]> git.proxmox.com Git - mirror_zfs.git/blob - module/zfs/vdev.c
Illumos #4045 write throttle & i/o scheduler performance work
[mirror_zfs.git] / module / zfs / vdev.c
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22 /*
23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
25 * Copyright (c) 2013 by Delphix. All rights reserved.
26 */
27
28 #include <sys/zfs_context.h>
29 #include <sys/fm/fs/zfs.h>
30 #include <sys/spa.h>
31 #include <sys/spa_impl.h>
32 #include <sys/dmu.h>
33 #include <sys/dmu_tx.h>
34 #include <sys/vdev_impl.h>
35 #include <sys/uberblock_impl.h>
36 #include <sys/metaslab.h>
37 #include <sys/metaslab_impl.h>
38 #include <sys/space_map.h>
39 #include <sys/zio.h>
40 #include <sys/zap.h>
41 #include <sys/fs/zfs.h>
42 #include <sys/arc.h>
43 #include <sys/zil.h>
44 #include <sys/dsl_scan.h>
45 #include <sys/zvol.h>
46
47 /*
48 * Virtual device management.
49 */
50
51 static vdev_ops_t *vdev_ops_table[] = {
52 &vdev_root_ops,
53 &vdev_raidz_ops,
54 &vdev_mirror_ops,
55 &vdev_replacing_ops,
56 &vdev_spare_ops,
57 &vdev_disk_ops,
58 &vdev_file_ops,
59 &vdev_missing_ops,
60 &vdev_hole_ops,
61 NULL
62 };
63
64 /*
65 * Given a vdev type, return the appropriate ops vector.
66 */
67 static vdev_ops_t *
68 vdev_getops(const char *type)
69 {
70 vdev_ops_t *ops, **opspp;
71
72 for (opspp = vdev_ops_table; (ops = *opspp) != NULL; opspp++)
73 if (strcmp(ops->vdev_op_type, type) == 0)
74 break;
75
76 return (ops);
77 }
78
79 /*
80 * Default asize function: return the MAX of psize with the asize of
81 * all children. This is what's used by anything other than RAID-Z.
82 */
83 uint64_t
84 vdev_default_asize(vdev_t *vd, uint64_t psize)
85 {
86 uint64_t asize = P2ROUNDUP(psize, 1ULL << vd->vdev_top->vdev_ashift);
87 uint64_t csize;
88 int c;
89
90 for (c = 0; c < vd->vdev_children; c++) {
91 csize = vdev_psize_to_asize(vd->vdev_child[c], psize);
92 asize = MAX(asize, csize);
93 }
94
95 return (asize);
96 }
97
98 /*
99 * Get the minimum allocatable size. We define the allocatable size as
100 * the vdev's asize rounded to the nearest metaslab. This allows us to
101 * replace or attach devices which don't have the same physical size but
102 * can still satisfy the same number of allocations.
103 */
104 uint64_t
105 vdev_get_min_asize(vdev_t *vd)
106 {
107 vdev_t *pvd = vd->vdev_parent;
108
109 /*
110 * If our parent is NULL (inactive spare or cache) or is the root,
111 * just return our own asize.
112 */
113 if (pvd == NULL)
114 return (vd->vdev_asize);
115
116 /*
117 * The top-level vdev just returns the allocatable size rounded
118 * to the nearest metaslab.
119 */
120 if (vd == vd->vdev_top)
121 return (P2ALIGN(vd->vdev_asize, 1ULL << vd->vdev_ms_shift));
122
123 /*
124 * The allocatable space for a raidz vdev is N * sizeof(smallest child),
125 * so each child must provide at least 1/Nth of its asize.
126 */
127 if (pvd->vdev_ops == &vdev_raidz_ops)
128 return (pvd->vdev_min_asize / pvd->vdev_children);
129
130 return (pvd->vdev_min_asize);
131 }
132
133 void
134 vdev_set_min_asize(vdev_t *vd)
135 {
136 int c;
137 vd->vdev_min_asize = vdev_get_min_asize(vd);
138
139 for (c = 0; c < vd->vdev_children; c++)
140 vdev_set_min_asize(vd->vdev_child[c]);
141 }
142
143 vdev_t *
144 vdev_lookup_top(spa_t *spa, uint64_t vdev)
145 {
146 vdev_t *rvd = spa->spa_root_vdev;
147
148 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
149
150 if (vdev < rvd->vdev_children) {
151 ASSERT(rvd->vdev_child[vdev] != NULL);
152 return (rvd->vdev_child[vdev]);
153 }
154
155 return (NULL);
156 }
157
158 vdev_t *
159 vdev_lookup_by_guid(vdev_t *vd, uint64_t guid)
160 {
161 vdev_t *mvd;
162 int c;
163
164 if (vd->vdev_guid == guid)
165 return (vd);
166
167 for (c = 0; c < vd->vdev_children; c++)
168 if ((mvd = vdev_lookup_by_guid(vd->vdev_child[c], guid)) !=
169 NULL)
170 return (mvd);
171
172 return (NULL);
173 }
174
175 void
176 vdev_add_child(vdev_t *pvd, vdev_t *cvd)
177 {
178 size_t oldsize, newsize;
179 uint64_t id = cvd->vdev_id;
180 vdev_t **newchild;
181
182 ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
183 ASSERT(cvd->vdev_parent == NULL);
184
185 cvd->vdev_parent = pvd;
186
187 if (pvd == NULL)
188 return;
189
190 ASSERT(id >= pvd->vdev_children || pvd->vdev_child[id] == NULL);
191
192 oldsize = pvd->vdev_children * sizeof (vdev_t *);
193 pvd->vdev_children = MAX(pvd->vdev_children, id + 1);
194 newsize = pvd->vdev_children * sizeof (vdev_t *);
195
196 newchild = kmem_zalloc(newsize, KM_PUSHPAGE);
197 if (pvd->vdev_child != NULL) {
198 bcopy(pvd->vdev_child, newchild, oldsize);
199 kmem_free(pvd->vdev_child, oldsize);
200 }
201
202 pvd->vdev_child = newchild;
203 pvd->vdev_child[id] = cvd;
204
205 cvd->vdev_top = (pvd->vdev_top ? pvd->vdev_top: cvd);
206 ASSERT(cvd->vdev_top->vdev_parent->vdev_parent == NULL);
207
208 /*
209 * Walk up all ancestors to update guid sum.
210 */
211 for (; pvd != NULL; pvd = pvd->vdev_parent)
212 pvd->vdev_guid_sum += cvd->vdev_guid_sum;
213 }
214
215 void
216 vdev_remove_child(vdev_t *pvd, vdev_t *cvd)
217 {
218 int c;
219 uint_t id = cvd->vdev_id;
220
221 ASSERT(cvd->vdev_parent == pvd);
222
223 if (pvd == NULL)
224 return;
225
226 ASSERT(id < pvd->vdev_children);
227 ASSERT(pvd->vdev_child[id] == cvd);
228
229 pvd->vdev_child[id] = NULL;
230 cvd->vdev_parent = NULL;
231
232 for (c = 0; c < pvd->vdev_children; c++)
233 if (pvd->vdev_child[c])
234 break;
235
236 if (c == pvd->vdev_children) {
237 kmem_free(pvd->vdev_child, c * sizeof (vdev_t *));
238 pvd->vdev_child = NULL;
239 pvd->vdev_children = 0;
240 }
241
242 /*
243 * Walk up all ancestors to update guid sum.
244 */
245 for (; pvd != NULL; pvd = pvd->vdev_parent)
246 pvd->vdev_guid_sum -= cvd->vdev_guid_sum;
247 }
248
249 /*
250 * Remove any holes in the child array.
251 */
252 void
253 vdev_compact_children(vdev_t *pvd)
254 {
255 vdev_t **newchild, *cvd;
256 int oldc = pvd->vdev_children;
257 int newc;
258 int c;
259
260 ASSERT(spa_config_held(pvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
261
262 for (c = newc = 0; c < oldc; c++)
263 if (pvd->vdev_child[c])
264 newc++;
265
266 newchild = kmem_alloc(newc * sizeof (vdev_t *), KM_PUSHPAGE);
267
268 for (c = newc = 0; c < oldc; c++) {
269 if ((cvd = pvd->vdev_child[c]) != NULL) {
270 newchild[newc] = cvd;
271 cvd->vdev_id = newc++;
272 }
273 }
274
275 kmem_free(pvd->vdev_child, oldc * sizeof (vdev_t *));
276 pvd->vdev_child = newchild;
277 pvd->vdev_children = newc;
278 }
279
280 /*
281 * Allocate and minimally initialize a vdev_t.
282 */
283 vdev_t *
284 vdev_alloc_common(spa_t *spa, uint_t id, uint64_t guid, vdev_ops_t *ops)
285 {
286 vdev_t *vd;
287 int t;
288
289 vd = kmem_zalloc(sizeof (vdev_t), KM_PUSHPAGE);
290
291 if (spa->spa_root_vdev == NULL) {
292 ASSERT(ops == &vdev_root_ops);
293 spa->spa_root_vdev = vd;
294 spa->spa_load_guid = spa_generate_guid(NULL);
295 }
296
297 if (guid == 0 && ops != &vdev_hole_ops) {
298 if (spa->spa_root_vdev == vd) {
299 /*
300 * The root vdev's guid will also be the pool guid,
301 * which must be unique among all pools.
302 */
303 guid = spa_generate_guid(NULL);
304 } else {
305 /*
306 * Any other vdev's guid must be unique within the pool.
307 */
308 guid = spa_generate_guid(spa);
309 }
310 ASSERT(!spa_guid_exists(spa_guid(spa), guid));
311 }
312
313 vd->vdev_spa = spa;
314 vd->vdev_id = id;
315 vd->vdev_guid = guid;
316 vd->vdev_guid_sum = guid;
317 vd->vdev_ops = ops;
318 vd->vdev_state = VDEV_STATE_CLOSED;
319 vd->vdev_ishole = (ops == &vdev_hole_ops);
320
321 list_link_init(&vd->vdev_config_dirty_node);
322 list_link_init(&vd->vdev_state_dirty_node);
323 mutex_init(&vd->vdev_dtl_lock, NULL, MUTEX_DEFAULT, NULL);
324 mutex_init(&vd->vdev_stat_lock, NULL, MUTEX_DEFAULT, NULL);
325 mutex_init(&vd->vdev_probe_lock, NULL, MUTEX_DEFAULT, NULL);
326 for (t = 0; t < DTL_TYPES; t++) {
327 space_map_create(&vd->vdev_dtl[t], 0, -1ULL, 0,
328 &vd->vdev_dtl_lock);
329 }
330 txg_list_create(&vd->vdev_ms_list,
331 offsetof(struct metaslab, ms_txg_node));
332 txg_list_create(&vd->vdev_dtl_list,
333 offsetof(struct vdev, vdev_dtl_node));
334 vd->vdev_stat.vs_timestamp = gethrtime();
335 vdev_queue_init(vd);
336 vdev_cache_init(vd);
337
338 return (vd);
339 }
340
341 /*
342 * Allocate a new vdev. The 'alloctype' is used to control whether we are
343 * creating a new vdev or loading an existing one - the behavior is slightly
344 * different for each case.
345 */
346 int
347 vdev_alloc(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, uint_t id,
348 int alloctype)
349 {
350 vdev_ops_t *ops;
351 char *type;
352 uint64_t guid = 0, islog, nparity;
353 vdev_t *vd;
354
355 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
356
357 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) != 0)
358 return (SET_ERROR(EINVAL));
359
360 if ((ops = vdev_getops(type)) == NULL)
361 return (SET_ERROR(EINVAL));
362
363 /*
364 * If this is a load, get the vdev guid from the nvlist.
365 * Otherwise, vdev_alloc_common() will generate one for us.
366 */
367 if (alloctype == VDEV_ALLOC_LOAD) {
368 uint64_t label_id;
369
370 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ID, &label_id) ||
371 label_id != id)
372 return (SET_ERROR(EINVAL));
373
374 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
375 return (SET_ERROR(EINVAL));
376 } else if (alloctype == VDEV_ALLOC_SPARE) {
377 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
378 return (SET_ERROR(EINVAL));
379 } else if (alloctype == VDEV_ALLOC_L2CACHE) {
380 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
381 return (SET_ERROR(EINVAL));
382 } else if (alloctype == VDEV_ALLOC_ROOTPOOL) {
383 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
384 return (SET_ERROR(EINVAL));
385 }
386
387 /*
388 * The first allocated vdev must be of type 'root'.
389 */
390 if (ops != &vdev_root_ops && spa->spa_root_vdev == NULL)
391 return (SET_ERROR(EINVAL));
392
393 /*
394 * Determine whether we're a log vdev.
395 */
396 islog = 0;
397 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_LOG, &islog);
398 if (islog && spa_version(spa) < SPA_VERSION_SLOGS)
399 return (SET_ERROR(ENOTSUP));
400
401 if (ops == &vdev_hole_ops && spa_version(spa) < SPA_VERSION_HOLES)
402 return (SET_ERROR(ENOTSUP));
403
404 /*
405 * Set the nparity property for RAID-Z vdevs.
406 */
407 nparity = -1ULL;
408 if (ops == &vdev_raidz_ops) {
409 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NPARITY,
410 &nparity) == 0) {
411 if (nparity == 0 || nparity > VDEV_RAIDZ_MAXPARITY)
412 return (SET_ERROR(EINVAL));
413 /*
414 * Previous versions could only support 1 or 2 parity
415 * device.
416 */
417 if (nparity > 1 &&
418 spa_version(spa) < SPA_VERSION_RAIDZ2)
419 return (SET_ERROR(ENOTSUP));
420 if (nparity > 2 &&
421 spa_version(spa) < SPA_VERSION_RAIDZ3)
422 return (SET_ERROR(ENOTSUP));
423 } else {
424 /*
425 * We require the parity to be specified for SPAs that
426 * support multiple parity levels.
427 */
428 if (spa_version(spa) >= SPA_VERSION_RAIDZ2)
429 return (SET_ERROR(EINVAL));
430 /*
431 * Otherwise, we default to 1 parity device for RAID-Z.
432 */
433 nparity = 1;
434 }
435 } else {
436 nparity = 0;
437 }
438 ASSERT(nparity != -1ULL);
439
440 vd = vdev_alloc_common(spa, id, guid, ops);
441
442 vd->vdev_islog = islog;
443 vd->vdev_nparity = nparity;
444
445 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &vd->vdev_path) == 0)
446 vd->vdev_path = spa_strdup(vd->vdev_path);
447 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_DEVID, &vd->vdev_devid) == 0)
448 vd->vdev_devid = spa_strdup(vd->vdev_devid);
449 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PHYS_PATH,
450 &vd->vdev_physpath) == 0)
451 vd->vdev_physpath = spa_strdup(vd->vdev_physpath);
452 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_FRU, &vd->vdev_fru) == 0)
453 vd->vdev_fru = spa_strdup(vd->vdev_fru);
454
455 /*
456 * Set the whole_disk property. If it's not specified, leave the value
457 * as -1.
458 */
459 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK,
460 &vd->vdev_wholedisk) != 0)
461 vd->vdev_wholedisk = -1ULL;
462
463 /*
464 * Look for the 'not present' flag. This will only be set if the device
465 * was not present at the time of import.
466 */
467 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT,
468 &vd->vdev_not_present);
469
470 /*
471 * Get the alignment requirement.
472 */
473 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASHIFT, &vd->vdev_ashift);
474
475 /*
476 * Retrieve the vdev creation time.
477 */
478 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_CREATE_TXG,
479 &vd->vdev_crtxg);
480
481 /*
482 * If we're a top-level vdev, try to load the allocation parameters.
