]> git.proxmox.com Git - mirror_zfs.git/blob - module/zfs/vdev.c
Sequential scrub and resilvers
[mirror_zfs.git] / module / zfs / vdev.c
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22 /*
23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright (c) 2011, 2015 by Delphix. All rights reserved.
25 * Copyright 2017 Nexenta Systems, Inc.
26 * Copyright (c) 2014 Integros [integros.com]
27 * Copyright 2016 Toomas Soome <tsoome@me.com>
28 * Copyright 2017 Joyent, Inc.
29 */
30
31 #include <sys/zfs_context.h>
32 #include <sys/fm/fs/zfs.h>
33 #include <sys/spa.h>
34 #include <sys/spa_impl.h>
35 #include <sys/dmu.h>
36 #include <sys/dmu_tx.h>
37 #include <sys/vdev_impl.h>
38 #include <sys/uberblock_impl.h>
39 #include <sys/metaslab.h>
40 #include <sys/metaslab_impl.h>
41 #include <sys/space_map.h>
42 #include <sys/space_reftree.h>
43 #include <sys/zio.h>
44 #include <sys/zap.h>
45 #include <sys/fs/zfs.h>
46 #include <sys/arc.h>
47 #include <sys/zil.h>
48 #include <sys/dsl_scan.h>
49 #include <sys/abd.h>
50 #include <sys/zvol.h>
51 #include <sys/zfs_ratelimit.h>
52
53 /*
54 * When a vdev is added, it will be divided into approximately (but no
55 * more than) this number of metaslabs.
56 */
57 int metaslabs_per_vdev = 200;
58
59 /*
60 * Virtual device management.
61 */
62
63 static vdev_ops_t *vdev_ops_table[] = {
64 &vdev_root_ops,
65 &vdev_raidz_ops,
66 &vdev_mirror_ops,
67 &vdev_replacing_ops,
68 &vdev_spare_ops,
69 &vdev_disk_ops,
70 &vdev_file_ops,
71 &vdev_missing_ops,
72 &vdev_hole_ops,
73 NULL
74 };
75
76 /*
77 * Given a vdev type, return the appropriate ops vector.
78 */
79 static vdev_ops_t *
80 vdev_getops(const char *type)
81 {
82 vdev_ops_t *ops, **opspp;
83
84 for (opspp = vdev_ops_table; (ops = *opspp) != NULL; opspp++)
85 if (strcmp(ops->vdev_op_type, type) == 0)
86 break;
87
88 return (ops);
89 }
90
91 /*
92 * Default asize function: return the MAX of psize with the asize of
93 * all children. This is what's used by anything other than RAID-Z.
94 */
95 uint64_t
96 vdev_default_asize(vdev_t *vd, uint64_t psize)
97 {
98 uint64_t asize = P2ROUNDUP(psize, 1ULL << vd->vdev_top->vdev_ashift);
99 uint64_t csize;
100
101 for (int c = 0; c < vd->vdev_children; c++) {
102 csize = vdev_psize_to_asize(vd->vdev_child[c], psize);
103 asize = MAX(asize, csize);
104 }
105
106 return (asize);
107 }
108
109 /*
110 * Get the minimum allocatable size. We define the allocatable size as
111 * the vdev's asize rounded to the nearest metaslab. This allows us to
112 * replace or attach devices which don't have the same physical size but
113 * can still satisfy the same number of allocations.
114 */
115 uint64_t
116 vdev_get_min_asize(vdev_t *vd)
117 {
118 vdev_t *pvd = vd->vdev_parent;
119
120 /*
121 * If our parent is NULL (inactive spare or cache) or is the root,
122 * just return our own asize.
123 */
124 if (pvd == NULL)
125 return (vd->vdev_asize);
126
127 /*
128 * The top-level vdev just returns the allocatable size rounded
129 * to the nearest metaslab.
130 */
131 if (vd == vd->vdev_top)
132 return (P2ALIGN(vd->vdev_asize, 1ULL << vd->vdev_ms_shift));
133
134 /*
135 * The allocatable space for a raidz vdev is N * sizeof(smallest child),
136 * so each child must provide at least 1/Nth of its asize.
137 */
138 if (pvd->vdev_ops == &vdev_raidz_ops)
139 return ((pvd->vdev_min_asize + pvd->vdev_children - 1) /
140 pvd->vdev_children);
141
142 return (pvd->vdev_min_asize);
143 }
144
145 void
146 vdev_set_min_asize(vdev_t *vd)
147 {
148 vd->vdev_min_asize = vdev_get_min_asize(vd);
149
150 for (int c = 0; c < vd->vdev_children; c++)
151 vdev_set_min_asize(vd->vdev_child[c]);
152 }
153
154 vdev_t *
155 vdev_lookup_top(spa_t *spa, uint64_t vdev)
156 {
157 vdev_t *rvd = spa->spa_root_vdev;
158
159 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
160
161 if (vdev < rvd->vdev_children) {
162 ASSERT(rvd->vdev_child[vdev] != NULL);
163 return (rvd->vdev_child[vdev]);
164 }
165
166 return (NULL);
167 }
168
169 vdev_t *
170 vdev_lookup_by_guid(vdev_t *vd, uint64_t guid)
171 {
172 vdev_t *mvd;
173
174 if (vd->vdev_guid == guid)
175 return (vd);
176
177 for (int c = 0; c < vd->vdev_children; c++)
178 if ((mvd = vdev_lookup_by_guid(vd->vdev_child[c], guid)) !=
179 NULL)
180 return (mvd);
181
182 return (NULL);
183 }
184
185 static int
186 vdev_count_leaves_impl(vdev_t *vd)
187 {
188 int n = 0;
189
190 if (vd->vdev_ops->vdev_op_leaf)
191 return (1);
192
193 for (int c = 0; c < vd->vdev_children; c++)
194 n += vdev_count_leaves_impl(vd->vdev_child[c]);
195
196 return (n);
197 }
198
199 int
200 vdev_count_leaves(spa_t *spa)
201 {
202 return (vdev_count_leaves_impl(spa->spa_root_vdev));
203 }
204
205 void
206 vdev_add_child(vdev_t *pvd, vdev_t *cvd)
207 {
208 size_t oldsize, newsize;
209 uint64_t id = cvd->vdev_id;
210 vdev_t **newchild;
211
212 ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
213 ASSERT(cvd->vdev_parent == NULL);
214
215 cvd->vdev_parent = pvd;
216
217 if (pvd == NULL)
218 return;
219
220 ASSERT(id >= pvd->vdev_children || pvd->vdev_child[id] == NULL);
221
222 oldsize = pvd->vdev_children * sizeof (vdev_t *);
223 pvd->vdev_children = MAX(pvd->vdev_children, id + 1);
224 newsize = pvd->vdev_children * sizeof (vdev_t *);
225
226 newchild = kmem_alloc(newsize, KM_SLEEP);
227 if (pvd->vdev_child != NULL) {
228 bcopy(pvd->vdev_child, newchild, oldsize);
229 kmem_free(pvd->vdev_child, oldsize);
230 }
231
232 pvd->vdev_child = newchild;
233 pvd->vdev_child[id] = cvd;
234
235 cvd->vdev_top = (pvd->vdev_top ? pvd->vdev_top: cvd);
236 ASSERT(cvd->vdev_top->vdev_parent->vdev_parent == NULL);
237
238 /*
239 * Walk up all ancestors to update guid sum.
240 */
241 for (; pvd != NULL; pvd = pvd->vdev_parent)
242 pvd->vdev_guid_sum += cvd->vdev_guid_sum;
243 }
244
245 void
246 vdev_remove_child(vdev_t *pvd, vdev_t *cvd)
247 {
248 int c;
249 uint_t id = cvd->vdev_id;
250
251 ASSERT(cvd->vdev_parent == pvd);
252
253 if (pvd == NULL)
254 return;
255
256 ASSERT(id < pvd->vdev_children);
257 ASSERT(pvd->vdev_child[id] == cvd);
258
259 pvd->vdev_child[id] = NULL;
260 cvd->vdev_parent = NULL;
261
262 for (c = 0; c < pvd->vdev_children; c++)
263 if (pvd->vdev_child[c])
264 break;
265
266 if (c == pvd->vdev_children) {
267 kmem_free(pvd->vdev_child, c * sizeof (vdev_t *));
268 pvd->vdev_child = NULL;
269 pvd->vdev_children = 0;
270 }
271
272 /*
273 * Walk up all ancestors to update guid sum.
274 */
275 for (; pvd != NULL; pvd = pvd->vdev_parent)
276 pvd->vdev_guid_sum -= cvd->vdev_guid_sum;
277 }
278
279 /*
280 * Remove any holes in the child array.
281 */
282 void
283 vdev_compact_children(vdev_t *pvd)
284 {
285 vdev_t **newchild, *cvd;
286 int oldc = pvd->vdev_children;
287 int newc;
288
289 ASSERT(spa_config_held(pvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
290
291 for (int c = newc = 0; c < oldc; c++)
292 if (pvd->vdev_child[c])
293 newc++;
294
295 newchild = kmem_zalloc(newc * sizeof (vdev_t *), KM_SLEEP);
296
297 for (int c = newc = 0; c < oldc; c++) {
298 if ((cvd = pvd->vdev_child[c]) != NULL) {
299 newchild[newc] = cvd;
300 cvd->vdev_id = newc++;
301 }
302 }
303
304 kmem_free(pvd->vdev_child, oldc * sizeof (vdev_t *));
305 pvd->vdev_child = newchild;
306 pvd->vdev_children = newc;
307 }
308
309 /*
310 * Allocate and minimally initialize a vdev_t.
311 */
312 vdev_t *
313 vdev_alloc_common(spa_t *spa, uint_t id, uint64_t guid, vdev_ops_t *ops)
314 {
315 vdev_t *vd;
316
317 vd = kmem_zalloc(sizeof (vdev_t), KM_SLEEP);
318
319 if (spa->spa_root_vdev == NULL) {
320 ASSERT(ops == &vdev_root_ops);
321 spa->spa_root_vdev = vd;
322 spa->spa_load_guid = spa_generate_guid(NULL);
323 }
324
325 if (guid == 0 && ops != &vdev_hole_ops) {
326 if (spa->spa_root_vdev == vd) {
327 /*
328 * The root vdev's guid will also be the pool guid,
329 * which must be unique among all pools.
330 */
331 guid = spa_generate_guid(NULL);
332 } else {
333 /*
334 * Any other vdev's guid must be unique within the pool.
335 */
336 guid = spa_generate_guid(spa);
337 }
338 ASSERT(!spa_guid_exists(spa_guid(spa), guid));
339 }
340
341 vd->vdev_spa = spa;
342 vd->vdev_id = id;
343 vd->vdev_guid = guid;
344 vd->vdev_guid_sum = guid;
345 vd->vdev_ops = ops;
346 vd->vdev_state = VDEV_STATE_CLOSED;
347 vd->vdev_ishole = (ops == &vdev_hole_ops);
348
349 /*
350 * Initialize rate limit structs for events. We rate limit ZIO delay
351 * and checksum events so that we don't overwhelm ZED with thousands
352 * of events when a disk is acting up.
353 */
354 zfs_ratelimit_init(&vd->vdev_delay_rl, DELAYS_PER_SECOND, 1);
355 zfs_ratelimit_init(&vd->vdev_checksum_rl, CHECKSUMS_PER_SECOND, 1);
356
357 list_link_init(&vd->vdev_config_dirty_node);
358 list_link_init(&vd->vdev_state_dirty_node);
359 mutex_init(&vd->vdev_dtl_lock, NULL, MUTEX_NOLOCKDEP, NULL);
360 mutex_init(&vd->vdev_stat_lock, NULL, MUTEX_DEFAULT, NULL);
361 mutex_init(&vd->vdev_probe_lock, NULL, MUTEX_DEFAULT, NULL);
362 mutex_init(&vd->vdev_queue_lock, NULL, MUTEX_DEFAULT, NULL);
363 mutex_init(&vd->vdev_scan_io_queue_lock, NULL, MUTEX_DEFAULT, NULL);
364
365 for (int t = 0; t < DTL_TYPES; t++) {
366 vd->vdev_dtl[t] = range_tree_create(NULL, NULL,
367 &vd->vdev_dtl_lock);
368 }
369 txg_list_create(&vd->vdev_ms_list, spa,
370 offsetof(struct metaslab, ms_txg_node));
371 txg_list_create(&vd->vdev_dtl_list, spa,
372 offsetof(struct vdev, vdev_dtl_node));
373 vd->vdev_stat.vs_timestamp = gethrtime();
374 vdev_queue_init(vd);
375 vdev_cache_init(vd);
376
377 return (vd);
378 }
379
380 /*
381 * Allocate a new vdev. The 'alloctype' is used to control whether we are
382 * creating a new vdev or loading an existing one - the behavior is slightly
383 * different for each case.
384 */
385 int
386 vdev_alloc(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, uint_t id,
387 int alloctype)
388 {
389 vdev_ops_t *ops;
390 char *type;
391 uint64_t guid = 0, islog, nparity;
392 vdev_t *vd;
393 char *tmp = NULL;
394 int rc;
395
396 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
397
398 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) != 0)
399 return (SET_ERROR(EINVAL));
400
401 if ((ops = vdev_getops(type)) == NULL)
402 return (SET_ERROR(EINVAL));
403
404 /*
405 * If this is a load, get the vdev guid from the nvlist.
406 * Otherwise, vdev_alloc_common() will generate one for us.
407 */
408 if (alloctype == VDEV_ALLOC_LOAD) {
409 uint64_t label_id;
410
411 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ID, &label_id) ||
412 label_id != id)
413 return (SET_ERROR(EINVAL));
414
415 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
416 return (SET_ERROR(EINVAL));
417 } else if (alloctype == VDEV_ALLOC_SPARE) {
418 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
419 return (SET_ERROR(EINVAL));
420 } else if (alloctype == VDEV_ALLOC_L2CACHE) {
421 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
422 return (SET_ERROR(EINVAL));
423 } else if (alloctype == VDEV_ALLOC_ROOTPOOL) {
424 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
425 return (SET_ERROR(EINVAL));
426 }
427
428 /*
429 * The first allocated vdev must be of type 'root'.
430 */
431 if (ops != &vdev_root_ops && spa->spa_root_vdev == NULL)
432 return (SET_ERROR(EINVAL));
433
434 /*
435 * Determine whether we're a log vdev.
436 */
437 islog = 0;
438 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_LOG, &islog);
439 if (islog && spa_version(spa) < SPA_VERSION_SLOGS)
440 return (SET_ERROR(ENOTSUP));
441
442 if (ops == &vdev_hole_ops && spa_version(spa) < SPA_VERSION_HOLES)
443 return (SET_ERROR(ENOTSUP));
444
445 /*
446 * Set the nparity property for RAID-Z vdevs.
447 */
448 nparity = -1ULL;
449 if (ops == &vdev_raidz_ops) {
450 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NPARITY,
451 &nparity) == 0) {
452 if (nparity == 0 || nparity > VDEV_RAIDZ_MAXPARITY)
453 return (SET_ERROR(EINVAL));
454 /*
455 * Previous versions could only support 1 or 2 parity
456 * device.
457 */
458 if (nparity > 1 &&
459 spa_version(spa) < SPA_VERSION_RAIDZ2)
460 return (SET_ERROR(ENOTSUP));
461 if (nparity > 2 &&
462 spa_version(spa) < SPA_VERSION_RAIDZ3)
463 return (SET_ERROR(ENOTSUP));
464 } else {
465 /*
466 * We require the parity to be specified for SPAs that
467 * support multiple parity levels.
468 */
469 if (spa_version(spa) >= SPA_VERSION_RAIDZ2)
470 return (SET_ERROR(EINVAL));
471 /*
472 * Otherwise, we default to 1 parity device for RAID-Z.
473 */
474 nparity = 1;
475 }
476 } else {
477 nparity = 0;
478 }
479 ASSERT(nparity != -1ULL);
480
481 vd = vdev_alloc_common(spa, id, guid, ops);
482
483 vd->vdev_islog = islog;
484 vd->vdev_nparity = nparity;
485
486 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &vd->vdev_path) == 0)
487 vd->vdev_path = spa_strdup(vd->vdev_path);
488
489 /*
490 * ZPOOL_CONFIG_AUX_STATE = "external" means we previously forced a
491 * fault on a vdev and want it to persist across imports (like with
492 * zpool offline -f).
493 */
494 rc = nvlist_lookup_string(nv, ZPOOL_CONFIG_AUX_STATE, &tmp);
495 if (rc == 0 && tmp != NULL && strcmp(tmp, "external") == 0) {
496 vd->vdev_stat.vs_aux = VDEV_AUX_EXTERNAL;
497 vd->vdev_faulted = 1;
498 vd->vdev_label_aux = VDEV_AUX_EXTERNAL;
499 }
500
501 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_DEVID, &vd->vdev_devid) == 0)
502 vd->vdev_devid = spa_strdup(vd->vdev_devid);
503 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PHYS_PATH,
504 &vd->vdev_physpath) == 0)
505 vd->vdev_physpath = spa_strdup(vd->vdev_physpath);
506
507 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_VDEV_ENC_SYSFS_PATH,
508 &vd->vdev_enc_sysfs_path) == 0)
509 vd->vdev_enc_sysfs_path = spa_strdup(vd->vdev_enc_sysfs_path);
510
511 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_FRU, &vd->vdev_fru) == 0)
512 vd->vdev_fru = spa_strdup(vd->vdev_fru);
513
514 /*
515 * Set the whole_disk property. If it's not specified, leave the value
516 * as -1.
517 */
518 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK,
519 &vd->vdev_wholedisk) != 0)
520 vd->vdev_wholedisk = -1ULL;
521
522 /*
523 * Look for the 'not present' flag. This will only be set if the device
524 * was not present at the time of import.
525 */
526 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT,
527 &vd->vdev_not_present);
528
529 /*
530 * Get the alignment requirement.
531 */
532 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASHIFT, &vd->vdev_ashift);
533
534 /*
535 * Retrieve the vdev creation time.
536 */
537 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_CREATE_TXG,
538 &vd->vdev_crtxg);
539
540 /*
541 * If we're a top-level vdev, try to load the allocation parameters.
