]> git.proxmox.com Git - mirror_zfs.git/blob - module/zfs/zfs_vfsops.c
Add .zfs control directory
[mirror_zfs.git] / module / zfs / zfs_vfsops.c
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 */
24
25 /* Portions Copyright 2010 Robert Milkowski */
26
27 #include <sys/types.h>
28 #include <sys/param.h>
29 #include <sys/systm.h>
30 #include <sys/sysmacros.h>
31 #include <sys/kmem.h>
32 #include <sys/pathname.h>
33 #include <sys/vnode.h>
34 #include <sys/vfs.h>
35 #include <sys/vfs_opreg.h>
36 #include <sys/mntent.h>
37 #include <sys/mount.h>
38 #include <sys/cmn_err.h>
39 #include "fs/fs_subr.h"
40 #include <sys/zfs_znode.h>
41 #include <sys/zfs_vnops.h>
42 #include <sys/zfs_dir.h>
43 #include <sys/zil.h>
44 #include <sys/fs/zfs.h>
45 #include <sys/dmu.h>
46 #include <sys/dsl_prop.h>
47 #include <sys/dsl_dataset.h>
48 #include <sys/dsl_deleg.h>
49 #include <sys/spa.h>
50 #include <sys/zap.h>
51 #include <sys/sa.h>
52 #include <sys/varargs.h>
53 #include <sys/policy.h>
54 #include <sys/atomic.h>
55 #include <sys/mkdev.h>
56 #include <sys/modctl.h>
57 #include <sys/refstr.h>
58 #include <sys/zfs_ioctl.h>
59 #include <sys/zfs_ctldir.h>
60 #include <sys/zfs_fuid.h>
61 #include <sys/bootconf.h>
62 #include <sys/sunddi.h>
63 #include <sys/dnlc.h>
64 #include <sys/dmu_objset.h>
65 #include <sys/spa_boot.h>
66 #include <sys/sa.h>
67 #include <sys/zpl.h>
68 #include "zfs_comutil.h"
69
70
71 /*ARGSUSED*/
72 int
73 zfs_sync(struct super_block *sb, int wait, cred_t *cr)
74 {
75 zfs_sb_t *zsb = sb->s_fs_info;
76
77 /*
78 * Data integrity is job one. We don't want a compromised kernel
79 * writing to the storage pool, so we never sync during panic.
80 */
81 if (unlikely(oops_in_progress))
82 return (0);
83
84 /*
85 * Semantically, the only requirement is that the sync be initiated.
86 * The DMU syncs out txgs frequently, so there's nothing to do.
87 */
88 if (!wait)
89 return (0);
90
91 if (zsb != NULL) {
92 /*
93 * Sync a specific filesystem.
94 */
95 dsl_pool_t *dp;
96
97 ZFS_ENTER(zsb);
98 dp = dmu_objset_pool(zsb->z_os);
99
100 /*
101 * If the system is shutting down, then skip any
102 * filesystems which may exist on a suspended pool.
103 */
104 if (spa_suspended(dp->dp_spa)) {
105 ZFS_EXIT(zsb);
106 return (0);
107 }
108
109 if (zsb->z_log != NULL)
110 zil_commit(zsb->z_log, 0);
111
112 ZFS_EXIT(zsb);
113 } else {
114 /*
115 * Sync all ZFS filesystems. This is what happens when you
116 * run sync(1M). Unlike other filesystems, ZFS honors the
117 * request by waiting for all pools to commit all dirty data.
118 */
119 spa_sync_allpools();
120 }
121
122 return (0);
123 }
124 EXPORT_SYMBOL(zfs_sync);
125
126 boolean_t
127 zfs_is_readonly(zfs_sb_t *zsb)
128 {
129 return (!!(zsb->z_sb->s_flags & MS_RDONLY));
130 }
131 EXPORT_SYMBOL(zfs_is_readonly);
132
133 static void
134 atime_changed_cb(void *arg, uint64_t newval)
135 {
136 ((zfs_sb_t *)arg)->z_atime = newval;
137 }
138
139 static void
140 xattr_changed_cb(void *arg, uint64_t newval)
141 {
142 zfs_sb_t *zsb = arg;
143
144 if (newval == ZFS_XATTR_OFF) {
145 zsb->z_flags &= ~ZSB_XATTR;
146 } else {
147 zsb->z_flags |= ZSB_XATTR;
148
149 if (newval == ZFS_XATTR_SA)
150 zsb->z_xattr_sa = B_TRUE;
151 else
152 zsb->z_xattr_sa = B_FALSE;
153 }
154 }
155
156 static void
157 blksz_changed_cb(void *arg, uint64_t newval)
158 {
159 zfs_sb_t *zsb = arg;
160
161 if (newval < SPA_MINBLOCKSIZE ||
162 newval > SPA_MAXBLOCKSIZE || !ISP2(newval))
163 newval = SPA_MAXBLOCKSIZE;
164
165 zsb->z_max_blksz = newval;
166 }
167
168 static void
169 readonly_changed_cb(void *arg, uint64_t newval)
170 {
171 zfs_sb_t *zsb = arg;
172 struct super_block *sb = zsb->z_sb;
173
174 if (sb == NULL)
175 return;
176
177 if (newval)
178 sb->s_flags |= MS_RDONLY;
179 else
180 sb->s_flags &= ~MS_RDONLY;
181 }
182
183 static void
184 devices_changed_cb(void *arg, uint64_t newval)
185 {
186 }
187
188 static void
189 setuid_changed_cb(void *arg, uint64_t newval)
190 {
191 }
192
193 static void
194 exec_changed_cb(void *arg, uint64_t newval)
195 {
196 }
197
198 static void
199 nbmand_changed_cb(void *arg, uint64_t newval)
200 {
201 zfs_sb_t *zsb = arg;
202 struct super_block *sb = zsb->z_sb;
203
204 if (sb == NULL)
205 return;
206
207 if (newval == TRUE)
208 sb->s_flags |= MS_MANDLOCK;
209 else
210 sb->s_flags &= ~MS_MANDLOCK;
211 }
212
213 static void
214 snapdir_changed_cb(void *arg, uint64_t newval)
215 {
216 ((zfs_sb_t *)arg)->z_show_ctldir = newval;
217 }
218
219 static void
220 vscan_changed_cb(void *arg, uint64_t newval)
221 {
222 ((zfs_sb_t *)arg)->z_vscan = newval;
223 }
224
225 static void
226 acl_inherit_changed_cb(void *arg, uint64_t newval)
227 {
228 ((zfs_sb_t *)arg)->z_acl_inherit = newval;
229 }
230
231 int
232 zfs_register_callbacks(zfs_sb_t *zsb)
233 {
234 struct dsl_dataset *ds = NULL;
235 objset_t *os = zsb->z_os;
236 int error = 0;
237
238 if (zfs_is_readonly(zsb) || !spa_writeable(dmu_objset_spa(os)))
239 readonly_changed_cb(zsb, B_TRUE);
240
241 /*
242 * Register property callbacks.
243 *
244 * It would probably be fine to just check for i/o error from
245 * the first prop_register(), but I guess I like to go
246 * overboard...
