]> git.proxmox.com Git - mirror_zfs.git/blob - module/zfs/zcp.c
Add tunables for channel programs
[mirror_zfs.git] / module / zfs / zcp.c
1 /*
2 * CDDL HEADER START
3 *
4 * This file and its contents are supplied under the terms of the
5 * Common Development and Distribution License ("CDDL"), version 1.0.
6 * You may only use this file in accordance with the terms of version
7 * 1.0 of the CDDL.
8 *
9 * A full copy of the text of the CDDL should have accompanied this
10 * source. A copy of the CDDL is also available via the Internet at
11 * http://www.illumos.org/license/CDDL.
12 *
13 * CDDL HEADER END
14 */
15
16 /*
17 * Copyright (c) 2016, 2018 by Delphix. All rights reserved.
18 */
19
20 /*
21 * ZFS Channel Programs (ZCP)
22 *
23 * The ZCP interface allows various ZFS commands and operations ZFS
24 * administrative operations (e.g. creating and destroying snapshots, typically
25 * performed via an ioctl to /dev/zfs by the zfs(8) command and
26 * libzfs/libzfs_core) to be run * programmatically as a Lua script. A ZCP
27 * script is run as a dsl_sync_task and fully executed during one transaction
28 * group sync. This ensures that no other changes can be written concurrently
29 * with a running Lua script. Combining multiple calls to the exposed ZFS
30 * functions into one script gives a number of benefits:
31 *
32 * 1. Atomicity. For some compound or iterative operations, it's useful to be
33 * able to guarantee that the state of a pool has not changed between calls to
34 * ZFS.
35 *
36 * 2. Performance. If a large number of changes need to be made (e.g. deleting
37 * many filesystems), there can be a significant performance penalty as a
38 * result of the need to wait for a transaction group sync to pass for every
39 * single operation. When expressed as a single ZCP script, all these changes
40 * can be performed at once in one txg sync.
41 *
42 * A modified version of the Lua 5.2 interpreter is used to run channel program
43 * scripts. The Lua 5.2 manual can be found at:
44 *
45 * http://www.lua.org/manual/5.2/
46 *
47 * If being run by a user (via an ioctl syscall), executing a ZCP script
48 * requires root privileges in the global zone.
49 *
50 * Scripts are passed to zcp_eval() as a string, then run in a synctask by
51 * zcp_eval_sync(). Arguments can be passed into the Lua script as an nvlist,
52 * which will be converted to a Lua table. Similarly, values returned from
53 * a ZCP script will be converted to an nvlist. See zcp_lua_to_nvlist_impl()
54 * for details on exact allowed types and conversion.
55 *
56 * ZFS functionality is exposed to a ZCP script as a library of function calls.
57 * These calls are sorted into submodules, such as zfs.list and zfs.sync, for
58 * iterators and synctasks, respectively. Each of these submodules resides in
59 * its own source file, with a zcp_*_info structure describing each library
60 * call in the submodule.
61 *
62 * Error handling in ZCP scripts is handled by a number of different methods
63 * based on severity:
64 *
65 * 1. Memory and time limits are in place to prevent a channel program from
66 * consuming excessive system or running forever. If one of these limits is
67 * hit, the channel program will be stopped immediately and return from
68 * zcp_eval() with an error code. No attempt will be made to roll back or undo
69 * any changes made by the channel program before the error occured.
70 * Consumers invoking zcp_eval() from elsewhere in the kernel may pass a time
71 * limit of 0, disabling the time limit.
72 *
73 * 2. Internal Lua errors can occur as a result of a syntax error, calling a
74 * library function with incorrect arguments, invoking the error() function,
75 * failing an assert(), or other runtime errors. In these cases the channel
76 * program will stop executing and return from zcp_eval() with an error code.
77 * In place of a return value, an error message will also be returned in the
78 * 'result' nvlist containing information about the error. No attempt will be
79 * made to roll back or undo any changes made by the channel program before the
80 * error occured.
81 *
82 * 3. If an error occurs inside a ZFS library call which returns an error code,
83 * the error is returned to the Lua script to be handled as desired.
84 *
85 * In the first two cases, Lua's error-throwing mechanism is used, which
86 * longjumps out of the script execution with luaL_error() and returns with the
87 * error.
88 *
89 * See zfs-program(8) for more information on high level usage.
90 */
91
92 #include <sys/lua/lua.h>
93 #include <sys/lua/lualib.h>
94 #include <sys/lua/lauxlib.h>
95
96 #include <sys/dsl_prop.h>
97 #include <sys/dsl_synctask.h>
98 #include <sys/dsl_dataset.h>
99 #include <sys/zcp.h>
100 #include <sys/zcp_iter.h>
101 #include <sys/zcp_prop.h>
102 #include <sys/zcp_global.h>
103
104 #ifndef KM_NORMALPRI
105 #define KM_NORMALPRI 0
106 #endif
107
108 #define ZCP_NVLIST_MAX_DEPTH 20
109
110 uint64_t zfs_lua_check_instrlimit_interval = 100;
111 unsigned long zfs_lua_max_instrlimit = ZCP_MAX_INSTRLIMIT;
112 unsigned long zfs_lua_max_memlimit = ZCP_MAX_MEMLIMIT;
113
114 /*
115 * Forward declarations for mutually recursive functions
116 */
117 static int zcp_nvpair_value_to_lua(lua_State *, nvpair_t *, char *, int);
118 static int zcp_lua_to_nvlist_impl(lua_State *, int, nvlist_t *, const char *,
119 int);
120
121 typedef struct zcp_alloc_arg {
122 boolean_t aa_must_succeed;
123 int64_t aa_alloc_remaining;
124 int64_t aa_alloc_limit;
125 } zcp_alloc_arg_t;
126
127 typedef struct zcp_eval_arg {
128 lua_State *ea_state;
129 zcp_alloc_arg_t *ea_allocargs;
130 cred_t *ea_cred;
131 nvlist_t *ea_outnvl;
132 int ea_result;
133 uint64_t ea_instrlimit;
134 } zcp_eval_arg_t;
135
136 /*
137 * The outer-most error callback handler for use with lua_pcall(). On
138 * error Lua will call this callback with a single argument that
139 * represents the error value. In most cases this will be a string
140 * containing an error message, but channel programs can use Lua's
141 * error() function to return arbitrary objects as errors. This callback
142 * returns (on the Lua stack) the original error object along with a traceback.
143 *
144 * Fatal Lua errors can occur while resources are held, so we also call any
145 * registered cleanup function here.
146 */
147 static int
148 zcp_error_handler(lua_State *state)
149 {
150 const char *msg;
151
152 zcp_cleanup(state);
153
154 VERIFY3U(1, ==, lua_gettop(state));
155 msg = lua_tostring(state, 1);
156 luaL_traceback(state, state, msg, 1);
157 return (1);
158 }
159
160 int
161 zcp_argerror(lua_State *state, int narg, const char *msg, ...)
