]> git.proxmox.com Git - mirror_zfs.git/blob - module/zfs/vdev.c
OpenZFS 5997 - FRU field not set during pool creation and never updated
[mirror_zfs.git] / module / zfs / vdev.c
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22 /*
23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
25 * Copyright (c) 2011, 2015 by Delphix. All rights reserved.
26 */
27
28 #include <sys/zfs_context.h>
29 #include <sys/fm/fs/zfs.h>
30 #include <sys/spa.h>
31 #include <sys/spa_impl.h>
32 #include <sys/dmu.h>
33 #include <sys/dmu_tx.h>
34 #include <sys/vdev_impl.h>
35 #include <sys/uberblock_impl.h>
36 #include <sys/metaslab.h>
37 #include <sys/metaslab_impl.h>
38 #include <sys/space_map.h>
39 #include <sys/space_reftree.h>
40 #include <sys/zio.h>
41 #include <sys/zap.h>
42 #include <sys/fs/zfs.h>
43 #include <sys/arc.h>
44 #include <sys/zil.h>
45 #include <sys/dsl_scan.h>
46 #include <sys/zvol.h>
47
48 /*
49 * When a vdev is added, it will be divided into approximately (but no
50 * more than) this number of metaslabs.
51 */
52 int metaslabs_per_vdev = 200;
53
54 /*
55 * Virtual device management.
56 */
57
58 static vdev_ops_t *vdev_ops_table[] = {
59 &vdev_root_ops,
60 &vdev_raidz_ops,
61 &vdev_mirror_ops,
62 &vdev_replacing_ops,
63 &vdev_spare_ops,
64 &vdev_disk_ops,
65 &vdev_file_ops,
66 &vdev_missing_ops,
67 &vdev_hole_ops,
68 NULL
69 };
70
71 /*
72 * Given a vdev type, return the appropriate ops vector.
73 */
74 static vdev_ops_t *
75 vdev_getops(const char *type)
76 {
77 vdev_ops_t *ops, **opspp;
78
79 for (opspp = vdev_ops_table; (ops = *opspp) != NULL; opspp++)
80 if (strcmp(ops->vdev_op_type, type) == 0)
81 break;
82
83 return (ops);
84 }
85
86 /*
87 * Default asize function: return the MAX of psize with the asize of
88 * all children. This is what's used by anything other than RAID-Z.
89 */
90 uint64_t
91 vdev_default_asize(vdev_t *vd, uint64_t psize)
92 {
93 uint64_t asize = P2ROUNDUP(psize, 1ULL << vd->vdev_top->vdev_ashift);
94 uint64_t csize;
95 int c;
96
97 for (c = 0; c < vd->vdev_children; c++) {
98 csize = vdev_psize_to_asize(vd->vdev_child[c], psize);
99 asize = MAX(asize, csize);
100 }
101
102 return (asize);
103 }
104
105 /*
106 * Get the minimum allocatable size. We define the allocatable size as
107 * the vdev's asize rounded to the nearest metaslab. This allows us to
108 * replace or attach devices which don't have the same physical size but
109 * can still satisfy the same number of allocations.
110 */
111 uint64_t
112 vdev_get_min_asize(vdev_t *vd)
113 {
114 vdev_t *pvd = vd->vdev_parent;
115
116 /*
117 * If our parent is NULL (inactive spare or cache) or is the root,
118 * just return our own asize.
119 */
120 if (pvd == NULL)
121 return (vd->vdev_asize);
122
123 /*
124 * The top-level vdev just returns the allocatable size rounded
125 * to the nearest metaslab.
126 */
127 if (vd == vd->vdev_top)
128 return (P2ALIGN(vd->vdev_asize, 1ULL << vd->vdev_ms_shift));
129
130 /*
131 * The allocatable space for a raidz vdev is N * sizeof(smallest child),
132 * so each child must provide at least 1/Nth of its asize.
133 */
134 if (pvd->vdev_ops == &vdev_raidz_ops)
135 return (pvd->vdev_min_asize / pvd->vdev_children);
136
137 return (pvd->vdev_min_asize);
138 }
139
140 void
141 vdev_set_min_asize(vdev_t *vd)
142 {
143 int c;
144 vd->vdev_min_asize = vdev_get_min_asize(vd);
145
146 for (c = 0; c < vd->vdev_children; c++)
147 vdev_set_min_asize(vd->vdev_child[c]);
148 }
149
150 vdev_t *
151 vdev_lookup_top(spa_t *spa, uint64_t vdev)
152 {
153 vdev_t *rvd = spa->spa_root_vdev;
154
155 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
156
157 if (vdev < rvd->vdev_children) {
158 ASSERT(rvd->vdev_child[vdev] != NULL);
159 return (rvd->vdev_child[vdev]);
160 }
161
162 return (NULL);
163 }
164
165 vdev_t *
166 vdev_lookup_by_guid(vdev_t *vd, uint64_t guid)
167 {
168 vdev_t *mvd;
169 int c;
170
171 if (vd->vdev_guid == guid)
172 return (vd);
173
174 for (c = 0; c < vd->vdev_children; c++)
175 if ((mvd = vdev_lookup_by_guid(vd->vdev_child[c], guid)) !=
176 NULL)
177 return (mvd);
178
179 return (NULL);
180 }
181
182 static int
183 vdev_count_leaves_impl(vdev_t *vd)
184 {
185 int n = 0;
186 int c;
187
188 if (vd->vdev_ops->vdev_op_leaf)
189 return (1);
190
191 for (c = 0; c < vd->vdev_children; c++)
192 n += vdev_count_leaves_impl(vd->vdev_child[c]);
193
194 return (n);
195 }
196
197 int
198 vdev_count_leaves(spa_t *spa)
199 {
200 return (vdev_count_leaves_impl(spa->spa_root_vdev));
201 }
202
203 void
204 vdev_add_child(vdev_t *pvd, vdev_t *cvd)
205 {
206 size_t oldsize, newsize;
207 uint64_t id = cvd->vdev_id;
208 vdev_t **newchild;
209
210 ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
211 ASSERT(cvd->vdev_parent == NULL);
212
213 cvd->vdev_parent = pvd;
214
215 if (pvd == NULL)
216 return;
217
218 ASSERT(id >= pvd->vdev_children || pvd->vdev_child[id] == NULL);
219
220 oldsize = pvd->vdev_children * sizeof (vdev_t *);
221 pvd->vdev_children = MAX(pvd->vdev_children, id + 1);
222 newsize = pvd->vdev_children * sizeof (vdev_t *);
223
224 newchild = kmem_alloc(newsize, KM_SLEEP);
225 if (pvd->vdev_child != NULL) {
226 bcopy(pvd->vdev_child, newchild, oldsize);
227 kmem_free(pvd->vdev_child, oldsize);
228 }
229
230 pvd->vdev_child = newchild;
231 pvd->vdev_child[id] = cvd;
232
233 cvd->vdev_top = (pvd->vdev_top ? pvd->vdev_top: cvd);
234 ASSERT(cvd->vdev_top->vdev_parent->vdev_parent == NULL);
235
236 /*
237 * Walk up all ancestors to update guid sum.
238 */
239 for (; pvd != NULL; pvd = pvd->vdev_parent)
240 pvd->vdev_guid_sum += cvd->vdev_guid_sum;
241 }
242
243 void
244 vdev_remove_child(vdev_t *pvd, vdev_t *cvd)
245 {
246 int c;
247 uint_t id = cvd->vdev_id;
248
249 ASSERT(cvd->vdev_parent == pvd);
250
251 if (pvd == NULL)
252 return;
253
254 ASSERT(id < pvd->vdev_children);
255 ASSERT(pvd->vdev_child[id] == cvd);
256
257 pvd->vdev_child[id] = NULL;
258 cvd->vdev_parent = NULL;
259
260 for (c = 0; c < pvd->vdev_children; c++)
261 if (pvd->vdev_child[c])
262 break;
263
264 if (c == pvd->vdev_children) {
265 kmem_free(pvd->vdev_child, c * sizeof (vdev_t *));
266 pvd->vdev_child = NULL;
267 pvd->vdev_children = 0;
268 }
269
270 /*
271 * Walk up all ancestors to update guid sum.
272 */
273 for (; pvd != NULL; pvd = pvd->vdev_parent)
274 pvd->vdev_guid_sum -= cvd->vdev_guid_sum;
275 }
276
277 /*
278 * Remove any holes in the child array.
279 */
280 void
281 vdev_compact_children(vdev_t *pvd)
282 {
283 vdev_t **newchild, *cvd;
284 int oldc = pvd->vdev_children;
285 int newc;
286 int c;
287
288 ASSERT(spa_config_held(pvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
289
290 for (c = newc = 0; c < oldc; c++)
291 if (pvd->vdev_child[c])
292 newc++;
293
294 newchild = kmem_zalloc(newc * sizeof (vdev_t *), KM_SLEEP);
295
296 for (c = newc = 0; c < oldc; c++) {
297 if ((cvd = pvd->vdev_child[c]) != NULL) {
298 newchild[newc] = cvd;
299 cvd->vdev_id = newc++;
300 }
301 }
302
303 kmem_free(pvd->vdev_child, oldc * sizeof (vdev_t *));
304 pvd->vdev_child = newchild;
305 pvd->vdev_children = newc;
306 }
307
308 /*
309 * Allocate and minimally initialize a vdev_t.
310 */
311 vdev_t *
312 vdev_alloc_common(spa_t *spa, uint_t id, uint64_t guid, vdev_ops_t *ops)
313 {
314 vdev_t *vd;
315 int t;
316
317 vd = kmem_zalloc(sizeof (vdev_t), KM_SLEEP);
318
319 if (spa->spa_root_vdev == NULL) {
320 ASSERT(ops == &vdev_root_ops);
321 spa->spa_root_vdev = vd;
322 spa->spa_load_guid = spa_generate_guid(NULL);
323 }
324
325 if (guid == 0 && ops != &vdev_hole_ops) {
326 if (spa->spa_root_vdev == vd) {
327 /*
328 * The root vdev's guid will also be the pool guid,
329 * which must be unique among all pools.
330 */
331 guid = spa_generate_guid(NULL);
332 } else {
333 /*
334 * Any other vdev's guid must be unique within the pool.
335 */
336 guid = spa_generate_guid(spa);
337 }
338 ASSERT(!spa_guid_exists(spa_guid(spa), guid));
339 }
340
341 vd->vdev_spa = spa;
342 vd->vdev_id = id;
343 vd->vdev_guid = guid;
344 vd->vdev_guid_sum = guid;
345 vd->vdev_ops = ops;
346 vd->vdev_state = VDEV_STATE_CLOSED;
347 vd->vdev_ishole = (ops == &vdev_hole_ops);
348
349 list_link_init(&vd->vdev_config_dirty_node);
350 list_link_init(&vd->vdev_state_dirty_node);
351 mutex_init(&vd->vdev_dtl_lock, NULL, MUTEX_NOLOCKDEP, NULL);
352 mutex_init(&vd->vdev_stat_lock, NULL, MUTEX_DEFAULT, NULL);
353 mutex_init(&vd->vdev_probe_lock, NULL, MUTEX_DEFAULT, NULL);
354 for (t = 0; t < DTL_TYPES; t++) {
355 vd->vdev_dtl[t] = range_tree_create(NULL, NULL,
356 &vd->vdev_dtl_lock);
357 }
358 txg_list_create(&vd->vdev_ms_list,
359 offsetof(struct metaslab, ms_txg_node));
360 txg_list_create(&vd->vdev_dtl_list,
361 offsetof(struct vdev, vdev_dtl_node));
362 vd->vdev_stat.vs_timestamp = gethrtime();
363 vdev_queue_init(vd);
364 vdev_cache_init(vd);
365
366 return (vd);
367 }
368
369 /*
370 * Allocate a new vdev. The 'alloctype' is used to control whether we are
371 * creating a new vdev or loading an existing one - the behavior is slightly
372 * different for each case.
373 */
374 int
375 vdev_alloc(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, uint_t id,
376 int alloctype)
377 {
378 vdev_ops_t *ops;
379 char *type;
380 uint64_t guid = 0, islog, nparity;
381 vdev_t *vd;
382
383 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
384
385 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) != 0)
386 return (SET_ERROR(EINVAL));
387
388 if ((ops = vdev_getops(type)) == NULL)
389 return (SET_ERROR(EINVAL));
390
391 /*
392 * If this is a load, get the vdev guid from the nvlist.
393 * Otherwise, vdev_alloc_common() will generate one for us.
394 */
395 if (alloctype == VDEV_ALLOC_LOAD) {
396 uint64_t label_id;
397
398 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ID, &label_id) ||
399 label_id != id)
400 return (SET_ERROR(EINVAL));
401
402 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
403 return (SET_ERROR(EINVAL));
404 } else if (alloctype == VDEV_ALLOC_SPARE) {
405 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
406 return (SET_ERROR(EINVAL));
407 } else if (alloctype == VDEV_ALLOC_L2CACHE) {
408 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
409 return (SET_ERROR(EINVAL));
410 } else if (alloctype == VDEV_ALLOC_ROOTPOOL) {
411 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
412 return (SET_ERROR(EINVAL));
413 }
414
415 /*
416 * The first allocated vdev must be of type 'root'.
417 */
418 if (ops != &vdev_root_ops && spa->spa_root_vdev == NULL)
419 return (SET_ERROR(EINVAL));
420
421 /*
422 * Determine whether we're a log vdev.
423 */
424 islog = 0;
425 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_LOG, &islog);
426 if (islog && spa_version(spa) < SPA_VERSION_SLOGS)
427 return (SET_ERROR(ENOTSUP));
428
429 if (ops == &vdev_hole_ops && spa_version(spa) < SPA_VERSION_HOLES)
430 return (SET_ERROR(ENOTSUP));
431
432 /*
433 * Set the nparity property for RAID-Z vdevs.
434 */
435 nparity = -1ULL;
436 if (ops == &vdev_raidz_ops) {
437 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NPARITY,
438 &nparity) == 0) {
439 if (nparity == 0 || nparity > VDEV_RAIDZ_MAXPARITY)
440 return (SET_ERROR(EINVAL));
441 /*
442 * Previous versions could only support 1 or 2 parity
443 * device.
444 */
445 if (nparity > 1 &&
446 spa_version(spa) < SPA_VERSION_RAIDZ2)
447 return (SET_ERROR(ENOTSUP));
448 if (nparity > 2 &&
449 spa_version(spa) < SPA_VERSION_RAIDZ3)
450 return (SET_ERROR(ENOTSUP));
451 } else {
452 /*
453 * We require the parity to be specified for SPAs that
454 * support multiple parity levels.
455 */
456 if (spa_version(spa) >= SPA_VERSION_RAIDZ2)
457 return (SET_ERROR(EINVAL));
458 /*
459 * Otherwise, we default to 1 parity device for RAID-Z.
460 */
461 nparity = 1;
462 }
463 } else {
464 nparity = 0;
465 }
466 ASSERT(nparity != -1ULL);
467
468 vd = vdev_alloc_common(spa, id, guid, ops);
469
470 vd->vdev_islog = islog;
471 vd->vdev_nparity = nparity;
472
473 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &vd->vdev_path) == 0)
474 vd->vdev_path = spa_strdup(vd->vdev_path);
475 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_DEVID, &vd->vdev_devid) == 0)
476 vd->vdev_devid = spa_strdup(vd->vdev_devid);
477 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PHYS_PATH,
478 &vd->vdev_physpath) == 0)
479 vd->vdev_physpath = spa_strdup(vd->vdev_physpath);
480 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_FRU, &vd->vdev_fru) == 0)
481 vd->vdev_fru = spa_strdup(vd->vdev_fru);
482
483 /*
484 * Set the whole_disk property. If it's not specified, leave the value
485 * as -1.
486 */
487 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK,
488 &vd->vdev_wholedisk) != 0)
489 vd->vdev_wholedisk = -1ULL;
490
491 /*
492 * Look for the 'not present' flag. This will only be set if the device
493 * was not present at the time of import.
494 */
495 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT,
496 &vd->vdev_not_present);
497
498 /*
499 * Get the alignment requirement.
500 */
501 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASHIFT, &vd->vdev_ashift);
502
503 /*
504 * Retrieve the vdev creation time.
505 */
506 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_CREATE_TXG,
507 &vd->vdev_crtxg);
508
509 /*
510 * If we're a top-level vdev, try to load the allocation parameters.
511 */
512 if (parent && !parent->vdev_parent &&
513 (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_SPLIT)) {
514 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY,
515 &vd->vdev_ms_array);
516 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT,
517 &vd->vdev_ms_shift);
518 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASIZE,
519 &vd->vdev_asize);
520 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVING,
521 &vd->vdev_removing);
522 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_VDEV_TOP_ZAP,
523 &vd->vdev_top_zap);
524 } else {
525 ASSERT0(vd->vdev_top_zap);
526 }
527
528 if (parent && !parent->vdev_parent && alloctype != VDEV_ALLOC_ATTACH) {
529 ASSERT(alloctype == VDEV_ALLOC_LOAD ||
530 alloctype == VDEV_ALLOC_ADD ||
531 alloctype == VDEV_ALLOC_SPLIT ||
532 alloctype == VDEV_ALLOC_ROOTPOOL);
533 vd->vdev_mg = metaslab_group_create(islog ?
