]> git.proxmox.com Git - mirror_zfs.git/blob - module/zfs/zfs_vfsops.c
Batch free zpl_posix_acl_release
[mirror_zfs.git] / module / zfs / zfs_vfsops.c
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2012, 2014 by Delphix. All rights reserved.
24 */
25
26 /* Portions Copyright 2010 Robert Milkowski */
27
28 #include <sys/types.h>
29 #include <sys/param.h>
30 #include <sys/systm.h>
31 #include <sys/sysmacros.h>
32 #include <sys/kmem.h>
33 #include <sys/pathname.h>
34 #include <sys/vnode.h>
35 #include <sys/vfs.h>
36 #include <sys/vfs_opreg.h>
37 #include <sys/mntent.h>
38 #include <sys/mount.h>
39 #include <sys/cmn_err.h>
40 #include "fs/fs_subr.h"
41 #include <sys/zfs_znode.h>
42 #include <sys/zfs_vnops.h>
43 #include <sys/zfs_dir.h>
44 #include <sys/zil.h>
45 #include <sys/fs/zfs.h>
46 #include <sys/dmu.h>
47 #include <sys/dsl_prop.h>
48 #include <sys/dsl_dataset.h>
49 #include <sys/dsl_deleg.h>
50 #include <sys/spa.h>
51 #include <sys/zap.h>
52 #include <sys/sa.h>
53 #include <sys/sa_impl.h>
54 #include <sys/varargs.h>
55 #include <sys/policy.h>
56 #include <sys/atomic.h>
57 #include <sys/mkdev.h>
58 #include <sys/modctl.h>
59 #include <sys/refstr.h>
60 #include <sys/zfs_ioctl.h>
61 #include <sys/zfs_ctldir.h>
62 #include <sys/zfs_fuid.h>
63 #include <sys/bootconf.h>
64 #include <sys/sunddi.h>
65 #include <sys/dnlc.h>
66 #include <sys/dmu_objset.h>
67 #include <sys/spa_boot.h>
68 #include <sys/zpl.h>
69 #include "zfs_comutil.h"
70
71 /*ARGSUSED*/
72 int
73 zfs_sync(struct super_block *sb, int wait, cred_t *cr)
74 {
75 zfs_sb_t *zsb = sb->s_fs_info;
76
77 /*
78 * Data integrity is job one. We don't want a compromised kernel
79 * writing to the storage pool, so we never sync during panic.
80 */
81 if (unlikely(oops_in_progress))
82 return (0);
83
84 /*
85 * Semantically, the only requirement is that the sync be initiated.
86 * The DMU syncs out txgs frequently, so there's nothing to do.
87 */
88 if (!wait)
89 return (0);
90
91 if (zsb != NULL) {
92 /*
93 * Sync a specific filesystem.
94 */
95 dsl_pool_t *dp;
96
97 ZFS_ENTER(zsb);
98 dp = dmu_objset_pool(zsb->z_os);
99
100 /*
101 * If the system is shutting down, then skip any
102 * filesystems which may exist on a suspended pool.
103 */
104 if (spa_suspended(dp->dp_spa)) {
105 ZFS_EXIT(zsb);
106 return (0);
107 }
108
109 if (zsb->z_log != NULL)
110 zil_commit(zsb->z_log, 0);
111
112 ZFS_EXIT(zsb);
113 } else {
114 /*
115 * Sync all ZFS filesystems. This is what happens when you
116 * run sync(1M). Unlike other filesystems, ZFS honors the
117 * request by waiting for all pools to commit all dirty data.
118 */
119 spa_sync_allpools();
120 }
121
122 return (0);
123 }
124 EXPORT_SYMBOL(zfs_sync);
125
126 boolean_t
127 zfs_is_readonly(zfs_sb_t *zsb)
128 {
129 return (!!(zsb->z_sb->s_flags & MS_RDONLY));
130 }
131 EXPORT_SYMBOL(zfs_is_readonly);
132
133 static void
134 atime_changed_cb(void *arg, uint64_t newval)
135 {
136 ((zfs_sb_t *)arg)->z_atime = newval;
137 }
138
139 static void
140 relatime_changed_cb(void *arg, uint64_t newval)
141 {
142 ((zfs_sb_t *)arg)->z_relatime = newval;
143 }
144
145 static void
146 xattr_changed_cb(void *arg, uint64_t newval)
147 {
148 zfs_sb_t *zsb = arg;
149
150 if (newval == ZFS_XATTR_OFF) {
151 zsb->z_flags &= ~ZSB_XATTR;
152 } else {
153 zsb->z_flags |= ZSB_XATTR;
154
155 if (newval == ZFS_XATTR_SA)
156 zsb->z_xattr_sa = B_TRUE;
157 else
158 zsb->z_xattr_sa = B_FALSE;
159 }
160 }
161
162 static void
163 acltype_changed_cb(void *arg, uint64_t newval)
164 {
165 zfs_sb_t *zsb = arg;
166
167 switch (newval) {
168 case ZFS_ACLTYPE_OFF:
169 zsb->z_acl_type = ZFS_ACLTYPE_OFF;
170 zsb->z_sb->s_flags &= ~MS_POSIXACL;
171 break;
172 case ZFS_ACLTYPE_POSIXACL:
173 #ifdef CONFIG_FS_POSIX_ACL
174 zsb->z_acl_type = ZFS_ACLTYPE_POSIXACL;
175 zsb->z_sb->s_flags |= MS_POSIXACL;
176 #else
177 zsb->z_acl_type = ZFS_ACLTYPE_OFF;
178 zsb->z_sb->s_flags &= ~MS_POSIXACL;
179 #endif /* CONFIG_FS_POSIX_ACL */
180 break;
181 default:
182 break;
183 }
184 }
185
186 static void
187 blksz_changed_cb(void *arg, uint64_t newval)
188 {
189 zfs_sb_t *zsb = arg;
190 ASSERT3U(newval, <=, spa_maxblocksize(dmu_objset_spa(zsb->z_os)));
191 ASSERT3U(newval, >=, SPA_MINBLOCKSIZE);
192 ASSERT(ISP2(newval));
193
194 zsb->z_max_blksz = newval;
195 }
196
197 static void
198 readonly_changed_cb(void *arg, uint64_t newval)
199 {
200 zfs_sb_t *zsb = arg;
201 struct super_block *sb = zsb->z_sb;
202
203 if (sb == NULL)
204 return;
205
206 if (newval)
207 sb->s_flags |= MS_RDONLY;
208 else
209 sb->s_flags &= ~MS_RDONLY;
210 }
211
212 static void
213 devices_changed_cb(void *arg, uint64_t newval)
214 {
215 }
216
217 static void
218 setuid_changed_cb(void *arg, uint64_t newval)
219 {
220 }
221
222 static void
223 exec_changed_cb(void *arg, uint64_t newval)
224 {
225 }
226
227 static void
228 nbmand_changed_cb(void *arg, uint64_t newval)
229 {
230 zfs_sb_t *zsb = arg;
231 struct super_block *sb = zsb->z_sb;
232
233 if (sb == NULL)
234 return;
235
236 if (newval == TRUE)
237 sb->s_flags |= MS_MANDLOCK;
238 else
239 sb->s_flags &= ~MS_MANDLOCK;
240 }
241
242 static void
243 snapdir_changed_cb(void *arg, uint64_t newval)
244 {
245 ((zfs_sb_t *)arg)->z_show_ctldir = newval;
246 }
247
248 static void
249 vscan_changed_cb(void *arg, uint64_t newval)
250 {
251 ((zfs_sb_t *)arg)->z_vscan = newval;
252 }
253
254 static void
255 acl_inherit_changed_cb(void *arg, uint64_t newval)
256 {
257 ((zfs_sb_t *)arg)->z_acl_inherit = newval;
258 }
259
260 int
261 zfs_register_callbacks(zfs_sb_t *zsb)
262 {
263 struct dsl_dataset *ds = NULL;
264 objset_t *os = zsb->z_os;
265 zfs_mntopts_t *zmo = zsb->z_mntopts;
266 int error = 0;
267
268 ASSERT(zsb);
269 ASSERT(zmo);
270
271 /*
272 * The act of registering our callbacks will destroy any mount
273 * options we may have. In order to enable temporary overrides
274 * of mount options, we stash away the current values and
275 * restore them after we register the callbacks.
276 */
277 if (zfs_is_readonly(zsb) || !spa_writeable(dmu_objset_spa(os))) {
278 zmo->z_do_readonly = B_TRUE;
279 zmo->z_readonly = B_TRUE;
280 }
281
282 /*
283 * Register property callbacks.
284 *
285 * It would probably be fine to just check for i/o error from
286 * the first prop_register(), but I guess I like to go
287 * overboard...
