]> git.proxmox.com Git - mirror_zfs.git/blob - module/zfs/zfs_vfsops.c
Fix rollback of mounted filesystem regression
[mirror_zfs.git] / module / zfs / zfs_vfsops.c
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2013 by Delphix. All rights reserved.
24 */
25
26 /* Portions Copyright 2010 Robert Milkowski */
27
28 #include <sys/types.h>
29 #include <sys/param.h>
30 #include <sys/systm.h>
31 #include <sys/sysmacros.h>
32 #include <sys/kmem.h>
33 #include <sys/pathname.h>
34 #include <sys/vnode.h>
35 #include <sys/vfs.h>
36 #include <sys/vfs_opreg.h>
37 #include <sys/mntent.h>
38 #include <sys/mount.h>
39 #include <sys/cmn_err.h>
40 #include "fs/fs_subr.h"
41 #include <sys/zfs_znode.h>
42 #include <sys/zfs_vnops.h>
43 #include <sys/zfs_dir.h>
44 #include <sys/zil.h>
45 #include <sys/fs/zfs.h>
46 #include <sys/dmu.h>
47 #include <sys/dsl_prop.h>
48 #include <sys/dsl_dataset.h>
49 #include <sys/dsl_deleg.h>
50 #include <sys/spa.h>
51 #include <sys/zap.h>
52 #include <sys/sa.h>
53 #include <sys/sa_impl.h>
54 #include <sys/varargs.h>
55 #include <sys/policy.h>
56 #include <sys/atomic.h>
57 #include <sys/mkdev.h>
58 #include <sys/modctl.h>
59 #include <sys/refstr.h>
60 #include <sys/zfs_ioctl.h>
61 #include <sys/zfs_ctldir.h>
62 #include <sys/zfs_fuid.h>
63 #include <sys/bootconf.h>
64 #include <sys/sunddi.h>
65 #include <sys/dnlc.h>
66 #include <sys/dmu_objset.h>
67 #include <sys/spa_boot.h>
68 #include <sys/zpl.h>
69 #include "zfs_comutil.h"
70
71
72 /*ARGSUSED*/
73 int
74 zfs_sync(struct super_block *sb, int wait, cred_t *cr)
75 {
76 zfs_sb_t *zsb = sb->s_fs_info;
77
78 /*
79 * Data integrity is job one. We don't want a compromised kernel
80 * writing to the storage pool, so we never sync during panic.
81 */
82 if (unlikely(oops_in_progress))
83 return (0);
84
85 /*
86 * Semantically, the only requirement is that the sync be initiated.
87 * The DMU syncs out txgs frequently, so there's nothing to do.
88 */
89 if (!wait)
90 return (0);
91
92 if (zsb != NULL) {
93 /*
94 * Sync a specific filesystem.
95 */
96 dsl_pool_t *dp;
97
98 ZFS_ENTER(zsb);
99 dp = dmu_objset_pool(zsb->z_os);
100
101 /*
102 * If the system is shutting down, then skip any
103 * filesystems which may exist on a suspended pool.
104 */
105 if (spa_suspended(dp->dp_spa)) {
106 ZFS_EXIT(zsb);
107 return (0);
108 }
109
110 if (zsb->z_log != NULL)
111 zil_commit(zsb->z_log, 0);
112
113 ZFS_EXIT(zsb);
114 } else {
115 /*
116 * Sync all ZFS filesystems. This is what happens when you
117 * run sync(1M). Unlike other filesystems, ZFS honors the
118 * request by waiting for all pools to commit all dirty data.
119 */
120 spa_sync_allpools();
121 }
122
123 return (0);
124 }
125 EXPORT_SYMBOL(zfs_sync);
126
127 boolean_t
128 zfs_is_readonly(zfs_sb_t *zsb)
129 {
130 return (!!(zsb->z_sb->s_flags & MS_RDONLY));
131 }
132 EXPORT_SYMBOL(zfs_is_readonly);
133
134 static void
135 atime_changed_cb(void *arg, uint64_t newval)
136 {
137 ((zfs_sb_t *)arg)->z_atime = newval;
138 }
139
140 static void
141 xattr_changed_cb(void *arg, uint64_t newval)
142 {
143 zfs_sb_t *zsb = arg;
144
145 if (newval == ZFS_XATTR_OFF) {
146 zsb->z_flags &= ~ZSB_XATTR;
147 } else {
148 zsb->z_flags |= ZSB_XATTR;
149
150 if (newval == ZFS_XATTR_SA)
151 zsb->z_xattr_sa = B_TRUE;
152 else
153 zsb->z_xattr_sa = B_FALSE;
154 }
155 }
156
157 static void
158 acltype_changed_cb(void *arg, uint64_t newval)
159 {
160 zfs_sb_t *zsb = arg;
161
162 switch (newval) {
163 case ZFS_ACLTYPE_OFF:
164 zsb->z_acl_type = ZFS_ACLTYPE_OFF;
165 zsb->z_sb->s_flags &= ~MS_POSIXACL;
166 break;
167 case ZFS_ACLTYPE_POSIXACL:
168 #ifdef CONFIG_FS_POSIX_ACL
169 zsb->z_acl_type = ZFS_ACLTYPE_POSIXACL;
170 zsb->z_sb->s_flags |= MS_POSIXACL;
171 #else
172 zsb->z_acl_type = ZFS_ACLTYPE_OFF;
173 zsb->z_sb->s_flags &= ~MS_POSIXACL;
174 #endif /* CONFIG_FS_POSIX_ACL */
175 break;
176 default:
177 break;
178 }
179 }
180
181 static void
182 blksz_changed_cb(void *arg, uint64_t newval)
183 {
184 zfs_sb_t *zsb = arg;
185
186 if (newval < SPA_MINBLOCKSIZE ||
187 newval > SPA_MAXBLOCKSIZE || !ISP2(newval))
188 newval = SPA_MAXBLOCKSIZE;
189
190 zsb->z_max_blksz = newval;
191 }
192
193 static void
194 readonly_changed_cb(void *arg, uint64_t newval)
195 {
196 zfs_sb_t *zsb = arg;
197 struct super_block *sb = zsb->z_sb;
198
199 if (sb == NULL)
200 return;
201
202 if (newval)
203 sb->s_flags |= MS_RDONLY;
204 else
205 sb->s_flags &= ~MS_RDONLY;
206 }
207
208 static void
209 devices_changed_cb(void *arg, uint64_t newval)
210 {
211 }
212
213 static void
214 setuid_changed_cb(void *arg, uint64_t newval)
215 {
216 }
217
218 static void
219 exec_changed_cb(void *arg, uint64_t newval)
220 {
221 }
222
223 static void
224 nbmand_changed_cb(void *arg, uint64_t newval)
225 {
226 zfs_sb_t *zsb = arg;
227 struct super_block *sb = zsb->z_sb;
228
229 if (sb == NULL)
230 return;
231
232 if (newval == TRUE)
233 sb->s_flags |= MS_MANDLOCK;
234 else
235 sb->s_flags &= ~MS_MANDLOCK;
236 }
237
238 static void
239 snapdir_changed_cb(void *arg, uint64_t newval)
240 {
241 ((zfs_sb_t *)arg)->z_show_ctldir = newval;
242 }
243
244 static void
245 vscan_changed_cb(void *arg, uint64_t newval)
246 {
247 ((zfs_sb_t *)arg)->z_vscan = newval;
248 }
249
250 static void
251 acl_inherit_changed_cb(void *arg, uint64_t newval)
252 {
253 ((zfs_sb_t *)arg)->z_acl_inherit = newval;
254 }
255
256 int
257 zfs_register_callbacks(zfs_sb_t *zsb)
258 {
259 struct dsl_dataset *ds = NULL;
260 objset_t *os = zsb->z_os;
261 boolean_t do_readonly = B_FALSE;
262 int error = 0;
263
264 if (zfs_is_readonly(zsb) || !spa_writeable(dmu_objset_spa(os)))
265 do_readonly = B_TRUE;
266
267 /*
268 * Register property callbacks.
269 *
270 * It would probably be fine to just check for i/o error from
271 * the first prop_register(), but I guess I like to go
272 * overboard...