162 {
163 va_list alist;
164
165 va_start(alist, msg);
166 const char *buf = lua_pushvfstring(state, msg, alist);
167 va_end(alist);
168
169 return (luaL_argerror(state, narg, buf));
170 }
171
172 /*
173 * Install a new cleanup function, which will be invoked with the given
174 * opaque argument if a fatal error causes the Lua interpreter to longjump out
175 * of a function call.
176 *
177 * If an error occurs, the cleanup function will be invoked exactly once and
178 * then unreigstered.
179 *
180 * Returns the registered cleanup handler so the caller can deregister it
181 * if no error occurs.
182 */
183 zcp_cleanup_handler_t *
184 zcp_register_cleanup(lua_State *state, zcp_cleanup_t cleanfunc, void *cleanarg)
185 {
186 zcp_run_info_t *ri = zcp_run_info(state);
187
188 zcp_cleanup_handler_t *zch = kmem_alloc(sizeof (*zch), KM_SLEEP);
189 zch->zch_cleanup_func = cleanfunc;
190 zch->zch_cleanup_arg = cleanarg;
191 list_insert_head(&ri->zri_cleanup_handlers, zch);
192
193 return (zch);
194 }
195
196 void
197 zcp_deregister_cleanup(lua_State *state, zcp_cleanup_handler_t *zch)
198 {
199 zcp_run_info_t *ri = zcp_run_info(state);
200 list_remove(&ri->zri_cleanup_handlers, zch);
201 kmem_free(zch, sizeof (*zch));
202 }
203
204 /*
205 * Execute the currently registered cleanup handlers then free them and
206 * destroy the handler list.
207 */
208 void
209 zcp_cleanup(lua_State *state)
210 {
211 zcp_run_info_t *ri = zcp_run_info(state);
212
213 for (zcp_cleanup_handler_t *zch =
214 list_remove_head(&ri->zri_cleanup_handlers); zch != NULL;
215 zch = list_remove_head(&ri->zri_cleanup_handlers)) {
216 zch->zch_cleanup_func(zch->zch_cleanup_arg);
217 kmem_free(zch, sizeof (*zch));
218 }
219 }
220
221 /*
222 * Convert the lua table at the given index on the Lua stack to an nvlist
223 * and return it.
224 *
225 * If the table can not be converted for any reason, NULL is returned and
226 * an error message is pushed onto the Lua stack.
227 */
228 static nvlist_t *
229 zcp_table_to_nvlist(lua_State *state, int index, int depth)
230 {
231 nvlist_t *nvl;
232 /*
233 * Converting a Lua table to an nvlist with key uniqueness checking is
234 * O(n^2) in the number of keys in the nvlist, which can take a long
235 * time when we return a large table from a channel program.
236 * Furthermore, Lua's table interface *almost* guarantees unique keys
237 * on its own (details below). Therefore, we don't use fnvlist_alloc()
238 * here to avoid the built-in uniqueness checking.
239 *
240 * The *almost* is because it's possible to have key collisions between
241 * e.g. the string "1" and the number 1, or the string "true" and the
242 * boolean true, so we explicitly check that when we're looking at a
243 * key which is an integer / boolean or a string that can be parsed as
244 * one of those types. In the worst case this could still devolve into
245 * O(n^2), so we only start doing these checks on boolean/integer keys
246 * once we've seen a string key which fits this weird usage pattern.
247 *
248 * Ultimately, we still want callers to know that the keys in this
249 * nvlist are unique, so before we return this we set the nvlist's
250 * flags to reflect that.
251 */
252 VERIFY0(nvlist_alloc(&nvl, 0, KM_SLEEP));
253
254 /*
255 * Push an empty stack slot where lua_next() will store each
256 * table key.
257 */
258 lua_pushnil(state);
259 boolean_t saw_str_could_collide = B_FALSE;
260 while (lua_next(state, index) != 0) {
261 /*
262 * The next key-value pair from the table at index is
263 * now on the stack, with the key at stack slot -2 and
264 * the value at slot -1.
265 */
266 int err = 0;
267 char buf[32];
268 const char *key = NULL;
269 boolean_t key_could_collide = B_FALSE;
270
271 switch (lua_type(state, -2)) {
272 case LUA_TSTRING:
273 key = lua_tostring(state, -2);
274
275 /* check if this could collide with a number or bool */
276 long long tmp;
277 int parselen;
278 if ((sscanf(key, "%lld%n", &tmp, &parselen) > 0 &&
279 parselen == strlen(key)) ||
280 strcmp(key, "true") == 0 ||
281 strcmp(key, "false") == 0) {
282 key_could_collide = B_TRUE;
283 saw_str_could_collide = B_TRUE;
284 }
285 break;
286 case LUA_TBOOLEAN:
287 key = (lua_toboolean(state, -2) == B_TRUE ?
288 "true" : "false");
289 if (saw_str_could_collide) {
290 key_could_collide = B_TRUE;
291 }
292 break;
293 case LUA_TNUMBER:
294 VERIFY3U(sizeof (buf), >,
295 snprintf(buf, sizeof (buf), "%lld",
296 (longlong_t)lua_tonumber(state, -2)));
297 key = buf;
298 if (saw_str_could_collide) {
299 key_could_collide = B_TRUE;
300 }
301 break;
302 default:
303 fnvlist_free(nvl);
304 (void) lua_pushfstring(state, "Invalid key "
305 "type '%s' in table",
306 lua_typename(state, lua_type(state, -2)));
307 return (NULL);
308 }
309 /*
310 * Check for type-mismatched key collisions, and throw an error.
311 */
312 if (key_could_collide && nvlist_exists(nvl, key)) {
313 fnvlist_free(nvl);
314 (void) lua_pushfstring(state, "Collision of "
315 "key '%s' in table", key);
316 return (NULL);
317 }
318 /*
319 * Recursively convert the table value and insert into
320 * the new nvlist with the parsed key. To prevent
321 * stack overflow on circular or heavily nested tables,
322 * we track the current nvlist depth.
323 */
324 if (depth >= ZCP_NVLIST_MAX_DEPTH) {
325 fnvlist_free(nvl);
326 (void) lua_pushfstring(state, "Maximum table "
327 "depth (%d) exceeded for table",
328 ZCP_NVLIST_MAX_DEPTH);
329 return (NULL);
330 }
331 err = zcp_lua_to_nvlist_impl(state, -1, nvl, key,
332 depth + 1);
333 if (err != 0) {
334 fnvlist_free(nvl);
335 /*
336 * Error message has been pushed to the lua
337 * stack by the recursive call.
338 */
339 return (NULL);
340 }
341 /*
342 * Pop the value pushed by lua_next().
343 */
344 lua_pop(state, 1);
345 }
346
347 /*
348 * Mark the nvlist as having unique keys. This is a little ugly, but we
349 * ensured above that there are no duplicate keys in the nvlist.
350 */
351 nvl->nvl_nvflag |= NV_UNIQUE_NAME;
352
353 return (nvl);
354 }
355
356 /*
357 * Convert a value from the given index into the lua stack to an nvpair, adding
358 * it to an nvlist with the given key.