288 */
289 ds = dmu_objset_ds(os);
290 dsl_pool_config_enter(dmu_objset_pool(os), FTAG);
291 error = dsl_prop_register(ds,
292 zfs_prop_to_name(ZFS_PROP_ATIME), atime_changed_cb, zsb);
293 error = error ? error : dsl_prop_register(ds,
294 zfs_prop_to_name(ZFS_PROP_RELATIME), relatime_changed_cb, zsb);
295 error = error ? error : dsl_prop_register(ds,
296 zfs_prop_to_name(ZFS_PROP_XATTR), xattr_changed_cb, zsb);
297 error = error ? error : dsl_prop_register(ds,
298 zfs_prop_to_name(ZFS_PROP_RECORDSIZE), blksz_changed_cb, zsb);
299 error = error ? error : dsl_prop_register(ds,
300 zfs_prop_to_name(ZFS_PROP_READONLY), readonly_changed_cb, zsb);
301 error = error ? error : dsl_prop_register(ds,
302 zfs_prop_to_name(ZFS_PROP_DEVICES), devices_changed_cb, zsb);
303 error = error ? error : dsl_prop_register(ds,
304 zfs_prop_to_name(ZFS_PROP_SETUID), setuid_changed_cb, zsb);
305 error = error ? error : dsl_prop_register(ds,
306 zfs_prop_to_name(ZFS_PROP_EXEC), exec_changed_cb, zsb);
307 error = error ? error : dsl_prop_register(ds,
308 zfs_prop_to_name(ZFS_PROP_SNAPDIR), snapdir_changed_cb, zsb);
309 error = error ? error : dsl_prop_register(ds,
310 zfs_prop_to_name(ZFS_PROP_ACLTYPE), acltype_changed_cb, zsb);
311 error = error ? error : dsl_prop_register(ds,
312 zfs_prop_to_name(ZFS_PROP_ACLINHERIT), acl_inherit_changed_cb, zsb);
313 error = error ? error : dsl_prop_register(ds,
314 zfs_prop_to_name(ZFS_PROP_VSCAN), vscan_changed_cb, zsb);
315 error = error ? error : dsl_prop_register(ds,
316 zfs_prop_to_name(ZFS_PROP_NBMAND), nbmand_changed_cb, zsb);
317 dsl_pool_config_exit(dmu_objset_pool(os), FTAG);
318 if (error)
319 goto unregister;
320
321 /*
322 * Invoke our callbacks to restore temporary mount options.
323 */
324 if (zmo->z_do_readonly)
325 readonly_changed_cb(zsb, zmo->z_readonly);
326 if (zmo->z_do_setuid)
327 setuid_changed_cb(zsb, zmo->z_setuid);
328 if (zmo->z_do_exec)
329 exec_changed_cb(zsb, zmo->z_exec);
330 if (zmo->z_do_devices)
331 devices_changed_cb(zsb, zmo->z_devices);
332 if (zmo->z_do_xattr)
333 xattr_changed_cb(zsb, zmo->z_xattr);
334 if (zmo->z_do_atime)
335 atime_changed_cb(zsb, zmo->z_atime);
336 if (zmo->z_do_relatime)
337 relatime_changed_cb(zsb, zmo->z_relatime);
338 if (zmo->z_do_nbmand)
339 nbmand_changed_cb(zsb, zmo->z_nbmand);
340
341 return (0);
342
343 unregister:
344 dsl_prop_unregister_all(ds, zsb);
345 return (error);
346 }
347 EXPORT_SYMBOL(zfs_register_callbacks);
348
349 static int
350 zfs_space_delta_cb(dmu_object_type_t bonustype, void *data,
351 uint64_t *userp, uint64_t *groupp)
352 {
353 /*
354 * Is it a valid type of object to track?
355 */
356 if (bonustype != DMU_OT_ZNODE && bonustype != DMU_OT_SA)
357 return (SET_ERROR(ENOENT));
358
359 /*
360 * If we have a NULL data pointer
361 * then assume the id's aren't changing and
362 * return EEXIST to the dmu to let it know to
363 * use the same ids
364 */
365 if (data == NULL)
366 return (SET_ERROR(EEXIST));
367
368 if (bonustype == DMU_OT_ZNODE) {
369 znode_phys_t *znp = data;
370 *userp = znp->zp_uid;
371 *groupp = znp->zp_gid;
372 } else {
373 int hdrsize;
374 sa_hdr_phys_t *sap = data;
375 sa_hdr_phys_t sa = *sap;
376 boolean_t swap = B_FALSE;
377
378 ASSERT(bonustype == DMU_OT_SA);
379
380 if (sa.sa_magic == 0) {
381 /*
382 * This should only happen for newly created
383 * files that haven't had the znode data filled
384 * in yet.
385 */
386 *userp = 0;
387 *groupp = 0;
388 return (0);
389 }
390 if (sa.sa_magic == BSWAP_32(SA_MAGIC)) {
391 sa.sa_magic = SA_MAGIC;
392 sa.sa_layout_info = BSWAP_16(sa.sa_layout_info);
393 swap = B_TRUE;
394 } else {
395 VERIFY3U(sa.sa_magic, ==, SA_MAGIC);
396 }
397
398 hdrsize = sa_hdrsize(&sa);
399 VERIFY3U(hdrsize, >=, sizeof (sa_hdr_phys_t));
400 *userp = *((uint64_t *)((uintptr_t)data + hdrsize +
401 SA_UID_OFFSET));
402 *groupp = *((uint64_t *)((uintptr_t)data + hdrsize +
403 SA_GID_OFFSET));
404 if (swap) {
405 *userp = BSWAP_64(*userp);
406 *groupp = BSWAP_64(*groupp);
407 }
408 }
409 return (0);
410 }
411
412 static void
413 fuidstr_to_sid(zfs_sb_t *zsb, const char *fuidstr,
414 char *domainbuf, int buflen, uid_t *ridp)
415 {
416 uint64_t fuid;
417 const char *domain;
418
419 fuid = strtonum(fuidstr, NULL);
420
421 domain = zfs_fuid_find_by_idx(zsb, FUID_INDEX(fuid));
422 if (domain)
423 (void) strlcpy(domainbuf, domain, buflen);
424 else
425 domainbuf[0] = '\0';
426 *ridp = FUID_RID(fuid);
427 }
428
429 static uint64_t
430 zfs_userquota_prop_to_obj(zfs_sb_t *zsb, zfs_userquota_prop_t type)
431 {
432 switch (type) {
433 case ZFS_PROP_USERUSED:
434 case ZFS_PROP_USEROBJUSED:
435 return (DMU_USERUSED_OBJECT);
436 case ZFS_PROP_GROUPUSED:
437 case ZFS_PROP_GROUPOBJUSED:
438 return (DMU_GROUPUSED_OBJECT);
439 case ZFS_PROP_USERQUOTA:
440 return (zsb->z_userquota_obj);
441 case ZFS_PROP_GROUPQUOTA:
442 return (zsb->z_groupquota_obj);
443 case ZFS_PROP_USEROBJQUOTA:
444 return (zsb->z_userobjquota_obj);
445 case ZFS_PROP_GROUPOBJQUOTA:
446 return (zsb->z_groupobjquota_obj);
447 default:
448 return (ZFS_NO_OBJECT);
449 }
450 }
451
452 int
453 zfs_userspace_many(zfs_sb_t *zsb, zfs_userquota_prop_t type,
454 uint64_t *cookiep, void *vbuf, uint64_t *bufsizep)
455 {
456 int error;
457 zap_cursor_t zc;
458 zap_attribute_t za;
459 zfs_useracct_t *buf = vbuf;
460 uint64_t obj;
461 int offset = 0;
462
463 if (!dmu_objset_userspace_present(zsb->z_os))
464 return (SET_ERROR(ENOTSUP));
465
466 if ((type == ZFS_PROP_USEROBJUSED || type == ZFS_PROP_GROUPOBJUSED ||
467 type == ZFS_PROP_USEROBJQUOTA || type == ZFS_PROP_GROUPOBJQUOTA) &&
468 !dmu_objset_userobjspace_present(zsb->z_os))
469 return (SET_ERROR(ENOTSUP));
470
471 obj = zfs_userquota_prop_to_obj(zsb, type);
472 if (obj == ZFS_NO_OBJECT) {
473 *bufsizep = 0;
474 return (0);
475 }
476
477 if (type == ZFS_PROP_USEROBJUSED || type == ZFS_PROP_GROUPOBJUSED)
478 offset = DMU_OBJACCT_PREFIX_LEN;
479
480 for (zap_cursor_init_serialized(&zc, zsb->z_os, obj, *cookiep);
481 (error = zap_cursor_retrieve(&zc, &za)) == 0;
482 zap_cursor_advance(&zc)) {
483 if ((uintptr_t)buf - (uintptr_t)vbuf + sizeof (zfs_useracct_t) >
484 *bufsizep)
485 break;
486
487 /*
488 * skip object quota (with zap name prefix DMU_OBJACCT_PREFIX)
489 * when dealing with block quota and vice versa.