483 */
484 if (parent && !parent->vdev_parent &&
485 (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_SPLIT)) {
486 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY,
487 &vd->vdev_ms_array);
488 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT,
489 &vd->vdev_ms_shift);
490 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASIZE,
491 &vd->vdev_asize);
492 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVING,
493 &vd->vdev_removing);
494 }
495
496 if (parent && !parent->vdev_parent && alloctype != VDEV_ALLOC_ATTACH) {
497 ASSERT(alloctype == VDEV_ALLOC_LOAD ||
498 alloctype == VDEV_ALLOC_ADD ||
499 alloctype == VDEV_ALLOC_SPLIT ||
500 alloctype == VDEV_ALLOC_ROOTPOOL);
501 vd->vdev_mg = metaslab_group_create(islog ?
502 spa_log_class(spa) : spa_normal_class(spa), vd);
503 }
504
505 /*
506 * If we're a leaf vdev, try to load the DTL object and other state.
507 */
508 if (vd->vdev_ops->vdev_op_leaf &&
509 (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_L2CACHE ||
510 alloctype == VDEV_ALLOC_ROOTPOOL)) {
511 if (alloctype == VDEV_ALLOC_LOAD) {
512 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DTL,
513 &vd->vdev_dtl_smo.smo_object);
514 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_UNSPARE,
515 &vd->vdev_unspare);
516 }
517
518 if (alloctype == VDEV_ALLOC_ROOTPOOL) {
519 uint64_t spare = 0;
520
521 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_SPARE,
522 &spare) == 0 && spare)
523 spa_spare_add(vd);
524 }
525
526 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_OFFLINE,
527 &vd->vdev_offline);
528
529 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_RESILVER_TXG,
530 &vd->vdev_resilver_txg);
531
532 /*
533 * When importing a pool, we want to ignore the persistent fault
534 * state, as the diagnosis made on another system may not be
535 * valid in the current context. Local vdevs will
536 * remain in the faulted state.
537 */
538 if (spa_load_state(spa) == SPA_LOAD_OPEN) {
539 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_FAULTED,
540 &vd->vdev_faulted);
541 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DEGRADED,
542 &vd->vdev_degraded);
543 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVED,
544 &vd->vdev_removed);
545
546 if (vd->vdev_faulted || vd->vdev_degraded) {
547 char *aux;
548
549 vd->vdev_label_aux =
550 VDEV_AUX_ERR_EXCEEDED;
551 if (nvlist_lookup_string(nv,
552 ZPOOL_CONFIG_AUX_STATE, &aux) == 0 &&
553 strcmp(aux, "external") == 0)
554 vd->vdev_label_aux = VDEV_AUX_EXTERNAL;
555 }
556 }
557 }
558
559 /*
560 * Add ourselves to the parent's list of children.
561 */
562 vdev_add_child(parent, vd);
563
564 *vdp = vd;
565
566 return (0);
567 }
568
569 void
570 vdev_free(vdev_t *vd)
571 {
572 int c, t;
573 spa_t *spa = vd->vdev_spa;
574
575 /*
576 * vdev_free() implies closing the vdev first. This is simpler than
577 * trying to ensure complicated semantics for all callers.
578 */
579 vdev_close(vd);
580
581 ASSERT(!list_link_active(&vd->vdev_config_dirty_node));
582 ASSERT(!list_link_active(&vd->vdev_state_dirty_node));
583
584 /*
585 * Free all children.
586 */
587 for (c = 0; c < vd->vdev_children; c++)
588 vdev_free(vd->vdev_child[c]);
589
590 ASSERT(vd->vdev_child == NULL);
591 ASSERT(vd->vdev_guid_sum == vd->vdev_guid);
592
593 /*
594 * Discard allocation state.
595 */
596 if (vd->vdev_mg != NULL) {
597 vdev_metaslab_fini(vd);
598 metaslab_group_destroy(vd->vdev_mg);
599 }
600
601 ASSERT0(vd->vdev_stat.vs_space);
602 ASSERT0(vd->vdev_stat.vs_dspace);
603 ASSERT0(vd->vdev_stat.vs_alloc);
604
605 /*
606 * Remove this vdev from its parent's child list.
607 */
608 vdev_remove_child(vd->vdev_parent, vd);
609
610 ASSERT(vd->vdev_parent == NULL);
611
612 /*
613 * Clean up vdev structure.
614 */
615 vdev_queue_fini(vd);
616 vdev_cache_fini(vd);
617
618 if (vd->vdev_path)
619 spa_strfree(vd->vdev_path);
620 if (vd->vdev_devid)
621 spa_strfree(vd->vdev_devid);
622 if (vd->vdev_physpath)
623 spa_strfree(vd->vdev_physpath);
624 if (vd->vdev_fru)
625 spa_strfree(vd->vdev_fru);
626
627 if (vd->vdev_isspare)
628 spa_spare_remove(vd);
629 if (vd->vdev_isl2cache)
630 spa_l2cache_remove(vd);
631
632 txg_list_destroy(&vd->vdev_ms_list);
633 txg_list_destroy(&vd->vdev_dtl_list);
634
635 mutex_enter(&vd->vdev_dtl_lock);
636 for (t = 0; t < DTL_TYPES; t++) {
637 space_map_unload(&vd->vdev_dtl[t]);
638 space_map_destroy(&vd->vdev_dtl[t]);
639 }
640 mutex_exit(&vd->vdev_dtl_lock);
641
642 mutex_destroy(&vd->vdev_dtl_lock);
643 mutex_destroy(&vd->vdev_stat_lock);
644 mutex_destroy(&vd->vdev_probe_lock);
645
646 if (vd == spa->spa_root_vdev)
647 spa->spa_root_vdev = NULL;
648
649 kmem_free(vd, sizeof (vdev_t));
650 }
651
652 /*
653 * Transfer top-level vdev state from svd to tvd.
654 */
655 static void
656 vdev_top_transfer(vdev_t *svd, vdev_t *tvd)
657 {
658 spa_t *spa = svd->vdev_spa;
659 metaslab_t *msp;
660 vdev_t *vd;
661 int t;
662
663 ASSERT(tvd == tvd->vdev_top);
664
665 tvd->vdev_ms_array = svd->vdev_ms_array;
666 tvd->vdev_ms_shift = svd->vdev_ms_shift;
667 tvd->vdev_ms_count = svd->vdev_ms_count;
668
669 svd->vdev_ms_array = 0;
670 svd->vdev_ms_shift = 0;
671 svd->vdev_ms_count = 0;
672
673 if (tvd->vdev_mg)
674 ASSERT3P(tvd->vdev_mg, ==, svd->vdev_mg);
675 tvd->vdev_mg = svd->vdev_mg;
676 tvd->vdev_ms = svd->vdev_ms;
677
678 svd->vdev_mg = NULL;
679 svd->vdev_ms = NULL;
680
681 if (tvd->vdev_mg != NULL)
682 tvd->vdev_mg->mg_vd = tvd;
683
684 tvd->vdev_stat.vs_alloc = svd->vdev_stat.vs_alloc;
685 tvd->vdev_stat.vs_space = svd->vdev_stat.vs_space;
686 tvd->vdev_stat.vs_dspace = svd->vdev_stat.vs_dspace;
687
688 svd->vdev_stat.vs_alloc = 0;
689 svd->vdev_stat.vs_space = 0;
690 svd->vdev_stat.vs_dspace = 0;
691
692 for (t = 0; t < TXG_SIZE; t++) {
693 while ((msp = txg_list_remove(&svd->vdev_ms_list, t)) != NULL)
694 (void) txg_list_add(&tvd->vdev_ms_list, msp, t);
695 while ((vd = txg_list_remove(&svd->vdev_dtl_list, t)) != NULL)
696 (void) txg_list_add(&tvd->vdev_dtl_list, vd, t);
697 if (txg_list_remove_this(&spa->spa_vdev_txg_list, svd, t))
698 (void) txg_list_add(&spa->spa_vdev_txg_list, tvd, t);
699 }
700
701 if (list_link_active(&svd->vdev_config_dirty_node)) {
702 vdev_config_clean(svd);
703 vdev_config_dirty(tvd);
704 }
705
706 if (list_link_active(&svd->vdev_state_dirty_node)) {
707 vdev_state_clean(svd);
708 vdev_state_dirty(tvd);
709 }
710
711 tvd->vdev_deflate_ratio = svd->vdev_deflate_ratio;
712 svd->vdev_deflate_ratio = 0;
713
714 tvd->vdev_islog = svd->vdev_islog;
715 svd->vdev_islog = 0;
716 }
717
718 static void
719 vdev_top_update(vdev_t *tvd, vdev_t *vd)
720 {
721 int c;
722
723 if (vd == NULL)
724 return;
725
726 vd->vdev_top = tvd;
727
728 for (c = 0; c < vd->vdev_children; c++)
729 vdev_top_update(tvd, vd->vdev_child[c]);
730 }
731
732 /*
733 * Add a mirror/replacing vdev above an existing vdev.
734 */
735 vdev_t *
736 vdev_add_parent(vdev_t *cvd, vdev_ops_t *ops)
737 {
738 spa_t *spa = cvd->vdev_spa;
739 vdev_t *pvd = cvd->vdev_parent;
740 vdev_t *mvd;
741
742 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
743
744 mvd = vdev_alloc_common(spa, cvd->vdev_id, 0, ops);
745
746 mvd->vdev_asize = cvd->vdev_asize;
747 mvd->vdev_min_asize = cvd->vdev_min_asize;
748 mvd->vdev_max_asize = cvd->vdev_max_asize;
749 mvd->vdev_ashift = cvd->vdev_ashift;
750 mvd->vdev_state = cvd->vdev_state;
751 mvd->vdev_crtxg = cvd->vdev_crtxg;
752
753 vdev_remove_child(pvd, cvd);
754 vdev_add_child(pvd, mvd);
755 cvd->vdev_id = mvd->vdev_children;
756 vdev_add_child(mvd, cvd);
757 vdev_top_update(cvd->vdev_top, cvd->vdev_top);
758
759 if (mvd == mvd->vdev_top)
760 vdev_top_transfer(cvd, mvd);
761
762 return (mvd);
763 }
764
765 /*
766 * Remove a 1-way mirror/replacing vdev from the tree.
767 */
768 void
769 vdev_remove_parent(vdev_t *cvd)
770 {
771 vdev_t *mvd = cvd->vdev_parent;
772 vdev_t *pvd = mvd->vdev_parent;
773
774 ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
775
776 ASSERT(mvd->vdev_children == 1);
777 ASSERT(mvd->vdev_ops == &vdev_mirror_ops ||
778 mvd->vdev_ops == &vdev_replacing_ops ||
779 mvd->vdev_ops == &vdev_spare_ops);
780 cvd->vdev_ashift = mvd->vdev_ashift;
781
782 vdev_remove_child(mvd, cvd);
783 vdev_remove_child(pvd, mvd);
784
785 /*
786 * If cvd will replace mvd as a top-level vdev, preserve mvd's guid.
787 * Otherwise, we could have detached an offline device, and when we
788 * go to import the pool we'll think we have two top-level vdevs,
789 * instead of a different version of the same top-level vdev.
790 */
791 if (mvd->vdev_top == mvd) {
792 uint64_t guid_delta = mvd->vdev_guid - cvd->vdev_guid;
793 cvd->vdev_orig_guid = cvd->vdev_guid;
794 cvd->vdev_guid += guid_delta;
795 cvd->vdev_guid_sum += guid_delta;
796 }
797 cvd->vdev_id = mvd->vdev_id;
798 vdev_add_child(pvd, cvd);
799 vdev_top_update(cvd->vdev_top, cvd->vdev_top);
800
801 if (cvd == cvd->vdev_top)
802 vdev_top_transfer(mvd, cvd);
803
804 ASSERT(mvd->vdev_children == 0);
805 vdev_free(mvd);
806 }
807
808 int
809 vdev_metaslab_init(vdev_t *vd, uint64_t txg)
810 {
811 spa_t *spa = vd->vdev_spa;
812 objset_t *mos = spa->spa_meta_objset;
813 uint64_t m;
814 uint64_t oldc = vd->vdev_ms_count;
815 uint64_t newc = vd->vdev_asize >> vd->vdev_ms_shift;
816 metaslab_t **mspp;
817 int error;
818
819 ASSERT(txg == 0 || spa_config_held(spa, SCL_ALLOC, RW_WRITER));
820
821 /*
822 * This vdev is not being allocated from yet or is a hole.
823 */
824 if (vd->vdev_ms_shift == 0)
825 return (0);
826
827 ASSERT(!vd->vdev_ishole);
828
829 /*
830 * Compute the raidz-deflation ratio. Note, we hard-code
831 * in 128k (1 << 17) because it is the current "typical" blocksize.
832 * Even if SPA_MAXBLOCKSIZE changes, this algorithm must never change,
833 * or we will inconsistently account for existing bp's.
834 */
835 vd->vdev_deflate_ratio = (1 << 17) /
836 (vdev_psize_to_asize(vd, 1 << 17) >> SPA_MINBLOCKSHIFT);
837
838 ASSERT(oldc <= newc);
839
840 mspp = kmem_zalloc(newc * sizeof (*mspp), KM_PUSHPAGE | KM_NODEBUG);
841
842 if (oldc != 0) {
843 bcopy(vd->vdev_ms, mspp, oldc * sizeof (*mspp));
844 kmem_free(vd->vdev_ms, oldc * sizeof (*mspp));
845 }
846
847 vd->vdev_ms = mspp;
848 vd->vdev_ms_count = newc;
849
850 for (m = oldc; m < newc; m++) {
851 space_map_obj_t smo = { 0, 0, 0 };
852 if (txg == 0) {
853 uint64_t object = 0;
854 error = dmu_read(mos, vd->vdev_ms_array,
855 m * sizeof (uint64_t), sizeof (uint64_t), &object,
856 DMU_READ_PREFETCH);
857 if (error)
858 return (error);
859 if (object != 0) {
860 dmu_buf_t *db;
861 error = dmu_bonus_hold(mos, object, FTAG, &db);
862 if (error)
863 return (error);
864 ASSERT3U(db->db_size, >=, sizeof (smo));
865 bcopy(db->db_data, &smo, sizeof (smo));
866 ASSERT3U(smo.smo_object, ==, object);
867 dmu_buf_rele(db, FTAG);
868 }
869 }
870 vd->vdev_ms[m] = metaslab_init(vd->vdev_mg, &smo,
871 m << vd->vdev_ms_shift, 1ULL << vd->vdev_ms_shift, txg);
872 }
873
874 if (txg == 0)
875 spa_config_enter(spa, SCL_ALLOC, FTAG, RW_WRITER);
876
877 /*
878 * If the vdev is being removed we don't activate
879 * the metaslabs since we want to ensure that no new
880 * allocations are performed on this device.