359 *
360 * Values are converted as follows:
361 *
362 * string -> string
363 * number -> int64
364 * boolean -> boolean
365 * nil -> boolean (no value)
366 *
367 * Lua tables are converted to nvlists and then inserted. The table's keys
368 * are converted to strings then used as keys in the nvlist to store each table
369 * element. Keys are converted as follows:
370 *
371 * string -> no change
372 * number -> "%lld"
373 * boolean -> "true" | "false"
374 * nil -> error
375 *
376 * In the case of a key collision, an error is thrown.
377 *
378 * If an error is encountered, a nonzero error code is returned, and an error
379 * string will be pushed onto the Lua stack.
380 */
381 static int
382 zcp_lua_to_nvlist_impl(lua_State *state, int index, nvlist_t *nvl,
383 const char *key, int depth)
384 {
385 /*
386 * Verify that we have enough remaining space in the lua stack to parse
387 * a key-value pair and push an error.
388 */
389 if (!lua_checkstack(state, 3)) {
390 (void) lua_pushstring(state, "Lua stack overflow");
391 return (1);
392 }
393
394 index = lua_absindex(state, index);
395
396 switch (lua_type(state, index)) {
397 case LUA_TNIL:
398 fnvlist_add_boolean(nvl, key);
399 break;
400 case LUA_TBOOLEAN:
401 fnvlist_add_boolean_value(nvl, key,
402 lua_toboolean(state, index));
403 break;
404 case LUA_TNUMBER:
405 fnvlist_add_int64(nvl, key, lua_tonumber(state, index));
406 break;
407 case LUA_TSTRING:
408 fnvlist_add_string(nvl, key, lua_tostring(state, index));
409 break;
410 case LUA_TTABLE: {
411 nvlist_t *value_nvl = zcp_table_to_nvlist(state, index, depth);
412 if (value_nvl == NULL)
413 return (EINVAL);
414
415 fnvlist_add_nvlist(nvl, key, value_nvl);
416 fnvlist_free(value_nvl);
417 break;
418 }
419 default:
420 (void) lua_pushfstring(state,
421 "Invalid value type '%s' for key '%s'",
422 lua_typename(state, lua_type(state, index)), key);
423 return (EINVAL);
424 }
425
426 return (0);
427 }
428
429 /*
430 * Convert a lua value to an nvpair, adding it to an nvlist with the given key.
431 */
432 void
433 zcp_lua_to_nvlist(lua_State *state, int index, nvlist_t *nvl, const char *key)
434 {
435 /*
436 * On error, zcp_lua_to_nvlist_impl pushes an error string onto the Lua
437 * stack before returning with a nonzero error code. If an error is
438 * returned, throw a fatal lua error with the given string.
439 */
440 if (zcp_lua_to_nvlist_impl(state, index, nvl, key, 0) != 0)
441 (void) lua_error(state);
442 }
443
444 int
445 zcp_lua_to_nvlist_helper(lua_State *state)
446 {
447 nvlist_t *nv = (nvlist_t *)lua_touserdata(state, 2);
448 const char *key = (const char *)lua_touserdata(state, 1);
449 zcp_lua_to_nvlist(state, 3, nv, key);
450 return (0);
451 }
452
453 void
454 zcp_convert_return_values(lua_State *state, nvlist_t *nvl,
455 const char *key, zcp_eval_arg_t *evalargs)
456 {
457 int err;
458 lua_pushcfunction(state, zcp_lua_to_nvlist_helper);
459 lua_pushlightuserdata(state, (char *)key);
460 lua_pushlightuserdata(state, nvl);
461 lua_pushvalue(state, 1);
462 lua_remove(state, 1);
463 err = lua_pcall(state, 3, 0, 0); /* zcp_lua_to_nvlist_helper */
464 if (err != 0) {
465 zcp_lua_to_nvlist(state, 1, nvl, ZCP_RET_ERROR);
466 evalargs->ea_result = SET_ERROR(ECHRNG);
467 }
468 }
469
470 /*
471 * Push a Lua table representing nvl onto the stack. If it can't be
472 * converted, return EINVAL, fill in errbuf, and push nothing. errbuf may
473 * be specified as NULL, in which case no error string will be output.
474 *
475 * Most nvlists are converted as simple key->value Lua tables, but we make
476 * an exception for the case where all nvlist entries are BOOLEANs (a string
477 * key without a value). In Lua, a table key pointing to a value of Nil
478 * (no value) is equivalent to the key not existing, so a BOOLEAN nvlist
479 * entry can't be directly converted to a Lua table entry. Nvlists of entirely
480 * BOOLEAN entries are frequently used to pass around lists of datasets, so for
481 * convenience we check for this case, and convert it to a simple Lua array of
482 * strings.
483 */
484 int
485 zcp_nvlist_to_lua(lua_State *state, nvlist_t *nvl,
486 char *errbuf, int errbuf_len)
487 {
488 nvpair_t *pair;
489 lua_newtable(state);
490 boolean_t has_values = B_FALSE;
491 /*
492 * If the list doesn't have any values, just convert it to a string
493 * array.
494 */
495 for (pair = nvlist_next_nvpair(nvl, NULL);
496 pair != NULL; pair = nvlist_next_nvpair(nvl, pair)) {
497 if (nvpair_type(pair) != DATA_TYPE_BOOLEAN) {
498 has_values = B_TRUE;
499 break;
500 }
501 }
502 if (!has_values) {
503 int i = 1;
504 for (pair = nvlist_next_nvpair(nvl, NULL);
505 pair != NULL; pair = nvlist_next_nvpair(nvl, pair)) {
506 (void) lua_pushinteger(state, i);
507 (void) lua_pushstring(state, nvpair_name(pair));
508 (void) lua_settable(state, -3);
509 i++;
510 }
511 } else {
512 for (pair = nvlist_next_nvpair(nvl, NULL);
513 pair != NULL; pair = nvlist_next_nvpair(nvl, pair)) {
514 int err = zcp_nvpair_value_to_lua(state, pair,
515 errbuf, errbuf_len);
516 if (err != 0) {
517 lua_pop(state, 1);
518 return (err);
519 }
520 (void) lua_setfield(state, -2, nvpair_name(pair));
521 }
522 }
523 return (0);
524 }
525
526 /*
527 * Push a Lua object representing the value of "pair" onto the stack.
528 *
529 * Only understands boolean_value, string, int64, nvlist,
530 * string_array, and int64_array type values. For other
531 * types, returns EINVAL, fills in errbuf, and pushes nothing.