490 */
491 if ((offset > 0) != (strncmp(za.za_name, DMU_OBJACCT_PREFIX,
492 DMU_OBJACCT_PREFIX_LEN) == 0))
493 continue;
494
495 fuidstr_to_sid(zsb, za.za_name + offset,
496 buf->zu_domain, sizeof (buf->zu_domain), &buf->zu_rid);
497
498 buf->zu_space = za.za_first_integer;
499 buf++;
500 }
501 if (error == ENOENT)
502 error = 0;
503
504 ASSERT3U((uintptr_t)buf - (uintptr_t)vbuf, <=, *bufsizep);
505 *bufsizep = (uintptr_t)buf - (uintptr_t)vbuf;
506 *cookiep = zap_cursor_serialize(&zc);
507 zap_cursor_fini(&zc);
508 return (error);
509 }
510 EXPORT_SYMBOL(zfs_userspace_many);
511
512 /*
513 * buf must be big enough (eg, 32 bytes)
514 */
515 static int
516 id_to_fuidstr(zfs_sb_t *zsb, const char *domain, uid_t rid,
517 char *buf, boolean_t addok)
518 {
519 uint64_t fuid;
520 int domainid = 0;
521
522 if (domain && domain[0]) {
523 domainid = zfs_fuid_find_by_domain(zsb, domain, NULL, addok);
524 if (domainid == -1)
525 return (SET_ERROR(ENOENT));
526 }
527 fuid = FUID_ENCODE(domainid, rid);
528 (void) sprintf(buf, "%llx", (longlong_t)fuid);
529 return (0);
530 }
531
532 int
533 zfs_userspace_one(zfs_sb_t *zsb, zfs_userquota_prop_t type,
534 const char *domain, uint64_t rid, uint64_t *valp)
535 {
536 char buf[20 + DMU_OBJACCT_PREFIX_LEN];
537 int offset = 0;
538 int err;
539 uint64_t obj;
540
541 *valp = 0;
542
543 if (!dmu_objset_userspace_present(zsb->z_os))
544 return (SET_ERROR(ENOTSUP));
545
546 if ((type == ZFS_PROP_USEROBJUSED || type == ZFS_PROP_GROUPOBJUSED ||
547 type == ZFS_PROP_USEROBJQUOTA || type == ZFS_PROP_GROUPOBJQUOTA) &&
548 !dmu_objset_userobjspace_present(zsb->z_os))
549 return (SET_ERROR(ENOTSUP));
550
551 obj = zfs_userquota_prop_to_obj(zsb, type);
552 if (obj == ZFS_NO_OBJECT)
553 return (0);
554
555 if (type == ZFS_PROP_USEROBJUSED || type == ZFS_PROP_GROUPOBJUSED) {
556 strlcpy(buf, DMU_OBJACCT_PREFIX, DMU_OBJACCT_PREFIX_LEN);
557 offset = DMU_OBJACCT_PREFIX_LEN;
558 }
559
560 err = id_to_fuidstr(zsb, domain, rid, buf + offset, B_FALSE);
561 if (err)
562 return (err);
563
564 err = zap_lookup(zsb->z_os, obj, buf, 8, 1, valp);
565 if (err == ENOENT)
566 err = 0;
567 return (err);
568 }
569 EXPORT_SYMBOL(zfs_userspace_one);
570
571 int
572 zfs_set_userquota(zfs_sb_t *zsb, zfs_userquota_prop_t type,
573 const char *domain, uint64_t rid, uint64_t quota)
574 {
575 char buf[32];
576 int err;
577 dmu_tx_t *tx;
578 uint64_t *objp;
579 boolean_t fuid_dirtied;
580
581 if (zsb->z_version < ZPL_VERSION_USERSPACE)
582 return (SET_ERROR(ENOTSUP));
583
584 switch (type) {
585 case ZFS_PROP_USERQUOTA:
586 objp = &zsb->z_userquota_obj;
587 break;
588 case ZFS_PROP_GROUPQUOTA:
589 objp = &zsb->z_groupquota_obj;
590 break;
591 case ZFS_PROP_USEROBJQUOTA:
592 objp = &zsb->z_userobjquota_obj;
593 break;
594 case ZFS_PROP_GROUPOBJQUOTA:
595 objp = &zsb->z_groupobjquota_obj;
596 break;
597 default:
598 return (SET_ERROR(EINVAL));
599 }
600
601 err = id_to_fuidstr(zsb, domain, rid, buf, B_TRUE);
602 if (err)
603 return (err);
604 fuid_dirtied = zsb->z_fuid_dirty;
605
606 tx = dmu_tx_create(zsb->z_os);
607 dmu_tx_hold_zap(tx, *objp ? *objp : DMU_NEW_OBJECT, B_TRUE, NULL);
608 if (*objp == 0) {
609 dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, B_TRUE,
610 zfs_userquota_prop_prefixes[type]);
611 }
612 if (fuid_dirtied)
613 zfs_fuid_txhold(zsb, tx);
614 err = dmu_tx_assign(tx, TXG_WAIT);
615 if (err) {
616 dmu_tx_abort(tx);
617 return (err);
618 }
619
620 mutex_enter(&zsb->z_lock);
621 if (*objp == 0) {
622 *objp = zap_create(zsb->z_os, DMU_OT_USERGROUP_QUOTA,
623 DMU_OT_NONE, 0, tx);
624 VERIFY(0 == zap_add(zsb->z_os, MASTER_NODE_OBJ,
625 zfs_userquota_prop_prefixes[type], 8, 1, objp, tx));
626 }
627 mutex_exit(&zsb->z_lock);
628
629 if (quota == 0) {
630 err = zap_remove(zsb->z_os, *objp, buf, tx);
631 if (err == ENOENT)
632 err = 0;
633 } else {
634 err = zap_update(zsb->z_os, *objp, buf, 8, 1, &quota, tx);
635 }
636 ASSERT(err == 0);
637 if (fuid_dirtied)
638 zfs_fuid_sync(zsb, tx);
639 dmu_tx_commit(tx);
640 return (err);
641 }
642 EXPORT_SYMBOL(zfs_set_userquota);
643
644 boolean_t
645 zfs_fuid_overobjquota(zfs_sb_t *zsb, boolean_t isgroup, uint64_t fuid)
646 {
647 char buf[20 + DMU_OBJACCT_PREFIX_LEN];
648 uint64_t used, quota, usedobj, quotaobj;
649 int err;
650
651 if (!dmu_objset_userobjspace_present(zsb->z_os)) {
652 if (dmu_objset_userobjspace_upgradable(zsb->z_os))
653 dmu_objset_userobjspace_upgrade(zsb->z_os);
654 return (B_FALSE);
655 }
656
657 usedobj = isgroup ? DMU_GROUPUSED_OBJECT : DMU_USERUSED_OBJECT;
658 quotaobj = isgroup ? zsb->z_groupobjquota_obj : zsb->z_userobjquota_obj;
659 if (quotaobj == 0 || zsb->z_replay)
660 return (B_FALSE);
661
662 (void) sprintf(buf, "%llx", (longlong_t)fuid);
663 err = zap_lookup(zsb->z_os, quotaobj, buf, 8, 1, &quota);
664 if (err != 0)
665 return (B_FALSE);
666
667 (void) sprintf(buf, DMU_OBJACCT_PREFIX "%llx", (longlong_t)fuid);
668 err = zap_lookup(zsb->z_os, usedobj, buf, 8, 1, &used);
669 if (err != 0)
670 return (B_FALSE);
671 return (used >= quota);
672 }
673
674 boolean_t
675 zfs_fuid_overquota(zfs_sb_t *zsb, boolean_t isgroup, uint64_t fuid)
676 {
677 char buf[20];
678 uint64_t used, quota, usedobj, quotaobj;
679 int err;
680
681 usedobj = isgroup ? DMU_GROUPUSED_OBJECT : DMU_USERUSED_OBJECT;
682 quotaobj = isgroup ? zsb->z_groupquota_obj : zsb->z_userquota_obj;
683
684 if (quotaobj == 0 || zsb->z_replay)
685 return (B_FALSE);
686
687 (void) sprintf(buf, "%llx", (longlong_t)fuid);
688 err = zap_lookup(zsb->z_os, quotaobj, buf, 8, 1, &quota);
689 if (err != 0)
690 return (B_FALSE);
691
692 err = zap_lookup(zsb->z_os, usedobj, buf, 8, 1, &used);
693 if (err != 0)
694 return (B_FALSE);
695 return (used >= quota);
696 }
697 EXPORT_SYMBOL(zfs_fuid_overquota);
698
699 boolean_t
700 zfs_owner_overquota(zfs_sb_t *zsb, znode_t *zp, boolean_t isgroup)
701 {
702 uint64_t fuid;
703 uint64_t quotaobj;
704 struct inode *ip = ZTOI(zp);
705
706 quotaobj = isgroup ? zsb->z_groupquota_obj : zsb->z_userquota_obj;
707
708 fuid = isgroup ? KGID_TO_SGID(ip->i_gid) : KUID_TO_SUID(ip->i_uid);
709
710 if (quotaobj == 0 || zsb->z_replay)
711 return (B_FALSE);
712
713 return (zfs_fuid_overquota(zsb, isgroup, fuid));
714 }
715 EXPORT_SYMBOL(zfs_owner_overquota);
716
717 zfs_mntopts_t *
718 zfs_mntopts_alloc(void)
719 {
720 return (kmem_zalloc(sizeof (zfs_mntopts_t), KM_SLEEP));
721 }
722
723 void
724 zfs_mntopts_free(zfs_mntopts_t *zmo)
725 {
726 if (zmo->z_osname)
727 strfree(zmo->z_osname);
728
729 if (zmo->z_mntpoint)
730 strfree(zmo->z_mntpoint);
731
732 kmem_free(zmo, sizeof (zfs_mntopts_t));
733 }
734
735 int
736 zfs_sb_create(const char *osname, zfs_mntopts_t *zmo, zfs_sb_t **zsbp)
737 {
738 objset_t *os;
739 zfs_sb_t *zsb;
740 uint64_t zval;
741 int i, size, error;
742 uint64_t sa_obj;
743
744 zsb = kmem_zalloc(sizeof (zfs_sb_t), KM_SLEEP);
745
746 /*
747 * We claim to always be readonly so we can open snapshots;
748 * other ZPL code will prevent us from writing to snapshots.
