]> git.proxmox.com Git - mirror_zfs.git/blob - module/zfs/vdev_indirect.c
ztest: split block reconstruction
[mirror_zfs.git] / module / zfs / vdev_indirect.c
1 /*
2 * CDDL HEADER START
3 *
4 * This file and its contents are supplied under the terms of the
5 * Common Development and Distribution License ("CDDL"), version 1.0.
6 * You may only use this file in accordance with the terms of version
7 * 1.0 of the CDDL.
8 *
9 * A full copy of the text of the CDDL should have accompanied this
10 * source. A copy of the CDDL is also available via the Internet at
11 * http://www.illumos.org/license/CDDL.
12 *
13 * CDDL HEADER END
14 */
15
16 /*
17 * Copyright (c) 2014, 2017 by Delphix. All rights reserved.
18 */
19
20 #include <sys/zfs_context.h>
21 #include <sys/spa.h>
22 #include <sys/spa_impl.h>
23 #include <sys/vdev_impl.h>
24 #include <sys/fs/zfs.h>
25 #include <sys/zio.h>
26 #include <sys/zio_checksum.h>
27 #include <sys/metaslab.h>
28 #include <sys/refcount.h>
29 #include <sys/dmu.h>
30 #include <sys/vdev_indirect_mapping.h>
31 #include <sys/dmu_tx.h>
32 #include <sys/dsl_synctask.h>
33 #include <sys/zap.h>
34 #include <sys/abd.h>
35 #include <sys/zthr.h>
36
37 /*
38 * An indirect vdev corresponds to a vdev that has been removed. Since
39 * we cannot rewrite block pointers of snapshots, etc., we keep a
40 * mapping from old location on the removed device to the new location
41 * on another device in the pool and use this mapping whenever we need
42 * to access the DVA. Unfortunately, this mapping did not respect
43 * logical block boundaries when it was first created, and so a DVA on
44 * this indirect vdev may be "split" into multiple sections that each
45 * map to a different location. As a consequence, not all DVAs can be
46 * translated to an equivalent new DVA. Instead we must provide a
47 * "vdev_remap" operation that executes a callback on each contiguous
48 * segment of the new location. This function is used in multiple ways:
49 *
50 * - i/os to this vdev use the callback to determine where the
51 * data is now located, and issue child i/os for each segment's new
52 * location.
53 *
54 * - frees and claims to this vdev use the callback to free or claim
55 * each mapped segment. (Note that we don't actually need to claim
56 * log blocks on indirect vdevs, because we don't allocate to
57 * removing vdevs. However, zdb uses zio_claim() for its leak
58 * detection.)
59 */
60
61 /*
62 * "Big theory statement" for how we mark blocks obsolete.
63 *
64 * When a block on an indirect vdev is freed or remapped, a section of
65 * that vdev's mapping may no longer be referenced (aka "obsolete"). We
66 * keep track of how much of each mapping entry is obsolete. When
67 * an entry becomes completely obsolete, we can remove it, thus reducing
68 * the memory used by the mapping. The complete picture of obsolescence
69 * is given by the following data structures, described below:
70 * - the entry-specific obsolete count
71 * - the vdev-specific obsolete spacemap
72 * - the pool-specific obsolete bpobj
73 *
74 * == On disk data structures used ==
75 *
76 * We track the obsolete space for the pool using several objects. Each
77 * of these objects is created on demand and freed when no longer
78 * needed, and is assumed to be empty if it does not exist.
79 * SPA_FEATURE_OBSOLETE_COUNTS includes the count of these objects.
80 *
81 * - Each vic_mapping_object (associated with an indirect vdev) can
82 * have a vimp_counts_object. This is an array of uint32_t's
83 * with the same number of entries as the vic_mapping_object. When
84 * the mapping is condensed, entries from the vic_obsolete_sm_object
85 * (see below) are folded into the counts. Therefore, each
86 * obsolete_counts entry tells us the number of bytes in the
87 * corresponding mapping entry that were not referenced when the
88 * mapping was last condensed.
89 *
90 * - Each indirect or removing vdev can have a vic_obsolete_sm_object.
91 * This is a space map containing an alloc entry for every DVA that
92 * has been obsoleted since the last time this indirect vdev was
93 * condensed. We use this object in order to improve performance
94 * when marking a DVA as obsolete. Instead of modifying an arbitrary
95 * offset of the vimp_counts_object, we only need to append an entry
96 * to the end of this object. When a DVA becomes obsolete, it is
97 * added to the obsolete space map. This happens when the DVA is
98 * freed, remapped and not referenced by a snapshot, or the last
99 * snapshot referencing it is destroyed.
100 *
101 * - Each dataset can have a ds_remap_deadlist object. This is a
102 * deadlist object containing all blocks that were remapped in this
103 * dataset but referenced in a previous snapshot. Blocks can *only*
104 * appear on this list if they were remapped (dsl_dataset_block_remapped);
105 * blocks that were killed in a head dataset are put on the normal
106 * ds_deadlist and marked obsolete when they are freed.
107 *
108 * - The pool can have a dp_obsolete_bpobj. This is a list of blocks
109 * in the pool that need to be marked obsolete. When a snapshot is
110 * destroyed, we move some of the ds_remap_deadlist to the obsolete
111 * bpobj (see dsl_destroy_snapshot_handle_remaps()). We then
112 * asynchronously process the obsolete bpobj, moving its entries to
113 * the specific vdevs' obsolete space maps.
114 *
115 * == Summary of how we mark blocks as obsolete ==
116 *
117 * - When freeing a block: if any DVA is on an indirect vdev, append to
118 * vic_obsolete_sm_object.
119 * - When remapping a block, add dva to ds_remap_deadlist (if prev snap
120 * references; otherwise append to vic_obsolete_sm_object).
121 * - When freeing a snapshot: move parts of ds_remap_deadlist to
122 * dp_obsolete_bpobj (same algorithm as ds_deadlist).
123 * - When syncing the spa: process dp_obsolete_bpobj, moving ranges to
124 * individual vdev's vic_obsolete_sm_object.
125 */
126
127 /*
128 * "Big theory statement" for how we condense indirect vdevs.
129 *
130 * Condensing an indirect vdev's mapping is the process of determining
131 * the precise counts of obsolete space for each mapping entry (by
132 * integrating the obsolete spacemap into the obsolete counts) and
133 * writing out a new mapping that contains only referenced entries.
134 *
135 * We condense a vdev when we expect the mapping to shrink (see
136 * vdev_indirect_should_condense()), but only perform one condense at a
137 * time to limit the memory usage. In addition, we use a separate
138 * open-context thread (spa_condense_indirect_thread) to incrementally
139 * create the new mapping object in a way that minimizes the impact on
140 * the rest of the system.
141 *
142 * == Generating a new mapping ==
143 *
144 * To generate a new mapping, we follow these steps:
145 *
146 * 1. Save the old obsolete space map and create a new mapping object
147 * (see spa_condense_indirect_start_sync()). This initializes the
148 * spa_condensing_indirect_phys with the "previous obsolete space map",
149 * which is now read only. Newly obsolete DVAs will be added to a
150 * new (initially empty) obsolete space map, and will not be
151 * considered as part of this condense operation.
152 *
153 * 2. Construct in memory the precise counts of obsolete space for each
154 * mapping entry, by incorporating the obsolete space map into the
155 * counts. (See vdev_indirect_mapping_load_obsolete_{counts,spacemap}().)
156 *
157 * 3. Iterate through each mapping entry, writing to the new mapping any
158 * entries that are not completely obsolete (i.e. which don't have
159 * obsolete count == mapping length). (See
160 * spa_condense_indirect_generate_new_mapping().)
161 *
162 * 4. Destroy the old mapping object and switch over to the new one
163 * (spa_condense_indirect_complete_sync).
164 *
165 * == Restarting from failure ==
166 *
167 * To restart the condense when we import/open the pool, we must start
168 * at the 2nd step above: reconstruct the precise counts in memory,
169 * based on the space map + counts. Then in the 3rd step, we start
170 * iterating where we left off: at vimp_max_offset of the new mapping
171 * object.
172 */
173
174 int zfs_condense_indirect_vdevs_enable = B_TRUE;
175
176 /*
177 * Condense if at least this percent of the bytes in the mapping is
178 * obsolete. With the default of 25%, the amount of space mapped
179 * will be reduced to 1% of its original size after at most 16
180 * condenses. Higher values will condense less often (causing less
181 * i/o); lower values will reduce the mapping size more quickly.
182 */
183 int zfs_indirect_condense_obsolete_pct = 25;
184
185 /*
186 * Condense if the obsolete space map takes up more than this amount of
187 * space on disk (logically). This limits the amount of disk space
188 * consumed by the obsolete space map; the default of 1GB is small enough
189 * that we typically don't mind "wasting" it.
190 */
191 unsigned long zfs_condense_max_obsolete_bytes = 1024 * 1024 * 1024;
192
193 /*
194 * Don't bother condensing if the mapping uses less than this amount of
195 * memory. The default of 128KB is considered a "trivial" amount of
196 * memory and not worth reducing.
197 */
198 unsigned long zfs_condense_min_mapping_bytes = 128 * 1024;
199
200 /*
201 * This is used by the test suite so that it can ensure that certain
202 * actions happen while in the middle of a condense (which might otherwise
203 * complete too quickly). If used to reduce the performance impact of
204 * condensing in production, a maximum value of 1 should be sufficient.
205 */
206 int zfs_condense_indirect_commit_entry_delay_ms = 0;
207
208 /*
209 * If an indirect split block contains more than this many possible unique
210 * combinations when being reconstructed, consider it too computationally
211 * expensive to check them all. Instead, try at most 100 randomly-selected
212 * combinations each time the block is accessed. This allows all segment
213 * copies to participate fairly in the reconstruction when all combinations
214 * cannot be checked and prevents repeated use of one bad copy.
215 */
216 int zfs_reconstruct_indirect_combinations_max = 4096;
217
218 /*
219 * Enable to simulate damaged segments and validate reconstruction. This
220 * is intentionally not exposed as a module parameter.