247 */
248 ds = dmu_objset_ds(os);
249 error = dsl_prop_register(ds,
250 "atime", atime_changed_cb, zsb);
251 error = error ? error : dsl_prop_register(ds,
252 "xattr", xattr_changed_cb, zsb);
253 error = error ? error : dsl_prop_register(ds,
254 "recordsize", blksz_changed_cb, zsb);
255 error = error ? error : dsl_prop_register(ds,
256 "readonly", readonly_changed_cb, zsb);
257 error = error ? error : dsl_prop_register(ds,
258 "devices", devices_changed_cb, zsb);
259 error = error ? error : dsl_prop_register(ds,
260 "setuid", setuid_changed_cb, zsb);
261 error = error ? error : dsl_prop_register(ds,
262 "exec", exec_changed_cb, zsb);
263 error = error ? error : dsl_prop_register(ds,
264 "snapdir", snapdir_changed_cb, zsb);
265 error = error ? error : dsl_prop_register(ds,
266 "aclinherit", acl_inherit_changed_cb, zsb);
267 error = error ? error : dsl_prop_register(ds,
268 "vscan", vscan_changed_cb, zsb);
269 error = error ? error : dsl_prop_register(ds,
270 "nbmand", nbmand_changed_cb, zsb);
271 if (error)
272 goto unregister;
273
274 return (0);
275
276 unregister:
277 /*
278 * We may attempt to unregister some callbacks that are not
279 * registered, but this is OK; it will simply return ENOMSG,
280 * which we will ignore.
281 */
282 (void) dsl_prop_unregister(ds, "atime", atime_changed_cb, zsb);
283 (void) dsl_prop_unregister(ds, "xattr", xattr_changed_cb, zsb);
284 (void) dsl_prop_unregister(ds, "recordsize", blksz_changed_cb, zsb);
285 (void) dsl_prop_unregister(ds, "readonly", readonly_changed_cb, zsb);
286 (void) dsl_prop_unregister(ds, "devices", devices_changed_cb, zsb);
287 (void) dsl_prop_unregister(ds, "setuid", setuid_changed_cb, zsb);
288 (void) dsl_prop_unregister(ds, "exec", exec_changed_cb, zsb);
289 (void) dsl_prop_unregister(ds, "snapdir", snapdir_changed_cb, zsb);
290 (void) dsl_prop_unregister(ds, "aclinherit", acl_inherit_changed_cb,
291 zsb);
292 (void) dsl_prop_unregister(ds, "vscan", vscan_changed_cb, zsb);
293 (void) dsl_prop_unregister(ds, "nbmand", nbmand_changed_cb, zsb);
294
295 return (error);
296 }
297 EXPORT_SYMBOL(zfs_register_callbacks);
298
299 static int
300 zfs_space_delta_cb(dmu_object_type_t bonustype, void *data,
301 uint64_t *userp, uint64_t *groupp)
302 {
303 znode_phys_t *znp = data;
304 int error = 0;
305
306 /*
307 * Is it a valid type of object to track?
308 */
309 if (bonustype != DMU_OT_ZNODE && bonustype != DMU_OT_SA)
310 return (ENOENT);
311
312 /*
313 * If we have a NULL data pointer
314 * then assume the id's aren't changing and
315 * return EEXIST to the dmu to let it know to
316 * use the same ids
317 */
318 if (data == NULL)
319 return (EEXIST);
320
321 if (bonustype == DMU_OT_ZNODE) {
322 *userp = znp->zp_uid;
323 *groupp = znp->zp_gid;
324 } else {
325 int hdrsize;
326
327 ASSERT(bonustype == DMU_OT_SA);
328 hdrsize = sa_hdrsize(data);
329
330 if (hdrsize != 0) {
331 *userp = *((uint64_t *)((uintptr_t)data + hdrsize +
332 SA_UID_OFFSET));
333 *groupp = *((uint64_t *)((uintptr_t)data + hdrsize +
334 SA_GID_OFFSET));
335 } else {
336 /*
337 * This should only happen for newly created
338 * files that haven't had the znode data filled
339 * in yet.
340 */
341 *userp = 0;
342 *groupp = 0;
343 }
344 }
345 return (error);
346 }
347
348 static void
349 fuidstr_to_sid(zfs_sb_t *zsb, const char *fuidstr,
350 char *domainbuf, int buflen, uid_t *ridp)
351 {
352 uint64_t fuid;
353 const char *domain;
354
355 fuid = strtonum(fuidstr, NULL);
356
357 domain = zfs_fuid_find_by_idx(zsb, FUID_INDEX(fuid));
358 if (domain)
359 (void) strlcpy(domainbuf, domain, buflen);
360 else
361 domainbuf[0] = '\0';
362 *ridp = FUID_RID(fuid);
363 }
364
365 static uint64_t
366 zfs_userquota_prop_to_obj(zfs_sb_t *zsb, zfs_userquota_prop_t type)
367 {
368 switch (type) {
369 case ZFS_PROP_USERUSED:
370 return (DMU_USERUSED_OBJECT);
371 case ZFS_PROP_GROUPUSED:
372 return (DMU_GROUPUSED_OBJECT);
373 case ZFS_PROP_USERQUOTA:
374 return (zsb->z_userquota_obj);
375 case ZFS_PROP_GROUPQUOTA:
376 return (zsb->z_groupquota_obj);
377 default:
378 return (ENOTSUP);
379 }
380 return (0);
381 }
382
383 int
384 zfs_userspace_many(zfs_sb_t *zsb, zfs_userquota_prop_t type,
385 uint64_t *cookiep, void *vbuf, uint64_t *bufsizep)
386 {
387 int error;
388 zap_cursor_t zc;
389 zap_attribute_t za;
390 zfs_useracct_t *buf = vbuf;
391 uint64_t obj;
392
393 if (!dmu_objset_userspace_present(zsb->z_os))
394 return (ENOTSUP);
395
396 obj = zfs_userquota_prop_to_obj(zsb, type);
397 if (obj == 0) {
398 *bufsizep = 0;
399 return (0);
400 }
401
402 for (zap_cursor_init_serialized(&zc, zsb->z_os, obj, *cookiep);
403 (error = zap_cursor_retrieve(&zc, &za)) == 0;
404 zap_cursor_advance(&zc)) {
405 if ((uintptr_t)buf - (uintptr_t)vbuf + sizeof (zfs_useracct_t) >
406 *bufsizep)
407 break;
408
409 fuidstr_to_sid(zsb, za.za_name,
410 buf->zu_domain, sizeof (buf->zu_domain), &buf->zu_rid);
411
412 buf->zu_space = za.za_first_integer;
413 buf++;
414 }
415 if (error == ENOENT)
416 error = 0;
417
418 ASSERT3U((uintptr_t)buf - (uintptr_t)vbuf, <=, *bufsizep);
419 *bufsizep = (uintptr_t)buf - (uintptr_t)vbuf;
420 *cookiep = zap_cursor_serialize(&zc);
421 zap_cursor_fini(&zc);
422 return (error);
423 }
424 EXPORT_SYMBOL(zfs_userspace_many);
425
426 /*
427 * buf must be big enough (eg, 32 bytes)
428 */
429 static int
430 id_to_fuidstr(zfs_sb_t *zsb, const char *domain, uid_t rid,
431 char *buf, boolean_t addok)
432 {
433 uint64_t fuid;
434 int domainid = 0;