749 */
750 error = dmu_objset_own(osname, DMU_OST_ZFS, B_TRUE, zsb, &os);
751 if (error) {
752 kmem_free(zsb, sizeof (zfs_sb_t));
753 return (error);
754 }
755
756 /*
757 * Optional temporary mount options, free'd in zfs_sb_free().
758 */
759 zsb->z_mntopts = (zmo ? zmo : zfs_mntopts_alloc());
760
761 /*
762 * Initialize the zfs-specific filesystem structure.
763 * Should probably make this a kmem cache, shuffle fields.
764 */
765 zsb->z_sb = NULL;
766 zsb->z_parent = zsb;
767 zsb->z_max_blksz = SPA_OLD_MAXBLOCKSIZE;
768 zsb->z_show_ctldir = ZFS_SNAPDIR_VISIBLE;
769 zsb->z_os = os;
770
771 error = zfs_get_zplprop(os, ZFS_PROP_VERSION, &zsb->z_version);
772 if (error) {
773 goto out;
774 } else if (zsb->z_version > ZPL_VERSION) {
775 error = SET_ERROR(ENOTSUP);
776 goto out;
777 }
778 if ((error = zfs_get_zplprop(os, ZFS_PROP_NORMALIZE, &zval)) != 0)
779 goto out;
780 zsb->z_norm = (int)zval;
781
782 if ((error = zfs_get_zplprop(os, ZFS_PROP_UTF8ONLY, &zval)) != 0)
783 goto out;
784 zsb->z_utf8 = (zval != 0);
785
786 if ((error = zfs_get_zplprop(os, ZFS_PROP_CASE, &zval)) != 0)
787 goto out;
788 zsb->z_case = (uint_t)zval;
789
790 if ((error = zfs_get_zplprop(os, ZFS_PROP_ACLTYPE, &zval)) != 0)
791 goto out;
792 zsb->z_acl_type = (uint_t)zval;
793
794 /*
795 * Fold case on file systems that are always or sometimes case
796 * insensitive.
797 */
798 if (zsb->z_case == ZFS_CASE_INSENSITIVE ||
799 zsb->z_case == ZFS_CASE_MIXED)
800 zsb->z_norm |= U8_TEXTPREP_TOUPPER;
801
802 zsb->z_use_fuids = USE_FUIDS(zsb->z_version, zsb->z_os);
803 zsb->z_use_sa = USE_SA(zsb->z_version, zsb->z_os);
804
805 if (zsb->z_use_sa) {
806 /* should either have both of these objects or none */
807 error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_SA_ATTRS, 8, 1,
808 &sa_obj);
809 if (error)
810 goto out;
811
812 error = zfs_get_zplprop(os, ZFS_PROP_XATTR, &zval);
813 if ((error == 0) && (zval == ZFS_XATTR_SA))
814 zsb->z_xattr_sa = B_TRUE;
815 } else {
816 /*
817 * Pre SA versions file systems should never touch
818 * either the attribute registration or layout objects.
819 */
820 sa_obj = 0;
821 }
822
823 error = sa_setup(os, sa_obj, zfs_attr_table, ZPL_END,
824 &zsb->z_attr_table);
825 if (error)
826 goto out;
827
828 if (zsb->z_version >= ZPL_VERSION_SA)
829 sa_register_update_callback(os, zfs_sa_upgrade);
830
831 error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_ROOT_OBJ, 8, 1,
832 &zsb->z_root);
833 if (error)
834 goto out;
835 ASSERT(zsb->z_root != 0);
836
837 error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_UNLINKED_SET, 8, 1,
838 &zsb->z_unlinkedobj);
839 if (error)
840 goto out;
841
842 error = zap_lookup(os, MASTER_NODE_OBJ,
843 zfs_userquota_prop_prefixes[ZFS_PROP_USERQUOTA],
844 8, 1, &zsb->z_userquota_obj);
845 if (error && error != ENOENT)
846 goto out;
847
848 error = zap_lookup(os, MASTER_NODE_OBJ,
849 zfs_userquota_prop_prefixes[ZFS_PROP_GROUPQUOTA],
850 8, 1, &zsb->z_groupquota_obj);
851 if (error && error != ENOENT)
852 goto out;
853
854 error = zap_lookup(os, MASTER_NODE_OBJ,
855 zfs_userquota_prop_prefixes[ZFS_PROP_USEROBJQUOTA],
856 8, 1, &zsb->z_userobjquota_obj);
857 if (error && error != ENOENT)
858 goto out;
859
860 error = zap_lookup(os, MASTER_NODE_OBJ,
861 zfs_userquota_prop_prefixes[ZFS_PROP_GROUPOBJQUOTA],
862 8, 1, &zsb->z_groupobjquota_obj);
863 if (error && error != ENOENT)
864 goto out;
865
866 error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_FUID_TABLES, 8, 1,
867 &zsb->z_fuid_obj);
868 if (error && error != ENOENT)
869 goto out;
870
871 error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_SHARES_DIR, 8, 1,
872 &zsb->z_shares_dir);
873 if (error && error != ENOENT)
874 goto out;
875
876 mutex_init(&zsb->z_znodes_lock, NULL, MUTEX_DEFAULT, NULL);
877 mutex_init(&zsb->z_lock, NULL, MUTEX_DEFAULT, NULL);
878 list_create(&zsb->z_all_znodes, sizeof (znode_t),
879 offsetof(znode_t, z_link_node));
880 rrm_init(&zsb->z_teardown_lock, B_FALSE);
881 rw_init(&zsb->z_teardown_inactive_lock, NULL, RW_DEFAULT, NULL);
882 rw_init(&zsb->z_fuid_lock, NULL, RW_DEFAULT, NULL);
883
884 size = MIN(1 << (highbit64(zfs_object_mutex_size)-1), ZFS_OBJ_MTX_MAX);
885 zsb->z_hold_size = size;
886 zsb->z_hold_trees = vmem_zalloc(sizeof (avl_tree_t) * size, KM_SLEEP);
887 zsb->z_hold_locks = vmem_zalloc(sizeof (kmutex_t) * size, KM_SLEEP);
888 for (i = 0; i != size; i++) {
889 avl_create(&zsb->z_hold_trees[i], zfs_znode_hold_compare,
890 sizeof (znode_hold_t), offsetof(znode_hold_t, zh_node));
891 mutex_init(&zsb->z_hold_locks[i], NULL, MUTEX_DEFAULT, NULL);
892 }
893
894 *zsbp = zsb;
895 return (0);
896
897 out:
898 dmu_objset_disown(os, zsb);
899 *zsbp = NULL;
900
901 kmem_free(zsb, sizeof (zfs_sb_t));
902 return (error);
903 }
904 EXPORT_SYMBOL(zfs_sb_create);
905
906 int
907 zfs_sb_setup(zfs_sb_t *zsb, boolean_t mounting)
908 {
909 int error;
910
911 error = zfs_register_callbacks(zsb);
912 if (error)
913 return (error);
914
915 /*
916 * Set the objset user_ptr to track its zsb.
917 */
918 mutex_enter(&zsb->z_os->os_user_ptr_lock);
919 dmu_objset_set_user(zsb->z_os, zsb);
920 mutex_exit(&zsb->z_os->os_user_ptr_lock);
921
922 zsb->z_log = zil_open(zsb->z_os, zfs_get_data);
923
924 /*
925 * If we are not mounting (ie: online recv), then we don't
926 * have to worry about replaying the log as we blocked all
927 * operations out since we closed the ZIL.
928 */
929 if (mounting) {
930 boolean_t readonly;
931
932 /*
933 * During replay we remove the read only flag to
934 * allow replays to succeed.
935 */
936 readonly = zfs_is_readonly(zsb);
937 if (readonly != 0)
938 readonly_changed_cb(zsb, B_FALSE);
939 else
940 zfs_unlinked_drain(zsb);
941
942 /*
943 * Parse and replay the intent log.
944 *
945 * Because of ziltest, this must be done after
946 * zfs_unlinked_drain(). (Further note: ziltest
947 * doesn't use readonly mounts, where
948 * zfs_unlinked_drain() isn't called.) This is because
949 * ziltest causes spa_sync() to think it's committed,
950 * but actually it is not, so the intent log contains
951 * many txg's worth of changes.
952 *
953 * In particular, if object N is in the unlinked set in
954 * the last txg to actually sync, then it could be
955 * actually freed in a later txg and then reallocated
956 * in a yet later txg. This would write a "create
957 * object N" record to the intent log. Normally, this
958 * would be fine because the spa_sync() would have
959 * written out the fact that object N is free, before
960 * we could write the "create object N" intent log
961 * record.
962 *
963 * But when we are in ziltest mode, we advance the "open
964 * txg" without actually spa_sync()-ing the changes to
965 * disk. So we would see that object N is still
966 * allocated and in the unlinked set, and there is an
967 * intent log record saying to allocate it.