881 */
882 if (oldc == 0 && !vd->vdev_removing)
883 metaslab_group_activate(vd->vdev_mg);
884
885 if (txg == 0)
886 spa_config_exit(spa, SCL_ALLOC, FTAG);
887
888 return (0);
889 }
890
891 void
892 vdev_metaslab_fini(vdev_t *vd)
893 {
894 uint64_t m;
895 uint64_t count = vd->vdev_ms_count;
896
897 if (vd->vdev_ms != NULL) {
898 metaslab_group_passivate(vd->vdev_mg);
899 for (m = 0; m < count; m++)
900 if (vd->vdev_ms[m] != NULL)
901 metaslab_fini(vd->vdev_ms[m]);
902 kmem_free(vd->vdev_ms, count * sizeof (metaslab_t *));
903 vd->vdev_ms = NULL;
904 }
905
906 ASSERT3U(vd->vdev_pending_fastwrite, ==, 0);
907 }
908
909 typedef struct vdev_probe_stats {
910 boolean_t vps_readable;
911 boolean_t vps_writeable;
912 int vps_flags;
913 } vdev_probe_stats_t;
914
915 static void
916 vdev_probe_done(zio_t *zio)
917 {
918 spa_t *spa = zio->io_spa;
919 vdev_t *vd = zio->io_vd;
920 vdev_probe_stats_t *vps = zio->io_private;
921
922 ASSERT(vd->vdev_probe_zio != NULL);
923
924 if (zio->io_type == ZIO_TYPE_READ) {
925 if (zio->io_error == 0)
926 vps->vps_readable = 1;
927 if (zio->io_error == 0 && spa_writeable(spa)) {
928 zio_nowait(zio_write_phys(vd->vdev_probe_zio, vd,
929 zio->io_offset, zio->io_size, zio->io_data,
930 ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
931 ZIO_PRIORITY_SYNC_WRITE, vps->vps_flags, B_TRUE));
932 } else {
933 zio_buf_free(zio->io_data, zio->io_size);
934 }
935 } else if (zio->io_type == ZIO_TYPE_WRITE) {
936 if (zio->io_error == 0)
937 vps->vps_writeable = 1;
938 zio_buf_free(zio->io_data, zio->io_size);
939 } else if (zio->io_type == ZIO_TYPE_NULL) {
940 zio_t *pio;
941
942 vd->vdev_cant_read |= !vps->vps_readable;
943 vd->vdev_cant_write |= !vps->vps_writeable;
944
945 if (vdev_readable(vd) &&
946 (vdev_writeable(vd) || !spa_writeable(spa))) {
947 zio->io_error = 0;
948 } else {
949 ASSERT(zio->io_error != 0);
950 zfs_ereport_post(FM_EREPORT_ZFS_PROBE_FAILURE,
951 spa, vd, NULL, 0, 0);
952 zio->io_error = SET_ERROR(ENXIO);
953 }
954
955 mutex_enter(&vd->vdev_probe_lock);
956 ASSERT(vd->vdev_probe_zio == zio);
957 vd->vdev_probe_zio = NULL;
958 mutex_exit(&vd->vdev_probe_lock);
959
960 while ((pio = zio_walk_parents(zio)) != NULL)
961 if (!vdev_accessible(vd, pio))
962 pio->io_error = SET_ERROR(ENXIO);
963
964 kmem_free(vps, sizeof (*vps));
965 }
966 }
967
968 /*
969 * Determine whether this device is accessible.
970 *
971 * Read and write to several known locations: the pad regions of each
972 * vdev label but the first, which we leave alone in case it contains
973 * a VTOC.
974 */
975 zio_t *
976 vdev_probe(vdev_t *vd, zio_t *zio)
977 {
978 spa_t *spa = vd->vdev_spa;
979 vdev_probe_stats_t *vps = NULL;
980 zio_t *pio;
981 int l;
982
983 ASSERT(vd->vdev_ops->vdev_op_leaf);
984
985 /*
986 * Don't probe the probe.
987 */
988 if (zio && (zio->io_flags & ZIO_FLAG_PROBE))
989 return (NULL);
990
991 /*
992 * To prevent 'probe storms' when a device fails, we create
993 * just one probe i/o at a time. All zios that want to probe
994 * this vdev will become parents of the probe io.
995 */
996 mutex_enter(&vd->vdev_probe_lock);
997
998 if ((pio = vd->vdev_probe_zio) == NULL) {
999 vps = kmem_zalloc(sizeof (*vps), KM_PUSHPAGE);
1000
1001 vps->vps_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_PROBE |
1002 ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_AGGREGATE |
1003 ZIO_FLAG_TRYHARD;
1004
1005 if (spa_config_held(spa, SCL_ZIO, RW_WRITER)) {
1006 /*
1007 * vdev_cant_read and vdev_cant_write can only
1008 * transition from TRUE to FALSE when we have the
1009 * SCL_ZIO lock as writer; otherwise they can only
1010 * transition from FALSE to TRUE. This ensures that
1011 * any zio looking at these values can assume that
1012 * failures persist for the life of the I/O. That's
1013 * important because when a device has intermittent
1014 * connectivity problems, we want to ensure that
1015 * they're ascribed to the device (ENXIO) and not
1016 * the zio (EIO).
1017 *
1018 * Since we hold SCL_ZIO as writer here, clear both
1019 * values so the probe can reevaluate from first
1020 * principles.
1021 */
1022 vps->vps_flags |= ZIO_FLAG_CONFIG_WRITER;
1023 vd->vdev_cant_read = B_FALSE;
1024 vd->vdev_cant_write = B_FALSE;
1025 }
1026
1027 vd->vdev_probe_zio = pio = zio_null(NULL, spa, vd,
1028 vdev_probe_done, vps,
1029 vps->vps_flags | ZIO_FLAG_DONT_PROPAGATE);
1030
1031 /*
1032 * We can't change the vdev state in this context, so we
1033 * kick off an async task to do it on our behalf.
1034 */
1035 if (zio != NULL) {
1036 vd->vdev_probe_wanted = B_TRUE;
1037 spa_async_request(spa, SPA_ASYNC_PROBE);
1038 }
1039 }
1040
1041 if (zio != NULL)
1042 zio_add_child(zio, pio);
1043
1044 mutex_exit(&vd->vdev_probe_lock);
1045
1046 if (vps == NULL) {
1047 ASSERT(zio != NULL);
1048 return (NULL);
1049 }
1050
1051 for (l = 1; l < VDEV_LABELS; l++) {
1052 zio_nowait(zio_read_phys(pio, vd,
1053 vdev_label_offset(vd->vdev_psize, l,
1054 offsetof(vdev_label_t, vl_pad2)),
1055 VDEV_PAD_SIZE, zio_buf_alloc(VDEV_PAD_SIZE),
1056 ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
1057 ZIO_PRIORITY_SYNC_READ, vps->vps_flags, B_TRUE));
1058 }
1059
1060 if (zio == NULL)
1061 return (pio);
1062
1063 zio_nowait(pio);
1064 return (NULL);
1065 }
1066
1067 static void
1068 vdev_open_child(void *arg)
1069 {
1070 vdev_t *vd = arg;
1071
1072 vd->vdev_open_thread = curthread;
1073 vd->vdev_open_error = vdev_open(vd);
1074 vd->vdev_open_thread = NULL;
1075 }
1076
1077 static boolean_t
1078 vdev_uses_zvols(vdev_t *vd)
1079 {
1080 int c;
1081
1082 #ifdef _KERNEL
1083 if (zvol_is_zvol(vd->vdev_path))
1084 return (B_TRUE);
1085 #endif
1086
1087 for (c = 0; c < vd->vdev_children; c++)
1088 if (vdev_uses_zvols(vd->vdev_child[c]))
1089 return (B_TRUE);
1090
1091 return (B_FALSE);
1092 }
1093
1094 void
1095 vdev_open_children(vdev_t *vd)
1096 {
1097 taskq_t *tq;
1098 int children = vd->vdev_children;
1099 int c;
1100
1101 /*
1102 * in order to handle pools on top of zvols, do the opens
1103 * in a single thread so that the same thread holds the
1104 * spa_namespace_lock
1105 */
1106 if (vdev_uses_zvols(vd)) {
1107 for (c = 0; c < children; c++)
1108 vd->vdev_child[c]->vdev_open_error =
1109 vdev_open(vd->vdev_child[c]);
1110 return;
1111 }
1112 tq = taskq_create("vdev_open", children, minclsyspri,
1113 children, children, TASKQ_PREPOPULATE);
1114
1115 for (c = 0; c < children; c++)
1116 VERIFY(taskq_dispatch(tq, vdev_open_child, vd->vdev_child[c],
1117 TQ_SLEEP) != 0);
1118
1119 taskq_destroy(tq);
1120 }
1121
1122 /*
1123 * Prepare a virtual device for access.
1124 */
1125 int
1126 vdev_open(vdev_t *vd)
1127 {
1128 spa_t *spa = vd->vdev_spa;
1129 int error;
1130 uint64_t osize = 0;
1131 uint64_t max_osize = 0;
1132 uint64_t asize, max_asize, psize;
1133 uint64_t ashift = 0;
1134 int c;
1135
1136 ASSERT(vd->vdev_open_thread == curthread ||
1137 spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1138 ASSERT(vd->vdev_state == VDEV_STATE_CLOSED ||
1139 vd->vdev_state == VDEV_STATE_CANT_OPEN ||
1140 vd->vdev_state == VDEV_STATE_OFFLINE);
1141
1142 vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
1143 vd->vdev_cant_read = B_FALSE;
1144 vd->vdev_cant_write = B_FALSE;
1145 vd->vdev_min_asize = vdev_get_min_asize(vd);
1146
1147 /*
1148 * If this vdev is not removed, check its fault status. If it's
1149 * faulted, bail out of the open.
1150 */
1151 if (!vd->vdev_removed && vd->vdev_faulted) {
1152 ASSERT(vd->vdev_children == 0);
1153 ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED ||
1154 vd->vdev_label_aux == VDEV_AUX_EXTERNAL);
1155 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1156 vd->vdev_label_aux);
1157 return (SET_ERROR(ENXIO));
1158 } else if (vd->vdev_offline) {
1159 ASSERT(vd->vdev_children == 0);
1160 vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE, VDEV_AUX_NONE);
1161 return (SET_ERROR(ENXIO));
1162 }
1163
1164 error = vd->vdev_ops->vdev_op_open(vd, &osize, &max_osize, &ashift);
1165
1166 /*
1167 * Reset the vdev_reopening flag so that we actually close
1168 * the vdev on error.
1169 */
1170 vd->vdev_reopening = B_FALSE;
1171 if (zio_injection_enabled && error == 0)
1172 error = zio_handle_device_injection(vd, NULL, ENXIO);
1173
1174 if (error) {
1175 if (vd->vdev_removed &&
1176 vd->vdev_stat.vs_aux != VDEV_AUX_OPEN_FAILED)
1177 vd->vdev_removed = B_FALSE;
1178
1179 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1180 vd->vdev_stat.vs_aux);
1181 return (error);
1182 }
1183
1184 vd->vdev_removed = B_FALSE;
1185
1186 /*
1187 * Recheck the faulted flag now that we have confirmed that
1188 * the vdev is accessible. If we're faulted, bail.
1189 */
1190 if (vd->vdev_faulted) {
1191 ASSERT(vd->vdev_children == 0);
1192 ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED ||
1193 vd->vdev_label_aux == VDEV_AUX_EXTERNAL);
1194 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1195 vd->vdev_label_aux);
1196 return (SET_ERROR(ENXIO));
1197 }
1198
1199 if (vd->vdev_degraded) {
1200 ASSERT(vd->vdev_children == 0);
1201 vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
1202 VDEV_AUX_ERR_EXCEEDED);
1203 } else {
1204 vdev_set_state(vd, B_TRUE, VDEV_STATE_HEALTHY, 0);
1205 }
1206
1207 /*
1208 * For hole or missing vdevs we just return success.
1209 */
1210 if (vd->vdev_ishole || vd->vdev_ops == &vdev_missing_ops)
1211 return (0);
1212
1213 for (c = 0; c < vd->vdev_children; c++) {
1214 if (vd->vdev_child[c]->vdev_state != VDEV_STATE_HEALTHY) {
1215 vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
1216 VDEV_AUX_NONE);
1217 break;
1218 }
1219 }
1220
1221 osize = P2ALIGN(osize, (uint64_t)sizeof (vdev_label_t));
1222 max_osize = P2ALIGN(max_osize, (uint64_t)sizeof (vdev_label_t));
1223
1224 if (vd->vdev_children == 0) {
1225 if (osize < SPA_MINDEVSIZE) {
1226 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1227 VDEV_AUX_TOO_SMALL);
1228 return (SET_ERROR(EOVERFLOW));
1229 }
1230 psize = osize;
1231 asize = osize - (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE);
1232 max_asize = max_osize - (VDEV_LABEL_START_SIZE +
1233 VDEV_LABEL_END_SIZE);
1234 } else {
1235 if (vd->vdev_parent != NULL && osize < SPA_MINDEVSIZE -
1236 (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE)) {
1237 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1238 VDEV_AUX_TOO_SMALL);
1239 return (SET_ERROR(EOVERFLOW));
1240 }
1241 psize = 0;
1242 asize = osize;
1243 max_asize = max_osize;
1244 }
1245
1246 vd->vdev_psize = psize;
1247
1248 /*
1249 * Make sure the allocatable size hasn't shrunk.
1250 */
1251 if (asize < vd->vdev_min_asize) {
1252 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1253 VDEV_AUX_BAD_LABEL);
1254 return (SET_ERROR(EINVAL));
1255 }
1256
1257 if (vd->vdev_asize == 0) {
1258 /*
1259 * This is the first-ever open, so use the computed values.
1260 * For compatibility, a different ashift can be requested.
1261 */
1262 vd->vdev_asize = asize;
1263 vd->vdev_max_asize = max_asize;
1264 if (vd->vdev_ashift == 0)
1265 vd->vdev_ashift = ashift;
1266 } else {
1267 /*
1268 * Detect if the alignment requirement has increased.
1269 * We don't want to make the pool unavailable, just
1270 * post an event instead.
1271 */
1272 if (ashift > vd->vdev_top->vdev_ashift &&
1273 vd->vdev_ops->vdev_op_leaf) {
1274 zfs_ereport_post(FM_EREPORT_ZFS_DEVICE_BAD_ASHIFT,
1275 spa, vd, NULL, 0, 0);
1276 }
1277
1278 vd->vdev_max_asize = max_asize;
1279 }
1280
1281 /*
1282 * If all children are healthy and the asize has increased,
1283 * then we've experienced dynamic LUN growth. If automatic
1284 * expansion is enabled then use the additional space.
1285 */
1286 if (vd->vdev_state == VDEV_STATE_HEALTHY && asize > vd->vdev_asize &&
1287 (vd->vdev_expanding || spa->spa_autoexpand))
1288 vd->vdev_asize = asize;
1289
1290 vdev_set_min_asize(vd);
1291
1292 /*
1293 * Ensure we can issue some IO before declaring the
1294 * vdev open for business.
1295 */
1296 if (vd->vdev_ops->vdev_op_leaf &&
1297 (error = zio_wait(vdev_probe(vd, NULL))) != 0) {
1298 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1299 VDEV_AUX_ERR_EXCEEDED);
1300 return (error);
1301 }
1302
1303 /*
1304 * If a leaf vdev has a DTL, and seems healthy, then kick off a
1305 * resilver. But don't do this if we are doing a reopen for a scrub,
1306 * since this would just restart the scrub we are already doing.
1307 */
1308 if (vd->vdev_ops->vdev_op_leaf && !spa->spa_scrub_reopen &&
1309 vdev_resilver_needed(vd, NULL, NULL))
1310 spa_async_request(spa, SPA_ASYNC_RESILVER);
1311
1312 return (0);
1313 }
1314
1315 /*
1316 * Called once the vdevs are all opened, this routine validates the label
1317 * contents. This needs to be done before vdev_load() so that we don't
1318 * inadvertently do repair I/Os to the wrong device.
1319 *
1320 * If 'strict' is false ignore the spa guid check. This is necessary because
1321 * if the machine crashed during a re-guid the new guid might have been written
1322 * to all of the vdev labels, but not the cached config. The strict check
1323 * will be performed when the pool is opened again using the mos config.
1324 *
1325 * This function will only return failure if one of the vdevs indicates that it
1326 * has since been destroyed or exported. This is only possible if
1327 * /etc/zfs/zpool.cache was readonly at the time. Otherwise, the vdev state
1328 * will be updated but the function will return 0.