221 */
222 unsigned long zfs_reconstruct_indirect_damage_fraction = 0;
223
224 /*
225 * The indirect_child_t represents the vdev that we will read from, when we
226 * need to read all copies of the data (e.g. for scrub or reconstruction).
227 * For plain (non-mirror) top-level vdevs (i.e. is_vdev is not a mirror),
228 * ic_vdev is the same as is_vdev. However, for mirror top-level vdevs,
229 * ic_vdev is a child of the mirror.
230 */
231 typedef struct indirect_child {
232 abd_t *ic_data;
233 vdev_t *ic_vdev;
234
235 /*
236 * ic_duplicate is NULL when the ic_data contents are unique, when it
237 * is determined to be a duplicate it references the primary child.
238 */
239 struct indirect_child *ic_duplicate;
240 list_node_t ic_node; /* node on is_unique_child */
241 } indirect_child_t;
242
243 /*
244 * The indirect_split_t represents one mapped segment of an i/o to the
245 * indirect vdev. For non-split (contiguously-mapped) blocks, there will be
246 * only one indirect_split_t, with is_split_offset==0 and is_size==io_size.
247 * For split blocks, there will be several of these.
248 */
249 typedef struct indirect_split {
250 list_node_t is_node; /* link on iv_splits */
251
252 /*
253 * is_split_offset is the offset into the i/o.
254 * This is the sum of the previous splits' is_size's.
255 */
256 uint64_t is_split_offset;
257
258 vdev_t *is_vdev; /* top-level vdev */
259 uint64_t is_target_offset; /* offset on is_vdev */
260 uint64_t is_size;
261 int is_children; /* number of entries in is_child[] */
262 int is_unique_children; /* number of entries in is_unique_child */
263 list_t is_unique_child;
264
265 /*
266 * is_good_child is the child that we are currently using to
267 * attempt reconstruction.
268 */
269 indirect_child_t *is_good_child;
270
271 indirect_child_t is_child[1]; /* variable-length */
272 } indirect_split_t;
273
274 /*
275 * The indirect_vsd_t is associated with each i/o to the indirect vdev.
276 * It is the "Vdev-Specific Data" in the zio_t's io_vsd.
277 */
278 typedef struct indirect_vsd {
279 boolean_t iv_split_block;
280 boolean_t iv_reconstruct;
281 uint64_t iv_unique_combinations;
282 uint64_t iv_attempts;
283 uint64_t iv_attempts_max;
284
285 list_t iv_splits; /* list of indirect_split_t's */
286 } indirect_vsd_t;
287
288 static void
289 vdev_indirect_map_free(zio_t *zio)
290 {
291 indirect_vsd_t *iv = zio->io_vsd;
292
293 indirect_split_t *is;
294 while ((is = list_head(&iv->iv_splits)) != NULL) {
295 for (int c = 0; c < is->is_children; c++) {
296 indirect_child_t *ic = &is->is_child[c];
297 if (ic->ic_data != NULL)
298 abd_free(ic->ic_data);
299 }
300 list_remove(&iv->iv_splits, is);
301
302 indirect_child_t *ic;
303 while ((ic = list_head(&is->is_unique_child)) != NULL)
304 list_remove(&is->is_unique_child, ic);
305
306 list_destroy(&is->is_unique_child);
307
308 kmem_free(is,
309 offsetof(indirect_split_t, is_child[is->is_children]));
310 }
311 kmem_free(iv, sizeof (*iv));
312 }
313
314 static const zio_vsd_ops_t vdev_indirect_vsd_ops = {
315 .vsd_free = vdev_indirect_map_free,
316 .vsd_cksum_report = zio_vsd_default_cksum_report
317 };
318
319 /*
320 * Mark the given offset and size as being obsolete.
321 */
322 void
323 vdev_indirect_mark_obsolete(vdev_t *vd, uint64_t offset, uint64_t size)
324 {
325 spa_t *spa = vd->vdev_spa;
326
327 ASSERT3U(vd->vdev_indirect_config.vic_mapping_object, !=, 0);
328 ASSERT(vd->vdev_removing || vd->vdev_ops == &vdev_indirect_ops);
329 ASSERT(size > 0);
330 VERIFY(vdev_indirect_mapping_entry_for_offset(
331 vd->vdev_indirect_mapping, offset) != NULL);
332
333 if (spa_feature_is_enabled(spa, SPA_FEATURE_OBSOLETE_COUNTS)) {
334 mutex_enter(&vd->vdev_obsolete_lock);
335 range_tree_add(vd->vdev_obsolete_segments, offset, size);
336 mutex_exit(&vd->vdev_obsolete_lock);
337 vdev_dirty(vd, 0, NULL, spa_syncing_txg(spa));
338 }
339 }
340
341 /*
342 * Mark the DVA vdev_id:offset:size as being obsolete in the given tx. This
343 * wrapper is provided because the DMU does not know about vdev_t's and
344 * cannot directly call vdev_indirect_mark_obsolete.
345 */
346 void
347 spa_vdev_indirect_mark_obsolete(spa_t *spa, uint64_t vdev_id, uint64_t offset,
348 uint64_t size, dmu_tx_t *tx)
349 {
350 vdev_t *vd = vdev_lookup_top(spa, vdev_id);
351 ASSERT(dmu_tx_is_syncing(tx));
352
353 /* The DMU can only remap indirect vdevs. */
354 ASSERT3P(vd->vdev_ops, ==, &vdev_indirect_ops);
355 vdev_indirect_mark_obsolete(vd, offset, size);
356 }
357
358 static spa_condensing_indirect_t *
359 spa_condensing_indirect_create(spa_t *spa)
360 {
361 spa_condensing_indirect_phys_t *scip =
362 &spa->spa_condensing_indirect_phys;
363 spa_condensing_indirect_t *sci = kmem_zalloc(sizeof (*sci), KM_SLEEP);
364 objset_t *mos = spa->spa_meta_objset;
365
366 for (int i = 0; i < TXG_SIZE; i++) {
367 list_create(&sci->sci_new_mapping_entries[i],
368 sizeof (vdev_indirect_mapping_entry_t),
369 offsetof(vdev_indirect_mapping_entry_t, vime_node));
370 }
371
372 sci->sci_new_mapping =
373 vdev_indirect_mapping_open(mos, scip->scip_next_mapping_object);
374
375 return (sci);
376 }
377
378 static void
379 spa_condensing_indirect_destroy(spa_condensing_indirect_t *sci)
380 {
381 for (int i = 0; i < TXG_SIZE; i++)
382 list_destroy(&sci->sci_new_mapping_entries[i]);
383
384 if (sci->sci_new_mapping != NULL)
385 vdev_indirect_mapping_close(sci->sci_new_mapping);
386
387 kmem_free(sci, sizeof (*sci));
388 }
389
390 boolean_t
391 vdev_indirect_should_condense(vdev_t *vd)
392 {
393 vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping;
394 spa_t *spa = vd->vdev_spa;
395
396 ASSERT(dsl_pool_sync_context(spa->spa_dsl_pool));
397
398 if (!zfs_condense_indirect_vdevs_enable)
399 return (B_FALSE);
400
401 /*
402 * We can only condense one indirect vdev at a time.
403 */
404 if (spa->spa_condensing_indirect != NULL)
405 return (B_FALSE);
406
407 if (spa_shutting_down(spa))
408 return (B_FALSE);
409
410 /*
411 * The mapping object size must not change while we are
412 * condensing, so we can only condense indirect vdevs
413 * (not vdevs that are still in the middle of being removed).
414 */
415 if (vd->vdev_ops != &vdev_indirect_ops)
416 return (B_FALSE);
417
418 /*
419 * If nothing new has been marked obsolete, there is no
420 * point in condensing.
421 */
422 ASSERTV(uint64_t obsolete_sm_obj);
423 ASSERT0(vdev_obsolete_sm_object(vd, &obsolete_sm_obj));
424 if (vd->vdev_obsolete_sm == NULL) {
425 ASSERT0(obsolete_sm_obj);
426 return (B_FALSE);
427 }
428
429 ASSERT(vd->vdev_obsolete_sm != NULL);
430
431 ASSERT3U(obsolete_sm_obj, ==, space_map_object(vd->vdev_obsolete_sm));
432
433 uint64_t bytes_mapped = vdev_indirect_mapping_bytes_mapped(vim);
434 uint64_t bytes_obsolete = space_map_allocated(vd->vdev_obsolete_sm);
435 uint64_t mapping_size = vdev_indirect_mapping_size(vim);
436 uint64_t obsolete_sm_size = space_map_length(vd->vdev_obsolete_sm);
437
438 ASSERT3U(bytes_obsolete, <=, bytes_mapped);
439
440 /*
441 * If a high percentage of the bytes that are mapped have become
442 * obsolete, condense (unless the mapping is already small enough).
443 * This has a good chance of reducing the amount of memory used
444 * by the mapping.
445 */
446 if (bytes_obsolete * 100 / bytes_mapped >=
447 zfs_indirect_condense_obsolete_pct &&
448 mapping_size > zfs_condense_min_mapping_bytes) {
449 zfs_dbgmsg("should condense vdev %llu because obsolete "
450 "spacemap covers %d%% of %lluMB mapping",
451 (u_longlong_t)vd->vdev_id,
452 (int)(bytes_obsolete * 100 / bytes_mapped),
453 (u_longlong_t)bytes_mapped / 1024 / 1024);
454 return (B_TRUE);
455 }
456
457 /*
458 * If the obsolete space map takes up too much space on disk,
459 * condense in order to free up this disk space.
460 */
461 if (obsolete_sm_size >= zfs_condense_max_obsolete_bytes) {
462 zfs_dbgmsg("should condense vdev %llu because obsolete sm "
463 "length %lluMB >= max size %lluMB",
464 (u_longlong_t)vd->vdev_id,
465 (u_longlong_t)obsolete_sm_size / 1024 / 1024,
466 (u_longlong_t)zfs_condense_max_obsolete_bytes /
467 1024 / 1024);
468 return (B_TRUE);
469 }
470
471 return (B_FALSE);
472 }
473
474 /*
475 * This sync task completes (finishes) a condense, deleting the old
476 * mapping and replacing it with the new one.