534 spa_log_class(spa) : spa_normal_class(spa), vd);
535 }
536
537 if (vd->vdev_ops->vdev_op_leaf &&
538 (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_SPLIT)) {
539 (void) nvlist_lookup_uint64(nv,
540 ZPOOL_CONFIG_VDEV_LEAF_ZAP, &vd->vdev_leaf_zap);
541 } else {
542 ASSERT0(vd->vdev_leaf_zap);
543 }
544
545 /*
546 * If we're a leaf vdev, try to load the DTL object and other state.
547 */
548
549 if (vd->vdev_ops->vdev_op_leaf &&
550 (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_L2CACHE ||
551 alloctype == VDEV_ALLOC_ROOTPOOL)) {
552 if (alloctype == VDEV_ALLOC_LOAD) {
553 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DTL,
554 &vd->vdev_dtl_object);
555 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_UNSPARE,
556 &vd->vdev_unspare);
557 }
558
559 if (alloctype == VDEV_ALLOC_ROOTPOOL) {
560 uint64_t spare = 0;
561
562 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_SPARE,
563 &spare) == 0 && spare)
564 spa_spare_add(vd);
565 }
566
567 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_OFFLINE,
568 &vd->vdev_offline);
569
570 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_RESILVER_TXG,
571 &vd->vdev_resilver_txg);
572
573 /*
574 * When importing a pool, we want to ignore the persistent fault
575 * state, as the diagnosis made on another system may not be
576 * valid in the current context. Local vdevs will
577 * remain in the faulted state.
578 */
579 if (spa_load_state(spa) == SPA_LOAD_OPEN) {
580 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_FAULTED,
581 &vd->vdev_faulted);
582 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DEGRADED,
583 &vd->vdev_degraded);
584 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVED,
585 &vd->vdev_removed);
586
587 if (vd->vdev_faulted || vd->vdev_degraded) {
588 char *aux;
589
590 vd->vdev_label_aux =
591 VDEV_AUX_ERR_EXCEEDED;
592 if (nvlist_lookup_string(nv,
593 ZPOOL_CONFIG_AUX_STATE, &aux) == 0 &&
594 strcmp(aux, "external") == 0)
595 vd->vdev_label_aux = VDEV_AUX_EXTERNAL;
596 }
597 }
598 }
599
600 /*
601 * Add ourselves to the parent's list of children.
602 */
603 vdev_add_child(parent, vd);
604
605 *vdp = vd;
606
607 return (0);
608 }
609
610 void
611 vdev_free(vdev_t *vd)
612 {
613 int c, t;
614 spa_t *spa = vd->vdev_spa;
615
616 /*
617 * vdev_free() implies closing the vdev first. This is simpler than
618 * trying to ensure complicated semantics for all callers.
619 */
620 vdev_close(vd);
621
622 ASSERT(!list_link_active(&vd->vdev_config_dirty_node));
623 ASSERT(!list_link_active(&vd->vdev_state_dirty_node));
624
625 /*
626 * Free all children.
627 */
628 for (c = 0; c < vd->vdev_children; c++)
629 vdev_free(vd->vdev_child[c]);
630
631 ASSERT(vd->vdev_child == NULL);
632 ASSERT(vd->vdev_guid_sum == vd->vdev_guid);
633
634 /*
635 * Discard allocation state.
636 */
637 if (vd->vdev_mg != NULL) {
638 vdev_metaslab_fini(vd);
639 metaslab_group_destroy(vd->vdev_mg);
640 }
641
642 ASSERT0(vd->vdev_stat.vs_space);
643 ASSERT0(vd->vdev_stat.vs_dspace);
644 ASSERT0(vd->vdev_stat.vs_alloc);
645
646 /*
647 * Remove this vdev from its parent's child list.
648 */
649 vdev_remove_child(vd->vdev_parent, vd);
650
651 ASSERT(vd->vdev_parent == NULL);
652
653 /*
654 * Clean up vdev structure.
655 */
656 vdev_queue_fini(vd);
657 vdev_cache_fini(vd);
658
659 if (vd->vdev_path)
660 spa_strfree(vd->vdev_path);
661 if (vd->vdev_devid)
662 spa_strfree(vd->vdev_devid);
663 if (vd->vdev_physpath)
664 spa_strfree(vd->vdev_physpath);
665 if (vd->vdev_fru)
666 spa_strfree(vd->vdev_fru);
667
668 if (vd->vdev_isspare)
669 spa_spare_remove(vd);
670 if (vd->vdev_isl2cache)
671 spa_l2cache_remove(vd);
672
673 txg_list_destroy(&vd->vdev_ms_list);
674 txg_list_destroy(&vd->vdev_dtl_list);
675
676 mutex_enter(&vd->vdev_dtl_lock);
677 space_map_close(vd->vdev_dtl_sm);
678 for (t = 0; t < DTL_TYPES; t++) {
679 range_tree_vacate(vd->vdev_dtl[t], NULL, NULL);
680 range_tree_destroy(vd->vdev_dtl[t]);
681 }
682 mutex_exit(&vd->vdev_dtl_lock);
683
684 mutex_destroy(&vd->vdev_dtl_lock);
685 mutex_destroy(&vd->vdev_stat_lock);
686 mutex_destroy(&vd->vdev_probe_lock);
687
688 if (vd == spa->spa_root_vdev)
689 spa->spa_root_vdev = NULL;
690
691 kmem_free(vd, sizeof (vdev_t));
692 }
693
694 /*
695 * Transfer top-level vdev state from svd to tvd.
696 */
697 static void
698 vdev_top_transfer(vdev_t *svd, vdev_t *tvd)
699 {
700 spa_t *spa = svd->vdev_spa;
701 metaslab_t *msp;
702 vdev_t *vd;
703 int t;
704
705 ASSERT(tvd == tvd->vdev_top);
706
707 tvd->vdev_pending_fastwrite = svd->vdev_pending_fastwrite;
708 tvd->vdev_ms_array = svd->vdev_ms_array;
709 tvd->vdev_ms_shift = svd->vdev_ms_shift;
710 tvd->vdev_ms_count = svd->vdev_ms_count;
711 tvd->vdev_top_zap = svd->vdev_top_zap;
712
713 svd->vdev_ms_array = 0;
714 svd->vdev_ms_shift = 0;
715 svd->vdev_ms_count = 0;
716 svd->vdev_top_zap = 0;
717
718 if (tvd->vdev_mg)
719 ASSERT3P(tvd->vdev_mg, ==, svd->vdev_mg);
720 tvd->vdev_mg = svd->vdev_mg;
721 tvd->vdev_ms = svd->vdev_ms;
722
723 svd->vdev_mg = NULL;
724 svd->vdev_ms = NULL;
725
726 if (tvd->vdev_mg != NULL)
727 tvd->vdev_mg->mg_vd = tvd;
728
729 tvd->vdev_stat.vs_alloc = svd->vdev_stat.vs_alloc;
730 tvd->vdev_stat.vs_space = svd->vdev_stat.vs_space;
731 tvd->vdev_stat.vs_dspace = svd->vdev_stat.vs_dspace;
732
733 svd->vdev_stat.vs_alloc = 0;
734 svd->vdev_stat.vs_space = 0;
735 svd->vdev_stat.vs_dspace = 0;
736
737 for (t = 0; t < TXG_SIZE; t++) {
738 while ((msp = txg_list_remove(&svd->vdev_ms_list, t)) != NULL)
739 (void) txg_list_add(&tvd->vdev_ms_list, msp, t);
740 while ((vd = txg_list_remove(&svd->vdev_dtl_list, t)) != NULL)
741 (void) txg_list_add(&tvd->vdev_dtl_list, vd, t);
742 if (txg_list_remove_this(&spa->spa_vdev_txg_list, svd, t))
743 (void) txg_list_add(&spa->spa_vdev_txg_list, tvd, t);
744 }
745
746 if (list_link_active(&svd->vdev_config_dirty_node)) {
747 vdev_config_clean(svd);
748 vdev_config_dirty(tvd);
749 }
750
751 if (list_link_active(&svd->vdev_state_dirty_node)) {
752 vdev_state_clean(svd);
753 vdev_state_dirty(tvd);
754 }
755
756 tvd->vdev_deflate_ratio = svd->vdev_deflate_ratio;
757 svd->vdev_deflate_ratio = 0;
758
759 tvd->vdev_islog = svd->vdev_islog;
760 svd->vdev_islog = 0;
761 }
762
763 static void
764 vdev_top_update(vdev_t *tvd, vdev_t *vd)
765 {
766 int c;
767
768 if (vd == NULL)
769 return;
770
771 vd->vdev_top = tvd;
772
773 for (c = 0; c < vd->vdev_children; c++)
774 vdev_top_update(tvd, vd->vdev_child[c]);
775 }
776
777 /*
778 * Add a mirror/replacing vdev above an existing vdev.
779 */
780 vdev_t *
781 vdev_add_parent(vdev_t *cvd, vdev_ops_t *ops)
782 {
783 spa_t *spa = cvd->vdev_spa;
784 vdev_t *pvd = cvd->vdev_parent;
785 vdev_t *mvd;
786
787 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
788
789 mvd = vdev_alloc_common(spa, cvd->vdev_id, 0, ops);
790
791 mvd->vdev_asize = cvd->vdev_asize;
792 mvd->vdev_min_asize = cvd->vdev_min_asize;
793 mvd->vdev_max_asize = cvd->vdev_max_asize;
794 mvd->vdev_ashift = cvd->vdev_ashift;
795 mvd->vdev_state = cvd->vdev_state;
796 mvd->vdev_crtxg = cvd->vdev_crtxg;
797
798 vdev_remove_child(pvd, cvd);
799 vdev_add_child(pvd, mvd);
800 cvd->vdev_id = mvd->vdev_children;
801 vdev_add_child(mvd, cvd);
802 vdev_top_update(cvd->vdev_top, cvd->vdev_top);
803
804 if (mvd == mvd->vdev_top)
805 vdev_top_transfer(cvd, mvd);
806
807 return (mvd);
808 }
809
810 /*
811 * Remove a 1-way mirror/replacing vdev from the tree.
812 */
813 void
814 vdev_remove_parent(vdev_t *cvd)
815 {
816 vdev_t *mvd = cvd->vdev_parent;
817 vdev_t *pvd = mvd->vdev_parent;
818
819 ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
820
821 ASSERT(mvd->vdev_children == 1);
822 ASSERT(mvd->vdev_ops == &vdev_mirror_ops ||
823 mvd->vdev_ops == &vdev_replacing_ops ||
824 mvd->vdev_ops == &vdev_spare_ops);
825 cvd->vdev_ashift = mvd->vdev_ashift;
826
827 vdev_remove_child(mvd, cvd);
828 vdev_remove_child(pvd, mvd);
829
830 /*
831 * If cvd will replace mvd as a top-level vdev, preserve mvd's guid.
832 * Otherwise, we could have detached an offline device, and when we
833 * go to import the pool we'll think we have two top-level vdevs,
834 * instead of a different version of the same top-level vdev.
835 */
836 if (mvd->vdev_top == mvd) {
837 uint64_t guid_delta = mvd->vdev_guid - cvd->vdev_guid;
838 cvd->vdev_orig_guid = cvd->vdev_guid;
839 cvd->vdev_guid += guid_delta;
840 cvd->vdev_guid_sum += guid_delta;
841
842 /*
843 * If pool not set for autoexpand, we need to also preserve
844 * mvd's asize to prevent automatic expansion of cvd.
845 * Otherwise if we are adjusting the mirror by attaching and
846 * detaching children of non-uniform sizes, the mirror could
847 * autoexpand, unexpectedly requiring larger devices to
848 * re-establish the mirror.
849 */
850 if (!cvd->vdev_spa->spa_autoexpand)
851 cvd->vdev_asize = mvd->vdev_asize;
852 }
853 cvd->vdev_id = mvd->vdev_id;
854 vdev_add_child(pvd, cvd);
855 vdev_top_update(cvd->vdev_top, cvd->vdev_top);
856
857 if (cvd == cvd->vdev_top)
858 vdev_top_transfer(mvd, cvd);
859
860 ASSERT(mvd->vdev_children == 0);
861 vdev_free(mvd);
862 }
863
864 int
865 vdev_metaslab_init(vdev_t *vd, uint64_t txg)
866 {
867 spa_t *spa = vd->vdev_spa;
868 objset_t *mos = spa->spa_meta_objset;
869 uint64_t m;
870 uint64_t oldc = vd->vdev_ms_count;
871 uint64_t newc = vd->vdev_asize >> vd->vdev_ms_shift;
872 metaslab_t **mspp;
873 int error;
874
875 ASSERT(txg == 0 || spa_config_held(spa, SCL_ALLOC, RW_WRITER));
876
877 /*
878 * This vdev is not being allocated from yet or is a hole.
879 */
880 if (vd->vdev_ms_shift == 0)
881 return (0);
882
883 ASSERT(!vd->vdev_ishole);
884
885 /*
886 * Compute the raidz-deflation ratio. Note, we hard-code
887 * in 128k (1 << 17) because it is the "typical" blocksize.
888 * Even though SPA_MAXBLOCKSIZE changed, this algorithm can not change,
889 * otherwise it would inconsistently account for existing bp's.
890 */
891 vd->vdev_deflate_ratio = (1 << 17) /
892 (vdev_psize_to_asize(vd, 1 << 17) >> SPA_MINBLOCKSHIFT);
893
894 ASSERT(oldc <= newc);
895
896 mspp = vmem_zalloc(newc * sizeof (*mspp), KM_SLEEP);
897
898 if (oldc != 0) {
899 bcopy(vd->vdev_ms, mspp, oldc * sizeof (*mspp));
900 vmem_free(vd->vdev_ms, oldc * sizeof (*mspp));
901 }
902
903 vd->vdev_ms = mspp;
904 vd->vdev_ms_count = newc;
905
906 for (m = oldc; m < newc; m++) {
907 uint64_t object = 0;
908
909 if (txg == 0) {
910 error = dmu_read(mos, vd->vdev_ms_array,
911 m * sizeof (uint64_t), sizeof (uint64_t), &object,
912 DMU_READ_PREFETCH);
913 if (error)
914 return (error);
915 }
916
917 error = metaslab_init(vd->vdev_mg, m, object, txg,
918 &(vd->vdev_ms[m]));
919 if (error)
920 return (error);
921 }
922
923 if (txg == 0)
924 spa_config_enter(spa, SCL_ALLOC, FTAG, RW_WRITER);
925
926 /*
927 * If the vdev is being removed we don't activate
928 * the metaslabs since we want to ensure that no new
929 * allocations are performed on this device.
930 */
931 if (oldc == 0 && !vd->vdev_removing)
932 metaslab_group_activate(vd->vdev_mg);
933
934 if (txg == 0)
935 spa_config_exit(spa, SCL_ALLOC, FTAG);
936
937 return (0);
938 }
939
940 void
941 vdev_metaslab_fini(vdev_t *vd)
942 {
943 uint64_t m;
944 uint64_t count = vd->vdev_ms_count;
945
946 if (vd->vdev_ms != NULL) {
947 metaslab_group_passivate(vd->vdev_mg);
948 for (m = 0; m < count; m++) {
949 metaslab_t *msp = vd->vdev_ms[m];
950
951 if (msp != NULL)
952 metaslab_fini(msp);
953 }
954 vmem_free(vd->vdev_ms, count * sizeof (metaslab_t *));
955 vd->vdev_ms = NULL;
956 }
957
958 ASSERT3U(vd->vdev_pending_fastwrite, ==, 0);
959 }
960
961 typedef struct vdev_probe_stats {
962 boolean_t vps_readable;
963 boolean_t vps_writeable;
964 int vps_flags;
965 } vdev_probe_stats_t;
966
967 static void
968 vdev_probe_done(zio_t *zio)
969 {
970 spa_t *spa = zio->io_spa;
971 vdev_t *vd = zio->io_vd;
972 vdev_probe_stats_t *vps = zio->io_private;
973
974 ASSERT(vd->vdev_probe_zio != NULL);
975
976 if (zio->io_type == ZIO_TYPE_READ) {
977 if (zio->io_error == 0)
978 vps->vps_readable = 1;
979 if (zio->io_error == 0 && spa_writeable(spa)) {
980 zio_nowait(zio_write_phys(vd->vdev_probe_zio, vd,
981 zio->io_offset, zio->io_size, zio->io_data,
982 ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
983 ZIO_PRIORITY_SYNC_WRITE, vps->vps_flags, B_TRUE));
984 } else {
985 zio_buf_free(zio->io_data, zio->io_size);
986 }
987 } else if (zio->io_type == ZIO_TYPE_WRITE) {
988 if (zio->io_error == 0)
989 vps->vps_writeable = 1;
990 zio_buf_free(zio->io_data, zio->io_size);
991 } else if (zio->io_type == ZIO_TYPE_NULL) {
992 zio_t *pio;
993
994 vd->vdev_cant_read |= !vps->vps_readable;
995 vd->vdev_cant_write |= !vps->vps_writeable;
996
997 if (vdev_readable(vd) &&
998 (vdev_writeable(vd) || !spa_writeable(spa))) {
999 zio->io_error = 0;
1000 } else {
1001 ASSERT(zio->io_error != 0);
1002 zfs_ereport_post(FM_EREPORT_ZFS_PROBE_FAILURE,
1003 spa, vd, NULL, 0, 0);
1004 zio->io_error = SET_ERROR(ENXIO);
1005 }
1006
1007 mutex_enter(&vd->vdev_probe_lock);
1008 ASSERT(vd->vdev_probe_zio == zio);
1009 vd->vdev_probe_zio = NULL;
1010 mutex_exit(&vd->vdev_probe_lock);
1011
1012 while ((pio = zio_walk_parents(zio)) != NULL)
1013 if (!vdev_accessible(vd, pio))
1014 pio->io_error = SET_ERROR(ENXIO);
1015
1016 kmem_free(vps, sizeof (*vps));
1017 }
1018 }
1019
1020 /*
1021 * Determine whether this device is accessible.