1329 */
1330 int
1331 vdev_validate(vdev_t *vd, boolean_t strict)
1332 {
1333 spa_t *spa = vd->vdev_spa;
1334 nvlist_t *label;
1335 uint64_t guid = 0, top_guid;
1336 uint64_t state;
1337 int c;
1338
1339 for (c = 0; c < vd->vdev_children; c++)
1340 if (vdev_validate(vd->vdev_child[c], strict) != 0)
1341 return (SET_ERROR(EBADF));
1342
1343 /*
1344 * If the device has already failed, or was marked offline, don't do
1345 * any further validation. Otherwise, label I/O will fail and we will
1346 * overwrite the previous state.
1347 */
1348 if (vd->vdev_ops->vdev_op_leaf && vdev_readable(vd)) {
1349 uint64_t aux_guid = 0;
1350 nvlist_t *nvl;
1351 uint64_t txg = spa_last_synced_txg(spa) != 0 ?
1352 spa_last_synced_txg(spa) : -1ULL;
1353
1354 if ((label = vdev_label_read_config(vd, txg)) == NULL) {
1355 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1356 VDEV_AUX_BAD_LABEL);
1357 return (0);
1358 }
1359
1360 /*
1361 * Determine if this vdev has been split off into another
1362 * pool. If so, then refuse to open it.
1363 */
1364 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_SPLIT_GUID,
1365 &aux_guid) == 0 && aux_guid == spa_guid(spa)) {
1366 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1367 VDEV_AUX_SPLIT_POOL);
1368 nvlist_free(label);
1369 return (0);
1370 }
1371
1372 if (strict && (nvlist_lookup_uint64(label,
1373 ZPOOL_CONFIG_POOL_GUID, &guid) != 0 ||
1374 guid != spa_guid(spa))) {
1375 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1376 VDEV_AUX_CORRUPT_DATA);
1377 nvlist_free(label);
1378 return (0);
1379 }
1380
1381 if (nvlist_lookup_nvlist(label, ZPOOL_CONFIG_VDEV_TREE, &nvl)
1382 != 0 || nvlist_lookup_uint64(nvl, ZPOOL_CONFIG_ORIG_GUID,
1383 &aux_guid) != 0)
1384 aux_guid = 0;
1385
1386 /*
1387 * If this vdev just became a top-level vdev because its
1388 * sibling was detached, it will have adopted the parent's
1389 * vdev guid -- but the label may or may not be on disk yet.
1390 * Fortunately, either version of the label will have the
1391 * same top guid, so if we're a top-level vdev, we can
1392 * safely compare to that instead.
1393 *
1394 * If we split this vdev off instead, then we also check the
1395 * original pool's guid. We don't want to consider the vdev
1396 * corrupt if it is partway through a split operation.
1397 */
1398 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID,
1399 &guid) != 0 ||
1400 nvlist_lookup_uint64(label, ZPOOL_CONFIG_TOP_GUID,
1401 &top_guid) != 0 ||
1402 ((vd->vdev_guid != guid && vd->vdev_guid != aux_guid) &&
1403 (vd->vdev_guid != top_guid || vd != vd->vdev_top))) {
1404 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1405 VDEV_AUX_CORRUPT_DATA);
1406 nvlist_free(label);
1407 return (0);
1408 }
1409
1410 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE,
1411 &state) != 0) {
1412 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1413 VDEV_AUX_CORRUPT_DATA);
1414 nvlist_free(label);
1415 return (0);
1416 }
1417
1418 nvlist_free(label);
1419
1420 /*
1421 * If this is a verbatim import, no need to check the
1422 * state of the pool.
1423 */
1424 if (!(spa->spa_import_flags & ZFS_IMPORT_VERBATIM) &&
1425 spa_load_state(spa) == SPA_LOAD_OPEN &&
1426 state != POOL_STATE_ACTIVE)
1427 return (SET_ERROR(EBADF));
1428
1429 /*
1430 * If we were able to open and validate a vdev that was
1431 * previously marked permanently unavailable, clear that state
1432 * now.
1433 */
1434 if (vd->vdev_not_present)
1435 vd->vdev_not_present = 0;
1436 }
1437
1438 return (0);
1439 }
1440
1441 /*
1442 * Close a virtual device.
1443 */
1444 void
1445 vdev_close(vdev_t *vd)
1446 {
1447 vdev_t *pvd = vd->vdev_parent;
1448 ASSERTV(spa_t *spa = vd->vdev_spa);
1449
1450 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1451
1452 /*
1453 * If our parent is reopening, then we are as well, unless we are
1454 * going offline.
1455 */
1456 if (pvd != NULL && pvd->vdev_reopening)
1457 vd->vdev_reopening = (pvd->vdev_reopening && !vd->vdev_offline);
1458
1459 vd->vdev_ops->vdev_op_close(vd);
1460
1461 vdev_cache_purge(vd);
1462
1463 /*
1464 * We record the previous state before we close it, so that if we are
1465 * doing a reopen(), we don't generate FMA ereports if we notice that
1466 * it's still faulted.
1467 */
1468 vd->vdev_prevstate = vd->vdev_state;
1469
1470 if (vd->vdev_offline)
1471 vd->vdev_state = VDEV_STATE_OFFLINE;
1472 else
1473 vd->vdev_state = VDEV_STATE_CLOSED;
1474 vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
1475 }
1476
1477 void
1478 vdev_hold(vdev_t *vd)
1479 {
1480 spa_t *spa = vd->vdev_spa;
1481 int c;
1482
1483 ASSERT(spa_is_root(spa));
1484 if (spa->spa_state == POOL_STATE_UNINITIALIZED)
1485 return;
1486
1487 for (c = 0; c < vd->vdev_children; c++)
1488 vdev_hold(vd->vdev_child[c]);
1489
1490 if (vd->vdev_ops->vdev_op_leaf)
1491 vd->vdev_ops->vdev_op_hold(vd);
1492 }
1493
1494 void
1495 vdev_rele(vdev_t *vd)
1496 {
1497 int c;
1498
1499 ASSERT(spa_is_root(vd->vdev_spa));
1500 for (c = 0; c < vd->vdev_children; c++)
1501 vdev_rele(vd->vdev_child[c]);
1502
1503 if (vd->vdev_ops->vdev_op_leaf)
1504 vd->vdev_ops->vdev_op_rele(vd);
1505 }
1506
1507 /*
1508 * Reopen all interior vdevs and any unopened leaves. We don't actually
1509 * reopen leaf vdevs which had previously been opened as they might deadlock
1510 * on the spa_config_lock. Instead we only obtain the leaf's physical size.
1511 * If the leaf has never been opened then open it, as usual.
1512 */
1513 void
1514 vdev_reopen(vdev_t *vd)
1515 {
1516 spa_t *spa = vd->vdev_spa;
1517
1518 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1519
1520 /* set the reopening flag unless we're taking the vdev offline */
1521 vd->vdev_reopening = !vd->vdev_offline;
1522 vdev_close(vd);
1523 (void) vdev_open(vd);
1524
1525 /*
1526 * Call vdev_validate() here to make sure we have the same device.
1527 * Otherwise, a device with an invalid label could be successfully
1528 * opened in response to vdev_reopen().
1529 */
1530 if (vd->vdev_aux) {
1531 (void) vdev_validate_aux(vd);
1532 if (vdev_readable(vd) && vdev_writeable(vd) &&
1533 vd->vdev_aux == &spa->spa_l2cache &&
1534 !l2arc_vdev_present(vd))
1535 l2arc_add_vdev(spa, vd);
1536 } else {
1537 (void) vdev_validate(vd, B_TRUE);
1538 }
1539
1540 /*
1541 * Reassess parent vdev's health.
1542 */
1543 vdev_propagate_state(vd);
1544 }
1545
1546 int
1547 vdev_create(vdev_t *vd, uint64_t txg, boolean_t isreplacing)
1548 {
1549 int error;
1550
1551 /*
1552 * Normally, partial opens (e.g. of a mirror) are allowed.
1553 * For a create, however, we want to fail the request if
1554 * there are any components we can't open.
1555 */
1556 error = vdev_open(vd);
1557
1558 if (error || vd->vdev_state != VDEV_STATE_HEALTHY) {
1559 vdev_close(vd);
1560 return (error ? error : ENXIO);
1561 }
1562
1563 /*
1564 * Recursively initialize all labels.
1565 */
1566 if ((error = vdev_label_init(vd, txg, isreplacing ?
1567 VDEV_LABEL_REPLACE : VDEV_LABEL_CREATE)) != 0) {
1568 vdev_close(vd);
1569 return (error);
1570 }
1571
1572 return (0);
1573 }
1574
1575 void
1576 vdev_metaslab_set_size(vdev_t *vd)
1577 {
1578 /*
1579 * Aim for roughly 200 metaslabs per vdev.
1580 */
1581 vd->vdev_ms_shift = highbit(vd->vdev_asize / 200);
1582 vd->vdev_ms_shift = MAX(vd->vdev_ms_shift, SPA_MAXBLOCKSHIFT);
1583 }
1584
1585 void
1586 vdev_dirty(vdev_t *vd, int flags, void *arg, uint64_t txg)
1587 {
1588 ASSERT(vd == vd->vdev_top);
1589 ASSERT(!vd->vdev_ishole);
1590 ASSERT(ISP2(flags));
1591 ASSERT(spa_writeable(vd->vdev_spa));
1592
1593 if (flags & VDD_METASLAB)
1594 (void) txg_list_add(&vd->vdev_ms_list, arg, txg);
1595
1596 if (flags & VDD_DTL)
1597 (void) txg_list_add(&vd->vdev_dtl_list, arg, txg);
1598
1599 (void) txg_list_add(&vd->vdev_spa->spa_vdev_txg_list, vd, txg);
1600 }
1601
1602 /*
1603 * DTLs.
1604 *
1605 * A vdev's DTL (dirty time log) is the set of transaction groups for which
1606 * the vdev has less than perfect replication. There are four kinds of DTL:
1607 *
1608 * DTL_MISSING: txgs for which the vdev has no valid copies of the data
1609 *
1610 * DTL_PARTIAL: txgs for which data is available, but not fully replicated
1611 *
1612 * DTL_SCRUB: the txgs that could not be repaired by the last scrub; upon
1613 * scrub completion, DTL_SCRUB replaces DTL_MISSING in the range of
1614 * txgs that was scrubbed.
1615 *
1616 * DTL_OUTAGE: txgs which cannot currently be read, whether due to
1617 * persistent errors or just some device being offline.
1618 * Unlike the other three, the DTL_OUTAGE map is not generally
1619 * maintained; it's only computed when needed, typically to
1620 * determine whether a device can be detached.
1621 *
1622 * For leaf vdevs, DTL_MISSING and DTL_PARTIAL are identical: the device
1623 * either has the data or it doesn't.
1624 *
1625 * For interior vdevs such as mirror and RAID-Z the picture is more complex.
1626 * A vdev's DTL_PARTIAL is the union of its children's DTL_PARTIALs, because
1627 * if any child is less than fully replicated, then so is its parent.
1628 * A vdev's DTL_MISSING is a modified union of its children's DTL_MISSINGs,
1629 * comprising only those txgs which appear in 'maxfaults' or more children;
1630 * those are the txgs we don't have enough replication to read. For example,
1631 * double-parity RAID-Z can tolerate up to two missing devices (maxfaults == 2);
1632 * thus, its DTL_MISSING consists of the set of txgs that appear in more than
1633 * two child DTL_MISSING maps.
1634 *
1635 * It should be clear from the above that to compute the DTLs and outage maps
1636 * for all vdevs, it suffices to know just the leaf vdevs' DTL_MISSING maps.
1637 * Therefore, that is all we keep on disk. When loading the pool, or after
1638 * a configuration change, we generate all other DTLs from first principles.
1639 */
1640 void
1641 vdev_dtl_dirty(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
1642 {
1643 space_map_t *sm = &vd->vdev_dtl[t];
1644
1645 ASSERT(t < DTL_TYPES);
1646 ASSERT(vd != vd->vdev_spa->spa_root_vdev);
1647 ASSERT(spa_writeable(vd->vdev_spa));
1648
1649 mutex_enter(sm->sm_lock);
1650 if (!space_map_contains(sm, txg, size))
1651 space_map_add(sm, txg, size);
1652 mutex_exit(sm->sm_lock);
1653 }
1654
1655 boolean_t
1656 vdev_dtl_contains(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
1657 {
1658 space_map_t *sm = &vd->vdev_dtl[t];
1659 boolean_t dirty = B_FALSE;
1660
1661 ASSERT(t < DTL_TYPES);
1662 ASSERT(vd != vd->vdev_spa->spa_root_vdev);
1663
1664 mutex_enter(sm->sm_lock);
1665 if (sm->sm_space != 0)
1666 dirty = space_map_contains(sm, txg, size);
1667 mutex_exit(sm->sm_lock);
1668
1669 return (dirty);
1670 }
1671
1672 boolean_t
1673 vdev_dtl_empty(vdev_t *vd, vdev_dtl_type_t t)
1674 {
1675 space_map_t *sm = &vd->vdev_dtl[t];
1676 boolean_t empty;
1677
1678 mutex_enter(sm->sm_lock);
1679 empty = (sm->sm_space == 0);
1680 mutex_exit(sm->sm_lock);
1681
1682 return (empty);
1683 }
1684
1685 /*
1686 * Returns the lowest txg in the DTL range.
1687 */
1688 static uint64_t
1689 vdev_dtl_min(vdev_t *vd)
1690 {
1691 space_seg_t *ss;
1692
1693 ASSERT(MUTEX_HELD(&vd->vdev_dtl_lock));
1694 ASSERT3U(vd->vdev_dtl[DTL_MISSING].sm_space, !=, 0);
1695 ASSERT0(vd->vdev_children);
1696
1697 ss = avl_first(&vd->vdev_dtl[DTL_MISSING].sm_root);
1698 return (ss->ss_start - 1);
1699 }
1700
1701 /*
1702 * Returns the highest txg in the DTL.
1703 */
1704 static uint64_t
1705 vdev_dtl_max(vdev_t *vd)
1706 {
1707 space_seg_t *ss;
1708
1709 ASSERT(MUTEX_HELD(&vd->vdev_dtl_lock));
1710 ASSERT3U(vd->vdev_dtl[DTL_MISSING].sm_space, !=, 0);
1711 ASSERT0(vd->vdev_children);
1712
1713 ss = avl_last(&vd->vdev_dtl[DTL_MISSING].sm_root);
1714 return (ss->ss_end);
1715 }
1716
1717 /*
1718 * Determine if a resilvering vdev should remove any DTL entries from
1719 * its range. If the vdev was resilvering for the entire duration of the
1720 * scan then it should excise that range from its DTLs. Otherwise, this
1721 * vdev is considered partially resilvered and should leave its DTL
1722 * entries intact. The comment in vdev_dtl_reassess() describes how we
1723 * excise the DTLs.
1724 */
1725 static boolean_t
1726 vdev_dtl_should_excise(vdev_t *vd)
1727 {
1728 spa_t *spa = vd->vdev_spa;
1729 dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan;
1730
1731 ASSERT0(scn->scn_phys.scn_errors);
1732 ASSERT0(vd->vdev_children);
1733
1734 if (vd->vdev_resilver_txg == 0 ||
1735 vd->vdev_dtl[DTL_MISSING].sm_space == 0)
1736 return (B_TRUE);
1737
1738 /*
1739 * When a resilver is initiated the scan will assign the scn_max_txg
1740 * value to the highest txg value that exists in all DTLs. If this
1741 * device's max DTL is not part of this scan (i.e. it is not in
1742 * the range (scn_min_txg, scn_max_txg] then it is not eligible
1743 * for excision.