477 */
478 static void
479 spa_condense_indirect_complete_sync(void *arg, dmu_tx_t *tx)
480 {
481 spa_condensing_indirect_t *sci = arg;
482 spa_t *spa = dmu_tx_pool(tx)->dp_spa;
483 spa_condensing_indirect_phys_t *scip =
484 &spa->spa_condensing_indirect_phys;
485 vdev_t *vd = vdev_lookup_top(spa, scip->scip_vdev);
486 vdev_indirect_config_t *vic = &vd->vdev_indirect_config;
487 objset_t *mos = spa->spa_meta_objset;
488 vdev_indirect_mapping_t *old_mapping = vd->vdev_indirect_mapping;
489 uint64_t old_count = vdev_indirect_mapping_num_entries(old_mapping);
490 uint64_t new_count =
491 vdev_indirect_mapping_num_entries(sci->sci_new_mapping);
492
493 ASSERT(dmu_tx_is_syncing(tx));
494 ASSERT3P(vd->vdev_ops, ==, &vdev_indirect_ops);
495 ASSERT3P(sci, ==, spa->spa_condensing_indirect);
496 for (int i = 0; i < TXG_SIZE; i++) {
497 ASSERT(list_is_empty(&sci->sci_new_mapping_entries[i]));
498 }
499 ASSERT(vic->vic_mapping_object != 0);
500 ASSERT3U(vd->vdev_id, ==, scip->scip_vdev);
501 ASSERT(scip->scip_next_mapping_object != 0);
502 ASSERT(scip->scip_prev_obsolete_sm_object != 0);
503
504 /*
505 * Reset vdev_indirect_mapping to refer to the new object.
506 */
507 rw_enter(&vd->vdev_indirect_rwlock, RW_WRITER);
508 vdev_indirect_mapping_close(vd->vdev_indirect_mapping);
509 vd->vdev_indirect_mapping = sci->sci_new_mapping;
510 rw_exit(&vd->vdev_indirect_rwlock);
511
512 sci->sci_new_mapping = NULL;
513 vdev_indirect_mapping_free(mos, vic->vic_mapping_object, tx);
514 vic->vic_mapping_object = scip->scip_next_mapping_object;
515 scip->scip_next_mapping_object = 0;
516
517 space_map_free_obj(mos, scip->scip_prev_obsolete_sm_object, tx);
518 spa_feature_decr(spa, SPA_FEATURE_OBSOLETE_COUNTS, tx);
519 scip->scip_prev_obsolete_sm_object = 0;
520
521 scip->scip_vdev = 0;
522
523 VERIFY0(zap_remove(mos, DMU_POOL_DIRECTORY_OBJECT,
524 DMU_POOL_CONDENSING_INDIRECT, tx));
525 spa_condensing_indirect_destroy(spa->spa_condensing_indirect);
526 spa->spa_condensing_indirect = NULL;
527
528 zfs_dbgmsg("finished condense of vdev %llu in txg %llu: "
529 "new mapping object %llu has %llu entries "
530 "(was %llu entries)",
531 vd->vdev_id, dmu_tx_get_txg(tx), vic->vic_mapping_object,
532 new_count, old_count);
533
534 vdev_config_dirty(spa->spa_root_vdev);
535 }
536
537 /*
538 * This sync task appends entries to the new mapping object.
539 */
540 static void
541 spa_condense_indirect_commit_sync(void *arg, dmu_tx_t *tx)
542 {
543 spa_condensing_indirect_t *sci = arg;
544 uint64_t txg = dmu_tx_get_txg(tx);
545 ASSERTV(spa_t *spa = dmu_tx_pool(tx)->dp_spa);
546
547 ASSERT(dmu_tx_is_syncing(tx));
548 ASSERT3P(sci, ==, spa->spa_condensing_indirect);
549
550 vdev_indirect_mapping_add_entries(sci->sci_new_mapping,
551 &sci->sci_new_mapping_entries[txg & TXG_MASK], tx);
552 ASSERT(list_is_empty(&sci->sci_new_mapping_entries[txg & TXG_MASK]));
553 }
554
555 /*
556 * Open-context function to add one entry to the new mapping. The new
557 * entry will be remembered and written from syncing context.
558 */
559 static void
560 spa_condense_indirect_commit_entry(spa_t *spa,
561 vdev_indirect_mapping_entry_phys_t *vimep, uint32_t count)
562 {
563 spa_condensing_indirect_t *sci = spa->spa_condensing_indirect;
564
565 ASSERT3U(count, <, DVA_GET_ASIZE(&vimep->vimep_dst));
566
567 dmu_tx_t *tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
568 dmu_tx_hold_space(tx, sizeof (*vimep) + sizeof (count));
569 VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
570 int txgoff = dmu_tx_get_txg(tx) & TXG_MASK;
571
572 /*
573 * If we are the first entry committed this txg, kick off the sync
574 * task to write to the MOS on our behalf.
575 */
576 if (list_is_empty(&sci->sci_new_mapping_entries[txgoff])) {
577 dsl_sync_task_nowait(dmu_tx_pool(tx),
578 spa_condense_indirect_commit_sync, sci,
579 0, ZFS_SPACE_CHECK_NONE, tx);
580 }
581
582 vdev_indirect_mapping_entry_t *vime =
583 kmem_alloc(sizeof (*vime), KM_SLEEP);
584 vime->vime_mapping = *vimep;
585 vime->vime_obsolete_count = count;
586 list_insert_tail(&sci->sci_new_mapping_entries[txgoff], vime);
587
588 dmu_tx_commit(tx);
589 }
590
591 static void
592 spa_condense_indirect_generate_new_mapping(vdev_t *vd,
593 uint32_t *obsolete_counts, uint64_t start_index, zthr_t *zthr)
594 {
595 spa_t *spa = vd->vdev_spa;
596 uint64_t mapi = start_index;
597 vdev_indirect_mapping_t *old_mapping = vd->vdev_indirect_mapping;
598 uint64_t old_num_entries =
599 vdev_indirect_mapping_num_entries(old_mapping);
600
601 ASSERT3P(vd->vdev_ops, ==, &vdev_indirect_ops);
602 ASSERT3U(vd->vdev_id, ==, spa->spa_condensing_indirect_phys.scip_vdev);
603
604 zfs_dbgmsg("starting condense of vdev %llu from index %llu",
605 (u_longlong_t)vd->vdev_id,
606 (u_longlong_t)mapi);
607
608 while (mapi < old_num_entries) {
609
610 if (zthr_iscancelled(zthr)) {
611 zfs_dbgmsg("pausing condense of vdev %llu "
612 "at index %llu", (u_longlong_t)vd->vdev_id,
613 (u_longlong_t)mapi);
614 break;
615 }
616
617 vdev_indirect_mapping_entry_phys_t *entry =
618 &old_mapping->vim_entries[mapi];
619 uint64_t entry_size = DVA_GET_ASIZE(&entry->vimep_dst);
620 ASSERT3U(obsolete_counts[mapi], <=, entry_size);
621 if (obsolete_counts[mapi] < entry_size) {
622 spa_condense_indirect_commit_entry(spa, entry,
623 obsolete_counts[mapi]);
624
625 /*
626 * This delay may be requested for testing, debugging,
627 * or performance reasons.
628 */
629 hrtime_t now = gethrtime();
630 hrtime_t sleep_until = now + MSEC2NSEC(
631 zfs_condense_indirect_commit_entry_delay_ms);
632 zfs_sleep_until(sleep_until);
633 }
634
635 mapi++;
636 }
637 }
638
639 /* ARGSUSED */
640 static boolean_t
641 spa_condense_indirect_thread_check(void *arg, zthr_t *zthr)
642 {
643 spa_t *spa = arg;
644
645 return (spa->spa_condensing_indirect != NULL);
646 }
647
648 /* ARGSUSED */
649 static void
650 spa_condense_indirect_thread(void *arg, zthr_t *zthr)
651 {
652 spa_t *spa = arg;
653 vdev_t *vd;
654
655 ASSERT3P(spa->spa_condensing_indirect, !=, NULL);
656 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
657 vd = vdev_lookup_top(spa, spa->spa_condensing_indirect_phys.scip_vdev);
658 ASSERT3P(vd, !=, NULL);
659 spa_config_exit(spa, SCL_VDEV, FTAG);
660
661 spa_condensing_indirect_t *sci = spa->spa_condensing_indirect;
662 spa_condensing_indirect_phys_t *scip =
663 &spa->spa_condensing_indirect_phys;
664 uint32_t *counts;
665 uint64_t start_index;
666 vdev_indirect_mapping_t *old_mapping = vd->vdev_indirect_mapping;
667 space_map_t *prev_obsolete_sm = NULL;
668
669 ASSERT3U(vd->vdev_id, ==, scip->scip_vdev);
670 ASSERT(scip->scip_next_mapping_object != 0);
671 ASSERT(scip->scip_prev_obsolete_sm_object != 0);
672 ASSERT3P(vd->vdev_ops, ==, &vdev_indirect_ops);
673
674 for (int i = 0; i < TXG_SIZE; i++) {
675 /*
676 * The list must start out empty in order for the
677 * _commit_sync() sync task to be properly registered
678 * on the first call to _commit_entry(); so it's wise
679 * to double check and ensure we actually are starting
680 * with empty lists.
681 */
682 ASSERT(list_is_empty(&sci->sci_new_mapping_entries[i]));
683 }
684
685 VERIFY0(space_map_open(&prev_obsolete_sm, spa->spa_meta_objset,
686 scip->scip_prev_obsolete_sm_object, 0, vd->vdev_asize, 0));
687 space_map_update(prev_obsolete_sm);
688 counts = vdev_indirect_mapping_load_obsolete_counts(old_mapping);
689 if (prev_obsolete_sm != NULL) {
690 vdev_indirect_mapping_load_obsolete_spacemap(old_mapping,
691 counts, prev_obsolete_sm);
692 }
693 space_map_close(prev_obsolete_sm);
694
695 /*
696 * Generate new mapping. Determine what index to continue from
697 * based on the max offset that we've already written in the
698 * new mapping.