435
436 if (domain && domain[0]) {
437 domainid = zfs_fuid_find_by_domain(zsb, domain, NULL, addok);
438 if (domainid == -1)
439 return (ENOENT);
440 }
441 fuid = FUID_ENCODE(domainid, rid);
442 (void) sprintf(buf, "%llx", (longlong_t)fuid);
443 return (0);
444 }
445
446 int
447 zfs_userspace_one(zfs_sb_t *zsb, zfs_userquota_prop_t type,
448 const char *domain, uint64_t rid, uint64_t *valp)
449 {
450 char buf[32];
451 int err;
452 uint64_t obj;
453
454 *valp = 0;
455
456 if (!dmu_objset_userspace_present(zsb->z_os))
457 return (ENOTSUP);
458
459 obj = zfs_userquota_prop_to_obj(zsb, type);
460 if (obj == 0)
461 return (0);
462
463 err = id_to_fuidstr(zsb, domain, rid, buf, B_FALSE);
464 if (err)
465 return (err);
466
467 err = zap_lookup(zsb->z_os, obj, buf, 8, 1, valp);
468 if (err == ENOENT)
469 err = 0;
470 return (err);
471 }
472 EXPORT_SYMBOL(zfs_userspace_one);
473
474 int
475 zfs_set_userquota(zfs_sb_t *zsb, zfs_userquota_prop_t type,
476 const char *domain, uint64_t rid, uint64_t quota)
477 {
478 char buf[32];
479 int err;
480 dmu_tx_t *tx;
481 uint64_t *objp;
482 boolean_t fuid_dirtied;
483
484 if (type != ZFS_PROP_USERQUOTA && type != ZFS_PROP_GROUPQUOTA)
485 return (EINVAL);
486
487 if (zsb->z_version < ZPL_VERSION_USERSPACE)
488 return (ENOTSUP);
489
490 objp = (type == ZFS_PROP_USERQUOTA) ? &zsb->z_userquota_obj :
491 &zsb->z_groupquota_obj;
492
493 err = id_to_fuidstr(zsb, domain, rid, buf, B_TRUE);
494 if (err)
495 return (err);
496 fuid_dirtied = zsb->z_fuid_dirty;
497
498 tx = dmu_tx_create(zsb->z_os);
499 dmu_tx_hold_zap(tx, *objp ? *objp : DMU_NEW_OBJECT, B_TRUE, NULL);
500 if (*objp == 0) {
501 dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, B_TRUE,
502 zfs_userquota_prop_prefixes[type]);
503 }
504 if (fuid_dirtied)
505 zfs_fuid_txhold(zsb, tx);
506 err = dmu_tx_assign(tx, TXG_WAIT);
507 if (err) {
508 dmu_tx_abort(tx);
509 return (err);
510 }
511
512 mutex_enter(&zsb->z_lock);
513 if (*objp == 0) {
514 *objp = zap_create(zsb->z_os, DMU_OT_USERGROUP_QUOTA,
515 DMU_OT_NONE, 0, tx);
516 VERIFY(0 == zap_add(zsb->z_os, MASTER_NODE_OBJ,
517 zfs_userquota_prop_prefixes[type], 8, 1, objp, tx));
518 }
519 mutex_exit(&zsb->z_lock);
520
521 if (quota == 0) {
522 err = zap_remove(zsb->z_os, *objp, buf, tx);
523 if (err == ENOENT)
524 err = 0;
525 } else {
526 err = zap_update(zsb->z_os, *objp, buf, 8, 1, &quota, tx);
527 }
528 ASSERT(err == 0);
529 if (fuid_dirtied)
530 zfs_fuid_sync(zsb, tx);
531 dmu_tx_commit(tx);
532 return (err);
533 }
534 EXPORT_SYMBOL(zfs_set_userquota);
535
536 boolean_t
537 zfs_fuid_overquota(zfs_sb_t *zsb, boolean_t isgroup, uint64_t fuid)
538 {
539 char buf[32];
540 uint64_t used, quota, usedobj, quotaobj;
541 int err;
542
543 usedobj = isgroup ? DMU_GROUPUSED_OBJECT : DMU_USERUSED_OBJECT;
544 quotaobj = isgroup ? zsb->z_groupquota_obj : zsb->z_userquota_obj;
545
546 if (quotaobj == 0 || zsb->z_replay)
547 return (B_FALSE);
548
549 (void) sprintf(buf, "%llx", (longlong_t)fuid);
550 err = zap_lookup(zsb->z_os, quotaobj, buf, 8, 1, &quota);
551 if (err != 0)
552 return (B_FALSE);
553
554 err = zap_lookup(zsb->z_os, usedobj, buf, 8, 1, &used);
555 if (err != 0)
556 return (B_FALSE);
557 return (used >= quota);
558 }
559 EXPORT_SYMBOL(zfs_fuid_overquota);
560
561 boolean_t
562 zfs_owner_overquota(zfs_sb_t *zsb, znode_t *zp, boolean_t isgroup)
563 {
564 uint64_t fuid;
565 uint64_t quotaobj;
566
567 quotaobj = isgroup ? zsb->z_groupquota_obj : zsb->z_userquota_obj;
568
569 fuid = isgroup ? zp->z_gid : zp->z_uid;
570
571 if (quotaobj == 0 || zsb->z_replay)
572 return (B_FALSE);
573
574 return (zfs_fuid_overquota(zsb, isgroup, fuid));
575 }
576 EXPORT_SYMBOL(zfs_owner_overquota);
577
578 int
579 zfs_sb_create(const char *osname, zfs_sb_t **zsbp)
580 {
581 objset_t *os;
582 zfs_sb_t *zsb;
583 uint64_t zval;
584 int i, error;
585 uint64_t sa_obj;
586
587 zsb = kmem_zalloc(sizeof (zfs_sb_t), KM_SLEEP);
588
589 /*
590 * We claim to always be readonly so we can open snapshots;
591 * other ZPL code will prevent us from writing to snapshots.
592 */
593 error = dmu_objset_own(osname, DMU_OST_ZFS, B_TRUE, zsb, &os);
594 if (error) {
595 kmem_free(zsb, sizeof (zfs_sb_t));
596 return (error);
597 }
598
599 /*
600 * Initialize the zfs-specific filesystem structure.
601 * Should probably make this a kmem cache, shuffle fields,
602 * and just bzero up to z_hold_mtx[].
603 */
604 zsb->z_sb = NULL;
605 zsb->z_parent = zsb;
606 zsb->z_max_blksz = SPA_MAXBLOCKSIZE;
607 zsb->z_show_ctldir = ZFS_SNAPDIR_VISIBLE;
608 zsb->z_os = os;
609
610 error = zfs_get_zplprop(os, ZFS_PROP_VERSION, &zsb->z_version);
611 if (error) {
612 goto out;
613 } else if (zsb->z_version >
614 zfs_zpl_version_map(spa_version(dmu_objset_spa(os)))) {
615 (void) printk("Can't mount a version %lld file system "
616 "on a version %lld pool\n. Pool must be upgraded to mount "
617 "this file system.", (u_longlong_t)zsb->z_version,
618 (u_longlong_t)spa_version(dmu_objset_spa(os)));
619 error = ENOTSUP;
620 goto out;
621 }
622 if ((error = zfs_get_zplprop(os, ZFS_PROP_NORMALIZE, &zval)) != 0)
623 goto out;
624 zsb->z_norm = (int)zval;
625
626 if ((error = zfs_get_zplprop(os, ZFS_PROP_UTF8ONLY, &zval)) != 0)
627 goto out;
628 zsb->z_utf8 = (zval != 0);
629
630 if ((error = zfs_get_zplprop(os, ZFS_PROP_CASE, &zval)) != 0)
631 goto out;
632 zsb->z_case = (uint_t)zval;
633
634 /*
635 * Fold case on file systems that are always or sometimes case
636 * insensitive.