1744 */
1745 if (vdev_dtl_max(vd) <= scn->scn_phys.scn_max_txg) {
1746 ASSERT3U(scn->scn_phys.scn_min_txg, <=, vdev_dtl_min(vd));
1747 ASSERT3U(scn->scn_phys.scn_min_txg, <, vd->vdev_resilver_txg);
1748 ASSERT3U(vd->vdev_resilver_txg, <=, scn->scn_phys.scn_max_txg);
1749 return (B_TRUE);
1750 }
1751 return (B_FALSE);
1752 }
1753
1754 /*
1755 * Reassess DTLs after a config change or scrub completion.
1756 */
1757 void
1758 vdev_dtl_reassess(vdev_t *vd, uint64_t txg, uint64_t scrub_txg, int scrub_done)
1759 {
1760 spa_t *spa = vd->vdev_spa;
1761 avl_tree_t reftree;
1762 int c, t, minref;
1763
1764 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
1765
1766 for (c = 0; c < vd->vdev_children; c++)
1767 vdev_dtl_reassess(vd->vdev_child[c], txg,
1768 scrub_txg, scrub_done);
1769
1770 if (vd == spa->spa_root_vdev || vd->vdev_ishole || vd->vdev_aux)
1771 return;
1772
1773 if (vd->vdev_ops->vdev_op_leaf) {
1774 dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan;
1775
1776 mutex_enter(&vd->vdev_dtl_lock);
1777
1778 /*
1779 * If we've completed a scan cleanly then determine
1780 * if this vdev should remove any DTLs. We only want to
1781 * excise regions on vdevs that were available during
1782 * the entire duration of this scan.
1783 */
1784 if (scrub_txg != 0 &&
1785 (spa->spa_scrub_started ||
1786 (scn != NULL && scn->scn_phys.scn_errors == 0)) &&
1787 vdev_dtl_should_excise(vd)) {
1788 /*
1789 * We completed a scrub up to scrub_txg. If we
1790 * did it without rebooting, then the scrub dtl
1791 * will be valid, so excise the old region and
1792 * fold in the scrub dtl. Otherwise, leave the
1793 * dtl as-is if there was an error.
1794 *
1795 * There's little trick here: to excise the beginning
1796 * of the DTL_MISSING map, we put it into a reference
1797 * tree and then add a segment with refcnt -1 that
1798 * covers the range [0, scrub_txg). This means
1799 * that each txg in that range has refcnt -1 or 0.
1800 * We then add DTL_SCRUB with a refcnt of 2, so that
1801 * entries in the range [0, scrub_txg) will have a
1802 * positive refcnt -- either 1 or 2. We then convert
1803 * the reference tree into the new DTL_MISSING map.
1804 */
1805 space_map_ref_create(&reftree);
1806 space_map_ref_add_map(&reftree,
1807 &vd->vdev_dtl[DTL_MISSING], 1);
1808 space_map_ref_add_seg(&reftree, 0, scrub_txg, -1);
1809 space_map_ref_add_map(&reftree,
1810 &vd->vdev_dtl[DTL_SCRUB], 2);
1811 space_map_ref_generate_map(&reftree,
1812 &vd->vdev_dtl[DTL_MISSING], 1);
1813 space_map_ref_destroy(&reftree);
1814 }
1815 space_map_vacate(&vd->vdev_dtl[DTL_PARTIAL], NULL, NULL);
1816 space_map_walk(&vd->vdev_dtl[DTL_MISSING],
1817 space_map_add, &vd->vdev_dtl[DTL_PARTIAL]);
1818 if (scrub_done)
1819 space_map_vacate(&vd->vdev_dtl[DTL_SCRUB], NULL, NULL);
1820 space_map_vacate(&vd->vdev_dtl[DTL_OUTAGE], NULL, NULL);
1821 if (!vdev_readable(vd))
1822 space_map_add(&vd->vdev_dtl[DTL_OUTAGE], 0, -1ULL);
1823 else
1824 space_map_walk(&vd->vdev_dtl[DTL_MISSING],
1825 space_map_add, &vd->vdev_dtl[DTL_OUTAGE]);
1826
1827 /*
1828 * If the vdev was resilvering and no longer has any
1829 * DTLs then reset its resilvering flag.
1830 */
1831 if (vd->vdev_resilver_txg != 0 &&
1832 vd->vdev_dtl[DTL_MISSING].sm_space == 0 &&
1833 vd->vdev_dtl[DTL_OUTAGE].sm_space == 0)
1834 vd->vdev_resilver_txg = 0;
1835
1836 mutex_exit(&vd->vdev_dtl_lock);
1837
1838 if (txg != 0)
1839 vdev_dirty(vd->vdev_top, VDD_DTL, vd, txg);
1840 return;
1841 }
1842
1843 mutex_enter(&vd->vdev_dtl_lock);
1844 for (t = 0; t < DTL_TYPES; t++) {
1845 /* account for child's outage in parent's missing map */
1846 int s = (t == DTL_MISSING) ? DTL_OUTAGE: t;
1847 if (t == DTL_SCRUB)
1848 continue; /* leaf vdevs only */
1849 if (t == DTL_PARTIAL)
1850 minref = 1; /* i.e. non-zero */
1851 else if (vd->vdev_nparity != 0)
1852 minref = vd->vdev_nparity + 1; /* RAID-Z */
1853 else
1854 minref = vd->vdev_children; /* any kind of mirror */
1855 space_map_ref_create(&reftree);
1856 for (c = 0; c < vd->vdev_children; c++) {
1857 vdev_t *cvd = vd->vdev_child[c];
1858 mutex_enter(&cvd->vdev_dtl_lock);
1859 space_map_ref_add_map(&reftree, &cvd->vdev_dtl[s], 1);
1860 mutex_exit(&cvd->vdev_dtl_lock);
1861 }
1862 space_map_ref_generate_map(&reftree, &vd->vdev_dtl[t], minref);
1863 space_map_ref_destroy(&reftree);
1864 }
1865 mutex_exit(&vd->vdev_dtl_lock);
1866 }
1867
1868 static int
1869 vdev_dtl_load(vdev_t *vd)
1870 {
1871 spa_t *spa = vd->vdev_spa;
1872 space_map_obj_t *smo = &vd->vdev_dtl_smo;
1873 objset_t *mos = spa->spa_meta_objset;
1874 dmu_buf_t *db;
1875 int error;
1876
1877 ASSERT(vd->vdev_children == 0);
1878
1879 if (smo->smo_object == 0)
1880 return (0);
1881
1882 ASSERT(!vd->vdev_ishole);
1883
1884 if ((error = dmu_bonus_hold(mos, smo->smo_object, FTAG, &db)) != 0)
1885 return (error);
1886
1887 ASSERT3U(db->db_size, >=, sizeof (*smo));
1888 bcopy(db->db_data, smo, sizeof (*smo));
1889 dmu_buf_rele(db, FTAG);
1890
1891 mutex_enter(&vd->vdev_dtl_lock);
1892 error = space_map_load(&vd->vdev_dtl[DTL_MISSING],
1893 NULL, SM_ALLOC, smo, mos);
1894 mutex_exit(&vd->vdev_dtl_lock);
1895
1896 return (error);
1897 }
1898
1899 void
1900 vdev_dtl_sync(vdev_t *vd, uint64_t txg)
1901 {
1902 spa_t *spa = vd->vdev_spa;
1903 space_map_obj_t *smo = &vd->vdev_dtl_smo;
1904 space_map_t *sm = &vd->vdev_dtl[DTL_MISSING];
1905 objset_t *mos = spa->spa_meta_objset;
1906 space_map_t smsync;
1907 kmutex_t smlock;
1908 dmu_buf_t *db;
1909 dmu_tx_t *tx;
1910
1911 ASSERT(!vd->vdev_ishole);
1912
1913 tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
1914
1915 if (vd->vdev_detached) {
1916 if (smo->smo_object != 0) {
1917 VERIFY0(dmu_object_free(mos, smo->smo_object, tx));
1918 smo->smo_object = 0;
1919 }
1920 dmu_tx_commit(tx);
1921 return;
1922 }
1923
1924 if (smo->smo_object == 0) {
1925 ASSERT(smo->smo_objsize == 0);
1926 ASSERT(smo->smo_alloc == 0);
1927 smo->smo_object = dmu_object_alloc(mos,
1928 DMU_OT_SPACE_MAP, 1 << SPACE_MAP_BLOCKSHIFT,
1929 DMU_OT_SPACE_MAP_HEADER, sizeof (*smo), tx);
1930 ASSERT(smo->smo_object != 0);
1931 vdev_config_dirty(vd->vdev_top);
1932 }
1933
1934 mutex_init(&smlock, NULL, MUTEX_DEFAULT, NULL);
1935
1936 space_map_create(&smsync, sm->sm_start, sm->sm_size, sm->sm_shift,
1937 &smlock);
1938
1939 mutex_enter(&smlock);
1940
1941 mutex_enter(&vd->vdev_dtl_lock);
1942 space_map_walk(sm, space_map_add, &smsync);
1943 mutex_exit(&vd->vdev_dtl_lock);
1944
1945 space_map_truncate(smo, mos, tx);
1946 space_map_sync(&smsync, SM_ALLOC, smo, mos, tx);
1947 space_map_vacate(&smsync, NULL, NULL);
1948
1949 space_map_destroy(&smsync);
1950
1951 mutex_exit(&smlock);
1952 mutex_destroy(&smlock);
1953
1954 VERIFY(0 == dmu_bonus_hold(mos, smo->smo_object, FTAG, &db));
1955 dmu_buf_will_dirty(db, tx);
1956 ASSERT3U(db->db_size, >=, sizeof (*smo));
1957 bcopy(smo, db->db_data, sizeof (*smo));
1958 dmu_buf_rele(db, FTAG);
1959
1960 dmu_tx_commit(tx);
1961 }
1962
1963 /*
1964 * Determine whether the specified vdev can be offlined/detached/removed
1965 * without losing data.
1966 */
1967 boolean_t
1968 vdev_dtl_required(vdev_t *vd)
1969 {
1970 spa_t *spa = vd->vdev_spa;
1971 vdev_t *tvd = vd->vdev_top;
1972 uint8_t cant_read = vd->vdev_cant_read;
1973 boolean_t required;
1974
1975 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1976
1977 if (vd == spa->spa_root_vdev || vd == tvd)
1978 return (B_TRUE);
1979
1980 /*
1981 * Temporarily mark the device as unreadable, and then determine
1982 * whether this results in any DTL outages in the top-level vdev.
1983 * If not, we can safely offline/detach/remove the device.
1984 */
1985 vd->vdev_cant_read = B_TRUE;
1986 vdev_dtl_reassess(tvd, 0, 0, B_FALSE);
1987 required = !vdev_dtl_empty(tvd, DTL_OUTAGE);
1988 vd->vdev_cant_read = cant_read;
1989 vdev_dtl_reassess(tvd, 0, 0, B_FALSE);
1990
1991 if (!required && zio_injection_enabled)
1992 required = !!zio_handle_device_injection(vd, NULL, ECHILD);
1993
1994 return (required);
1995 }
1996
1997 /*
1998 * Determine if resilver is needed, and if so the txg range.
1999 */
2000 boolean_t
2001 vdev_resilver_needed(vdev_t *vd, uint64_t *minp, uint64_t *maxp)
2002 {
2003 boolean_t needed = B_FALSE;
2004 uint64_t thismin = UINT64_MAX;
2005 uint64_t thismax = 0;
2006 int c;
2007
2008 if (vd->vdev_children == 0) {
2009 mutex_enter(&vd->vdev_dtl_lock);
2010 if (vd->vdev_dtl[DTL_MISSING].sm_space != 0 &&
2011 vdev_writeable(vd)) {
2012
2013 thismin = vdev_dtl_min(vd);
2014 thismax = vdev_dtl_max(vd);
2015 needed = B_TRUE;
2016 }
2017 mutex_exit(&vd->vdev_dtl_lock);
2018 } else {
2019 for (c = 0; c < vd->vdev_children; c++) {
2020 vdev_t *cvd = vd->vdev_child[c];
2021 uint64_t cmin, cmax;
2022
2023 if (vdev_resilver_needed(cvd, &cmin, &cmax)) {
2024 thismin = MIN(thismin, cmin);
2025 thismax = MAX(thismax, cmax);
2026 needed = B_TRUE;
2027 }
2028 }
2029 }
2030
2031 if (needed && minp) {
2032 *minp = thismin;
2033 *maxp = thismax;
2034 }
2035 return (needed);
2036 }
2037
2038 void
2039 vdev_load(vdev_t *vd)
2040 {
2041 int c;
2042
2043 /*
2044 * Recursively load all children.
2045 */
2046 for (c = 0; c < vd->vdev_children; c++)
2047 vdev_load(vd->vdev_child[c]);
2048
2049 /*
2050 * If this is a top-level vdev, initialize its metaslabs.
2051 */
2052 if (vd == vd->vdev_top && !vd->vdev_ishole &&
2053 (vd->vdev_ashift == 0 || vd->vdev_asize == 0 ||
2054 vdev_metaslab_init(vd, 0) != 0))
2055 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2056 VDEV_AUX_CORRUPT_DATA);
2057
2058 /*
2059 * If this is a leaf vdev, load its DTL.
2060 */
2061 if (vd->vdev_ops->vdev_op_leaf && vdev_dtl_load(vd) != 0)
2062 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2063 VDEV_AUX_CORRUPT_DATA);
2064 }
2065
2066 /*
2067 * The special vdev case is used for hot spares and l2cache devices. Its
2068 * sole purpose it to set the vdev state for the associated vdev. To do this,
2069 * we make sure that we can open the underlying device, then try to read the
2070 * label, and make sure that the label is sane and that it hasn't been
2071 * repurposed to another pool.
2072 */
2073 int
2074 vdev_validate_aux(vdev_t *vd)
2075 {
2076 nvlist_t *label;
2077 uint64_t guid, version;
2078 uint64_t state;
2079
2080 if (!vdev_readable(vd))
2081 return (0);
2082
2083 if ((label = vdev_label_read_config(vd, -1ULL)) == NULL) {
2084 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2085 VDEV_AUX_CORRUPT_DATA);
2086 return (-1);
2087 }
2088
2089 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_VERSION, &version) != 0 ||
2090 !SPA_VERSION_IS_SUPPORTED(version) ||
2091 nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0 ||
2092 guid != vd->vdev_guid ||
2093 nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, &state) != 0) {
2094 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2095 VDEV_AUX_CORRUPT_DATA);
2096 nvlist_free(label);
2097 return (-1);
2098 }
2099
2100 /*
2101 * We don't actually check the pool state here. If it's in fact in
2102 * use by another pool, we update this fact on the fly when requested.