273 */
274 ds = dmu_objset_ds(os);
275 dsl_pool_config_enter(dmu_objset_pool(os), FTAG);
276 error = dsl_prop_register(ds,
277 zfs_prop_to_name(ZFS_PROP_ATIME), atime_changed_cb, zsb);
278 error = error ? error : dsl_prop_register(ds,
279 zfs_prop_to_name(ZFS_PROP_XATTR), xattr_changed_cb, zsb);
280 error = error ? error : dsl_prop_register(ds,
281 zfs_prop_to_name(ZFS_PROP_RECORDSIZE), blksz_changed_cb, zsb);
282 error = error ? error : dsl_prop_register(ds,
283 zfs_prop_to_name(ZFS_PROP_READONLY), readonly_changed_cb, zsb);
284 error = error ? error : dsl_prop_register(ds,
285 zfs_prop_to_name(ZFS_PROP_DEVICES), devices_changed_cb, zsb);
286 error = error ? error : dsl_prop_register(ds,
287 zfs_prop_to_name(ZFS_PROP_SETUID), setuid_changed_cb, zsb);
288 error = error ? error : dsl_prop_register(ds,
289 zfs_prop_to_name(ZFS_PROP_EXEC), exec_changed_cb, zsb);
290 error = error ? error : dsl_prop_register(ds,
291 zfs_prop_to_name(ZFS_PROP_SNAPDIR), snapdir_changed_cb, zsb);
292 error = error ? error : dsl_prop_register(ds,
293 zfs_prop_to_name(ZFS_PROP_ACLTYPE), acltype_changed_cb, zsb);
294 error = error ? error : dsl_prop_register(ds,
295 zfs_prop_to_name(ZFS_PROP_ACLINHERIT), acl_inherit_changed_cb, zsb);
296 error = error ? error : dsl_prop_register(ds,
297 zfs_prop_to_name(ZFS_PROP_VSCAN), vscan_changed_cb, zsb);
298 error = error ? error : dsl_prop_register(ds,
299 zfs_prop_to_name(ZFS_PROP_NBMAND), nbmand_changed_cb, zsb);
300 dsl_pool_config_exit(dmu_objset_pool(os), FTAG);
301 if (error)
302 goto unregister;
303
304 if (do_readonly)
305 readonly_changed_cb(zsb, B_TRUE);
306
307 return (0);
308
309 unregister:
310 /*
311 * We may attempt to unregister some callbacks that are not
312 * registered, but this is OK; it will simply return ENOMSG,
313 * which we will ignore.
314 */
315 (void) dsl_prop_unregister(ds, zfs_prop_to_name(ZFS_PROP_ATIME),
316 atime_changed_cb, zsb);
317 (void) dsl_prop_unregister(ds, zfs_prop_to_name(ZFS_PROP_XATTR),
318 xattr_changed_cb, zsb);
319 (void) dsl_prop_unregister(ds, zfs_prop_to_name(ZFS_PROP_RECORDSIZE),
320 blksz_changed_cb, zsb);
321 (void) dsl_prop_unregister(ds, zfs_prop_to_name(ZFS_PROP_READONLY),
322 readonly_changed_cb, zsb);
323 (void) dsl_prop_unregister(ds, zfs_prop_to_name(ZFS_PROP_DEVICES),
324 devices_changed_cb, zsb);
325 (void) dsl_prop_unregister(ds, zfs_prop_to_name(ZFS_PROP_SETUID),
326 setuid_changed_cb, zsb);
327 (void) dsl_prop_unregister(ds, zfs_prop_to_name(ZFS_PROP_EXEC),
328 exec_changed_cb, zsb);
329 (void) dsl_prop_unregister(ds, zfs_prop_to_name(ZFS_PROP_SNAPDIR),
330 snapdir_changed_cb, zsb);
331 (void) dsl_prop_unregister(ds, zfs_prop_to_name(ZFS_PROP_ACLTYPE),
332 acltype_changed_cb, zsb);
333 (void) dsl_prop_unregister(ds, zfs_prop_to_name(ZFS_PROP_ACLINHERIT),
334 acl_inherit_changed_cb, zsb);
335 (void) dsl_prop_unregister(ds, zfs_prop_to_name(ZFS_PROP_VSCAN),
336 vscan_changed_cb, zsb);
337 (void) dsl_prop_unregister(ds, zfs_prop_to_name(ZFS_PROP_NBMAND),
338 nbmand_changed_cb, zsb);
339
340 return (error);
341 }
342 EXPORT_SYMBOL(zfs_register_callbacks);
343
344 static int
345 zfs_space_delta_cb(dmu_object_type_t bonustype, void *data,
346 uint64_t *userp, uint64_t *groupp)
347 {
348 /*
349 * Is it a valid type of object to track?
350 */
351 if (bonustype != DMU_OT_ZNODE && bonustype != DMU_OT_SA)
352 return (SET_ERROR(ENOENT));
353
354 /*
355 * If we have a NULL data pointer
356 * then assume the id's aren't changing and
357 * return EEXIST to the dmu to let it know to
358 * use the same ids
359 */
360 if (data == NULL)
361 return (SET_ERROR(EEXIST));
362
363 if (bonustype == DMU_OT_ZNODE) {
364 znode_phys_t *znp = data;
365 *userp = znp->zp_uid;
366 *groupp = znp->zp_gid;
367 } else {
368 int hdrsize;
369 sa_hdr_phys_t *sap = data;
370 sa_hdr_phys_t sa = *sap;
371 boolean_t swap = B_FALSE;
372
373 ASSERT(bonustype == DMU_OT_SA);
374
375 if (sa.sa_magic == 0) {
376 /*
377 * This should only happen for newly created
378 * files that haven't had the znode data filled
379 * in yet.
380 */
381 *userp = 0;
382 *groupp = 0;
383 return (0);
384 }
385 if (sa.sa_magic == BSWAP_32(SA_MAGIC)) {
386 sa.sa_magic = SA_MAGIC;
387 sa.sa_layout_info = BSWAP_16(sa.sa_layout_info);
388 swap = B_TRUE;
389 } else {
390 VERIFY3U(sa.sa_magic, ==, SA_MAGIC);
391 }
392
393 hdrsize = sa_hdrsize(&sa);
394 VERIFY3U(hdrsize, >=, sizeof (sa_hdr_phys_t));
395 *userp = *((uint64_t *)((uintptr_t)data + hdrsize +
396 SA_UID_OFFSET));
397 *groupp = *((uint64_t *)((uintptr_t)data + hdrsize +
398 SA_GID_OFFSET));
399 if (swap) {
400 *userp = BSWAP_64(*userp);
401 *groupp = BSWAP_64(*groupp);
402 }
403 }
404 return (0);
405 }
406
407 static void
408 fuidstr_to_sid(zfs_sb_t *zsb, const char *fuidstr,
409 char *domainbuf, int buflen, uid_t *ridp)
410 {
411 uint64_t fuid;
412 const char *domain;
413
414 fuid = strtonum(fuidstr, NULL);
415
416 domain = zfs_fuid_find_by_idx(zsb, FUID_INDEX(fuid));
417 if (domain)
418 (void) strlcpy(domainbuf, domain, buflen);
419 else
420 domainbuf[0] = '\0';
421 *ridp = FUID_RID(fuid);
422 }
423
424 static uint64_t
425 zfs_userquota_prop_to_obj(zfs_sb_t *zsb, zfs_userquota_prop_t type)
426 {
427 switch (type) {
428 case ZFS_PROP_USERUSED:
429 return (DMU_USERUSED_OBJECT);
430 case ZFS_PROP_GROUPUSED:
431 return (DMU_GROUPUSED_OBJECT);
432 case ZFS_PROP_USERQUOTA:
433 return (zsb->z_userquota_obj);
434 case ZFS_PROP_GROUPQUOTA:
435 return (zsb->z_groupquota_obj);
436 default:
437 return (SET_ERROR(ENOTSUP));
438 }
439 return (0);
440 }
441
442 int
443 zfs_userspace_many(zfs_sb_t *zsb, zfs_userquota_prop_t type,