968 */
969 if (spa_writeable(dmu_objset_spa(zsb->z_os))) {
970 if (zil_replay_disable) {
971 zil_destroy(zsb->z_log, B_FALSE);
972 } else {
973 zsb->z_replay = B_TRUE;
974 zil_replay(zsb->z_os, zsb,
975 zfs_replay_vector);
976 zsb->z_replay = B_FALSE;
977 }
978 }
979
980 /* restore readonly bit */
981 if (readonly != 0)
982 readonly_changed_cb(zsb, B_TRUE);
983 }
984
985 return (0);
986 }
987 EXPORT_SYMBOL(zfs_sb_setup);
988
989 void
990 zfs_sb_free(zfs_sb_t *zsb)
991 {
992 int i, size = zsb->z_hold_size;
993
994 zfs_fuid_destroy(zsb);
995
996 mutex_destroy(&zsb->z_znodes_lock);
997 mutex_destroy(&zsb->z_lock);
998 list_destroy(&zsb->z_all_znodes);
999 rrm_destroy(&zsb->z_teardown_lock);
1000 rw_destroy(&zsb->z_teardown_inactive_lock);
1001 rw_destroy(&zsb->z_fuid_lock);
1002 for (i = 0; i != size; i++) {
1003 avl_destroy(&zsb->z_hold_trees[i]);
1004 mutex_destroy(&zsb->z_hold_locks[i]);
1005 }
1006 vmem_free(zsb->z_hold_trees, sizeof (avl_tree_t) * size);
1007 vmem_free(zsb->z_hold_locks, sizeof (kmutex_t) * size);
1008 zfs_mntopts_free(zsb->z_mntopts);
1009 kmem_free(zsb, sizeof (zfs_sb_t));
1010 }
1011 EXPORT_SYMBOL(zfs_sb_free);
1012
1013 static void
1014 zfs_set_fuid_feature(zfs_sb_t *zsb)
1015 {
1016 zsb->z_use_fuids = USE_FUIDS(zsb->z_version, zsb->z_os);
1017 zsb->z_use_sa = USE_SA(zsb->z_version, zsb->z_os);
1018 }
1019
1020 void
1021 zfs_unregister_callbacks(zfs_sb_t *zsb)
1022 {
1023 objset_t *os = zsb->z_os;
1024
1025 if (!dmu_objset_is_snapshot(os))
1026 dsl_prop_unregister_all(dmu_objset_ds(os), zsb);
1027 }
1028 EXPORT_SYMBOL(zfs_unregister_callbacks);
1029
1030 #ifdef HAVE_MLSLABEL
1031 /*
1032 * Check that the hex label string is appropriate for the dataset being
1033 * mounted into the global_zone proper.
1034 *
1035 * Return an error if the hex label string is not default or
1036 * admin_low/admin_high. For admin_low labels, the corresponding
1037 * dataset must be readonly.
1038 */
1039 int
1040 zfs_check_global_label(const char *dsname, const char *hexsl)
1041 {
1042 if (strcasecmp(hexsl, ZFS_MLSLABEL_DEFAULT) == 0)
1043 return (0);
1044 if (strcasecmp(hexsl, ADMIN_HIGH) == 0)
1045 return (0);
1046 if (strcasecmp(hexsl, ADMIN_LOW) == 0) {
1047 /* must be readonly */
1048 uint64_t rdonly;
1049
1050 if (dsl_prop_get_integer(dsname,
1051 zfs_prop_to_name(ZFS_PROP_READONLY), &rdonly, NULL))
1052 return (SET_ERROR(EACCES));
1053 return (rdonly ? 0 : EACCES);
1054 }
1055 return (SET_ERROR(EACCES));
1056 }
1057 EXPORT_SYMBOL(zfs_check_global_label);
1058 #endif /* HAVE_MLSLABEL */
1059
1060 int
1061 zfs_statvfs(struct dentry *dentry, struct kstatfs *statp)
1062 {
1063 zfs_sb_t *zsb = dentry->d_sb->s_fs_info;
1064 uint64_t refdbytes, availbytes, usedobjs, availobjs;
1065 uint64_t fsid;
1066 uint32_t bshift;
1067
1068 ZFS_ENTER(zsb);
1069
1070 dmu_objset_space(zsb->z_os,
1071 &refdbytes, &availbytes, &usedobjs, &availobjs);
1072
1073 fsid = dmu_objset_fsid_guid(zsb->z_os);
1074 /*
1075 * The underlying storage pool actually uses multiple block
1076 * size. Under Solaris frsize (fragment size) is reported as
1077 * the smallest block size we support, and bsize (block size)
1078 * as the filesystem's maximum block size. Unfortunately,
1079 * under Linux the fragment size and block size are often used
1080 * interchangeably. Thus we are forced to report both of them
1081 * as the filesystem's maximum block size.
1082 */
1083 statp->f_frsize = zsb->z_max_blksz;
1084 statp->f_bsize = zsb->z_max_blksz;
1085 bshift = fls(statp->f_bsize) - 1;
1086
1087 /*
1088 * The following report "total" blocks of various kinds in
1089 * the file system, but reported in terms of f_bsize - the
1090 * "preferred" size.
1091 */
1092
1093 statp->f_blocks = (refdbytes + availbytes) >> bshift;
1094 statp->f_bfree = availbytes >> bshift;
1095 statp->f_bavail = statp->f_bfree; /* no root reservation */
1096
1097 /*
1098 * statvfs() should really be called statufs(), because it assumes
1099 * static metadata. ZFS doesn't preallocate files, so the best
1100 * we can do is report the max that could possibly fit in f_files,
1101 * and that minus the number actually used in f_ffree.
1102 * For f_ffree, report the smaller of the number of object available
1103 * and the number of blocks (each object will take at least a block).
1104 */
1105 statp->f_ffree = MIN(availobjs, availbytes >> DNODE_SHIFT);
1106 statp->f_files = statp->f_ffree + usedobjs;
1107 statp->f_fsid.val[0] = (uint32_t)fsid;
1108 statp->f_fsid.val[1] = (uint32_t)(fsid >> 32);
1109 statp->f_type = ZFS_SUPER_MAGIC;
1110 statp->f_namelen = MAXNAMELEN - 1;
1111
1112 /*
1113 * We have all of 40 characters to stuff a string here.
1114 * Is there anything useful we could/should provide?
1115 */
1116 bzero(statp->f_spare, sizeof (statp->f_spare));
1117
1118 ZFS_EXIT(zsb);
1119 return (0);
1120 }
1121 EXPORT_SYMBOL(zfs_statvfs);
1122
1123 int
1124 zfs_root(zfs_sb_t *zsb, struct inode **ipp)
1125 {
1126 znode_t *rootzp;
1127 int error;
1128
1129 ZFS_ENTER(zsb);
1130
1131 error = zfs_zget(zsb, zsb->z_root, &rootzp);
1132 if (error == 0)
1133 *ipp = ZTOI(rootzp);
1134
1135 ZFS_EXIT(zsb);
1136 return (error);
1137 }
1138 EXPORT_SYMBOL(zfs_root);
1139
1140 #ifdef HAVE_D_PRUNE_ALIASES
1141 /*
1142 * Linux kernels older than 3.1 do not support a per-filesystem shrinker.
1143 * To accommodate this we must improvise and manually walk the list of znodes
1144 * attempting to prune dentries in order to be able to drop the inodes.
1145 *
1146 * To avoid scanning the same znodes multiple times they are always rotated
1147 * to the end of the z_all_znodes list. New znodes are inserted at the
1148 * end of the list so we're always scanning the oldest znodes first.
1149 */
1150 static int
1151 zfs_sb_prune_aliases(zfs_sb_t *zsb, unsigned long nr_to_scan)
1152 {
1153 znode_t **zp_array, *zp;
1154 int max_array = MIN(nr_to_scan, PAGE_SIZE * 8 / sizeof (znode_t *));
1155 int objects = 0;
1156 int i = 0, j = 0;
1157
1158 zp_array = kmem_zalloc(max_array * sizeof (znode_t *), KM_SLEEP);
1159
1160 mutex_enter(&zsb->z_znodes_lock);
1161 while ((zp = list_head(&zsb->z_all_znodes)) != NULL) {
1162
1163 if ((i++ > nr_to_scan) || (j >= max_array))
1164 break;
1165
1166 ASSERT(list_link_active(&zp->z_link_node));
1167 list_remove(&zsb->z_all_znodes, zp);
1168 list_insert_tail(&zsb->z_all_znodes, zp);
1169
1170 /* Skip active znodes and .zfs entries */
1171 if (MUTEX_HELD(&zp->z_lock) || zp->z_is_ctldir)
1172 continue;
1173
1174 if (igrab(ZTOI(zp)) == NULL)
1175 continue;
1176
1177 zp_array[j] = zp;
1178 j++;
1179 }
1180 mutex_exit(&zsb->z_znodes_lock);
1181
1182 for (i = 0; i < j; i++) {
1183 zp = zp_array[i];
1184
1185 ASSERT3P(zp, !=, NULL);
1186 d_prune_aliases(ZTOI(zp));
1187
1188 if (atomic_read(&ZTOI(zp)->i_count) == 1)
1189 objects++;
1190
1191 iput(ZTOI(zp));
1192 }
1193
1194 kmem_free(zp_array, max_array * sizeof (znode_t *));
1195
1196 return (objects);
1197 }
1198 #endif /* HAVE_D_PRUNE_ALIASES */
1199
1200 /*
1201 * The ARC has requested that the filesystem drop entries from the dentry
1202 * and inode caches. This can occur when the ARC needs to free meta data
1203 * blocks but can't because they are all pinned by entries in these caches.