699 */
700 uint64_t max_offset =
701 vdev_indirect_mapping_max_offset(sci->sci_new_mapping);
702 if (max_offset == 0) {
703 /* We haven't written anything to the new mapping yet. */
704 start_index = 0;
705 } else {
706 /*
707 * Pick up from where we left off. _entry_for_offset()
708 * returns a pointer into the vim_entries array. If
709 * max_offset is greater than any of the mappings
710 * contained in the table NULL will be returned and
711 * that indicates we've exhausted our iteration of the
712 * old_mapping.
713 */
714
715 vdev_indirect_mapping_entry_phys_t *entry =
716 vdev_indirect_mapping_entry_for_offset_or_next(old_mapping,
717 max_offset);
718
719 if (entry == NULL) {
720 /*
721 * We've already written the whole new mapping.
722 * This special value will cause us to skip the
723 * generate_new_mapping step and just do the sync
724 * task to complete the condense.
725 */
726 start_index = UINT64_MAX;
727 } else {
728 start_index = entry - old_mapping->vim_entries;
729 ASSERT3U(start_index, <,
730 vdev_indirect_mapping_num_entries(old_mapping));
731 }
732 }
733
734 spa_condense_indirect_generate_new_mapping(vd, counts,
735 start_index, zthr);
736
737 vdev_indirect_mapping_free_obsolete_counts(old_mapping, counts);
738
739 /*
740 * If the zthr has received a cancellation signal while running
741 * in generate_new_mapping() or at any point after that, then bail
742 * early. We don't want to complete the condense if the spa is
743 * shutting down.
744 */
745 if (zthr_iscancelled(zthr))
746 return;
747
748 VERIFY0(dsl_sync_task(spa_name(spa), NULL,
749 spa_condense_indirect_complete_sync, sci, 0,
750 ZFS_SPACE_CHECK_EXTRA_RESERVED));
751 }
752
753 /*
754 * Sync task to begin the condensing process.
755 */
756 void
757 spa_condense_indirect_start_sync(vdev_t *vd, dmu_tx_t *tx)
758 {
759 spa_t *spa = vd->vdev_spa;
760 spa_condensing_indirect_phys_t *scip =
761 &spa->spa_condensing_indirect_phys;
762
763 ASSERT0(scip->scip_next_mapping_object);
764 ASSERT0(scip->scip_prev_obsolete_sm_object);
765 ASSERT0(scip->scip_vdev);
766 ASSERT(dmu_tx_is_syncing(tx));
767 ASSERT3P(vd->vdev_ops, ==, &vdev_indirect_ops);
768 ASSERT(spa_feature_is_active(spa, SPA_FEATURE_OBSOLETE_COUNTS));
769 ASSERT(vdev_indirect_mapping_num_entries(vd->vdev_indirect_mapping));
770
771 uint64_t obsolete_sm_obj;
772 VERIFY0(vdev_obsolete_sm_object(vd, &obsolete_sm_obj));
773 ASSERT3U(obsolete_sm_obj, !=, 0);
774
775 scip->scip_vdev = vd->vdev_id;
776 scip->scip_next_mapping_object =
777 vdev_indirect_mapping_alloc(spa->spa_meta_objset, tx);
778
779 scip->scip_prev_obsolete_sm_object = obsolete_sm_obj;
780
781 /*
782 * We don't need to allocate a new space map object, since
783 * vdev_indirect_sync_obsolete will allocate one when needed.
784 */
785 space_map_close(vd->vdev_obsolete_sm);
786 vd->vdev_obsolete_sm = NULL;
787 VERIFY0(zap_remove(spa->spa_meta_objset, vd->vdev_top_zap,
788 VDEV_TOP_ZAP_INDIRECT_OBSOLETE_SM, tx));
789
790 VERIFY0(zap_add(spa->spa_dsl_pool->dp_meta_objset,
791 DMU_POOL_DIRECTORY_OBJECT,
792 DMU_POOL_CONDENSING_INDIRECT, sizeof (uint64_t),
793 sizeof (*scip) / sizeof (uint64_t), scip, tx));
794
795 ASSERT3P(spa->spa_condensing_indirect, ==, NULL);
796 spa->spa_condensing_indirect = spa_condensing_indirect_create(spa);
797
798 zfs_dbgmsg("starting condense of vdev %llu in txg %llu: "
799 "posm=%llu nm=%llu",
800 vd->vdev_id, dmu_tx_get_txg(tx),
801 (u_longlong_t)scip->scip_prev_obsolete_sm_object,
802 (u_longlong_t)scip->scip_next_mapping_object);
803
804 zthr_wakeup(spa->spa_condense_zthr);
805 }
806
807 /*
808 * Sync to the given vdev's obsolete space map any segments that are no longer
809 * referenced as of the given txg.
810 *
811 * If the obsolete space map doesn't exist yet, create and open it.
812 */
813 void
814 vdev_indirect_sync_obsolete(vdev_t *vd, dmu_tx_t *tx)
815 {
816 spa_t *spa = vd->vdev_spa;
817 ASSERTV(vdev_indirect_config_t *vic = &vd->vdev_indirect_config);
818
819 ASSERT3U(vic->vic_mapping_object, !=, 0);
820 ASSERT(range_tree_space(vd->vdev_obsolete_segments) > 0);
821 ASSERT(vd->vdev_removing || vd->vdev_ops == &vdev_indirect_ops);
822 ASSERT(spa_feature_is_enabled(spa, SPA_FEATURE_OBSOLETE_COUNTS));
823
824 uint64_t obsolete_sm_object;
825 VERIFY0(vdev_obsolete_sm_object(vd, &obsolete_sm_object));
826 if (obsolete_sm_object == 0) {
827 obsolete_sm_object = space_map_alloc(spa->spa_meta_objset,
828 vdev_standard_sm_blksz, tx);
829
830 ASSERT(vd->vdev_top_zap != 0);
831 VERIFY0(zap_add(vd->vdev_spa->spa_meta_objset, vd->vdev_top_zap,
832 VDEV_TOP_ZAP_INDIRECT_OBSOLETE_SM,
833 sizeof (obsolete_sm_object), 1, &obsolete_sm_object, tx));
834 ASSERT0(vdev_obsolete_sm_object(vd, &obsolete_sm_object));
835 ASSERT3U(obsolete_sm_object, !=, 0);
836
837 spa_feature_incr(spa, SPA_FEATURE_OBSOLETE_COUNTS, tx);
838 VERIFY0(space_map_open(&vd->vdev_obsolete_sm,
839 spa->spa_meta_objset, obsolete_sm_object,
840 0, vd->vdev_asize, 0));
841 space_map_update(vd->vdev_obsolete_sm);
842 }
843
844 ASSERT(vd->vdev_obsolete_sm != NULL);
845 ASSERT3U(obsolete_sm_object, ==,
846 space_map_object(vd->vdev_obsolete_sm));
847
848 space_map_write(vd->vdev_obsolete_sm,
849 vd->vdev_obsolete_segments, SM_ALLOC, SM_NO_VDEVID, tx);
850 space_map_update(vd->vdev_obsolete_sm);
851 range_tree_vacate(vd->vdev_obsolete_segments, NULL, NULL);
852 }
853
854 int
855 spa_condense_init(spa_t *spa)
856 {
857 int error = zap_lookup(spa->spa_meta_objset,
858 DMU_POOL_DIRECTORY_OBJECT,
859 DMU_POOL_CONDENSING_INDIRECT, sizeof (uint64_t),
860 sizeof (spa->spa_condensing_indirect_phys) / sizeof (uint64_t),
861 &spa->spa_condensing_indirect_phys);
862 if (error == 0) {
863 if (spa_writeable(spa)) {
864 spa->spa_condensing_indirect =
865 spa_condensing_indirect_create(spa);
866 }
867 return (0);
868 } else if (error == ENOENT) {
869 return (0);
870 } else {
871 return (error);
872 }
873 }
874
875 void
876 spa_condense_fini(spa_t *spa)
877 {
878 if (spa->spa_condensing_indirect != NULL) {
879 spa_condensing_indirect_destroy(spa->spa_condensing_indirect);
880 spa->spa_condensing_indirect = NULL;
881 }
882 }
883
884 void
885 spa_start_indirect_condensing_thread(spa_t *spa)
886 {
887 ASSERT3P(spa->spa_condense_zthr, ==, NULL);
888 spa->spa_condense_zthr = zthr_create(spa_condense_indirect_thread_check,
889 spa_condense_indirect_thread, spa);
890 }
891
892 /*
893 * Gets the obsolete spacemap object from the vdev's ZAP. On success sm_obj
894 * will contain either the obsolete spacemap object or zero if none exists.
895 * All other errors are returned to the caller.
896 */
897 int
898 vdev_obsolete_sm_object(vdev_t *vd, uint64_t *sm_obj)
899 {
900 ASSERT0(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER));
901
902 if (vd->vdev_top_zap == 0) {
903 *sm_obj = 0;
904 return (0);
905 }
906
907 int error = zap_lookup(vd->vdev_spa->spa_meta_objset, vd->vdev_top_zap,
908 VDEV_TOP_ZAP_INDIRECT_OBSOLETE_SM, sizeof (sm_obj), 1, sm_obj);
909 if (error == ENOENT) {
910 *sm_obj = 0;
911 error = 0;
912 }
913
914 return (error);
915 }
916
917 /*
918 * Gets the obsolete count are precise spacemap object from the vdev's ZAP.
919 * On success are_precise will be set to reflect if the counts are precise.
920 * All other errors are returned to the caller.