444 uint64_t *cookiep, void *vbuf, uint64_t *bufsizep)
445 {
446 int error;
447 zap_cursor_t zc;
448 zap_attribute_t za;
449 zfs_useracct_t *buf = vbuf;
450 uint64_t obj;
451
452 if (!dmu_objset_userspace_present(zsb->z_os))
453 return (SET_ERROR(ENOTSUP));
454
455 obj = zfs_userquota_prop_to_obj(zsb, type);
456 if (obj == 0) {
457 *bufsizep = 0;
458 return (0);
459 }
460
461 for (zap_cursor_init_serialized(&zc, zsb->z_os, obj, *cookiep);
462 (error = zap_cursor_retrieve(&zc, &za)) == 0;
463 zap_cursor_advance(&zc)) {
464 if ((uintptr_t)buf - (uintptr_t)vbuf + sizeof (zfs_useracct_t) >
465 *bufsizep)
466 break;
467
468 fuidstr_to_sid(zsb, za.za_name,
469 buf->zu_domain, sizeof (buf->zu_domain), &buf->zu_rid);
470
471 buf->zu_space = za.za_first_integer;
472 buf++;
473 }
474 if (error == ENOENT)
475 error = 0;
476
477 ASSERT3U((uintptr_t)buf - (uintptr_t)vbuf, <=, *bufsizep);
478 *bufsizep = (uintptr_t)buf - (uintptr_t)vbuf;
479 *cookiep = zap_cursor_serialize(&zc);
480 zap_cursor_fini(&zc);
481 return (error);
482 }
483 EXPORT_SYMBOL(zfs_userspace_many);
484
485 /*
486 * buf must be big enough (eg, 32 bytes)
487 */
488 static int
489 id_to_fuidstr(zfs_sb_t *zsb, const char *domain, uid_t rid,
490 char *buf, boolean_t addok)
491 {
492 uint64_t fuid;
493 int domainid = 0;
494
495 if (domain && domain[0]) {
496 domainid = zfs_fuid_find_by_domain(zsb, domain, NULL, addok);
497 if (domainid == -1)
498 return (SET_ERROR(ENOENT));
499 }
500 fuid = FUID_ENCODE(domainid, rid);
501 (void) sprintf(buf, "%llx", (longlong_t)fuid);
502 return (0);
503 }
504
505 int
506 zfs_userspace_one(zfs_sb_t *zsb, zfs_userquota_prop_t type,
507 const char *domain, uint64_t rid, uint64_t *valp)
508 {
509 char buf[32];
510 int err;
511 uint64_t obj;
512
513 *valp = 0;
514
515 if (!dmu_objset_userspace_present(zsb->z_os))
516 return (SET_ERROR(ENOTSUP));
517
518 obj = zfs_userquota_prop_to_obj(zsb, type);
519 if (obj == 0)
520 return (0);
521
522 err = id_to_fuidstr(zsb, domain, rid, buf, B_FALSE);
523 if (err)
524 return (err);
525
526 err = zap_lookup(zsb->z_os, obj, buf, 8, 1, valp);
527 if (err == ENOENT)
528 err = 0;
529 return (err);
530 }
531 EXPORT_SYMBOL(zfs_userspace_one);
532
533 int
534 zfs_set_userquota(zfs_sb_t *zsb, zfs_userquota_prop_t type,
535 const char *domain, uint64_t rid, uint64_t quota)
536 {
537 char buf[32];
538 int err;
539 dmu_tx_t *tx;
540 uint64_t *objp;
541 boolean_t fuid_dirtied;
542
543 if (type != ZFS_PROP_USERQUOTA && type != ZFS_PROP_GROUPQUOTA)
544 return (SET_ERROR(EINVAL));
545
546 if (zsb->z_version < ZPL_VERSION_USERSPACE)
547 return (SET_ERROR(ENOTSUP));
548
549 objp = (type == ZFS_PROP_USERQUOTA) ? &zsb->z_userquota_obj :
550 &zsb->z_groupquota_obj;
551
552 err = id_to_fuidstr(zsb, domain, rid, buf, B_TRUE);
553 if (err)
554 return (err);
555 fuid_dirtied = zsb->z_fuid_dirty;
556
557 tx = dmu_tx_create(zsb->z_os);
558 dmu_tx_hold_zap(tx, *objp ? *objp : DMU_NEW_OBJECT, B_TRUE, NULL);
559 if (*objp == 0) {
560 dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, B_TRUE,
561 zfs_userquota_prop_prefixes[type]);
562 }
563 if (fuid_dirtied)
564 zfs_fuid_txhold(zsb, tx);
565 err = dmu_tx_assign(tx, TXG_WAIT);
566 if (err) {
567 dmu_tx_abort(tx);
568 return (err);
569 }
570
571 mutex_enter(&zsb->z_lock);
572 if (*objp == 0) {
573 *objp = zap_create(zsb->z_os, DMU_OT_USERGROUP_QUOTA,
574 DMU_OT_NONE, 0, tx);
575 VERIFY(0 == zap_add(zsb->z_os, MASTER_NODE_OBJ,
576 zfs_userquota_prop_prefixes[type], 8, 1, objp, tx));
577 }
578 mutex_exit(&zsb->z_lock);
579
580 if (quota == 0) {
581 err = zap_remove(zsb->z_os, *objp, buf, tx);
582 if (err == ENOENT)
583 err = 0;
584 } else {
585 err = zap_update(zsb->z_os, *objp, buf, 8, 1, &quota, tx);
586 }
587 ASSERT(err == 0);
588 if (fuid_dirtied)
589 zfs_fuid_sync(zsb, tx);
590 dmu_tx_commit(tx);
591 return (err);
592 }
593 EXPORT_SYMBOL(zfs_set_userquota);
594
595 boolean_t
596 zfs_fuid_overquota(zfs_sb_t *zsb, boolean_t isgroup, uint64_t fuid)
597 {
598 char buf[32];
599 uint64_t used, quota, usedobj, quotaobj;
600 int err;
601
602 usedobj = isgroup ? DMU_GROUPUSED_OBJECT : DMU_USERUSED_OBJECT;
603 quotaobj = isgroup ? zsb->z_groupquota_obj : zsb->z_userquota_obj;
604
605 if (quotaobj == 0 || zsb->z_replay)
606 return (B_FALSE);
607
608 (void) sprintf(buf, "%llx", (longlong_t)fuid);
609 err = zap_lookup(zsb->z_os, quotaobj, buf, 8, 1, &quota);
610 if (err != 0)
611 return (B_FALSE);
612
613 err = zap_lookup(zsb->z_os, usedobj, buf, 8, 1, &used);
614 if (err != 0)
615 return (B_FALSE);
616 return (used >= quota);
617 }
618 EXPORT_SYMBOL(zfs_fuid_overquota);
619
620 boolean_t
621 zfs_owner_overquota(zfs_sb_t *zsb, znode_t *zp, boolean_t isgroup)
622 {
623 uint64_t fuid;
624 uint64_t quotaobj;
625
626 quotaobj = isgroup ? zsb->z_groupquota_obj : zsb->z_userquota_obj;
627
628 fuid = isgroup ? zp->z_gid : zp->z_uid;
629
630 if (quotaobj == 0 || zsb->z_replay)
631 return (B_FALSE);
632
633 return (zfs_fuid_overquota(zsb, isgroup, fuid));
634 }
635 EXPORT_SYMBOL(zfs_owner_overquota);
636
637 int
638 zfs_sb_create(const char *osname, zfs_sb_t **zsbp)
639 {
640 objset_t *os;
641 zfs_sb_t *zsb;
642 uint64_t zval;
643 int i, error;
644 uint64_t sa_obj;
645
646 zsb = kmem_zalloc(sizeof (zfs_sb_t), KM_SLEEP | KM_NODEBUG);
647
648 /*
649 * We claim to always be readonly so we can open snapshots;
650 * other ZPL code will prevent us from writing to snapshots.
651 */
652 error = dmu_objset_own(osname, DMU_OST_ZFS, B_TRUE, zsb, &os);
653 if (error) {
654 kmem_free(zsb, sizeof (zfs_sb_t));
655 return (error);
656 }
657
658 /*
659 * Initialize the zfs-specific filesystem structure.