532 */
533 static int
534 zcp_nvpair_value_to_lua(lua_State *state, nvpair_t *pair,
535 char *errbuf, int errbuf_len)
536 {
537 int err = 0;
538
539 if (pair == NULL) {
540 lua_pushnil(state);
541 return (0);
542 }
543
544 switch (nvpair_type(pair)) {
545 case DATA_TYPE_BOOLEAN_VALUE:
546 (void) lua_pushboolean(state,
547 fnvpair_value_boolean_value(pair));
548 break;
549 case DATA_TYPE_STRING:
550 (void) lua_pushstring(state, fnvpair_value_string(pair));
551 break;
552 case DATA_TYPE_INT64:
553 (void) lua_pushinteger(state, fnvpair_value_int64(pair));
554 break;
555 case DATA_TYPE_NVLIST:
556 err = zcp_nvlist_to_lua(state,
557 fnvpair_value_nvlist(pair), errbuf, errbuf_len);
558 break;
559 case DATA_TYPE_STRING_ARRAY: {
560 char **strarr;
561 uint_t nelem;
562 (void) nvpair_value_string_array(pair, &strarr, &nelem);
563 lua_newtable(state);
564 for (int i = 0; i < nelem; i++) {
565 (void) lua_pushinteger(state, i + 1);
566 (void) lua_pushstring(state, strarr[i]);
567 (void) lua_settable(state, -3);
568 }
569 break;
570 }
571 case DATA_TYPE_UINT64_ARRAY: {
572 uint64_t *intarr;
573 uint_t nelem;
574 (void) nvpair_value_uint64_array(pair, &intarr, &nelem);
575 lua_newtable(state);
576 for (int i = 0; i < nelem; i++) {
577 (void) lua_pushinteger(state, i + 1);
578 (void) lua_pushinteger(state, intarr[i]);
579 (void) lua_settable(state, -3);
580 }
581 break;
582 }
583 case DATA_TYPE_INT64_ARRAY: {
584 int64_t *intarr;
585 uint_t nelem;
586 (void) nvpair_value_int64_array(pair, &intarr, &nelem);
587 lua_newtable(state);
588 for (int i = 0; i < nelem; i++) {
589 (void) lua_pushinteger(state, i + 1);
590 (void) lua_pushinteger(state, intarr[i]);
591 (void) lua_settable(state, -3);
592 }
593 break;
594 }
595 default: {
596 if (errbuf != NULL) {
597 (void) snprintf(errbuf, errbuf_len,
598 "Unhandled nvpair type %d for key '%s'",
599 nvpair_type(pair), nvpair_name(pair));
600 }
601 return (EINVAL);
602 }
603 }
604 return (err);
605 }
606
607 int
608 zcp_dataset_hold_error(lua_State *state, dsl_pool_t *dp, const char *dsname,
609 int error)
610 {
611 if (error == ENOENT) {
612 (void) zcp_argerror(state, 1, "no such dataset '%s'", dsname);
613 return (0); /* not reached; zcp_argerror will longjmp */
614 } else if (error == EXDEV) {
615 (void) zcp_argerror(state, 1,
616 "dataset '%s' is not in the target pool '%s'",
617 dsname, spa_name(dp->dp_spa));
618 return (0); /* not reached; zcp_argerror will longjmp */
619 } else if (error == EIO) {
620 (void) luaL_error(state,
621 "I/O error while accessing dataset '%s'", dsname);
622 return (0); /* not reached; luaL_error will longjmp */
623 } else if (error != 0) {
624 (void) luaL_error(state,
625 "unexpected error %d while accessing dataset '%s'",
626 error, dsname);
627 return (0); /* not reached; luaL_error will longjmp */
628 }
629 return (0);
630 }
631
632 /*
633 * Note: will longjmp (via lua_error()) on error.
634 * Assumes that the dsname is argument #1 (for error reporting purposes).
635 */
636 dsl_dataset_t *
637 zcp_dataset_hold(lua_State *state, dsl_pool_t *dp, const char *dsname,
638 void *tag)
639 {
640 dsl_dataset_t *ds;
641 int error = dsl_dataset_hold(dp, dsname, tag, &ds);
642 (void) zcp_dataset_hold_error(state, dp, dsname, error);
643 return (ds);
644 }
645
646 static int zcp_debug(lua_State *);
647 static zcp_lib_info_t zcp_debug_info = {
648 .name = "debug",
649 .func = zcp_debug,
650 .pargs = {
651 { .za_name = "debug string", .za_lua_type = LUA_TSTRING},
652 {NULL, 0}
653 },
654 .kwargs = {
655 {NULL, 0}
656 }
657 };
658
659 static int
660 zcp_debug(lua_State *state)
661 {
662 const char *dbgstring;
663 zcp_run_info_t *ri = zcp_run_info(state);
664 zcp_lib_info_t *libinfo = &zcp_debug_info;
665
666 zcp_parse_args(state, libinfo->name, libinfo->pargs, libinfo->kwargs);
667
668 dbgstring = lua_tostring(state, 1);
669
670 zfs_dbgmsg("txg %lld ZCP: %s", ri->zri_tx->tx_txg, dbgstring);
671
672 return (0);
673 }
674
675 static int zcp_exists(lua_State *);
676 static zcp_lib_info_t zcp_exists_info = {
677 .name = "exists",
678 .func = zcp_exists,
679 .pargs = {
680 { .za_name = "dataset", .za_lua_type = LUA_TSTRING},
681 {NULL, 0}
682 },
683 .kwargs = {
684 {NULL, 0}
685 }
686 };
687
688 static int
689 zcp_exists(lua_State *state)
690 {
691 zcp_run_info_t *ri = zcp_run_info(state);
692 dsl_pool_t *dp = ri->zri_pool;
693 zcp_lib_info_t *libinfo = &zcp_exists_info;
694
695 zcp_parse_args(state, libinfo->name, libinfo->pargs, libinfo->kwargs);
696
697 const char *dsname = lua_tostring(state, 1);
698
699 dsl_dataset_t *ds;
700 int error = dsl_dataset_hold(dp, dsname, FTAG, &ds);
701 if (error == 0) {
702 dsl_dataset_rele(ds, FTAG);
703 lua_pushboolean(state, B_TRUE);
704 } else if (error == ENOENT) {
705 lua_pushboolean(state, B_FALSE);
706 } else if (error == EXDEV) {
707 return (luaL_error(state, "dataset '%s' is not in the "
708 "target pool", dsname));
709 } else if (error == EIO) {
710 return (luaL_error(state, "I/O error opening dataset '%s'",
711 dsname));
712 } else if (error != 0) {
713 return (luaL_error(state, "unexpected error %d", error));
714 }
715
716 return (1);
717 }
718
719 /*
720 * Allocate/realloc/free a buffer for the lua interpreter.
721 *
722 * When nsize is 0, behaves as free() and returns NULL.
723 *
724 * If ptr is NULL, behaves as malloc() and returns an allocated buffer of size
725 * at least nsize.
726 *
727 * Otherwise, behaves as realloc(), changing the allocation from osize to nsize.
728 * Shrinking the buffer size never fails.
729 *
730 * The original allocated buffer size is stored as a uint64 at the beginning of
731 * the buffer to avoid actually reallocating when shrinking a buffer, since lua
732 * requires that this operation never fail.