1022 *
1023 * Read and write to several known locations: the pad regions of each
1024 * vdev label but the first, which we leave alone in case it contains
1025 * a VTOC.
1026 */
1027 zio_t *
1028 vdev_probe(vdev_t *vd, zio_t *zio)
1029 {
1030 spa_t *spa = vd->vdev_spa;
1031 vdev_probe_stats_t *vps = NULL;
1032 zio_t *pio;
1033 int l;
1034
1035 ASSERT(vd->vdev_ops->vdev_op_leaf);
1036
1037 /*
1038 * Don't probe the probe.
1039 */
1040 if (zio && (zio->io_flags & ZIO_FLAG_PROBE))
1041 return (NULL);
1042
1043 /*
1044 * To prevent 'probe storms' when a device fails, we create
1045 * just one probe i/o at a time. All zios that want to probe
1046 * this vdev will become parents of the probe io.
1047 */
1048 mutex_enter(&vd->vdev_probe_lock);
1049
1050 if ((pio = vd->vdev_probe_zio) == NULL) {
1051 vps = kmem_zalloc(sizeof (*vps), KM_SLEEP);
1052
1053 vps->vps_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_PROBE |
1054 ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_AGGREGATE |
1055 ZIO_FLAG_TRYHARD;
1056
1057 if (spa_config_held(spa, SCL_ZIO, RW_WRITER)) {
1058 /*
1059 * vdev_cant_read and vdev_cant_write can only
1060 * transition from TRUE to FALSE when we have the
1061 * SCL_ZIO lock as writer; otherwise they can only
1062 * transition from FALSE to TRUE. This ensures that
1063 * any zio looking at these values can assume that
1064 * failures persist for the life of the I/O. That's
1065 * important because when a device has intermittent
1066 * connectivity problems, we want to ensure that
1067 * they're ascribed to the device (ENXIO) and not
1068 * the zio (EIO).
1069 *
1070 * Since we hold SCL_ZIO as writer here, clear both
1071 * values so the probe can reevaluate from first
1072 * principles.
1073 */
1074 vps->vps_flags |= ZIO_FLAG_CONFIG_WRITER;
1075 vd->vdev_cant_read = B_FALSE;
1076 vd->vdev_cant_write = B_FALSE;
1077 }
1078
1079 vd->vdev_probe_zio = pio = zio_null(NULL, spa, vd,
1080 vdev_probe_done, vps,
1081 vps->vps_flags | ZIO_FLAG_DONT_PROPAGATE);
1082
1083 /*
1084 * We can't change the vdev state in this context, so we
1085 * kick off an async task to do it on our behalf.
1086 */
1087 if (zio != NULL) {
1088 vd->vdev_probe_wanted = B_TRUE;
1089 spa_async_request(spa, SPA_ASYNC_PROBE);
1090 }
1091 }
1092
1093 if (zio != NULL)
1094 zio_add_child(zio, pio);
1095
1096 mutex_exit(&vd->vdev_probe_lock);
1097
1098 if (vps == NULL) {
1099 ASSERT(zio != NULL);
1100 return (NULL);
1101 }
1102
1103 for (l = 1; l < VDEV_LABELS; l++) {
1104 zio_nowait(zio_read_phys(pio, vd,
1105 vdev_label_offset(vd->vdev_psize, l,
1106 offsetof(vdev_label_t, vl_pad2)),
1107 VDEV_PAD_SIZE, zio_buf_alloc(VDEV_PAD_SIZE),
1108 ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
1109 ZIO_PRIORITY_SYNC_READ, vps->vps_flags, B_TRUE));
1110 }
1111
1112 if (zio == NULL)
1113 return (pio);
1114
1115 zio_nowait(pio);
1116 return (NULL);
1117 }
1118
1119 static void
1120 vdev_open_child(void *arg)
1121 {
1122 vdev_t *vd = arg;
1123
1124 vd->vdev_open_thread = curthread;
1125 vd->vdev_open_error = vdev_open(vd);
1126 vd->vdev_open_thread = NULL;
1127 vd->vdev_parent->vdev_nonrot &= vd->vdev_nonrot;
1128 }
1129
1130 static boolean_t
1131 vdev_uses_zvols(vdev_t *vd)
1132 {
1133 int c;
1134
1135 #ifdef _KERNEL
1136 if (zvol_is_zvol(vd->vdev_path))
1137 return (B_TRUE);
1138 #endif
1139
1140 for (c = 0; c < vd->vdev_children; c++)
1141 if (vdev_uses_zvols(vd->vdev_child[c]))
1142 return (B_TRUE);
1143
1144 return (B_FALSE);
1145 }
1146
1147 void
1148 vdev_open_children(vdev_t *vd)
1149 {
1150 taskq_t *tq;
1151 int children = vd->vdev_children;
1152 int c;
1153
1154 vd->vdev_nonrot = B_TRUE;
1155
1156 /*
1157 * in order to handle pools on top of zvols, do the opens
1158 * in a single thread so that the same thread holds the
1159 * spa_namespace_lock
1160 */
1161 if (vdev_uses_zvols(vd)) {
1162 for (c = 0; c < children; c++) {
1163 vd->vdev_child[c]->vdev_open_error =
1164 vdev_open(vd->vdev_child[c]);
1165 vd->vdev_nonrot &= vd->vdev_child[c]->vdev_nonrot;
1166 }
1167 return;
1168 }
1169 tq = taskq_create("vdev_open", children, minclsyspri,
1170 children, children, TASKQ_PREPOPULATE);
1171
1172 for (c = 0; c < children; c++)
1173 VERIFY(taskq_dispatch(tq, vdev_open_child, vd->vdev_child[c],
1174 TQ_SLEEP) != 0);
1175
1176 taskq_destroy(tq);
1177
1178 for (c = 0; c < children; c++)
1179 vd->vdev_nonrot &= vd->vdev_child[c]->vdev_nonrot;
1180 }
1181
1182 /*
1183 * Prepare a virtual device for access.
1184 */
1185 int
1186 vdev_open(vdev_t *vd)
1187 {
1188 spa_t *spa = vd->vdev_spa;
1189 int error;
1190 uint64_t osize = 0;
1191 uint64_t max_osize = 0;
1192 uint64_t asize, max_asize, psize;
1193 uint64_t ashift = 0;
1194 int c;
1195
1196 ASSERT(vd->vdev_open_thread == curthread ||
1197 spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1198 ASSERT(vd->vdev_state == VDEV_STATE_CLOSED ||
1199 vd->vdev_state == VDEV_STATE_CANT_OPEN ||
1200 vd->vdev_state == VDEV_STATE_OFFLINE);
1201
1202 vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
1203 vd->vdev_cant_read = B_FALSE;
1204 vd->vdev_cant_write = B_FALSE;
1205 vd->vdev_min_asize = vdev_get_min_asize(vd);
1206
1207 /*
1208 * If this vdev is not removed, check its fault status. If it's
1209 * faulted, bail out of the open.
1210 */
1211 if (!vd->vdev_removed && vd->vdev_faulted) {
1212 ASSERT(vd->vdev_children == 0);
1213 ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED ||
1214 vd->vdev_label_aux == VDEV_AUX_EXTERNAL);
1215 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1216 vd->vdev_label_aux);
1217 return (SET_ERROR(ENXIO));
1218 } else if (vd->vdev_offline) {
1219 ASSERT(vd->vdev_children == 0);
1220 vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE, VDEV_AUX_NONE);
1221 return (SET_ERROR(ENXIO));
1222 }
1223
1224 error = vd->vdev_ops->vdev_op_open(vd, &osize, &max_osize, &ashift);
1225
1226 /*
1227 * Reset the vdev_reopening flag so that we actually close
1228 * the vdev on error.
1229 */
1230 vd->vdev_reopening = B_FALSE;
1231 if (zio_injection_enabled && error == 0)
1232 error = zio_handle_device_injection(vd, NULL, ENXIO);
1233
1234 if (error) {
1235 if (vd->vdev_removed &&
1236 vd->vdev_stat.vs_aux != VDEV_AUX_OPEN_FAILED)
1237 vd->vdev_removed = B_FALSE;
1238
1239 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1240 vd->vdev_stat.vs_aux);
1241 return (error);
1242 }
1243
1244 vd->vdev_removed = B_FALSE;
1245
1246 /*
1247 * Recheck the faulted flag now that we have confirmed that
1248 * the vdev is accessible. If we're faulted, bail.
1249 */
1250 if (vd->vdev_faulted) {
1251 ASSERT(vd->vdev_children == 0);
1252 ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED ||
1253 vd->vdev_label_aux == VDEV_AUX_EXTERNAL);
1254 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1255 vd->vdev_label_aux);
1256 return (SET_ERROR(ENXIO));
1257 }
1258
1259 if (vd->vdev_degraded) {
1260 ASSERT(vd->vdev_children == 0);
1261 vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
1262 VDEV_AUX_ERR_EXCEEDED);
1263 } else {
1264 vdev_set_state(vd, B_TRUE, VDEV_STATE_HEALTHY, 0);
1265 }
1266
1267 /*
1268 * For hole or missing vdevs we just return success.
1269 */
1270 if (vd->vdev_ishole || vd->vdev_ops == &vdev_missing_ops)
1271 return (0);
1272
1273 for (c = 0; c < vd->vdev_children; c++) {
1274 if (vd->vdev_child[c]->vdev_state != VDEV_STATE_HEALTHY) {
1275 vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
1276 VDEV_AUX_NONE);
1277 break;
1278 }
1279 }
1280
1281 osize = P2ALIGN(osize, (uint64_t)sizeof (vdev_label_t));
1282 max_osize = P2ALIGN(max_osize, (uint64_t)sizeof (vdev_label_t));
1283
1284 if (vd->vdev_children == 0) {
1285 if (osize < SPA_MINDEVSIZE) {
1286 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1287 VDEV_AUX_TOO_SMALL);
1288 return (SET_ERROR(EOVERFLOW));
1289 }
1290 psize = osize;
1291 asize = osize - (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE);
1292 max_asize = max_osize - (VDEV_LABEL_START_SIZE +
1293 VDEV_LABEL_END_SIZE);
1294 } else {
1295 if (vd->vdev_parent != NULL && osize < SPA_MINDEVSIZE -
1296 (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE)) {
1297 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1298 VDEV_AUX_TOO_SMALL);
1299 return (SET_ERROR(EOVERFLOW));
1300 }
1301 psize = 0;
1302 asize = osize;
1303 max_asize = max_osize;
1304 }
1305
1306 vd->vdev_psize = psize;
1307
1308 /*
1309 * Make sure the allocatable size hasn't shrunk.
1310 */
1311 if (asize < vd->vdev_min_asize) {
1312 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1313 VDEV_AUX_BAD_LABEL);
1314 return (SET_ERROR(EINVAL));
1315 }
1316
1317 if (vd->vdev_asize == 0) {
1318 /*
1319 * This is the first-ever open, so use the computed values.
1320 * For compatibility, a different ashift can be requested.
1321 */
1322 vd->vdev_asize = asize;
1323 vd->vdev_max_asize = max_asize;
1324 if (vd->vdev_ashift == 0)
1325 vd->vdev_ashift = ashift;
1326 } else {
1327 /*
1328 * Detect if the alignment requirement has increased.
1329 * We don't want to make the pool unavailable, just
1330 * post an event instead.
1331 */
1332 if (ashift > vd->vdev_top->vdev_ashift &&
1333 vd->vdev_ops->vdev_op_leaf) {
1334 zfs_ereport_post(FM_EREPORT_ZFS_DEVICE_BAD_ASHIFT,
1335 spa, vd, NULL, 0, 0);
1336 }
1337
1338 vd->vdev_max_asize = max_asize;
1339 }
1340
1341 /*
1342 * If all children are healthy and the asize has increased,
1343 * then we've experienced dynamic LUN growth. If automatic
1344 * expansion is enabled then use the additional space.
1345 */
1346 if (vd->vdev_state == VDEV_STATE_HEALTHY && asize > vd->vdev_asize &&
1347 (vd->vdev_expanding || spa->spa_autoexpand))
1348 vd->vdev_asize = asize;
1349
1350 vdev_set_min_asize(vd);
1351
1352 /*
1353 * Ensure we can issue some IO before declaring the
1354 * vdev open for business.
1355 */
1356 if (vd->vdev_ops->vdev_op_leaf &&
1357 (error = zio_wait(vdev_probe(vd, NULL))) != 0) {
1358 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1359 VDEV_AUX_ERR_EXCEEDED);
1360 return (error);
1361 }
1362
1363 /*
1364 * Track the min and max ashift values for normal data devices.
1365 */
1366 if (vd->vdev_top == vd && vd->vdev_ashift != 0 &&
1367 !vd->vdev_islog && vd->vdev_aux == NULL) {
1368 if (vd->vdev_ashift > spa->spa_max_ashift)
1369 spa->spa_max_ashift = vd->vdev_ashift;
1370 if (vd->vdev_ashift < spa->spa_min_ashift)
1371 spa->spa_min_ashift = vd->vdev_ashift;
1372 }
1373
1374 /*
1375 * If a leaf vdev has a DTL, and seems healthy, then kick off a
1376 * resilver. But don't do this if we are doing a reopen for a scrub,
1377 * since this would just restart the scrub we are already doing.
1378 */
1379 if (vd->vdev_ops->vdev_op_leaf && !spa->spa_scrub_reopen &&
1380 vdev_resilver_needed(vd, NULL, NULL))
1381 spa_async_request(spa, SPA_ASYNC_RESILVER);
1382
1383 return (0);
1384 }
1385
1386 /*
1387 * Called once the vdevs are all opened, this routine validates the label
1388 * contents. This needs to be done before vdev_load() so that we don't
1389 * inadvertently do repair I/Os to the wrong device.
1390 *
1391 * If 'strict' is false ignore the spa guid check. This is necessary because
1392 * if the machine crashed during a re-guid the new guid might have been written
1393 * to all of the vdev labels, but not the cached config. The strict check
1394 * will be performed when the pool is opened again using the mos config.
1395 *
1396 * This function will only return failure if one of the vdevs indicates that it
1397 * has since been destroyed or exported. This is only possible if
1398 * /etc/zfs/zpool.cache was readonly at the time. Otherwise, the vdev state
1399 * will be updated but the function will return 0.
1400 */
1401 int
1402 vdev_validate(vdev_t *vd, boolean_t strict)
1403 {
1404 spa_t *spa = vd->vdev_spa;
1405 nvlist_t *label;
1406 uint64_t guid = 0, top_guid;
1407 uint64_t state;
1408 int c;
1409
1410 for (c = 0; c < vd->vdev_children; c++)
1411 if (vdev_validate(vd->vdev_child[c], strict) != 0)
1412 return (SET_ERROR(EBADF));
1413
1414 /*
1415 * If the device has already failed, or was marked offline, don't do
1416 * any further validation. Otherwise, label I/O will fail and we will
1417 * overwrite the previous state.
1418 */
1419 if (vd->vdev_ops->vdev_op_leaf && vdev_readable(vd)) {
1420 uint64_t aux_guid = 0;
1421 nvlist_t *nvl;
1422 uint64_t txg = spa_last_synced_txg(spa) != 0 ?
1423 spa_last_synced_txg(spa) : -1ULL;
1424
1425 if ((label = vdev_label_read_config(vd, txg)) == NULL) {
1426 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1427 VDEV_AUX_BAD_LABEL);
1428 return (0);
1429 }
1430
1431 /*
1432 * Determine if this vdev has been split off into another
1433 * pool. If so, then refuse to open it.
1434 */
1435 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_SPLIT_GUID,
1436 &aux_guid) == 0 && aux_guid == spa_guid(spa)) {
1437 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1438 VDEV_AUX_SPLIT_POOL);
1439 nvlist_free(label);
1440 return (0);
1441 }
1442
1443 if (strict && (nvlist_lookup_uint64(label,
1444 ZPOOL_CONFIG_POOL_GUID, &guid) != 0 ||
1445 guid != spa_guid(spa))) {
1446 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1447 VDEV_AUX_CORRUPT_DATA);
1448 nvlist_free(label);
1449 return (0);
1450 }
1451
1452 if (nvlist_lookup_nvlist(label, ZPOOL_CONFIG_VDEV_TREE, &nvl)
1453 != 0 || nvlist_lookup_uint64(nvl, ZPOOL_CONFIG_ORIG_GUID,
1454 &aux_guid) != 0)
1455 aux_guid = 0;
1456
1457 /*
1458 * If this vdev just became a top-level vdev because its
1459 * sibling was detached, it will have adopted the parent's
1460 * vdev guid -- but the label may or may not be on disk yet.
1461 * Fortunately, either version of the label will have the
1462 * same top guid, so if we're a top-level vdev, we can
1463 * safely compare to that instead.