660 * Should probably make this a kmem cache, shuffle fields,
661 * and just bzero up to z_hold_mtx[].
662 */
663 zsb->z_sb = NULL;
664 zsb->z_parent = zsb;
665 zsb->z_max_blksz = SPA_MAXBLOCKSIZE;
666 zsb->z_show_ctldir = ZFS_SNAPDIR_VISIBLE;
667 zsb->z_os = os;
668
669 error = zfs_get_zplprop(os, ZFS_PROP_VERSION, &zsb->z_version);
670 if (error) {
671 goto out;
672 } else if (zsb->z_version >
673 zfs_zpl_version_map(spa_version(dmu_objset_spa(os)))) {
674 (void) printk("Can't mount a version %lld file system "
675 "on a version %lld pool\n. Pool must be upgraded to mount "
676 "this file system.", (u_longlong_t)zsb->z_version,
677 (u_longlong_t)spa_version(dmu_objset_spa(os)));
678 error = SET_ERROR(ENOTSUP);
679 goto out;
680 }
681 if ((error = zfs_get_zplprop(os, ZFS_PROP_NORMALIZE, &zval)) != 0)
682 goto out;
683 zsb->z_norm = (int)zval;
684
685 if ((error = zfs_get_zplprop(os, ZFS_PROP_UTF8ONLY, &zval)) != 0)
686 goto out;
687 zsb->z_utf8 = (zval != 0);
688
689 if ((error = zfs_get_zplprop(os, ZFS_PROP_CASE, &zval)) != 0)
690 goto out;
691 zsb->z_case = (uint_t)zval;
692
693 if ((error = zfs_get_zplprop(os, ZFS_PROP_ACLTYPE, &zval)) != 0)
694 goto out;
695 zsb->z_acl_type = (uint_t)zval;
696
697 /*
698 * Fold case on file systems that are always or sometimes case
699 * insensitive.
700 */
701 if (zsb->z_case == ZFS_CASE_INSENSITIVE ||
702 zsb->z_case == ZFS_CASE_MIXED)
703 zsb->z_norm |= U8_TEXTPREP_TOUPPER;
704
705 zsb->z_use_fuids = USE_FUIDS(zsb->z_version, zsb->z_os);
706 zsb->z_use_sa = USE_SA(zsb->z_version, zsb->z_os);
707
708 if (zsb->z_use_sa) {
709 /* should either have both of these objects or none */
710 error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_SA_ATTRS, 8, 1,
711 &sa_obj);
712 if (error)
713 goto out;
714
715 error = zfs_get_zplprop(os, ZFS_PROP_XATTR, &zval);
716 if ((error == 0) && (zval == ZFS_XATTR_SA))
717 zsb->z_xattr_sa = B_TRUE;
718 } else {
719 /*
720 * Pre SA versions file systems should never touch
721 * either the attribute registration or layout objects.
722 */
723 sa_obj = 0;
724 }
725
726 error = sa_setup(os, sa_obj, zfs_attr_table, ZPL_END,
727 &zsb->z_attr_table);
728 if (error)
729 goto out;
730
731 if (zsb->z_version >= ZPL_VERSION_SA)
732 sa_register_update_callback(os, zfs_sa_upgrade);
733
734 error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_ROOT_OBJ, 8, 1,
735 &zsb->z_root);
736 if (error)
737 goto out;
738 ASSERT(zsb->z_root != 0);
739
740 error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_UNLINKED_SET, 8, 1,
741 &zsb->z_unlinkedobj);
742 if (error)
743 goto out;
744
745 error = zap_lookup(os, MASTER_NODE_OBJ,
746 zfs_userquota_prop_prefixes[ZFS_PROP_USERQUOTA],
747 8, 1, &zsb->z_userquota_obj);
748 if (error && error != ENOENT)
749 goto out;
750
751 error = zap_lookup(os, MASTER_NODE_OBJ,
752 zfs_userquota_prop_prefixes[ZFS_PROP_GROUPQUOTA],
753 8, 1, &zsb->z_groupquota_obj);
754 if (error && error != ENOENT)
755 goto out;
756
757 error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_FUID_TABLES, 8, 1,
758 &zsb->z_fuid_obj);
759 if (error && error != ENOENT)
760 goto out;
761
762 error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_SHARES_DIR, 8, 1,
763 &zsb->z_shares_dir);
764 if (error && error != ENOENT)
765 goto out;
766
767 mutex_init(&zsb->z_znodes_lock, NULL, MUTEX_DEFAULT, NULL);
768 mutex_init(&zsb->z_lock, NULL, MUTEX_DEFAULT, NULL);
769 list_create(&zsb->z_all_znodes, sizeof (znode_t),
770 offsetof(znode_t, z_link_node));
771 rrw_init(&zsb->z_teardown_lock, B_FALSE);
772 rw_init(&zsb->z_teardown_inactive_lock, NULL, RW_DEFAULT, NULL);
773 rw_init(&zsb->z_fuid_lock, NULL, RW_DEFAULT, NULL);
774 for (i = 0; i != ZFS_OBJ_MTX_SZ; i++)
775 mutex_init(&zsb->z_hold_mtx[i], NULL, MUTEX_DEFAULT, NULL);
776
777 avl_create(&zsb->z_ctldir_snaps, snapentry_compare,
778 sizeof (zfs_snapentry_t), offsetof(zfs_snapentry_t, se_node));
779 mutex_init(&zsb->z_ctldir_lock, NULL, MUTEX_DEFAULT, NULL);
780
781 *zsbp = zsb;
782 return (0);
783
784 out:
785 dmu_objset_disown(os, zsb);
786 *zsbp = NULL;
787 kmem_free(zsb, sizeof (zfs_sb_t));
788 return (error);
789 }
790 EXPORT_SYMBOL(zfs_sb_create);
791
792 int
793 zfs_sb_setup(zfs_sb_t *zsb, boolean_t mounting)
794 {
795 int error;
796
797 error = zfs_register_callbacks(zsb);
798 if (error)
799 return (error);
800
801 /*
802 * Set the objset user_ptr to track its zsb.
803 */
804 mutex_enter(&zsb->z_os->os_user_ptr_lock);
805 dmu_objset_set_user(zsb->z_os, zsb);
806 mutex_exit(&zsb->z_os->os_user_ptr_lock);
807
808 zsb->z_log = zil_open(zsb->z_os, zfs_get_data);
809
810 /*
811 * If we are not mounting (ie: online recv), then we don't
812 * have to worry about replaying the log as we blocked all
813 * operations out since we closed the ZIL.
814 */
815 if (mounting) {
816 boolean_t readonly;
817
818 /*
819 * During replay we remove the read only flag to
820 * allow replays to succeed.
821 */
822 readonly = zfs_is_readonly(zsb);
823 if (readonly != 0)
824 readonly_changed_cb(zsb, B_FALSE);
825 else
826 zfs_unlinked_drain(zsb);
827
828 /*
829 * Parse and replay the intent log.
830 *
831 * Because of ziltest, this must be done after
832 * zfs_unlinked_drain(). (Further note: ziltest
833 * doesn't use readonly mounts, where
834 * zfs_unlinked_drain() isn't called.) This is because
835 * ziltest causes spa_sync() to think it's committed,
836 * but actually it is not, so the intent log contains
837 * many txg's worth of changes.
838 *
839 * In particular, if object N is in the unlinked set in
840 * the last txg to actually sync, then it could be
841 * actually freed in a later txg and then reallocated
842 * in a yet later txg. This would write a "create
843 * object N" record to the intent log. Normally, this
844 * would be fine because the spa_sync() would have
845 * written out the fact that object N is free, before
846 * we could write the "create object N" intent log
847 * record.
848 *
849 * But when we are in ziltest mode, we advance the "open
850 * txg" without actually spa_sync()-ing the changes to
851 * disk. So we would see that object N is still
852 * allocated and in the unlinked set, and there is an
853 * intent log record saying to allocate it.