542 */
543 if (parent && !parent->vdev_parent &&
544 (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_SPLIT)) {
545 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY,
546 &vd->vdev_ms_array);
547 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT,
548 &vd->vdev_ms_shift);
549 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASIZE,
550 &vd->vdev_asize);
551 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVING,
552 &vd->vdev_removing);
553 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_VDEV_TOP_ZAP,
554 &vd->vdev_top_zap);
555 } else {
556 ASSERT0(vd->vdev_top_zap);
557 }
558
559 if (parent && !parent->vdev_parent && alloctype != VDEV_ALLOC_ATTACH) {
560 ASSERT(alloctype == VDEV_ALLOC_LOAD ||
561 alloctype == VDEV_ALLOC_ADD ||
562 alloctype == VDEV_ALLOC_SPLIT ||
563 alloctype == VDEV_ALLOC_ROOTPOOL);
564 vd->vdev_mg = metaslab_group_create(islog ?
565 spa_log_class(spa) : spa_normal_class(spa), vd);
566 }
567
568 if (vd->vdev_ops->vdev_op_leaf &&
569 (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_SPLIT)) {
570 (void) nvlist_lookup_uint64(nv,
571 ZPOOL_CONFIG_VDEV_LEAF_ZAP, &vd->vdev_leaf_zap);
572 } else {
573 ASSERT0(vd->vdev_leaf_zap);
574 }
575
576 /*
577 * If we're a leaf vdev, try to load the DTL object and other state.
578 */
579
580 if (vd->vdev_ops->vdev_op_leaf &&
581 (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_L2CACHE ||
582 alloctype == VDEV_ALLOC_ROOTPOOL)) {
583 if (alloctype == VDEV_ALLOC_LOAD) {
584 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DTL,
585 &vd->vdev_dtl_object);
586 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_UNSPARE,
587 &vd->vdev_unspare);
588 }
589
590 if (alloctype == VDEV_ALLOC_ROOTPOOL) {
591 uint64_t spare = 0;
592
593 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_SPARE,
594 &spare) == 0 && spare)
595 spa_spare_add(vd);
596 }
597
598 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_OFFLINE,
599 &vd->vdev_offline);
600
601 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_RESILVER_TXG,
602 &vd->vdev_resilver_txg);
603
604 /*
605 * In general, when importing a pool we want to ignore the
606 * persistent fault state, as the diagnosis made on another
607 * system may not be valid in the current context. The only
608 * exception is if we forced a vdev to a persistently faulted
609 * state with 'zpool offline -f'. The persistent fault will
610 * remain across imports until cleared.
611 *
612 * Local vdevs will remain in the faulted state.
613 */
614 if (spa_load_state(spa) == SPA_LOAD_OPEN ||
615 spa_load_state(spa) == SPA_LOAD_IMPORT) {
616 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_FAULTED,
617 &vd->vdev_faulted);
618 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DEGRADED,
619 &vd->vdev_degraded);
620 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVED,
621 &vd->vdev_removed);
622
623 if (vd->vdev_faulted || vd->vdev_degraded) {
624 char *aux;
625
626 vd->vdev_label_aux =
627 VDEV_AUX_ERR_EXCEEDED;
628 if (nvlist_lookup_string(nv,
629 ZPOOL_CONFIG_AUX_STATE, &aux) == 0 &&
630 strcmp(aux, "external") == 0)
631 vd->vdev_label_aux = VDEV_AUX_EXTERNAL;
632 }
633 }
634 }
635
636 /*
637 * Add ourselves to the parent's list of children.
638 */
639 vdev_add_child(parent, vd);
640
641 *vdp = vd;
642
643 return (0);
644 }
645
646 void
647 vdev_free(vdev_t *vd)
648 {
649 spa_t *spa = vd->vdev_spa;
650
651 /*
652 * Scan queues are normally destroyed at the end of a scan. If the
653 * queue exists here, that implies the vdev is being removed while
654 * the scan is still running.
655 */
656 if (vd->vdev_scan_io_queue != NULL) {
657 mutex_enter(&vd->vdev_scan_io_queue_lock);
658 dsl_scan_io_queue_destroy(vd->vdev_scan_io_queue);
659 vd->vdev_scan_io_queue = NULL;
660 mutex_exit(&vd->vdev_scan_io_queue_lock);
661 }
662
663 /*
664 * vdev_free() implies closing the vdev first. This is simpler than
665 * trying to ensure complicated semantics for all callers.
666 */
667 vdev_close(vd);
668
669 ASSERT(!list_link_active(&vd->vdev_config_dirty_node));
670 ASSERT(!list_link_active(&vd->vdev_state_dirty_node));
671
672 /*
673 * Free all children.
674 */
675 for (int c = 0; c < vd->vdev_children; c++)
676 vdev_free(vd->vdev_child[c]);
677
678 ASSERT(vd->vdev_child == NULL);
679 ASSERT(vd->vdev_guid_sum == vd->vdev_guid);
680
681 /*
682 * Discard allocation state.
683 */
684 if (vd->vdev_mg != NULL) {
685 vdev_metaslab_fini(vd);
686 metaslab_group_destroy(vd->vdev_mg);
687 }
688
689 ASSERT0(vd->vdev_stat.vs_space);
690 ASSERT0(vd->vdev_stat.vs_dspace);
691 ASSERT0(vd->vdev_stat.vs_alloc);
692
693 /*
694 * Remove this vdev from its parent's child list.
695 */
696 vdev_remove_child(vd->vdev_parent, vd);
697
698 ASSERT(vd->vdev_parent == NULL);
699
700 /*
701 * Clean up vdev structure.
702 */
703 vdev_queue_fini(vd);
704 vdev_cache_fini(vd);
705
706 if (vd->vdev_path)
707 spa_strfree(vd->vdev_path);
708 if (vd->vdev_devid)
709 spa_strfree(vd->vdev_devid);
710 if (vd->vdev_physpath)
711 spa_strfree(vd->vdev_physpath);
712
713 if (vd->vdev_enc_sysfs_path)
714 spa_strfree(vd->vdev_enc_sysfs_path);
715
716 if (vd->vdev_fru)
717 spa_strfree(vd->vdev_fru);
718
719 if (vd->vdev_isspare)
720 spa_spare_remove(vd);
721 if (vd->vdev_isl2cache)
722 spa_l2cache_remove(vd);
723
724 txg_list_destroy(&vd->vdev_ms_list);
725 txg_list_destroy(&vd->vdev_dtl_list);
726
727 mutex_enter(&vd->vdev_dtl_lock);
728 space_map_close(vd->vdev_dtl_sm);
729 for (int t = 0; t < DTL_TYPES; t++) {
730 range_tree_vacate(vd->vdev_dtl[t], NULL, NULL);
731 range_tree_destroy(vd->vdev_dtl[t]);
732 }
733 mutex_exit(&vd->vdev_dtl_lock);
734
735 mutex_destroy(&vd->vdev_queue_lock);
736 mutex_destroy(&vd->vdev_dtl_lock);
737 mutex_destroy(&vd->vdev_stat_lock);
738 mutex_destroy(&vd->vdev_probe_lock);
739 mutex_destroy(&vd->vdev_scan_io_queue_lock);
740
741 zfs_ratelimit_fini(&vd->vdev_delay_rl);
742 zfs_ratelimit_fini(&vd->vdev_checksum_rl);
743
744 if (vd == spa->spa_root_vdev)
745 spa->spa_root_vdev = NULL;
746
747 kmem_free(vd, sizeof (vdev_t));
748 }
749
750 /*
751 * Transfer top-level vdev state from svd to tvd.
752 */
753 static void
754 vdev_top_transfer(vdev_t *svd, vdev_t *tvd)
755 {
756 spa_t *spa = svd->vdev_spa;
757 metaslab_t *msp;
758 vdev_t *vd;
759 int t;
760
761 ASSERT(tvd == tvd->vdev_top);
762
763 tvd->vdev_pending_fastwrite = svd->vdev_pending_fastwrite;
764 tvd->vdev_ms_array = svd->vdev_ms_array;
765 tvd->vdev_ms_shift = svd->vdev_ms_shift;
766 tvd->vdev_ms_count = svd->vdev_ms_count;
767 tvd->vdev_top_zap = svd->vdev_top_zap;
768
769 svd->vdev_ms_array = 0;
770 svd->vdev_ms_shift = 0;
771 svd->vdev_ms_count = 0;
772 svd->vdev_top_zap = 0;
773
774 if (tvd->vdev_mg)
775 ASSERT3P(tvd->vdev_mg, ==, svd->vdev_mg);
776 tvd->vdev_mg = svd->vdev_mg;
777 tvd->vdev_ms = svd->vdev_ms;
778
779 svd->vdev_mg = NULL;
780 svd->vdev_ms = NULL;
781
782 if (tvd->vdev_mg != NULL)
783 tvd->vdev_mg->mg_vd = tvd;
784
785 tvd->vdev_stat.vs_alloc = svd->vdev_stat.vs_alloc;
786 tvd->vdev_stat.vs_space = svd->vdev_stat.vs_space;
787 tvd->vdev_stat.vs_dspace = svd->vdev_stat.vs_dspace;
788
789 svd->vdev_stat.vs_alloc = 0;
790 svd->vdev_stat.vs_space = 0;
791 svd->vdev_stat.vs_dspace = 0;
792
793 for (t = 0; t < TXG_SIZE; t++) {
794 while ((msp = txg_list_remove(&svd->vdev_ms_list, t)) != NULL)
795 (void) txg_list_add(&tvd->vdev_ms_list, msp, t);
796 while ((vd = txg_list_remove(&svd->vdev_dtl_list, t)) != NULL)
797 (void) txg_list_add(&tvd->vdev_dtl_list, vd, t);
798 if (txg_list_remove_this(&spa->spa_vdev_txg_list, svd, t))
799 (void) txg_list_add(&spa->spa_vdev_txg_list, tvd, t);
800 }
801
802 if (list_link_active(&svd->vdev_config_dirty_node)) {
803 vdev_config_clean(svd);
804 vdev_config_dirty(tvd);
805 }
806
807 if (list_link_active(&svd->vdev_state_dirty_node)) {
808 vdev_state_clean(svd);
809 vdev_state_dirty(tvd);
810 }
811
812 tvd->vdev_deflate_ratio = svd->vdev_deflate_ratio;
813 svd->vdev_deflate_ratio = 0;
814
815 tvd->vdev_islog = svd->vdev_islog;
816 svd->vdev_islog = 0;
817
818 dsl_scan_io_queue_vdev_xfer(svd, tvd);
819 }
820
821 static void
822 vdev_top_update(vdev_t *tvd, vdev_t *vd)
823 {
824 if (vd == NULL)
825 return;
826
827 vd->vdev_top = tvd;
828
829 for (int c = 0; c < vd->vdev_children; c++)
830 vdev_top_update(tvd, vd->vdev_child[c]);
831 }
832
833 /*
834 * Add a mirror/replacing vdev above an existing vdev.
835 */
836 vdev_t *
837 vdev_add_parent(vdev_t *cvd, vdev_ops_t *ops)
838 {
839 spa_t *spa = cvd->vdev_spa;
840 vdev_t *pvd = cvd->vdev_parent;
841 vdev_t *mvd;
842
843 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
844
845 mvd = vdev_alloc_common(spa, cvd->vdev_id, 0, ops);
846
847 mvd->vdev_asize = cvd->vdev_asize;
848 mvd->vdev_min_asize = cvd->vdev_min_asize;
849 mvd->vdev_max_asize = cvd->vdev_max_asize;
850 mvd->vdev_ashift = cvd->vdev_ashift;
851 mvd->vdev_state = cvd->vdev_state;
852 mvd->vdev_crtxg = cvd->vdev_crtxg;
853
854 vdev_remove_child(pvd, cvd);
855 vdev_add_child(pvd, mvd);
856 cvd->vdev_id = mvd->vdev_children;
857 vdev_add_child(mvd, cvd);
858 vdev_top_update(cvd->vdev_top, cvd->vdev_top);
859
860 if (mvd == mvd->vdev_top)
861 vdev_top_transfer(cvd, mvd);
862
863 return (mvd);
864 }
865
866 /*
867 * Remove a 1-way mirror/replacing vdev from the tree.
868 */
869 void
870 vdev_remove_parent(vdev_t *cvd)
871 {
872 vdev_t *mvd = cvd->vdev_parent;
873 vdev_t *pvd = mvd->vdev_parent;
874
875 ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
876
877 ASSERT(mvd->vdev_children == 1);
878 ASSERT(mvd->vdev_ops == &vdev_mirror_ops ||
879 mvd->vdev_ops == &vdev_replacing_ops ||
880 mvd->vdev_ops == &vdev_spare_ops);
881 cvd->vdev_ashift = mvd->vdev_ashift;
882
883 vdev_remove_child(mvd, cvd);
884 vdev_remove_child(pvd, mvd);
885
886 /*
887 * If cvd will replace mvd as a top-level vdev, preserve mvd's guid.
888 * Otherwise, we could have detached an offline device, and when we
889 * go to import the pool we'll think we have two top-level vdevs,
890 * instead of a different version of the same top-level vdev.
891 */
892 if (mvd->vdev_top == mvd) {
893 uint64_t guid_delta = mvd->vdev_guid - cvd->vdev_guid;
894 cvd->vdev_orig_guid = cvd->vdev_guid;
895 cvd->vdev_guid += guid_delta;
896 cvd->vdev_guid_sum += guid_delta;
897
898 /*
899 * If pool not set for autoexpand, we need to also preserve
900 * mvd's asize to prevent automatic expansion of cvd.
901 * Otherwise if we are adjusting the mirror by attaching and
902 * detaching children of non-uniform sizes, the mirror could
903 * autoexpand, unexpectedly requiring larger devices to
904 * re-establish the mirror.
905 */
906 if (!cvd->vdev_spa->spa_autoexpand)
907 cvd->vdev_asize = mvd->vdev_asize;
908 }
909 cvd->vdev_id = mvd->vdev_id;
910 vdev_add_child(pvd, cvd);
911 vdev_top_update(cvd->vdev_top, cvd->vdev_top);
912
913 if (cvd == cvd->vdev_top)
914 vdev_top_transfer(mvd, cvd);
915
916 ASSERT(mvd->vdev_children == 0);
917 vdev_free(mvd);
918 }
919
920 int
921 vdev_metaslab_init(vdev_t *vd, uint64_t txg)
922 {
923 spa_t *spa = vd->vdev_spa;
924 objset_t *mos = spa->spa_meta_objset;
925 uint64_t m;
926 uint64_t oldc = vd->vdev_ms_count;
927 uint64_t newc = vd->vdev_asize >> vd->vdev_ms_shift;
928 metaslab_t **mspp;
929 int error;
930
931 ASSERT(txg == 0 || spa_config_held(spa, SCL_ALLOC, RW_WRITER));
932
933 /*
934 * This vdev is not being allocated from yet or is a hole.
935 */
936 if (vd->vdev_ms_shift == 0)
937 return (0);
938
939 ASSERT(!vd->vdev_ishole);
940
941 /*
942 * Compute the raidz-deflation ratio. Note, we hard-code
943 * in 128k (1 << 17) because it is the "typical" blocksize.
944 * Even though SPA_MAXBLOCKSIZE changed, this algorithm can not change,
945 * otherwise it would inconsistently account for existing bp's.
946 */
947 vd->vdev_deflate_ratio = (1 << 17) /
948 (vdev_psize_to_asize(vd, 1 << 17) >> SPA_MINBLOCKSHIFT);
949
950 ASSERT(oldc <= newc);
951
952 mspp = vmem_zalloc(newc * sizeof (*mspp), KM_SLEEP);
953
954 if (oldc != 0) {
955 bcopy(vd->vdev_ms, mspp, oldc * sizeof (*mspp));
956 vmem_free(vd->vdev_ms, oldc * sizeof (*mspp));
957 }
958
959 vd->vdev_ms = mspp;
960 vd->vdev_ms_count = newc;
961
962 for (m = oldc; m < newc; m++) {
963 uint64_t object = 0;
964
965 if (txg == 0) {
966 error = dmu_read(mos, vd->vdev_ms_array,
967 m * sizeof (uint64_t), sizeof (uint64_t), &object,
968 DMU_READ_PREFETCH);
969 if (error)
970 return (error);
971 }
972
973 error = metaslab_init(vd->vdev_mg, m, object, txg,
974 &(vd->vdev_ms[m]));
975 if (error)
976 return (error);
977 }
978
979 if (txg == 0)
980 spa_config_enter(spa, SCL_ALLOC, FTAG, RW_WRITER);
981
982 /*
983 * If the vdev is being removed we don't activate
984 * the metaslabs since we want to ensure that no new
985 * allocations are performed on this device.