2103 */
2104 nvlist_free(label);
2105 return (0);
2106 }
2107
2108 void
2109 vdev_remove(vdev_t *vd, uint64_t txg)
2110 {
2111 spa_t *spa = vd->vdev_spa;
2112 objset_t *mos = spa->spa_meta_objset;
2113 dmu_tx_t *tx;
2114 int m;
2115
2116 tx = dmu_tx_create_assigned(spa_get_dsl(spa), txg);
2117
2118 if (vd->vdev_dtl_smo.smo_object) {
2119 ASSERT0(vd->vdev_dtl_smo.smo_alloc);
2120 (void) dmu_object_free(mos, vd->vdev_dtl_smo.smo_object, tx);
2121 vd->vdev_dtl_smo.smo_object = 0;
2122 }
2123
2124 if (vd->vdev_ms != NULL) {
2125 for (m = 0; m < vd->vdev_ms_count; m++) {
2126 metaslab_t *msp = vd->vdev_ms[m];
2127
2128 if (msp == NULL || msp->ms_smo.smo_object == 0)
2129 continue;
2130
2131 ASSERT0(msp->ms_smo.smo_alloc);
2132 (void) dmu_object_free(mos, msp->ms_smo.smo_object, tx);
2133 msp->ms_smo.smo_object = 0;
2134 }
2135 }
2136
2137 if (vd->vdev_ms_array) {
2138 (void) dmu_object_free(mos, vd->vdev_ms_array, tx);
2139 vd->vdev_ms_array = 0;
2140 vd->vdev_ms_shift = 0;
2141 }
2142 dmu_tx_commit(tx);
2143 }
2144
2145 void
2146 vdev_sync_done(vdev_t *vd, uint64_t txg)
2147 {
2148 metaslab_t *msp;
2149 boolean_t reassess = !txg_list_empty(&vd->vdev_ms_list, TXG_CLEAN(txg));
2150
2151 ASSERT(!vd->vdev_ishole);
2152
2153 while ((msp = txg_list_remove(&vd->vdev_ms_list, TXG_CLEAN(txg))))
2154 metaslab_sync_done(msp, txg);
2155
2156 if (reassess)
2157 metaslab_sync_reassess(vd->vdev_mg);
2158 }
2159
2160 void
2161 vdev_sync(vdev_t *vd, uint64_t txg)
2162 {
2163 spa_t *spa = vd->vdev_spa;
2164 vdev_t *lvd;
2165 metaslab_t *msp;
2166 dmu_tx_t *tx;
2167
2168 ASSERT(!vd->vdev_ishole);
2169
2170 if (vd->vdev_ms_array == 0 && vd->vdev_ms_shift != 0) {
2171 ASSERT(vd == vd->vdev_top);
2172 tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
2173 vd->vdev_ms_array = dmu_object_alloc(spa->spa_meta_objset,
2174 DMU_OT_OBJECT_ARRAY, 0, DMU_OT_NONE, 0, tx);
2175 ASSERT(vd->vdev_ms_array != 0);
2176 vdev_config_dirty(vd);
2177 dmu_tx_commit(tx);
2178 }
2179
2180 /*
2181 * Remove the metadata associated with this vdev once it's empty.
2182 */
2183 if (vd->vdev_stat.vs_alloc == 0 && vd->vdev_removing)
2184 vdev_remove(vd, txg);
2185
2186 while ((msp = txg_list_remove(&vd->vdev_ms_list, txg)) != NULL) {
2187 metaslab_sync(msp, txg);
2188 (void) txg_list_add(&vd->vdev_ms_list, msp, TXG_CLEAN(txg));
2189 }
2190
2191 while ((lvd = txg_list_remove(&vd->vdev_dtl_list, txg)) != NULL)
2192 vdev_dtl_sync(lvd, txg);
2193
2194 (void) txg_list_add(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg));
2195 }
2196
2197 uint64_t
2198 vdev_psize_to_asize(vdev_t *vd, uint64_t psize)
2199 {
2200 return (vd->vdev_ops->vdev_op_asize(vd, psize));
2201 }
2202
2203 /*
2204 * Mark the given vdev faulted. A faulted vdev behaves as if the device could
2205 * not be opened, and no I/O is attempted.
2206 */
2207 int
2208 vdev_fault(spa_t *spa, uint64_t guid, vdev_aux_t aux)
2209 {
2210 vdev_t *vd, *tvd;
2211
2212 spa_vdev_state_enter(spa, SCL_NONE);
2213
2214 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2215 return (spa_vdev_state_exit(spa, NULL, ENODEV));
2216
2217 if (!vd->vdev_ops->vdev_op_leaf)
2218 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2219
2220 tvd = vd->vdev_top;
2221
2222 /*
2223 * We don't directly use the aux state here, but if we do a
2224 * vdev_reopen(), we need this value to be present to remember why we
2225 * were faulted.
2226 */
2227 vd->vdev_label_aux = aux;
2228
2229 /*
2230 * Faulted state takes precedence over degraded.
2231 */
2232 vd->vdev_delayed_close = B_FALSE;
2233 vd->vdev_faulted = 1ULL;
2234 vd->vdev_degraded = 0ULL;
2235 vdev_set_state(vd, B_FALSE, VDEV_STATE_FAULTED, aux);
2236
2237 /*
2238 * If this device has the only valid copy of the data, then
2239 * back off and simply mark the vdev as degraded instead.
2240 */
2241 if (!tvd->vdev_islog && vd->vdev_aux == NULL && vdev_dtl_required(vd)) {
2242 vd->vdev_degraded = 1ULL;
2243 vd->vdev_faulted = 0ULL;
2244
2245 /*
2246 * If we reopen the device and it's not dead, only then do we
2247 * mark it degraded.
2248 */
2249 vdev_reopen(tvd);
2250
2251 if (vdev_readable(vd))
2252 vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, aux);
2253 }
2254
2255 return (spa_vdev_state_exit(spa, vd, 0));
2256 }
2257
2258 /*
2259 * Mark the given vdev degraded. A degraded vdev is purely an indication to the
2260 * user that something is wrong. The vdev continues to operate as normal as far
2261 * as I/O is concerned.
2262 */
2263 int
2264 vdev_degrade(spa_t *spa, uint64_t guid, vdev_aux_t aux)
2265 {
2266 vdev_t *vd;
2267
2268 spa_vdev_state_enter(spa, SCL_NONE);
2269
2270 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2271 return (spa_vdev_state_exit(spa, NULL, ENODEV));
2272
2273 if (!vd->vdev_ops->vdev_op_leaf)
2274 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2275
2276 /*
2277 * If the vdev is already faulted, then don't do anything.
2278 */
2279 if (vd->vdev_faulted || vd->vdev_degraded)
2280 return (spa_vdev_state_exit(spa, NULL, 0));
2281
2282 vd->vdev_degraded = 1ULL;
2283 if (!vdev_is_dead(vd))
2284 vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED,
2285 aux);
2286
2287 return (spa_vdev_state_exit(spa, vd, 0));
2288 }
2289
2290 /*
2291 * Online the given vdev.
2292 *
2293 * If 'ZFS_ONLINE_UNSPARE' is set, it implies two things. First, any attached
2294 * spare device should be detached when the device finishes resilvering.
2295 * Second, the online should be treated like a 'test' online case, so no FMA
2296 * events are generated if the device fails to open.
2297 */
2298 int
2299 vdev_online(spa_t *spa, uint64_t guid, uint64_t flags, vdev_state_t *newstate)
2300 {
2301 vdev_t *vd, *tvd, *pvd, *rvd = spa->spa_root_vdev;
2302
2303 spa_vdev_state_enter(spa, SCL_NONE);
2304
2305 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2306 return (spa_vdev_state_exit(spa, NULL, ENODEV));
2307
2308 if (!vd->vdev_ops->vdev_op_leaf)
2309 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2310
2311 tvd = vd->vdev_top;
2312 vd->vdev_offline = B_FALSE;
2313 vd->vdev_tmpoffline = B_FALSE;
2314 vd->vdev_checkremove = !!(flags & ZFS_ONLINE_CHECKREMOVE);
2315 vd->vdev_forcefault = !!(flags & ZFS_ONLINE_FORCEFAULT);
2316
2317 /* XXX - L2ARC 1.0 does not support expansion */
2318 if (!vd->vdev_aux) {
2319 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
2320 pvd->vdev_expanding = !!(flags & ZFS_ONLINE_EXPAND);
2321 }
2322
2323 vdev_reopen(tvd);
2324 vd->vdev_checkremove = vd->vdev_forcefault = B_FALSE;
2325
2326 if (!vd->vdev_aux) {
2327 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
2328 pvd->vdev_expanding = B_FALSE;
2329 }
2330
2331 if (newstate)
2332 *newstate = vd->vdev_state;
2333 if ((flags & ZFS_ONLINE_UNSPARE) &&
2334 !vdev_is_dead(vd) && vd->vdev_parent &&
2335 vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
2336 vd->vdev_parent->vdev_child[0] == vd)
2337 vd->vdev_unspare = B_TRUE;
2338
2339 if ((flags & ZFS_ONLINE_EXPAND) || spa->spa_autoexpand) {
2340
2341 /* XXX - L2ARC 1.0 does not support expansion */
2342 if (vd->vdev_aux)
2343 return (spa_vdev_state_exit(spa, vd, ENOTSUP));
2344 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
2345 }
2346 return (spa_vdev_state_exit(spa, vd, 0));
2347 }
2348
2349 static int
2350 vdev_offline_locked(spa_t *spa, uint64_t guid, uint64_t flags)
2351 {
2352 vdev_t *vd, *tvd;
2353 int error = 0;
2354 uint64_t generation;
2355 metaslab_group_t *mg;
2356
2357 top:
2358 spa_vdev_state_enter(spa, SCL_ALLOC);
2359
2360 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2361 return (spa_vdev_state_exit(spa, NULL, ENODEV));
2362
2363 if (!vd->vdev_ops->vdev_op_leaf)
2364 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2365
2366 tvd = vd->vdev_top;
2367 mg = tvd->vdev_mg;
2368 generation = spa->spa_config_generation + 1;
2369
2370 /*
2371 * If the device isn't already offline, try to offline it.
2372 */
2373 if (!vd->vdev_offline) {
2374 /*
2375 * If this device has the only valid copy of some data,
2376 * don't allow it to be offlined. Log devices are always
2377 * expendable.
2378 */
2379 if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
2380 vdev_dtl_required(vd))
2381 return (spa_vdev_state_exit(spa, NULL, EBUSY));
2382
2383 /*
2384 * If the top-level is a slog and it has had allocations
2385 * then proceed. We check that the vdev's metaslab group
2386 * is not NULL since it's possible that we may have just
2387 * added this vdev but not yet initialized its metaslabs.
2388 */
2389 if (tvd->vdev_islog && mg != NULL) {
2390 /*
2391 * Prevent any future allocations.
2392 */
2393 metaslab_group_passivate(mg);
2394 (void) spa_vdev_state_exit(spa, vd, 0);
2395
2396 error = spa_offline_log(spa);
2397
2398 spa_vdev_state_enter(spa, SCL_ALLOC);
2399
2400 /*
2401 * Check to see if the config has changed.
2402 */
2403 if (error || generation != spa->spa_config_generation) {
2404 metaslab_group_activate(mg);
2405 if (error)
2406 return (spa_vdev_state_exit(spa,
2407 vd, error));
2408 (void) spa_vdev_state_exit(spa, vd, 0);
2409 goto top;
2410 }
2411 ASSERT0(tvd->vdev_stat.vs_alloc);
2412 }
2413
2414 /*
2415 * Offline this device and reopen its top-level vdev.
2416 * If the top-level vdev is a log device then just offline
2417 * it. Otherwise, if this action results in the top-level
2418 * vdev becoming unusable, undo it and fail the request.
2419 */
2420 vd->vdev_offline = B_TRUE;
2421 vdev_reopen(tvd);
2422
2423 if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
2424 vdev_is_dead(tvd)) {
2425 vd->vdev_offline = B_FALSE;
2426 vdev_reopen(tvd);
2427 return (spa_vdev_state_exit(spa, NULL, EBUSY));
2428 }
2429
2430 /*
2431 * Add the device back into the metaslab rotor so that
2432 * once we online the device it's open for business.
2433 */
2434 if (tvd->vdev_islog && mg != NULL)
2435 metaslab_group_activate(mg);
2436 }
2437
2438 vd->vdev_tmpoffline = !!(flags & ZFS_OFFLINE_TEMPORARY);
2439
2440 return (spa_vdev_state_exit(spa, vd, 0));
2441 }
2442
2443 int
2444 vdev_offline(spa_t *spa, uint64_t guid, uint64_t flags)
2445 {
2446 int error;
2447
2448 mutex_enter(&spa->spa_vdev_top_lock);
2449 error = vdev_offline_locked(spa, guid, flags);
2450 mutex_exit(&spa->spa_vdev_top_lock);
2451
2452 return (error);
2453 }
2454
2455 /*
2456 * Clear the error counts associated with this vdev. Unlike vdev_online() and
2457 * vdev_offline(), we assume the spa config is locked. We also clear all
2458 * children. If 'vd' is NULL, then the user wants to clear all vdevs.
2459 */
2460 void
2461 vdev_clear(spa_t *spa, vdev_t *vd)
2462 {
2463 vdev_t *rvd = spa->spa_root_vdev;
2464 int c;
2465
2466 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
2467
2468 if (vd == NULL)
2469 vd = rvd;
2470
2471 vd->vdev_stat.vs_read_errors = 0;
2472 vd->vdev_stat.vs_write_errors = 0;
2473 vd->vdev_stat.vs_checksum_errors = 0;
2474
2475 for (c = 0; c < vd->vdev_children; c++)
2476 vdev_clear(spa, vd->vdev_child[c]);
2477
2478 /*
2479 * If we're in the FAULTED state or have experienced failed I/O, then
2480 * clear the persistent state and attempt to reopen the device. We
2481 * also mark the vdev config dirty, so that the new faulted state is
2482 * written out to disk.
2483 */
2484 if (vd->vdev_faulted || vd->vdev_degraded ||
2485 !vdev_readable(vd) || !vdev_writeable(vd)) {
2486
2487 /*
2488 * When reopening in reponse to a clear event, it may be due to
2489 * a fmadm repair request. In this case, if the device is
2490 * still broken, we want to still post the ereport again.
2491 */
2492 vd->vdev_forcefault = B_TRUE;
2493
2494 vd->vdev_faulted = vd->vdev_degraded = 0ULL;
2495 vd->vdev_cant_read = B_FALSE;
2496 vd->vdev_cant_write = B_FALSE;
2497
2498 vdev_reopen(vd == rvd ? rvd : vd->vdev_top);
2499
2500 vd->vdev_forcefault = B_FALSE;
2501
2502 if (vd != rvd && vdev_writeable(vd->vdev_top))
2503 vdev_state_dirty(vd->vdev_top);
2504
2505 if (vd->vdev_aux == NULL && !vdev_is_dead(vd))
2506 spa_async_request(spa, SPA_ASYNC_RESILVER);
2507
2508 spa_event_notify(spa, vd, FM_EREPORT_ZFS_DEVICE_CLEAR);
2509 }
2510
2511 /*
2512 * When clearing a FMA-diagnosed fault, we always want to
2513 * unspare the device, as we assume that the original spare was
2514 * done in response to the FMA fault.
2515 */
2516 if (!vdev_is_dead(vd) && vd->vdev_parent != NULL &&
2517 vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
2518 vd->vdev_parent->vdev_child[0] == vd)
2519 vd->vdev_unspare = B_TRUE;
2520 }
2521
2522 boolean_t
2523 vdev_is_dead(vdev_t *vd)
2524 {
2525 /*
2526 * Holes and missing devices are always considered "dead".
2527 * This simplifies the code since we don't have to check for
2528 * these types of devices in the various code paths.
2529 * Instead we rely on the fact that we skip over dead devices
2530 * before issuing I/O to them.
2531 */
2532 return (vd->vdev_state < VDEV_STATE_DEGRADED || vd->vdev_ishole ||
2533 vd->vdev_ops == &vdev_missing_ops);
2534 }
2535
2536 boolean_t
2537 vdev_readable(vdev_t *vd)
2538 {
2539 return (!vdev_is_dead(vd) && !vd->vdev_cant_read);
2540 }
2541
2542 boolean_t
2543 vdev_writeable(vdev_t *vd)
2544 {
2545 return (!vdev_is_dead(vd) && !vd->vdev_cant_write);
2546 }
2547
2548 boolean_t
2549 vdev_allocatable(vdev_t *vd)
2550 {
2551 uint64_t state = vd->vdev_state;
2552
2553 /*
2554 * We currently allow allocations from vdevs which may be in the
2555 * process of reopening (i.e. VDEV_STATE_CLOSED). If the device
2556 * fails to reopen then we'll catch it later when we're holding
2557 * the proper locks. Note that we have to get the vdev state
2558 * in a local variable because although it changes atomically,
2559 * we're asking two separate questions about it.