854 */
855 if (spa_writeable(dmu_objset_spa(zsb->z_os))) {
856 if (zil_replay_disable) {
857 zil_destroy(zsb->z_log, B_FALSE);
858 } else {
859 zsb->z_replay = B_TRUE;
860 zil_replay(zsb->z_os, zsb,
861 zfs_replay_vector);
862 zsb->z_replay = B_FALSE;
863 }
864 }
865
866 /* restore readonly bit */
867 if (readonly != 0)
868 readonly_changed_cb(zsb, B_TRUE);
869 }
870
871 return (0);
872 }
873 EXPORT_SYMBOL(zfs_sb_setup);
874
875 void
876 zfs_sb_free(zfs_sb_t *zsb)
877 {
878 int i;
879
880 zfs_fuid_destroy(zsb);
881
882 mutex_destroy(&zsb->z_znodes_lock);
883 mutex_destroy(&zsb->z_lock);
884 list_destroy(&zsb->z_all_znodes);
885 rrw_destroy(&zsb->z_teardown_lock);
886 rw_destroy(&zsb->z_teardown_inactive_lock);
887 rw_destroy(&zsb->z_fuid_lock);
888 for (i = 0; i != ZFS_OBJ_MTX_SZ; i++)
889 mutex_destroy(&zsb->z_hold_mtx[i]);
890 mutex_destroy(&zsb->z_ctldir_lock);
891 avl_destroy(&zsb->z_ctldir_snaps);
892 kmem_free(zsb, sizeof (zfs_sb_t));
893 }
894 EXPORT_SYMBOL(zfs_sb_free);
895
896 static void
897 zfs_set_fuid_feature(zfs_sb_t *zsb)
898 {
899 zsb->z_use_fuids = USE_FUIDS(zsb->z_version, zsb->z_os);
900 zsb->z_use_sa = USE_SA(zsb->z_version, zsb->z_os);
901 }
902
903 void
904 zfs_unregister_callbacks(zfs_sb_t *zsb)
905 {
906 objset_t *os = zsb->z_os;
907 struct dsl_dataset *ds;
908
909 /*
910 * Unregister properties.
911 */
912 if (!dmu_objset_is_snapshot(os)) {
913 ds = dmu_objset_ds(os);
914 VERIFY(dsl_prop_unregister(ds, "atime", atime_changed_cb,
915 zsb) == 0);
916
917 VERIFY(dsl_prop_unregister(ds, "xattr", xattr_changed_cb,
918 zsb) == 0);
919
920 VERIFY(dsl_prop_unregister(ds, "recordsize", blksz_changed_cb,
921 zsb) == 0);
922
923 VERIFY(dsl_prop_unregister(ds, "readonly", readonly_changed_cb,
924 zsb) == 0);
925
926 VERIFY(dsl_prop_unregister(ds, "devices", devices_changed_cb,
927 zsb) == 0);
928
929 VERIFY(dsl_prop_unregister(ds, "setuid", setuid_changed_cb,
930 zsb) == 0);
931
932 VERIFY(dsl_prop_unregister(ds, "exec", exec_changed_cb,
933 zsb) == 0);
934
935 VERIFY(dsl_prop_unregister(ds, "snapdir", snapdir_changed_cb,
936 zsb) == 0);
937
938 VERIFY(dsl_prop_unregister(ds, "acltype", acltype_changed_cb,
939 zsb) == 0);
940
941 VERIFY(dsl_prop_unregister(ds, "aclinherit",
942 acl_inherit_changed_cb, zsb) == 0);
943
944 VERIFY(dsl_prop_unregister(ds, "vscan",
945 vscan_changed_cb, zsb) == 0);
946
947 VERIFY(dsl_prop_unregister(ds, "nbmand",
948 nbmand_changed_cb, zsb) == 0);
949 }
950 }
951 EXPORT_SYMBOL(zfs_unregister_callbacks);
952
953 #ifdef HAVE_MLSLABEL
954 /*
955 * Check that the hex label string is appropriate for the dataset being
956 * mounted into the global_zone proper.
957 *
958 * Return an error if the hex label string is not default or
959 * admin_low/admin_high. For admin_low labels, the corresponding
960 * dataset must be readonly.
961 */
962 int
963 zfs_check_global_label(const char *dsname, const char *hexsl)
964 {
965 if (strcasecmp(hexsl, ZFS_MLSLABEL_DEFAULT) == 0)
966 return (0);
967 if (strcasecmp(hexsl, ADMIN_HIGH) == 0)
968 return (0);
969 if (strcasecmp(hexsl, ADMIN_LOW) == 0) {
970 /* must be readonly */
971 uint64_t rdonly;
972
973 if (dsl_prop_get_integer(dsname,
974 zfs_prop_to_name(ZFS_PROP_READONLY), &rdonly, NULL))
975 return (SET_ERROR(EACCES));
976 return (rdonly ? 0 : EACCES);
977 }
978 return (SET_ERROR(EACCES));
979 }
980 EXPORT_SYMBOL(zfs_check_global_label);
981 #endif /* HAVE_MLSLABEL */
982
983 int
984 zfs_statvfs(struct dentry *dentry, struct kstatfs *statp)
985 {
986 zfs_sb_t *zsb = dentry->d_sb->s_fs_info;
987 uint64_t refdbytes, availbytes, usedobjs, availobjs;
988 uint64_t fsid;
989 uint32_t bshift;
990
991 ZFS_ENTER(zsb);
992
993 dmu_objset_space(zsb->z_os,
994 &refdbytes, &availbytes, &usedobjs, &availobjs);
995
996 fsid = dmu_objset_fsid_guid(zsb->z_os);
997 /*
998 * The underlying storage pool actually uses multiple block
999 * size. Under Solaris frsize (fragment size) is reported as
1000 * the smallest block size we support, and bsize (block size)
1001 * as the filesystem's maximum block size. Unfortunately,
1002 * under Linux the fragment size and block size are often used
1003 * interchangeably. Thus we are forced to report both of them
1004 * as the filesystem's maximum block size.
1005 */
1006 statp->f_frsize = zsb->z_max_blksz;
1007 statp->f_bsize = zsb->z_max_blksz;
1008 bshift = fls(statp->f_bsize) - 1;
1009
1010 /*
1011 * The following report "total" blocks of various kinds in
1012 * the file system, but reported in terms of f_bsize - the
1013 * "preferred" size.
1014 */
1015
1016 statp->f_blocks = (refdbytes + availbytes) >> bshift;
1017 statp->f_bfree = availbytes >> bshift;
1018 statp->f_bavail = statp->f_bfree; /* no root reservation */
1019
1020 /*
1021 * statvfs() should really be called statufs(), because it assumes
1022 * static metadata. ZFS doesn't preallocate files, so the best
1023 * we can do is report the max that could possibly fit in f_files,
1024 * and that minus the number actually used in f_ffree.
1025 * For f_ffree, report the smaller of the number of object available
1026 * and the number of blocks (each object will take at least a block).
1027 */
1028 statp->f_ffree = MIN(availobjs, availbytes >> DNODE_SHIFT);
1029 statp->f_files = statp->f_ffree + usedobjs;
1030 statp->f_fsid.val[0] = (uint32_t)fsid;
1031 statp->f_fsid.val[1] = (uint32_t)(fsid >> 32);
1032 statp->f_type = ZFS_SUPER_MAGIC;
1033 statp->f_namelen = ZFS_MAXNAMELEN;
1034
1035 /*
1036 * We have all of 40 characters to stuff a string here.
1037 * Is there anything useful we could/should provide?
1038 */
1039 bzero(statp->f_spare, sizeof (statp->f_spare));
1040
1041 ZFS_EXIT(zsb);
1042 return (0);
1043 }
1044 EXPORT_SYMBOL(zfs_statvfs);
1045
1046 int
1047 zfs_root(zfs_sb_t *zsb, struct inode **ipp)
1048 {
1049 znode_t *rootzp;
1050 int error;
1051
1052 ZFS_ENTER(zsb);
1053
1054 error = zfs_zget(zsb, zsb->z_root, &rootzp);
1055 if (error == 0)
1056 *ipp = ZTOI(rootzp);
1057
1058 ZFS_EXIT(zsb);
1059 return (error);
1060 }
1061 EXPORT_SYMBOL(zfs_root);
1062
1063 #ifdef HAVE_SHRINK
1064 int
1065 zfs_sb_prune(struct super_block *sb, unsigned long nr_to_scan, int *objects)
1066 {
1067 zfs_sb_t *zsb = sb->s_fs_info;
1068 struct shrinker *shrinker = &sb->s_shrink;
1069 struct shrink_control sc = {
1070 .nr_to_scan = nr_to_scan,
1071 .gfp_mask = GFP_KERNEL,
1072 };
1073
1074 ZFS_ENTER(zsb);
1075 *objects = (*shrinker->shrink)(shrinker, &sc);
1076 ZFS_EXIT(zsb);
1077
1078 return (0);
1079 }
1080 EXPORT_SYMBOL(zfs_sb_prune);
1081 #endif /* HAVE_SHRINK */
1082
1083 /*
1084 * Teardown the zfs_sb_t.