921 */
922 int
923 vdev_obsolete_counts_are_precise(vdev_t *vd, boolean_t *are_precise)
924 {
925 ASSERT0(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER));
926
927 if (vd->vdev_top_zap == 0) {
928 *are_precise = B_FALSE;
929 return (0);
930 }
931
932 uint64_t val = 0;
933 int error = zap_lookup(vd->vdev_spa->spa_meta_objset, vd->vdev_top_zap,
934 VDEV_TOP_ZAP_OBSOLETE_COUNTS_ARE_PRECISE, sizeof (val), 1, &val);
935 if (error == 0) {
936 *are_precise = (val != 0);
937 } else if (error == ENOENT) {
938 *are_precise = B_FALSE;
939 error = 0;
940 }
941
942 return (error);
943 }
944
945 /* ARGSUSED */
946 static void
947 vdev_indirect_close(vdev_t *vd)
948 {
949 }
950
951 /* ARGSUSED */
952 static int
953 vdev_indirect_open(vdev_t *vd, uint64_t *psize, uint64_t *max_psize,
954 uint64_t *ashift)
955 {
956 *psize = *max_psize = vd->vdev_asize +
957 VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE;
958 *ashift = vd->vdev_ashift;
959 return (0);
960 }
961
962 typedef struct remap_segment {
963 vdev_t *rs_vd;
964 uint64_t rs_offset;
965 uint64_t rs_asize;
966 uint64_t rs_split_offset;
967 list_node_t rs_node;
968 } remap_segment_t;
969
970 remap_segment_t *
971 rs_alloc(vdev_t *vd, uint64_t offset, uint64_t asize, uint64_t split_offset)
972 {
973 remap_segment_t *rs = kmem_alloc(sizeof (remap_segment_t), KM_SLEEP);
974 rs->rs_vd = vd;
975 rs->rs_offset = offset;
976 rs->rs_asize = asize;
977 rs->rs_split_offset = split_offset;
978 return (rs);
979 }
980
981 /*
982 * Given an indirect vdev and an extent on that vdev, it duplicates the
983 * physical entries of the indirect mapping that correspond to the extent
984 * to a new array and returns a pointer to it. In addition, copied_entries
985 * is populated with the number of mapping entries that were duplicated.
986 *
987 * Note that the function assumes that the caller holds vdev_indirect_rwlock.
988 * This ensures that the mapping won't change due to condensing as we
989 * copy over its contents.
990 *
991 * Finally, since we are doing an allocation, it is up to the caller to
992 * free the array allocated in this function.
993 */
994 vdev_indirect_mapping_entry_phys_t *
995 vdev_indirect_mapping_duplicate_adjacent_entries(vdev_t *vd, uint64_t offset,
996 uint64_t asize, uint64_t *copied_entries)
997 {
998 vdev_indirect_mapping_entry_phys_t *duplicate_mappings = NULL;
999 vdev_indirect_mapping_t *vim = vd->vdev_indirect_mapping;
1000 uint64_t entries = 0;
1001
1002 ASSERT(RW_READ_HELD(&vd->vdev_indirect_rwlock));
1003
1004 vdev_indirect_mapping_entry_phys_t *first_mapping =
1005 vdev_indirect_mapping_entry_for_offset(vim, offset);
1006 ASSERT3P(first_mapping, !=, NULL);
1007
1008 vdev_indirect_mapping_entry_phys_t *m = first_mapping;
1009 while (asize > 0) {
1010 uint64_t size = DVA_GET_ASIZE(&m->vimep_dst);
1011
1012 ASSERT3U(offset, >=, DVA_MAPPING_GET_SRC_OFFSET(m));
1013 ASSERT3U(offset, <, DVA_MAPPING_GET_SRC_OFFSET(m) + size);
1014
1015 uint64_t inner_offset = offset - DVA_MAPPING_GET_SRC_OFFSET(m);
1016 uint64_t inner_size = MIN(asize, size - inner_offset);
1017
1018 offset += inner_size;
1019 asize -= inner_size;
1020 entries++;
1021 m++;
1022 }
1023
1024 size_t copy_length = entries * sizeof (*first_mapping);
1025 duplicate_mappings = kmem_alloc(copy_length, KM_SLEEP);
1026 bcopy(first_mapping, duplicate_mappings, copy_length);
1027 *copied_entries = entries;
1028
1029 return (duplicate_mappings);
1030 }
1031
1032 /*
1033 * Goes through the relevant indirect mappings until it hits a concrete vdev
1034 * and issues the callback. On the way to the concrete vdev, if any other
1035 * indirect vdevs are encountered, then the callback will also be called on
1036 * each of those indirect vdevs. For example, if the segment is mapped to
1037 * segment A on indirect vdev 1, and then segment A on indirect vdev 1 is
1038 * mapped to segment B on concrete vdev 2, then the callback will be called on
1039 * both vdev 1 and vdev 2.
1040 *
1041 * While the callback passed to vdev_indirect_remap() is called on every vdev
1042 * the function encounters, certain callbacks only care about concrete vdevs.
1043 * These types of callbacks should return immediately and explicitly when they
1044 * are called on an indirect vdev.
1045 *
1046 * Because there is a possibility that a DVA section in the indirect device
1047 * has been split into multiple sections in our mapping, we keep track
1048 * of the relevant contiguous segments of the new location (remap_segment_t)
1049 * in a stack. This way we can call the callback for each of the new sections
1050 * created by a single section of the indirect device. Note though, that in
1051 * this scenario the callbacks in each split block won't occur in-order in
1052 * terms of offset, so callers should not make any assumptions about that.
1053 *
1054 * For callbacks that don't handle split blocks and immediately return when
1055 * they encounter them (as is the case for remap_blkptr_cb), the caller can
1056 * assume that its callback will be applied from the first indirect vdev
1057 * encountered to the last one and then the concrete vdev, in that order.
1058 */
1059 static void
1060 vdev_indirect_remap(vdev_t *vd, uint64_t offset, uint64_t asize,
1061 void (*func)(uint64_t, vdev_t *, uint64_t, uint64_t, void *), void *arg)
1062 {
1063 list_t stack;
1064 spa_t *spa = vd->vdev_spa;
1065
1066 list_create(&stack, sizeof (remap_segment_t),
1067 offsetof(remap_segment_t, rs_node));
1068
1069 for (remap_segment_t *rs = rs_alloc(vd, offset, asize, 0);
1070 rs != NULL; rs = list_remove_head(&stack)) {
1071 vdev_t *v = rs->rs_vd;
1072 uint64_t num_entries = 0;
1073
1074 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
1075 ASSERT(rs->rs_asize > 0);
1076
1077 /*
1078 * Note: As this function can be called from open context
1079 * (e.g. zio_read()), we need the following rwlock to
1080 * prevent the mapping from being changed by condensing.
1081 *
1082 * So we grab the lock and we make a copy of the entries
1083 * that are relevant to the extent that we are working on.
1084 * Once that is done, we drop the lock and iterate over
1085 * our copy of the mapping. Once we are done with the with
1086 * the remap segment and we free it, we also free our copy
1087 * of the indirect mapping entries that are relevant to it.
1088 *
1089 * This way we don't need to wait until the function is
1090 * finished with a segment, to condense it. In addition, we
1091 * don't need a recursive rwlock for the case that a call to
1092 * vdev_indirect_remap() needs to call itself (through the
1093 * codepath of its callback) for the same vdev in the middle
1094 * of its execution.
1095 */
1096 rw_enter(&v->vdev_indirect_rwlock, RW_READER);
1097 ASSERT3P(v->vdev_indirect_mapping, !=, NULL);
1098
1099 vdev_indirect_mapping_entry_phys_t *mapping =
1100 vdev_indirect_mapping_duplicate_adjacent_entries(v,
1101 rs->rs_offset, rs->rs_asize, &num_entries);
1102 ASSERT3P(mapping, !=, NULL);
1103 ASSERT3U(num_entries, >, 0);
1104 rw_exit(&v->vdev_indirect_rwlock);
1105
1106 for (uint64_t i = 0; i < num_entries; i++) {
1107 /*
1108 * Note: the vdev_indirect_mapping can not change
1109 * while we are running. It only changes while the
1110 * removal is in progress, and then only from syncing
1111 * context. While a removal is in progress, this
1112 * function is only called for frees, which also only
1113 * happen from syncing context.
1114 */
1115 vdev_indirect_mapping_entry_phys_t *m = &mapping[i];
1116
1117 ASSERT3P(m, !=, NULL);
1118 ASSERT3U(rs->rs_asize, >, 0);
1119
1120 uint64_t size = DVA_GET_ASIZE(&m->vimep_dst);
1121 uint64_t dst_offset = DVA_GET_OFFSET(&m->vimep_dst);
1122 uint64_t dst_vdev = DVA_GET_VDEV(&m->vimep_dst);
1123
1124 ASSERT3U(rs->rs_offset, >=,
1125 DVA_MAPPING_GET_SRC_OFFSET(m));
1126 ASSERT3U(rs->rs_offset, <,
1127 DVA_MAPPING_GET_SRC_OFFSET(m) + size);
1128 ASSERT3U(dst_vdev, !=, v->vdev_id);
1129
1130 uint64_t inner_offset = rs->rs_offset -
1131 DVA_MAPPING_GET_SRC_OFFSET(m);
1132 uint64_t inner_size =
1133 MIN(rs->rs_asize, size - inner_offset);
1134
1135 vdev_t *dst_v = vdev_lookup_top(spa, dst_vdev);
1136 ASSERT3P(dst_v, !=, NULL);
1137
1138 if (dst_v->vdev_ops == &vdev_indirect_ops) {
1139 list_insert_head(&stack,
1140 rs_alloc(dst_v, dst_offset + inner_offset,
1141 inner_size, rs->rs_split_offset));
1142
1143 }
1144
1145 if ((zfs_flags & ZFS_DEBUG_INDIRECT_REMAP) &&
1146 IS_P2ALIGNED(inner_size, 2 * SPA_MINBLOCKSIZE)) {
1147 /*
1148 * Note: This clause exists only solely for
1149 * testing purposes. We use it to ensure that
1150 * split blocks work and that the callbacks
1151 * using them yield the same result if issued
1152 * in reverse order.
