]> git.proxmox.com Git - mirror_zfs.git/blob - module/zfs/zfs_vnops.c
Fix error handling incallers of dbuf_hold_level()
[mirror_zfs.git] / module / zfs / zfs_vnops.c
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22 /*
23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright (c) 2012, 2018 by Delphix. All rights reserved.
25 * Copyright (c) 2015 by Chunwei Chen. All rights reserved.
26 * Copyright 2017 Nexenta Systems, Inc.
27 */
28
29 /* Portions Copyright 2007 Jeremy Teo */
30 /* Portions Copyright 2010 Robert Milkowski */
31
32
33 #include <sys/types.h>
34 #include <sys/param.h>
35 #include <sys/time.h>
36 #include <sys/sysmacros.h>
37 #include <sys/vfs.h>
38 #include <sys/file.h>
39 #include <sys/stat.h>
40 #include <sys/kmem.h>
41 #include <sys/taskq.h>
42 #include <sys/uio.h>
43 #include <sys/vmsystm.h>
44 #include <sys/atomic.h>
45 #include <sys/pathname.h>
46 #include <sys/cmn_err.h>
47 #include <sys/errno.h>
48 #include <sys/zfs_dir.h>
49 #include <sys/zfs_acl.h>
50 #include <sys/zfs_ioctl.h>
51 #include <sys/fs/zfs.h>
52 #include <sys/dmu.h>
53 #include <sys/dmu_objset.h>
54 #include <sys/spa.h>
55 #include <sys/txg.h>
56 #include <sys/dbuf.h>
57 #include <sys/zap.h>
58 #include <sys/sa.h>
59 #include <sys/policy.h>
60 #include <sys/sunddi.h>
61 #include <sys/sid.h>
62 #include <sys/mode.h>
63 #include <sys/zfs_ctldir.h>
64 #include <sys/zfs_fuid.h>
65 #include <sys/zfs_sa.h>
66 #include <sys/zfs_vnops.h>
67 #include <sys/zfs_rlock.h>
68 #include <sys/cred.h>
69 #include <sys/zpl.h>
70 #include <sys/zil.h>
71 #include <sys/sa_impl.h>
72
73 /*
74 * Programming rules.
75 *
76 * Each vnode op performs some logical unit of work. To do this, the ZPL must
77 * properly lock its in-core state, create a DMU transaction, do the work,
78 * record this work in the intent log (ZIL), commit the DMU transaction,
79 * and wait for the intent log to commit if it is a synchronous operation.
80 * Moreover, the vnode ops must work in both normal and log replay context.
81 * The ordering of events is important to avoid deadlocks and references
82 * to freed memory. The example below illustrates the following Big Rules:
83 *
84 * (1) A check must be made in each zfs thread for a mounted file system.
85 * This is done avoiding races using ZFS_ENTER(zfsvfs).
86 * A ZFS_EXIT(zfsvfs) is needed before all returns. Any znodes
87 * must be checked with ZFS_VERIFY_ZP(zp). Both of these macros
88 * can return EIO from the calling function.
89 *
90 * (2) iput() should always be the last thing except for zil_commit()
91 * (if necessary) and ZFS_EXIT(). This is for 3 reasons:
92 * First, if it's the last reference, the vnode/znode
93 * can be freed, so the zp may point to freed memory. Second, the last
94 * reference will call zfs_zinactive(), which may induce a lot of work --
95 * pushing cached pages (which acquires range locks) and syncing out
96 * cached atime changes. Third, zfs_zinactive() may require a new tx,
97 * which could deadlock the system if you were already holding one.
98 * If you must call iput() within a tx then use zfs_iput_async().
99 *
100 * (3) All range locks must be grabbed before calling dmu_tx_assign(),
101 * as they can span dmu_tx_assign() calls.
102 *
103 * (4) If ZPL locks are held, pass TXG_NOWAIT as the second argument to
104 * dmu_tx_assign(). This is critical because we don't want to block
105 * while holding locks.