2560 */
2561 return (!(state < VDEV_STATE_DEGRADED && state != VDEV_STATE_CLOSED) &&
2562 !vd->vdev_cant_write && !vd->vdev_ishole);
2563 }
2564
2565 boolean_t
2566 vdev_accessible(vdev_t *vd, zio_t *zio)
2567 {
2568 ASSERT(zio->io_vd == vd);
2569
2570 if (vdev_is_dead(vd) || vd->vdev_remove_wanted)
2571 return (B_FALSE);
2572
2573 if (zio->io_type == ZIO_TYPE_READ)
2574 return (!vd->vdev_cant_read);
2575
2576 if (zio->io_type == ZIO_TYPE_WRITE)
2577 return (!vd->vdev_cant_write);
2578
2579 return (B_TRUE);
2580 }
2581
2582 /*
2583 * Get statistics for the given vdev.
2584 */
2585 void
2586 vdev_get_stats(vdev_t *vd, vdev_stat_t *vs)
2587 {
2588 vdev_t *rvd = vd->vdev_spa->spa_root_vdev;
2589 int c, t;
2590
2591 mutex_enter(&vd->vdev_stat_lock);
2592 bcopy(&vd->vdev_stat, vs, sizeof (*vs));
2593 vs->vs_timestamp = gethrtime() - vs->vs_timestamp;
2594 vs->vs_state = vd->vdev_state;
2595 vs->vs_rsize = vdev_get_min_asize(vd);
2596 if (vd->vdev_ops->vdev_op_leaf)
2597 vs->vs_rsize += VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE;
2598 vs->vs_esize = vd->vdev_max_asize - vd->vdev_asize;
2599 mutex_exit(&vd->vdev_stat_lock);
2600
2601 /*
2602 * If we're getting stats on the root vdev, aggregate the I/O counts
2603 * over all top-level vdevs (i.e. the direct children of the root).
2604 */
2605 if (vd == rvd) {
2606 for (c = 0; c < rvd->vdev_children; c++) {
2607 vdev_t *cvd = rvd->vdev_child[c];
2608 vdev_stat_t *cvs = &cvd->vdev_stat;
2609
2610 mutex_enter(&vd->vdev_stat_lock);
2611 for (t = 0; t < ZIO_TYPES; t++) {
2612 vs->vs_ops[t] += cvs->vs_ops[t];
2613 vs->vs_bytes[t] += cvs->vs_bytes[t];
2614 }
2615 cvs->vs_scan_removing = cvd->vdev_removing;
2616 mutex_exit(&vd->vdev_stat_lock);
2617 }
2618 }
2619 }
2620
2621 void
2622 vdev_clear_stats(vdev_t *vd)
2623 {
2624 mutex_enter(&vd->vdev_stat_lock);
2625 vd->vdev_stat.vs_space = 0;
2626 vd->vdev_stat.vs_dspace = 0;
2627 vd->vdev_stat.vs_alloc = 0;
2628 mutex_exit(&vd->vdev_stat_lock);
2629 }
2630
2631 void
2632 vdev_scan_stat_init(vdev_t *vd)
2633 {
2634 vdev_stat_t *vs = &vd->vdev_stat;
2635 int c;
2636
2637 for (c = 0; c < vd->vdev_children; c++)
2638 vdev_scan_stat_init(vd->vdev_child[c]);
2639
2640 mutex_enter(&vd->vdev_stat_lock);
2641 vs->vs_scan_processed = 0;
2642 mutex_exit(&vd->vdev_stat_lock);
2643 }
2644
2645 void
2646 vdev_stat_update(zio_t *zio, uint64_t psize)
2647 {
2648 spa_t *spa = zio->io_spa;
2649 vdev_t *rvd = spa->spa_root_vdev;
2650 vdev_t *vd = zio->io_vd ? zio->io_vd : rvd;
2651 vdev_t *pvd;
2652 uint64_t txg = zio->io_txg;
2653 vdev_stat_t *vs = &vd->vdev_stat;
2654 zio_type_t type = zio->io_type;
2655 int flags = zio->io_flags;
2656
2657 /*
2658 * If this i/o is a gang leader, it didn't do any actual work.
2659 */
2660 if (zio->io_gang_tree)
2661 return;
2662
2663 if (zio->io_error == 0) {
2664 /*
2665 * If this is a root i/o, don't count it -- we've already
2666 * counted the top-level vdevs, and vdev_get_stats() will
2667 * aggregate them when asked. This reduces contention on
2668 * the root vdev_stat_lock and implicitly handles blocks
2669 * that compress away to holes, for which there is no i/o.
2670 * (Holes never create vdev children, so all the counters
2671 * remain zero, which is what we want.)
2672 *
2673 * Note: this only applies to successful i/o (io_error == 0)
2674 * because unlike i/o counts, errors are not additive.
2675 * When reading a ditto block, for example, failure of
2676 * one top-level vdev does not imply a root-level error.
2677 */
2678 if (vd == rvd)
2679 return;
2680
2681 ASSERT(vd == zio->io_vd);
2682
2683 if (flags & ZIO_FLAG_IO_BYPASS)
2684 return;
2685
2686 mutex_enter(&vd->vdev_stat_lock);
2687
2688 if (flags & ZIO_FLAG_IO_REPAIR) {
2689 if (flags & ZIO_FLAG_SCAN_THREAD) {
2690 dsl_scan_phys_t *scn_phys =
2691 &spa->spa_dsl_pool->dp_scan->scn_phys;
2692 uint64_t *processed = &scn_phys->scn_processed;
2693
2694 /* XXX cleanup? */
2695 if (vd->vdev_ops->vdev_op_leaf)
2696 atomic_add_64(processed, psize);
2697 vs->vs_scan_processed += psize;
2698 }
2699
2700 if (flags & ZIO_FLAG_SELF_HEAL)
2701 vs->vs_self_healed += psize;
2702 }
2703
2704 vs->vs_ops[type]++;
2705 vs->vs_bytes[type] += psize;
2706
2707 mutex_exit(&vd->vdev_stat_lock);
2708 return;
2709 }
2710
2711 if (flags & ZIO_FLAG_SPECULATIVE)
2712 return;
2713
2714 /*
2715 * If this is an I/O error that is going to be retried, then ignore the
2716 * error. Otherwise, the user may interpret B_FAILFAST I/O errors as
2717 * hard errors, when in reality they can happen for any number of
2718 * innocuous reasons (bus resets, MPxIO link failure, etc).
2719 */
2720 if (zio->io_error == EIO &&
2721 !(zio->io_flags & ZIO_FLAG_IO_RETRY))
2722 return;
2723
2724 /*
2725 * Intent logs writes won't propagate their error to the root
2726 * I/O so don't mark these types of failures as pool-level
2727 * errors.
2728 */
2729 if (zio->io_vd == NULL && (zio->io_flags & ZIO_FLAG_DONT_PROPAGATE))
2730 return;
2731
2732 mutex_enter(&vd->vdev_stat_lock);
2733 if (type == ZIO_TYPE_READ && !vdev_is_dead(vd)) {
2734 if (zio->io_error == ECKSUM)
2735 vs->vs_checksum_errors++;
2736 else
2737 vs->vs_read_errors++;
2738 }
2739 if (type == ZIO_TYPE_WRITE && !vdev_is_dead(vd))
2740 vs->vs_write_errors++;
2741 mutex_exit(&vd->vdev_stat_lock);
2742
2743 if (type == ZIO_TYPE_WRITE && txg != 0 &&
2744 (!(flags & ZIO_FLAG_IO_REPAIR) ||
2745 (flags & ZIO_FLAG_SCAN_THREAD) ||
2746 spa->spa_claiming)) {
2747 /*
2748 * This is either a normal write (not a repair), or it's
2749 * a repair induced by the scrub thread, or it's a repair
2750 * made by zil_claim() during spa_load() in the first txg.
2751 * In the normal case, we commit the DTL change in the same
2752 * txg as the block was born. In the scrub-induced repair
2753 * case, we know that scrubs run in first-pass syncing context,
2754 * so we commit the DTL change in spa_syncing_txg(spa).
2755 * In the zil_claim() case, we commit in spa_first_txg(spa).
2756 *
2757 * We currently do not make DTL entries for failed spontaneous
2758 * self-healing writes triggered by normal (non-scrubbing)
2759 * reads, because we have no transactional context in which to
2760 * do so -- and it's not clear that it'd be desirable anyway.
2761 */
2762 if (vd->vdev_ops->vdev_op_leaf) {
2763 uint64_t commit_txg = txg;
2764 if (flags & ZIO_FLAG_SCAN_THREAD) {
2765 ASSERT(flags & ZIO_FLAG_IO_REPAIR);
2766 ASSERT(spa_sync_pass(spa) == 1);
2767 vdev_dtl_dirty(vd, DTL_SCRUB, txg, 1);
2768 commit_txg = spa_syncing_txg(spa);
2769 } else if (spa->spa_claiming) {
2770 ASSERT(flags & ZIO_FLAG_IO_REPAIR);
2771 commit_txg = spa_first_txg(spa);
2772 }
2773 ASSERT(commit_txg >= spa_syncing_txg(spa));
2774 if (vdev_dtl_contains(vd, DTL_MISSING, txg, 1))
2775 return;
2776 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
2777 vdev_dtl_dirty(pvd, DTL_PARTIAL, txg, 1);
2778 vdev_dirty(vd->vdev_top, VDD_DTL, vd, commit_txg);
2779 }
2780 if (vd != rvd)
2781 vdev_dtl_dirty(vd, DTL_MISSING, txg, 1);
2782 }
2783 }
2784
2785 /*
2786 * Update the in-core space usage stats for this vdev, its metaslab class,
2787 * and the root vdev.
2788 */
2789 void
2790 vdev_space_update(vdev_t *vd, int64_t alloc_delta, int64_t defer_delta,
2791 int64_t space_delta)
2792 {
2793 int64_t dspace_delta = space_delta;
2794 spa_t *spa = vd->vdev_spa;
2795 vdev_t *rvd = spa->spa_root_vdev;
2796 metaslab_group_t *mg = vd->vdev_mg;
2797 metaslab_class_t *mc = mg ? mg->mg_class : NULL;
2798
2799 ASSERT(vd == vd->vdev_top);
2800
2801 /*
2802 * Apply the inverse of the psize-to-asize (ie. RAID-Z) space-expansion
2803 * factor. We must calculate this here and not at the root vdev
2804 * because the root vdev's psize-to-asize is simply the max of its
2805 * childrens', thus not accurate enough for us.
2806 */
2807 ASSERT((dspace_delta & (SPA_MINBLOCKSIZE-1)) == 0);
2808 ASSERT(vd->vdev_deflate_ratio != 0 || vd->vdev_isl2cache);
2809 dspace_delta = (dspace_delta >> SPA_MINBLOCKSHIFT) *
2810 vd->vdev_deflate_ratio;
2811
2812 mutex_enter(&vd->vdev_stat_lock);
2813 vd->vdev_stat.vs_alloc += alloc_delta;
2814 vd->vdev_stat.vs_space += space_delta;
2815 vd->vdev_stat.vs_dspace += dspace_delta;
2816 mutex_exit(&vd->vdev_stat_lock);
2817
2818 if (mc == spa_normal_class(spa)) {
2819 mutex_enter(&rvd->vdev_stat_lock);
2820 rvd->vdev_stat.vs_alloc += alloc_delta;
2821 rvd->vdev_stat.vs_space += space_delta;
2822 rvd->vdev_stat.vs_dspace += dspace_delta;
2823 mutex_exit(&rvd->vdev_stat_lock);
2824 }
2825
2826 if (mc != NULL) {
2827 ASSERT(rvd == vd->vdev_parent);
2828 ASSERT(vd->vdev_ms_count != 0);
2829
2830 metaslab_class_space_update(mc,
2831 alloc_delta, defer_delta, space_delta, dspace_delta);
2832 }
2833 }
2834
2835 /*
2836 * Mark a top-level vdev's config as dirty, placing it on the dirty list
2837 * so that it will be written out next time the vdev configuration is synced.
2838 * If the root vdev is specified (vdev_top == NULL), dirty all top-level vdevs.
2839 */
2840 void
2841 vdev_config_dirty(vdev_t *vd)
2842 {
2843 spa_t *spa = vd->vdev_spa;
2844 vdev_t *rvd = spa->spa_root_vdev;
2845 int c;
2846
2847 ASSERT(spa_writeable(spa));
2848
2849 /*
2850 * If this is an aux vdev (as with l2cache and spare devices), then we
2851 * update the vdev config manually and set the sync flag.
2852 */
2853 if (vd->vdev_aux != NULL) {
2854 spa_aux_vdev_t *sav = vd->vdev_aux;
2855 nvlist_t **aux;
2856 uint_t naux;
2857
2858 for (c = 0; c < sav->sav_count; c++) {
2859 if (sav->sav_vdevs[c] == vd)
2860 break;
2861 }
2862
2863 if (c == sav->sav_count) {
2864 /*
2865 * We're being removed. There's nothing more to do.
2866 */
2867 ASSERT(sav->sav_sync == B_TRUE);
2868 return;
2869 }
2870
2871 sav->sav_sync = B_TRUE;
2872
2873 if (nvlist_lookup_nvlist_array(sav->sav_config,
2874 ZPOOL_CONFIG_L2CACHE, &aux, &naux) != 0) {
2875 VERIFY(nvlist_lookup_nvlist_array(sav->sav_config,
2876 ZPOOL_CONFIG_SPARES, &aux, &naux) == 0);
2877 }
2878
2879 ASSERT(c < naux);
2880
2881 /*
2882 * Setting the nvlist in the middle if the array is a little
2883 * sketchy, but it will work.
2884 */
2885 nvlist_free(aux[c]);
2886 aux[c] = vdev_config_generate(spa, vd, B_TRUE, 0);
2887
2888 return;
2889 }
2890
2891 /*
2892 * The dirty list is protected by the SCL_CONFIG lock. The caller
2893 * must either hold SCL_CONFIG as writer, or must be the sync thread
2894 * (which holds SCL_CONFIG as reader). There's only one sync thread,
2895 * so this is sufficient to ensure mutual exclusion.
2896 */
2897 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
2898 (dsl_pool_sync_context(spa_get_dsl(spa)) &&
2899 spa_config_held(spa, SCL_CONFIG, RW_READER)));
2900
2901 if (vd == rvd) {
2902 for (c = 0; c < rvd->vdev_children; c++)
2903 vdev_config_dirty(rvd->vdev_child[c]);
2904 } else {
2905 ASSERT(vd == vd->vdev_top);
2906
2907 if (!list_link_active(&vd->vdev_config_dirty_node) &&
2908 !vd->vdev_ishole)
2909 list_insert_head(&spa->spa_config_dirty_list, vd);
2910 }
2911 }
2912
2913 void
2914 vdev_config_clean(vdev_t *vd)
2915 {
2916 spa_t *spa = vd->vdev_spa;
2917
2918 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
2919 (dsl_pool_sync_context(spa_get_dsl(spa)) &&
2920 spa_config_held(spa, SCL_CONFIG, RW_READER)));
2921
2922 ASSERT(list_link_active(&vd->vdev_config_dirty_node));
2923 list_remove(&spa->spa_config_dirty_list, vd);
2924 }
2925
2926 /*
2927 * Mark a top-level vdev's state as dirty, so that the next pass of
2928 * spa_sync() can convert this into vdev_config_dirty(). We distinguish
2929 * the state changes from larger config changes because they require
2930 * much less locking, and are often needed for administrative actions.