637 */
638 if (zsb->z_case == ZFS_CASE_INSENSITIVE ||
639 zsb->z_case == ZFS_CASE_MIXED)
640 zsb->z_norm |= U8_TEXTPREP_TOUPPER;
641
642 zsb->z_use_fuids = USE_FUIDS(zsb->z_version, zsb->z_os);
643 zsb->z_use_sa = USE_SA(zsb->z_version, zsb->z_os);
644
645 if (zsb->z_use_sa) {
646 /* should either have both of these objects or none */
647 error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_SA_ATTRS, 8, 1,
648 &sa_obj);
649 if (error)
650 goto out;
651
652 error = zfs_get_zplprop(os, ZFS_PROP_XATTR, &zval);
653 if ((error == 0) && (zval == ZFS_XATTR_SA))
654 zsb->z_xattr_sa = B_TRUE;
655 } else {
656 /*
657 * Pre SA versions file systems should never touch
658 * either the attribute registration or layout objects.
659 */
660 sa_obj = 0;
661 }
662
663 error = sa_setup(os, sa_obj, zfs_attr_table, ZPL_END,
664 &zsb->z_attr_table);
665 if (error)
666 goto out;
667
668 if (zsb->z_version >= ZPL_VERSION_SA)
669 sa_register_update_callback(os, zfs_sa_upgrade);
670
671 error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_ROOT_OBJ, 8, 1,
672 &zsb->z_root);
673 if (error)
674 goto out;
675 ASSERT(zsb->z_root != 0);
676
677 error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_UNLINKED_SET, 8, 1,
678 &zsb->z_unlinkedobj);
679 if (error)
680 goto out;
681
682 error = zap_lookup(os, MASTER_NODE_OBJ,
683 zfs_userquota_prop_prefixes[ZFS_PROP_USERQUOTA],
684 8, 1, &zsb->z_userquota_obj);
685 if (error && error != ENOENT)
686 goto out;
687
688 error = zap_lookup(os, MASTER_NODE_OBJ,
689 zfs_userquota_prop_prefixes[ZFS_PROP_GROUPQUOTA],
690 8, 1, &zsb->z_groupquota_obj);
691 if (error && error != ENOENT)
692 goto out;
693
694 error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_FUID_TABLES, 8, 1,
695 &zsb->z_fuid_obj);
696 if (error && error != ENOENT)
697 goto out;
698
699 error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_SHARES_DIR, 8, 1,
700 &zsb->z_shares_dir);
701 if (error && error != ENOENT)
702 goto out;
703
704 mutex_init(&zsb->z_znodes_lock, NULL, MUTEX_DEFAULT, NULL);
705 mutex_init(&zsb->z_lock, NULL, MUTEX_DEFAULT, NULL);
706 list_create(&zsb->z_all_znodes, sizeof (znode_t),
707 offsetof(znode_t, z_link_node));
708 rrw_init(&zsb->z_teardown_lock);
709 rw_init(&zsb->z_teardown_inactive_lock, NULL, RW_DEFAULT, NULL);
710 rw_init(&zsb->z_fuid_lock, NULL, RW_DEFAULT, NULL);
711 for (i = 0; i != ZFS_OBJ_MTX_SZ; i++)
712 mutex_init(&zsb->z_hold_mtx[i], NULL, MUTEX_DEFAULT, NULL);
713
714 avl_create(&zsb->z_ctldir_snaps, snapentry_compare,
715 sizeof (zfs_snapentry_t), offsetof(zfs_snapentry_t, se_node));
716 mutex_init(&zsb->z_ctldir_lock, NULL, MUTEX_DEFAULT, NULL);
717
718 *zsbp = zsb;
719 return (0);
720
721 out:
722 dmu_objset_disown(os, zsb);
723 *zsbp = NULL;
724 kmem_free(zsb, sizeof (zfs_sb_t));
725 return (error);
726 }
727 EXPORT_SYMBOL(zfs_sb_create);
728
729 int
730 zfs_sb_setup(zfs_sb_t *zsb, boolean_t mounting)
731 {
732 int error;
733
734 error = zfs_register_callbacks(zsb);
735 if (error)
736 return (error);
737
738 /*
739 * Set the objset user_ptr to track its zsb.
740 */
741 mutex_enter(&zsb->z_os->os_user_ptr_lock);
742 dmu_objset_set_user(zsb->z_os, zsb);
743 mutex_exit(&zsb->z_os->os_user_ptr_lock);
744
745 zsb->z_log = zil_open(zsb->z_os, zfs_get_data);
746
747 /*
748 * If we are not mounting (ie: online recv), then we don't
749 * have to worry about replaying the log as we blocked all
750 * operations out since we closed the ZIL.
751 */
752 if (mounting) {
753 boolean_t readonly;
754
755 /*
756 * During replay we remove the read only flag to
757 * allow replays to succeed.
758 */
759 readonly = zfs_is_readonly(zsb);
760 if (readonly != 0)
761 readonly_changed_cb(zsb, B_FALSE);
762 else
763 zfs_unlinked_drain(zsb);
764
765 /*
766 * Parse and replay the intent log.
767 *
768 * Because of ziltest, this must be done after
769 * zfs_unlinked_drain(). (Further note: ziltest
770 * doesn't use readonly mounts, where
771 * zfs_unlinked_drain() isn't called.) This is because
772 * ziltest causes spa_sync() to think it's committed,
773 * but actually it is not, so the intent log contains
774 * many txg's worth of changes.
775 *
776 * In particular, if object N is in the unlinked set in
777 * the last txg to actually sync, then it could be
778 * actually freed in a later txg and then reallocated
779 * in a yet later txg. This would write a "create
780 * object N" record to the intent log. Normally, this
781 * would be fine because the spa_sync() would have
782 * written out the fact that object N is free, before
783 * we could write the "create object N" intent log
784 * record.
785 *
786 * But when we are in ziltest mode, we advance the "open
787 * txg" without actually spa_sync()-ing the changes to
788 * disk. So we would see that object N is still
789 * allocated and in the unlinked set, and there is an
790 * intent log record saying to allocate it.
791 */
792 if (spa_writeable(dmu_objset_spa(zsb->z_os))) {
793 if (zil_replay_disable) {
794 zil_destroy(zsb->z_log, B_FALSE);
795 } else {
796 zsb->z_replay = B_TRUE;
797 zil_replay(zsb->z_os, zsb,
798 zfs_replay_vector);
799 zsb->z_replay = B_FALSE;
800 }
801 }
802
803 /* restore readonly bit */
804 if (readonly != 0)
805 readonly_changed_cb(zsb, B_TRUE);
806 }
807
808 return (0);
809 }
810 EXPORT_SYMBOL(zfs_sb_setup);
811
812 void
813 zfs_sb_free(zfs_sb_t *zsb)
814 {
815 int i;
816
817 zfs_fuid_destroy(zsb);
818
819 mutex_destroy(&zsb->z_znodes_lock);
820 mutex_destroy(&zsb->z_lock);
821 list_destroy(&zsb->z_all_znodes);
822 rrw_destroy(&zsb->z_teardown_lock);
823 rw_destroy(&zsb->z_teardown_inactive_lock);
824 rw_destroy(&zsb->z_fuid_lock);
825 for (i = 0; i != ZFS_OBJ_MTX_SZ; i++)
826 mutex_destroy(&zsb->z_hold_mtx[i]);
827 mutex_destroy(&zsb->z_ctldir_lock);
828 avl_destroy(&zsb->z_ctldir_snaps);
829 kmem_free(zsb, sizeof (zfs_sb_t));
830 }
831 EXPORT_SYMBOL(zfs_sb_free);
832
833 static void
834 zfs_set_fuid_feature(zfs_sb_t *zsb)
835 {
836 zsb->z_use_fuids = USE_FUIDS(zsb->z_version, zsb->z_os);
837 zsb->z_use_sa = USE_SA(zsb->z_version, zsb->z_os);
838 }
839
840 void
841 zfs_unregister_callbacks(zfs_sb_t *zsb)
842 {
843 objset_t *os = zsb->z_os;
844 struct dsl_dataset *ds;
845
846 /*
847 * Unregister properties.