733 */
734 static void *
735 zcp_lua_alloc(void *ud, void *ptr, size_t osize, size_t nsize)
736 {
737 zcp_alloc_arg_t *allocargs = ud;
738 int flags = (allocargs->aa_must_succeed) ?
739 KM_SLEEP : (KM_NOSLEEP | KM_NORMALPRI);
740
741 if (nsize == 0) {
742 if (ptr != NULL) {
743 int64_t *allocbuf = (int64_t *)ptr - 1;
744 int64_t allocsize = *allocbuf;
745 ASSERT3S(allocsize, >, 0);
746 ASSERT3S(allocargs->aa_alloc_remaining + allocsize, <=,
747 allocargs->aa_alloc_limit);
748 allocargs->aa_alloc_remaining += allocsize;
749 vmem_free(allocbuf, allocsize);
750 }
751 return (NULL);
752 } else if (ptr == NULL) {
753 int64_t *allocbuf;
754 int64_t allocsize = nsize + sizeof (int64_t);
755
756 if (!allocargs->aa_must_succeed &&
757 (allocsize <= 0 ||
758 allocsize > allocargs->aa_alloc_remaining)) {
759 return (NULL);
760 }
761
762 allocbuf = vmem_alloc(allocsize, flags);
763 if (allocbuf == NULL) {
764 return (NULL);
765 }
766 allocargs->aa_alloc_remaining -= allocsize;
767
768 *allocbuf = allocsize;
769 return (allocbuf + 1);
770 } else if (nsize <= osize) {
771 /*
772 * If shrinking the buffer, lua requires that the reallocation
773 * never fail.
774 */
775 return (ptr);
776 } else {
777 ASSERT3U(nsize, >, osize);
778
779 uint64_t *luabuf = zcp_lua_alloc(ud, NULL, 0, nsize);
780 if (luabuf == NULL) {
781 return (NULL);
782 }
783 (void) memcpy(luabuf, ptr, osize);
784 VERIFY3P(zcp_lua_alloc(ud, ptr, osize, 0), ==, NULL);
785 return (luabuf);
786 }
787 }
788
789 /* ARGSUSED */
790 static void
791 zcp_lua_counthook(lua_State *state, lua_Debug *ar)
792 {
793 /*
794 * If we're called, check how many instructions the channel program has
795 * executed so far, and compare against the limit.
796 */
797 lua_getfield(state, LUA_REGISTRYINDEX, ZCP_RUN_INFO_KEY);
798 zcp_run_info_t *ri = lua_touserdata(state, -1);
799
800 ri->zri_curinstrs += zfs_lua_check_instrlimit_interval;
801 if (ri->zri_maxinstrs != 0 && ri->zri_curinstrs > ri->zri_maxinstrs) {
802 ri->zri_timed_out = B_TRUE;
803 (void) lua_pushstring(state,
804 "Channel program timed out.");
805 (void) lua_error(state);
806 }
807 }
808
809 static int
810 zcp_panic_cb(lua_State *state)
811 {
812 panic("unprotected error in call to Lua API (%s)\n",
813 lua_tostring(state, -1));
814 return (0);
815 }
816
817 static void
818 zcp_eval_impl(dmu_tx_t *tx, boolean_t sync, zcp_eval_arg_t *evalargs)
819 {
820 int err;
821 zcp_run_info_t ri;
822 lua_State *state = evalargs->ea_state;
823
824 VERIFY3U(3, ==, lua_gettop(state));
825
826 /*
827 * Store the zcp_run_info_t struct for this run in the Lua registry.
828 * Registry entries are not directly accessible by the Lua scripts but
829 * can be accessed by our callbacks.
830 */
831 ri.zri_space_used = 0;
832 ri.zri_pool = dmu_tx_pool(tx);
833 ri.zri_cred = evalargs->ea_cred;
834 ri.zri_tx = tx;
835 ri.zri_timed_out = B_FALSE;
836 ri.zri_sync = sync;
837 list_create(&ri.zri_cleanup_handlers, sizeof (zcp_cleanup_handler_t),
838 offsetof(zcp_cleanup_handler_t, zch_node));
839 ri.zri_curinstrs = 0;
840 ri.zri_maxinstrs = evalargs->ea_instrlimit;
841
842 lua_pushlightuserdata(state, &ri);
843 lua_setfield(state, LUA_REGISTRYINDEX, ZCP_RUN_INFO_KEY);
844 VERIFY3U(3, ==, lua_gettop(state));
845
846 /*
847 * Tell the Lua interpreter to call our handler every count
848 * instructions. Channel programs that execute too many instructions
849 * should die with ETIME.
850 */
851 (void) lua_sethook(state, zcp_lua_counthook, LUA_MASKCOUNT,
852 zfs_lua_check_instrlimit_interval);
853
854 /*
855 * Tell the Lua memory allocator to stop using KM_SLEEP before handing
856 * off control to the channel program. Channel programs that use too
857 * much memory should die with ENOSPC.
858 */
859 evalargs->ea_allocargs->aa_must_succeed = B_FALSE;
860
861 /*
862 * Call the Lua function that open-context passed us. This pops the
863 * function and its input from the stack and pushes any return
864 * or error values.
865 */
866 err = lua_pcall(state, 1, LUA_MULTRET, 1);
867
868 /*
869 * Let Lua use KM_SLEEP while we interpret the return values.
870 */
871 evalargs->ea_allocargs->aa_must_succeed = B_TRUE;
872
873 /*
874 * Remove the error handler callback from the stack. At this point,
875 * there shouldn't be any cleanup handler registered in the handler
876 * list (zri_cleanup_handlers), regardless of whether it ran or not.
877 */
878 list_destroy(&ri.zri_cleanup_handlers);
879 lua_remove(state, 1);
880
881 switch (err) {
882 case LUA_OK: {
883 /*
884 * Lua supports returning multiple values in a single return
885 * statement. Return values will have been pushed onto the
886 * stack:
887 * 1: Return value 1
888 * 2: Return value 2
889 * 3: etc...
890 * To simplify the process of retrieving a return value from a
891 * channel program, we disallow returning more than one value
892 * to ZFS from the Lua script, yielding a singleton return
893 * nvlist of the form { "return": Return value 1 }.
894 */
895 int return_count = lua_gettop(state);
896
897 if (return_count == 1) {
898 evalargs->ea_result = 0;
899 zcp_convert_return_values(state, evalargs->ea_outnvl,
900 ZCP_RET_RETURN, evalargs);
901 } else if (return_count > 1) {
902 evalargs->ea_result = SET_ERROR(ECHRNG);
903 (void) lua_pushfstring(state, "Multiple return "
904 "values not supported");
905 zcp_convert_return_values(state, evalargs->ea_outnvl,
906 ZCP_RET_ERROR, evalargs);
907 }
908 break;
909 }
910 case LUA_ERRRUN:
911 case LUA_ERRGCMM: {
912 /*
913 * The channel program encountered a fatal error within the
914 * script, such as failing an assertion, or calling a function
915 * with incompatible arguments. The error value and the
916 * traceback generated by zcp_error_handler() should be on the
917 * stack.