106 *
107 * If no ZPL locks are held (aside from ZFS_ENTER()), use TXG_WAIT. This
108 * reduces lock contention and CPU usage when we must wait (note that if
109 * throughput is constrained by the storage, nearly every transaction
110 * must wait).
111 *
112 * Note, in particular, that if a lock is sometimes acquired before
113 * the tx assigns, and sometimes after (e.g. z_lock), then failing
114 * to use a non-blocking assign can deadlock the system. The scenario:
115 *
116 * Thread A has grabbed a lock before calling dmu_tx_assign().
117 * Thread B is in an already-assigned tx, and blocks for this lock.
118 * Thread A calls dmu_tx_assign(TXG_WAIT) and blocks in txg_wait_open()
119 * forever, because the previous txg can't quiesce until B's tx commits.
120 *
121 * If dmu_tx_assign() returns ERESTART and zfsvfs->z_assign is TXG_NOWAIT,
122 * then drop all locks, call dmu_tx_wait(), and try again. On subsequent
123 * calls to dmu_tx_assign(), pass TXG_NOTHROTTLE in addition to TXG_NOWAIT,
124 * to indicate that this operation has already called dmu_tx_wait().
125 * This will ensure that we don't retry forever, waiting a short bit
126 * each time.
127 *
128 * (5) If the operation succeeded, generate the intent log entry for it
129 * before dropping locks. This ensures that the ordering of events
130 * in the intent log matches the order in which they actually occurred.
131 * During ZIL replay the zfs_log_* functions will update the sequence
132 * number to indicate the zil transaction has replayed.
133 *
134 * (6) At the end of each vnode op, the DMU tx must always commit,
135 * regardless of whether there were any errors.
136 *
137 * (7) After dropping all locks, invoke zil_commit(zilog, foid)
138 * to ensure that synchronous semantics are provided when necessary.
139 *
140 * In general, this is how things should be ordered in each vnode op:
141 *
142 * ZFS_ENTER(zfsvfs); // exit if unmounted
143 * top:
144 * zfs_dirent_lock(&dl, ...) // lock directory entry (may igrab())
145 * rw_enter(...); // grab any other locks you need
146 * tx = dmu_tx_create(...); // get DMU tx
147 * dmu_tx_hold_*(); // hold each object you might modify
148 * error = dmu_tx_assign(tx, (waited ? TXG_NOTHROTTLE : 0) | TXG_NOWAIT);
149 * if (error) {
150 * rw_exit(...); // drop locks
151 * zfs_dirent_unlock(dl); // unlock directory entry
152 * iput(...); // release held vnodes
153 * if (error == ERESTART) {
154 * waited = B_TRUE;
155 * dmu_tx_wait(tx);
156 * dmu_tx_abort(tx);
157 * goto top;
158 * }
159 * dmu_tx_abort(tx); // abort DMU tx
160 * ZFS_EXIT(zfsvfs); // finished in zfs
161 * return (error); // really out of space
162 * }
163 * error = do_real_work(); // do whatever this VOP does
164 * if (error == 0)
165 * zfs_log_*(...); // on success, make ZIL entry
166 * dmu_tx_commit(tx); // commit DMU tx -- error or not
167 * rw_exit(...); // drop locks
168 * zfs_dirent_unlock(dl); // unlock directory entry
169 * iput(...); // release held vnodes
170 * zil_commit(zilog, foid); // synchronous when necessary
171 * ZFS_EXIT(zfsvfs); // finished in zfs
172 * return (error); // done, report error
173 */
174
175 /*
176 * Virus scanning is unsupported. It would be possible to add a hook
177 * here to performance the required virus scan. This could be done
178 * entirely in the kernel or potentially as an update to invoke a
179 * scanning utility.