848 */
849 if (!dmu_objset_is_snapshot(os)) {
850 ds = dmu_objset_ds(os);
851 VERIFY(dsl_prop_unregister(ds, "atime", atime_changed_cb,
852 zsb) == 0);
853
854 VERIFY(dsl_prop_unregister(ds, "xattr", xattr_changed_cb,
855 zsb) == 0);
856
857 VERIFY(dsl_prop_unregister(ds, "recordsize", blksz_changed_cb,
858 zsb) == 0);
859
860 VERIFY(dsl_prop_unregister(ds, "readonly", readonly_changed_cb,
861 zsb) == 0);
862
863 VERIFY(dsl_prop_unregister(ds, "devices", devices_changed_cb,
864 zsb) == 0);
865
866 VERIFY(dsl_prop_unregister(ds, "setuid", setuid_changed_cb,
867 zsb) == 0);
868
869 VERIFY(dsl_prop_unregister(ds, "exec", exec_changed_cb,
870 zsb) == 0);
871
872 VERIFY(dsl_prop_unregister(ds, "snapdir", snapdir_changed_cb,
873 zsb) == 0);
874
875 VERIFY(dsl_prop_unregister(ds, "aclinherit",
876 acl_inherit_changed_cb, zsb) == 0);
877
878 VERIFY(dsl_prop_unregister(ds, "vscan",
879 vscan_changed_cb, zsb) == 0);
880
881 VERIFY(dsl_prop_unregister(ds, "nbmand",
882 nbmand_changed_cb, zsb) == 0);
883 }
884 }
885 EXPORT_SYMBOL(zfs_unregister_callbacks);
886
887 #ifdef HAVE_MLSLABEL
888 /*
889 * zfs_check_global_label:
890 * Check that the hex label string is appropriate for the dataset
891 * being mounted into the global_zone proper.
892 *
893 * Return an error if the hex label string is not default or
894 * admin_low/admin_high. For admin_low labels, the corresponding
895 * dataset must be readonly.
896 */
897 int
898 zfs_check_global_label(const char *dsname, const char *hexsl)
899 {
900 if (strcasecmp(hexsl, ZFS_MLSLABEL_DEFAULT) == 0)
901 return (0);
902 if (strcasecmp(hexsl, ADMIN_HIGH) == 0)
903 return (0);
904 if (strcasecmp(hexsl, ADMIN_LOW) == 0) {
905 /* must be readonly */
906 uint64_t rdonly;
907
908 if (dsl_prop_get_integer(dsname,
909 zfs_prop_to_name(ZFS_PROP_READONLY), &rdonly, NULL))
910 return (EACCES);
911 return (rdonly ? 0 : EACCES);
912 }
913 return (EACCES);
914 }
915 EXPORT_SYMBOL(zfs_check_global_label);
916 #endif /* HAVE_MLSLABEL */
917
918 int
919 zfs_statvfs(struct dentry *dentry, struct kstatfs *statp)
920 {
921 zfs_sb_t *zsb = dentry->d_sb->s_fs_info;
922 uint64_t refdbytes, availbytes, usedobjs, availobjs;
923 uint32_t bshift;
924
925 ZFS_ENTER(zsb);
926
927 dmu_objset_space(zsb->z_os,
928 &refdbytes, &availbytes, &usedobjs, &availobjs);
929
930 /*
931 * The underlying storage pool actually uses multiple block
932 * size. Under Solaris frsize (fragment size) is reported as
933 * the smallest block size we support, and bsize (block size)
934 * as the filesystem's maximum block size. Unfortunately,
935 * under Linux the fragment size and block size are often used
936 * interchangeably. Thus we are forced to report both of them
937 * as the filesystem's maximum block size.
938 */
939 statp->f_frsize = zsb->z_max_blksz;
940 statp->f_bsize = zsb->z_max_blksz;
941 bshift = fls(statp->f_bsize) - 1;
942
943 /*
944 * The following report "total" blocks of various kinds in
945 * the file system, but reported in terms of f_bsize - the
946 * "preferred" size.
947 */
948
949 statp->f_blocks = (refdbytes + availbytes) >> bshift;
950 statp->f_bfree = availbytes >> bshift;
951 statp->f_bavail = statp->f_bfree; /* no root reservation */
952
953 /*
954 * statvfs() should really be called statufs(), because it assumes
955 * static metadata. ZFS doesn't preallocate files, so the best
956 * we can do is report the max that could possibly fit in f_files,
957 * and that minus the number actually used in f_ffree.
958 * For f_ffree, report the smaller of the number of object available
959 * and the number of blocks (each object will take at least a block).
960 */
961 statp->f_ffree = MIN(availobjs, availbytes >> DNODE_SHIFT);
962 statp->f_files = statp->f_ffree + usedobjs;
963 statp->f_fsid.val[0] = dentry->d_sb->s_dev;
964 statp->f_fsid.val[1] = 0;
965 statp->f_type = ZFS_SUPER_MAGIC;
966 statp->f_namelen = ZFS_MAXNAMELEN;
967
968 /*
969 * We have all of 40 characters to stuff a string here.
970 * Is there anything useful we could/should provide?
971 */
972 bzero(statp->f_spare, sizeof (statp->f_spare));
973
974 ZFS_EXIT(zsb);
975 return (0);
976 }
977 EXPORT_SYMBOL(zfs_statvfs);
978
979 int
980 zfs_root(zfs_sb_t *zsb, struct inode **ipp)
981 {
982 znode_t *rootzp;
983 int error;
984
985 ZFS_ENTER(zsb);
986
987 error = zfs_zget(zsb, zsb->z_root, &rootzp);
988 if (error == 0)
989 *ipp = ZTOI(rootzp);
990
991 ZFS_EXIT(zsb);
992 return (error);
993 }
994 EXPORT_SYMBOL(zfs_root);
995
996 #ifdef HAVE_SHRINK
997 int
998 zfs_sb_prune(struct super_block *sb, unsigned long nr_to_scan, int *objects)
999 {
1000 zfs_sb_t *zsb = sb->s_fs_info;
1001 struct shrinker *shrinker = &sb->s_shrink;
1002 struct shrink_control sc = {
1003 .nr_to_scan = nr_to_scan,
1004 .gfp_mask = GFP_KERNEL,
1005 };
1006
1007 ZFS_ENTER(zsb);
1008 *objects = (*shrinker->shrink)(shrinker, &sc);
1009 ZFS_EXIT(zsb);
1010
1011 return (0);
1012 }
1013 EXPORT_SYMBOL(zfs_sb_prune);
1014 #endif /* HAVE_SHRINK */
1015
1016 /*
1017 * Teardown the zfs_sb_t::z_os.