1204 */
1205 int
1206 zfs_sb_prune(struct super_block *sb, unsigned long nr_to_scan, int *objects)
1207 {
1208 zfs_sb_t *zsb = sb->s_fs_info;
1209 int error = 0;
1210 #if defined(HAVE_SHRINK) || defined(HAVE_SPLIT_SHRINKER_CALLBACK)
1211 struct shrinker *shrinker = &sb->s_shrink;
1212 struct shrink_control sc = {
1213 .nr_to_scan = nr_to_scan,
1214 .gfp_mask = GFP_KERNEL,
1215 };
1216 #endif
1217
1218 ZFS_ENTER(zsb);
1219
1220 #if defined(HAVE_SPLIT_SHRINKER_CALLBACK) && \
1221 defined(SHRINK_CONTROL_HAS_NID) && \
1222 defined(SHRINKER_NUMA_AWARE)
1223 if (sb->s_shrink.flags & SHRINKER_NUMA_AWARE) {
1224 *objects = 0;
1225 for_each_online_node(sc.nid)
1226 *objects += (*shrinker->scan_objects)(shrinker, &sc);
1227 } else {
1228 *objects = (*shrinker->scan_objects)(shrinker, &sc);
1229 }
1230
1231 #elif defined(HAVE_SPLIT_SHRINKER_CALLBACK)
1232 *objects = (*shrinker->scan_objects)(shrinker, &sc);
1233 #elif defined(HAVE_SHRINK)
1234 *objects = (*shrinker->shrink)(shrinker, &sc);
1235 #elif defined(HAVE_D_PRUNE_ALIASES)
1236 #define D_PRUNE_ALIASES_IS_DEFAULT
1237 *objects = zfs_sb_prune_aliases(zsb, nr_to_scan);
1238 #else
1239 #error "No available dentry and inode cache pruning mechanism."
1240 #endif
1241
1242 #if defined(HAVE_D_PRUNE_ALIASES) && !defined(D_PRUNE_ALIASES_IS_DEFAULT)
1243 #undef D_PRUNE_ALIASES_IS_DEFAULT
1244 /*
1245 * Fall back to zfs_sb_prune_aliases if the kernel's per-superblock
1246 * shrinker couldn't free anything, possibly due to the inodes being
1247 * allocated in a different memcg.
1248 */
1249 if (*objects == 0)
1250 *objects = zfs_sb_prune_aliases(zsb, nr_to_scan);
1251 #endif
1252
1253 ZFS_EXIT(zsb);
1254
1255 dprintf_ds(zsb->z_os->os_dsl_dataset,
1256 "pruning, nr_to_scan=%lu objects=%d error=%d\n",
1257 nr_to_scan, *objects, error);
1258
1259 return (error);
1260 }
1261 EXPORT_SYMBOL(zfs_sb_prune);
1262
1263 /*
1264 * Teardown the zfs_sb_t.
1265 *
1266 * Note, if 'unmounting' if FALSE, we return with the 'z_teardown_lock'
1267 * and 'z_teardown_inactive_lock' held.
1268 */
1269 int
1270 zfs_sb_teardown(zfs_sb_t *zsb, boolean_t unmounting)
1271 {
1272 znode_t *zp;
1273
1274 /*
1275 * If someone has not already unmounted this file system,
1276 * drain the iput_taskq to ensure all active references to the
1277 * zfs_sb_t have been handled only then can it be safely destroyed.
1278 */
1279 if (zsb->z_os) {
1280 /*
1281 * If we're unmounting we have to wait for the list to
1282 * drain completely.
1283 *
1284 * If we're not unmounting there's no guarantee the list
1285 * will drain completely, but iputs run from the taskq
1286 * may add the parents of dir-based xattrs to the taskq
1287 * so we want to wait for these.
1288 *
1289 * We can safely read z_nr_znodes without locking because the
1290 * VFS has already blocked operations which add to the
1291 * z_all_znodes list and thus increment z_nr_znodes.
1292 */
1293 int round = 0;
1294 while (zsb->z_nr_znodes > 0) {
1295 taskq_wait_outstanding(dsl_pool_iput_taskq(
1296 dmu_objset_pool(zsb->z_os)), 0);
1297 if (++round > 1 && !unmounting)
1298 break;
1299 }
1300 }
1301
1302 rrm_enter(&zsb->z_teardown_lock, RW_WRITER, FTAG);
1303
1304 if (!unmounting) {
1305 /*
1306 * We purge the parent filesystem's super block as the
1307 * parent filesystem and all of its snapshots have their
1308 * inode's super block set to the parent's filesystem's
1309 * super block. Note, 'z_parent' is self referential
1310 * for non-snapshots.
1311 */
1312 shrink_dcache_sb(zsb->z_parent->z_sb);
1313 }
1314
1315 /*
1316 * Close the zil. NB: Can't close the zil while zfs_inactive
1317 * threads are blocked as zil_close can call zfs_inactive.
1318 */
1319 if (zsb->z_log) {
1320 zil_close(zsb->z_log);
1321 zsb->z_log = NULL;
1322 }
1323
1324 rw_enter(&zsb->z_teardown_inactive_lock, RW_WRITER);
1325
1326 /*
1327 * If we are not unmounting (ie: online recv) and someone already
1328 * unmounted this file system while we were doing the switcheroo,
1329 * or a reopen of z_os failed then just bail out now.
1330 */
1331 if (!unmounting && (zsb->z_unmounted || zsb->z_os == NULL)) {
1332 rw_exit(&zsb->z_teardown_inactive_lock);
1333 rrm_exit(&zsb->z_teardown_lock, FTAG);
1334 return (SET_ERROR(EIO));
1335 }
1336
1337 /*
1338 * At this point there are no VFS ops active, and any new VFS ops
1339 * will fail with EIO since we have z_teardown_lock for writer (only
1340 * relevant for forced unmount).
1341 *
1342 * Release all holds on dbufs.
1343 */
1344 if (!unmounting) {
1345 mutex_enter(&zsb->z_znodes_lock);
1346 for (zp = list_head(&zsb->z_all_znodes); zp != NULL;
1347 zp = list_next(&zsb->z_all_znodes, zp)) {
1348 if (zp->z_sa_hdl)
1349 zfs_znode_dmu_fini(zp);
1350 }
1351 mutex_exit(&zsb->z_znodes_lock);
1352 }
1353
1354 /*
1355 * If we are unmounting, set the unmounted flag and let new VFS ops
1356 * unblock. zfs_inactive will have the unmounted behavior, and all
1357 * other VFS ops will fail with EIO.
1358 */
1359 if (unmounting) {
1360 zsb->z_unmounted = B_TRUE;
1361 rrm_exit(&zsb->z_teardown_lock, FTAG);
1362 rw_exit(&zsb->z_teardown_inactive_lock);
1363 }
1364
1365 /*
1366 * z_os will be NULL if there was an error in attempting to reopen
1367 * zsb, so just return as the properties had already been
1368 *
1369 * unregistered and cached data had been evicted before.
1370 */
1371 if (zsb->z_os == NULL)
1372 return (0);
1373
1374 /*
1375 * Unregister properties.
1376 */
1377 zfs_unregister_callbacks(zsb);
1378
1379 /*
1380 * Evict cached data
1381 */
1382 if (dsl_dataset_is_dirty(dmu_objset_ds(zsb->z_os)) &&
1383 !zfs_is_readonly(zsb))
1384 txg_wait_synced(dmu_objset_pool(zsb->z_os), 0);
1385 dmu_objset_evict_dbufs(zsb->z_os);
1386
1387 return (0);
1388 }
1389 EXPORT_SYMBOL(zfs_sb_teardown);
1390
1391 #if !defined(HAVE_2ARGS_BDI_SETUP_AND_REGISTER) && \
1392 !defined(HAVE_3ARGS_BDI_SETUP_AND_REGISTER)
1393 atomic_long_t zfs_bdi_seq = ATOMIC_LONG_INIT(0);
1394 #endif
1395
1396 int
1397 zfs_domount(struct super_block *sb, zfs_mntopts_t *zmo, int silent)
1398 {
1399 const char *osname = zmo->z_osname;
1400 zfs_sb_t *zsb;
1401 struct inode *root_inode;
1402 uint64_t recordsize;
1403 int error;
1404
1405 error = zfs_sb_create(osname, zmo, &zsb);
1406 if (error)
1407 return (error);
1408
1409 if ((error = dsl_prop_get_integer(osname, "recordsize",
1410 &recordsize, NULL)))
1411 goto out;
1412
1413 zsb->z_sb = sb;
1414 sb->s_fs_info = zsb;
1415 sb->s_magic = ZFS_SUPER_MAGIC;
1416 sb->s_maxbytes = MAX_LFS_FILESIZE;
1417 sb->s_time_gran = 1;
1418 sb->s_blocksize = recordsize;
1419 sb->s_blocksize_bits = ilog2(recordsize);
1420 zsb->z_bdi.ra_pages = 0;
1421 sb->s_bdi = &zsb->z_bdi;
1422
1423 error = -zpl_bdi_setup_and_register(&zsb->z_bdi, "zfs");
1424 if (error)
1425 goto out;
1426
1427 /* Set callback operations for the file system. */
1428 sb->s_op = &zpl_super_operations;
1429 sb->s_xattr = zpl_xattr_handlers;
1430 sb->s_export_op = &zpl_export_operations;
1431 #ifdef HAVE_S_D_OP
1432 sb->s_d_op = &zpl_dentry_operations;
1433 #endif /* HAVE_S_D_OP */
1434
1435 /* Set features for file system. */
1436 zfs_set_fuid_feature(zsb);
1437
1438 if (dmu_objset_is_snapshot(zsb->z_os)) {
1439 uint64_t pval;
1440
1441 atime_changed_cb(zsb, B_FALSE);
1442 readonly_changed_cb(zsb, B_TRUE);
1443 if ((error = dsl_prop_get_integer(osname,
1444 "xattr", &pval, NULL)))
1445 goto out;
1446 xattr_changed_cb(zsb, pval);
1447 if ((error = dsl_prop_get_integer(osname,
1448 "acltype", &pval, NULL)))
1449 goto out;
1450 acltype_changed_cb(zsb, pval);
1451 zsb->z_issnap = B_TRUE;
1452 zsb->z_os->os_sync = ZFS_SYNC_DISABLED;
1453 zsb->z_snap_defer_time = jiffies;
1454
1455 mutex_enter(&zsb->z_os->os_user_ptr_lock);
1456 dmu_objset_set_user(zsb->z_os, zsb);
1457 mutex_exit(&zsb->z_os->os_user_ptr_lock);
1458 } else {
1459 if ((error = zfs_sb_setup(zsb, B_TRUE)))
1460 goto out;
1461 }
1462
1463 /* Allocate a root inode for the filesystem. */
1464 error = zfs_root(zsb, &root_inode);
1465 if (error) {
1466 (void) zfs_umount(sb);
1467 goto out;
1468 }
1469
1470 /* Allocate a root dentry for the filesystem */
1471 sb->s_root = d_make_root(root_inode);
1472 if (sb->s_root == NULL) {
1473 (void) zfs_umount(sb);
1474 error = SET_ERROR(ENOMEM);
1475 goto out;
1476 }
1477
1478 if (!zsb->z_issnap)
1479 zfsctl_create(zsb);
1480
1481 zsb->z_arc_prune = arc_add_prune_callback(zpl_prune_sb, sb);
1482 out:
1483 if (error) {
1484 dmu_objset_disown(zsb->z_os, zsb);
1485 zfs_sb_free(zsb);
1486 /*
1487 * make sure we don't have dangling sb->s_fs_info which
1488 * zfs_preumount will use.