918 */
919 VERIFY3U(1, ==, lua_gettop(state));
920 if (ri.zri_timed_out) {
921 evalargs->ea_result = SET_ERROR(ETIME);
922 } else {
923 evalargs->ea_result = SET_ERROR(ECHRNG);
924 }
925
926 zcp_convert_return_values(state, evalargs->ea_outnvl,
927 ZCP_RET_ERROR, evalargs);
928
929 if (evalargs->ea_result == ETIME &&
930 evalargs->ea_outnvl != NULL) {
931 (void) nvlist_add_uint64(evalargs->ea_outnvl,
932 ZCP_ARG_INSTRLIMIT, ri.zri_curinstrs);
933 }
934 break;
935 }
936 case LUA_ERRERR: {
937 /*
938 * The channel program encountered a fatal error within the
939 * script, and we encountered another error while trying to
940 * compute the traceback in zcp_error_handler(). We can only
941 * return the error message.
942 */
943 VERIFY3U(1, ==, lua_gettop(state));
944 if (ri.zri_timed_out) {
945 evalargs->ea_result = SET_ERROR(ETIME);
946 } else {
947 evalargs->ea_result = SET_ERROR(ECHRNG);
948 }
949
950 zcp_convert_return_values(state, evalargs->ea_outnvl,
951 ZCP_RET_ERROR, evalargs);
952 break;
953 }
954 case LUA_ERRMEM:
955 /*
956 * Lua ran out of memory while running the channel program.
957 * There's not much we can do.
958 */
959 evalargs->ea_result = SET_ERROR(ENOSPC);
960 break;
961 default:
962 VERIFY0(err);
963 }
964 }
965
966 static void
967 zcp_pool_error(zcp_eval_arg_t *evalargs, const char *poolname)
968 {
969 evalargs->ea_result = SET_ERROR(ECHRNG);
970 (void) lua_pushfstring(evalargs->ea_state, "Could not open pool: %s",
971 poolname);
972 zcp_convert_return_values(evalargs->ea_state, evalargs->ea_outnvl,
973 ZCP_RET_ERROR, evalargs);
974
975 }
976
977 static void
978 zcp_eval_sync(void *arg, dmu_tx_t *tx)
979 {
980 zcp_eval_arg_t *evalargs = arg;
981
982 /*
983 * Open context should have setup the stack to contain:
984 * 1: Error handler callback
985 * 2: Script to run (converted to a Lua function)
986 * 3: nvlist input to function (converted to Lua table or nil)
987 */
988 VERIFY3U(3, ==, lua_gettop(evalargs->ea_state));
989
990 zcp_eval_impl(tx, B_TRUE, evalargs);
991 }
992
993 static void
994 zcp_eval_open(zcp_eval_arg_t *evalargs, const char *poolname)
995 {
996
997 int error;
998 dsl_pool_t *dp;
999 dmu_tx_t *tx;
1000
1001 /*
1002 * See comment from the same assertion in zcp_eval_sync().
1003 */
1004 VERIFY3U(3, ==, lua_gettop(evalargs->ea_state));
1005
1006 error = dsl_pool_hold(poolname, FTAG, &dp);
1007 if (error != 0) {
1008 zcp_pool_error(evalargs, poolname);
1009 return;
1010 }
1011
1012 /*
1013 * As we are running in open-context, we have no transaction associated
1014 * with the channel program. At the same time, functions from the
1015 * zfs.check submodule need to be associated with a transaction as
1016 * they are basically dry-runs of their counterparts in the zfs.sync
1017 * submodule. These functions should be able to run in open-context.
1018 * Therefore we create a new transaction that we later abort once
1019 * the channel program has been evaluated.
1020 */
1021 tx = dmu_tx_create_dd(dp->dp_mos_dir);
1022
1023 zcp_eval_impl(tx, B_FALSE, evalargs);
1024
1025 dmu_tx_abort(tx);
1026
1027 dsl_pool_rele(dp, FTAG);
1028 }
1029
1030 int
1031 zcp_eval(const char *poolname, const char *program, boolean_t sync,
1032 uint64_t instrlimit, uint64_t memlimit, nvpair_t *nvarg, nvlist_t *outnvl)
1033 {
1034 int err;
1035 lua_State *state;
1036 zcp_eval_arg_t evalargs;
1037
1038 if (instrlimit > zfs_lua_max_instrlimit)
1039 return (SET_ERROR(EINVAL));
1040 if (memlimit == 0 || memlimit > zfs_lua_max_memlimit)
1041 return (SET_ERROR(EINVAL));
1042
1043 zcp_alloc_arg_t allocargs = {
1044 .aa_must_succeed = B_TRUE,
1045 .aa_alloc_remaining = (int64_t)memlimit,
1046 .aa_alloc_limit = (int64_t)memlimit,
1047 };
1048
1049 /*
1050 * Creates a Lua state with a memory allocator that uses KM_SLEEP.
1051 * This should never fail.
1052 */
1053 state = lua_newstate(zcp_lua_alloc, &allocargs);
1054 VERIFY(state != NULL);
1055 (void) lua_atpanic(state, zcp_panic_cb);
1056
1057 /*
1058 * Load core Lua libraries we want access to.
1059 */
1060 VERIFY3U(1, ==, luaopen_base(state));
1061 lua_pop(state, 1);
1062 VERIFY3U(1, ==, luaopen_coroutine(state));
1063 lua_setglobal(state, LUA_COLIBNAME);
1064 VERIFY0(lua_gettop(state));
1065 VERIFY3U(1, ==, luaopen_string(state));
1066 lua_setglobal(state, LUA_STRLIBNAME);
1067 VERIFY0(lua_gettop(state));
1068 VERIFY3U(1, ==, luaopen_table(state));
1069 lua_setglobal(state, LUA_TABLIBNAME);
1070 VERIFY0(lua_gettop(state));
1071
1072 /*
1073 * Load globally visible variables such as errno aliases.
1074 */
1075 zcp_load_globals(state);
1076 VERIFY0(lua_gettop(state));
1077
1078 /*
1079 * Load ZFS-specific modules.
1080 */
1081 lua_newtable(state);
1082 VERIFY3U(1, ==, zcp_load_list_lib(state));
1083 lua_setfield(state, -2, "list");
1084 VERIFY3U(1, ==, zcp_load_synctask_lib(state, B_FALSE));
1085 lua_setfield(state, -2, "check");
1086 VERIFY3U(1, ==, zcp_load_synctask_lib(state, B_TRUE));
1087 lua_setfield(state, -2, "sync");
1088 VERIFY3U(1, ==, zcp_load_get_lib(state));
1089 lua_pushcclosure(state, zcp_debug_info.func, 0);
1090 lua_setfield(state, -2, zcp_debug_info.name);
1091 lua_pushcclosure(state, zcp_exists_info.func, 0);
1092 lua_setfield(state, -2, zcp_exists_info.name);
1093 lua_setglobal(state, "zfs");
1094 VERIFY0(lua_gettop(state));
1095
1096 /*
1097 * Push the error-callback that calculates Lua stack traces on
1098 * unexpected failures.