1464 *
1465 * If we split this vdev off instead, then we also check the
1466 * original pool's guid. We don't want to consider the vdev
1467 * corrupt if it is partway through a split operation.
1468 */
1469 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID,
1470 &guid) != 0 ||
1471 nvlist_lookup_uint64(label, ZPOOL_CONFIG_TOP_GUID,
1472 &top_guid) != 0 ||
1473 ((vd->vdev_guid != guid && vd->vdev_guid != aux_guid) &&
1474 (vd->vdev_guid != top_guid || vd != vd->vdev_top))) {
1475 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1476 VDEV_AUX_CORRUPT_DATA);
1477 nvlist_free(label);
1478 return (0);
1479 }
1480
1481 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE,
1482 &state) != 0) {
1483 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1484 VDEV_AUX_CORRUPT_DATA);
1485 nvlist_free(label);
1486 return (0);
1487 }
1488
1489 nvlist_free(label);
1490
1491 /*
1492 * If this is a verbatim import, no need to check the
1493 * state of the pool.
1494 */
1495 if (!(spa->spa_import_flags & ZFS_IMPORT_VERBATIM) &&
1496 spa_load_state(spa) == SPA_LOAD_OPEN &&
1497 state != POOL_STATE_ACTIVE)
1498 return (SET_ERROR(EBADF));
1499
1500 /*
1501 * If we were able to open and validate a vdev that was
1502 * previously marked permanently unavailable, clear that state
1503 * now.
1504 */
1505 if (vd->vdev_not_present)
1506 vd->vdev_not_present = 0;
1507 }
1508
1509 return (0);
1510 }
1511
1512 /*
1513 * Close a virtual device.
1514 */
1515 void
1516 vdev_close(vdev_t *vd)
1517 {
1518 vdev_t *pvd = vd->vdev_parent;
1519 ASSERTV(spa_t *spa = vd->vdev_spa);
1520
1521 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1522
1523 /*
1524 * If our parent is reopening, then we are as well, unless we are
1525 * going offline.
1526 */
1527 if (pvd != NULL && pvd->vdev_reopening)
1528 vd->vdev_reopening = (pvd->vdev_reopening && !vd->vdev_offline);
1529
1530 vd->vdev_ops->vdev_op_close(vd);
1531
1532 vdev_cache_purge(vd);
1533
1534 /*
1535 * We record the previous state before we close it, so that if we are
1536 * doing a reopen(), we don't generate FMA ereports if we notice that
1537 * it's still faulted.
1538 */
1539 vd->vdev_prevstate = vd->vdev_state;
1540
1541 if (vd->vdev_offline)
1542 vd->vdev_state = VDEV_STATE_OFFLINE;
1543 else
1544 vd->vdev_state = VDEV_STATE_CLOSED;
1545 vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
1546 }
1547
1548 void
1549 vdev_hold(vdev_t *vd)
1550 {
1551 spa_t *spa = vd->vdev_spa;
1552 int c;
1553
1554 ASSERT(spa_is_root(spa));
1555 if (spa->spa_state == POOL_STATE_UNINITIALIZED)
1556 return;
1557
1558 for (c = 0; c < vd->vdev_children; c++)
1559 vdev_hold(vd->vdev_child[c]);
1560
1561 if (vd->vdev_ops->vdev_op_leaf)
1562 vd->vdev_ops->vdev_op_hold(vd);
1563 }
1564
1565 void
1566 vdev_rele(vdev_t *vd)
1567 {
1568 int c;
1569
1570 ASSERT(spa_is_root(vd->vdev_spa));
1571 for (c = 0; c < vd->vdev_children; c++)
1572 vdev_rele(vd->vdev_child[c]);
1573
1574 if (vd->vdev_ops->vdev_op_leaf)
1575 vd->vdev_ops->vdev_op_rele(vd);
1576 }
1577
1578 /*
1579 * Reopen all interior vdevs and any unopened leaves. We don't actually
1580 * reopen leaf vdevs which had previously been opened as they might deadlock
1581 * on the spa_config_lock. Instead we only obtain the leaf's physical size.
1582 * If the leaf has never been opened then open it, as usual.
1583 */
1584 void
1585 vdev_reopen(vdev_t *vd)
1586 {
1587 spa_t *spa = vd->vdev_spa;
1588
1589 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1590
1591 /* set the reopening flag unless we're taking the vdev offline */
1592 vd->vdev_reopening = !vd->vdev_offline;
1593 vdev_close(vd);
1594 (void) vdev_open(vd);
1595
1596 /*
1597 * Call vdev_validate() here to make sure we have the same device.
1598 * Otherwise, a device with an invalid label could be successfully
1599 * opened in response to vdev_reopen().
1600 */
1601 if (vd->vdev_aux) {
1602 (void) vdev_validate_aux(vd);
1603 if (vdev_readable(vd) && vdev_writeable(vd) &&
1604 vd->vdev_aux == &spa->spa_l2cache &&
1605 !l2arc_vdev_present(vd))
1606 l2arc_add_vdev(spa, vd);
1607 } else {
1608 (void) vdev_validate(vd, B_TRUE);
1609 }
1610
1611 /*
1612 * Reassess parent vdev's health.
1613 */
1614 vdev_propagate_state(vd);
1615 }
1616
1617 int
1618 vdev_create(vdev_t *vd, uint64_t txg, boolean_t isreplacing)
1619 {
1620 int error;
1621
1622 /*
1623 * Normally, partial opens (e.g. of a mirror) are allowed.
1624 * For a create, however, we want to fail the request if
1625 * there are any components we can't open.
1626 */
1627 error = vdev_open(vd);
1628
1629 if (error || vd->vdev_state != VDEV_STATE_HEALTHY) {
1630 vdev_close(vd);
1631 return (error ? error : ENXIO);
1632 }
1633
1634 /*
1635 * Recursively load DTLs and initialize all labels.
1636 */
1637 if ((error = vdev_dtl_load(vd)) != 0 ||
1638 (error = vdev_label_init(vd, txg, isreplacing ?
1639 VDEV_LABEL_REPLACE : VDEV_LABEL_CREATE)) != 0) {
1640 vdev_close(vd);
1641 return (error);
1642 }
1643
1644 return (0);
1645 }
1646
1647 void
1648 vdev_metaslab_set_size(vdev_t *vd)
1649 {
1650 /*
1651 * Aim for roughly metaslabs_per_vdev (default 200) metaslabs per vdev.
1652 */
1653 vd->vdev_ms_shift = highbit64(vd->vdev_asize / metaslabs_per_vdev);
1654 vd->vdev_ms_shift = MAX(vd->vdev_ms_shift, SPA_MAXBLOCKSHIFT);
1655 }
1656
1657 void
1658 vdev_dirty(vdev_t *vd, int flags, void *arg, uint64_t txg)
1659 {
1660 ASSERT(vd == vd->vdev_top);
1661 ASSERT(!vd->vdev_ishole);
1662 ASSERT(ISP2(flags));
1663 ASSERT(spa_writeable(vd->vdev_spa));
1664
1665 if (flags & VDD_METASLAB)
1666 (void) txg_list_add(&vd->vdev_ms_list, arg, txg);
1667
1668 if (flags & VDD_DTL)
1669 (void) txg_list_add(&vd->vdev_dtl_list, arg, txg);
1670
1671 (void) txg_list_add(&vd->vdev_spa->spa_vdev_txg_list, vd, txg);
1672 }
1673
1674 void
1675 vdev_dirty_leaves(vdev_t *vd, int flags, uint64_t txg)
1676 {
1677 int c;
1678
1679 for (c = 0; c < vd->vdev_children; c++)
1680 vdev_dirty_leaves(vd->vdev_child[c], flags, txg);
1681
1682 if (vd->vdev_ops->vdev_op_leaf)
1683 vdev_dirty(vd->vdev_top, flags, vd, txg);
1684 }
1685
1686 /*
1687 * DTLs.
1688 *
1689 * A vdev's DTL (dirty time log) is the set of transaction groups for which
1690 * the vdev has less than perfect replication. There are four kinds of DTL:
1691 *
1692 * DTL_MISSING: txgs for which the vdev has no valid copies of the data
1693 *
1694 * DTL_PARTIAL: txgs for which data is available, but not fully replicated
1695 *
1696 * DTL_SCRUB: the txgs that could not be repaired by the last scrub; upon
1697 * scrub completion, DTL_SCRUB replaces DTL_MISSING in the range of
1698 * txgs that was scrubbed.
1699 *
1700 * DTL_OUTAGE: txgs which cannot currently be read, whether due to
1701 * persistent errors or just some device being offline.
1702 * Unlike the other three, the DTL_OUTAGE map is not generally
1703 * maintained; it's only computed when needed, typically to
1704 * determine whether a device can be detached.
1705 *
1706 * For leaf vdevs, DTL_MISSING and DTL_PARTIAL are identical: the device
1707 * either has the data or it doesn't.
1708 *
1709 * For interior vdevs such as mirror and RAID-Z the picture is more complex.
1710 * A vdev's DTL_PARTIAL is the union of its children's DTL_PARTIALs, because
1711 * if any child is less than fully replicated, then so is its parent.
1712 * A vdev's DTL_MISSING is a modified union of its children's DTL_MISSINGs,
1713 * comprising only those txgs which appear in 'maxfaults' or more children;
1714 * those are the txgs we don't have enough replication to read. For example,
1715 * double-parity RAID-Z can tolerate up to two missing devices (maxfaults == 2);
1716 * thus, its DTL_MISSING consists of the set of txgs that appear in more than
1717 * two child DTL_MISSING maps.
1718 *
1719 * It should be clear from the above that to compute the DTLs and outage maps
1720 * for all vdevs, it suffices to know just the leaf vdevs' DTL_MISSING maps.
1721 * Therefore, that is all we keep on disk. When loading the pool, or after
1722 * a configuration change, we generate all other DTLs from first principles.
1723 */
1724 void
1725 vdev_dtl_dirty(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
1726 {
1727 range_tree_t *rt = vd->vdev_dtl[t];
1728
1729 ASSERT(t < DTL_TYPES);
1730 ASSERT(vd != vd->vdev_spa->spa_root_vdev);
1731 ASSERT(spa_writeable(vd->vdev_spa));
1732
1733 mutex_enter(rt->rt_lock);
1734 if (!range_tree_contains(rt, txg, size))
1735 range_tree_add(rt, txg, size);
1736 mutex_exit(rt->rt_lock);
1737 }
1738
1739 boolean_t
1740 vdev_dtl_contains(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
1741 {
1742 range_tree_t *rt = vd->vdev_dtl[t];
1743 boolean_t dirty = B_FALSE;
1744
1745 ASSERT(t < DTL_TYPES);
1746 ASSERT(vd != vd->vdev_spa->spa_root_vdev);
1747
1748 mutex_enter(rt->rt_lock);
1749 if (range_tree_space(rt) != 0)
1750 dirty = range_tree_contains(rt, txg, size);
1751 mutex_exit(rt->rt_lock);
1752
1753 return (dirty);
1754 }
1755
1756 boolean_t
1757 vdev_dtl_empty(vdev_t *vd, vdev_dtl_type_t t)
1758 {
1759 range_tree_t *rt = vd->vdev_dtl[t];
1760 boolean_t empty;
1761
1762 mutex_enter(rt->rt_lock);
1763 empty = (range_tree_space(rt) == 0);
1764 mutex_exit(rt->rt_lock);
1765
1766 return (empty);
1767 }
1768
1769 /*
1770 * Returns the lowest txg in the DTL range.
1771 */
1772 static uint64_t
1773 vdev_dtl_min(vdev_t *vd)
1774 {
1775 range_seg_t *rs;
1776
1777 ASSERT(MUTEX_HELD(&vd->vdev_dtl_lock));
1778 ASSERT3U(range_tree_space(vd->vdev_dtl[DTL_MISSING]), !=, 0);
1779 ASSERT0(vd->vdev_children);
1780
1781 rs = avl_first(&vd->vdev_dtl[DTL_MISSING]->rt_root);
1782 return (rs->rs_start - 1);
1783 }
1784
1785 /*
1786 * Returns the highest txg in the DTL.
1787 */
1788 static uint64_t
1789 vdev_dtl_max(vdev_t *vd)
1790 {
1791 range_seg_t *rs;
1792
1793 ASSERT(MUTEX_HELD(&vd->vdev_dtl_lock));
1794 ASSERT3U(range_tree_space(vd->vdev_dtl[DTL_MISSING]), !=, 0);
1795 ASSERT0(vd->vdev_children);
1796
1797 rs = avl_last(&vd->vdev_dtl[DTL_MISSING]->rt_root);
1798 return (rs->rs_end);
1799 }
1800
1801 /*
1802 * Determine if a resilvering vdev should remove any DTL entries from
1803 * its range. If the vdev was resilvering for the entire duration of the
1804 * scan then it should excise that range from its DTLs. Otherwise, this
1805 * vdev is considered partially resilvered and should leave its DTL
1806 * entries intact. The comment in vdev_dtl_reassess() describes how we
1807 * excise the DTLs.
1808 */
1809 static boolean_t
1810 vdev_dtl_should_excise(vdev_t *vd)
1811 {
1812 spa_t *spa = vd->vdev_spa;
1813 dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan;
1814
1815 ASSERT0(scn->scn_phys.scn_errors);
1816 ASSERT0(vd->vdev_children);
1817
1818 if (vd->vdev_resilver_txg == 0 ||
1819 range_tree_space(vd->vdev_dtl[DTL_MISSING]) == 0)
1820 return (B_TRUE);
1821
1822 /*
1823 * When a resilver is initiated the scan will assign the scn_max_txg
1824 * value to the highest txg value that exists in all DTLs. If this
1825 * device's max DTL is not part of this scan (i.e. it is not in
1826 * the range (scn_min_txg, scn_max_txg] then it is not eligible
1827 * for excision.
1828 */
1829 if (vdev_dtl_max(vd) <= scn->scn_phys.scn_max_txg) {
1830 ASSERT3U(scn->scn_phys.scn_min_txg, <=, vdev_dtl_min(vd));
1831 ASSERT3U(scn->scn_phys.scn_min_txg, <, vd->vdev_resilver_txg);
1832 ASSERT3U(vd->vdev_resilver_txg, <=, scn->scn_phys.scn_max_txg);
1833 return (B_TRUE);
1834 }
1835 return (B_FALSE);
1836 }
1837
1838 /*
1839 * Reassess DTLs after a config change or scrub completion.
1840 */
1841 void
1842 vdev_dtl_reassess(vdev_t *vd, uint64_t txg, uint64_t scrub_txg, int scrub_done)
1843 {
1844 spa_t *spa = vd->vdev_spa;
1845 avl_tree_t reftree;
1846 int c, t, minref;
1847
1848 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
1849
1850 for (c = 0; c < vd->vdev_children; c++)
1851 vdev_dtl_reassess(vd->vdev_child[c], txg,
1852 scrub_txg, scrub_done);
1853
1854 if (vd == spa->spa_root_vdev || vd->vdev_ishole || vd->vdev_aux)
1855 return;
1856
1857 if (vd->vdev_ops->vdev_op_leaf) {
1858 dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan;
1859
1860 mutex_enter(&vd->vdev_dtl_lock);
1861
1862 /*
1863 * If we've completed a scan cleanly then determine
1864 * if this vdev should remove any DTLs. We only want to
1865 * excise regions on vdevs that were available during
1866 * the entire duration of this scan.
1867 */
1868 if (scrub_txg != 0 &&
1869 (spa->spa_scrub_started ||
1870 (scn != NULL && scn->scn_phys.scn_errors == 0)) &&
1871 vdev_dtl_should_excise(vd)) {
1872 /*
1873 * We completed a scrub up to scrub_txg. If we
1874 * did it without rebooting, then the scrub dtl
1875 * will be valid, so excise the old region and
1876 * fold in the scrub dtl. Otherwise, leave the
1877 * dtl as-is if there was an error.
1878 *
1879 * There's little trick here: to excise the beginning
1880 * of the DTL_MISSING map, we put it into a reference
1881 * tree and then add a segment with refcnt -1 that
1882 * covers the range [0, scrub_txg). This means
1883 * that each txg in that range has refcnt -1 or 0.
1884 * We then add DTL_SCRUB with a refcnt of 2, so that
1885 * entries in the range [0, scrub_txg) will have a
1886 * positive refcnt -- either 1 or 2. We then convert
1887 * the reference tree into the new DTL_MISSING map.
1888 */
1889 space_reftree_create(&reftree);
1890 space_reftree_add_map(&reftree,
1891 vd->vdev_dtl[DTL_MISSING], 1);
1892 space_reftree_add_seg(&reftree, 0, scrub_txg, -1);
1893 space_reftree_add_map(&reftree,
1894 vd->vdev_dtl[DTL_SCRUB], 2);
1895 space_reftree_generate_map(&reftree,
1896 vd->vdev_dtl[DTL_MISSING], 1);
1897 space_reftree_destroy(&reftree);
1898 }
1899 range_tree_vacate(vd->vdev_dtl[DTL_PARTIAL], NULL, NULL);
1900 range_tree_walk(vd->vdev_dtl[DTL_MISSING],
1901 range_tree_add, vd->vdev_dtl[DTL_PARTIAL]);
1902 if (scrub_done)
1903 range_tree_vacate(vd->vdev_dtl[DTL_SCRUB], NULL, NULL);
1904 range_tree_vacate(vd->vdev_dtl[DTL_OUTAGE], NULL, NULL);
1905 if (!vdev_readable(vd))
1906 range_tree_add(vd->vdev_dtl[DTL_OUTAGE], 0, -1ULL);
1907 else
1908 range_tree_walk(vd->vdev_dtl[DTL_MISSING],
1909 range_tree_add, vd->vdev_dtl[DTL_OUTAGE]);
1910
1911 /*
1912 * If the vdev was resilvering and no longer has any
1913 * DTLs then reset its resilvering flag and dirty
1914 * the top level so that we persist the change.