986 */
987 if (oldc == 0 && !vd->vdev_removing)
988 metaslab_group_activate(vd->vdev_mg);
989
990 if (txg == 0)
991 spa_config_exit(spa, SCL_ALLOC, FTAG);
992
993 return (0);
994 }
995
996 void
997 vdev_metaslab_fini(vdev_t *vd)
998 {
999 uint64_t m;
1000 uint64_t count = vd->vdev_ms_count;
1001
1002 if (vd->vdev_ms != NULL) {
1003 metaslab_group_passivate(vd->vdev_mg);
1004 for (m = 0; m < count; m++) {
1005 metaslab_t *msp = vd->vdev_ms[m];
1006
1007 if (msp != NULL)
1008 metaslab_fini(msp);
1009 }
1010 vmem_free(vd->vdev_ms, count * sizeof (metaslab_t *));
1011 vd->vdev_ms = NULL;
1012 }
1013
1014 ASSERT3U(vd->vdev_pending_fastwrite, ==, 0);
1015 }
1016
1017 typedef struct vdev_probe_stats {
1018 boolean_t vps_readable;
1019 boolean_t vps_writeable;
1020 int vps_flags;
1021 } vdev_probe_stats_t;
1022
1023 static void
1024 vdev_probe_done(zio_t *zio)
1025 {
1026 spa_t *spa = zio->io_spa;
1027 vdev_t *vd = zio->io_vd;
1028 vdev_probe_stats_t *vps = zio->io_private;
1029
1030 ASSERT(vd->vdev_probe_zio != NULL);
1031
1032 if (zio->io_type == ZIO_TYPE_READ) {
1033 if (zio->io_error == 0)
1034 vps->vps_readable = 1;
1035 if (zio->io_error == 0 && spa_writeable(spa)) {
1036 zio_nowait(zio_write_phys(vd->vdev_probe_zio, vd,
1037 zio->io_offset, zio->io_size, zio->io_abd,
1038 ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
1039 ZIO_PRIORITY_SYNC_WRITE, vps->vps_flags, B_TRUE));
1040 } else {
1041 abd_free(zio->io_abd);
1042 }
1043 } else if (zio->io_type == ZIO_TYPE_WRITE) {
1044 if (zio->io_error == 0)
1045 vps->vps_writeable = 1;
1046 abd_free(zio->io_abd);
1047 } else if (zio->io_type == ZIO_TYPE_NULL) {
1048 zio_t *pio;
1049 zio_link_t *zl;
1050
1051 vd->vdev_cant_read |= !vps->vps_readable;
1052 vd->vdev_cant_write |= !vps->vps_writeable;
1053
1054 if (vdev_readable(vd) &&
1055 (vdev_writeable(vd) || !spa_writeable(spa))) {
1056 zio->io_error = 0;
1057 } else {
1058 ASSERT(zio->io_error != 0);
1059 zfs_ereport_post(FM_EREPORT_ZFS_PROBE_FAILURE,
1060 spa, vd, NULL, NULL, 0, 0);
1061 zio->io_error = SET_ERROR(ENXIO);
1062 }
1063
1064 mutex_enter(&vd->vdev_probe_lock);
1065 ASSERT(vd->vdev_probe_zio == zio);
1066 vd->vdev_probe_zio = NULL;
1067 mutex_exit(&vd->vdev_probe_lock);
1068
1069 zl = NULL;
1070 while ((pio = zio_walk_parents(zio, &zl)) != NULL)
1071 if (!vdev_accessible(vd, pio))
1072 pio->io_error = SET_ERROR(ENXIO);
1073
1074 kmem_free(vps, sizeof (*vps));
1075 }
1076 }
1077
1078 /*
1079 * Determine whether this device is accessible.
1080 *
1081 * Read and write to several known locations: the pad regions of each
1082 * vdev label but the first, which we leave alone in case it contains
1083 * a VTOC.
1084 */
1085 zio_t *
1086 vdev_probe(vdev_t *vd, zio_t *zio)
1087 {
1088 spa_t *spa = vd->vdev_spa;
1089 vdev_probe_stats_t *vps = NULL;
1090 zio_t *pio;
1091
1092 ASSERT(vd->vdev_ops->vdev_op_leaf);
1093
1094 /*
1095 * Don't probe the probe.
1096 */
1097 if (zio && (zio->io_flags & ZIO_FLAG_PROBE))
1098 return (NULL);
1099
1100 /*
1101 * To prevent 'probe storms' when a device fails, we create
1102 * just one probe i/o at a time. All zios that want to probe
1103 * this vdev will become parents of the probe io.
1104 */
1105 mutex_enter(&vd->vdev_probe_lock);
1106
1107 if ((pio = vd->vdev_probe_zio) == NULL) {
1108 vps = kmem_zalloc(sizeof (*vps), KM_SLEEP);
1109
1110 vps->vps_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_PROBE |
1111 ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_AGGREGATE |
1112 ZIO_FLAG_TRYHARD;
1113
1114 if (spa_config_held(spa, SCL_ZIO, RW_WRITER)) {
1115 /*
1116 * vdev_cant_read and vdev_cant_write can only
1117 * transition from TRUE to FALSE when we have the
1118 * SCL_ZIO lock as writer; otherwise they can only
1119 * transition from FALSE to TRUE. This ensures that
1120 * any zio looking at these values can assume that
1121 * failures persist for the life of the I/O. That's
1122 * important because when a device has intermittent
1123 * connectivity problems, we want to ensure that
1124 * they're ascribed to the device (ENXIO) and not
1125 * the zio (EIO).
1126 *
1127 * Since we hold SCL_ZIO as writer here, clear both
1128 * values so the probe can reevaluate from first
1129 * principles.
1130 */
1131 vps->vps_flags |= ZIO_FLAG_CONFIG_WRITER;
1132 vd->vdev_cant_read = B_FALSE;
1133 vd->vdev_cant_write = B_FALSE;
1134 }
1135
1136 vd->vdev_probe_zio = pio = zio_null(NULL, spa, vd,
1137 vdev_probe_done, vps,
1138 vps->vps_flags | ZIO_FLAG_DONT_PROPAGATE);
1139
1140 /*
1141 * We can't change the vdev state in this context, so we
1142 * kick off an async task to do it on our behalf.
1143 */
1144 if (zio != NULL) {
1145 vd->vdev_probe_wanted = B_TRUE;
1146 spa_async_request(spa, SPA_ASYNC_PROBE);
1147 }
1148 }
1149
1150 if (zio != NULL)
1151 zio_add_child(zio, pio);
1152
1153 mutex_exit(&vd->vdev_probe_lock);
1154
1155 if (vps == NULL) {
1156 ASSERT(zio != NULL);
1157 return (NULL);
1158 }
1159
1160 for (int l = 1; l < VDEV_LABELS; l++) {
1161 zio_nowait(zio_read_phys(pio, vd,
1162 vdev_label_offset(vd->vdev_psize, l,
1163 offsetof(vdev_label_t, vl_pad2)), VDEV_PAD_SIZE,
1164 abd_alloc_for_io(VDEV_PAD_SIZE, B_TRUE),
1165 ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
1166 ZIO_PRIORITY_SYNC_READ, vps->vps_flags, B_TRUE));
1167 }
1168
1169 if (zio == NULL)
1170 return (pio);
1171
1172 zio_nowait(pio);
1173 return (NULL);
1174 }
1175
1176 static void
1177 vdev_open_child(void *arg)
1178 {
1179 vdev_t *vd = arg;
1180
1181 vd->vdev_open_thread = curthread;
1182 vd->vdev_open_error = vdev_open(vd);
1183 vd->vdev_open_thread = NULL;
1184 }
1185
1186 static boolean_t
1187 vdev_uses_zvols(vdev_t *vd)
1188 {
1189 #ifdef _KERNEL
1190 if (zvol_is_zvol(vd->vdev_path))
1191 return (B_TRUE);
1192 #endif
1193
1194 for (int c = 0; c < vd->vdev_children; c++)
1195 if (vdev_uses_zvols(vd->vdev_child[c]))
1196 return (B_TRUE);
1197
1198 return (B_FALSE);
1199 }
1200
1201 void
1202 vdev_open_children(vdev_t *vd)
1203 {
1204 taskq_t *tq;
1205 int children = vd->vdev_children;
1206
1207 /*
1208 * in order to handle pools on top of zvols, do the opens
1209 * in a single thread so that the same thread holds the
1210 * spa_namespace_lock
1211 */
1212 if (vdev_uses_zvols(vd)) {
1213 retry_sync:
1214 for (int c = 0; c < children; c++)
1215 vd->vdev_child[c]->vdev_open_error =
1216 vdev_open(vd->vdev_child[c]);
1217 } else {
1218 tq = taskq_create("vdev_open", children, minclsyspri,
1219 children, children, TASKQ_PREPOPULATE);
1220 if (tq == NULL)
1221 goto retry_sync;
1222
1223 for (int c = 0; c < children; c++)
1224 VERIFY(taskq_dispatch(tq, vdev_open_child,
1225 vd->vdev_child[c], TQ_SLEEP) != TASKQID_INVALID);
1226
1227 taskq_destroy(tq);
1228 }
1229
1230 vd->vdev_nonrot = B_TRUE;
1231
1232 for (int c = 0; c < children; c++)
1233 vd->vdev_nonrot &= vd->vdev_child[c]->vdev_nonrot;
1234 }
1235
1236 /*
1237 * Prepare a virtual device for access.
1238 */
1239 int
1240 vdev_open(vdev_t *vd)
1241 {
1242 spa_t *spa = vd->vdev_spa;
1243 int error;
1244 uint64_t osize = 0;
1245 uint64_t max_osize = 0;
1246 uint64_t asize, max_asize, psize;
1247 uint64_t ashift = 0;
1248
1249 ASSERT(vd->vdev_open_thread == curthread ||
1250 spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1251 ASSERT(vd->vdev_state == VDEV_STATE_CLOSED ||
1252 vd->vdev_state == VDEV_STATE_CANT_OPEN ||
1253 vd->vdev_state == VDEV_STATE_OFFLINE);
1254
1255 vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
1256 vd->vdev_cant_read = B_FALSE;
1257 vd->vdev_cant_write = B_FALSE;
1258 vd->vdev_min_asize = vdev_get_min_asize(vd);
1259
1260 /*
1261 * If this vdev is not removed, check its fault status. If it's
1262 * faulted, bail out of the open.
1263 */
1264 if (!vd->vdev_removed && vd->vdev_faulted) {
1265 ASSERT(vd->vdev_children == 0);
1266 ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED ||
1267 vd->vdev_label_aux == VDEV_AUX_EXTERNAL);
1268 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1269 vd->vdev_label_aux);
1270 return (SET_ERROR(ENXIO));
1271 } else if (vd->vdev_offline) {
1272 ASSERT(vd->vdev_children == 0);
1273 vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE, VDEV_AUX_NONE);
1274 return (SET_ERROR(ENXIO));
1275 }
1276
1277 error = vd->vdev_ops->vdev_op_open(vd, &osize, &max_osize, &ashift);
1278
1279 /*
1280 * Reset the vdev_reopening flag so that we actually close
1281 * the vdev on error.
1282 */
1283 vd->vdev_reopening = B_FALSE;
1284 if (zio_injection_enabled && error == 0)
1285 error = zio_handle_device_injection(vd, NULL, ENXIO);
1286
1287 if (error) {
1288 if (vd->vdev_removed &&
1289 vd->vdev_stat.vs_aux != VDEV_AUX_OPEN_FAILED)
1290 vd->vdev_removed = B_FALSE;
1291
1292 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1293 vd->vdev_stat.vs_aux);
1294 return (error);
1295 }
1296
1297 vd->vdev_removed = B_FALSE;
1298
1299 /*
1300 * Recheck the faulted flag now that we have confirmed that
1301 * the vdev is accessible. If we're faulted, bail.
1302 */
1303 if (vd->vdev_faulted) {
1304 ASSERT(vd->vdev_children == 0);
1305 ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED ||
1306 vd->vdev_label_aux == VDEV_AUX_EXTERNAL);
1307 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1308 vd->vdev_label_aux);
1309 return (SET_ERROR(ENXIO));
1310 }
1311
1312 if (vd->vdev_degraded) {
1313 ASSERT(vd->vdev_children == 0);
1314 vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
1315 VDEV_AUX_ERR_EXCEEDED);
1316 } else {
1317 vdev_set_state(vd, B_TRUE, VDEV_STATE_HEALTHY, 0);
1318 }
1319
1320 /*
1321 * For hole or missing vdevs we just return success.
1322 */
1323 if (vd->vdev_ishole || vd->vdev_ops == &vdev_missing_ops)
1324 return (0);
1325
1326 for (int c = 0; c < vd->vdev_children; c++) {
1327 if (vd->vdev_child[c]->vdev_state != VDEV_STATE_HEALTHY) {
1328 vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
1329 VDEV_AUX_NONE);
1330 break;
1331 }
1332 }
1333
1334 osize = P2ALIGN(osize, (uint64_t)sizeof (vdev_label_t));
1335 max_osize = P2ALIGN(max_osize, (uint64_t)sizeof (vdev_label_t));
1336
1337 if (vd->vdev_children == 0) {
1338 if (osize < SPA_MINDEVSIZE) {
1339 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1340 VDEV_AUX_TOO_SMALL);
1341 return (SET_ERROR(EOVERFLOW));
1342 }
1343 psize = osize;
1344 asize = osize - (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE);
1345 max_asize = max_osize - (VDEV_LABEL_START_SIZE +
1346 VDEV_LABEL_END_SIZE);
1347 } else {
1348 if (vd->vdev_parent != NULL && osize < SPA_MINDEVSIZE -
1349 (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE)) {
1350 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1351 VDEV_AUX_TOO_SMALL);
1352 return (SET_ERROR(EOVERFLOW));
1353 }
1354 psize = 0;
1355 asize = osize;
1356 max_asize = max_osize;
1357 }
1358
1359 /*
1360 * If the vdev was expanded, record this so that we can re-create the
1361 * uberblock rings in labels {2,3}, during the next sync.
1362 */
1363 if ((psize > vd->vdev_psize) && (vd->vdev_psize != 0))
1364 vd->vdev_copy_uberblocks = B_TRUE;
1365
1366 vd->vdev_psize = psize;
1367
1368 /*
1369 * Make sure the allocatable size hasn't shrunk too much.
1370 */
1371 if (asize < vd->vdev_min_asize) {
1372 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1373 VDEV_AUX_BAD_LABEL);
1374 return (SET_ERROR(EINVAL));
1375 }
1376
1377 if (vd->vdev_asize == 0) {
1378 /*
1379 * This is the first-ever open, so use the computed values.
1380 * For compatibility, a different ashift can be requested.
1381 */
1382 vd->vdev_asize = asize;
1383 vd->vdev_max_asize = max_asize;
1384 if (vd->vdev_ashift == 0) {
1385 vd->vdev_ashift = ashift; /* use detected value */
1386 }
1387 if (vd->vdev_ashift != 0 && (vd->vdev_ashift < ASHIFT_MIN ||
1388 vd->vdev_ashift > ASHIFT_MAX)) {
1389 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1390 VDEV_AUX_BAD_ASHIFT);
1391 return (SET_ERROR(EDOM));
1392 }
1393 } else {
1394 /*
1395 * Detect if the alignment requirement has increased.
1396 * We don't want to make the pool unavailable, just
1397 * post an event instead.
1398 */
1399 if (ashift > vd->vdev_top->vdev_ashift &&
1400 vd->vdev_ops->vdev_op_leaf) {
1401 zfs_ereport_post(FM_EREPORT_ZFS_DEVICE_BAD_ASHIFT,
1402 spa, vd, NULL, NULL, 0, 0);
1403 }
1404
1405 vd->vdev_max_asize = max_asize;
1406 }
1407
1408 /*
1409 * If all children are healthy we update asize if either:
1410 * The asize has increased, due to a device expansion caused by dynamic
1411 * LUN growth or vdev replacement, and automatic expansion is enabled;
1412 * making the additional space available.
1413 *
1414 * The asize has decreased, due to a device shrink usually caused by a
1415 * vdev replace with a smaller device. This ensures that calculations
1416 * based of max_asize and asize e.g. esize are always valid. It's safe
1417 * to do this as we've already validated that asize is greater than
1418 * vdev_min_asize.
1419 */
1420 if (vd->vdev_state == VDEV_STATE_HEALTHY &&
1421 ((asize > vd->vdev_asize &&
1422 (vd->vdev_expanding || spa->spa_autoexpand)) ||
1423 (asize < vd->vdev_asize)))
1424 vd->vdev_asize = asize;
1425
1426 vdev_set_min_asize(vd);
1427
1428 /*
1429 * Ensure we can issue some IO before declaring the
1430 * vdev open for business.
1431 */
1432 if (vd->vdev_ops->vdev_op_leaf &&
1433 (error = zio_wait(vdev_probe(vd, NULL))) != 0) {
1434 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1435 VDEV_AUX_ERR_EXCEEDED);
1436 return (error);
1437 }
1438
1439 /*
1440 * Track the min and max ashift values for normal data devices.
1441 */
1442 if (vd->vdev_top == vd && vd->vdev_ashift != 0 &&
1443 !vd->vdev_islog && vd->vdev_aux == NULL) {
1444 if (vd->vdev_ashift > spa->spa_max_ashift)
1445 spa->spa_max_ashift = vd->vdev_ashift;
1446 if (vd->vdev_ashift < spa->spa_min_ashift)
1447 spa->spa_min_ashift = vd->vdev_ashift;
1448 }
1449
1450 /*
1451 * If a leaf vdev has a DTL, and seems healthy, then kick off a
1452 * resilver. But don't do this if we are doing a reopen for a scrub,
1453 * since this would just restart the scrub we are already doing.
1454 */
1455 if (vd->vdev_ops->vdev_op_leaf && !spa->spa_scrub_reopen &&
1456 vdev_resilver_needed(vd, NULL, NULL))
1457 spa_async_request(spa, SPA_ASYNC_RESILVER);
1458
1459 return (0);
1460 }
1461
1462 /*
1463 * Called once the vdevs are all opened, this routine validates the label
1464 * contents. This needs to be done before vdev_load() so that we don't
1465 * inadvertently do repair I/Os to the wrong device.
1466 *
1467 * If 'strict' is false ignore the spa guid check. This is necessary because
1468 * if the machine crashed during a re-guid the new guid might have been written
1469 * to all of the vdev labels, but not the cached config. The strict check
1470 * will be performed when the pool is opened again using the mos config.
1471 *
1472 * This function will only return failure if one of the vdevs indicates that it
1473 * has since been destroyed or exported. This is only possible if
1474 * /etc/zfs/zpool.cache was readonly at the time. Otherwise, the vdev state
1475 * will be updated but the function will return 0.
1476 */
1477 int
1478 vdev_validate(vdev_t *vd, boolean_t strict)
1479 {
1480 spa_t *spa = vd->vdev_spa;
1481 nvlist_t *label;
1482 uint64_t guid = 0, top_guid;
1483 uint64_t state;
1484
1485 for (int c = 0; c < vd->vdev_children; c++)
1486 if (vdev_validate(vd->vdev_child[c], strict) != 0)
1487 return (SET_ERROR(EBADF));
1488
1489 /*
1490 * If the device has already failed, or was marked offline, don't do
1491 * any further validation. Otherwise, label I/O will fail and we will
1492 * overwrite the previous state.
1493 */
1494 if (vd->vdev_ops->vdev_op_leaf && vdev_readable(vd)) {
1495 uint64_t aux_guid = 0;
1496 nvlist_t *nvl;
1497 uint64_t txg = spa_last_synced_txg(spa) != 0 ?