1085 *
1086 * Note, if 'unmounting' if FALSE, we return with the 'z_teardown_lock'
1087 * and 'z_teardown_inactive_lock' held.
1088 */
1089 int
1090 zfs_sb_teardown(zfs_sb_t *zsb, boolean_t unmounting)
1091 {
1092 znode_t *zp;
1093
1094 rrw_enter(&zsb->z_teardown_lock, RW_WRITER, FTAG);
1095
1096 if (!unmounting) {
1097 /*
1098 * We purge the parent filesystem's super block as the
1099 * parent filesystem and all of its snapshots have their
1100 * inode's super block set to the parent's filesystem's
1101 * super block. Note, 'z_parent' is self referential
1102 * for non-snapshots.
1103 */
1104 shrink_dcache_sb(zsb->z_parent->z_sb);
1105 }
1106
1107 /*
1108 * If someone has not already unmounted this file system,
1109 * drain the iput_taskq to ensure all active references to the
1110 * zfs_sb_t have been handled only then can it be safely destroyed.
1111 */
1112 if (zsb->z_os)
1113 taskq_wait(dsl_pool_iput_taskq(dmu_objset_pool(zsb->z_os)));
1114
1115 /*
1116 * Close the zil. NB: Can't close the zil while zfs_inactive
1117 * threads are blocked as zil_close can call zfs_inactive.
1118 */
1119 if (zsb->z_log) {
1120 zil_close(zsb->z_log);
1121 zsb->z_log = NULL;
1122 }
1123
1124 rw_enter(&zsb->z_teardown_inactive_lock, RW_WRITER);
1125
1126 /*
1127 * If we are not unmounting (ie: online recv) and someone already
1128 * unmounted this file system while we were doing the switcheroo,
1129 * or a reopen of z_os failed then just bail out now.
1130 */
1131 if (!unmounting && (zsb->z_unmounted || zsb->z_os == NULL)) {
1132 rw_exit(&zsb->z_teardown_inactive_lock);
1133 rrw_exit(&zsb->z_teardown_lock, FTAG);
1134 return (SET_ERROR(EIO));
1135 }
1136
1137 /*
1138 * At this point there are no VFS ops active, and any new VFS ops
1139 * will fail with EIO since we have z_teardown_lock for writer (only
1140 * relevant for forced unmount).
1141 *
1142 * Release all holds on dbufs.
1143 */
1144 mutex_enter(&zsb->z_znodes_lock);
1145 for (zp = list_head(&zsb->z_all_znodes); zp != NULL;
1146 zp = list_next(&zsb->z_all_znodes, zp)) {
1147 if (zp->z_sa_hdl) {
1148 ASSERT(atomic_read(&ZTOI(zp)->i_count) > 0);
1149 zfs_znode_dmu_fini(zp);
1150 }
1151 }
1152 mutex_exit(&zsb->z_znodes_lock);
1153
1154 /*
1155 * If we are unmounting, set the unmounted flag and let new VFS ops
1156 * unblock. zfs_inactive will have the unmounted behavior, and all
1157 * other VFS ops will fail with EIO.
1158 */
1159 if (unmounting) {
1160 zsb->z_unmounted = B_TRUE;
1161 rrw_exit(&zsb->z_teardown_lock, FTAG);
1162 rw_exit(&zsb->z_teardown_inactive_lock);
1163 }
1164
1165 /*
1166 * z_os will be NULL if there was an error in attempting to reopen
1167 * zsb, so just return as the properties had already been
1168 *
1169 * unregistered and cached data had been evicted before.
1170 */
1171 if (zsb->z_os == NULL)
1172 return (0);
1173
1174 /*
1175 * Unregister properties.
1176 */
1177 zfs_unregister_callbacks(zsb);
1178
1179 /*
1180 * Evict cached data
1181 */
1182 if (dsl_dataset_is_dirty(dmu_objset_ds(zsb->z_os)) &&
1183 !zfs_is_readonly(zsb))
1184 txg_wait_synced(dmu_objset_pool(zsb->z_os), 0);
1185 dmu_objset_evict_dbufs(zsb->z_os);
1186
1187 return (0);
1188 }
1189 EXPORT_SYMBOL(zfs_sb_teardown);
1190
1191 #if defined(HAVE_BDI) && !defined(HAVE_BDI_SETUP_AND_REGISTER)
1192 atomic_long_t zfs_bdi_seq = ATOMIC_LONG_INIT(0);
1193 #endif /* HAVE_BDI && !HAVE_BDI_SETUP_AND_REGISTER */
1194
1195 int
1196 zfs_domount(struct super_block *sb, void *data, int silent)
1197 {
1198 zpl_mount_data_t *zmd = data;
1199 const char *osname = zmd->z_osname;
1200 zfs_sb_t *zsb;
1201 struct inode *root_inode;
1202 uint64_t recordsize;
1203 int error;
1204
1205 error = zfs_sb_create(osname, &zsb);
1206 if (error)
1207 return (error);
1208
1209 if ((error = dsl_prop_get_integer(osname, "recordsize",
1210 &recordsize, NULL)))
1211 goto out;
1212
1213 zsb->z_sb = sb;
1214 sb->s_fs_info = zsb;
1215 sb->s_magic = ZFS_SUPER_MAGIC;
1216 sb->s_maxbytes = MAX_LFS_FILESIZE;
1217 sb->s_time_gran = 1;
1218 sb->s_blocksize = recordsize;
1219 sb->s_blocksize_bits = ilog2(recordsize);
1220
1221 #ifdef HAVE_BDI
1222 /*
1223 * 2.6.32 API change,
1224 * Added backing_device_info (BDI) per super block interfaces. A BDI
1225 * must be configured when using a non-device backed filesystem for
1226 * proper writeback. This is not required for older pdflush kernels.
1227 *
1228 * NOTE: Linux read-ahead is disabled in favor of zfs read-ahead.
1229 */
1230 zsb->z_bdi.ra_pages = 0;
1231 sb->s_bdi = &zsb->z_bdi;
1232
1233 error = -bdi_setup_and_register(&zsb->z_bdi, "zfs", BDI_CAP_MAP_COPY);
1234 if (error)
1235 goto out;
1236 #endif /* HAVE_BDI */
1237
1238 /* Set callback operations for the file system. */
1239 sb->s_op = &zpl_super_operations;
1240 sb->s_xattr = zpl_xattr_handlers;
1241 sb->s_export_op = &zpl_export_operations;
1242 #ifdef HAVE_S_D_OP
1243 sb->s_d_op = &zpl_dentry_operations;
1244 #endif /* HAVE_S_D_OP */
1245
1246 /* Set features for file system. */
1247 zfs_set_fuid_feature(zsb);
1248
1249 if (dmu_objset_is_snapshot(zsb->z_os)) {
1250 uint64_t pval;
1251
1252 atime_changed_cb(zsb, B_FALSE);
1253 readonly_changed_cb(zsb, B_TRUE);
1254 if ((error = dsl_prop_get_integer(osname,"xattr",&pval,NULL)))
1255 goto out;
1256 xattr_changed_cb(zsb, pval);
1257 if ((error = dsl_prop_get_integer(osname,"acltype",&pval,NULL)))
1258 goto out;
1259 acltype_changed_cb(zsb, pval);
1260 zsb->z_issnap = B_TRUE;
1261 zsb->z_os->os_sync = ZFS_SYNC_DISABLED;
1262
1263 mutex_enter(&zsb->z_os->os_user_ptr_lock);
1264 dmu_objset_set_user(zsb->z_os, zsb);
1265 mutex_exit(&zsb->z_os->os_user_ptr_lock);
1266 } else {
1267 error = zfs_sb_setup(zsb, B_TRUE);
1268 }
1269
1270 /* Allocate a root inode for the filesystem. */
1271 error = zfs_root(zsb, &root_inode);
1272 if (error) {
1273 (void) zfs_umount(sb);
1274 goto out;
1275 }
1276
1277 /* Allocate a root dentry for the filesystem */
1278 sb->s_root = d_make_root(root_inode);
1279 if (sb->s_root == NULL) {
1280 (void) zfs_umount(sb);
1281 error = SET_ERROR(ENOMEM);
1282 goto out;
1283 }
1284
1285 if (!zsb->z_issnap)
1286 zfsctl_create(zsb);
1287 out:
1288 if (error) {
1289 dmu_objset_disown(zsb->z_os, zsb);
1290 zfs_sb_free(zsb);
1291 }
1292
1293 return (error);
1294 }
1295 EXPORT_SYMBOL(zfs_domount);
1296
1297 /*
1298 * Called when an unmount is requested and certain sanity checks have
1299 * already passed. At this point no dentries or inodes have been reclaimed
1300 * from their respective caches. We drop the extra reference on the .zfs
1301 * control directory to allow everything to be reclaimed. All snapshots
1302 * must already have been unmounted to reach this point.