1915 */
1916 if (vd->vdev_resilver_txg != 0 &&
1917 range_tree_space(vd->vdev_dtl[DTL_MISSING]) == 0 &&
1918 range_tree_space(vd->vdev_dtl[DTL_OUTAGE]) == 0) {
1919 vd->vdev_resilver_txg = 0;
1920 vdev_config_dirty(vd->vdev_top);
1921 }
1922
1923 mutex_exit(&vd->vdev_dtl_lock);
1924
1925 if (txg != 0)
1926 vdev_dirty(vd->vdev_top, VDD_DTL, vd, txg);
1927 return;
1928 }
1929
1930 mutex_enter(&vd->vdev_dtl_lock);
1931 for (t = 0; t < DTL_TYPES; t++) {
1932 int c;
1933
1934 /* account for child's outage in parent's missing map */
1935 int s = (t == DTL_MISSING) ? DTL_OUTAGE: t;
1936 if (t == DTL_SCRUB)
1937 continue; /* leaf vdevs only */
1938 if (t == DTL_PARTIAL)
1939 minref = 1; /* i.e. non-zero */
1940 else if (vd->vdev_nparity != 0)
1941 minref = vd->vdev_nparity + 1; /* RAID-Z */
1942 else
1943 minref = vd->vdev_children; /* any kind of mirror */
1944 space_reftree_create(&reftree);
1945 for (c = 0; c < vd->vdev_children; c++) {
1946 vdev_t *cvd = vd->vdev_child[c];
1947 mutex_enter(&cvd->vdev_dtl_lock);
1948 space_reftree_add_map(&reftree, cvd->vdev_dtl[s], 1);
1949 mutex_exit(&cvd->vdev_dtl_lock);
1950 }
1951 space_reftree_generate_map(&reftree, vd->vdev_dtl[t], minref);
1952 space_reftree_destroy(&reftree);
1953 }
1954 mutex_exit(&vd->vdev_dtl_lock);
1955 }
1956
1957 int
1958 vdev_dtl_load(vdev_t *vd)
1959 {
1960 spa_t *spa = vd->vdev_spa;
1961 objset_t *mos = spa->spa_meta_objset;
1962 int error = 0;
1963 int c;
1964
1965 if (vd->vdev_ops->vdev_op_leaf && vd->vdev_dtl_object != 0) {
1966 ASSERT(!vd->vdev_ishole);
1967
1968 error = space_map_open(&vd->vdev_dtl_sm, mos,
1969 vd->vdev_dtl_object, 0, -1ULL, 0, &vd->vdev_dtl_lock);
1970 if (error)
1971 return (error);
1972 ASSERT(vd->vdev_dtl_sm != NULL);
1973
1974 mutex_enter(&vd->vdev_dtl_lock);
1975
1976 /*
1977 * Now that we've opened the space_map we need to update
1978 * the in-core DTL.
1979 */
1980 space_map_update(vd->vdev_dtl_sm);
1981
1982 error = space_map_load(vd->vdev_dtl_sm,
1983 vd->vdev_dtl[DTL_MISSING], SM_ALLOC);
1984 mutex_exit(&vd->vdev_dtl_lock);
1985
1986 return (error);
1987 }
1988
1989 for (c = 0; c < vd->vdev_children; c++) {
1990 error = vdev_dtl_load(vd->vdev_child[c]);
1991 if (error != 0)
1992 break;
1993 }
1994
1995 return (error);
1996 }
1997
1998 void
1999 vdev_destroy_unlink_zap(vdev_t *vd, uint64_t zapobj, dmu_tx_t *tx)
2000 {
2001 spa_t *spa = vd->vdev_spa;
2002
2003 VERIFY0(zap_destroy(spa->spa_meta_objset, zapobj, tx));
2004 VERIFY0(zap_remove_int(spa->spa_meta_objset, spa->spa_all_vdev_zaps,
2005 zapobj, tx));
2006 }
2007
2008 uint64_t
2009 vdev_create_link_zap(vdev_t *vd, dmu_tx_t *tx)
2010 {
2011 spa_t *spa = vd->vdev_spa;
2012 uint64_t zap = zap_create(spa->spa_meta_objset, DMU_OTN_ZAP_METADATA,
2013 DMU_OT_NONE, 0, tx);
2014
2015 ASSERT(zap != 0);
2016 VERIFY0(zap_add_int(spa->spa_meta_objset, spa->spa_all_vdev_zaps,
2017 zap, tx));
2018
2019 return (zap);
2020 }
2021
2022 void
2023 vdev_construct_zaps(vdev_t *vd, dmu_tx_t *tx)
2024 {
2025 uint64_t i;
2026
2027 if (vd->vdev_ops != &vdev_hole_ops &&
2028 vd->vdev_ops != &vdev_missing_ops &&
2029 vd->vdev_ops != &vdev_root_ops &&
2030 !vd->vdev_top->vdev_removing) {
2031 if (vd->vdev_ops->vdev_op_leaf && vd->vdev_leaf_zap == 0) {
2032 vd->vdev_leaf_zap = vdev_create_link_zap(vd, tx);
2033 }
2034 if (vd == vd->vdev_top && vd->vdev_top_zap == 0) {
2035 vd->vdev_top_zap = vdev_create_link_zap(vd, tx);
2036 }
2037 }
2038 for (i = 0; i < vd->vdev_children; i++) {
2039 vdev_construct_zaps(vd->vdev_child[i], tx);
2040 }
2041 }
2042
2043 void
2044 vdev_dtl_sync(vdev_t *vd, uint64_t txg)
2045 {
2046 spa_t *spa = vd->vdev_spa;
2047 range_tree_t *rt = vd->vdev_dtl[DTL_MISSING];
2048 objset_t *mos = spa->spa_meta_objset;
2049 range_tree_t *rtsync;
2050 kmutex_t rtlock;
2051 dmu_tx_t *tx;
2052 uint64_t object = space_map_object(vd->vdev_dtl_sm);
2053
2054 ASSERT(!vd->vdev_ishole);
2055 ASSERT(vd->vdev_ops->vdev_op_leaf);
2056
2057 tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
2058
2059 if (vd->vdev_detached || vd->vdev_top->vdev_removing) {
2060 mutex_enter(&vd->vdev_dtl_lock);
2061 space_map_free(vd->vdev_dtl_sm, tx);
2062 space_map_close(vd->vdev_dtl_sm);
2063 vd->vdev_dtl_sm = NULL;
2064 mutex_exit(&vd->vdev_dtl_lock);
2065
2066 /*
2067 * We only destroy the leaf ZAP for detached leaves or for
2068 * removed log devices. Removed data devices handle leaf ZAP
2069 * cleanup later, once cancellation is no longer possible.
2070 */
2071 if (vd->vdev_leaf_zap != 0 && (vd->vdev_detached ||
2072 vd->vdev_top->vdev_islog)) {
2073 vdev_destroy_unlink_zap(vd, vd->vdev_leaf_zap, tx);
2074 vd->vdev_leaf_zap = 0;
2075 }
2076
2077 dmu_tx_commit(tx);
2078 return;
2079 }
2080
2081 if (vd->vdev_dtl_sm == NULL) {
2082 uint64_t new_object;
2083
2084 new_object = space_map_alloc(mos, tx);
2085 VERIFY3U(new_object, !=, 0);
2086
2087 VERIFY0(space_map_open(&vd->vdev_dtl_sm, mos, new_object,
2088 0, -1ULL, 0, &vd->vdev_dtl_lock));
2089 ASSERT(vd->vdev_dtl_sm != NULL);
2090 }
2091
2092 mutex_init(&rtlock, NULL, MUTEX_DEFAULT, NULL);
2093
2094 rtsync = range_tree_create(NULL, NULL, &rtlock);
2095
2096 mutex_enter(&rtlock);
2097
2098 mutex_enter(&vd->vdev_dtl_lock);
2099 range_tree_walk(rt, range_tree_add, rtsync);
2100 mutex_exit(&vd->vdev_dtl_lock);
2101
2102 space_map_truncate(vd->vdev_dtl_sm, tx);
2103 space_map_write(vd->vdev_dtl_sm, rtsync, SM_ALLOC, tx);
2104 range_tree_vacate(rtsync, NULL, NULL);
2105
2106 range_tree_destroy(rtsync);
2107
2108 mutex_exit(&rtlock);
2109 mutex_destroy(&rtlock);
2110
2111 /*
2112 * If the object for the space map has changed then dirty
2113 * the top level so that we update the config.
2114 */
2115 if (object != space_map_object(vd->vdev_dtl_sm)) {
2116 zfs_dbgmsg("txg %llu, spa %s, DTL old object %llu, "
2117 "new object %llu", txg, spa_name(spa), object,
2118 space_map_object(vd->vdev_dtl_sm));
2119 vdev_config_dirty(vd->vdev_top);
2120 }
2121
2122 dmu_tx_commit(tx);
2123
2124 mutex_enter(&vd->vdev_dtl_lock);
2125 space_map_update(vd->vdev_dtl_sm);
2126 mutex_exit(&vd->vdev_dtl_lock);
2127 }
2128
2129 /*
2130 * Determine whether the specified vdev can be offlined/detached/removed
2131 * without losing data.
2132 */
2133 boolean_t
2134 vdev_dtl_required(vdev_t *vd)
2135 {
2136 spa_t *spa = vd->vdev_spa;
2137 vdev_t *tvd = vd->vdev_top;
2138 uint8_t cant_read = vd->vdev_cant_read;
2139 boolean_t required;
2140
2141 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
2142
2143 if (vd == spa->spa_root_vdev || vd == tvd)
2144 return (B_TRUE);
2145
2146 /*
2147 * Temporarily mark the device as unreadable, and then determine
2148 * whether this results in any DTL outages in the top-level vdev.
2149 * If not, we can safely offline/detach/remove the device.
2150 */
2151 vd->vdev_cant_read = B_TRUE;
2152 vdev_dtl_reassess(tvd, 0, 0, B_FALSE);
2153 required = !vdev_dtl_empty(tvd, DTL_OUTAGE);
2154 vd->vdev_cant_read = cant_read;
2155 vdev_dtl_reassess(tvd, 0, 0, B_FALSE);
2156
2157 if (!required && zio_injection_enabled)
2158 required = !!zio_handle_device_injection(vd, NULL, ECHILD);
2159
2160 return (required);
2161 }
2162
2163 /*
2164 * Determine if resilver is needed, and if so the txg range.
2165 */
2166 boolean_t
2167 vdev_resilver_needed(vdev_t *vd, uint64_t *minp, uint64_t *maxp)
2168 {
2169 boolean_t needed = B_FALSE;
2170 uint64_t thismin = UINT64_MAX;
2171 uint64_t thismax = 0;
2172 int c;
2173
2174 if (vd->vdev_children == 0) {
2175 mutex_enter(&vd->vdev_dtl_lock);
2176 if (range_tree_space(vd->vdev_dtl[DTL_MISSING]) != 0 &&
2177 vdev_writeable(vd)) {
2178
2179 thismin = vdev_dtl_min(vd);
2180 thismax = vdev_dtl_max(vd);
2181 needed = B_TRUE;
2182 }
2183 mutex_exit(&vd->vdev_dtl_lock);
2184 } else {
2185 for (c = 0; c < vd->vdev_children; c++) {
2186 vdev_t *cvd = vd->vdev_child[c];
2187 uint64_t cmin, cmax;
2188
2189 if (vdev_resilver_needed(cvd, &cmin, &cmax)) {
2190 thismin = MIN(thismin, cmin);
2191 thismax = MAX(thismax, cmax);
2192 needed = B_TRUE;
2193 }
2194 }
2195 }
2196
2197 if (needed && minp) {
2198 *minp = thismin;
2199 *maxp = thismax;
2200 }
2201 return (needed);
2202 }
2203
2204 void
2205 vdev_load(vdev_t *vd)
2206 {
2207 int c;
2208
2209 /*
2210 * Recursively load all children.
2211 */
2212 for (c = 0; c < vd->vdev_children; c++)
2213 vdev_load(vd->vdev_child[c]);
2214
2215 /*
2216 * If this is a top-level vdev, initialize its metaslabs.
2217 */
2218 if (vd == vd->vdev_top && !vd->vdev_ishole &&
2219 (vd->vdev_ashift == 0 || vd->vdev_asize == 0 ||
2220 vdev_metaslab_init(vd, 0) != 0))
2221 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2222 VDEV_AUX_CORRUPT_DATA);
2223
2224 /*
2225 * If this is a leaf vdev, load its DTL.
2226 */
2227 if (vd->vdev_ops->vdev_op_leaf && vdev_dtl_load(vd) != 0)
2228 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2229 VDEV_AUX_CORRUPT_DATA);
2230 }
2231
2232 /*
2233 * The special vdev case is used for hot spares and l2cache devices. Its
2234 * sole purpose it to set the vdev state for the associated vdev. To do this,
2235 * we make sure that we can open the underlying device, then try to read the
2236 * label, and make sure that the label is sane and that it hasn't been
2237 * repurposed to another pool.
2238 */
2239 int
2240 vdev_validate_aux(vdev_t *vd)
2241 {
2242 nvlist_t *label;
2243 uint64_t guid, version;
2244 uint64_t state;
2245
2246 if (!vdev_readable(vd))
2247 return (0);
2248
2249 if ((label = vdev_label_read_config(vd, -1ULL)) == NULL) {
2250 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2251 VDEV_AUX_CORRUPT_DATA);
2252 return (-1);
2253 }
2254
2255 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_VERSION, &version) != 0 ||
2256 !SPA_VERSION_IS_SUPPORTED(version) ||
2257 nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0 ||
2258 guid != vd->vdev_guid ||
2259 nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, &state) != 0) {
2260 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2261 VDEV_AUX_CORRUPT_DATA);
2262 nvlist_free(label);
2263 return (-1);
2264 }
2265
2266 /*
2267 * We don't actually check the pool state here. If it's in fact in
2268 * use by another pool, we update this fact on the fly when requested.
2269 */
2270 nvlist_free(label);
2271 return (0);
2272 }
2273
2274 void
2275 vdev_remove(vdev_t *vd, uint64_t txg)
2276 {
2277 spa_t *spa = vd->vdev_spa;
2278 objset_t *mos = spa->spa_meta_objset;
2279 dmu_tx_t *tx;
2280 int m, i;
2281
2282 tx = dmu_tx_create_assigned(spa_get_dsl(spa), txg);
2283 ASSERT(vd == vd->vdev_top);
2284 ASSERT3U(txg, ==, spa_syncing_txg(spa));
2285
2286 if (vd->vdev_ms != NULL) {
2287 metaslab_group_t *mg = vd->vdev_mg;
2288
2289 metaslab_group_histogram_verify(mg);
2290 metaslab_class_histogram_verify(mg->mg_class);
2291
2292 for (m = 0; m < vd->vdev_ms_count; m++) {
2293 metaslab_t *msp = vd->vdev_ms[m];
2294
2295 if (msp == NULL || msp->ms_sm == NULL)
2296 continue;
2297
2298 mutex_enter(&msp->ms_lock);
2299 /*
2300 * If the metaslab was not loaded when the vdev
2301 * was removed then the histogram accounting may
2302 * not be accurate. Update the histogram information
2303 * here so that we ensure that the metaslab group
2304 * and metaslab class are up-to-date.
2305 */
2306 metaslab_group_histogram_remove(mg, msp);
2307
2308 VERIFY0(space_map_allocated(msp->ms_sm));
2309 space_map_free(msp->ms_sm, tx);
2310 space_map_close(msp->ms_sm);
2311 msp->ms_sm = NULL;
2312 mutex_exit(&msp->ms_lock);
2313 }
2314
2315 metaslab_group_histogram_verify(mg);
2316 metaslab_class_histogram_verify(mg->mg_class);
2317 for (i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i++)
2318 ASSERT0(mg->mg_histogram[i]);
2319
2320 }
2321
2322 if (vd->vdev_ms_array) {
2323 (void) dmu_object_free(mos, vd->vdev_ms_array, tx);
2324 vd->vdev_ms_array = 0;
2325 }
2326
2327 if (vd->vdev_islog && vd->vdev_top_zap != 0) {
2328 vdev_destroy_unlink_zap(vd, vd->vdev_top_zap, tx);
2329 vd->vdev_top_zap = 0;
2330 }
2331 dmu_tx_commit(tx);
2332 }
2333
2334 void
2335 vdev_sync_done(vdev_t *vd, uint64_t txg)
2336 {
2337 metaslab_t *msp;
2338 boolean_t reassess = !txg_list_empty(&vd->vdev_ms_list, TXG_CLEAN(txg));
2339
2340 ASSERT(!vd->vdev_ishole);
2341
2342 while ((msp = txg_list_remove(&vd->vdev_ms_list, TXG_CLEAN(txg))))
2343 metaslab_sync_done(msp, txg);
2344
2345 if (reassess)
2346 metaslab_sync_reassess(vd->vdev_mg);
2347 }
2348
2349 void
2350 vdev_sync(vdev_t *vd, uint64_t txg)
2351 {
2352 spa_t *spa = vd->vdev_spa;
2353 vdev_t *lvd;
2354 metaslab_t *msp;
2355 dmu_tx_t *tx;
2356
2357 ASSERT(!vd->vdev_ishole);
2358
2359 if (vd->vdev_ms_array == 0 && vd->vdev_ms_shift != 0) {
2360 ASSERT(vd == vd->vdev_top);
2361 tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
2362 vd->vdev_ms_array = dmu_object_alloc(spa->spa_meta_objset,
2363 DMU_OT_OBJECT_ARRAY, 0, DMU_OT_NONE, 0, tx);
2364 ASSERT(vd->vdev_ms_array != 0);
2365 vdev_config_dirty(vd);
2366 dmu_tx_commit(tx);
2367 }
2368
2369 /*
2370 * Remove the metadata associated with this vdev once it's empty.