2931 */
2932 void
2933 vdev_state_dirty(vdev_t *vd)
2934 {
2935 spa_t *spa = vd->vdev_spa;
2936
2937 ASSERT(spa_writeable(spa));
2938 ASSERT(vd == vd->vdev_top);
2939
2940 /*
2941 * The state list is protected by the SCL_STATE lock. The caller
2942 * must either hold SCL_STATE as writer, or must be the sync thread
2943 * (which holds SCL_STATE as reader). There's only one sync thread,
2944 * so this is sufficient to ensure mutual exclusion.
2945 */
2946 ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
2947 (dsl_pool_sync_context(spa_get_dsl(spa)) &&
2948 spa_config_held(spa, SCL_STATE, RW_READER)));
2949
2950 if (!list_link_active(&vd->vdev_state_dirty_node) && !vd->vdev_ishole)
2951 list_insert_head(&spa->spa_state_dirty_list, vd);
2952 }
2953
2954 void
2955 vdev_state_clean(vdev_t *vd)
2956 {
2957 spa_t *spa = vd->vdev_spa;
2958
2959 ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
2960 (dsl_pool_sync_context(spa_get_dsl(spa)) &&
2961 spa_config_held(spa, SCL_STATE, RW_READER)));
2962
2963 ASSERT(list_link_active(&vd->vdev_state_dirty_node));
2964 list_remove(&spa->spa_state_dirty_list, vd);
2965 }
2966
2967 /*
2968 * Propagate vdev state up from children to parent.
2969 */
2970 void
2971 vdev_propagate_state(vdev_t *vd)
2972 {
2973 spa_t *spa = vd->vdev_spa;
2974 vdev_t *rvd = spa->spa_root_vdev;
2975 int degraded = 0, faulted = 0;
2976 int corrupted = 0;
2977 vdev_t *child;
2978 int c;
2979
2980 if (vd->vdev_children > 0) {
2981 for (c = 0; c < vd->vdev_children; c++) {
2982 child = vd->vdev_child[c];
2983
2984 /*
2985 * Don't factor holes into the decision.
2986 */
2987 if (child->vdev_ishole)
2988 continue;
2989
2990 if (!vdev_readable(child) ||
2991 (!vdev_writeable(child) && spa_writeable(spa))) {
2992 /*
2993 * Root special: if there is a top-level log
2994 * device, treat the root vdev as if it were
2995 * degraded.
2996 */
2997 if (child->vdev_islog && vd == rvd)
2998 degraded++;
2999 else
3000 faulted++;
3001 } else if (child->vdev_state <= VDEV_STATE_DEGRADED) {
3002 degraded++;
3003 }
3004
3005 if (child->vdev_stat.vs_aux == VDEV_AUX_CORRUPT_DATA)
3006 corrupted++;
3007 }
3008
3009 vd->vdev_ops->vdev_op_state_change(vd, faulted, degraded);
3010
3011 /*
3012 * Root special: if there is a top-level vdev that cannot be
3013 * opened due to corrupted metadata, then propagate the root
3014 * vdev's aux state as 'corrupt' rather than 'insufficient
3015 * replicas'.
3016 */
3017 if (corrupted && vd == rvd &&
3018 rvd->vdev_state == VDEV_STATE_CANT_OPEN)
3019 vdev_set_state(rvd, B_FALSE, VDEV_STATE_CANT_OPEN,
3020 VDEV_AUX_CORRUPT_DATA);
3021 }
3022
3023 if (vd->vdev_parent)
3024 vdev_propagate_state(vd->vdev_parent);
3025 }
3026
3027 /*
3028 * Set a vdev's state. If this is during an open, we don't update the parent
3029 * state, because we're in the process of opening children depth-first.
3030 * Otherwise, we propagate the change to the parent.
3031 *
3032 * If this routine places a device in a faulted state, an appropriate ereport is
3033 * generated.
3034 */
3035 void
3036 vdev_set_state(vdev_t *vd, boolean_t isopen, vdev_state_t state, vdev_aux_t aux)
3037 {
3038 uint64_t save_state;
3039 spa_t *spa = vd->vdev_spa;
3040
3041 if (state == vd->vdev_state) {
3042 vd->vdev_stat.vs_aux = aux;
3043 return;
3044 }
3045
3046 save_state = vd->vdev_state;
3047
3048 vd->vdev_state = state;
3049 vd->vdev_stat.vs_aux = aux;
3050
3051 /*
3052 * If we are setting the vdev state to anything but an open state, then
3053 * always close the underlying device unless the device has requested
3054 * a delayed close (i.e. we're about to remove or fault the device).
3055 * Otherwise, we keep accessible but invalid devices open forever.
3056 * We don't call vdev_close() itself, because that implies some extra
3057 * checks (offline, etc) that we don't want here. This is limited to
3058 * leaf devices, because otherwise closing the device will affect other
3059 * children.
3060 */
3061 if (!vd->vdev_delayed_close && vdev_is_dead(vd) &&
3062 vd->vdev_ops->vdev_op_leaf)
3063 vd->vdev_ops->vdev_op_close(vd);
3064
3065 /*
3066 * If we have brought this vdev back into service, we need
3067 * to notify fmd so that it can gracefully repair any outstanding
3068 * cases due to a missing device. We do this in all cases, even those
3069 * that probably don't correlate to a repaired fault. This is sure to
3070 * catch all cases, and we let the zfs-retire agent sort it out. If
3071 * this is a transient state it's OK, as the retire agent will
3072 * double-check the state of the vdev before repairing it.
3073 */
3074 if (state == VDEV_STATE_HEALTHY && vd->vdev_ops->vdev_op_leaf &&
3075 vd->vdev_prevstate != state)
3076 zfs_post_state_change(spa, vd);
3077
3078 if (vd->vdev_removed &&
3079 state == VDEV_STATE_CANT_OPEN &&
3080 (aux == VDEV_AUX_OPEN_FAILED || vd->vdev_checkremove)) {
3081 /*
3082 * If the previous state is set to VDEV_STATE_REMOVED, then this
3083 * device was previously marked removed and someone attempted to
3084 * reopen it. If this failed due to a nonexistent device, then
3085 * keep the device in the REMOVED state. We also let this be if
3086 * it is one of our special test online cases, which is only
3087 * attempting to online the device and shouldn't generate an FMA
3088 * fault.
3089 */
3090 vd->vdev_state = VDEV_STATE_REMOVED;
3091 vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
3092 } else if (state == VDEV_STATE_REMOVED) {
3093 vd->vdev_removed = B_TRUE;
3094 } else if (state == VDEV_STATE_CANT_OPEN) {
3095 /*
3096 * If we fail to open a vdev during an import or recovery, we
3097 * mark it as "not available", which signifies that it was
3098 * never there to begin with. Failure to open such a device
3099 * is not considered an error.
3100 */
3101 if ((spa_load_state(spa) == SPA_LOAD_IMPORT ||
3102 spa_load_state(spa) == SPA_LOAD_RECOVER) &&
3103 vd->vdev_ops->vdev_op_leaf)
3104 vd->vdev_not_present = 1;
3105
3106 /*
3107 * Post the appropriate ereport. If the 'prevstate' field is
3108 * set to something other than VDEV_STATE_UNKNOWN, it indicates
3109 * that this is part of a vdev_reopen(). In this case, we don't
3110 * want to post the ereport if the device was already in the
3111 * CANT_OPEN state beforehand.
3112 *
3113 * If the 'checkremove' flag is set, then this is an attempt to
3114 * online the device in response to an insertion event. If we
3115 * hit this case, then we have detected an insertion event for a
3116 * faulted or offline device that wasn't in the removed state.
3117 * In this scenario, we don't post an ereport because we are
3118 * about to replace the device, or attempt an online with
3119 * vdev_forcefault, which will generate the fault for us.
3120 */
3121 if ((vd->vdev_prevstate != state || vd->vdev_forcefault) &&
3122 !vd->vdev_not_present && !vd->vdev_checkremove &&
3123 vd != spa->spa_root_vdev) {
3124 const char *class;
3125
3126 switch (aux) {
3127 case VDEV_AUX_OPEN_FAILED:
3128 class = FM_EREPORT_ZFS_DEVICE_OPEN_FAILED;
3129 break;
3130 case VDEV_AUX_CORRUPT_DATA:
3131 class = FM_EREPORT_ZFS_DEVICE_CORRUPT_DATA;
3132 break;
3133 case VDEV_AUX_NO_REPLICAS:
3134 class = FM_EREPORT_ZFS_DEVICE_NO_REPLICAS;
3135 break;
3136 case VDEV_AUX_BAD_GUID_SUM:
3137 class = FM_EREPORT_ZFS_DEVICE_BAD_GUID_SUM;
3138 break;
3139 case VDEV_AUX_TOO_SMALL:
3140 class = FM_EREPORT_ZFS_DEVICE_TOO_SMALL;
3141 break;
3142 case VDEV_AUX_BAD_LABEL:
3143 class = FM_EREPORT_ZFS_DEVICE_BAD_LABEL;
3144 break;
3145 default:
3146 class = FM_EREPORT_ZFS_DEVICE_UNKNOWN;
3147 }
3148
3149 zfs_ereport_post(class, spa, vd, NULL, save_state, 0);
3150 }
3151
3152 /* Erase any notion of persistent removed state */
3153 vd->vdev_removed = B_FALSE;
3154 } else {
3155 vd->vdev_removed = B_FALSE;
3156 }
3157
3158 if (!isopen && vd->vdev_parent)
3159 vdev_propagate_state(vd->vdev_parent);
3160 }
3161
3162 /*
3163 * Check the vdev configuration to ensure that it's capable of supporting
3164 * a root pool.
3165 */
3166 boolean_t
3167 vdev_is_bootable(vdev_t *vd)
3168 {
3169 #if defined(__sun__) || defined(__sun)
3170 /*
3171 * Currently, we do not support RAID-Z or partial configuration.
3172 * In addition, only a single top-level vdev is allowed and none of the
3173 * leaves can be wholedisks.
3174 */
3175 int c;
3176
3177 if (!vd->vdev_ops->vdev_op_leaf) {
3178 char *vdev_type = vd->vdev_ops->vdev_op_type;
3179
3180 if (strcmp(vdev_type, VDEV_TYPE_ROOT) == 0 &&
3181 vd->vdev_children > 1) {
3182 return (B_FALSE);
3183 } else if (strcmp(vdev_type, VDEV_TYPE_RAIDZ) == 0 ||
3184 strcmp(vdev_type, VDEV_TYPE_MISSING) == 0) {
3185 return (B_FALSE);
3186 }
3187 } else if (vd->vdev_wholedisk == 1) {
3188 return (B_FALSE);
3189 }
3190
3191 for (c = 0; c < vd->vdev_children; c++) {
3192 if (!vdev_is_bootable(vd->vdev_child[c]))
3193 return (B_FALSE);
3194 }
3195 #endif /* __sun__ || __sun */
3196 return (B_TRUE);
3197 }
3198
3199 /*
3200 * Load the state from the original vdev tree (ovd) which
3201 * we've retrieved from the MOS config object. If the original
3202 * vdev was offline or faulted then we transfer that state to the
3203 * device in the current vdev tree (nvd).
3204 */
3205 void
3206 vdev_load_log_state(vdev_t *nvd, vdev_t *ovd)
3207 {
3208 int c;
3209
3210 ASSERT(nvd->vdev_top->vdev_islog);
3211 ASSERT(spa_config_held(nvd->vdev_spa,
3212 SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
3213 ASSERT3U(nvd->vdev_guid, ==, ovd->vdev_guid);
3214
3215 for (c = 0; c < nvd->vdev_children; c++)
3216 vdev_load_log_state(nvd->vdev_child[c], ovd->vdev_child[c]);
3217
3218 if (nvd->vdev_ops->vdev_op_leaf) {
3219 /*
3220 * Restore the persistent vdev state
3221 */
3222 nvd->vdev_offline = ovd->vdev_offline;
3223 nvd->vdev_faulted = ovd->vdev_faulted;
3224 nvd->vdev_degraded = ovd->vdev_degraded;
3225 nvd->vdev_removed = ovd->vdev_removed;
3226 }
3227 }
3228
3229 /*
3230 * Determine if a log device has valid content. If the vdev was
3231 * removed or faulted in the MOS config then we know that
3232 * the content on the log device has already been written to the pool.
3233 */
3234 boolean_t
3235 vdev_log_state_valid(vdev_t *vd)
3236 {
3237 int c;
3238
3239 if (vd->vdev_ops->vdev_op_leaf && !vd->vdev_faulted &&
3240 !vd->vdev_removed)
3241 return (B_TRUE);
3242
3243 for (c = 0; c < vd->vdev_children; c++)
3244 if (vdev_log_state_valid(vd->vdev_child[c]))
3245 return (B_TRUE);
3246
3247 return (B_FALSE);
3248 }
3249
3250 /*
3251 * Expand a vdev if possible.
3252 */
3253 void
3254 vdev_expand(vdev_t *vd, uint64_t txg)
3255 {
3256 ASSERT(vd->vdev_top == vd);
3257 ASSERT(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
3258
3259 if ((vd->vdev_asize >> vd->vdev_ms_shift) > vd->vdev_ms_count) {
3260 VERIFY(vdev_metaslab_init(vd, txg) == 0);
3261 vdev_config_dirty(vd);
3262 }
3263 }
3264
3265 /*
3266 * Split a vdev.
3267 */
3268 void
3269 vdev_split(vdev_t *vd)
3270 {
3271 vdev_t *cvd, *pvd = vd->vdev_parent;
3272
3273 vdev_remove_child(pvd, vd);
3274 vdev_compact_children(pvd);
3275
3276 cvd = pvd->vdev_child[0];
3277 if (pvd->vdev_children == 1) {
3278 vdev_remove_parent(cvd);
3279 cvd->vdev_splitting = B_TRUE;
3280 }
3281 vdev_propagate_state(cvd);
3282 }
3283
3284 void
3285 vdev_deadman(vdev_t *vd)
3286 {
3287 int c;
3288
3289 for (c = 0; c < vd->vdev_children; c++) {
3290 vdev_t *cvd = vd->vdev_child[c];
3291
3292 vdev_deadman(cvd);
3293 }
3294
3295 if (vd->vdev_ops->vdev_op_leaf) {
3296 vdev_queue_t *vq = &vd->vdev_queue;
3297
3298 mutex_enter(&vq->vq_lock);
3299 if (avl_numnodes(&vq->vq_active_tree) > 0) {
3300 spa_t *spa = vd->vdev_spa;
3301 zio_t *fio;
3302 uint64_t delta;
3303
3304 /*
3305 * Look at the head of all the pending queues,
3306 * if any I/O has been outstanding for longer than
3307 * the spa_deadman_synctime we log a zevent.
3308 */
3309 fio = avl_first(&vq->vq_active_tree);
3310 delta = gethrtime() - fio->io_timestamp;
3311 if (delta > spa_deadman_synctime(spa)) {
3312 zfs_dbgmsg("SLOW IO: zio timestamp %lluns, "
3313 "delta %lluns, last io %lluns",
3314 fio->io_timestamp, delta,
3315 vq->vq_io_complete_ts);
3316 zfs_ereport_post(FM_EREPORT_ZFS_DELAY,
3317 spa, vd, fio, 0, 0);
3318 }
3319 }
3320 mutex_exit(&vq->vq_lock);
3321 }
3322 }
3323
3324 #if defined(_KERNEL) && defined(HAVE_SPL)
3325 EXPORT_SYMBOL(vdev_fault);
3326 EXPORT_SYMBOL(vdev_degrade);
3327 EXPORT_SYMBOL(vdev_online);
3328 EXPORT_SYMBOL(vdev_offline);
3329 EXPORT_SYMBOL(vdev_clear);
3330 #endif