1498 spa_last_synced_txg(spa) : -1ULL;
1499
1500 if ((label = vdev_label_read_config(vd, txg)) == NULL) {
1501 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1502 VDEV_AUX_BAD_LABEL);
1503 return (0);
1504 }
1505
1506 /*
1507 * Determine if this vdev has been split off into another
1508 * pool. If so, then refuse to open it.
1509 */
1510 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_SPLIT_GUID,
1511 &aux_guid) == 0 && aux_guid == spa_guid(spa)) {
1512 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1513 VDEV_AUX_SPLIT_POOL);
1514 nvlist_free(label);
1515 return (0);
1516 }
1517
1518 if (strict && (nvlist_lookup_uint64(label,
1519 ZPOOL_CONFIG_POOL_GUID, &guid) != 0 ||
1520 guid != spa_guid(spa))) {
1521 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1522 VDEV_AUX_CORRUPT_DATA);
1523 nvlist_free(label);
1524 return (0);
1525 }
1526
1527 if (nvlist_lookup_nvlist(label, ZPOOL_CONFIG_VDEV_TREE, &nvl)
1528 != 0 || nvlist_lookup_uint64(nvl, ZPOOL_CONFIG_ORIG_GUID,
1529 &aux_guid) != 0)
1530 aux_guid = 0;
1531
1532 /*
1533 * If this vdev just became a top-level vdev because its
1534 * sibling was detached, it will have adopted the parent's
1535 * vdev guid -- but the label may or may not be on disk yet.
1536 * Fortunately, either version of the label will have the
1537 * same top guid, so if we're a top-level vdev, we can
1538 * safely compare to that instead.
1539 *
1540 * If we split this vdev off instead, then we also check the
1541 * original pool's guid. We don't want to consider the vdev
1542 * corrupt if it is partway through a split operation.
1543 */
1544 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID,
1545 &guid) != 0 ||
1546 nvlist_lookup_uint64(label, ZPOOL_CONFIG_TOP_GUID,
1547 &top_guid) != 0 ||
1548 ((vd->vdev_guid != guid && vd->vdev_guid != aux_guid) &&
1549 (vd->vdev_guid != top_guid || vd != vd->vdev_top))) {
1550 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1551 VDEV_AUX_CORRUPT_DATA);
1552 nvlist_free(label);
1553 return (0);
1554 }
1555
1556 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE,
1557 &state) != 0) {
1558 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1559 VDEV_AUX_CORRUPT_DATA);
1560 nvlist_free(label);
1561 return (0);
1562 }
1563
1564 nvlist_free(label);
1565
1566 /*
1567 * If this is a verbatim import, no need to check the
1568 * state of the pool.
1569 */
1570 if (!(spa->spa_import_flags & ZFS_IMPORT_VERBATIM) &&
1571 spa_load_state(spa) == SPA_LOAD_OPEN &&
1572 state != POOL_STATE_ACTIVE)
1573 return (SET_ERROR(EBADF));
1574
1575 /*
1576 * If we were able to open and validate a vdev that was
1577 * previously marked permanently unavailable, clear that state
1578 * now.
1579 */
1580 if (vd->vdev_not_present)
1581 vd->vdev_not_present = 0;
1582 }
1583
1584 return (0);
1585 }
1586
1587 /*
1588 * Close a virtual device.
1589 */
1590 void
1591 vdev_close(vdev_t *vd)
1592 {
1593 vdev_t *pvd = vd->vdev_parent;
1594 ASSERTV(spa_t *spa = vd->vdev_spa);
1595
1596 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1597
1598 /*
1599 * If our parent is reopening, then we are as well, unless we are
1600 * going offline.
1601 */
1602 if (pvd != NULL && pvd->vdev_reopening)
1603 vd->vdev_reopening = (pvd->vdev_reopening && !vd->vdev_offline);
1604
1605 vd->vdev_ops->vdev_op_close(vd);
1606
1607 vdev_cache_purge(vd);
1608
1609 /*
1610 * We record the previous state before we close it, so that if we are
1611 * doing a reopen(), we don't generate FMA ereports if we notice that
1612 * it's still faulted.
1613 */
1614 vd->vdev_prevstate = vd->vdev_state;
1615
1616 if (vd->vdev_offline)
1617 vd->vdev_state = VDEV_STATE_OFFLINE;
1618 else
1619 vd->vdev_state = VDEV_STATE_CLOSED;
1620 vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
1621 }
1622
1623 void
1624 vdev_hold(vdev_t *vd)
1625 {
1626 spa_t *spa = vd->vdev_spa;
1627
1628 ASSERT(spa_is_root(spa));
1629 if (spa->spa_state == POOL_STATE_UNINITIALIZED)
1630 return;
1631
1632 for (int c = 0; c < vd->vdev_children; c++)
1633 vdev_hold(vd->vdev_child[c]);
1634
1635 if (vd->vdev_ops->vdev_op_leaf)
1636 vd->vdev_ops->vdev_op_hold(vd);
1637 }
1638
1639 void
1640 vdev_rele(vdev_t *vd)
1641 {
1642 ASSERT(spa_is_root(vd->vdev_spa));
1643 for (int c = 0; c < vd->vdev_children; c++)
1644 vdev_rele(vd->vdev_child[c]);
1645
1646 if (vd->vdev_ops->vdev_op_leaf)
1647 vd->vdev_ops->vdev_op_rele(vd);
1648 }
1649
1650 /*
1651 * Reopen all interior vdevs and any unopened leaves. We don't actually
1652 * reopen leaf vdevs which had previously been opened as they might deadlock
1653 * on the spa_config_lock. Instead we only obtain the leaf's physical size.
1654 * If the leaf has never been opened then open it, as usual.
1655 */
1656 void
1657 vdev_reopen(vdev_t *vd)
1658 {
1659 spa_t *spa = vd->vdev_spa;
1660
1661 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1662
1663 /* set the reopening flag unless we're taking the vdev offline */
1664 vd->vdev_reopening = !vd->vdev_offline;
1665 vdev_close(vd);
1666 (void) vdev_open(vd);
1667
1668 /*
1669 * Call vdev_validate() here to make sure we have the same device.
1670 * Otherwise, a device with an invalid label could be successfully
1671 * opened in response to vdev_reopen().
1672 */
1673 if (vd->vdev_aux) {
1674 (void) vdev_validate_aux(vd);
1675 if (vdev_readable(vd) && vdev_writeable(vd) &&
1676 vd->vdev_aux == &spa->spa_l2cache &&
1677 !l2arc_vdev_present(vd))
1678 l2arc_add_vdev(spa, vd);
1679 } else {
1680 (void) vdev_validate(vd, B_TRUE);
1681 }
1682
1683 /*
1684 * Reassess parent vdev's health.
1685 */
1686 vdev_propagate_state(vd);
1687 }
1688
1689 int
1690 vdev_create(vdev_t *vd, uint64_t txg, boolean_t isreplacing)
1691 {
1692 int error;
1693
1694 /*
1695 * Normally, partial opens (e.g. of a mirror) are allowed.
1696 * For a create, however, we want to fail the request if
1697 * there are any components we can't open.
1698 */
1699 error = vdev_open(vd);
1700
1701 if (error || vd->vdev_state != VDEV_STATE_HEALTHY) {
1702 vdev_close(vd);
1703 return (error ? error : ENXIO);
1704 }
1705
1706 /*
1707 * Recursively load DTLs and initialize all labels.
1708 */
1709 if ((error = vdev_dtl_load(vd)) != 0 ||
1710 (error = vdev_label_init(vd, txg, isreplacing ?
1711 VDEV_LABEL_REPLACE : VDEV_LABEL_CREATE)) != 0) {
1712 vdev_close(vd);
1713 return (error);
1714 }
1715
1716 return (0);
1717 }
1718
1719 void
1720 vdev_metaslab_set_size(vdev_t *vd)
1721 {
1722 /*
1723 * Aim for roughly metaslabs_per_vdev (default 200) metaslabs per vdev.
1724 */
1725 vd->vdev_ms_shift = highbit64(vd->vdev_asize / metaslabs_per_vdev);
1726 vd->vdev_ms_shift = MAX(vd->vdev_ms_shift, SPA_MAXBLOCKSHIFT);
1727 }
1728
1729 void
1730 vdev_dirty(vdev_t *vd, int flags, void *arg, uint64_t txg)
1731 {
1732 ASSERT(vd == vd->vdev_top);
1733 ASSERT(!vd->vdev_ishole);
1734 ASSERT(ISP2(flags));
1735 ASSERT(spa_writeable(vd->vdev_spa));
1736
1737 if (flags & VDD_METASLAB)
1738 (void) txg_list_add(&vd->vdev_ms_list, arg, txg);
1739
1740 if (flags & VDD_DTL)
1741 (void) txg_list_add(&vd->vdev_dtl_list, arg, txg);
1742
1743 (void) txg_list_add(&vd->vdev_spa->spa_vdev_txg_list, vd, txg);
1744 }
1745
1746 void
1747 vdev_dirty_leaves(vdev_t *vd, int flags, uint64_t txg)
1748 {
1749 for (int c = 0; c < vd->vdev_children; c++)
1750 vdev_dirty_leaves(vd->vdev_child[c], flags, txg);
1751
1752 if (vd->vdev_ops->vdev_op_leaf)
1753 vdev_dirty(vd->vdev_top, flags, vd, txg);
1754 }
1755
1756 /*
1757 * DTLs.
1758 *
1759 * A vdev's DTL (dirty time log) is the set of transaction groups for which
1760 * the vdev has less than perfect replication. There are four kinds of DTL:
1761 *
1762 * DTL_MISSING: txgs for which the vdev has no valid copies of the data
1763 *
1764 * DTL_PARTIAL: txgs for which data is available, but not fully replicated
1765 *
1766 * DTL_SCRUB: the txgs that could not be repaired by the last scrub; upon
1767 * scrub completion, DTL_SCRUB replaces DTL_MISSING in the range of
1768 * txgs that was scrubbed.
1769 *
1770 * DTL_OUTAGE: txgs which cannot currently be read, whether due to
1771 * persistent errors or just some device being offline.
1772 * Unlike the other three, the DTL_OUTAGE map is not generally
1773 * maintained; it's only computed when needed, typically to
1774 * determine whether a device can be detached.
1775 *
1776 * For leaf vdevs, DTL_MISSING and DTL_PARTIAL are identical: the device
1777 * either has the data or it doesn't.
1778 *
1779 * For interior vdevs such as mirror and RAID-Z the picture is more complex.
1780 * A vdev's DTL_PARTIAL is the union of its children's DTL_PARTIALs, because
1781 * if any child is less than fully replicated, then so is its parent.
1782 * A vdev's DTL_MISSING is a modified union of its children's DTL_MISSINGs,
1783 * comprising only those txgs which appear in 'maxfaults' or more children;
1784 * those are the txgs we don't have enough replication to read. For example,
1785 * double-parity RAID-Z can tolerate up to two missing devices (maxfaults == 2);
1786 * thus, its DTL_MISSING consists of the set of txgs that appear in more than
1787 * two child DTL_MISSING maps.
1788 *
1789 * It should be clear from the above that to compute the DTLs and outage maps
1790 * for all vdevs, it suffices to know just the leaf vdevs' DTL_MISSING maps.
1791 * Therefore, that is all we keep on disk. When loading the pool, or after
1792 * a configuration change, we generate all other DTLs from first principles.
1793 */
1794 void
1795 vdev_dtl_dirty(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
1796 {
1797 range_tree_t *rt = vd->vdev_dtl[t];
1798
1799 ASSERT(t < DTL_TYPES);
1800 ASSERT(vd != vd->vdev_spa->spa_root_vdev);
1801 ASSERT(spa_writeable(vd->vdev_spa));
1802
1803 mutex_enter(rt->rt_lock);
1804 if (!range_tree_contains(rt, txg, size))
1805 range_tree_add(rt, txg, size);
1806 mutex_exit(rt->rt_lock);
1807 }
1808
1809 boolean_t
1810 vdev_dtl_contains(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
1811 {
1812 range_tree_t *rt = vd->vdev_dtl[t];
1813 boolean_t dirty = B_FALSE;
1814
1815 ASSERT(t < DTL_TYPES);
1816 ASSERT(vd != vd->vdev_spa->spa_root_vdev);
1817
1818 mutex_enter(rt->rt_lock);
1819 if (range_tree_space(rt) != 0)
1820 dirty = range_tree_contains(rt, txg, size);
1821 mutex_exit(rt->rt_lock);
1822
1823 return (dirty);
1824 }
1825
1826 boolean_t
1827 vdev_dtl_empty(vdev_t *vd, vdev_dtl_type_t t)
1828 {
1829 range_tree_t *rt = vd->vdev_dtl[t];
1830 boolean_t empty;
1831
1832 mutex_enter(rt->rt_lock);
1833 empty = (range_tree_space(rt) == 0);
1834 mutex_exit(rt->rt_lock);
1835
1836 return (empty);
1837 }
1838
1839 /*
1840 * Returns B_TRUE if vdev determines offset needs to be resilvered.
1841 */
1842 boolean_t
1843 vdev_dtl_need_resilver(vdev_t *vd, uint64_t offset, size_t psize)
1844 {
1845 ASSERT(vd != vd->vdev_spa->spa_root_vdev);
1846
1847 if (vd->vdev_ops->vdev_op_need_resilver == NULL ||
1848 vd->vdev_ops->vdev_op_leaf)
1849 return (B_TRUE);
1850
1851 return (vd->vdev_ops->vdev_op_need_resilver(vd, offset, psize));
1852 }
1853
1854 /*
1855 * Returns the lowest txg in the DTL range.
1856 */
1857 static uint64_t
1858 vdev_dtl_min(vdev_t *vd)
1859 {
1860 range_seg_t *rs;
1861
1862 ASSERT(MUTEX_HELD(&vd->vdev_dtl_lock));
1863 ASSERT3U(range_tree_space(vd->vdev_dtl[DTL_MISSING]), !=, 0);
1864 ASSERT0(vd->vdev_children);
1865
1866 rs = avl_first(&vd->vdev_dtl[DTL_MISSING]->rt_root);
1867 return (rs->rs_start - 1);
1868 }
1869
1870 /*
1871 * Returns the highest txg in the DTL.
1872 */
1873 static uint64_t
1874 vdev_dtl_max(vdev_t *vd)
1875 {
1876 range_seg_t *rs;
1877
1878 ASSERT(MUTEX_HELD(&vd->vdev_dtl_lock));
1879 ASSERT3U(range_tree_space(vd->vdev_dtl[DTL_MISSING]), !=, 0);
1880 ASSERT0(vd->vdev_children);
1881
1882 rs = avl_last(&vd->vdev_dtl[DTL_MISSING]->rt_root);
1883 return (rs->rs_end);
1884 }
1885
1886 /*
1887 * Determine if a resilvering vdev should remove any DTL entries from
1888 * its range. If the vdev was resilvering for the entire duration of the
1889 * scan then it should excise that range from its DTLs. Otherwise, this
1890 * vdev is considered partially resilvered and should leave its DTL
1891 * entries intact. The comment in vdev_dtl_reassess() describes how we
1892 * excise the DTLs.
1893 */
1894 static boolean_t
1895 vdev_dtl_should_excise(vdev_t *vd)
1896 {
1897 spa_t *spa = vd->vdev_spa;
1898 dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan;
1899
1900 ASSERT0(scn->scn_phys.scn_errors);
1901 ASSERT0(vd->vdev_children);
1902
1903 if (vd->vdev_state < VDEV_STATE_DEGRADED)
1904 return (B_FALSE);
1905
1906 if (vd->vdev_resilver_txg == 0 ||
1907 range_tree_space(vd->vdev_dtl[DTL_MISSING]) == 0)
1908 return (B_TRUE);
1909
1910 /*
1911 * When a resilver is initiated the scan will assign the scn_max_txg
1912 * value to the highest txg value that exists in all DTLs. If this
1913 * device's max DTL is not part of this scan (i.e. it is not in
1914 * the range (scn_min_txg, scn_max_txg] then it is not eligible
1915 * for excision.
1916 */
1917 if (vdev_dtl_max(vd) <= scn->scn_phys.scn_max_txg) {
1918 ASSERT3U(scn->scn_phys.scn_min_txg, <=, vdev_dtl_min(vd));
1919 ASSERT3U(scn->scn_phys.scn_min_txg, <, vd->vdev_resilver_txg);
1920 ASSERT3U(vd->vdev_resilver_txg, <=, scn->scn_phys.scn_max_txg);
1921 return (B_TRUE);
1922 }
1923 return (B_FALSE);
1924 }
1925
1926 /*
1927 * Reassess DTLs after a config change or scrub completion.
1928 */
1929 void
1930 vdev_dtl_reassess(vdev_t *vd, uint64_t txg, uint64_t scrub_txg, int scrub_done)
1931 {
1932 spa_t *spa = vd->vdev_spa;
1933 avl_tree_t reftree;
1934 int minref;
1935
1936 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
1937
1938 for (int c = 0; c < vd->vdev_children; c++)
1939 vdev_dtl_reassess(vd->vdev_child[c], txg,
1940 scrub_txg, scrub_done);
1941
1942 if (vd == spa->spa_root_vdev || vd->vdev_ishole || vd->vdev_aux)
1943 return;
1944
1945 if (vd->vdev_ops->vdev_op_leaf) {
1946 dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan;
1947
1948 mutex_enter(&vd->vdev_dtl_lock);
1949
1950 /*
1951 * If we've completed a scan cleanly then determine
1952 * if this vdev should remove any DTLs. We only want to
1953 * excise regions on vdevs that were available during
1954 * the entire duration of this scan.
1955 */
1956 if (scrub_txg != 0 &&
1957 (spa->spa_scrub_started ||
1958 (scn != NULL && scn->scn_phys.scn_errors == 0)) &&
1959 vdev_dtl_should_excise(vd)) {
1960 /*
1961 * We completed a scrub up to scrub_txg. If we
1962 * did it without rebooting, then the scrub dtl
1963 * will be valid, so excise the old region and
1964 * fold in the scrub dtl. Otherwise, leave the
1965 * dtl as-is if there was an error.