2371 */
2372 if (vd->vdev_stat.vs_alloc == 0 && vd->vdev_removing)
2373 vdev_remove(vd, txg);
2374
2375 while ((msp = txg_list_remove(&vd->vdev_ms_list, txg)) != NULL) {
2376 metaslab_sync(msp, txg);
2377 (void) txg_list_add(&vd->vdev_ms_list, msp, TXG_CLEAN(txg));
2378 }
2379
2380 while ((lvd = txg_list_remove(&vd->vdev_dtl_list, txg)) != NULL)
2381 vdev_dtl_sync(lvd, txg);
2382
2383 (void) txg_list_add(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg));
2384 }
2385
2386 uint64_t
2387 vdev_psize_to_asize(vdev_t *vd, uint64_t psize)
2388 {
2389 return (vd->vdev_ops->vdev_op_asize(vd, psize));
2390 }
2391
2392 /*
2393 * Mark the given vdev faulted. A faulted vdev behaves as if the device could
2394 * not be opened, and no I/O is attempted.
2395 */
2396 int
2397 vdev_fault(spa_t *spa, uint64_t guid, vdev_aux_t aux)
2398 {
2399 vdev_t *vd, *tvd;
2400
2401 spa_vdev_state_enter(spa, SCL_NONE);
2402
2403 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2404 return (spa_vdev_state_exit(spa, NULL, ENODEV));
2405
2406 if (!vd->vdev_ops->vdev_op_leaf)
2407 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2408
2409 tvd = vd->vdev_top;
2410
2411 /*
2412 * We don't directly use the aux state here, but if we do a
2413 * vdev_reopen(), we need this value to be present to remember why we
2414 * were faulted.
2415 */
2416 vd->vdev_label_aux = aux;
2417
2418 /*
2419 * Faulted state takes precedence over degraded.
2420 */
2421 vd->vdev_delayed_close = B_FALSE;
2422 vd->vdev_faulted = 1ULL;
2423 vd->vdev_degraded = 0ULL;
2424 vdev_set_state(vd, B_FALSE, VDEV_STATE_FAULTED, aux);
2425
2426 /*
2427 * If this device has the only valid copy of the data, then
2428 * back off and simply mark the vdev as degraded instead.
2429 */
2430 if (!tvd->vdev_islog && vd->vdev_aux == NULL && vdev_dtl_required(vd)) {
2431 vd->vdev_degraded = 1ULL;
2432 vd->vdev_faulted = 0ULL;
2433
2434 /*
2435 * If we reopen the device and it's not dead, only then do we
2436 * mark it degraded.
2437 */
2438 vdev_reopen(tvd);
2439
2440 if (vdev_readable(vd))
2441 vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, aux);
2442 }
2443
2444 return (spa_vdev_state_exit(spa, vd, 0));
2445 }
2446
2447 /*
2448 * Mark the given vdev degraded. A degraded vdev is purely an indication to the
2449 * user that something is wrong. The vdev continues to operate as normal as far
2450 * as I/O is concerned.
2451 */
2452 int
2453 vdev_degrade(spa_t *spa, uint64_t guid, vdev_aux_t aux)
2454 {
2455 vdev_t *vd;
2456
2457 spa_vdev_state_enter(spa, SCL_NONE);
2458
2459 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2460 return (spa_vdev_state_exit(spa, NULL, ENODEV));
2461
2462 if (!vd->vdev_ops->vdev_op_leaf)
2463 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2464
2465 /*
2466 * If the vdev is already faulted, then don't do anything.
2467 */
2468 if (vd->vdev_faulted || vd->vdev_degraded)
2469 return (spa_vdev_state_exit(spa, NULL, 0));
2470
2471 vd->vdev_degraded = 1ULL;
2472 if (!vdev_is_dead(vd))
2473 vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED,
2474 aux);
2475
2476 return (spa_vdev_state_exit(spa, vd, 0));
2477 }
2478
2479 /*
2480 * Online the given vdev.
2481 *
2482 * If 'ZFS_ONLINE_UNSPARE' is set, it implies two things. First, any attached
2483 * spare device should be detached when the device finishes resilvering.
2484 * Second, the online should be treated like a 'test' online case, so no FMA
2485 * events are generated if the device fails to open.
2486 */
2487 int
2488 vdev_online(spa_t *spa, uint64_t guid, uint64_t flags, vdev_state_t *newstate)
2489 {
2490 vdev_t *vd, *tvd, *pvd, *rvd = spa->spa_root_vdev;
2491 boolean_t postevent = B_FALSE;
2492
2493 spa_vdev_state_enter(spa, SCL_NONE);
2494
2495 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2496 return (spa_vdev_state_exit(spa, NULL, ENODEV));
2497
2498 if (!vd->vdev_ops->vdev_op_leaf)
2499 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2500
2501 postevent =
2502 (vd->vdev_offline == B_TRUE || vd->vdev_tmpoffline == B_TRUE) ?
2503 B_TRUE : B_FALSE;
2504
2505 tvd = vd->vdev_top;
2506 vd->vdev_offline = B_FALSE;
2507 vd->vdev_tmpoffline = B_FALSE;
2508 vd->vdev_checkremove = !!(flags & ZFS_ONLINE_CHECKREMOVE);
2509 vd->vdev_forcefault = !!(flags & ZFS_ONLINE_FORCEFAULT);
2510
2511 /* XXX - L2ARC 1.0 does not support expansion */
2512 if (!vd->vdev_aux) {
2513 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
2514 pvd->vdev_expanding = !!(flags & ZFS_ONLINE_EXPAND);
2515 }
2516
2517 vdev_reopen(tvd);
2518 vd->vdev_checkremove = vd->vdev_forcefault = B_FALSE;
2519
2520 if (!vd->vdev_aux) {
2521 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
2522 pvd->vdev_expanding = B_FALSE;
2523 }
2524
2525 if (newstate)
2526 *newstate = vd->vdev_state;
2527 if ((flags & ZFS_ONLINE_UNSPARE) &&
2528 !vdev_is_dead(vd) && vd->vdev_parent &&
2529 vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
2530 vd->vdev_parent->vdev_child[0] == vd)
2531 vd->vdev_unspare = B_TRUE;
2532
2533 if ((flags & ZFS_ONLINE_EXPAND) || spa->spa_autoexpand) {
2534
2535 /* XXX - L2ARC 1.0 does not support expansion */
2536 if (vd->vdev_aux)
2537 return (spa_vdev_state_exit(spa, vd, ENOTSUP));
2538 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
2539 }
2540
2541 if (postevent)
2542 spa_event_notify(spa, vd, ESC_ZFS_VDEV_ONLINE);
2543
2544 return (spa_vdev_state_exit(spa, vd, 0));
2545 }
2546
2547 static int
2548 vdev_offline_locked(spa_t *spa, uint64_t guid, uint64_t flags)
2549 {
2550 vdev_t *vd, *tvd;
2551 int error = 0;
2552 uint64_t generation;
2553 metaslab_group_t *mg;
2554
2555 top:
2556 spa_vdev_state_enter(spa, SCL_ALLOC);
2557
2558 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2559 return (spa_vdev_state_exit(spa, NULL, ENODEV));
2560
2561 if (!vd->vdev_ops->vdev_op_leaf)
2562 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2563
2564 tvd = vd->vdev_top;
2565 mg = tvd->vdev_mg;
2566 generation = spa->spa_config_generation + 1;
2567
2568 /*
2569 * If the device isn't already offline, try to offline it.
2570 */
2571 if (!vd->vdev_offline) {
2572 /*
2573 * If this device has the only valid copy of some data,
2574 * don't allow it to be offlined. Log devices are always
2575 * expendable.
2576 */
2577 if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
2578 vdev_dtl_required(vd))
2579 return (spa_vdev_state_exit(spa, NULL, EBUSY));
2580
2581 /*
2582 * If the top-level is a slog and it has had allocations
2583 * then proceed. We check that the vdev's metaslab group
2584 * is not NULL since it's possible that we may have just
2585 * added this vdev but not yet initialized its metaslabs.
2586 */
2587 if (tvd->vdev_islog && mg != NULL) {
2588 /*
2589 * Prevent any future allocations.
2590 */
2591 metaslab_group_passivate(mg);
2592 (void) spa_vdev_state_exit(spa, vd, 0);
2593
2594 error = spa_offline_log(spa);
2595
2596 spa_vdev_state_enter(spa, SCL_ALLOC);
2597
2598 /*
2599 * Check to see if the config has changed.
2600 */
2601 if (error || generation != spa->spa_config_generation) {
2602 metaslab_group_activate(mg);
2603 if (error)
2604 return (spa_vdev_state_exit(spa,
2605 vd, error));
2606 (void) spa_vdev_state_exit(spa, vd, 0);
2607 goto top;
2608 }
2609 ASSERT0(tvd->vdev_stat.vs_alloc);
2610 }
2611
2612 /*
2613 * Offline this device and reopen its top-level vdev.
2614 * If the top-level vdev is a log device then just offline
2615 * it. Otherwise, if this action results in the top-level
2616 * vdev becoming unusable, undo it and fail the request.
2617 */
2618 vd->vdev_offline = B_TRUE;
2619 vdev_reopen(tvd);
2620
2621 if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
2622 vdev_is_dead(tvd)) {
2623 vd->vdev_offline = B_FALSE;
2624 vdev_reopen(tvd);
2625 return (spa_vdev_state_exit(spa, NULL, EBUSY));
2626 }
2627
2628 /*
2629 * Add the device back into the metaslab rotor so that
2630 * once we online the device it's open for business.
2631 */
2632 if (tvd->vdev_islog && mg != NULL)
2633 metaslab_group_activate(mg);
2634 }
2635
2636 vd->vdev_tmpoffline = !!(flags & ZFS_OFFLINE_TEMPORARY);
2637
2638 return (spa_vdev_state_exit(spa, vd, 0));
2639 }
2640
2641 int
2642 vdev_offline(spa_t *spa, uint64_t guid, uint64_t flags)
2643 {
2644 int error;
2645
2646 mutex_enter(&spa->spa_vdev_top_lock);
2647 error = vdev_offline_locked(spa, guid, flags);
2648 mutex_exit(&spa->spa_vdev_top_lock);
2649
2650 return (error);
2651 }
2652
2653 /*
2654 * Clear the error counts associated with this vdev. Unlike vdev_online() and
2655 * vdev_offline(), we assume the spa config is locked. We also clear all
2656 * children. If 'vd' is NULL, then the user wants to clear all vdevs.
2657 */
2658 void
2659 vdev_clear(spa_t *spa, vdev_t *vd)
2660 {
2661 vdev_t *rvd = spa->spa_root_vdev;
2662 int c;
2663
2664 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
2665
2666 if (vd == NULL)
2667 vd = rvd;
2668
2669 vd->vdev_stat.vs_read_errors = 0;
2670 vd->vdev_stat.vs_write_errors = 0;
2671 vd->vdev_stat.vs_checksum_errors = 0;
2672
2673 for (c = 0; c < vd->vdev_children; c++)
2674 vdev_clear(spa, vd->vdev_child[c]);
2675
2676 /*
2677 * If we're in the FAULTED state or have experienced failed I/O, then
2678 * clear the persistent state and attempt to reopen the device. We
2679 * also mark the vdev config dirty, so that the new faulted state is
2680 * written out to disk.
2681 */
2682 if (vd->vdev_faulted || vd->vdev_degraded ||
2683 !vdev_readable(vd) || !vdev_writeable(vd)) {
2684
2685 /*
2686 * When reopening in reponse to a clear event, it may be due to
2687 * a fmadm repair request. In this case, if the device is
2688 * still broken, we want to still post the ereport again.
2689 */
2690 vd->vdev_forcefault = B_TRUE;
2691
2692 vd->vdev_faulted = vd->vdev_degraded = 0ULL;
2693 vd->vdev_cant_read = B_FALSE;
2694 vd->vdev_cant_write = B_FALSE;
2695
2696 vdev_reopen(vd == rvd ? rvd : vd->vdev_top);
2697
2698 vd->vdev_forcefault = B_FALSE;
2699
2700 if (vd != rvd && vdev_writeable(vd->vdev_top))
2701 vdev_state_dirty(vd->vdev_top);
2702
2703 if (vd->vdev_aux == NULL && !vdev_is_dead(vd))
2704 spa_async_request(spa, SPA_ASYNC_RESILVER);
2705
2706 spa_event_notify(spa, vd, ESC_ZFS_VDEV_CLEAR);
2707 }
2708
2709 /*
2710 * When clearing a FMA-diagnosed fault, we always want to
2711 * unspare the device, as we assume that the original spare was
2712 * done in response to the FMA fault.
2713 */
2714 if (!vdev_is_dead(vd) && vd->vdev_parent != NULL &&
2715 vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
2716 vd->vdev_parent->vdev_child[0] == vd)
2717 vd->vdev_unspare = B_TRUE;
2718 }
2719
2720 boolean_t
2721 vdev_is_dead(vdev_t *vd)
2722 {
2723 /*
2724 * Holes and missing devices are always considered "dead".
2725 * This simplifies the code since we don't have to check for
2726 * these types of devices in the various code paths.
2727 * Instead we rely on the fact that we skip over dead devices
2728 * before issuing I/O to them.
2729 */
2730 return (vd->vdev_state < VDEV_STATE_DEGRADED || vd->vdev_ishole ||
2731 vd->vdev_ops == &vdev_missing_ops);
2732 }
2733
2734 boolean_t
2735 vdev_readable(vdev_t *vd)
2736 {
2737 return (!vdev_is_dead(vd) && !vd->vdev_cant_read);
2738 }
2739
2740 boolean_t
2741 vdev_writeable(vdev_t *vd)
2742 {
2743 return (!vdev_is_dead(vd) && !vd->vdev_cant_write);
2744 }
2745
2746 boolean_t
2747 vdev_allocatable(vdev_t *vd)
2748 {
2749 uint64_t state = vd->vdev_state;
2750
2751 /*
2752 * We currently allow allocations from vdevs which may be in the
2753 * process of reopening (i.e. VDEV_STATE_CLOSED). If the device
2754 * fails to reopen then we'll catch it later when we're holding
2755 * the proper locks. Note that we have to get the vdev state
2756 * in a local variable because although it changes atomically,
2757 * we're asking two separate questions about it.
2758 */
2759 return (!(state < VDEV_STATE_DEGRADED && state != VDEV_STATE_CLOSED) &&
2760 !vd->vdev_cant_write && !vd->vdev_ishole);
2761 }
2762
2763 boolean_t
2764 vdev_accessible(vdev_t *vd, zio_t *zio)
2765 {
2766 ASSERT(zio->io_vd == vd);
2767
2768 if (vdev_is_dead(vd) || vd->vdev_remove_wanted)
2769 return (B_FALSE);
2770
2771 if (zio->io_type == ZIO_TYPE_READ)
2772 return (!vd->vdev_cant_read);
2773
2774 if (zio->io_type == ZIO_TYPE_WRITE)
2775 return (!vd->vdev_cant_write);
2776
2777 return (B_TRUE);
2778 }
2779
2780 static void
2781 vdev_get_child_stat(vdev_t *cvd, vdev_stat_t *vs, vdev_stat_t *cvs)
2782 {
2783 int t;
2784 for (t = 0; t < ZIO_TYPES; t++) {
2785 vs->vs_ops[t] += cvs->vs_ops[t];
2786 vs->vs_bytes[t] += cvs->vs_bytes[t];
2787 }
2788
2789 cvs->vs_scan_removing = cvd->vdev_removing;
2790 }
2791
2792 /*
2793 * Get extended stats
2794 */
2795 static void
2796 vdev_get_child_stat_ex(vdev_t *cvd, vdev_stat_ex_t *vsx, vdev_stat_ex_t *cvsx)
2797 {
2798 int t, b;
2799 for (t = 0; t < ZIO_TYPES; t++) {
2800 for (b = 0; b < ARRAY_SIZE(vsx->vsx_disk_histo[0]); b++)
2801 vsx->vsx_disk_histo[t][b] += cvsx->vsx_disk_histo[t][b];
2802
2803 for (b = 0; b < ARRAY_SIZE(vsx->vsx_total_histo[0]); b++) {
2804 vsx->vsx_total_histo[t][b] +=
2805 cvsx->vsx_total_histo[t][b];
2806 }
2807 }
2808
2809 for (t = 0; t < ZIO_PRIORITY_NUM_QUEUEABLE; t++) {
2810 for (b = 0; b < ARRAY_SIZE(vsx->vsx_queue_histo[0]); b++) {
2811 vsx->vsx_queue_histo[t][b] +=
2812 cvsx->vsx_queue_histo[t][b];
2813 }
2814 vsx->vsx_active_queue[t] += cvsx->vsx_active_queue[t];
2815 vsx->vsx_pend_queue[t] += cvsx->vsx_pend_queue[t];
2816
2817 for (b = 0; b < ARRAY_SIZE(vsx->vsx_ind_histo[0]); b++)
2818 vsx->vsx_ind_histo[t][b] += cvsx->vsx_ind_histo[t][b];
2819
2820 for (b = 0; b < ARRAY_SIZE(vsx->vsx_agg_histo[0]); b++)
2821 vsx->vsx_agg_histo[t][b] += cvsx->vsx_agg_histo[t][b];
2822 }
2823
2824 }
2825
2826 /*
2827 * Get statistics for the given vdev.