1489 */
1490 sb->s_fs_info = NULL;
1491 }
1492
1493 return (error);
1494 }
1495 EXPORT_SYMBOL(zfs_domount);
1496
1497 /*
1498 * Called when an unmount is requested and certain sanity checks have
1499 * already passed. At this point no dentries or inodes have been reclaimed
1500 * from their respective caches. We drop the extra reference on the .zfs
1501 * control directory to allow everything to be reclaimed. All snapshots
1502 * must already have been unmounted to reach this point.
1503 */
1504 void
1505 zfs_preumount(struct super_block *sb)
1506 {
1507 zfs_sb_t *zsb = sb->s_fs_info;
1508
1509 /* zsb is NULL when zfs_domount fails during mount */
1510 if (zsb) {
1511 zfsctl_destroy(sb->s_fs_info);
1512 /*
1513 * Wait for iput_async before entering evict_inodes in
1514 * generic_shutdown_super. The reason we must finish before
1515 * evict_inodes is when lazytime is on, or when zfs_purgedir
1516 * calls zfs_zget, iput would bump i_count from 0 to 1. This
1517 * would race with the i_count check in evict_inodes. This means
1518 * it could destroy the inode while we are still using it.
1519 *
1520 * We wait for two passes. xattr directories in the first pass
1521 * may add xattr entries in zfs_purgedir, so in the second pass
1522 * we wait for them. We don't use taskq_wait here because it is
1523 * a pool wide taskq. Other mounted filesystems can constantly
1524 * do iput_async and there's no guarantee when taskq will be
1525 * empty.
1526 */
1527 taskq_wait_outstanding(dsl_pool_iput_taskq(
1528 dmu_objset_pool(zsb->z_os)), 0);
1529 taskq_wait_outstanding(dsl_pool_iput_taskq(
1530 dmu_objset_pool(zsb->z_os)), 0);
1531 }
1532 }
1533 EXPORT_SYMBOL(zfs_preumount);
1534
1535 /*
1536 * Called once all other unmount released tear down has occurred.
1537 * It is our responsibility to release any remaining infrastructure.
1538 */
1539 /*ARGSUSED*/
1540 int
1541 zfs_umount(struct super_block *sb)
1542 {
1543 zfs_sb_t *zsb = sb->s_fs_info;
1544 objset_t *os;
1545
1546 arc_remove_prune_callback(zsb->z_arc_prune);
1547 VERIFY(zfs_sb_teardown(zsb, B_TRUE) == 0);
1548 os = zsb->z_os;
1549 bdi_destroy(sb->s_bdi);
1550
1551 /*
1552 * z_os will be NULL if there was an error in
1553 * attempting to reopen zsb.
1554 */
1555 if (os != NULL) {
1556 /*
1557 * Unset the objset user_ptr.
1558 */
1559 mutex_enter(&os->os_user_ptr_lock);
1560 dmu_objset_set_user(os, NULL);
1561 mutex_exit(&os->os_user_ptr_lock);
1562
1563 /*
1564 * Finally release the objset
1565 */
1566 dmu_objset_disown(os, zsb);
1567 }
1568
1569 zfs_sb_free(zsb);
1570 return (0);
1571 }
1572 EXPORT_SYMBOL(zfs_umount);
1573
1574 int
1575 zfs_remount(struct super_block *sb, int *flags, zfs_mntopts_t *zmo)
1576 {
1577 zfs_sb_t *zsb = sb->s_fs_info;
1578 int error;
1579
1580 zfs_unregister_callbacks(zsb);
1581 error = zfs_register_callbacks(zsb);
1582
1583 return (error);
1584 }
1585 EXPORT_SYMBOL(zfs_remount);
1586
1587 int
1588 zfs_vget(struct super_block *sb, struct inode **ipp, fid_t *fidp)
1589 {
1590 zfs_sb_t *zsb = sb->s_fs_info;
1591 znode_t *zp;
1592 uint64_t object = 0;
1593 uint64_t fid_gen = 0;
1594 uint64_t gen_mask;
1595 uint64_t zp_gen;
1596 int i, err;
1597
1598 *ipp = NULL;
1599
1600 ZFS_ENTER(zsb);
1601
1602 if (fidp->fid_len == LONG_FID_LEN) {
1603 zfid_long_t *zlfid = (zfid_long_t *)fidp;
1604 uint64_t objsetid = 0;
1605 uint64_t setgen = 0;
1606
1607 for (i = 0; i < sizeof (zlfid->zf_setid); i++)
1608 objsetid |= ((uint64_t)zlfid->zf_setid[i]) << (8 * i);
1609
1610 for (i = 0; i < sizeof (zlfid->zf_setgen); i++)
1611 setgen |= ((uint64_t)zlfid->zf_setgen[i]) << (8 * i);
1612
1613 ZFS_EXIT(zsb);
1614
1615 err = zfsctl_lookup_objset(sb, objsetid, &zsb);
1616 if (err)
1617 return (SET_ERROR(EINVAL));
1618
1619 ZFS_ENTER(zsb);
1620 }
1621
1622 if (fidp->fid_len == SHORT_FID_LEN || fidp->fid_len == LONG_FID_LEN) {
1623 zfid_short_t *zfid = (zfid_short_t *)fidp;
1624
1625 for (i = 0; i < sizeof (zfid->zf_object); i++)
1626 object |= ((uint64_t)zfid->zf_object[i]) << (8 * i);
1627
1628 for (i = 0; i < sizeof (zfid->zf_gen); i++)
1629 fid_gen |= ((uint64_t)zfid->zf_gen[i]) << (8 * i);
1630 } else {
1631 ZFS_EXIT(zsb);
1632 return (SET_ERROR(EINVAL));
1633 }
1634
1635 /* A zero fid_gen means we are in the .zfs control directories */
1636 if (fid_gen == 0 &&
1637 (object == ZFSCTL_INO_ROOT || object == ZFSCTL_INO_SNAPDIR)) {
1638 *ipp = zsb->z_ctldir;
1639 ASSERT(*ipp != NULL);
1640 if (object == ZFSCTL_INO_SNAPDIR) {
1641 VERIFY(zfsctl_root_lookup(*ipp, "snapshot", ipp,
1642 0, kcred, NULL, NULL) == 0);
1643 } else {
1644 igrab(*ipp);
1645 }
1646 ZFS_EXIT(zsb);
1647 return (0);
1648 }
1649
1650 gen_mask = -1ULL >> (64 - 8 * i);
1651
1652 dprintf("getting %llu [%llu mask %llx]\n", object, fid_gen, gen_mask);
1653 if ((err = zfs_zget(zsb, object, &zp))) {
1654 ZFS_EXIT(zsb);
1655 return (err);
1656 }
1657
1658 /* Don't export xattr stuff */
1659 if (zp->z_pflags & ZFS_XATTR) {
1660 iput(ZTOI(zp));
1661 ZFS_EXIT(zsb);
1662 return (SET_ERROR(ENOENT));
1663 }
1664
1665 (void) sa_lookup(zp->z_sa_hdl, SA_ZPL_GEN(zsb), &zp_gen,
1666 sizeof (uint64_t));
1667 zp_gen = zp_gen & gen_mask;
1668 if (zp_gen == 0)
1669 zp_gen = 1;
1670 if ((fid_gen == 0) && (zsb->z_root == object))
1671 fid_gen = zp_gen;
1672 if (zp->z_unlinked || zp_gen != fid_gen) {
1673 dprintf("znode gen (%llu) != fid gen (%llu)\n", zp_gen,
1674 fid_gen);
1675 iput(ZTOI(zp));
1676 ZFS_EXIT(zsb);
1677 return (SET_ERROR(ENOENT));
1678 }
1679
1680 *ipp = ZTOI(zp);
1681 if (*ipp)
1682 zfs_inode_update(ITOZ(*ipp));
1683
1684 ZFS_EXIT(zsb);
1685 return (0);
1686 }
1687 EXPORT_SYMBOL(zfs_vget);
1688
1689 /*
1690 * Block out VFS ops and close zfs_sb_t
1691 *
1692 * Note, if successful, then we return with the 'z_teardown_lock' and
1693 * 'z_teardown_inactive_lock' write held. We leave ownership of the underlying
1694 * dataset and objset intact so that they can be atomically handed off during
1695 * a subsequent rollback or recv operation and the resume thereafter.