1153 */
1154 uint64_t inner_half = inner_size / 2;
1155
1156 func(rs->rs_split_offset + inner_half, dst_v,
1157 dst_offset + inner_offset + inner_half,
1158 inner_half, arg);
1159
1160 func(rs->rs_split_offset, dst_v,
1161 dst_offset + inner_offset,
1162 inner_half, arg);
1163 } else {
1164 func(rs->rs_split_offset, dst_v,
1165 dst_offset + inner_offset,
1166 inner_size, arg);
1167 }
1168
1169 rs->rs_offset += inner_size;
1170 rs->rs_asize -= inner_size;
1171 rs->rs_split_offset += inner_size;
1172 }
1173 VERIFY0(rs->rs_asize);
1174
1175 kmem_free(mapping, num_entries * sizeof (*mapping));
1176 kmem_free(rs, sizeof (remap_segment_t));
1177 }
1178 list_destroy(&stack);
1179 }
1180
1181 static void
1182 vdev_indirect_child_io_done(zio_t *zio)
1183 {
1184 zio_t *pio = zio->io_private;
1185
1186 mutex_enter(&pio->io_lock);
1187 pio->io_error = zio_worst_error(pio->io_error, zio->io_error);
1188 mutex_exit(&pio->io_lock);
1189
1190 abd_put(zio->io_abd);
1191 }
1192
1193 /*
1194 * This is a callback for vdev_indirect_remap() which allocates an
1195 * indirect_split_t for each split segment and adds it to iv_splits.
1196 */
1197 static void
1198 vdev_indirect_gather_splits(uint64_t split_offset, vdev_t *vd, uint64_t offset,
1199 uint64_t size, void *arg)
1200 {
1201 zio_t *zio = arg;
1202 indirect_vsd_t *iv = zio->io_vsd;
1203
1204 ASSERT3P(vd, !=, NULL);
1205
1206 if (vd->vdev_ops == &vdev_indirect_ops)
1207 return;
1208
1209 int n = 1;
1210 if (vd->vdev_ops == &vdev_mirror_ops)
1211 n = vd->vdev_children;
1212
1213 indirect_split_t *is =
1214 kmem_zalloc(offsetof(indirect_split_t, is_child[n]), KM_SLEEP);
1215
1216 is->is_children = n;
1217 is->is_size = size;
1218 is->is_split_offset = split_offset;
1219 is->is_target_offset = offset;
1220 is->is_vdev = vd;
1221 list_create(&is->is_unique_child, sizeof (indirect_child_t),
1222 offsetof(indirect_child_t, ic_node));
1223
1224 /*
1225 * Note that we only consider multiple copies of the data for
1226 * *mirror* vdevs. We don't for "replacing" or "spare" vdevs, even
1227 * though they use the same ops as mirror, because there's only one
1228 * "good" copy under the replacing/spare.
1229 */
1230 if (vd->vdev_ops == &vdev_mirror_ops) {
1231 for (int i = 0; i < n; i++) {
1232 is->is_child[i].ic_vdev = vd->vdev_child[i];
1233 list_link_init(&is->is_child[i].ic_node);
1234 }
1235 } else {
1236 is->is_child[0].ic_vdev = vd;
1237 }
1238
1239 list_insert_tail(&iv->iv_splits, is);
1240 }
1241
1242 static void
1243 vdev_indirect_read_split_done(zio_t *zio)
1244 {
1245 indirect_child_t *ic = zio->io_private;
1246
1247 if (zio->io_error != 0) {
1248 /*
1249 * Clear ic_data to indicate that we do not have data for this
1250 * child.
1251 */
1252 abd_free(ic->ic_data);
1253 ic->ic_data = NULL;
1254 }
1255 }
1256
1257 /*
1258 * Issue reads for all copies (mirror children) of all splits.
1259 */
1260 static void
1261 vdev_indirect_read_all(zio_t *zio)
1262 {
1263 indirect_vsd_t *iv = zio->io_vsd;
1264
1265 ASSERT3U(zio->io_type, ==, ZIO_TYPE_READ);
1266
1267 for (indirect_split_t *is = list_head(&iv->iv_splits);
1268 is != NULL; is = list_next(&iv->iv_splits, is)) {
1269 for (int i = 0; i < is->is_children; i++) {
1270 indirect_child_t *ic = &is->is_child[i];
1271
1272 if (!vdev_readable(ic->ic_vdev))
1273 continue;
1274
1275 /*
1276 * Note, we may read from a child whose DTL
1277 * indicates that the data may not be present here.
1278 * While this might result in a few i/os that will
1279 * likely return incorrect data, it simplifies the
1280 * code since we can treat scrub and resilver
1281 * identically. (The incorrect data will be
1282 * detected and ignored when we verify the
1283 * checksum.)
1284 */
1285
1286 ic->ic_data = abd_alloc_sametype(zio->io_abd,
1287 is->is_size);
1288 ic->ic_duplicate = NULL;
1289
1290 zio_nowait(zio_vdev_child_io(zio, NULL,
1291 ic->ic_vdev, is->is_target_offset, ic->ic_data,
1292 is->is_size, zio->io_type, zio->io_priority, 0,
1293 vdev_indirect_read_split_done, ic));
1294 }
1295 }
1296 iv->iv_reconstruct = B_TRUE;
1297 }
1298
1299 static void
1300 vdev_indirect_io_start(zio_t *zio)
1301 {
1302 ASSERTV(spa_t *spa = zio->io_spa);
1303 indirect_vsd_t *iv = kmem_zalloc(sizeof (*iv), KM_SLEEP);
1304 list_create(&iv->iv_splits,
1305 sizeof (indirect_split_t), offsetof(indirect_split_t, is_node));
1306
1307 zio->io_vsd = iv;
1308 zio->io_vsd_ops = &vdev_indirect_vsd_ops;
1309
1310 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
1311 if (zio->io_type != ZIO_TYPE_READ) {
1312 ASSERT3U(zio->io_type, ==, ZIO_TYPE_WRITE);
1313 /*
1314 * Note: this code can handle other kinds of writes,
1315 * but we don't expect them.
1316 */
1317 ASSERT((zio->io_flags & (ZIO_FLAG_SELF_HEAL |
1318 ZIO_FLAG_RESILVER | ZIO_FLAG_INDUCE_DAMAGE)) != 0);
1319 }
1320
1321 vdev_indirect_remap(zio->io_vd, zio->io_offset, zio->io_size,
1322 vdev_indirect_gather_splits, zio);
1323
1324 indirect_split_t *first = list_head(&iv->iv_splits);
1325 if (first->is_size == zio->io_size) {
1326 /*
1327 * This is not a split block; we are pointing to the entire
1328 * data, which will checksum the same as the original data.
1329 * Pass the BP down so that the child i/o can verify the
1330 * checksum, and try a different location if available
1331 * (e.g. on a mirror).
1332 *
1333 * While this special case could be handled the same as the
1334 * general (split block) case, doing it this way ensures
1335 * that the vast majority of blocks on indirect vdevs
1336 * (which are not split) are handled identically to blocks
1337 * on non-indirect vdevs. This allows us to be less strict
1338 * about performance in the general (but rare) case.
1339 */
1340 ASSERT0(first->is_split_offset);
1341 ASSERT3P(list_next(&iv->iv_splits, first), ==, NULL);
1342 zio_nowait(zio_vdev_child_io(zio, zio->io_bp,
1343 first->is_vdev, first->is_target_offset,
1344 abd_get_offset(zio->io_abd, 0),
1345 zio->io_size, zio->io_type, zio->io_priority, 0,
1346 vdev_indirect_child_io_done, zio));
1347 } else {
1348 iv->iv_split_block = B_TRUE;
1349 if (zio->io_type == ZIO_TYPE_READ &&
1350 zio->io_flags & (ZIO_FLAG_SCRUB | ZIO_FLAG_RESILVER)) {
1351 /*
1352 * Read all copies. Note that for simplicity,
1353 * we don't bother consulting the DTL in the
1354 * resilver case.
1355 */
1356 vdev_indirect_read_all(zio);
1357 } else {
1358 /*
1359 * If this is a read zio, we read one copy of each
1360 * split segment, from the top-level vdev. Since
1361 * we don't know the checksum of each split
1362 * individually, the child zio can't ensure that
1363 * we get the right data. E.g. if it's a mirror,
1364 * it will just read from a random (healthy) leaf
1365 * vdev. We have to verify the checksum in
1366 * vdev_indirect_io_done().
1367 *
1368 * For write zios, the vdev code will ensure we write
1369 * to all children.
1370 */
1371 for (indirect_split_t *is = list_head(&iv->iv_splits);
1372 is != NULL; is = list_next(&iv->iv_splits, is)) {
1373 zio_nowait(zio_vdev_child_io(zio, NULL,
1374 is->is_vdev, is->is_target_offset,
1375 abd_get_offset(zio->io_abd,
1376 is->is_split_offset), is->is_size,
1377 zio->io_type, zio->io_priority, 0,
1378 vdev_indirect_child_io_done, zio));
1379 }
1380
1381 }
1382 }
1383
1384 zio_execute(zio);
1385 }
1386
1387 /*
1388 * Report a checksum error for a child.
1389 */
1390 static void
1391 vdev_indirect_checksum_error(zio_t *zio,
1392 indirect_split_t *is, indirect_child_t *ic)
1393 {
1394 vdev_t *vd = ic->ic_vdev;
1395
1396 if (zio->io_flags & ZIO_FLAG_SPECULATIVE)
1397 return;
1398
1399 mutex_enter(&vd->vdev_stat_lock);
1400 vd->vdev_stat.vs_checksum_errors++;
1401 mutex_exit(&vd->vdev_stat_lock);
1402
1403 zio_bad_cksum_t zbc = {{{ 0 }}};
1404 abd_t *bad_abd = ic->ic_data;
1405 abd_t *good_abd = is->is_good_child->ic_data;
1406 zfs_ereport_post_checksum(zio->io_spa, vd, NULL, zio,
1407 is->is_target_offset, is->is_size, good_abd, bad_abd, &zbc);
1408 }
1409
1410 /*
1411 * Issue repair i/os for any incorrect copies. We do this by comparing
1412 * each split segment's correct data (is_good_child's ic_data) with each
1413 * other copy of the data. If they differ, then we overwrite the bad data
1414 * with the good copy. Note that we do this without regard for the DTL's,
1415 * which simplifies this code and also issues the optimal number of writes
1416 * (based on which copies actually read bad data, as opposed to which we
1417 * think might be wrong). For the same reason, we always use
1418 * ZIO_FLAG_SELF_HEAL, to bypass the DTL check in zio_vdev_io_start().