1966 *
1967 * There's little trick here: to excise the beginning
1968 * of the DTL_MISSING map, we put it into a reference
1969 * tree and then add a segment with refcnt -1 that
1970 * covers the range [0, scrub_txg). This means
1971 * that each txg in that range has refcnt -1 or 0.
1972 * We then add DTL_SCRUB with a refcnt of 2, so that
1973 * entries in the range [0, scrub_txg) will have a
1974 * positive refcnt -- either 1 or 2. We then convert
1975 * the reference tree into the new DTL_MISSING map.
1976 */
1977 space_reftree_create(&reftree);
1978 space_reftree_add_map(&reftree,
1979 vd->vdev_dtl[DTL_MISSING], 1);
1980 space_reftree_add_seg(&reftree, 0, scrub_txg, -1);
1981 space_reftree_add_map(&reftree,
1982 vd->vdev_dtl[DTL_SCRUB], 2);
1983 space_reftree_generate_map(&reftree,
1984 vd->vdev_dtl[DTL_MISSING], 1);
1985 space_reftree_destroy(&reftree);
1986 }
1987 range_tree_vacate(vd->vdev_dtl[DTL_PARTIAL], NULL, NULL);
1988 range_tree_walk(vd->vdev_dtl[DTL_MISSING],
1989 range_tree_add, vd->vdev_dtl[DTL_PARTIAL]);
1990 if (scrub_done)
1991 range_tree_vacate(vd->vdev_dtl[DTL_SCRUB], NULL, NULL);
1992 range_tree_vacate(vd->vdev_dtl[DTL_OUTAGE], NULL, NULL);
1993 if (!vdev_readable(vd))
1994 range_tree_add(vd->vdev_dtl[DTL_OUTAGE], 0, -1ULL);
1995 else
1996 range_tree_walk(vd->vdev_dtl[DTL_MISSING],
1997 range_tree_add, vd->vdev_dtl[DTL_OUTAGE]);
1998
1999 /*
2000 * If the vdev was resilvering and no longer has any
2001 * DTLs then reset its resilvering flag and dirty
2002 * the top level so that we persist the change.
2003 */
2004 if (vd->vdev_resilver_txg != 0 &&
2005 range_tree_space(vd->vdev_dtl[DTL_MISSING]) == 0 &&
2006 range_tree_space(vd->vdev_dtl[DTL_OUTAGE]) == 0) {
2007 vd->vdev_resilver_txg = 0;
2008 vdev_config_dirty(vd->vdev_top);
2009 }
2010
2011 mutex_exit(&vd->vdev_dtl_lock);
2012
2013 if (txg != 0)
2014 vdev_dirty(vd->vdev_top, VDD_DTL, vd, txg);
2015 return;
2016 }
2017
2018 mutex_enter(&vd->vdev_dtl_lock);
2019 for (int t = 0; t < DTL_TYPES; t++) {
2020 /* account for child's outage in parent's missing map */
2021 int s = (t == DTL_MISSING) ? DTL_OUTAGE: t;
2022 if (t == DTL_SCRUB)
2023 continue; /* leaf vdevs only */
2024 if (t == DTL_PARTIAL)
2025 minref = 1; /* i.e. non-zero */
2026 else if (vd->vdev_nparity != 0)
2027 minref = vd->vdev_nparity + 1; /* RAID-Z */
2028 else
2029 minref = vd->vdev_children; /* any kind of mirror */
2030 space_reftree_create(&reftree);
2031 for (int c = 0; c < vd->vdev_children; c++) {
2032 vdev_t *cvd = vd->vdev_child[c];
2033 mutex_enter(&cvd->vdev_dtl_lock);
2034 space_reftree_add_map(&reftree, cvd->vdev_dtl[s], 1);
2035 mutex_exit(&cvd->vdev_dtl_lock);
2036 }
2037 space_reftree_generate_map(&reftree, vd->vdev_dtl[t], minref);
2038 space_reftree_destroy(&reftree);
2039 }
2040 mutex_exit(&vd->vdev_dtl_lock);
2041 }
2042
2043 int
2044 vdev_dtl_load(vdev_t *vd)
2045 {
2046 spa_t *spa = vd->vdev_spa;
2047 objset_t *mos = spa->spa_meta_objset;
2048 int error = 0;
2049
2050 if (vd->vdev_ops->vdev_op_leaf && vd->vdev_dtl_object != 0) {
2051 ASSERT(!vd->vdev_ishole);
2052
2053 error = space_map_open(&vd->vdev_dtl_sm, mos,
2054 vd->vdev_dtl_object, 0, -1ULL, 0, &vd->vdev_dtl_lock);
2055 if (error)
2056 return (error);
2057 ASSERT(vd->vdev_dtl_sm != NULL);
2058
2059 mutex_enter(&vd->vdev_dtl_lock);
2060
2061 /*
2062 * Now that we've opened the space_map we need to update
2063 * the in-core DTL.
2064 */
2065 space_map_update(vd->vdev_dtl_sm);
2066
2067 error = space_map_load(vd->vdev_dtl_sm,
2068 vd->vdev_dtl[DTL_MISSING], SM_ALLOC);
2069 mutex_exit(&vd->vdev_dtl_lock);
2070
2071 return (error);
2072 }
2073
2074 for (int c = 0; c < vd->vdev_children; c++) {
2075 error = vdev_dtl_load(vd->vdev_child[c]);
2076 if (error != 0)
2077 break;
2078 }
2079
2080 return (error);
2081 }
2082
2083 void
2084 vdev_destroy_unlink_zap(vdev_t *vd, uint64_t zapobj, dmu_tx_t *tx)
2085 {
2086 spa_t *spa = vd->vdev_spa;
2087
2088 VERIFY0(zap_destroy(spa->spa_meta_objset, zapobj, tx));
2089 VERIFY0(zap_remove_int(spa->spa_meta_objset, spa->spa_all_vdev_zaps,
2090 zapobj, tx));
2091 }
2092
2093 uint64_t
2094 vdev_create_link_zap(vdev_t *vd, dmu_tx_t *tx)
2095 {
2096 spa_t *spa = vd->vdev_spa;
2097 uint64_t zap = zap_create(spa->spa_meta_objset, DMU_OTN_ZAP_METADATA,
2098 DMU_OT_NONE, 0, tx);
2099
2100 ASSERT(zap != 0);
2101 VERIFY0(zap_add_int(spa->spa_meta_objset, spa->spa_all_vdev_zaps,
2102 zap, tx));
2103
2104 return (zap);
2105 }
2106
2107 void
2108 vdev_construct_zaps(vdev_t *vd, dmu_tx_t *tx)
2109 {
2110 if (vd->vdev_ops != &vdev_hole_ops &&
2111 vd->vdev_ops != &vdev_missing_ops &&
2112 vd->vdev_ops != &vdev_root_ops &&
2113 !vd->vdev_top->vdev_removing) {
2114 if (vd->vdev_ops->vdev_op_leaf && vd->vdev_leaf_zap == 0) {
2115 vd->vdev_leaf_zap = vdev_create_link_zap(vd, tx);
2116 }
2117 if (vd == vd->vdev_top && vd->vdev_top_zap == 0) {
2118 vd->vdev_top_zap = vdev_create_link_zap(vd, tx);
2119 }
2120 }
2121 for (uint64_t i = 0; i < vd->vdev_children; i++) {
2122 vdev_construct_zaps(vd->vdev_child[i], tx);
2123 }
2124 }
2125
2126 void
2127 vdev_dtl_sync(vdev_t *vd, uint64_t txg)
2128 {
2129 spa_t *spa = vd->vdev_spa;
2130 range_tree_t *rt = vd->vdev_dtl[DTL_MISSING];
2131 objset_t *mos = spa->spa_meta_objset;
2132 range_tree_t *rtsync;
2133 kmutex_t rtlock;
2134 dmu_tx_t *tx;
2135 uint64_t object = space_map_object(vd->vdev_dtl_sm);
2136
2137 ASSERT(!vd->vdev_ishole);
2138 ASSERT(vd->vdev_ops->vdev_op_leaf);
2139
2140 tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
2141
2142 if (vd->vdev_detached || vd->vdev_top->vdev_removing) {
2143 mutex_enter(&vd->vdev_dtl_lock);
2144 space_map_free(vd->vdev_dtl_sm, tx);
2145 space_map_close(vd->vdev_dtl_sm);
2146 vd->vdev_dtl_sm = NULL;
2147 mutex_exit(&vd->vdev_dtl_lock);
2148
2149 /*
2150 * We only destroy the leaf ZAP for detached leaves or for
2151 * removed log devices. Removed data devices handle leaf ZAP
2152 * cleanup later, once cancellation is no longer possible.
2153 */
2154 if (vd->vdev_leaf_zap != 0 && (vd->vdev_detached ||
2155 vd->vdev_top->vdev_islog)) {
2156 vdev_destroy_unlink_zap(vd, vd->vdev_leaf_zap, tx);
2157 vd->vdev_leaf_zap = 0;
2158 }
2159
2160 dmu_tx_commit(tx);
2161 return;
2162 }
2163
2164 if (vd->vdev_dtl_sm == NULL) {
2165 uint64_t new_object;
2166
2167 new_object = space_map_alloc(mos, tx);
2168 VERIFY3U(new_object, !=, 0);
2169
2170 VERIFY0(space_map_open(&vd->vdev_dtl_sm, mos, new_object,
2171 0, -1ULL, 0, &vd->vdev_dtl_lock));
2172 ASSERT(vd->vdev_dtl_sm != NULL);
2173 }
2174
2175 mutex_init(&rtlock, NULL, MUTEX_DEFAULT, NULL);
2176
2177 rtsync = range_tree_create(NULL, NULL, &rtlock);
2178
2179 mutex_enter(&rtlock);
2180
2181 mutex_enter(&vd->vdev_dtl_lock);
2182 range_tree_walk(rt, range_tree_add, rtsync);
2183 mutex_exit(&vd->vdev_dtl_lock);
2184
2185 space_map_truncate(vd->vdev_dtl_sm, tx);
2186 space_map_write(vd->vdev_dtl_sm, rtsync, SM_ALLOC, tx);
2187 range_tree_vacate(rtsync, NULL, NULL);
2188
2189 range_tree_destroy(rtsync);
2190
2191 mutex_exit(&rtlock);
2192 mutex_destroy(&rtlock);
2193
2194 /*
2195 * If the object for the space map has changed then dirty
2196 * the top level so that we update the config.
2197 */
2198 if (object != space_map_object(vd->vdev_dtl_sm)) {
2199 zfs_dbgmsg("txg %llu, spa %s, DTL old object %llu, "
2200 "new object %llu", txg, spa_name(spa), object,
2201 space_map_object(vd->vdev_dtl_sm));
2202 vdev_config_dirty(vd->vdev_top);
2203 }
2204
2205 dmu_tx_commit(tx);
2206
2207 mutex_enter(&vd->vdev_dtl_lock);
2208 space_map_update(vd->vdev_dtl_sm);
2209 mutex_exit(&vd->vdev_dtl_lock);
2210 }
2211
2212 /*
2213 * Determine whether the specified vdev can be offlined/detached/removed
2214 * without losing data.
2215 */
2216 boolean_t
2217 vdev_dtl_required(vdev_t *vd)
2218 {
2219 spa_t *spa = vd->vdev_spa;
2220 vdev_t *tvd = vd->vdev_top;
2221 uint8_t cant_read = vd->vdev_cant_read;
2222 boolean_t required;
2223
2224 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
2225
2226 if (vd == spa->spa_root_vdev || vd == tvd)
2227 return (B_TRUE);
2228
2229 /*
2230 * Temporarily mark the device as unreadable, and then determine
2231 * whether this results in any DTL outages in the top-level vdev.
2232 * If not, we can safely offline/detach/remove the device.
2233 */
2234 vd->vdev_cant_read = B_TRUE;
2235 vdev_dtl_reassess(tvd, 0, 0, B_FALSE);
2236 required = !vdev_dtl_empty(tvd, DTL_OUTAGE);
2237 vd->vdev_cant_read = cant_read;
2238 vdev_dtl_reassess(tvd, 0, 0, B_FALSE);
2239
2240 if (!required && zio_injection_enabled)
2241 required = !!zio_handle_device_injection(vd, NULL, ECHILD);
2242
2243 return (required);
2244 }
2245
2246 /*
2247 * Determine if resilver is needed, and if so the txg range.
2248 */
2249 boolean_t
2250 vdev_resilver_needed(vdev_t *vd, uint64_t *minp, uint64_t *maxp)
2251 {
2252 boolean_t needed = B_FALSE;
2253 uint64_t thismin = UINT64_MAX;
2254 uint64_t thismax = 0;
2255
2256 if (vd->vdev_children == 0) {
2257 mutex_enter(&vd->vdev_dtl_lock);
2258 if (range_tree_space(vd->vdev_dtl[DTL_MISSING]) != 0 &&
2259 vdev_writeable(vd)) {
2260
2261 thismin = vdev_dtl_min(vd);
2262 thismax = vdev_dtl_max(vd);
2263 needed = B_TRUE;
2264 }
2265 mutex_exit(&vd->vdev_dtl_lock);
2266 } else {
2267 for (int c = 0; c < vd->vdev_children; c++) {
2268 vdev_t *cvd = vd->vdev_child[c];
2269 uint64_t cmin, cmax;
2270
2271 if (vdev_resilver_needed(cvd, &cmin, &cmax)) {
2272 thismin = MIN(thismin, cmin);
2273 thismax = MAX(thismax, cmax);
2274 needed = B_TRUE;
2275 }
2276 }
2277 }
2278
2279 if (needed && minp) {
2280 *minp = thismin;
2281 *maxp = thismax;
2282 }
2283 return (needed);
2284 }
2285
2286 void
2287 vdev_load(vdev_t *vd)
2288 {
2289 /*
2290 * Recursively load all children.
2291 */
2292 for (int c = 0; c < vd->vdev_children; c++)
2293 vdev_load(vd->vdev_child[c]);
2294
2295 /*
2296 * If this is a top-level vdev, initialize its metaslabs.
2297 */
2298 if (vd == vd->vdev_top && !vd->vdev_ishole &&
2299 (vd->vdev_ashift == 0 || vd->vdev_asize == 0 ||
2300 vdev_metaslab_init(vd, 0) != 0))
2301 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2302 VDEV_AUX_CORRUPT_DATA);
2303 /*
2304 * If this is a leaf vdev, load its DTL.
2305 */
2306 if (vd->vdev_ops->vdev_op_leaf && vdev_dtl_load(vd) != 0)
2307 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2308 VDEV_AUX_CORRUPT_DATA);
2309 }
2310
2311 /*
2312 * The special vdev case is used for hot spares and l2cache devices. Its
2313 * sole purpose it to set the vdev state for the associated vdev. To do this,
2314 * we make sure that we can open the underlying device, then try to read the
2315 * label, and make sure that the label is sane and that it hasn't been
2316 * repurposed to another pool.
2317 */
2318 int
2319 vdev_validate_aux(vdev_t *vd)
2320 {
2321 nvlist_t *label;
2322 uint64_t guid, version;
2323 uint64_t state;
2324
2325 if (!vdev_readable(vd))
2326 return (0);
2327
2328 if ((label = vdev_label_read_config(vd, -1ULL)) == NULL) {
2329 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2330 VDEV_AUX_CORRUPT_DATA);
2331 return (-1);
2332 }
2333
2334 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_VERSION, &version) != 0 ||
2335 !SPA_VERSION_IS_SUPPORTED(version) ||
2336 nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0 ||
2337 guid != vd->vdev_guid ||
2338 nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, &state) != 0) {
2339 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2340 VDEV_AUX_CORRUPT_DATA);
2341 nvlist_free(label);
2342 return (-1);
2343 }
2344
2345 /*
2346 * We don't actually check the pool state here. If it's in fact in
2347 * use by another pool, we update this fact on the fly when requested.
2348 */
2349 nvlist_free(label);
2350 return (0);
2351 }
2352
2353 void
2354 vdev_remove(vdev_t *vd, uint64_t txg)
2355 {
2356 spa_t *spa = vd->vdev_spa;
2357 objset_t *mos = spa->spa_meta_objset;
2358 dmu_tx_t *tx;
2359
2360 tx = dmu_tx_create_assigned(spa_get_dsl(spa), txg);
2361 ASSERT(vd == vd->vdev_top);
2362 ASSERT3U(txg, ==, spa_syncing_txg(spa));
2363
2364 if (vd->vdev_ms != NULL) {
2365 metaslab_group_t *mg = vd->vdev_mg;
2366
2367 metaslab_group_histogram_verify(mg);
2368 metaslab_class_histogram_verify(mg->mg_class);
2369
2370 for (int m = 0; m < vd->vdev_ms_count; m++) {
2371 metaslab_t *msp = vd->vdev_ms[m];
2372
2373 if (msp == NULL || msp->ms_sm == NULL)
2374 continue;
2375
2376 mutex_enter(&msp->ms_lock);
2377 /*
2378 * If the metaslab was not loaded when the vdev
2379 * was removed then the histogram accounting may
2380 * not be accurate. Update the histogram information
2381 * here so that we ensure that the metaslab group
2382 * and metaslab class are up-to-date.