1303 */
1304 void
1305 zfs_preumount(struct super_block *sb)
1306 {
1307 zfs_sb_t *zsb = sb->s_fs_info;
1308
1309 if (zsb != NULL && zsb->z_ctldir != NULL)
1310 zfsctl_destroy(zsb);
1311 }
1312 EXPORT_SYMBOL(zfs_preumount);
1313
1314 /*
1315 * Called once all other unmount released tear down has occurred.
1316 * It is our responsibility to release any remaining infrastructure.
1317 */
1318 /*ARGSUSED*/
1319 int
1320 zfs_umount(struct super_block *sb)
1321 {
1322 zfs_sb_t *zsb = sb->s_fs_info;
1323 objset_t *os;
1324
1325 VERIFY(zfs_sb_teardown(zsb, B_TRUE) == 0);
1326 os = zsb->z_os;
1327
1328 #ifdef HAVE_BDI
1329 bdi_destroy(sb->s_bdi);
1330 #endif /* HAVE_BDI */
1331
1332 /*
1333 * z_os will be NULL if there was an error in
1334 * attempting to reopen zsb.
1335 */
1336 if (os != NULL) {
1337 /*
1338 * Unset the objset user_ptr.
1339 */
1340 mutex_enter(&os->os_user_ptr_lock);
1341 dmu_objset_set_user(os, NULL);
1342 mutex_exit(&os->os_user_ptr_lock);
1343
1344 /*
1345 * Finally release the objset
1346 */
1347 dmu_objset_disown(os, zsb);
1348 }
1349
1350 zfs_sb_free(zsb);
1351 return (0);
1352 }
1353 EXPORT_SYMBOL(zfs_umount);
1354
1355 int
1356 zfs_remount(struct super_block *sb, int *flags, char *data)
1357 {
1358 /*
1359 * All namespace flags (MNT_*) and super block flags (MS_*) will
1360 * be handled by the Linux VFS. Only handle custom options here.
1361 */
1362 return (0);
1363 }
1364 EXPORT_SYMBOL(zfs_remount);
1365
1366 int
1367 zfs_vget(struct super_block *sb, struct inode **ipp, fid_t *fidp)
1368 {
1369 zfs_sb_t *zsb = sb->s_fs_info;
1370 znode_t *zp;
1371 uint64_t object = 0;
1372 uint64_t fid_gen = 0;
1373 uint64_t gen_mask;
1374 uint64_t zp_gen;
1375 int i, err;
1376
1377 *ipp = NULL;
1378
1379 ZFS_ENTER(zsb);
1380
1381 if (fidp->fid_len == LONG_FID_LEN) {
1382 zfid_long_t *zlfid = (zfid_long_t *)fidp;
1383 uint64_t objsetid = 0;
1384 uint64_t setgen = 0;
1385
1386 for (i = 0; i < sizeof (zlfid->zf_setid); i++)
1387 objsetid |= ((uint64_t)zlfid->zf_setid[i]) << (8 * i);
1388
1389 for (i = 0; i < sizeof (zlfid->zf_setgen); i++)
1390 setgen |= ((uint64_t)zlfid->zf_setgen[i]) << (8 * i);
1391
1392 ZFS_EXIT(zsb);
1393
1394 err = zfsctl_lookup_objset(sb, objsetid, &zsb);
1395 if (err)
1396 return (SET_ERROR(EINVAL));
1397
1398 ZFS_ENTER(zsb);
1399 }
1400
1401 if (fidp->fid_len == SHORT_FID_LEN || fidp->fid_len == LONG_FID_LEN) {
1402 zfid_short_t *zfid = (zfid_short_t *)fidp;
1403
1404 for (i = 0; i < sizeof (zfid->zf_object); i++)
1405 object |= ((uint64_t)zfid->zf_object[i]) << (8 * i);
1406
1407 for (i = 0; i < sizeof (zfid->zf_gen); i++)
1408 fid_gen |= ((uint64_t)zfid->zf_gen[i]) << (8 * i);
1409 } else {
1410 ZFS_EXIT(zsb);
1411 return (SET_ERROR(EINVAL));
1412 }
1413
1414 /* A zero fid_gen means we are in the .zfs control directories */
1415 if (fid_gen == 0 &&
1416 (object == ZFSCTL_INO_ROOT || object == ZFSCTL_INO_SNAPDIR)) {
1417 *ipp = zsb->z_ctldir;
1418 ASSERT(*ipp != NULL);
1419 if (object == ZFSCTL_INO_SNAPDIR) {
1420 VERIFY(zfsctl_root_lookup(*ipp, "snapshot", ipp,
1421 0, kcred, NULL, NULL) == 0);
1422 } else {
1423 igrab(*ipp);
1424 }
1425 ZFS_EXIT(zsb);
1426 return (0);
1427 }
1428
1429 gen_mask = -1ULL >> (64 - 8 * i);
1430
1431 dprintf("getting %llu [%u mask %llx]\n", object, fid_gen, gen_mask);
1432 if ((err = zfs_zget(zsb, object, &zp))) {
1433 ZFS_EXIT(zsb);
1434 return (err);
1435 }
1436 (void) sa_lookup(zp->z_sa_hdl, SA_ZPL_GEN(zsb), &zp_gen,
1437 sizeof (uint64_t));
1438 zp_gen = zp_gen & gen_mask;
1439 if (zp_gen == 0)
1440 zp_gen = 1;
1441 if (zp->z_unlinked || zp_gen != fid_gen) {
1442 dprintf("znode gen (%u) != fid gen (%u)\n", zp_gen, fid_gen);
1443 iput(ZTOI(zp));
1444 ZFS_EXIT(zsb);
1445 return (SET_ERROR(EINVAL));
1446 }
1447
1448 *ipp = ZTOI(zp);
1449 if (*ipp)
1450 zfs_inode_update(ITOZ(*ipp));
1451
1452 ZFS_EXIT(zsb);
1453 return (0);
1454 }
1455 EXPORT_SYMBOL(zfs_vget);
1456
1457 /*
1458 * Block out VFS ops and close zfs_sb_t
1459 *
1460 * Note, if successful, then we return with the 'z_teardown_lock' and
1461 * 'z_teardown_inactive_lock' write held. We leave ownership of the underlying
1462 * dataset and objset intact so that they can be atomically handed off during
1463 * a subsequent rollback or recv operation and the resume thereafter.
1464 */
1465 int
1466 zfs_suspend_fs(zfs_sb_t *zsb)
1467 {
1468 int error;
1469
1470 if ((error = zfs_sb_teardown(zsb, B_FALSE)) != 0)
1471 return (error);
1472
1473 return (0);
1474 }
1475 EXPORT_SYMBOL(zfs_suspend_fs);
1476
1477 /*
1478 * Reopen zfs_sb_t and release VFS ops.
