev_config_dirty(vd);
3638 }
3639 }
3640
3641 /*
3642 * Split a vdev.
3643 */
3644 void
3645 vdev_split(vdev_t *vd)
3646 {
3647 vdev_t *cvd, *pvd = vd->vdev_parent;
3648
3649 vdev_remove_child(pvd, vd);
3650 vdev_compact_children(pvd);
3651
3652 cvd = pvd->vdev_child[0];
3653 if (pvd->vdev_children == 1) {
3654 vdev_remove_parent(cvd);
3655 cvd->vdev_splitting = B_TRUE;
3656 }
3657 vdev_propagate_state(cvd);
3658 }
3659
3660 void
3661 vdev_deadman(vdev_t *vd)
3662 {
3663 int c;
3664
3665 for (c = 0; c < vd->vdev_children; c++) {
3666 vdev_t *cvd = vd->vdev_child[c];
3667
3668 vdev_deadman(cvd);
3669 }
3670
3671 if (vd->vdev_ops->vdev_op_leaf) {
3672 vdev_queue_t *vq = &vd->vdev_queue;
3673
3674 mutex_enter(&vq->vq_lock);
3675 if (avl_numnodes(&vq->vq_active_tree) > 0) {
3676 spa_t *spa = vd->vdev_spa;
3677 zio_t *fio;
3678 uint64_t delta;
3679
3680 /*
3681 * Look at the head of all the pending queues,
3682 * if any I/O has been outstanding for longer than
3683 * the spa_deadman_synctime we log a zevent.
3684 */
3685 fio = avl_first(&vq->vq_active_tree);
3686 delta = gethrtime() - fio->io_timestamp;
3687 if (delta > spa_deadman_synctime(spa)) {
3688 zfs_dbgmsg("SLOW IO: zio timestamp %lluns, "
3689 "delta %lluns, last io %lluns",
3690 fio->io_timestamp, delta,
3691 vq->vq_io_complete_ts);
3692 zfs_ereport_post(FM_EREPORT_ZFS_DELAY,
3693 spa, vd, fio, 0, 0);
3694 }
3695 }
3696 mutex_exit(&vq->vq_lock);
3697 }
3698 }
3699
3700 #if defined(_KERNEL) && defined(HAVE_SPL)
3701 EXPORT_SYMBOL(vdev_fault);
3702 EXPORT_SYMBOL(vdev_degrade);
3703 EXPORT_SYMBOL(vdev_online);
3704 EXPORT_SYMBOL(vdev_offline);
3705 EXPORT_SYMBOL(vdev_clear);
3706 /* BEGIN CSTYLED */
3707 module_param(metaslabs_per_vdev, int, 0644);
3708 MODULE_PARM_DESC(metaslabs_per_vdev,
3709 "Divide added vdev into approximately (but no more than) this number "
3710 "of metaslabs");
3711 /* END CSTYLED */
3712 #endif