1018 *
1019 * Note, if 'unmounting' if FALSE, we return with the 'z_teardown_lock'
1020 * and 'z_teardown_inactive_lock' held.
1021 */
1022 int
1023 zfs_sb_teardown(zfs_sb_t *zsb, boolean_t unmounting)
1024 {
1025 znode_t *zp;
1026
1027 rrw_enter(&zsb->z_teardown_lock, RW_WRITER, FTAG);
1028
1029 if (!unmounting) {
1030 /*
1031 * We purge the parent filesystem's super block as the
1032 * parent filesystem and all of its snapshots have their
1033 * inode's super block set to the parent's filesystem's
1034 * super block. Note, 'z_parent' is self referential
1035 * for non-snapshots.
1036 */
1037 shrink_dcache_sb(zsb->z_parent->z_sb);
1038 (void) spl_invalidate_inodes(zsb->z_parent->z_sb, 0);
1039 }
1040
1041 /*
1042 * Drain the iput_taskq to ensure all active references to the
1043 * zfs_sb_t have been handled only then can it be safely destroyed.
1044 */
1045 taskq_wait(dsl_pool_iput_taskq(dmu_objset_pool(zsb->z_os)));
1046
1047 /*
1048 * Close the zil. NB: Can't close the zil while zfs_inactive
1049 * threads are blocked as zil_close can call zfs_inactive.
1050 */
1051 if (zsb->z_log) {
1052 zil_close(zsb->z_log);
1053 zsb->z_log = NULL;
1054 }
1055
1056 rw_enter(&zsb->z_teardown_inactive_lock, RW_WRITER);
1057
1058 /*
1059 * If we are not unmounting (ie: online recv) and someone already
1060 * unmounted this file system while we were doing the switcheroo,
1061 * or a reopen of z_os failed then just bail out now.
1062 */
1063 if (!unmounting && (zsb->z_unmounted || zsb->z_os == NULL)) {
1064 rw_exit(&zsb->z_teardown_inactive_lock);
1065 rrw_exit(&zsb->z_teardown_lock, FTAG);
1066 return (EIO);
1067 }
1068
1069 /*
1070 * At this point there are no vops active, and any new vops will
1071 * fail with EIO since we have z_teardown_lock for writer (only
1072 * relavent for forced unmount).
1073 *
1074 * Release all holds on dbufs.
1075 */
1076 mutex_enter(&zsb->z_znodes_lock);
1077 for (zp = list_head(&zsb->z_all_znodes); zp != NULL;
1078 zp = list_next(&zsb->z_all_znodes, zp))
1079 if (zp->z_sa_hdl) {
1080 ASSERT(atomic_read(&ZTOI(zp)->i_count) > 0);
1081 zfs_znode_dmu_fini(zp);
1082 }
1083 mutex_exit(&zsb->z_znodes_lock);
1084
1085 /*
1086 * If we are unmounting, set the unmounted flag and let new vops
1087 * unblock. zfs_inactive will have the unmounted behavior, and all
1088 * other vops will fail with EIO.
1089 */
1090 if (unmounting) {
1091 zsb->z_unmounted = B_TRUE;
1092 rrw_exit(&zsb->z_teardown_lock, FTAG);
1093 rw_exit(&zsb->z_teardown_inactive_lock);
1094 }
1095
1096 /*
1097 * z_os will be NULL if there was an error in attempting to reopen
1098 * zsb, so just return as the properties had already been
1099 *
1100 * unregistered and cached data had been evicted before.
1101 */
1102 if (zsb->z_os == NULL)
1103 return (0);
1104
1105 /*
1106 * Unregister properties.
1107 */
1108 zfs_unregister_callbacks(zsb);
1109
1110 /*
1111 * Evict cached data
1112 */
1113 if (dmu_objset_is_dirty_anywhere(zsb->z_os))
1114 if (!zfs_is_readonly(zsb))
1115 txg_wait_synced(dmu_objset_pool(zsb->z_os), 0);
1116 (void) dmu_objset_evict_dbufs(zsb->z_os);
1117
1118 return (0);
1119 }
1120 EXPORT_SYMBOL(zfs_sb_teardown);
1121
1122 #if defined(HAVE_BDI) && !defined(HAVE_BDI_SETUP_AND_REGISTER)
1123 atomic_long_t zfs_bdi_seq = ATOMIC_LONG_INIT(0);
1124 #endif /* HAVE_BDI && !HAVE_BDI_SETUP_AND_REGISTER */
1125
1126 int
1127 zfs_domount(struct super_block *sb, void *data, int silent)
1128 {
1129 zpl_mount_data_t *zmd = data;
1130 const char *osname = zmd->z_osname;
1131 zfs_sb_t *zsb;
1132 struct inode *root_inode;
1133 uint64_t recordsize;
1134 int error;
1135
1136 error = zfs_sb_create(osname, &zsb);
1137 if (error)
1138 return (error);
1139
1140 if ((error = dsl_prop_get_integer(osname, "recordsize",
1141 &recordsize, NULL)))
1142 goto out;
1143
1144 zsb->z_sb = sb;
1145 sb->s_fs_info = zsb;
1146 sb->s_magic = ZFS_SUPER_MAGIC;
1147 sb->s_maxbytes = MAX_LFS_FILESIZE;
1148 sb->s_time_gran = 1;
1149 sb->s_blocksize = recordsize;
1150 sb->s_blocksize_bits = ilog2(recordsize);
1151
1152 #ifdef HAVE_BDI
1153 /*
1154 * 2.6.32 API change,
1155 * Added backing_device_info (BDI) per super block interfaces. A BDI
1156 * must be configured when using a non-device backed filesystem for
1157 * proper writeback. This is not required for older pdflush kernels.
1158 *
1159 * NOTE: Linux read-ahead is disabled in favor of zfs read-ahead.
1160 */
1161 zsb->z_bdi.ra_pages = 0;
1162 sb->s_bdi = &zsb->z_bdi;
1163
1164 error = -bdi_setup_and_register(&zsb->z_bdi, "zfs", BDI_CAP_MAP_COPY);
1165 if (error)
1166 goto out;
1167 #endif /* HAVE_BDI */
1168
1169 /* Set callback operations for the file system. */
1170 sb->s_op = &zpl_super_operations;
1171 sb->s_xattr = zpl_xattr_handlers;
1172 sb->s_export_op = &zpl_export_operations;
1173
1174 /* Set features for file system. */
1175 zfs_set_fuid_feature(zsb);
1176
1177 if (dmu_objset_is_snapshot(zsb->z_os)) {
1178 uint64_t pval;
1179
1180 atime_changed_cb(zsb, B_FALSE);
1181 readonly_changed_cb(zsb, B_TRUE);
1182 if ((error = dsl_prop_get_integer(osname,"xattr",&pval,NULL)))
1183 goto out;
1184 xattr_changed_cb(zsb, pval);
1185 zsb->z_issnap = B_TRUE;
1186 zsb->z_os->os_sync = ZFS_SYNC_DISABLED;
1187
1188 mutex_enter(&zsb->z_os->os_user_ptr_lock);
1189 dmu_objset_set_user(zsb->z_os, zsb);
1190 mutex_exit(&zsb->z_os->os_user_ptr_lock);
1191 } else {
1192 error = zfs_sb_setup(zsb, B_TRUE);
1193 }
1194
1195 /* Allocate a root inode for the filesystem. */
1196 error = zfs_root(zsb, &root_inode);
1197 if (error) {
1198 (void) zfs_umount(sb);
1199 goto out;
1200 }
1201
1202 /* Allocate a root dentry for the filesystem */
1203 sb->s_root = d_alloc_root(root_inode);
1204 if (sb->s_root == NULL) {
1205 (void) zfs_umount(sb);
1206 error = ENOMEM;
1207 goto out;
1208 }
1209
1210 if (!zsb->z_issnap)
1211 zfsctl_create(zsb);
1212 out:
1213 if (error) {
1214 dmu_objset_disown(zsb->z_os, zsb);
1215 zfs_sb_free(zsb);
1216 }
1217
1218 return (error);
1219 }
1220 EXPORT_SYMBOL(zfs_domount);
1221
1222 /*
1223 * Called when an unmount is requested and certain sanity checks have
1224 * already passed. At this point no dentries or inodes have been reclaimed
1225 * from their respective caches. We drop the extra reference on the .zfs
1226 * control directory to allow everything to be reclaimed. All snapshots
1227 * must already have been unmounted to reach this point.