1099 */
1100 lua_pushcfunction(state, zcp_error_handler);
1101 VERIFY3U(1, ==, lua_gettop(state));
1102
1103 /*
1104 * Load the actual script as a function onto the stack as text ("t").
1105 * The only valid error condition is a syntax error in the script.
1106 * ERRMEM should not be possible because our allocator is using
1107 * KM_SLEEP. ERRGCMM should not be possible because we have not added
1108 * any objects with __gc metamethods to the interpreter that could
1109 * fail.
1110 */
1111 err = luaL_loadbufferx(state, program, strlen(program),
1112 "channel program", "t");
1113 if (err == LUA_ERRSYNTAX) {
1114 fnvlist_add_string(outnvl, ZCP_RET_ERROR,
1115 lua_tostring(state, -1));
1116 lua_close(state);
1117 return (SET_ERROR(EINVAL));
1118 }
1119 VERIFY0(err);
1120 VERIFY3U(2, ==, lua_gettop(state));
1121
1122 /*
1123 * Convert the input nvlist to a Lua object and put it on top of the
1124 * stack.
1125 */
1126 char errmsg[128];
1127 err = zcp_nvpair_value_to_lua(state, nvarg,
1128 errmsg, sizeof (errmsg));
1129 if (err != 0) {
1130 fnvlist_add_string(outnvl, ZCP_RET_ERROR, errmsg);
1131 lua_close(state);
1132 return (SET_ERROR(EINVAL));
1133 }
1134 VERIFY3U(3, ==, lua_gettop(state));
1135
1136 evalargs.ea_state = state;
1137 evalargs.ea_allocargs = &allocargs;
1138 evalargs.ea_instrlimit = instrlimit;
1139 evalargs.ea_cred = CRED();
1140 evalargs.ea_outnvl = outnvl;
1141 evalargs.ea_result = 0;
1142
1143 if (sync) {
1144 err = dsl_sync_task(poolname, NULL,
1145 zcp_eval_sync, &evalargs, 0, ZFS_SPACE_CHECK_NONE);
1146 if (err != 0)
1147 zcp_pool_error(&evalargs, poolname);
1148 } else {
1149 zcp_eval_open(&evalargs, poolname);
1150 }
1151 lua_close(state);
1152
1153 return (evalargs.ea_result);
1154 }
1155
1156 /*
1157 * Retrieve metadata about the currently running channel program.
1158 */
1159 zcp_run_info_t *
1160 zcp_run_info(lua_State *state)
1161 {
1162 zcp_run_info_t *ri;
1163
1164 lua_getfield(state, LUA_REGISTRYINDEX, ZCP_RUN_INFO_KEY);
1165 ri = lua_touserdata(state, -1);
1166 lua_pop(state, 1);
1167 return (ri);
1168 }
1169
1170 /*
1171 * Argument Parsing
1172 * ================
1173 *
1174 * The Lua language allows methods to be called with any number
1175 * of arguments of any type. When calling back into ZFS we need to sanitize
1176 * arguments from channel programs to make sure unexpected arguments or
1177 * arguments of the wrong type result in clear error messages. To do this
1178 * in a uniform way all callbacks from channel programs should use the
1179 * zcp_parse_args() function to interpret inputs.
1180 *
1181 * Positional vs Keyword Arguments
1182 * ===============================
1183 *
1184 * Every callback function takes a fixed set of required positional arguments
1185 * and optional keyword arguments. For example, the destroy function takes
1186 * a single positional string argument (the name of the dataset to destroy)
1187 * and an optional "defer" keyword boolean argument. When calling lua functions
1188 * with parentheses, only positional arguments can be used:
1189 *
1190 * zfs.sync.snapshot("rpool@snap")
1191 *
1192 * To use keyword arguments functions should be called with a single argument
1193 * that is a lua table containing mappings of integer -> positional arguments
1194 * and string -> keyword arguments:
1195 *
1196 * zfs.sync.snapshot({1="rpool@snap", defer=true})
1197 *
1198 * The lua language allows curly braces to be used in place of parenthesis as
1199 * syntactic sugar for this calling convention:
1200 *
1201 * zfs.sync.snapshot{"rpool@snap", defer=true}
1202 */
1203
1204 /*
1205 * Throw an error and print the given arguments. If there are too many
1206 * arguments to fit in the output buffer, only the error format string is
1207 * output.
1208 */
1209 static void
1210 zcp_args_error(lua_State *state, const char *fname, const zcp_arg_t *pargs,
1211 const zcp_arg_t *kwargs, const char *fmt, ...)
1212 {
1213 int i;
1214 char errmsg[512];
1215 size_t len = sizeof (errmsg);
1216 size_t msglen = 0;
1217 va_list argp;
1218
1219 va_start(argp, fmt);
1220 VERIFY3U(len, >, vsnprintf(errmsg, len, fmt, argp));
1221 va_end(argp);
1222
1223 /*
1224 * Calculate the total length of the final string, including extra
1225 * formatting characters. If the argument dump would be too large,
1226 * only print the error string.
1227 */
1228 msglen = strlen(errmsg);
1229 msglen += strlen(fname) + 4; /* : + {} + null terminator */
1230 for (i = 0; pargs[i].za_name != NULL; i++) {
1231 msglen += strlen(pargs[i].za_name);
1232 msglen += strlen(lua_typename(state, pargs[i].za_lua_type));
1233 if (pargs[i + 1].za_name != NULL || kwargs[0].za_name != NULL)
1234 msglen += 5; /* < + ( + )> + , */
1235 else
1236 msglen += 4; /* < + ( + )> */
1237 }
1238 for (i = 0; kwargs[i].za_name != NULL; i++) {
1239 msglen += strlen(kwargs[i].za_name);
1240 msglen += strlen(lua_typename(state, kwargs[i].za_lua_type));
1241 if (kwargs[i + 1].za_name != NULL)
1242 msglen += 4; /* =( + ) + , */
1243 else
1244 msglen += 3; /* =( + ) */
1245 }
1246
1247 if (msglen >= len)
1248 (void) luaL_error(state, errmsg);
1249
1250 VERIFY3U(len, >, strlcat(errmsg, ": ", len));
1251 VERIFY3U(len, >, strlcat(errmsg, fname, len));
1252 VERIFY3U(len, >, strlcat(errmsg, "{", len));
1253 for (i = 0; pargs[i].za_name != NULL; i++) {
1254 VERIFY3U(len, >, strlcat(errmsg, "<", len));
1255 VERIFY3U(len, >, strlcat(errmsg, pargs[i].za_name, len));
1256 VERIFY3U(len, >, strlcat(errmsg, "(", len));
1257 VERIFY3U(len, >, strlcat(errmsg,
1258 lua_typename(state, pargs[i].za_lua_type), len));
1259 VERIFY3U(len, >, strlcat(errmsg, ")>", len));
1260 if (pargs[i + 1].za_name != NULL || kwargs[0].za_name != NULL) {
1261 VERIFY3U(len, >, strlcat(errmsg, ", ", len));
1262 }
1263 }
1264 for (i = 0; kwargs[i].za_name != NULL; i++) {
1265 VERIFY3U(len, >, strlcat(errmsg, kwargs[i].za_name, len));
1266 VERIFY3U(len, >, strlcat(errmsg, "=(", len));
1267 VERIFY3U(len, >, strlcat(errmsg,
1268 lua_typename(state, kwargs[i].za_lua_type), len));
1269 VERIFY3U(len, >, strlcat(errmsg, ")", len));
1270 if (kwargs[i + 1].za_name != NULL) {
1271 VERIFY3U(len, >, strlcat(errmsg, ", ", len));
1272 }
1273 }
1274 VERIFY3U(len, >, strlcat(errmsg, "}", len));
1275
1276 (void) luaL_error(state, errmsg);
1277 panic("unreachable code");
1278 }
1279
1280 static void
1281 zcp_parse_table_args(lua_State *state, const char *fname,
1282 const zcp_arg_t *pargs, const zcp_arg_t *kwargs)
1283 {
1284 int i;
1285 int type;
1286
1287 for (i = 0; pargs[i].za_name != NULL; i++) {
1288 /*
1289 * Check the table for this positional argument, leaving it
1290 * on the top of the stack once we finish validating it.