2828 */
2829 static void
2830 vdev_get_stats_ex_impl(vdev_t *vd, vdev_stat_t *vs, vdev_stat_ex_t *vsx)
2831 {
2832 int c, t;
2833 /*
2834 * If we're getting stats on the root vdev, aggregate the I/O counts
2835 * over all top-level vdevs (i.e. the direct children of the root).
2836 */
2837 if (!vd->vdev_ops->vdev_op_leaf) {
2838 if (vs) {
2839 memset(vs->vs_ops, 0, sizeof (vs->vs_ops));
2840 memset(vs->vs_bytes, 0, sizeof (vs->vs_bytes));
2841 }
2842 if (vsx)
2843 memset(vsx, 0, sizeof (*vsx));
2844
2845 for (c = 0; c < vd->vdev_children; c++) {
2846 vdev_t *cvd = vd->vdev_child[c];
2847 vdev_stat_t *cvs = &cvd->vdev_stat;
2848 vdev_stat_ex_t *cvsx = &cvd->vdev_stat_ex;
2849
2850 vdev_get_stats_ex_impl(cvd, cvs, cvsx);
2851 if (vs)
2852 vdev_get_child_stat(cvd, vs, cvs);
2853 if (vsx)
2854 vdev_get_child_stat_ex(cvd, vsx, cvsx);
2855
2856 }
2857 } else {
2858 /*
2859 * We're a leaf. Just copy our ZIO active queue stats in. The
2860 * other leaf stats are updated in vdev_stat_update().
2861 */
2862 if (!vsx)
2863 return;
2864
2865 memcpy(vsx, &vd->vdev_stat_ex, sizeof (vd->vdev_stat_ex));
2866
2867 for (t = 0; t < ARRAY_SIZE(vd->vdev_queue.vq_class); t++) {
2868 vsx->vsx_active_queue[t] =
2869 vd->vdev_queue.vq_class[t].vqc_active;
2870 vsx->vsx_pend_queue[t] = avl_numnodes(
2871 &vd->vdev_queue.vq_class[t].vqc_queued_tree);
2872 }
2873 }
2874 }
2875
2876 void
2877 vdev_get_stats_ex(vdev_t *vd, vdev_stat_t *vs, vdev_stat_ex_t *vsx)
2878 {
2879 mutex_enter(&vd->vdev_stat_lock);
2880 if (vs) {
2881 bcopy(&vd->vdev_stat, vs, sizeof (*vs));
2882 vs->vs_timestamp = gethrtime() - vs->vs_timestamp;
2883 vs->vs_state = vd->vdev_state;
2884 vs->vs_rsize = vdev_get_min_asize(vd);
2885 if (vd->vdev_ops->vdev_op_leaf)
2886 vs->vs_rsize += VDEV_LABEL_START_SIZE +
2887 VDEV_LABEL_END_SIZE;
2888 vs->vs_esize = vd->vdev_max_asize - vd->vdev_asize;
2889 if (vd->vdev_aux == NULL && vd == vd->vdev_top &&
2890 !vd->vdev_ishole) {
2891 vs->vs_fragmentation = vd->vdev_mg->mg_fragmentation;
2892 }
2893 }
2894
2895 ASSERT(spa_config_held(vd->vdev_spa, SCL_ALL, RW_READER) != 0);
2896 vdev_get_stats_ex_impl(vd, vs, vsx);
2897 mutex_exit(&vd->vdev_stat_lock);
2898 }
2899
2900 void
2901 vdev_get_stats(vdev_t *vd, vdev_stat_t *vs)
2902 {
2903 return (vdev_get_stats_ex(vd, vs, NULL));
2904 }
2905
2906 void
2907 vdev_clear_stats(vdev_t *vd)
2908 {
2909 mutex_enter(&vd->vdev_stat_lock);
2910 vd->vdev_stat.vs_space = 0;
2911 vd->vdev_stat.vs_dspace = 0;
2912 vd->vdev_stat.vs_alloc = 0;
2913 mutex_exit(&vd->vdev_stat_lock);
2914 }
2915
2916 void
2917 vdev_scan_stat_init(vdev_t *vd)
2918 {
2919 vdev_stat_t *vs = &vd->vdev_stat;
2920 int c;
2921
2922 for (c = 0; c < vd->vdev_children; c++)
2923 vdev_scan_stat_init(vd->vdev_child[c]);
2924
2925 mutex_enter(&vd->vdev_stat_lock);
2926 vs->vs_scan_processed = 0;
2927 mutex_exit(&vd->vdev_stat_lock);
2928 }
2929
2930 void
2931 vdev_stat_update(zio_t *zio, uint64_t psize)
2932 {
2933 spa_t *spa = zio->io_spa;
2934 vdev_t *rvd = spa->spa_root_vdev;
2935 vdev_t *vd = zio->io_vd ? zio->io_vd : rvd;
2936 vdev_t *pvd;
2937 uint64_t txg = zio->io_txg;
2938 vdev_stat_t *vs = &vd->vdev_stat;
2939 vdev_stat_ex_t *vsx = &vd->vdev_stat_ex;
2940 zio_type_t type = zio->io_type;
2941 int flags = zio->io_flags;
2942
2943 /*
2944 * If this i/o is a gang leader, it didn't do any actual work.
2945 */
2946 if (zio->io_gang_tree)
2947 return;
2948
2949 if (zio->io_error == 0) {
2950 /*
2951 * If this is a root i/o, don't count it -- we've already
2952 * counted the top-level vdevs, and vdev_get_stats() will
2953 * aggregate them when asked. This reduces contention on
2954 * the root vdev_stat_lock and implicitly handles blocks
2955 * that compress away to holes, for which there is no i/o.
2956 * (Holes never create vdev children, so all the counters
2957 * remain zero, which is what we want.)
2958 *
2959 * Note: this only applies to successful i/o (io_error == 0)
2960 * because unlike i/o counts, errors are not additive.
2961 * When reading a ditto block, for example, failure of
2962 * one top-level vdev does not imply a root-level error.
2963 */
2964 if (vd == rvd)
2965 return;
2966
2967 ASSERT(vd == zio->io_vd);
2968
2969 if (flags & ZIO_FLAG_IO_BYPASS)
2970 return;
2971
2972 mutex_enter(&vd->vdev_stat_lock);
2973
2974 if (flags & ZIO_FLAG_IO_REPAIR) {
2975 if (flags & ZIO_FLAG_SCAN_THREAD) {
2976 dsl_scan_phys_t *scn_phys =
2977 &spa->spa_dsl_pool->dp_scan->scn_phys;
2978 uint64_t *processed = &scn_phys->scn_processed;
2979
2980 /* XXX cleanup? */
2981 if (vd->vdev_ops->vdev_op_leaf)
2982 atomic_add_64(processed, psize);
2983 vs->vs_scan_processed += psize;
2984 }
2985
2986 if (flags & ZIO_FLAG_SELF_HEAL)
2987 vs->vs_self_healed += psize;
2988 }
2989
2990 /*
2991 * The bytes/ops/histograms are recorded at the leaf level and
2992 * aggregated into the higher level vdevs in vdev_get_stats().
2993 */
2994 if (vd->vdev_ops->vdev_op_leaf &&
2995 (zio->io_priority < ZIO_PRIORITY_NUM_QUEUEABLE)) {
2996
2997 vs->vs_ops[type]++;
2998 vs->vs_bytes[type] += psize;
2999
3000 if (flags & ZIO_FLAG_DELEGATED) {
3001 vsx->vsx_agg_histo[zio->io_priority]
3002 [RQ_HISTO(zio->io_size)]++;
3003 } else {
3004 vsx->vsx_ind_histo[zio->io_priority]
3005 [RQ_HISTO(zio->io_size)]++;
3006 }
3007
3008 if (zio->io_delta && zio->io_delay) {
3009 vsx->vsx_queue_histo[zio->io_priority]
3010 [L_HISTO(zio->io_delta - zio->io_delay)]++;
3011 vsx->vsx_disk_histo[type]
3012 [L_HISTO(zio->io_delay)]++;
3013 vsx->vsx_total_histo[type]
3014 [L_HISTO(zio->io_delta)]++;
3015 }
3016 }
3017
3018 mutex_exit(&vd->vdev_stat_lock);
3019 return;
3020 }
3021
3022 if (flags & ZIO_FLAG_SPECULATIVE)
3023 return;
3024
3025 /*
3026 * If this is an I/O error that is going to be retried, then ignore the
3027 * error. Otherwise, the user may interpret B_FAILFAST I/O errors as
3028 * hard errors, when in reality they can happen for any number of
3029 * innocuous reasons (bus resets, MPxIO link failure, etc).
3030 */
3031 if (zio->io_error == EIO &&
3032 !(zio->io_flags & ZIO_FLAG_IO_RETRY))
3033 return;
3034
3035 /*
3036 * Intent logs writes won't propagate their error to the root
3037 * I/O so don't mark these types of failures as pool-level
3038 * errors.
3039 */
3040 if (zio->io_vd == NULL && (zio->io_flags & ZIO_FLAG_DONT_PROPAGATE))
3041 return;
3042
3043 mutex_enter(&vd->vdev_stat_lock);
3044 if (type == ZIO_TYPE_READ && !vdev_is_dead(vd)) {
3045 if (zio->io_error == ECKSUM)
3046 vs->vs_checksum_errors++;
3047 else
3048 vs->vs_read_errors++;
3049 }
3050 if (type == ZIO_TYPE_WRITE && !vdev_is_dead(vd))
3051 vs->vs_write_errors++;
3052 mutex_exit(&vd->vdev_stat_lock);
3053
3054 if (type == ZIO_TYPE_WRITE && txg != 0 &&
3055 (!(flags & ZIO_FLAG_IO_REPAIR) ||
3056 (flags & ZIO_FLAG_SCAN_THREAD) ||
3057 spa->spa_claiming)) {
3058 /*
3059 * This is either a normal write (not a repair), or it's
3060 * a repair induced by the scrub thread, or it's a repair
3061 * made by zil_claim() during spa_load() in the first txg.
3062 * In the normal case, we commit the DTL change in the same
3063 * txg as the block was born. In the scrub-induced repair
3064 * case, we know that scrubs run in first-pass syncing context,
3065 * so we commit the DTL change in spa_syncing_txg(spa).
3066 * In the zil_claim() case, we commit in spa_first_txg(spa).
3067 *
3068 * We currently do not make DTL entries for failed spontaneous
3069 * self-healing writes triggered by normal (non-scrubbing)
3070 * reads, because we have no transactional context in which to
3071 * do so -- and it's not clear that it'd be desirable anyway.
3072 */
3073 if (vd->vdev_ops->vdev_op_leaf) {
3074 uint64_t commit_txg = txg;
3075 if (flags & ZIO_FLAG_SCAN_THREAD) {
3076 ASSERT(flags & ZIO_FLAG_IO_REPAIR);
3077 ASSERT(spa_sync_pass(spa) == 1);
3078 vdev_dtl_dirty(vd, DTL_SCRUB, txg, 1);
3079 commit_txg = spa_syncing_txg(spa);
3080 } else if (spa->spa_claiming) {
3081 ASSERT(flags & ZIO_FLAG_IO_REPAIR);
3082 commit_txg = spa_first_txg(spa);
3083 }
3084 ASSERT(commit_txg >= spa_syncing_txg(spa));
3085 if (vdev_dtl_contains(vd, DTL_MISSING, txg, 1))
3086 return;
3087 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
3088 vdev_dtl_dirty(pvd, DTL_PARTIAL, txg, 1);
3089 vdev_dirty(vd->vdev_top, VDD_DTL, vd, commit_txg);
3090 }
3091 if (vd != rvd)
3092 vdev_dtl_dirty(vd, DTL_MISSING, txg, 1);
3093 }
3094 }
3095
3096 /*
3097 * Update the in-core space usage stats for this vdev, its metaslab class,
3098 * and the root vdev.
3099 */
3100 void
3101 vdev_space_update(vdev_t *vd, int64_t alloc_delta, int64_t defer_delta,
3102 int64_t space_delta)
3103 {
3104 int64_t dspace_delta = space_delta;
3105 spa_t *spa = vd->vdev_spa;
3106 vdev_t *rvd = spa->spa_root_vdev;
3107 metaslab_group_t *mg = vd->vdev_mg;
3108 metaslab_class_t *mc = mg ? mg->mg_class : NULL;
3109
3110 ASSERT(vd == vd->vdev_top);
3111
3112 /*
3113 * Apply the inverse of the psize-to-asize (ie. RAID-Z) space-expansion
3114 * factor. We must calculate this here and not at the root vdev
3115 * because the root vdev's psize-to-asize is simply the max of its
3116 * childrens', thus not accurate enough for us.
3117 */
3118 ASSERT((dspace_delta & (SPA_MINBLOCKSIZE-1)) == 0);
3119 ASSERT(vd->vdev_deflate_ratio != 0 || vd->vdev_isl2cache);
3120 dspace_delta = (dspace_delta >> SPA_MINBLOCKSHIFT) *
3121 vd->vdev_deflate_ratio;
3122
3123 mutex_enter(&vd->vdev_stat_lock);
3124 vd->vdev_stat.vs_alloc += alloc_delta;
3125 vd->vdev_stat.vs_space += space_delta;
3126 vd->vdev_stat.vs_dspace += dspace_delta;
3127 mutex_exit(&vd->vdev_stat_lock);
3128
3129 if (mc == spa_normal_class(spa)) {
3130 mutex_enter(&rvd->vdev_stat_lock);
3131 rvd->vdev_stat.vs_alloc += alloc_delta;
3132 rvd->vdev_stat.vs_space += space_delta;
3133 rvd->vdev_stat.vs_dspace += dspace_delta;
3134 mutex_exit(&rvd->vdev_stat_lock);
3135 }
3136
3137 if (mc != NULL) {
3138 ASSERT(rvd == vd->vdev_parent);
3139 ASSERT(vd->vdev_ms_count != 0);
3140
3141 metaslab_class_space_update(mc,
3142 alloc_delta, defer_delta, space_delta, dspace_delta);
3143 }
3144 }
3145
3146 /*
3147 * Mark a top-level vdev's config as dirty, placing it on the dirty list
3148 * so that it will be written out next time the vdev configuration is synced.
3149 * If the root vdev is specified (vdev_top == NULL), dirty all top-level vdevs.
3150 */
3151 void
3152 vdev_config_dirty(vdev_t *vd)
3153 {
3154 spa_t *spa = vd->vdev_spa;
3155 vdev_t *rvd = spa->spa_root_vdev;
3156 int c;
3157
3158 ASSERT(spa_writeable(spa));
3159
3160 /*
3161 * If this is an aux vdev (as with l2cache and spare devices), then we
3162 * update the vdev config manually and set the sync flag.
3163 */
3164 if (vd->vdev_aux != NULL) {
3165 spa_aux_vdev_t *sav = vd->vdev_aux;
3166 nvlist_t **aux;
3167 uint_t naux;
3168
3169 for (c = 0; c < sav->sav_count; c++) {
3170 if (sav->sav_vdevs[c] == vd)
3171 break;
3172 }
3173
3174 if (c == sav->sav_count) {
3175 /*
3176 * We're being removed. There's nothing more to do.
3177 */
3178 ASSERT(sav->sav_sync == B_TRUE);
3179 return;
3180 }
3181
3182 sav->sav_sync = B_TRUE;
3183
3184 if (nvlist_lookup_nvlist_array(sav->sav_config,
3185 ZPOOL_CONFIG_L2CACHE, &aux, &naux) != 0) {
3186 VERIFY(nvlist_lookup_nvlist_array(sav->sav_config,
3187 ZPOOL_CONFIG_SPARES, &aux, &naux) == 0);
3188 }
3189
3190 ASSERT(c < naux);
3191
3192 /*
3193 * Setting the nvlist in the middle if the array is a little
3194 * sketchy, but it will work.
3195 */
3196 nvlist_free(aux[c]);
3197 aux[c] = vdev_config_generate(spa, vd, B_TRUE, 0);
3198
3199 return;
3200 }
3201
3202 /*
3203 * The dirty list is protected by the SCL_CONFIG lock. The caller
3204 * must either hold SCL_CONFIG as writer, or must be the sync thread
3205 * (which holds SCL_CONFIG as reader). There's only one sync thread,
3206 * so this is sufficient to ensure mutual exclusion.