1228 */
1229 void
1230 zfs_preumount(struct super_block *sb)
1231 {
1232 zfs_sb_t *zsb = sb->s_fs_info;
1233
1234 if (zsb->z_ctldir != NULL)
1235 zfsctl_destroy(zsb);
1236 }
1237 EXPORT_SYMBOL(zfs_preumount);
1238
1239 /*
1240 * Called once all other unmount released tear down has occurred.
1241 * It is our responsibility to release any remaining infrastructure.
1242 */
1243 /*ARGSUSED*/
1244 int
1245 zfs_umount(struct super_block *sb)
1246 {
1247 zfs_sb_t *zsb = sb->s_fs_info;
1248 objset_t *os;
1249
1250 VERIFY(zfs_sb_teardown(zsb, B_TRUE) == 0);
1251 os = zsb->z_os;
1252
1253 #ifdef HAVE_BDI
1254 bdi_destroy(sb->s_bdi);
1255 #endif /* HAVE_BDI */
1256
1257 /*
1258 * z_os will be NULL if there was an error in
1259 * attempting to reopen zsb.
1260 */
1261 if (os != NULL) {
1262 /*
1263 * Unset the objset user_ptr.
1264 */
1265 mutex_enter(&os->os_user_ptr_lock);
1266 dmu_objset_set_user(os, NULL);
1267 mutex_exit(&os->os_user_ptr_lock);
1268
1269 /*
1270 * Finally release the objset
1271 */
1272 dmu_objset_disown(os, zsb);
1273 }
1274
1275 zfs_sb_free(zsb);
1276 return (0);
1277 }
1278 EXPORT_SYMBOL(zfs_umount);
1279
1280 int
1281 zfs_remount(struct super_block *sb, int *flags, char *data)
1282 {
1283 /*
1284 * All namespace flags (MNT_*) and super block flags (MS_*) will
1285 * be handled by the Linux VFS. Only handle custom options here.
1286 */
1287 return (0);
1288 }
1289 EXPORT_SYMBOL(zfs_remount);
1290
1291 int
1292 zfs_vget(struct super_block *sb, struct inode **ipp, fid_t *fidp)
1293 {
1294 zfs_sb_t *zsb = sb->s_fs_info;
1295 znode_t *zp;
1296 uint64_t object = 0;
1297 uint64_t fid_gen = 0;
1298 uint64_t gen_mask;
1299 uint64_t zp_gen;
1300 int i, err;
1301
1302 *ipp = NULL;
1303
1304 ZFS_ENTER(zsb);
1305
1306 if (fidp->fid_len == LONG_FID_LEN) {
1307 zfid_long_t *zlfid = (zfid_long_t *)fidp;
1308 uint64_t objsetid = 0;
1309 uint64_t setgen = 0;
1310
1311 for (i = 0; i < sizeof (zlfid->zf_setid); i++)
1312 objsetid |= ((uint64_t)zlfid->zf_setid[i]) << (8 * i);
1313
1314 for (i = 0; i < sizeof (zlfid->zf_setgen); i++)
1315 setgen |= ((uint64_t)zlfid->zf_setgen[i]) << (8 * i);
1316
1317 ZFS_EXIT(zsb);
1318
1319 err = zfsctl_lookup_objset(sb, objsetid, &zsb);
1320 if (err)
1321 return (EINVAL);
1322
1323 ZFS_ENTER(zsb);
1324 }
1325
1326 if (fidp->fid_len == SHORT_FID_LEN || fidp->fid_len == LONG_FID_LEN) {
1327 zfid_short_t *zfid = (zfid_short_t *)fidp;
1328
1329 for (i = 0; i < sizeof (zfid->zf_object); i++)
1330 object |= ((uint64_t)zfid->zf_object[i]) << (8 * i);
1331
1332 for (i = 0; i < sizeof (zfid->zf_gen); i++)
1333 fid_gen |= ((uint64_t)zfid->zf_gen[i]) << (8 * i);
1334 } else {
1335 ZFS_EXIT(zsb);
1336 return (EINVAL);
1337 }
1338
1339 /* A zero fid_gen means we are in the .zfs control directories */
1340 if (fid_gen == 0 &&
1341 (object == ZFSCTL_INO_ROOT || object == ZFSCTL_INO_SNAPDIR)) {
1342 *ipp = zsb->z_ctldir;
1343 ASSERT(*ipp != NULL);
1344 if (object == ZFSCTL_INO_SNAPDIR) {
1345 VERIFY(zfsctl_root_lookup(*ipp, "snapshot", ipp,
1346 0, kcred, NULL, NULL) == 0);
1347 } else {
1348 igrab(*ipp);
1349 }
1350 ZFS_EXIT(zsb);
1351 return (0);
1352 }
1353
1354 gen_mask = -1ULL >> (64 - 8 * i);
1355
1356 dprintf("getting %llu [%u mask %llx]\n", object, fid_gen, gen_mask);
1357 if ((err = zfs_zget(zsb, object, &zp))) {
1358 ZFS_EXIT(zsb);
1359 return (err);
1360 }
1361 (void) sa_lookup(zp->z_sa_hdl, SA_ZPL_GEN(zsb), &zp_gen,
1362 sizeof (uint64_t));
1363 zp_gen = zp_gen & gen_mask;
1364 if (zp_gen == 0)
1365 zp_gen = 1;
1366 if (zp->z_unlinked || zp_gen != fid_gen) {
1367 dprintf("znode gen (%u) != fid gen (%u)\n", zp_gen, fid_gen);
1368 iput(ZTOI(zp));
1369 ZFS_EXIT(zsb);
1370 return (EINVAL);
1371 }
1372
1373 *ipp = ZTOI(zp);
1374 if (*ipp)
1375 zfs_inode_update(ITOZ(*ipp));
1376
1377 ZFS_EXIT(zsb);
1378 return (0);
1379 }
1380 EXPORT_SYMBOL(zfs_vget);
1381
1382 /*
1383 * Block out VOPs and close zfs_sb_t::z_os
1384 *
1385 * Note, if successful, then we return with the 'z_teardown_lock' and
1386 * 'z_teardown_inactive_lock' write held.