2383 */
2384 metaslab_group_histogram_remove(mg, msp);
2385
2386 VERIFY0(space_map_allocated(msp->ms_sm));
2387 space_map_free(msp->ms_sm, tx);
2388 space_map_close(msp->ms_sm);
2389 msp->ms_sm = NULL;
2390 mutex_exit(&msp->ms_lock);
2391 }
2392
2393 metaslab_group_histogram_verify(mg);
2394 metaslab_class_histogram_verify(mg->mg_class);
2395 for (int i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i++)
2396 ASSERT0(mg->mg_histogram[i]);
2397
2398 }
2399
2400 if (vd->vdev_ms_array) {
2401 (void) dmu_object_free(mos, vd->vdev_ms_array, tx);
2402 vd->vdev_ms_array = 0;
2403 }
2404
2405 if (vd->vdev_islog && vd->vdev_top_zap != 0) {
2406 vdev_destroy_unlink_zap(vd, vd->vdev_top_zap, tx);
2407 vd->vdev_top_zap = 0;
2408 }
2409 dmu_tx_commit(tx);
2410 }
2411
2412 void
2413 vdev_sync_done(vdev_t *vd, uint64_t txg)
2414 {
2415 metaslab_t *msp;
2416 boolean_t reassess = !txg_list_empty(&vd->vdev_ms_list, TXG_CLEAN(txg));
2417
2418 ASSERT(!vd->vdev_ishole);
2419
2420 while ((msp = txg_list_remove(&vd->vdev_ms_list, TXG_CLEAN(txg))))
2421 metaslab_sync_done(msp, txg);
2422
2423 if (reassess)
2424 metaslab_sync_reassess(vd->vdev_mg);
2425 }
2426
2427 void
2428 vdev_sync(vdev_t *vd, uint64_t txg)
2429 {
2430 spa_t *spa = vd->vdev_spa;
2431 vdev_t *lvd;
2432 metaslab_t *msp;
2433 dmu_tx_t *tx;
2434
2435 ASSERT(!vd->vdev_ishole);
2436
2437 if (vd->vdev_ms_array == 0 && vd->vdev_ms_shift != 0) {
2438 ASSERT(vd == vd->vdev_top);
2439 tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
2440 vd->vdev_ms_array = dmu_object_alloc(spa->spa_meta_objset,
2441 DMU_OT_OBJECT_ARRAY, 0, DMU_OT_NONE, 0, tx);
2442 ASSERT(vd->vdev_ms_array != 0);
2443 vdev_config_dirty(vd);
2444 dmu_tx_commit(tx);
2445 }
2446
2447 /*
2448 * Remove the metadata associated with this vdev once it's empty.
2449 */
2450 if (vd->vdev_stat.vs_alloc == 0 && vd->vdev_removing)
2451 vdev_remove(vd, txg);
2452
2453 while ((msp = txg_list_remove(&vd->vdev_ms_list, txg)) != NULL) {
2454 metaslab_sync(msp, txg);
2455 (void) txg_list_add(&vd->vdev_ms_list, msp, TXG_CLEAN(txg));
2456 }
2457
2458 while ((lvd = txg_list_remove(&vd->vdev_dtl_list, txg)) != NULL)
2459 vdev_dtl_sync(lvd, txg);
2460
2461 (void) txg_list_add(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg));
2462 }
2463
2464 uint64_t
2465 vdev_psize_to_asize(vdev_t *vd, uint64_t psize)
2466 {
2467 return (vd->vdev_ops->vdev_op_asize(vd, psize));
2468 }
2469
2470 /*
2471 * Mark the given vdev faulted. A faulted vdev behaves as if the device could
2472 * not be opened, and no I/O is attempted.
2473 */
2474 int
2475 vdev_fault(spa_t *spa, uint64_t guid, vdev_aux_t aux)
2476 {
2477 vdev_t *vd, *tvd;
2478
2479 spa_vdev_state_enter(spa, SCL_NONE);
2480
2481 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2482 return (spa_vdev_state_exit(spa, NULL, ENODEV));
2483
2484 if (!vd->vdev_ops->vdev_op_leaf)
2485 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2486
2487 tvd = vd->vdev_top;
2488
2489 /*
2490 * If user did a 'zpool offline -f' then make the fault persist across
2491 * reboots.
2492 */
2493 if (aux == VDEV_AUX_EXTERNAL_PERSIST) {
2494 /*
2495 * There are two kinds of forced faults: temporary and
2496 * persistent. Temporary faults go away at pool import, while
2497 * persistent faults stay set. Both types of faults can be
2498 * cleared with a zpool clear.
2499 *
2500 * We tell if a vdev is persistently faulted by looking at the
2501 * ZPOOL_CONFIG_AUX_STATE nvpair. If it's set to "external" at
2502 * import then it's a persistent fault. Otherwise, it's
2503 * temporary. We get ZPOOL_CONFIG_AUX_STATE set to "external"
2504 * by setting vd.vdev_stat.vs_aux to VDEV_AUX_EXTERNAL. This
2505 * tells vdev_config_generate() (which gets run later) to set
2506 * ZPOOL_CONFIG_AUX_STATE to "external" in the nvlist.
2507 */
2508 vd->vdev_stat.vs_aux = VDEV_AUX_EXTERNAL;
2509 vd->vdev_tmpoffline = B_FALSE;
2510 aux = VDEV_AUX_EXTERNAL;
2511 } else {
2512 vd->vdev_tmpoffline = B_TRUE;
2513 }
2514
2515 /*
2516 * We don't directly use the aux state here, but if we do a
2517 * vdev_reopen(), we need this value to be present to remember why we
2518 * were faulted.
2519 */
2520 vd->vdev_label_aux = aux;
2521
2522 /*
2523 * Faulted state takes precedence over degraded.
2524 */
2525 vd->vdev_delayed_close = B_FALSE;
2526 vd->vdev_faulted = 1ULL;
2527 vd->vdev_degraded = 0ULL;
2528 vdev_set_state(vd, B_FALSE, VDEV_STATE_FAULTED, aux);
2529
2530 /*
2531 * If this device has the only valid copy of the data, then
2532 * back off and simply mark the vdev as degraded instead.
2533 */
2534 if (!tvd->vdev_islog && vd->vdev_aux == NULL && vdev_dtl_required(vd)) {
2535 vd->vdev_degraded = 1ULL;
2536 vd->vdev_faulted = 0ULL;
2537
2538 /*
2539 * If we reopen the device and it's not dead, only then do we
2540 * mark it degraded.
2541 */
2542 vdev_reopen(tvd);
2543
2544 if (vdev_readable(vd))
2545 vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, aux);
2546 }
2547
2548 return (spa_vdev_state_exit(spa, vd, 0));
2549 }
2550
2551 /*
2552 * Mark the given vdev degraded. A degraded vdev is purely an indication to the
2553 * user that something is wrong. The vdev continues to operate as normal as far
2554 * as I/O is concerned.
2555 */
2556 int
2557 vdev_degrade(spa_t *spa, uint64_t guid, vdev_aux_t aux)
2558 {
2559 vdev_t *vd;
2560
2561 spa_vdev_state_enter(spa, SCL_NONE);
2562
2563 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2564 return (spa_vdev_state_exit(spa, NULL, ENODEV));
2565
2566 if (!vd->vdev_ops->vdev_op_leaf)
2567 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2568
2569 /*
2570 * If the vdev is already faulted, then don't do anything.
2571 */
2572 if (vd->vdev_faulted || vd->vdev_degraded)
2573 return (spa_vdev_state_exit(spa, NULL, 0));
2574
2575 vd->vdev_degraded = 1ULL;
2576 if (!vdev_is_dead(vd))
2577 vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED,
2578 aux);
2579
2580 return (spa_vdev_state_exit(spa, vd, 0));
2581 }
2582
2583 /*
2584 * Online the given vdev.
2585 *
2586 * If 'ZFS_ONLINE_UNSPARE' is set, it implies two things. First, any attached
2587 * spare device should be detached when the device finishes resilvering.
2588 * Second, the online should be treated like a 'test' online case, so no FMA
2589 * events are generated if the device fails to open.
2590 */
2591 int
2592 vdev_online(spa_t *spa, uint64_t guid, uint64_t flags, vdev_state_t *newstate)
2593 {
2594 vdev_t *vd, *tvd, *pvd, *rvd = spa->spa_root_vdev;
2595 boolean_t wasoffline;
2596 vdev_state_t oldstate;
2597
2598 spa_vdev_state_enter(spa, SCL_NONE);
2599
2600 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2601 return (spa_vdev_state_exit(spa, NULL, ENODEV));
2602
2603 if (!vd->vdev_ops->vdev_op_leaf)
2604 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2605
2606 wasoffline = (vd->vdev_offline || vd->vdev_tmpoffline);
2607 oldstate = vd->vdev_state;
2608
2609 tvd = vd->vdev_top;
2610 vd->vdev_offline = B_FALSE;
2611 vd->vdev_tmpoffline = B_FALSE;
2612 vd->vdev_checkremove = !!(flags & ZFS_ONLINE_CHECKREMOVE);
2613 vd->vdev_forcefault = !!(flags & ZFS_ONLINE_FORCEFAULT);
2614
2615 /* XXX - L2ARC 1.0 does not support expansion */
2616 if (!vd->vdev_aux) {
2617 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
2618 pvd->vdev_expanding = !!(flags & ZFS_ONLINE_EXPAND);
2619 }
2620
2621 vdev_reopen(tvd);
2622 vd->vdev_checkremove = vd->vdev_forcefault = B_FALSE;
2623
2624 if (!vd->vdev_aux) {
2625 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
2626 pvd->vdev_expanding = B_FALSE;
2627 }
2628
2629 if (newstate)
2630 *newstate = vd->vdev_state;
2631 if ((flags & ZFS_ONLINE_UNSPARE) &&
2632 !vdev_is_dead(vd) && vd->vdev_parent &&
2633 vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
2634 vd->vdev_parent->vdev_child[0] == vd)
2635 vd->vdev_unspare = B_TRUE;
2636
2637 if ((flags & ZFS_ONLINE_EXPAND) || spa->spa_autoexpand) {
2638
2639 /* XXX - L2ARC 1.0 does not support expansion */
2640 if (vd->vdev_aux)
2641 return (spa_vdev_state_exit(spa, vd, ENOTSUP));
2642 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
2643 }
2644
2645 if (wasoffline ||
2646 (oldstate < VDEV_STATE_DEGRADED &&
2647 vd->vdev_state >= VDEV_STATE_DEGRADED))
2648 spa_event_notify(spa, vd, NULL, ESC_ZFS_VDEV_ONLINE);
2649
2650 return (spa_vdev_state_exit(spa, vd, 0));
2651 }
2652
2653 static int
2654 vdev_offline_locked(spa_t *spa, uint64_t guid, uint64_t flags)
2655 {
2656 vdev_t *vd, *tvd;
2657 int error = 0;
2658 uint64_t generation;
2659 metaslab_group_t *mg;
2660
2661 top:
2662 spa_vdev_state_enter(spa, SCL_ALLOC);
2663
2664 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2665 return (spa_vdev_state_exit(spa, NULL, ENODEV));
2666
2667 if (!vd->vdev_ops->vdev_op_leaf)
2668 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2669
2670 tvd = vd->vdev_top;
2671 mg = tvd->vdev_mg;
2672 generation = spa->spa_config_generation + 1;
2673
2674 /*
2675 * If the device isn't already offline, try to offline it.
2676 */
2677 if (!vd->vdev_offline) {
2678 /*
2679 * If this device has the only valid copy of some data,
2680 * don't allow it to be offlined. Log devices are always
2681 * expendable.
2682 */
2683 if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
2684 vdev_dtl_required(vd))
2685 return (spa_vdev_state_exit(spa, NULL, EBUSY));
2686
2687 /*
2688 * If the top-level is a slog and it has had allocations
2689 * then proceed. We check that the vdev's metaslab group
2690 * is not NULL since it's possible that we may have just
2691 * added this vdev but not yet initialized its metaslabs.
2692 */
2693 if (tvd->vdev_islog && mg != NULL) {
2694 /*
2695 * Prevent any future allocations.
2696 */
2697 metaslab_group_passivate(mg);
2698 (void) spa_vdev_state_exit(spa, vd, 0);
2699
2700 error = spa_offline_log(spa);
2701
2702 spa_vdev_state_enter(spa, SCL_ALLOC);
2703
2704 /*
2705 * Check to see if the config has changed.
2706 */
2707 if (error || generation != spa->spa_config_generation) {
2708 metaslab_group_activate(mg);
2709 if (error)
2710 return (spa_vdev_state_exit(spa,
2711 vd, error));
2712 (void) spa_vdev_state_exit(spa, vd, 0);
2713 goto top;
2714 }
2715 ASSERT0(tvd->vdev_stat.vs_alloc);
2716 }
2717
2718 /*
2719 * Offline this device and reopen its top-level vdev.
2720 * If the top-level vdev is a log device then just offline
2721 * it. Otherwise, if this action results in the top-level
2722 * vdev becoming unusable, undo it and fail the request.
2723 */
2724 vd->vdev_offline = B_TRUE;
2725 vdev_reopen(tvd);
2726
2727 if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
2728 vdev_is_dead(tvd)) {
2729 vd->vdev_offline = B_FALSE;
2730 vdev_reopen(tvd);
2731 return (spa_vdev_state_exit(spa, NULL, EBUSY));
2732 }
2733
2734 /*
2735 * Add the device back into the metaslab rotor so that
2736 * once we online the device it's open for business.
2737 */
2738 if (tvd->vdev_islog && mg != NULL)
2739 metaslab_group_activate(mg);
2740 }
2741
2742 vd->vdev_tmpoffline = !!(flags & ZFS_OFFLINE_TEMPORARY);
2743
2744 return (spa_vdev_state_exit(spa, vd, 0));
2745 }
2746
2747 int
2748 vdev_offline(spa_t *spa, uint64_t guid, uint64_t flags)
2749 {
2750 int error;
2751
2752 mutex_enter(&spa->spa_vdev_top_lock);
2753 error = vdev_offline_locked(spa, guid, flags);
2754 mutex_exit(&spa->spa_vdev_top_lock);
2755
2756 return (error);
2757 }
2758
2759 /*
2760 * Clear the error counts associated with this vdev. Unlike vdev_online() and
2761 * vdev_offline(), we assume the spa config is locked. We also clear all
2762 * children. If 'vd' is NULL, then the user wants to clear all vdevs.
2763 */
2764 void
2765 vdev_clear(spa_t *spa, vdev_t *vd)
2766 {
2767 vdev_t *rvd = spa->spa_root_vdev;
2768
2769 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
2770
2771 if (vd == NULL)
2772 vd = rvd;
2773
2774 vd->vdev_stat.vs_read_errors = 0;
2775 vd->vdev_stat.vs_write_errors = 0;
2776 vd->vdev_stat.vs_checksum_errors = 0;
2777
2778 for (int c = 0; c < vd->vdev_children; c++)
2779 vdev_clear(spa, vd->vdev_child[c]);
2780
2781 /*
2782 * If we're in the FAULTED state or have experienced failed I/O, then
2783 * clear the persistent state and attempt to reopen the device. We
2784 * also mark the vdev config dirty, so that the new faulted state is
2785 * written out to disk.
2786 */
2787 if (vd->vdev_faulted || vd->vdev_degraded ||
2788 !vdev_readable(vd) || !vdev_writeable(vd)) {
2789 /*
2790 * When reopening in response to a clear event, it may be due to
2791 * a fmadm repair request. In this case, if the device is
2792 * still broken, we want to still post the ereport again.
2793 */
2794 vd->vdev_forcefault = B_TRUE;
2795
2796 vd->vdev_faulted = vd->vdev_degraded = 0ULL;
2797 vd->vdev_cant_read = B_FALSE;
2798 vd->vdev_cant_write = B_FALSE;
2799 vd->vdev_stat.vs_aux = 0;
2800
2801 vdev_reopen(vd == rvd ? rvd : vd->vdev_top);
2802
2803 vd->vdev_forcefault = B_FALSE;
2804
2805 if (vd != rvd && vdev_writeable(vd->vdev_top))
2806 vdev_state_dirty(vd->vdev_top);
2807
2808 if (vd->vdev_aux == NULL && !vdev_is_dead(vd))
2809 spa_async_request(spa, SPA_ASYNC_RESILVER);
2810
2811 spa_event_notify(spa, vd, NULL, ESC_ZFS_VDEV_CLEAR);
2812 }
2813
2814 /*
2815 * When clearing a FMA-diagnosed fault, we always want to
2816 * unspare the device, as we assume that the original spare was
2817 * done in response to the FMA fault.
2818 */
2819 if (!vdev_is_dead(vd) && vd->vdev_parent != NULL &&
2820 vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
2821 vd->vdev_parent->vdev_child[0] == vd)
2822 vd->vdev_unspare = B_TRUE;
2823 }
2824
2825 boolean_t
2826 vdev_is_dead(vdev_t *vd)
2827 {
2828 /*
2829 * Holes and missing devices are always considered "dead".
2830 * This simplifies the code since we don't have to check for
2831 * these types of devices in the various code paths.
2832 * Instead we rely on the fact that we skip over dead devices
2833 * before issuing I/O to them.
2834 */
2835 return (vd->vdev_state < VDEV_STATE_DEGRADED || vd->vdev_ishole ||
2836 vd->vdev_ops == &vdev_missing_ops);
2837 }
2838
2839 boolean_t
2840 vdev_readable(vdev_t *vd)
2841 {
2842 return (!vdev_is_dead(vd) && !vd->vdev_cant_read);
2843 }
2844
2845 boolean_t
2846 vdev_writeable(vdev_t *vd)
2847 {
2848 return (!vdev_is_dead(vd) && !vd->vdev_cant_write);
2849 }
2850
2851 boolean_t
2852 vdev_allocatable(vdev_t *vd)
2853 {
2854 uint64_t state = vd->vdev_state;
2855
2856 /*
2857 * We currently allow allocations from vdevs which may be in the
2858 * process of reopening (i.e. VDEV_STATE_CLOSED). If the device
2859 * fails to reopen then we'll catch it later when we're holding
2860 * the proper locks. Note that we have to get the vdev state
2861 * in a local variable because although it changes atomically,
2862 * we're asking two separate questions about it.