3207 */
3208 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
3209 (dsl_pool_sync_context(spa_get_dsl(spa)) &&
3210 spa_config_held(spa, SCL_CONFIG, RW_READER)));
3211
3212 if (vd == rvd) {
3213 for (c = 0; c < rvd->vdev_children; c++)
3214 vdev_config_dirty(rvd->vdev_child[c]);
3215 } else {
3216 ASSERT(vd == vd->vdev_top);
3217
3218 if (!list_link_active(&vd->vdev_config_dirty_node) &&
3219 !vd->vdev_ishole)
3220 list_insert_head(&spa->spa_config_dirty_list, vd);
3221 }
3222 }
3223
3224 void
3225 vdev_config_clean(vdev_t *vd)
3226 {
3227 spa_t *spa = vd->vdev_spa;
3228
3229 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
3230 (dsl_pool_sync_context(spa_get_dsl(spa)) &&
3231 spa_config_held(spa, SCL_CONFIG, RW_READER)));
3232
3233 ASSERT(list_link_active(&vd->vdev_config_dirty_node));
3234 list_remove(&spa->spa_config_dirty_list, vd);
3235 }
3236
3237 /*
3238 * Mark a top-level vdev's state as dirty, so that the next pass of
3239 * spa_sync() can convert this into vdev_config_dirty(). We distinguish
3240 * the state changes from larger config changes because they require
3241 * much less locking, and are often needed for administrative actions.
3242 */
3243 void
3244 vdev_state_dirty(vdev_t *vd)
3245 {
3246 spa_t *spa = vd->vdev_spa;
3247
3248 ASSERT(spa_writeable(spa));
3249 ASSERT(vd == vd->vdev_top);
3250
3251 /*
3252 * The state list is protected by the SCL_STATE lock. The caller
3253 * must either hold SCL_STATE as writer, or must be the sync thread
3254 * (which holds SCL_STATE as reader). There's only one sync thread,
3255 * so this is sufficient to ensure mutual exclusion.
3256 */
3257 ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
3258 (dsl_pool_sync_context(spa_get_dsl(spa)) &&
3259 spa_config_held(spa, SCL_STATE, RW_READER)));
3260
3261 if (!list_link_active(&vd->vdev_state_dirty_node) && !vd->vdev_ishole)
3262 list_insert_head(&spa->spa_state_dirty_list, vd);
3263 }
3264
3265 void
3266 vdev_state_clean(vdev_t *vd)
3267 {
3268 spa_t *spa = vd->vdev_spa;
3269
3270 ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
3271 (dsl_pool_sync_context(spa_get_dsl(spa)) &&
3272 spa_config_held(spa, SCL_STATE, RW_READER)));
3273
3274 ASSERT(list_link_active(&vd->vdev_state_dirty_node));
3275 list_remove(&spa->spa_state_dirty_list, vd);
3276 }
3277
3278 /*
3279 * Propagate vdev state up from children to parent.
3280 */
3281 void
3282 vdev_propagate_state(vdev_t *vd)
3283 {
3284 spa_t *spa = vd->vdev_spa;
3285 vdev_t *rvd = spa->spa_root_vdev;
3286 int degraded = 0, faulted = 0;
3287 int corrupted = 0;
3288 vdev_t *child;
3289 int c;
3290
3291 if (vd->vdev_children > 0) {
3292 for (c = 0; c < vd->vdev_children; c++) {
3293 child = vd->vdev_child[c];
3294
3295 /*
3296 * Don't factor holes into the decision.
3297 */
3298 if (child->vdev_ishole)
3299 continue;
3300
3301 if (!vdev_readable(child) ||
3302 (!vdev_writeable(child) && spa_writeable(spa))) {
3303 /*
3304 * Root special: if there is a top-level log
3305 * device, treat the root vdev as if it were
3306 * degraded.
3307 */
3308 if (child->vdev_islog && vd == rvd)
3309 degraded++;
3310 else
3311 faulted++;
3312 } else if (child->vdev_state <= VDEV_STATE_DEGRADED) {
3313 degraded++;
3314 }
3315
3316 if (child->vdev_stat.vs_aux == VDEV_AUX_CORRUPT_DATA)
3317 corrupted++;
3318 }
3319
3320 vd->vdev_ops->vdev_op_state_change(vd, faulted, degraded);
3321
3322 /*
3323 * Root special: if there is a top-level vdev that cannot be
3324 * opened due to corrupted metadata, then propagate the root
3325 * vdev's aux state as 'corrupt' rather than 'insufficient
3326 * replicas'.
3327 */
3328 if (corrupted && vd == rvd &&
3329 rvd->vdev_state == VDEV_STATE_CANT_OPEN)
3330 vdev_set_state(rvd, B_FALSE, VDEV_STATE_CANT_OPEN,
3331 VDEV_AUX_CORRUPT_DATA);
3332 }
3333
3334 if (vd->vdev_parent)
3335 vdev_propagate_state(vd->vdev_parent);
3336 }
3337
3338 /*
3339 * Set a vdev's state. If this is during an open, we don't update the parent
3340 * state, because we're in the process of opening children depth-first.
3341 * Otherwise, we propagate the change to the parent.
3342 *
3343 * If this routine places a device in a faulted state, an appropriate ereport is
3344 * generated.
3345 */
3346 void
3347 vdev_set_state(vdev_t *vd, boolean_t isopen, vdev_state_t state, vdev_aux_t aux)
3348 {
3349 uint64_t save_state;
3350 spa_t *spa = vd->vdev_spa;
3351
3352 if (state == vd->vdev_state) {
3353 vd->vdev_stat.vs_aux = aux;
3354 return;
3355 }
3356
3357 save_state = vd->vdev_state;
3358
3359 vd->vdev_state = state;
3360 vd->vdev_stat.vs_aux = aux;
3361
3362 /*
3363 * If we are setting the vdev state to anything but an open state, then
3364 * always close the underlying device unless the device has requested
3365 * a delayed close (i.e. we're about to remove or fault the device).
3366 * Otherwise, we keep accessible but invalid devices open forever.
3367 * We don't call vdev_close() itself, because that implies some extra
3368 * checks (offline, etc) that we don't want here. This is limited to
3369 * leaf devices, because otherwise closing the device will affect other
3370 * children.
3371 */
3372 if (!vd->vdev_delayed_close && vdev_is_dead(vd) &&
3373 vd->vdev_ops->vdev_op_leaf)
3374 vd->vdev_ops->vdev_op_close(vd);
3375
3376 /*
3377 * If we have brought this vdev back into service, we need
3378 * to notify fmd so that it can gracefully repair any outstanding
3379 * cases due to a missing device. We do this in all cases, even those
3380 * that probably don't correlate to a repaired fault. This is sure to
3381 * catch all cases, and we let the zfs-retire agent sort it out. If
3382 * this is a transient state it's OK, as the retire agent will
3383 * double-check the state of the vdev before repairing it.
3384 */
3385 if (state == VDEV_STATE_HEALTHY && vd->vdev_ops->vdev_op_leaf &&
3386 vd->vdev_prevstate != state)
3387 zfs_post_state_change(spa, vd);
3388
3389 if (vd->vdev_removed &&
3390 state == VDEV_STATE_CANT_OPEN &&
3391 (aux == VDEV_AUX_OPEN_FAILED || vd->vdev_checkremove)) {
3392 /*
3393 * If the previous state is set to VDEV_STATE_REMOVED, then this
3394 * device was previously marked removed and someone attempted to
3395 * reopen it. If this failed due to a nonexistent device, then
3396 * keep the device in the REMOVED state. We also let this be if
3397 * it is one of our special test online cases, which is only
3398 * attempting to online the device and shouldn't generate an FMA
3399 * fault.
3400 */
3401 vd->vdev_state = VDEV_STATE_REMOVED;
3402 vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
3403 } else if (state == VDEV_STATE_REMOVED) {
3404 vd->vdev_removed = B_TRUE;
3405 } else if (state == VDEV_STATE_CANT_OPEN) {
3406 /*
3407 * If we fail to open a vdev during an import or recovery, we
3408 * mark it as "not available", which signifies that it was
3409 * never there to begin with. Failure to open such a device
3410 * is not considered an error.
3411 */
3412 if ((spa_load_state(spa) == SPA_LOAD_IMPORT ||
3413 spa_load_state(spa) == SPA_LOAD_RECOVER) &&
3414 vd->vdev_ops->vdev_op_leaf)
3415 vd->vdev_not_present = 1;
3416
3417 /*
3418 * Post the appropriate ereport. If the 'prevstate' field is
3419 * set to something other than VDEV_STATE_UNKNOWN, it indicates
3420 * that this is part of a vdev_reopen(). In this case, we don't
3421 * want to post the ereport if the device was already in the
3422 * CANT_OPEN state beforehand.
3423 *
3424 * If the 'checkremove' flag is set, then this is an attempt to
3425 * online the device in response to an insertion event. If we
3426 * hit this case, then we have detected an insertion event for a
3427 * faulted or offline device that wasn't in the removed state.
3428 * In this scenario, we don't post an ereport because we are
3429 * about to replace the device, or attempt an online with
3430 * vdev_forcefault, which will generate the fault for us.
3431 */
3432 if ((vd->vdev_prevstate != state || vd->vdev_forcefault) &&
3433 !vd->vdev_not_present && !vd->vdev_checkremove &&
3434 vd != spa->spa_root_vdev) {
3435 const char *class;
3436
3437 switch (aux) {
3438 case VDEV_AUX_OPEN_FAILED:
3439 class = FM_EREPORT_ZFS_DEVICE_OPEN_FAILED;
3440 break;
3441 case VDEV_AUX_CORRUPT_DATA:
3442 class = FM_EREPORT_ZFS_DEVICE_CORRUPT_DATA;
3443 break;
3444 case VDEV_AUX_NO_REPLICAS:
3445 class = FM_EREPORT_ZFS_DEVICE_NO_REPLICAS;
3446 break;
3447 case VDEV_AUX_BAD_GUID_SUM:
3448 class = FM_EREPORT_ZFS_DEVICE_BAD_GUID_SUM;
3449 break;
3450 case VDEV_AUX_TOO_SMALL:
3451 class = FM_EREPORT_ZFS_DEVICE_TOO_SMALL;
3452 break;
3453 case VDEV_AUX_BAD_LABEL:
3454 class = FM_EREPORT_ZFS_DEVICE_BAD_LABEL;
3455 break;
3456 default:
3457 class = FM_EREPORT_ZFS_DEVICE_UNKNOWN;
3458 }
3459
3460 zfs_ereport_post(class, spa, vd, NULL, save_state, 0);
3461 }
3462
3463 /* Erase any notion of persistent removed state */
3464 vd->vdev_removed = B_FALSE;
3465 } else {
3466 vd->vdev_removed = B_FALSE;
3467 }
3468
3469 if (!isopen && vd->vdev_parent)
3470 vdev_propagate_state(vd->vdev_parent);
3471 }
3472
3473 /*
3474 * Check the vdev configuration to ensure that it's capable of supporting
3475 * a root pool.
3476 */
3477 boolean_t
3478 vdev_is_bootable(vdev_t *vd)
3479 {
3480 #if defined(__sun__) || defined(__sun)
3481 /*
3482 * Currently, we do not support RAID-Z or partial configuration.
3483 * In addition, only a single top-level vdev is allowed and none of the
3484 * leaves can be wholedisks.
3485 */
3486 int c;
3487
3488 if (!vd->vdev_ops->vdev_op_leaf) {
3489 char *vdev_type = vd->vdev_ops->vdev_op_type;
3490
3491 if (strcmp(vdev_type, VDEV_TYPE_ROOT) == 0 &&
3492 vd->vdev_children > 1) {
3493 return (B_FALSE);
3494 } else if (strcmp(vdev_type, VDEV_TYPE_RAIDZ) == 0 ||
3495 strcmp(vdev_type, VDEV_TYPE_MISSING) == 0) {
3496 return (B_FALSE);
3497 }
3498 } else if (vd->vdev_wholedisk == 1) {
3499 return (B_FALSE);
3500 }
3501
3502 for (c = 0; c < vd->vdev_children; c++) {
3503 if (!vdev_is_bootable(vd->vdev_child[c]))
3504 return (B_FALSE);
3505 }
3506 #endif /* __sun__ || __sun */
3507 return (B_TRUE);
3508 }
3509
3510 /*
3511 * Load the state from the original vdev tree (ovd) which
3512 * we've retrieved from the MOS config object. If the original
3513 * vdev was offline or faulted then we transfer that state to the
3514 * device in the current vdev tree (nvd).
3515 */
3516 void
3517 vdev_load_log_state(vdev_t *nvd, vdev_t *ovd)
3518 {
3519 int c;
3520
3521 ASSERT(nvd->vdev_top->vdev_islog);
3522 ASSERT(spa_config_held(nvd->vdev_spa,
3523 SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
3524 ASSERT3U(nvd->vdev_guid, ==, ovd->vdev_guid);
3525
3526 for (c = 0; c < nvd->vdev_children; c++)
3527 vdev_load_log_state(nvd->vdev_child[c], ovd->vdev_child[c]);
3528
3529 if (nvd->vdev_ops->vdev_op_leaf) {
3530 /*
3531 * Restore the persistent vdev state
3532 */
3533 nvd->vdev_offline = ovd->vdev_offline;
3534 nvd->vdev_faulted = ovd->vdev_faulted;
3535 nvd->vdev_degraded = ovd->vdev_degraded;
3536 nvd->vdev_removed = ovd->vdev_removed;
3537 }
3538 }
3539
3540 /*
3541 * Determine if a log device has valid content. If the vdev was
3542 * removed or faulted in the MOS config then we know that
3543 * the content on the log device has already been written to the pool.
3544 */
3545 boolean_t
3546 vdev_log_state_valid(vdev_t *vd)
3547 {
3548 int c;
3549
3550 if (vd->vdev_ops->vdev_op_leaf && !vd->vdev_faulted &&
3551 !vd->vdev_removed)
3552 return (B_TRUE);
3553
3554 for (c = 0; c < vd->vdev_children; c++)
3555 if (vdev_log_state_valid(vd->vdev_child[c]))
3556 return (B_TRUE);
3557
3558 return (B_FALSE);
3559 }
3560
3561 /*
3562 * Expand a vdev if possible.
3563 */
3564 void
3565 vdev_expand(vdev_t *vd, uint64_t txg)
3566 {
3567 ASSERT(vd->vdev_top == vd);
3568 ASSERT(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
3569
3570 if ((vd->vdev_asize >> vd->vdev_ms_shift) > vd->vdev_ms_count) {
3571 VERIFY(vdev_metaslab_init(vd, txg) == 0);
3572 vdev_config_dirty(vd);
3573 }
3574 }
3575
3576 /*
3577 * Split a vdev.
3578 */
3579 void
3580 vdev_split(vdev_t *vd)
3581 {
3582 vdev_t *cvd, *pvd = vd->vdev_parent;
3583
3584 vdev_remove_child(pvd, vd);
3585 vdev_compact_children(pvd);
3586
3587 cvd = pvd->vdev_child[0];
3588 if (pvd->vdev_children == 1) {
3589 vdev_remove_parent(cvd);
3590 cvd->vdev_splitting = B_TRUE;
3591 }
3592 vdev_propagate_state(cvd);
3593 }
3594
3595 void
3596 vdev_deadman(vdev_t *vd)
3597 {
3598 int c;
3599
3600 for (c = 0; c < vd->vdev_children; c++) {
3601 vdev_t *cvd = vd->vdev_child[c];
3602
3603 vdev_deadman(cvd);
3604 }
3605
3606 if (vd->vdev_ops->vdev_op_leaf) {
3607 vdev_queue_t *vq = &vd->vdev_queue;
3608
3609 mutex_enter(&vq->vq_lock);
3610 if (avl_numnodes(&vq->vq_active_tree) > 0) {
3611 spa_t *spa = vd->vdev_spa;
3612 zio_t *fio;
3613 uint64_t delta;
3614
3615 /*
3616 * Look at the head of all the pending queues,
3617 * if any I/O has been outstanding for longer than
3618 * the spa_deadman_synctime we log a zevent.
3619 */
3620 fio = avl_first(&vq->vq_active_tree);
3621 delta = gethrtime() - fio->io_timestamp;
3622 if (delta > spa_deadman_synctime(spa)) {
3623 zfs_dbgmsg("SLOW IO: zio timestamp %lluns, "
3624 "delta %lluns, last io %lluns",
3625 fio->io_timestamp, delta,
3626 vq->vq_io_complete_ts);
3627 zfs_ereport_post(FM_EREPORT_ZFS_DELAY,
3628 spa, vd, fio, 0, 0);
3629 }
3630 }
3631 mutex_exit(&vq->vq_lock);
3632 }
3633 }
3634
3635 #if defined(_KERNEL) && defined(HAVE_SPL)
3636 EXPORT_SYMBOL(vdev_fault);
3637 EXPORT_SYMBOL(vdev_degrade);
3638 EXPORT_SYMBOL(vdev_online);
3639 EXPORT_SYMBOL(vdev_offline);
3640 EXPORT_SYMBOL(vdev_clear);
3641
3642 module_param(metaslabs_per_vdev, int, 0644);
3643 MODULE_PARM_DESC(metaslabs_per_vdev,
3644 "Divide added vdev into approximately (but no more than) this number "
3645 "of metaslabs");
3646 #endif