180 */
181 static int
182 zfs_vscan(struct inode *ip, cred_t *cr, int async)
183 {
184 return (0);
185 }
186
187 /* ARGSUSED */
188 int
189 zfs_open(struct inode *ip, int mode, int flag, cred_t *cr)
190 {
191 znode_t *zp = ITOZ(ip);
192 zfsvfs_t *zfsvfs = ITOZSB(ip);
193
194 ZFS_ENTER(zfsvfs);
195 ZFS_VERIFY_ZP(zp);
196
197 /* Honor ZFS_APPENDONLY file attribute */
198 if ((mode & FMODE_WRITE) && (zp->z_pflags & ZFS_APPENDONLY) &&
199 ((flag & O_APPEND) == 0)) {
200 ZFS_EXIT(zfsvfs);
201 return (SET_ERROR(EPERM));
202 }
203
204 /* Virus scan eligible files on open */
205 if (!zfs_has_ctldir(zp) && zfsvfs->z_vscan && S_ISREG(ip->i_mode) &&
206 !(zp->z_pflags & ZFS_AV_QUARANTINED) && zp->z_size > 0) {
207 if (zfs_vscan(ip, cr, 0) != 0) {
208 ZFS_EXIT(zfsvfs);
209 return (SET_ERROR(EACCES));
210 }
211 }
212
213 /* Keep a count of the synchronous opens in the znode */
214 if (flag & O_SYNC)
215 atomic_inc_32(&zp->z_sync_cnt);
216
217 ZFS_EXIT(zfsvfs);
218 return (0);
219 }
220
221 /* ARGSUSED */
222 int
223 zfs_close(struct inode *ip, int flag, cred_t *cr)
224 {
225 znode_t *zp = ITOZ(ip);
226 zfsvfs_t *zfsvfs = ITOZSB(ip);
227
228 ZFS_ENTER(zfsvfs);
229 ZFS_VERIFY_ZP(zp);
230
231 /* Decrement the synchronous opens in the znode */
232 if (flag & O_SYNC)
233 atomic_dec_32(&zp->z_sync_cnt);
234
235 if (!zfs_has_ctldir(zp) && zfsvfs->z_vscan && S_ISREG(ip->i_mode) &&
236 !(zp->z_pflags & ZFS_AV_QUARANTINED) && zp->z_size > 0)
237 VERIFY(zfs_vscan(ip, cr, 1) == 0);
238
239 ZFS_EXIT(zfsvfs);
240 return (0);
241 }
242
243 #if defined(SEEK_HOLE) && defined(SEEK_DATA)
244 /*
245 * Lseek support for finding holes (cmd == SEEK_HOLE) and
246 * data (cmd == SEEK_DATA). "off" is an in/out parameter.
247 */
248 static int
249 zfs_holey_common(struct inode *ip, int cmd, loff_t *off)
250 {
251 znode_t *zp = ITOZ(ip);
252 uint64_t noff = (uint64_t)*off; /* new offset */
253 uint64_t file_sz;
254 int error;
255 boolean_t hole;
256
257 file_sz = zp->z_size;
258 if (noff >= file_sz) {
259 return (SET_ERROR(ENXIO));
260 }
261
262 if (cmd == SEEK_HOLE)
263 hole = B_TRUE;
264 else
265 hole = B_FALSE;
266
267 error = dmu_offset_next(ZTOZSB(zp)->z_os, zp->z_id, hole, &noff);
268
269 if (error == ESRCH)
270 return (SET_ERROR(ENXIO));
271
272 /* file was dirty, so fall back to using generic logic */
273 if (error == EBUSY) {
274 if (hole)
275 *off = file_sz;
276
277 return (0);
278 }
279
280 /*
281 * We could find a hole that begins after the logical end-of-file,
282 * because dmu_offset_next() only works on whole blocks. If the
283 * EOF falls mid-block, then indicate that the "virtual hole"
284 * at the end of the file begins at the logical EOF, rather than
285 * at the end of the last block.