1291 */
1292 lua_pushinteger(state, i + 1);
1293 lua_gettable(state, 1);
1294
1295 type = lua_type(state, -1);
1296 if (type == LUA_TNIL) {
1297 zcp_args_error(state, fname, pargs, kwargs,
1298 "too few arguments");
1299 panic("unreachable code");
1300 } else if (type != pargs[i].za_lua_type) {
1301 zcp_args_error(state, fname, pargs, kwargs,
1302 "arg %d wrong type (is '%s', expected '%s')",
1303 i + 1, lua_typename(state, type),
1304 lua_typename(state, pargs[i].za_lua_type));
1305 panic("unreachable code");
1306 }
1307
1308 /*
1309 * Remove the positional argument from the table.
1310 */
1311 lua_pushinteger(state, i + 1);
1312 lua_pushnil(state);
1313 lua_settable(state, 1);
1314 }
1315
1316 for (i = 0; kwargs[i].za_name != NULL; i++) {
1317 /*
1318 * Check the table for this keyword argument, which may be
1319 * nil if it was omitted. Leave the value on the top of
1320 * the stack after validating it.
1321 */
1322 lua_getfield(state, 1, kwargs[i].za_name);
1323
1324 type = lua_type(state, -1);
1325 if (type != LUA_TNIL && type != kwargs[i].za_lua_type) {
1326 zcp_args_error(state, fname, pargs, kwargs,
1327 "kwarg '%s' wrong type (is '%s', expected '%s')",
1328 kwargs[i].za_name, lua_typename(state, type),
1329 lua_typename(state, kwargs[i].za_lua_type));
1330 panic("unreachable code");
1331 }
1332
1333 /*
1334 * Remove the keyword argument from the table.
1335 */
1336 lua_pushnil(state);
1337 lua_setfield(state, 1, kwargs[i].za_name);
1338 }
1339
1340 /*
1341 * Any entries remaining in the table are invalid inputs, print
1342 * an error message based on what the entry is.
1343 */
1344 lua_pushnil(state);
1345 if (lua_next(state, 1)) {
1346 if (lua_isnumber(state, -2) && lua_tointeger(state, -2) > 0) {
1347 zcp_args_error(state, fname, pargs, kwargs,
1348 "too many positional arguments");
1349 } else if (lua_isstring(state, -2)) {
1350 zcp_args_error(state, fname, pargs, kwargs,
1351 "invalid kwarg '%s'", lua_tostring(state, -2));
1352 } else {
1353 zcp_args_error(state, fname, pargs, kwargs,
1354 "kwarg keys must be strings");
1355 }
1356 panic("unreachable code");
1357 }
1358
1359 lua_remove(state, 1);
1360 }
1361
1362 static void
1363 zcp_parse_pos_args(lua_State *state, const char *fname, const zcp_arg_t *pargs,
1364 const zcp_arg_t *kwargs)
1365 {
1366 int i;
1367 int type;
1368
1369 for (i = 0; pargs[i].za_name != NULL; i++) {
1370 type = lua_type(state, i + 1);
1371 if (type == LUA_TNONE) {
1372 zcp_args_error(state, fname, pargs, kwargs,
1373 "too few arguments");
1374 panic("unreachable code");
1375 } else if (type != pargs[i].za_lua_type) {
1376 zcp_args_error(state, fname, pargs, kwargs,
1377 "arg %d wrong type (is '%s', expected '%s')",
1378 i + 1, lua_typename(state, type),
1379 lua_typename(state, pargs[i].za_lua_type));
1380 panic("unreachable code");
1381 }
1382 }
1383 if (lua_gettop(state) != i) {
1384 zcp_args_error(state, fname, pargs, kwargs,
1385 "too many positional arguments");
1386 panic("unreachable code");
1387 }
1388
1389 for (i = 0; kwargs[i].za_name != NULL; i++) {
1390 lua_pushnil(state);
1391 }
1392 }
1393
1394 /*
1395 * Checks the current Lua stack against an expected set of positional and
1396 * keyword arguments. If the stack does not match the expected arguments
1397 * aborts the current channel program with a useful error message, otherwise
1398 * it re-arranges the stack so that it contains the positional arguments
1399 * followed by the keyword argument values in declaration order. Any missing
1400 * keyword argument will be represented by a nil value on the stack.
1401 *
1402 * If the stack contains exactly one argument of type LUA_TTABLE the curly
1403 * braces calling convention is assumed, otherwise the stack is parsed for
1404 * positional arguments only.
1405 *
1406 * This function should be used by every function callback. It should be called
1407 * before the callback manipulates the Lua stack as it assumes the stack
1408 * represents the function arguments.
1409 */
1410 void
1411 zcp_parse_args(lua_State *state, const char *fname, const zcp_arg_t *pargs,
1412 const zcp_arg_t *kwargs)
1413 {
1414 if (lua_gettop(state) == 1 && lua_istable(state, 1)) {
1415 zcp_parse_table_args(state, fname, pargs, kwargs);
1416 } else {
1417 zcp_parse_pos_args(state, fname, pargs, kwargs);
1418 }
1419 }
1420
1421 #if defined(_KERNEL)
1422 /* BEGIN CSTYLED */
1423 module_param(zfs_lua_max_instrlimit, ulong, 0644);
1424 MODULE_PARM_DESC(zfs_lua_max_instrlimit,
1425 "Max instruction limit that can be specified for a channel program");
1426
1427 module_param(zfs_lua_max_memlimit, ulong, 0644);
1428 MODULE_PARM_DESC(zfs_lua_max_memlimit,
1429 "Max memory limit that can be specified for a channel program");
1430 /* END CSTYLED */
1431 #endif