1419 */
1420 static void
1421 vdev_indirect_repair(zio_t *zio)
1422 {
1423 indirect_vsd_t *iv = zio->io_vsd;
1424
1425 enum zio_flag flags = ZIO_FLAG_IO_REPAIR;
1426
1427 if (!(zio->io_flags & (ZIO_FLAG_SCRUB | ZIO_FLAG_RESILVER)))
1428 flags |= ZIO_FLAG_SELF_HEAL;
1429
1430 if (!spa_writeable(zio->io_spa))
1431 return;
1432
1433 for (indirect_split_t *is = list_head(&iv->iv_splits);
1434 is != NULL; is = list_next(&iv->iv_splits, is)) {
1435 for (int c = 0; c < is->is_children; c++) {
1436 indirect_child_t *ic = &is->is_child[c];
1437 if (ic == is->is_good_child)
1438 continue;
1439 if (ic->ic_data == NULL)
1440 continue;
1441 if (ic->ic_duplicate == is->is_good_child)
1442 continue;
1443
1444 zio_nowait(zio_vdev_child_io(zio, NULL,
1445 ic->ic_vdev, is->is_target_offset,
1446 is->is_good_child->ic_data, is->is_size,
1447 ZIO_TYPE_WRITE, ZIO_PRIORITY_ASYNC_WRITE,
1448 ZIO_FLAG_IO_REPAIR | ZIO_FLAG_SELF_HEAL,
1449 NULL, NULL));
1450
1451 vdev_indirect_checksum_error(zio, is, ic);
1452 }
1453 }
1454 }
1455
1456 /*
1457 * Report checksum errors on all children that we read from.
1458 */
1459 static void
1460 vdev_indirect_all_checksum_errors(zio_t *zio)
1461 {
1462 indirect_vsd_t *iv = zio->io_vsd;
1463
1464 if (zio->io_flags & ZIO_FLAG_SPECULATIVE)
1465 return;
1466
1467 for (indirect_split_t *is = list_head(&iv->iv_splits);
1468 is != NULL; is = list_next(&iv->iv_splits, is)) {
1469 for (int c = 0; c < is->is_children; c++) {
1470 indirect_child_t *ic = &is->is_child[c];
1471
1472 if (ic->ic_data == NULL)
1473 continue;
1474
1475 vdev_t *vd = ic->ic_vdev;
1476
1477 mutex_enter(&vd->vdev_stat_lock);
1478 vd->vdev_stat.vs_checksum_errors++;
1479 mutex_exit(&vd->vdev_stat_lock);
1480
1481 zfs_ereport_post_checksum(zio->io_spa, vd, NULL, zio,
1482 is->is_target_offset, is->is_size,
1483 NULL, NULL, NULL);
1484 }
1485 }
1486 }
1487
1488 /*
1489 * Copy data from all the splits to a main zio then validate the checksum.
1490 * If then checksum is successfully validated return success.
1491 */
1492 static int
1493 vdev_indirect_splits_checksum_validate(indirect_vsd_t *iv, zio_t *zio)
1494 {
1495 zio_bad_cksum_t zbc;
1496
1497 for (indirect_split_t *is = list_head(&iv->iv_splits);
1498 is != NULL; is = list_next(&iv->iv_splits, is)) {
1499
1500 ASSERT3P(is->is_good_child->ic_data, !=, NULL);
1501 ASSERT3P(is->is_good_child->ic_duplicate, ==, NULL);
1502
1503 abd_copy_off(zio->io_abd, is->is_good_child->ic_data,
1504 is->is_split_offset, 0, is->is_size);
1505 }
1506
1507 return (zio_checksum_error(zio, &zbc));
1508 }
1509
1510 /*
1511 * There are relatively few possible combinations making it feasible to
1512 * deterministically check them all. We do this by setting the good_child
1513 * to the next unique split version. If we reach the end of the list then
1514 * "carry over" to the next unique split version (like counting in base
1515 * is_unique_children, but each digit can have a different base).
1516 */
1517 static int
1518 vdev_indirect_splits_enumerate_all(indirect_vsd_t *iv, zio_t *zio)
1519 {
1520 boolean_t more = B_TRUE;
1521
1522 iv->iv_attempts = 0;
1523
1524 for (indirect_split_t *is = list_head(&iv->iv_splits);
1525 is != NULL; is = list_next(&iv->iv_splits, is))
1526 is->is_good_child = list_head(&is->is_unique_child);
1527
1528 while (more == B_TRUE) {
1529 iv->iv_attempts++;
1530 more = B_FALSE;
1531
1532 if (vdev_indirect_splits_checksum_validate(iv, zio) == 0)
1533 return (0);
1534
1535 for (indirect_split_t *is = list_head(&iv->iv_splits);
1536 is != NULL; is = list_next(&iv->iv_splits, is)) {
1537 is->is_good_child = list_next(&is->is_unique_child,
1538 is->is_good_child);
1539 if (is->is_good_child != NULL) {
1540 more = B_TRUE;
1541 break;
1542 }
1543
1544 is->is_good_child = list_head(&is->is_unique_child);
1545 }
1546 }
1547
1548 ASSERT3S(iv->iv_attempts, <=, iv->iv_unique_combinations);
1549
1550 return (SET_ERROR(ECKSUM));
1551 }
1552
1553 /*
1554 * There are too many combinations to try all of them in a reasonable amount
1555 * of time. So try a fixed number of random combinations from the unique
1556 * split versions, after which we'll consider the block unrecoverable.
1557 */
1558 static int
1559 vdev_indirect_splits_enumerate_randomly(indirect_vsd_t *iv, zio_t *zio)
1560 {
1561 iv->iv_attempts = 0;
1562
1563 while (iv->iv_attempts < iv->iv_attempts_max) {
1564 iv->iv_attempts++;
1565
1566 for (indirect_split_t *is = list_head(&iv->iv_splits);
1567 is != NULL; is = list_next(&iv->iv_splits, is)) {
1568 indirect_child_t *ic = list_head(&is->is_unique_child);
1569 int children = is->is_unique_children;
1570
1571 for (int i = spa_get_random(children); i > 0; i--)
1572 ic = list_next(&is->is_unique_child, ic);
1573
1574 ASSERT3P(ic, !=, NULL);
1575 is->is_good_child = ic;
1576 }
1577
1578 if (vdev_indirect_splits_checksum_validate(iv, zio) == 0)
1579 return (0);
1580 }
1581
1582 return (SET_ERROR(ECKSUM));
1583 }
1584
1585 /*
1586 * This is a validation function for reconstruction. It randomly selects
1587 * a good combination, if one can be found, and then it intentionally
1588 * damages all other segment copes by zeroing them. This forces the
1589 * reconstruction algorithm to locate the one remaining known good copy.
1590 */
1591 static int
1592 vdev_indirect_splits_damage(indirect_vsd_t *iv, zio_t *zio)
1593 {
1594 int error;
1595
1596 /* Presume all the copies are unique for initial selection. */
1597 for (indirect_split_t *is = list_head(&iv->iv_splits);
1598 is != NULL; is = list_next(&iv->iv_splits, is)) {
1599 is->is_unique_children = 0;
1600
1601 for (int i = 0; i < is->is_children; i++) {
1602 indirect_child_t *ic = &is->is_child[i];
1603 if (ic->ic_data != NULL) {
1604 is->is_unique_children++;
1605 list_insert_tail(&is->is_unique_child, ic);
1606 }
1607 }
1608
1609 if (list_is_empty(&is->is_unique_child)) {
1610 error = SET_ERROR(EIO);
1611 goto out;
1612 }
1613 }
1614
1615 /*
1616 * Set each is_good_child to a randomly-selected child which
1617 * is known to contain validated data.
1618 */
1619 error = vdev_indirect_splits_enumerate_randomly(iv, zio);
1620 if (error)
1621 goto out;
1622
1623 /*
1624 * Damage all but the known good copy by zeroing it. This will
1625 * result in two or less unique copies per indirect_child_t.
1626 * Both may need to be checked in order to reconstruct the block.
1627 * Set iv->iv_attempts_max such that all unique combinations will
1628 * enumerated, but limit the damage to at most 12 indirect splits.
1629 */
1630 iv->iv_attempts_max = 1;
1631
1632 for (indirect_split_t *is = list_head(&iv->iv_splits);
1633 is != NULL; is = list_next(&iv->iv_splits, is)) {
1634 for (int c = 0; c < is->is_children; c++) {
1635 indirect_child_t *ic = &is->is_child[c];
1636
1637 if (ic == is->is_good_child)
1638 continue;
1639 if (ic->ic_data == NULL)
1640 continue;
1641
1642 abd_zero(ic->ic_data, ic->ic_data->abd_size);
1643 }
1644
1645 iv->iv_attempts_max *= 2;
1646 if (iv->iv_attempts_max >= (1ULL << 12)) {
1647 iv->iv_attempts_max = UINT64_MAX;
1648 break;
1649 }
1650 }
1651
1652 out:
1653 /* Empty the unique children lists so they can be reconstructed. */
1654 for (indirect_split_t *is = list_head(&iv->iv_splits);
1655 is != NULL; is = list_next(&iv->iv_splits, is)) {
1656 indirect_child_t *ic;
1657 while ((ic = list_head(&is->is_unique_child)) != NULL)
1658 list_remove(&is->is_unique_child, ic);
1659
1660 is->is_unique_children = 0;
1661 }
1662
1663 return (error);
1664 }
1665
1666 /*
1667 * This function is called when we have read all copies of the data and need
1668 * to try to find a combination of copies that gives us the right checksum.