286 */
287 if (noff > file_sz) {
288 ASSERT(hole);
289 noff = file_sz;
290 }
291
292 if (noff < *off)
293 return (error);
294 *off = noff;
295 return (error);
296 }
297
298 int
299 zfs_holey(struct inode *ip, int cmd, loff_t *off)
300 {
301 znode_t *zp = ITOZ(ip);
302 zfsvfs_t *zfsvfs = ITOZSB(ip);
303 int error;
304
305 ZFS_ENTER(zfsvfs);
306 ZFS_VERIFY_ZP(zp);
307
308 error = zfs_holey_common(ip, cmd, off);
309
310 ZFS_EXIT(zfsvfs);
311 return (error);
312 }
313 #endif /* SEEK_HOLE && SEEK_DATA */
314
315 #if defined(_KERNEL)
316 /*
317 * When a file is memory mapped, we must keep the IO data synchronized
318 * between the DMU cache and the memory mapped pages. What this means:
319 *
320 * On Write: If we find a memory mapped page, we write to *both*
321 * the page and the dmu buffer.
322 */
323 static void
324 update_pages(struct inode *ip, int64_t start, int len,
325 objset_t *os, uint64_t oid)
326 {
327 struct address_space *mp = ip->i_mapping;
328 struct page *pp;
329 uint64_t nbytes;
330 int64_t off;
331 void *pb;
332
333 off = start & (PAGE_SIZE-1);
334 for (start &= PAGE_MASK; len > 0; start += PAGE_SIZE) {
335 nbytes = MIN(PAGE_SIZE - off, len);
336
337 pp = find_lock_page(mp, start >> PAGE_SHIFT);
338 if (pp) {
339 if (mapping_writably_mapped(mp))
340 flush_dcache_page(pp);
341
342 pb = kmap(pp);
343 (void) dmu_read(os, oid, start+off, nbytes, pb+off,
344 DMU_READ_PREFETCH);
345 kunmap(pp);
346
347 if (mapping_writably_mapped(mp))
348 flush_dcache_page(pp);
349
350 mark_page_accessed(pp);
351 SetPageUptodate(pp);
352 ClearPageError(pp);
353 unlock_page(pp);
354 put_page(pp);
355 }
356
357 len -= nbytes;
358 off = 0;
359 }
360 }
361
362 /*
363 * When a file is memory mapped, we must keep the IO data synchronized
364 * between the DMU cache and the memory mapped pages. What this means:
365 *
366 * On Read: We "read" preferentially from memory mapped pages,
367 * else we default from the dmu buffer.
368 *
369 * NOTE: We will always "break up" the IO into PAGESIZE uiomoves when
370 * the file is memory mapped.
371 */
372 static int
373 mappedread(struct inode *ip, int nbytes, uio_t *uio)
374 {
375 struct address_space *mp = ip->i_mapping;
376 struct page *pp;
377 znode_t *zp = ITOZ(ip);
378 int64_t start, off;
379 uint64_t bytes;
380 int len = nbytes;
381 int error = 0;
382 void *pb;
383
384 start = uio->uio_loffset;
385 off = start & (PAGE_SIZE-1);
386 for (start &= PAGE_MASK; len > 0; start += PAGE_SIZE) {
387 bytes = MIN(PAGE_SIZE - off, len);
388
389 pp = find_lock_page(mp, start >> PAGE_SHIFT);
390 if (pp) {
391 ASSERT(PageUptodate(pp));
392 unlock_page(pp);
393
394 pb = kmap(pp);
395 error = uiomove(pb + off, bytes, UIO_READ, uio);
396 kunmap(pp);
397
398 if (mapping_writably_mapped(mp))
399 flush_dcache_page(pp);
400
401 mark_page_accessed(pp);
402 put_page(pp);
403 } else {
404 error = dmu_read_uio_dbuf(sa_get_db(zp->z_sa_hdl),
405 uio, bytes);
406 }
407
408 len -= bytes;
409 off = 0;
410 if (error)
411 break;
412 }
413 return (error);
414 }
415 #endif /* _KERNEL */
416
417 unsigned long zfs_read_chunk_size = 1024 * 1024; /* Tunable */
418 unsigned long zfs_delete_blocks = DMU_MAX_DELETEBLKCNT;
419
420 /*
421 * Read bytes from specified file into supplied buffer.