1387 */
1388 int
1389 zfs_suspend_fs(zfs_sb_t *zsb)
1390 {
1391 int error;
1392
1393 if ((error = zfs_sb_teardown(zsb, B_FALSE)) != 0)
1394 return (error);
1395 dmu_objset_disown(zsb->z_os, zsb);
1396
1397 return (0);
1398 }
1399 EXPORT_SYMBOL(zfs_suspend_fs);
1400
1401 /*
1402 * Reopen zfs_sb_t::z_os and release VOPs.
1403 */
1404 int
1405 zfs_resume_fs(zfs_sb_t *zsb, const char *osname)
1406 {
1407 int err, err2;
1408
1409 ASSERT(RRW_WRITE_HELD(&zsb->z_teardown_lock));
1410 ASSERT(RW_WRITE_HELD(&zsb->z_teardown_inactive_lock));
1411
1412 err = dmu_objset_own(osname, DMU_OST_ZFS, B_FALSE, zsb, &zsb->z_os);
1413 if (err) {
1414 zsb->z_os = NULL;
1415 } else {
1416 znode_t *zp;
1417 uint64_t sa_obj = 0;
1418
1419 err2 = zap_lookup(zsb->z_os, MASTER_NODE_OBJ,
1420 ZFS_SA_ATTRS, 8, 1, &sa_obj);
1421
1422 if ((err || err2) && zsb->z_version >= ZPL_VERSION_SA)
1423 goto bail;
1424
1425
1426 if ((err = sa_setup(zsb->z_os, sa_obj,
1427 zfs_attr_table, ZPL_END, &zsb->z_attr_table)) != 0)
1428 goto bail;
1429
1430 VERIFY(zfs_sb_setup(zsb, B_FALSE) == 0);
1431
1432 /*
1433 * Attempt to re-establish all the active znodes with
1434 * their dbufs. If a zfs_rezget() fails, then we'll let
1435 * any potential callers discover that via ZFS_ENTER_VERIFY_VP
1436 * when they try to use their znode.
1437 */
1438 mutex_enter(&zsb->z_znodes_lock);
1439 for (zp = list_head(&zsb->z_all_znodes); zp;
1440 zp = list_next(&zsb->z_all_znodes, zp)) {
1441 (void) zfs_rezget(zp);
1442 }
1443 mutex_exit(&zsb->z_znodes_lock);
1444
1445 }
1446
1447 bail:
1448 /* release the VOPs */
1449 rw_exit(&zsb->z_teardown_inactive_lock);
1450 rrw_exit(&zsb->z_teardown_lock, FTAG);
1451
1452 if (err) {
1453 /*
1454 * Since we couldn't reopen zfs_sb_t::z_os, force
1455 * unmount this file system.
1456 */
1457 (void) zfs_umount(zsb->z_sb);
1458 }
1459 return (err);
1460 }
1461 EXPORT_SYMBOL(zfs_resume_fs);
1462
1463 int
1464 zfs_set_version(zfs_sb_t *zsb, uint64_t newvers)
1465 {
1466 int error;
1467 objset_t *os = zsb->z_os;
1468 dmu_tx_t *tx;
1469
1470 if (newvers < ZPL_VERSION_INITIAL || newvers > ZPL_VERSION)
1471 return (EINVAL);
1472
1473 if (newvers < zsb->z_version)
1474 return (EINVAL);
1475
1476 if (zfs_spa_version_map(newvers) >
1477 spa_version(dmu_objset_spa(zsb->z_os)))
1478 return (ENOTSUP);
1479
1480 tx = dmu_tx_create(os);
1481 dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, B_FALSE, ZPL_VERSION_STR);
1482 if (newvers >= ZPL_VERSION_SA && !zsb->z_use_sa) {
1483 dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, B_TRUE,
1484 ZFS_SA_ATTRS);
1485 dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, FALSE, NULL);
1486 }
1487 error = dmu_tx_assign(tx, TXG_WAIT);
1488 if (error) {
1489 dmu_tx_abort(tx);
1490 return (error);
1491 }
1492
1493 error = zap_update(os, MASTER_NODE_OBJ, ZPL_VERSION_STR,
1494 8, 1, &newvers, tx);
1495
1496 if (error) {
1497 dmu_tx_commit(tx);
1498 return (error);
1499 }
1500
1501 if (newvers >= ZPL_VERSION_SA && !zsb->z_use_sa) {
1502 uint64_t sa_obj;
1503
1504 ASSERT3U(spa_version(dmu_objset_spa(zsb->z_os)), >=,
1505 SPA_VERSION_SA);
1506 sa_obj = zap_create(os, DMU_OT_SA_MASTER_NODE,
1507 DMU_OT_NONE, 0, tx);
1508
1509 error = zap_add(os, MASTER_NODE_OBJ,
1510 ZFS_SA_ATTRS, 8, 1, &sa_obj, tx);
1511 ASSERT3U(error, ==, 0);
1512
1513 VERIFY(0 == sa_set_sa_object(os, sa_obj));
1514 sa_register_update_callback(os, zfs_sa_upgrade);
1515 }
1516
1517 spa_history_log_internal(LOG_DS_UPGRADE,
1518 dmu_objset_spa(os), tx, "oldver=%llu newver=%llu dataset = %llu",
1519 zsb->z_version, newvers, dmu_objset_id(os));
1520
1521 dmu_tx_commit(tx);
1522
1523 zsb->z_version = newvers;
1524
1525 if (zsb->z_version >= ZPL_VERSION_FUID)
1526 zfs_set_fuid_feature(zsb);
1527
1528 return (0);
1529 }
1530 EXPORT_SYMBOL(zfs_set_version);
1531
1532 /*
1533 * Read a property stored within the master node.
1534 */
1535 int
1536 zfs_get_zplprop(objset_t *os, zfs_prop_t prop, uint64_t *value)
1537 {
1538 const char *pname;
1539 int error = ENOENT;
1540
1541 /*
1542 * Look up the file system's value for the property. For the
1543 * version property, we look up a slightly different string.
1544 */
1545 if (prop == ZFS_PROP_VERSION)
1546 pname = ZPL_VERSION_STR;
1547 else
1548 pname = zfs_prop_to_name(prop);
1549
1550 if (os != NULL)
1551 error = zap_lookup(os, MASTER_NODE_OBJ, pname, 8, 1, value);
1552
1553 if (error == ENOENT) {
1554 /* No value set, use the default value */
1555 switch (prop) {
1556 case ZFS_PROP_VERSION:
1557 *value = ZPL_VERSION;
1558 break;
1559 case ZFS_PROP_NORMALIZE:
1560 case ZFS_PROP_UTF8ONLY:
1561 *value = 0;
1562 break;
1563 case ZFS_PROP_CASE:
1564 *value = ZFS_CASE_SENSITIVE;
1565 break;
1566 default:
1567 return (error);
1568 }
1569 error = 0;
1570 }
1571 return (error);
1572 }
1573 EXPORT_SYMBOL(zfs_get_zplprop);
1574
1575 void
1576 zfs_init(void)
1577 {
1578 zfsctl_init();
1579 zfs_znode_init();
1580 dmu_objset_register_type(DMU_OST_ZFS, zfs_space_delta_cb);
1581 register_filesystem(&zpl_fs_type);
1582 (void) arc_add_prune_callback(zpl_prune_sbs, NULL);
1583 }
1584
1585 void
1586 zfs_fini(void)
1587 {
1588 unregister_filesystem(&zpl_fs_type);
1589 zfs_znode_fini();
1590 zfsctl_fini();
1591 }