1479 */
1480 int
1481 zfs_resume_fs(zfs_sb_t *zsb, const char *osname)
1482 {
1483 int err, err2;
1484 znode_t *zp;
1485 uint64_t sa_obj = 0;
1486
1487 ASSERT(RRW_WRITE_HELD(&zsb->z_teardown_lock));
1488 ASSERT(RW_WRITE_HELD(&zsb->z_teardown_inactive_lock));
1489
1490 /*
1491 * We already own this, so just hold and rele it to update the
1492 * objset_t, as the one we had before may have been evicted.
1493 */
1494 VERIFY0(dmu_objset_hold(osname, zsb, &zsb->z_os));
1495 VERIFY3P(zsb->z_os->os_dsl_dataset->ds_owner, ==, zsb);
1496 VERIFY(dsl_dataset_long_held(zsb->z_os->os_dsl_dataset));
1497 dmu_objset_rele(zsb->z_os, zsb);
1498
1499 /*
1500 * Make sure version hasn't changed
1501 */
1502
1503 err = zfs_get_zplprop(zsb->z_os, ZFS_PROP_VERSION,
1504 &zsb->z_version);
1505
1506 if (err)
1507 goto bail;
1508
1509 err = zap_lookup(zsb->z_os, MASTER_NODE_OBJ,
1510 ZFS_SA_ATTRS, 8, 1, &sa_obj);
1511
1512 if (err && zsb->z_version >= ZPL_VERSION_SA)
1513 goto bail;
1514
1515 if ((err = sa_setup(zsb->z_os, sa_obj,
1516 zfs_attr_table, ZPL_END, &zsb->z_attr_table)) != 0)
1517 goto bail;
1518
1519 if (zsb->z_version >= ZPL_VERSION_SA)
1520 sa_register_update_callback(zsb->z_os,
1521 zfs_sa_upgrade);
1522
1523 VERIFY(zfs_sb_setup(zsb, B_FALSE) == 0);
1524
1525 zfs_set_fuid_feature(zsb);
1526 zsb->z_rollback_time = jiffies;
1527
1528 /*
1529 * Attempt to re-establish all the active inodes with their
1530 * dbufs. If a zfs_rezget() fails, then we unhash the inode
1531 * and mark it stale. This prevents a collision if a new
1532 * inode/object is created which must use the same inode
1533 * number. The stale inode will be be released when the
1534 * VFS prunes the dentry holding the remaining references
1535 * on the stale inode.
1536 */
1537 mutex_enter(&zsb->z_znodes_lock);
1538 for (zp = list_head(&zsb->z_all_znodes); zp;
1539 zp = list_next(&zsb->z_all_znodes, zp)) {
1540 err2 = zfs_rezget(zp);
1541 if (err2) {
1542 remove_inode_hash(ZTOI(zp));
1543 zp->z_is_stale = B_TRUE;
1544 }
1545 }
1546 mutex_exit(&zsb->z_znodes_lock);
1547
1548 bail:
1549 /* release the VFS ops */
1550 rw_exit(&zsb->z_teardown_inactive_lock);
1551 rrw_exit(&zsb->z_teardown_lock, FTAG);
1552
1553 if (err) {
1554 /*
1555 * Since we couldn't setup the sa framework, try to force
1556 * unmount this file system.
1557 */
1558 if (zsb->z_os)
1559 (void) zfs_umount(zsb->z_sb);
1560 }
1561 return (err);
1562 }
1563 EXPORT_SYMBOL(zfs_resume_fs);
1564
1565 int
1566 zfs_set_version(zfs_sb_t *zsb, uint64_t newvers)
1567 {
1568 int error;
1569 objset_t *os = zsb->z_os;
1570 dmu_tx_t *tx;
1571
1572 if (newvers < ZPL_VERSION_INITIAL || newvers > ZPL_VERSION)
1573 return (SET_ERROR(EINVAL));
1574
1575 if (newvers < zsb->z_version)
1576 return (SET_ERROR(EINVAL));
1577
1578 if (zfs_spa_version_map(newvers) >
1579 spa_version(dmu_objset_spa(zsb->z_os)))
1580 return (SET_ERROR(ENOTSUP));
1581
1582 tx = dmu_tx_create(os);
1583 dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, B_FALSE, ZPL_VERSION_STR);
1584 if (newvers >= ZPL_VERSION_SA && !zsb->z_use_sa) {
1585 dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, B_TRUE,
1586 ZFS_SA_ATTRS);
1587 dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, FALSE, NULL);
1588 }
1589 error = dmu_tx_assign(tx, TXG_WAIT);
1590 if (error) {
1591 dmu_tx_abort(tx);
1592 return (error);
1593 }
1594
1595 error = zap_update(os, MASTER_NODE_OBJ, ZPL_VERSION_STR,
1596 8, 1, &newvers, tx);
1597
1598 if (error) {
1599 dmu_tx_commit(tx);
1600 return (error);
1601 }
1602
1603 if (newvers >= ZPL_VERSION_SA && !zsb->z_use_sa) {
1604 uint64_t sa_obj;
1605
1606 ASSERT3U(spa_version(dmu_objset_spa(zsb->z_os)), >=,
1607 SPA_VERSION_SA);
1608 sa_obj = zap_create(os, DMU_OT_SA_MASTER_NODE,
1609 DMU_OT_NONE, 0, tx);
1610
1611 error = zap_add(os, MASTER_NODE_OBJ,
1612 ZFS_SA_ATTRS, 8, 1, &sa_obj, tx);
1613 ASSERT0(error);
1614
1615 VERIFY(0 == sa_set_sa_object(os, sa_obj));
1616 sa_register_update_callback(os, zfs_sa_upgrade);
1617 }
1618
1619 spa_history_log_internal_ds(dmu_objset_ds(os), "upgrade", tx,
1620 "from %llu to %llu", zsb->z_version, newvers);
1621
1622 dmu_tx_commit(tx);
1623
1624 zsb->z_version = newvers;
1625
1626 zfs_set_fuid_feature(zsb);
1627
1628 return (0);
1629 }
1630 EXPORT_SYMBOL(zfs_set_version);
1631
1632 /*
1633 * Read a property stored within the master node.
1634 */
1635 int
1636 zfs_get_zplprop(objset_t *os, zfs_prop_t prop, uint64_t *value)
1637 {
1638 const char *pname;
1639 int error = SET_ERROR(ENOENT);
1640
1641 /*
1642 * Look up the file system's value for the property. For the
1643 * version property, we look up a slightly different string.
1644 */
1645 if (prop == ZFS_PROP_VERSION)
1646 pname = ZPL_VERSION_STR;
1647 else
1648 pname = zfs_prop_to_name(prop);
1649
1650 if (os != NULL)
1651 error = zap_lookup(os, MASTER_NODE_OBJ, pname, 8, 1, value);
1652
1653 if (error == ENOENT) {
1654 /* No value set, use the default value */
1655 switch (prop) {
1656 case ZFS_PROP_VERSION:
1657 *value = ZPL_VERSION;
1658 break;
1659 case ZFS_PROP_NORMALIZE:
1660 case ZFS_PROP_UTF8ONLY:
1661 *value = 0;
1662 break;
1663 case ZFS_PROP_CASE:
1664 *value = ZFS_CASE_SENSITIVE;
1665 break;
1666 case ZFS_PROP_ACLTYPE:
1667 *value = ZFS_ACLTYPE_OFF;
1668 break;
1669 default:
1670 return (error);
1671 }
1672 error = 0;
1673 }
1674 return (error);
1675 }
1676 EXPORT_SYMBOL(zfs_get_zplprop);
1677
1678 void
1679 zfs_init(void)
1680 {
1681 zfsctl_init();
1682 zfs_znode_init();
1683 dmu_objset_register_type(DMU_OST_ZFS, zfs_space_delta_cb);
1684 register_filesystem(&zpl_fs_type);
1685 (void) arc_add_prune_callback(zpl_prune_sbs, NULL);
1686 }
1687
1688 void
1689 zfs_fini(void)
1690 {
1691 taskq_wait(system_taskq);
1692 unregister_filesystem(&zpl_fs_type);
1693 zfs_znode_fini();
1694 zfsctl_fini();
1695 }