2863 */
2864 return (!(state < VDEV_STATE_DEGRADED && state != VDEV_STATE_CLOSED) &&
2865 !vd->vdev_cant_write && !vd->vdev_ishole &&
2866 vd->vdev_mg->mg_initialized);
2867 }
2868
2869 boolean_t
2870 vdev_accessible(vdev_t *vd, zio_t *zio)
2871 {
2872 ASSERT(zio->io_vd == vd);
2873
2874 if (vdev_is_dead(vd) || vd->vdev_remove_wanted)
2875 return (B_FALSE);
2876
2877 if (zio->io_type == ZIO_TYPE_READ)
2878 return (!vd->vdev_cant_read);
2879
2880 if (zio->io_type == ZIO_TYPE_WRITE)
2881 return (!vd->vdev_cant_write);
2882
2883 return (B_TRUE);
2884 }
2885
2886 static void
2887 vdev_get_child_stat(vdev_t *cvd, vdev_stat_t *vs, vdev_stat_t *cvs)
2888 {
2889 int t;
2890 for (t = 0; t < ZIO_TYPES; t++) {
2891 vs->vs_ops[t] += cvs->vs_ops[t];
2892 vs->vs_bytes[t] += cvs->vs_bytes[t];
2893 }
2894
2895 cvs->vs_scan_removing = cvd->vdev_removing;
2896 }
2897
2898 /*
2899 * Get extended stats
2900 */
2901 static void
2902 vdev_get_child_stat_ex(vdev_t *cvd, vdev_stat_ex_t *vsx, vdev_stat_ex_t *cvsx)
2903 {
2904 int t, b;
2905 for (t = 0; t < ZIO_TYPES; t++) {
2906 for (b = 0; b < ARRAY_SIZE(vsx->vsx_disk_histo[0]); b++)
2907 vsx->vsx_disk_histo[t][b] += cvsx->vsx_disk_histo[t][b];
2908
2909 for (b = 0; b < ARRAY_SIZE(vsx->vsx_total_histo[0]); b++) {
2910 vsx->vsx_total_histo[t][b] +=
2911 cvsx->vsx_total_histo[t][b];
2912 }
2913 }
2914
2915 for (t = 0; t < ZIO_PRIORITY_NUM_QUEUEABLE; t++) {
2916 for (b = 0; b < ARRAY_SIZE(vsx->vsx_queue_histo[0]); b++) {
2917 vsx->vsx_queue_histo[t][b] +=
2918 cvsx->vsx_queue_histo[t][b];
2919 }
2920 vsx->vsx_active_queue[t] += cvsx->vsx_active_queue[t];
2921 vsx->vsx_pend_queue[t] += cvsx->vsx_pend_queue[t];
2922
2923 for (b = 0; b < ARRAY_SIZE(vsx->vsx_ind_histo[0]); b++)
2924 vsx->vsx_ind_histo[t][b] += cvsx->vsx_ind_histo[t][b];
2925
2926 for (b = 0; b < ARRAY_SIZE(vsx->vsx_agg_histo[0]); b++)
2927 vsx->vsx_agg_histo[t][b] += cvsx->vsx_agg_histo[t][b];
2928 }
2929
2930 }
2931
2932 /*
2933 * Get statistics for the given vdev.
2934 */
2935 static void
2936 vdev_get_stats_ex_impl(vdev_t *vd, vdev_stat_t *vs, vdev_stat_ex_t *vsx)
2937 {
2938 int t;
2939 /*
2940 * If we're getting stats on the root vdev, aggregate the I/O counts
2941 * over all top-level vdevs (i.e. the direct children of the root).
2942 */
2943 if (!vd->vdev_ops->vdev_op_leaf) {
2944 if (vs) {
2945 memset(vs->vs_ops, 0, sizeof (vs->vs_ops));
2946 memset(vs->vs_bytes, 0, sizeof (vs->vs_bytes));
2947 }
2948 if (vsx)
2949 memset(vsx, 0, sizeof (*vsx));
2950
2951 for (int c = 0; c < vd->vdev_children; c++) {
2952 vdev_t *cvd = vd->vdev_child[c];
2953 vdev_stat_t *cvs = &cvd->vdev_stat;
2954 vdev_stat_ex_t *cvsx = &cvd->vdev_stat_ex;
2955
2956 vdev_get_stats_ex_impl(cvd, cvs, cvsx);
2957 if (vs)
2958 vdev_get_child_stat(cvd, vs, cvs);
2959 if (vsx)
2960 vdev_get_child_stat_ex(cvd, vsx, cvsx);
2961
2962 }
2963 } else {
2964 /*
2965 * We're a leaf. Just copy our ZIO active queue stats in. The
2966 * other leaf stats are updated in vdev_stat_update().
2967 */
2968 if (!vsx)
2969 return;
2970
2971 memcpy(vsx, &vd->vdev_stat_ex, sizeof (vd->vdev_stat_ex));
2972
2973 for (t = 0; t < ARRAY_SIZE(vd->vdev_queue.vq_class); t++) {
2974 vsx->vsx_active_queue[t] =
2975 vd->vdev_queue.vq_class[t].vqc_active;
2976 vsx->vsx_pend_queue[t] = avl_numnodes(
2977 &vd->vdev_queue.vq_class[t].vqc_queued_tree);
2978 }
2979 }
2980 }
2981
2982 void
2983 vdev_get_stats_ex(vdev_t *vd, vdev_stat_t *vs, vdev_stat_ex_t *vsx)
2984 {
2985 vdev_t *tvd = vd->vdev_top;
2986 mutex_enter(&vd->vdev_stat_lock);
2987 if (vs) {
2988 bcopy(&vd->vdev_stat, vs, sizeof (*vs));
2989 vs->vs_timestamp = gethrtime() - vs->vs_timestamp;
2990 vs->vs_state = vd->vdev_state;
2991 vs->vs_rsize = vdev_get_min_asize(vd);
2992 if (vd->vdev_ops->vdev_op_leaf)
2993 vs->vs_rsize += VDEV_LABEL_START_SIZE +
2994 VDEV_LABEL_END_SIZE;
2995 /*
2996 * Report expandable space on top-level, non-auxillary devices
2997 * only. The expandable space is reported in terms of metaslab
2998 * sized units since that determines how much space the pool
2999 * can expand.
3000 */
3001 if (vd->vdev_aux == NULL && tvd != NULL) {
3002 vs->vs_esize = P2ALIGN(
3003 vd->vdev_max_asize - vd->vdev_asize,
3004 1ULL << tvd->vdev_ms_shift);
3005 }
3006 vs->vs_esize = vd->vdev_max_asize - vd->vdev_asize;
3007 if (vd->vdev_aux == NULL && vd == vd->vdev_top &&
3008 !vd->vdev_ishole) {
3009 vs->vs_fragmentation = vd->vdev_mg->mg_fragmentation;
3010 }
3011 }
3012
3013 ASSERT(spa_config_held(vd->vdev_spa, SCL_ALL, RW_READER) != 0);
3014 vdev_get_stats_ex_impl(vd, vs, vsx);
3015 mutex_exit(&vd->vdev_stat_lock);
3016 }
3017
3018 void
3019 vdev_get_stats(vdev_t *vd, vdev_stat_t *vs)
3020 {
3021 return (vdev_get_stats_ex(vd, vs, NULL));
3022 }
3023
3024 void
3025 vdev_clear_stats(vdev_t *vd)
3026 {
3027 mutex_enter(&vd->vdev_stat_lock);
3028 vd->vdev_stat.vs_space = 0;
3029 vd->vdev_stat.vs_dspace = 0;
3030 vd->vdev_stat.vs_alloc = 0;
3031 mutex_exit(&vd->vdev_stat_lock);
3032 }
3033
3034 void
3035 vdev_scan_stat_init(vdev_t *vd)
3036 {
3037 vdev_stat_t *vs = &vd->vdev_stat;
3038
3039 for (int c = 0; c < vd->vdev_children; c++)
3040 vdev_scan_stat_init(vd->vdev_child[c]);
3041
3042 mutex_enter(&vd->vdev_stat_lock);
3043 vs->vs_scan_processed = 0;
3044 mutex_exit(&vd->vdev_stat_lock);
3045 }
3046
3047 void
3048 vdev_stat_update(zio_t *zio, uint64_t psize)
3049 {
3050 spa_t *spa = zio->io_spa;
3051 vdev_t *rvd = spa->spa_root_vdev;
3052 vdev_t *vd = zio->io_vd ? zio->io_vd : rvd;
3053 vdev_t *pvd;
3054 uint64_t txg = zio->io_txg;
3055 vdev_stat_t *vs = &vd->vdev_stat;
3056 vdev_stat_ex_t *vsx = &vd->vdev_stat_ex;
3057 zio_type_t type = zio->io_type;
3058 int flags = zio->io_flags;
3059
3060 /*
3061 * If this i/o is a gang leader, it didn't do any actual work.
3062 */
3063 if (zio->io_gang_tree)
3064 return;
3065
3066 if (zio->io_error == 0) {
3067 /*
3068 * If this is a root i/o, don't count it -- we've already
3069 * counted the top-level vdevs, and vdev_get_stats() will
3070 * aggregate them when asked. This reduces contention on
3071 * the root vdev_stat_lock and implicitly handles blocks
3072 * that compress away to holes, for which there is no i/o.
3073 * (Holes never create vdev children, so all the counters
3074 * remain zero, which is what we want.)
3075 *
3076 * Note: this only applies to successful i/o (io_error == 0)
3077 * because unlike i/o counts, errors are not additive.
3078 * When reading a ditto block, for example, failure of
3079 * one top-level vdev does not imply a root-level error.
3080 */
3081 if (vd == rvd)
3082 return;
3083
3084 ASSERT(vd == zio->io_vd);
3085
3086 if (flags & ZIO_FLAG_IO_BYPASS)
3087 return;
3088
3089 mutex_enter(&vd->vdev_stat_lock);
3090
3091 if (flags & ZIO_FLAG_IO_REPAIR) {
3092 if (flags & ZIO_FLAG_SCAN_THREAD) {
3093 dsl_scan_phys_t *scn_phys =
3094 &spa->spa_dsl_pool->dp_scan->scn_phys;
3095 uint64_t *processed = &scn_phys->scn_processed;
3096
3097 /* XXX cleanup? */
3098 if (vd->vdev_ops->vdev_op_leaf)
3099 atomic_add_64(processed, psize);
3100 vs->vs_scan_processed += psize;
3101 }
3102
3103 if (flags & ZIO_FLAG_SELF_HEAL)
3104 vs->vs_self_healed += psize;
3105 }
3106
3107 /*
3108 * The bytes/ops/histograms are recorded at the leaf level and
3109 * aggregated into the higher level vdevs in vdev_get_stats().
3110 */
3111 if (vd->vdev_ops->vdev_op_leaf &&
3112 (zio->io_priority < ZIO_PRIORITY_NUM_QUEUEABLE)) {
3113
3114 vs->vs_ops[type]++;
3115 vs->vs_bytes[type] += psize;
3116
3117 if (flags & ZIO_FLAG_DELEGATED) {
3118 vsx->vsx_agg_histo[zio->io_priority]
3119 [RQ_HISTO(zio->io_size)]++;
3120 } else {
3121 vsx->vsx_ind_histo[zio->io_priority]
3122 [RQ_HISTO(zio->io_size)]++;
3123 }
3124
3125 if (zio->io_delta && zio->io_delay) {
3126 vsx->vsx_queue_histo[zio->io_priority]
3127 [L_HISTO(zio->io_delta - zio->io_delay)]++;
3128 vsx->vsx_disk_histo[type]
3129 [L_HISTO(zio->io_delay)]++;
3130 vsx->vsx_total_histo[type]
3131 [L_HISTO(zio->io_delta)]++;
3132 }
3133 }
3134
3135 mutex_exit(&vd->vdev_stat_lock);
3136 return;
3137 }
3138
3139 if (flags & ZIO_FLAG_SPECULATIVE)
3140 return;
3141
3142 /*
3143 * If this is an I/O error that is going to be retried, then ignore the
3144 * error. Otherwise, the user may interpret B_FAILFAST I/O errors as
3145 * hard errors, when in reality they can happen for any number of
3146 * innocuous reasons (bus resets, MPxIO link failure, etc).
3147 */
3148 if (zio->io_error == EIO &&
3149 !(zio->io_flags & ZIO_FLAG_IO_RETRY))
3150 return;
3151
3152 /*
3153 * Intent logs writes won't propagate their error to the root
3154 * I/O so don't mark these types of failures as pool-level
3155 * errors.
3156 */
3157 if (zio->io_vd == NULL && (zio->io_flags & ZIO_FLAG_DONT_PROPAGATE))
3158 return;
3159
3160 mutex_enter(&vd->vdev_stat_lock);
3161 if (type == ZIO_TYPE_READ && !vdev_is_dead(vd)) {
3162 if (zio->io_error == ECKSUM)
3163 vs->vs_checksum_errors++;
3164 else
3165 vs->vs_read_errors++;
3166 }
3167 if (type == ZIO_TYPE_WRITE && !vdev_is_dead(vd))
3168 vs->vs_write_errors++;
3169 mutex_exit(&vd->vdev_stat_lock);
3170
3171 if (type == ZIO_TYPE_WRITE && txg != 0 &&
3172 (!(flags & ZIO_FLAG_IO_REPAIR) ||
3173 (flags & ZIO_FLAG_SCAN_THREAD) ||
3174 spa->spa_claiming)) {
3175 /*
3176 * This is either a normal write (not a repair), or it's
3177 * a repair induced by the scrub thread, or it's a repair
3178 * made by zil_claim() during spa_load() in the first txg.
3179 * In the normal case, we commit the DTL change in the same
3180 * txg as the block was born. In the scrub-induced repair
3181 * case, we know that scrubs run in first-pass syncing context,
3182 * so we commit the DTL change in spa_syncing_txg(spa).
3183 * In the zil_claim() case, we commit in spa_first_txg(spa).
3184 *
3185 * We currently do not make DTL entries for failed spontaneous
3186 * self-healing writes triggered by normal (non-scrubbing)
3187 * reads, because we have no transactional context in which to
3188 * do so -- and it's not clear that it'd be desirable anyway.
3189 */
3190 if (vd->vdev_ops->vdev_op_leaf) {
3191 uint64_t commit_txg = txg;
3192 if (flags & ZIO_FLAG_SCAN_THREAD) {
3193 ASSERT(flags & ZIO_FLAG_IO_REPAIR);
3194 ASSERT(spa_sync_pass(spa) == 1);
3195 vdev_dtl_dirty(vd, DTL_SCRUB, txg, 1);
3196 commit_txg = spa_syncing_txg(spa);
3197 } else if (spa->spa_claiming) {
3198 ASSERT(flags & ZIO_FLAG_IO_REPAIR);
3199 commit_txg = spa_first_txg(spa);
3200 }
3201 ASSERT(commit_txg >= spa_syncing_txg(spa));
3202 if (vdev_dtl_contains(vd, DTL_MISSING, txg, 1))
3203 return;
3204 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
3205 vdev_dtl_dirty(pvd, DTL_PARTIAL, txg, 1);
3206 vdev_dirty(vd->vdev_top, VDD_DTL, vd, commit_txg);
3207 }
3208 if (vd != rvd)
3209 vdev_dtl_dirty(vd, DTL_MISSING, txg, 1);
3210 }
3211 }
3212
3213 /*
3214 * Update the in-core space usage stats for this vdev, its metaslab class,
3215 * and the root vdev.
3216 */
3217 void
3218 vdev_space_update(vdev_t *vd, int64_t alloc_delta, int64_t defer_delta,
3219 int64_t space_delta)
3220 {
3221 int64_t dspace_delta = space_delta;
3222 spa_t *spa = vd->vdev_spa;
3223 vdev_t *rvd = spa->spa_root_vdev;
3224 metaslab_group_t *mg = vd->vdev_mg;
3225 metaslab_class_t *mc = mg ? mg->mg_class : NULL;
3226
3227 ASSERT(vd == vd->vdev_top);
3228
3229 /*
3230 * Apply the inverse of the psize-to-asize (ie. RAID-Z) space-expansion
3231 * factor. We must calculate this here and not at the root vdev
3232 * because the root vdev's psize-to-asize is simply the max of its
3233 * childrens', thus not accurate enough for us.
3234 */
3235 ASSERT((dspace_delta & (SPA_MINBLOCKSIZE-1)) == 0);
3236 ASSERT(vd->vdev_deflate_ratio != 0 || vd->vdev_isl2cache);
3237 dspace_delta = (dspace_delta >> SPA_MINBLOCKSHIFT) *
3238 vd->vdev_deflate_ratio;
3239
3240 mutex_enter(&vd->vdev_stat_lock);
3241 vd->vdev_stat.vs_alloc += alloc_delta;
3242 vd->vdev_stat.vs_space += space_delta;
3243 vd->vdev_stat.vs_dspace += dspace_delta;
3244 mutex_exit(&vd->vdev_stat_lock);
3245
3246 if (mc == spa_normal_class(spa)) {
3247 mutex_enter(&rvd->vdev_stat_lock);
3248 rvd->vdev_stat.vs_alloc += alloc_delta;
3249 rvd->vdev_stat.vs_space += space_delta;
3250 rvd->vdev_stat.vs_dspace += dspace_delta;
3251 mutex_exit(&rvd->vdev_stat_lock);
3252 }
3253
3254 if (mc != NULL) {
3255 ASSERT(rvd == vd->vdev_parent);
3256 ASSERT(vd->vdev_ms_count != 0);
3257
3258 metaslab_class_space_update(mc,
3259 alloc_delta, defer_delta, space_delta, dspace_delta);
3260 }
3261 }
3262
3263 /*
3264 * Mark a top-level vdev's config as dirty, placing it on the dirty list
3265 * so that it will be written out next time the vdev configuration is synced.
3266 * If the root vdev is specified (vdev_top == NULL), dirty all top-level vdevs.
3267 */
3268 void
3269 vdev_config_dirty(vdev_t *vd)
3270 {
3271 spa_t *spa = vd->vdev_spa;
3272 vdev_t *rvd = spa->spa_root_vdev;
3273 int c;
3274
3275 ASSERT(spa_writeable(spa));
3276
3277 /*
3278 * If this is an aux vdev (as with l2cache and spare devices), then we
3279 * update the vdev config manually and set the sync flag.
3280 */
3281 if (vd->vdev_aux != NULL) {
3282 spa_aux_vdev_t *sav = vd->vdev_aux;
3283 nvlist_t **aux;
3284 uint_t naux;
3285
3286 for (c = 0; c < sav->sav_count; c++) {
3287 if (sav->sav_vdevs[c] == vd)
3288 break;
3289 }
3290
3291 if (c == sav->sav_count) {
3292 /*
3293 * We're being removed. There's nothing more to do.
3294 */
3295 ASSERT(sav->sav_sync == B_TRUE);
3296 return;
3297 }
3298
3299 sav->sav_sync = B_TRUE;
3300
3301 if (nvlist_lookup_nvlist_array(sav->sav_config,
3302 ZPOOL_CONFIG_L2CACHE, &aux, &naux) != 0) {
3303 VERIFY(nvlist_lookup_nvlist_array(sav->sav_config,
3304 ZPOOL_CONFIG_SPARES, &aux, &naux) == 0);
3305 }
3306
3307 ASSERT(c < naux);
3308
3309 /*
3310 * Setting the nvlist in the middle if the array is a little
3311 * sketchy, but it will work.