1696 */
1697 int
1698 zfs_suspend_fs(zfs_sb_t *zsb)
1699 {
1700 int error;
1701
1702 if ((error = zfs_sb_teardown(zsb, B_FALSE)) != 0)
1703 return (error);
1704
1705 return (0);
1706 }
1707 EXPORT_SYMBOL(zfs_suspend_fs);
1708
1709 /*
1710 * Reopen zfs_sb_t and release VFS ops.
1711 */
1712 int
1713 zfs_resume_fs(zfs_sb_t *zsb, const char *osname)
1714 {
1715 int err, err2;
1716 znode_t *zp;
1717 uint64_t sa_obj = 0;
1718
1719 ASSERT(RRM_WRITE_HELD(&zsb->z_teardown_lock));
1720 ASSERT(RW_WRITE_HELD(&zsb->z_teardown_inactive_lock));
1721
1722 /*
1723 * We already own this, so just hold and rele it to update the
1724 * objset_t, as the one we had before may have been evicted.
1725 */
1726 VERIFY0(dmu_objset_hold(osname, zsb, &zsb->z_os));
1727 VERIFY3P(zsb->z_os->os_dsl_dataset->ds_owner, ==, zsb);
1728 VERIFY(dsl_dataset_long_held(zsb->z_os->os_dsl_dataset));
1729 dmu_objset_rele(zsb->z_os, zsb);
1730
1731 /*
1732 * Make sure version hasn't changed
1733 */
1734
1735 err = zfs_get_zplprop(zsb->z_os, ZFS_PROP_VERSION,
1736 &zsb->z_version);
1737
1738 if (err)
1739 goto bail;
1740
1741 err = zap_lookup(zsb->z_os, MASTER_NODE_OBJ,
1742 ZFS_SA_ATTRS, 8, 1, &sa_obj);
1743
1744 if (err && zsb->z_version >= ZPL_VERSION_SA)
1745 goto bail;
1746
1747 if ((err = sa_setup(zsb->z_os, sa_obj,
1748 zfs_attr_table, ZPL_END, &zsb->z_attr_table)) != 0)
1749 goto bail;
1750
1751 if (zsb->z_version >= ZPL_VERSION_SA)
1752 sa_register_update_callback(zsb->z_os,
1753 zfs_sa_upgrade);
1754
1755 VERIFY(zfs_sb_setup(zsb, B_FALSE) == 0);
1756
1757 zfs_set_fuid_feature(zsb);
1758 zsb->z_rollback_time = jiffies;
1759
1760 /*
1761 * Attempt to re-establish all the active inodes with their
1762 * dbufs. If a zfs_rezget() fails, then we unhash the inode
1763 * and mark it stale. This prevents a collision if a new
1764 * inode/object is created which must use the same inode
1765 * number. The stale inode will be be released when the
1766 * VFS prunes the dentry holding the remaining references
1767 * on the stale inode.
1768 */
1769 mutex_enter(&zsb->z_znodes_lock);
1770 for (zp = list_head(&zsb->z_all_znodes); zp;
1771 zp = list_next(&zsb->z_all_znodes, zp)) {
1772 err2 = zfs_rezget(zp);
1773 if (err2) {
1774 remove_inode_hash(ZTOI(zp));
1775 zp->z_is_stale = B_TRUE;
1776 }
1777 }
1778 mutex_exit(&zsb->z_znodes_lock);
1779
1780 bail:
1781 /* release the VFS ops */
1782 rw_exit(&zsb->z_teardown_inactive_lock);
1783 rrm_exit(&zsb->z_teardown_lock, FTAG);
1784
1785 if (err) {
1786 /*
1787 * Since we couldn't setup the sa framework, try to force
1788 * unmount this file system.
1789 */
1790 if (zsb->z_os)
1791 (void) zfs_umount(zsb->z_sb);
1792 }
1793 return (err);
1794 }
1795 EXPORT_SYMBOL(zfs_resume_fs);
1796
1797 int
1798 zfs_set_version(zfs_sb_t *zsb, uint64_t newvers)
1799 {
1800 int error;
1801 objset_t *os = zsb->z_os;
1802 dmu_tx_t *tx;
1803
1804 if (newvers < ZPL_VERSION_INITIAL || newvers > ZPL_VERSION)
1805 return (SET_ERROR(EINVAL));
1806
1807 if (newvers < zsb->z_version)
1808 return (SET_ERROR(EINVAL));
1809
1810 if (zfs_spa_version_map(newvers) >
1811 spa_version(dmu_objset_spa(zsb->z_os)))
1812 return (SET_ERROR(ENOTSUP));
1813
1814 tx = dmu_tx_create(os);
1815 dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, B_FALSE, ZPL_VERSION_STR);
1816 if (newvers >= ZPL_VERSION_SA && !zsb->z_use_sa) {
1817 dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, B_TRUE,
1818 ZFS_SA_ATTRS);
1819 dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, FALSE, NULL);
1820 }
1821 error = dmu_tx_assign(tx, TXG_WAIT);
1822 if (error) {
1823 dmu_tx_abort(tx);
1824 return (error);
1825 }
1826
1827 error = zap_update(os, MASTER_NODE_OBJ, ZPL_VERSION_STR,
1828 8, 1, &newvers, tx);
1829
1830 if (error) {
1831 dmu_tx_commit(tx);
1832 return (error);
1833 }
1834
1835 if (newvers >= ZPL_VERSION_SA && !zsb->z_use_sa) {
1836 uint64_t sa_obj;
1837
1838 ASSERT3U(spa_version(dmu_objset_spa(zsb->z_os)), >=,
1839 SPA_VERSION_SA);
1840 sa_obj = zap_create(os, DMU_OT_SA_MASTER_NODE,
1841 DMU_OT_NONE, 0, tx);
1842
1843 error = zap_add(os, MASTER_NODE_OBJ,
1844 ZFS_SA_ATTRS, 8, 1, &sa_obj, tx);
1845 ASSERT0(error);
1846
1847 VERIFY(0 == sa_set_sa_object(os, sa_obj));
1848 sa_register_update_callback(os, zfs_sa_upgrade);
1849 }
1850
1851 spa_history_log_internal_ds(dmu_objset_ds(os), "upgrade", tx,
1852 "from %llu to %llu", zsb->z_version, newvers);
1853
1854 dmu_tx_commit(tx);
1855
1856 zsb->z_version = newvers;
1857
1858 zfs_set_fuid_feature(zsb);
1859
1860 return (0);
1861 }
1862 EXPORT_SYMBOL(zfs_set_version);
1863
1864 /*
1865 * Read a property stored within the master node.
1866 */
1867 int
1868 zfs_get_zplprop(objset_t *os, zfs_prop_t prop, uint64_t *value)
1869 {
1870 const char *pname;
1871 int error = SET_ERROR(ENOENT);
1872
1873 /*
1874 * Look up the file system's value for the property. For the
1875 * version property, we look up a slightly different string.
1876 */
1877 if (prop == ZFS_PROP_VERSION)
1878 pname = ZPL_VERSION_STR;
1879 else
1880 pname = zfs_prop_to_name(prop);
1881
1882 if (os != NULL)
1883 error = zap_lookup(os, MASTER_NODE_OBJ, pname, 8, 1, value);
1884
1885 if (error == ENOENT) {
1886 /* No value set, use the default value */
1887 switch (prop) {
1888 case ZFS_PROP_VERSION:
1889 *value = ZPL_VERSION;
1890 break;
1891 case ZFS_PROP_NORMALIZE:
1892 case ZFS_PROP_UTF8ONLY:
1893 *value = 0;
1894 break;
1895 case ZFS_PROP_CASE:
1896 *value = ZFS_CASE_SENSITIVE;
1897 break;
1898 case ZFS_PROP_ACLTYPE:
1899 *value = ZFS_ACLTYPE_OFF;
1900 break;
1901 default:
1902 return (error);
1903 }
1904 error = 0;
1905 }
1906 return (error);
1907 }
1908 EXPORT_SYMBOL(zfs_get_zplprop);
1909
1910 void
1911 zfs_init(void)
1912 {
1913 zfsctl_init();
1914 zfs_znode_init();
1915 dmu_objset_register_type(DMU_OST_ZFS, zfs_space_delta_cb);
1916 register_filesystem(&zpl_fs_type);
1917 }
1918
1919 void
1920 zfs_fini(void)
1921 {
1922 /*
1923 * we don't use outstanding because zpl_posix_acl_free might add more.
1924 */
1925 taskq_wait(system_taskq);
1926 unregister_filesystem(&zpl_fs_type);
1927 zfs_znode_fini();
1928 zfsctl_fini();
1929 }