1669 *
1670 * If we pointed to any mirror vdevs, this effectively does the job of the
1671 * mirror. The mirror vdev code can't do its own job because we don't know
1672 * the checksum of each split segment individually.
1673 *
1674 * We have to try every unique combination of copies of split segments, until
1675 * we find one that checksums correctly. Duplicate segment copies are first
1676 * identified and latter skipped during reconstruction. This optimization
1677 * reduces the search space and ensures that of the remaining combinations
1678 * at most one is correct.
1679 *
1680 * When the total number of combinations is small they can all be checked.
1681 * For example, if we have 3 segments in the split, and each points to a
1682 * 2-way mirror with unique copies, we will have the following pieces of data:
1683 *
1684 * | mirror child
1685 * split | [0] [1]
1686 * ======|=====================
1687 * A | data_A_0 data_A_1
1688 * B | data_B_0 data_B_1
1689 * C | data_C_0 data_C_1
1690 *
1691 * We will try the following (mirror children)^(number of splits) (2^3=8)
1692 * combinations, which is similar to bitwise-little-endian counting in
1693 * binary. In general each "digit" corresponds to a split segment, and the
1694 * base of each digit is is_children, which can be different for each
1695 * digit.
1696 *
1697 * "low bit" "high bit"
1698 * v v
1699 * data_A_0 data_B_0 data_C_0
1700 * data_A_1 data_B_0 data_C_0
1701 * data_A_0 data_B_1 data_C_0
1702 * data_A_1 data_B_1 data_C_0
1703 * data_A_0 data_B_0 data_C_1
1704 * data_A_1 data_B_0 data_C_1
1705 * data_A_0 data_B_1 data_C_1
1706 * data_A_1 data_B_1 data_C_1
1707 *
1708 * Note that the split segments may be on the same or different top-level
1709 * vdevs. In either case, we may need to try lots of combinations (see
1710 * zfs_reconstruct_indirect_combinations_max). This ensures that if a mirror
1711 * has small silent errors on all of its children, we can still reconstruct
1712 * the correct data, as long as those errors are at sufficiently-separated
1713 * offsets (specifically, separated by the largest block size - default of
1714 * 128KB, but up to 16MB).
1715 */
1716 static void
1717 vdev_indirect_reconstruct_io_done(zio_t *zio)
1718 {
1719 indirect_vsd_t *iv = zio->io_vsd;
1720 boolean_t known_good = B_FALSE;
1721 int error;
1722
1723 iv->iv_unique_combinations = 1;
1724 iv->iv_attempts_max = UINT64_MAX;
1725
1726 if (zfs_reconstruct_indirect_combinations_max > 0)
1727 iv->iv_attempts_max = zfs_reconstruct_indirect_combinations_max;
1728
1729 /*
1730 * If nonzero, every 1/x blocks will be damaged, in order to validate
1731 * reconstruction when there are split segments with damaged copies.
1732 * Known_good will be TRUE when reconstruction is known to be possible.
1733 */
1734 if (zfs_reconstruct_indirect_damage_fraction != 0 &&
1735 spa_get_random(zfs_reconstruct_indirect_damage_fraction) == 0)
1736 known_good = (vdev_indirect_splits_damage(iv, zio) == 0);
1737
1738 /*
1739 * Determine the unique children for a split segment and add them
1740 * to the is_unique_child list. By restricting reconstruction
1741 * to these children, only unique combinations will be considered.
1742 * This can vastly reduce the search space when there are a large
1743 * number of indirect splits.
1744 */
1745 for (indirect_split_t *is = list_head(&iv->iv_splits);
1746 is != NULL; is = list_next(&iv->iv_splits, is)) {
1747 is->is_unique_children = 0;
1748
1749 for (int i = 0; i < is->is_children; i++) {
1750 indirect_child_t *ic_i = &is->is_child[i];
1751
1752 if (ic_i->ic_data == NULL ||
1753 ic_i->ic_duplicate != NULL)
1754 continue;
1755
1756 for (int j = i + 1; j < is->is_children; j++) {
1757 indirect_child_t *ic_j = &is->is_child[j];
1758
1759 if (ic_j->ic_data == NULL ||
1760 ic_j->ic_duplicate != NULL)
1761 continue;
1762
1763 if (abd_cmp(ic_i->ic_data, ic_j->ic_data) == 0)
1764 ic_j->ic_duplicate = ic_i;
1765 }
1766
1767 is->is_unique_children++;
1768 list_insert_tail(&is->is_unique_child, ic_i);
1769 }
1770
1771 /* Reconstruction is impossible, no valid children */
1772 EQUIV(list_is_empty(&is->is_unique_child),
1773 is->is_unique_children == 0);
1774 if (list_is_empty(&is->is_unique_child)) {
1775 zio->io_error = EIO;
1776 vdev_indirect_all_checksum_errors(zio);
1777 zio_checksum_verified(zio);
1778 return;
1779 }
1780
1781 iv->iv_unique_combinations *= is->is_unique_children;
1782 }
1783
1784 if (iv->iv_unique_combinations <= iv->iv_attempts_max)
1785 error = vdev_indirect_splits_enumerate_all(iv, zio);
1786 else
1787 error = vdev_indirect_splits_enumerate_randomly(iv, zio);
1788
1789 if (error != 0) {
1790 /* All attempted combinations failed. */
1791 ASSERT3B(known_good, ==, B_FALSE);
1792 zio->io_error = error;
1793 vdev_indirect_all_checksum_errors(zio);
1794 } else {
1795 /*
1796 * The checksum has been successfully validated. Issue
1797 * repair I/Os to any copies of splits which don't match
1798 * the validated version.
1799 */
1800 ASSERT0(vdev_indirect_splits_checksum_validate(iv, zio));
1801 vdev_indirect_repair(zio);
1802 zio_checksum_verified(zio);
1803 }
1804 }
1805
1806 static void
1807 vdev_indirect_io_done(zio_t *zio)
1808 {
1809 indirect_vsd_t *iv = zio->io_vsd;
1810
1811 if (iv->iv_reconstruct) {
1812 /*
1813 * We have read all copies of the data (e.g. from mirrors),
1814 * either because this was a scrub/resilver, or because the
1815 * one-copy read didn't checksum correctly.
1816 */
1817 vdev_indirect_reconstruct_io_done(zio);
1818 return;
1819 }
1820
1821 if (!iv->iv_split_block) {
1822 /*
1823 * This was not a split block, so we passed the BP down,
1824 * and the checksum was handled by the (one) child zio.
1825 */
1826 return;
1827 }
1828
1829 zio_bad_cksum_t zbc;
1830 int ret = zio_checksum_error(zio, &zbc);
1831 if (ret == 0) {
1832 zio_checksum_verified(zio);
1833 return;
1834 }
1835
1836 /*
1837 * The checksum didn't match. Read all copies of all splits, and
1838 * then we will try to reconstruct. The next time
1839 * vdev_indirect_io_done() is called, iv_reconstruct will be set.
1840 */
1841 vdev_indirect_read_all(zio);
1842
1843 zio_vdev_io_redone(zio);
1844 }
1845
1846 vdev_ops_t vdev_indirect_ops = {
1847 vdev_indirect_open,
1848 vdev_indirect_close,
1849 vdev_default_asize,
1850 vdev_indirect_io_start,
1851 vdev_indirect_io_done,
1852 NULL,
1853 NULL,
1854 NULL,
1855 NULL,
1856 vdev_indirect_remap,
1857 NULL,
1858 VDEV_TYPE_INDIRECT, /* name of this vdev type */
1859 B_FALSE /* leaf vdev */
1860 };
1861
1862 #if defined(_KERNEL)
1863 EXPORT_SYMBOL(rs_alloc);
1864 EXPORT_SYMBOL(spa_condense_fini);
1865 EXPORT_SYMBOL(spa_start_indirect_condensing_thread);
1866 EXPORT_SYMBOL(spa_condense_indirect_start_sync);
1867 EXPORT_SYMBOL(spa_condense_init);
1868 EXPORT_SYMBOL(spa_vdev_indirect_mark_obsolete);
1869 EXPORT_SYMBOL(vdev_indirect_mark_obsolete);
1870 EXPORT_SYMBOL(vdev_indirect_should_condense);
1871 EXPORT_SYMBOL(vdev_indirect_sync_obsolete);
1872 EXPORT_SYMBOL(vdev_obsolete_counts_are_precise);
1873 EXPORT_SYMBOL(vdev_obsolete_sm_object);
1874
1875 module_param(zfs_condense_indirect_vdevs_enable, int, 0644);
1876 MODULE_PARM_DESC(zfs_condense_indirect_vdevs_enable,
1877 "Whether to attempt condensing indirect vdev mappings");
1878
1879 /* CSTYLED */
1880 module_param(zfs_condense_min_mapping_bytes, ulong, 0644);
1881 MODULE_PARM_DESC(zfs_condense_min_mapping_bytes,
1882 "Minimum size of vdev mapping to condense");
1883
1884 /* CSTYLED */
1885 module_param(zfs_condense_max_obsolete_bytes, ulong, 0644);
1886 MODULE_PARM_DESC(zfs_condense_max_obsolete_bytes,
1887 "Minimum size obsolete spacemap to attempt condensing");
1888
1889 module_param(zfs_condense_indirect_commit_entry_delay_ms, int, 0644);
1890 MODULE_PARM_DESC(zfs_condense_indirect_commit_entry_delay_ms,
1891 "Delay while condensing vdev mapping");
1892
1893 module_param(zfs_reconstruct_indirect_combinations_max, int, 0644);
1894 MODULE_PARM_DESC(zfs_reconstruct_indirect_combinations_max,
1895 "Maximum number of combinations when reconstructing split segments");
1896 #endif