3312 */
3313 nvlist_free(aux[c]);
3314 aux[c] = vdev_config_generate(spa, vd, B_TRUE, 0);
3315
3316 return;
3317 }
3318
3319 /*
3320 * The dirty list is protected by the SCL_CONFIG lock. The caller
3321 * must either hold SCL_CONFIG as writer, or must be the sync thread
3322 * (which holds SCL_CONFIG as reader). There's only one sync thread,
3323 * so this is sufficient to ensure mutual exclusion.
3324 */
3325 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
3326 (dsl_pool_sync_context(spa_get_dsl(spa)) &&
3327 spa_config_held(spa, SCL_CONFIG, RW_READER)));
3328
3329 if (vd == rvd) {
3330 for (c = 0; c < rvd->vdev_children; c++)
3331 vdev_config_dirty(rvd->vdev_child[c]);
3332 } else {
3333 ASSERT(vd == vd->vdev_top);
3334
3335 if (!list_link_active(&vd->vdev_config_dirty_node) &&
3336 !vd->vdev_ishole)
3337 list_insert_head(&spa->spa_config_dirty_list, vd);
3338 }
3339 }
3340
3341 void
3342 vdev_config_clean(vdev_t *vd)
3343 {
3344 spa_t *spa = vd->vdev_spa;
3345
3346 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
3347 (dsl_pool_sync_context(spa_get_dsl(spa)) &&
3348 spa_config_held(spa, SCL_CONFIG, RW_READER)));
3349
3350 ASSERT(list_link_active(&vd->vdev_config_dirty_node));
3351 list_remove(&spa->spa_config_dirty_list, vd);
3352 }
3353
3354 /*
3355 * Mark a top-level vdev's state as dirty, so that the next pass of
3356 * spa_sync() can convert this into vdev_config_dirty(). We distinguish
3357 * the state changes from larger config changes because they require
3358 * much less locking, and are often needed for administrative actions.
3359 */
3360 void
3361 vdev_state_dirty(vdev_t *vd)
3362 {
3363 spa_t *spa = vd->vdev_spa;
3364
3365 ASSERT(spa_writeable(spa));
3366 ASSERT(vd == vd->vdev_top);
3367
3368 /*
3369 * The state list is protected by the SCL_STATE lock. The caller
3370 * must either hold SCL_STATE as writer, or must be the sync thread
3371 * (which holds SCL_STATE as reader). There's only one sync thread,
3372 * so this is sufficient to ensure mutual exclusion.
3373 */
3374 ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
3375 (dsl_pool_sync_context(spa_get_dsl(spa)) &&
3376 spa_config_held(spa, SCL_STATE, RW_READER)));
3377
3378 if (!list_link_active(&vd->vdev_state_dirty_node) && !vd->vdev_ishole)
3379 list_insert_head(&spa->spa_state_dirty_list, vd);
3380 }
3381
3382 void
3383 vdev_state_clean(vdev_t *vd)
3384 {
3385 spa_t *spa = vd->vdev_spa;
3386
3387 ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
3388 (dsl_pool_sync_context(spa_get_dsl(spa)) &&
3389 spa_config_held(spa, SCL_STATE, RW_READER)));
3390
3391 ASSERT(list_link_active(&vd->vdev_state_dirty_node));
3392 list_remove(&spa->spa_state_dirty_list, vd);
3393 }
3394
3395 /*
3396 * Propagate vdev state up from children to parent.
3397 */
3398 void
3399 vdev_propagate_state(vdev_t *vd)
3400 {
3401 spa_t *spa = vd->vdev_spa;
3402 vdev_t *rvd = spa->spa_root_vdev;
3403 int degraded = 0, faulted = 0;
3404 int corrupted = 0;
3405 vdev_t *child;
3406
3407 if (vd->vdev_children > 0) {
3408 for (int c = 0; c < vd->vdev_children; c++) {
3409 child = vd->vdev_child[c];
3410
3411 /*
3412 * Don't factor holes into the decision.
3413 */
3414 if (child->vdev_ishole)
3415 continue;
3416
3417 if (!vdev_readable(child) ||
3418 (!vdev_writeable(child) && spa_writeable(spa))) {
3419 /*
3420 * Root special: if there is a top-level log
3421 * device, treat the root vdev as if it were
3422 * degraded.
3423 */
3424 if (child->vdev_islog && vd == rvd)
3425 degraded++;
3426 else
3427 faulted++;
3428 } else if (child->vdev_state <= VDEV_STATE_DEGRADED) {
3429 degraded++;
3430 }
3431
3432 if (child->vdev_stat.vs_aux == VDEV_AUX_CORRUPT_DATA)
3433 corrupted++;
3434 }
3435
3436 vd->vdev_ops->vdev_op_state_change(vd, faulted, degraded);
3437
3438 /*
3439 * Root special: if there is a top-level vdev that cannot be
3440 * opened due to corrupted metadata, then propagate the root
3441 * vdev's aux state as 'corrupt' rather than 'insufficient
3442 * replicas'.
3443 */
3444 if (corrupted && vd == rvd &&
3445 rvd->vdev_state == VDEV_STATE_CANT_OPEN)
3446 vdev_set_state(rvd, B_FALSE, VDEV_STATE_CANT_OPEN,
3447 VDEV_AUX_CORRUPT_DATA);
3448 }
3449
3450 if (vd->vdev_parent)
3451 vdev_propagate_state(vd->vdev_parent);
3452 }
3453
3454 /*
3455 * Set a vdev's state. If this is during an open, we don't update the parent
3456 * state, because we're in the process of opening children depth-first.
3457 * Otherwise, we propagate the change to the parent.
3458 *
3459 * If this routine places a device in a faulted state, an appropriate ereport is
3460 * generated.
3461 */
3462 void
3463 vdev_set_state(vdev_t *vd, boolean_t isopen, vdev_state_t state, vdev_aux_t aux)
3464 {
3465 uint64_t save_state;
3466 spa_t *spa = vd->vdev_spa;
3467
3468 if (state == vd->vdev_state) {
3469 /*
3470 * Since vdev_offline() code path is already in an offline
3471 * state we can miss a statechange event to OFFLINE. Check
3472 * the previous state to catch this condition.
3473 */
3474 if (vd->vdev_ops->vdev_op_leaf &&
3475 (state == VDEV_STATE_OFFLINE) &&
3476 (vd->vdev_prevstate >= VDEV_STATE_FAULTED)) {
3477 /* post an offline state change */
3478 zfs_post_state_change(spa, vd, vd->vdev_prevstate);
3479 }
3480 vd->vdev_stat.vs_aux = aux;
3481 return;
3482 }
3483
3484 save_state = vd->vdev_state;
3485
3486 vd->vdev_state = state;
3487 vd->vdev_stat.vs_aux = aux;
3488
3489 /*
3490 * If we are setting the vdev state to anything but an open state, then
3491 * always close the underlying device unless the device has requested
3492 * a delayed close (i.e. we're about to remove or fault the device).
3493 * Otherwise, we keep accessible but invalid devices open forever.
3494 * We don't call vdev_close() itself, because that implies some extra
3495 * checks (offline, etc) that we don't want here. This is limited to
3496 * leaf devices, because otherwise closing the device will affect other
3497 * children.
3498 */
3499 if (!vd->vdev_delayed_close && vdev_is_dead(vd) &&
3500 vd->vdev_ops->vdev_op_leaf)
3501 vd->vdev_ops->vdev_op_close(vd);
3502
3503 if (vd->vdev_removed &&
3504 state == VDEV_STATE_CANT_OPEN &&
3505 (aux == VDEV_AUX_OPEN_FAILED || vd->vdev_checkremove)) {
3506 /*
3507 * If the previous state is set to VDEV_STATE_REMOVED, then this
3508 * device was previously marked removed and someone attempted to
3509 * reopen it. If this failed due to a nonexistent device, then
3510 * keep the device in the REMOVED state. We also let this be if
3511 * it is one of our special test online cases, which is only
3512 * attempting to online the device and shouldn't generate an FMA
3513 * fault.
3514 */
3515 vd->vdev_state = VDEV_STATE_REMOVED;
3516 vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
3517 } else if (state == VDEV_STATE_REMOVED) {
3518 vd->vdev_removed = B_TRUE;
3519 } else if (state == VDEV_STATE_CANT_OPEN) {
3520 /*
3521 * If we fail to open a vdev during an import or recovery, we
3522 * mark it as "not available", which signifies that it was
3523 * never there to begin with. Failure to open such a device
3524 * is not considered an error.
3525 */
3526 if ((spa_load_state(spa) == SPA_LOAD_IMPORT ||
3527 spa_load_state(spa) == SPA_LOAD_RECOVER) &&
3528 vd->vdev_ops->vdev_op_leaf)
3529 vd->vdev_not_present = 1;
3530
3531 /*
3532 * Post the appropriate ereport. If the 'prevstate' field is
3533 * set to something other than VDEV_STATE_UNKNOWN, it indicates
3534 * that this is part of a vdev_reopen(). In this case, we don't
3535 * want to post the ereport if the device was already in the
3536 * CANT_OPEN state beforehand.
3537 *
3538 * If the 'checkremove' flag is set, then this is an attempt to
3539 * online the device in response to an insertion event. If we
3540 * hit this case, then we have detected an insertion event for a
3541 * faulted or offline device that wasn't in the removed state.
3542 * In this scenario, we don't post an ereport because we are
3543 * about to replace the device, or attempt an online with
3544 * vdev_forcefault, which will generate the fault for us.
3545 */
3546 if ((vd->vdev_prevstate != state || vd->vdev_forcefault) &&
3547 !vd->vdev_not_present && !vd->vdev_checkremove &&
3548 vd != spa->spa_root_vdev) {
3549 const char *class;
3550
3551 switch (aux) {
3552 case VDEV_AUX_OPEN_FAILED:
3553 class = FM_EREPORT_ZFS_DEVICE_OPEN_FAILED;
3554 break;
3555 case VDEV_AUX_CORRUPT_DATA:
3556 class = FM_EREPORT_ZFS_DEVICE_CORRUPT_DATA;
3557 break;
3558 case VDEV_AUX_NO_REPLICAS:
3559 class = FM_EREPORT_ZFS_DEVICE_NO_REPLICAS;
3560 break;
3561 case VDEV_AUX_BAD_GUID_SUM:
3562 class = FM_EREPORT_ZFS_DEVICE_BAD_GUID_SUM;
3563 break;
3564 case VDEV_AUX_TOO_SMALL:
3565 class = FM_EREPORT_ZFS_DEVICE_TOO_SMALL;
3566 break;
3567 case VDEV_AUX_BAD_LABEL:
3568 class = FM_EREPORT_ZFS_DEVICE_BAD_LABEL;
3569 break;
3570 case VDEV_AUX_BAD_ASHIFT:
3571 class = FM_EREPORT_ZFS_DEVICE_BAD_ASHIFT;
3572 break;
3573 default:
3574 class = FM_EREPORT_ZFS_DEVICE_UNKNOWN;
3575 }
3576
3577 zfs_ereport_post(class, spa, vd, NULL, NULL,
3578 save_state, 0);
3579 }
3580
3581 /* Erase any notion of persistent removed state */
3582 vd->vdev_removed = B_FALSE;
3583 } else {
3584 vd->vdev_removed = B_FALSE;
3585 }
3586
3587 /*
3588 * Notify ZED of any significant state-change on a leaf vdev.
3589 *
3590 */
3591 if (vd->vdev_ops->vdev_op_leaf) {
3592 /* preserve original state from a vdev_reopen() */
3593 if ((vd->vdev_prevstate != VDEV_STATE_UNKNOWN) &&
3594 (vd->vdev_prevstate != vd->vdev_state) &&
3595 (save_state <= VDEV_STATE_CLOSED))
3596 save_state = vd->vdev_prevstate;
3597
3598 /* filter out state change due to initial vdev_open */
3599 if (save_state > VDEV_STATE_CLOSED)
3600 zfs_post_state_change(spa, vd, save_state);
3601 }
3602
3603 if (!isopen && vd->vdev_parent)
3604 vdev_propagate_state(vd->vdev_parent);
3605 }
3606
3607 /*
3608 * Check the vdev configuration to ensure that it's capable of supporting
3609 * a root pool. We do not support partial configuration.
3610 */
3611 boolean_t
3612 vdev_is_bootable(vdev_t *vd)
3613 {
3614 if (!vd->vdev_ops->vdev_op_leaf) {
3615 const char *vdev_type = vd->vdev_ops->vdev_op_type;
3616
3617 if (strcmp(vdev_type, VDEV_TYPE_MISSING) == 0)
3618 return (B_FALSE);
3619 }
3620
3621 for (int c = 0; c < vd->vdev_children; c++) {
3622 if (!vdev_is_bootable(vd->vdev_child[c]))
3623 return (B_FALSE);
3624 }
3625 return (B_TRUE);
3626 }
3627
3628 /*
3629 * Load the state from the original vdev tree (ovd) which
3630 * we've retrieved from the MOS config object. If the original
3631 * vdev was offline or faulted then we transfer that state to the
3632 * device in the current vdev tree (nvd).
3633 */
3634 void
3635 vdev_load_log_state(vdev_t *nvd, vdev_t *ovd)
3636 {
3637 ASSERT(nvd->vdev_top->vdev_islog);
3638 ASSERT(spa_config_held(nvd->vdev_spa,
3639 SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
3640 ASSERT3U(nvd->vdev_guid, ==, ovd->vdev_guid);
3641
3642 for (int c = 0; c < nvd->vdev_children; c++)
3643 vdev_load_log_state(nvd->vdev_child[c], ovd->vdev_child[c]);
3644
3645 if (nvd->vdev_ops->vdev_op_leaf) {
3646 /*
3647 * Restore the persistent vdev state
3648 */
3649 nvd->vdev_offline = ovd->vdev_offline;
3650 nvd->vdev_faulted = ovd->vdev_faulted;
3651 nvd->vdev_degraded = ovd->vdev_degraded;
3652 nvd->vdev_removed = ovd->vdev_removed;
3653 }
3654 }
3655
3656 /*
3657 * Determine if a log device has valid content. If the vdev was
3658 * removed or faulted in the MOS config then we know that
3659 * the content on the log device has already been written to the pool.
3660 */
3661 boolean_t
3662 vdev_log_state_valid(vdev_t *vd)
3663 {
3664 if (vd->vdev_ops->vdev_op_leaf && !vd->vdev_faulted &&
3665 !vd->vdev_removed)
3666 return (B_TRUE);
3667
3668 for (int c = 0; c < vd->vdev_children; c++)
3669 if (vdev_log_state_valid(vd->vdev_child[c]))
3670 return (B_TRUE);
3671
3672 return (B_FALSE);
3673 }
3674
3675 /*
3676 * Expand a vdev if possible.
3677 */
3678 void
3679 vdev_expand(vdev_t *vd, uint64_t txg)
3680 {
3681 ASSERT(vd->vdev_top == vd);
3682 ASSERT(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
3683
3684 if ((vd->vdev_asize >> vd->vdev_ms_shift) > vd->vdev_ms_count) {
3685 VERIFY(vdev_metaslab_init(vd, txg) == 0);
3686 vdev_config_dirty(vd);
3687 }
3688 }
3689
3690 /*
3691 * Split a vdev.
3692 */
3693 void
3694 vdev_split(vdev_t *vd)
3695 {
3696 vdev_t *cvd, *pvd = vd->vdev_parent;
3697
3698 vdev_remove_child(pvd, vd);
3699 vdev_compact_children(pvd);
3700
3701 cvd = pvd->vdev_child[0];
3702 if (pvd->vdev_children == 1) {
3703 vdev_remove_parent(cvd);
3704 cvd->vdev_splitting = B_TRUE;
3705 }
3706 vdev_propagate_state(cvd);
3707 }
3708
3709 void
3710 vdev_deadman(vdev_t *vd)
3711 {
3712 for (int c = 0; c < vd->vdev_children; c++) {
3713 vdev_t *cvd = vd->vdev_child[c];
3714
3715 vdev_deadman(cvd);
3716 }
3717
3718 if (vd->vdev_ops->vdev_op_leaf) {
3719 vdev_queue_t *vq = &vd->vdev_queue;
3720
3721 mutex_enter(&vq->vq_lock);
3722 if (avl_numnodes(&vq->vq_active_tree) > 0) {
3723 spa_t *spa = vd->vdev_spa;
3724 zio_t *fio;
3725 uint64_t delta;
3726
3727 /*
3728 * Look at the head of all the pending queues,
3729 * if any I/O has been outstanding for longer than
3730 * the spa_deadman_synctime we log a zevent.
3731 */
3732 fio = avl_first(&vq->vq_active_tree);
3733 delta = gethrtime() - fio->io_timestamp;
3734 if (delta > spa_deadman_synctime(spa)) {
3735 zfs_dbgmsg("SLOW IO: zio timestamp %lluns, "
3736 "delta %lluns, last io %lluns",
3737 fio->io_timestamp, delta,
3738 vq->vq_io_complete_ts);
3739 zfs_ereport_post(FM_EREPORT_ZFS_DELAY,
3740 spa, vd, &fio->io_bookmark, fio, 0, 0);
3741 }
3742 }
3743 mutex_exit(&vq->vq_lock);
3744 }
3745 }
3746
3747 #if defined(_KERNEL) && defined(HAVE_SPL)
3748 EXPORT_SYMBOL(vdev_fault);
3749 EXPORT_SYMBOL(vdev_degrade);
3750 EXPORT_SYMBOL(vdev_online);
3751 EXPORT_SYMBOL(vdev_offline);
3752 EXPORT_SYMBOL(vdev_clear);
3753 /* BEGIN CSTYLED */
3754 module_param(metaslabs_per_vdev, int, 0644);
3755 MODULE_PARM_DESC(metaslabs_per_vdev,
3756 "Divide added vdev into approximately (but no more than) this number "
3757 "of metaslabs");
3758 /* END CSTYLED */
3759 #endif