422 *
423 * IN: ip - inode of file to be read from.
424 * uio - structure supplying read location, range info,
425 * and return buffer.
426 * ioflag - FSYNC flags; used to provide FRSYNC semantics.
427 * O_DIRECT flag; used to bypass page cache.
428 * cr - credentials of caller.
429 *
430 * OUT: uio - updated offset and range, buffer filled.
431 *
432 * RETURN: 0 on success, error code on failure.
433 *
434 * Side Effects:
435 * inode - atime updated if byte count > 0
436 */
437 /* ARGSUSED */
438 int
439 zfs_read(struct inode *ip, uio_t *uio, int ioflag, cred_t *cr)
440 {
441 int error = 0;
442
443 znode_t *zp = ITOZ(ip);
444 zfsvfs_t *zfsvfs = ITOZSB(ip);
445 ZFS_ENTER(zfsvfs);
446 ZFS_VERIFY_ZP(zp);
447
448 if (zp->z_pflags & ZFS_AV_QUARANTINED) {
449 ZFS_EXIT(zfsvfs);
450 return (SET_ERROR(EACCES));
451 }
452
453 /*
454 * Validate file offset
455 */
456 if (uio->uio_loffset < (offset_t)0) {
457 ZFS_EXIT(zfsvfs);
458 return (SET_ERROR(EINVAL));
459 }
460
461 /*
462 * Fasttrack empty reads
463 */
464 if (uio->uio_resid == 0) {
465 ZFS_EXIT(zfsvfs);
466 return (0);
467 }
468
469 /*
470 * If we're in FRSYNC mode, sync out this znode before reading it.
471 * Only do this for non-snapshots.
472 */
473 if (zfsvfs->z_log &&
474 (ioflag & FRSYNC || zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS))
475 zil_commit(zfsvfs->z_log, zp->z_id);
476
477 /*
478 * Lock the range against changes.
479 */
480 locked_range_t *lr = rangelock_enter(&zp->z_rangelock,
481 uio->uio_loffset, uio->uio_resid, RL_READER);
482
483 /*
484 * If we are reading past end-of-file we can skip
485 * to the end; but we might still need to set atime.
486 */
487 if (uio->uio_loffset >= zp->z_size) {
488 error = 0;
489 goto out;
490 }
491
492 ASSERT(uio->uio_loffset < zp->z_size);
493 ssize_t n = MIN(uio->uio_resid, zp->z_size - uio->uio_loffset);
494 ssize_t start_resid = n;
495
496 #ifdef HAVE_UIO_ZEROCOPY
497 xuio_t *xuio = NULL;
498 if ((uio->uio_extflg == UIO_XUIO) &&
499 (((xuio_t *)uio)->xu_type == UIOTYPE_ZEROCOPY)) {
500 int nblk;
501 int blksz = zp->z_blksz;
502 uint64_t offset = uio->uio_loffset;
503
504 xuio = (xuio_t *)uio;
505 if ((ISP2(blksz))) {
506 nblk = (P2ROUNDUP(offset + n, blksz) - P2ALIGN(offset,
507 blksz)) / blksz;
508 } else {
509 ASSERT(offset + n <= blksz);
510 nblk = 1;
511 }
512 (void) dmu_xuio_init(xuio, nblk);
513
514 if (vn_has_cached_data(ip)) {
515 /*
516 * For simplicity, we always allocate a full buffer
517 * even if we only expect to read a portion of a block.
518 */
519 while (--nblk >= 0) {
520 (void) dmu_xuio_add(xuio,
521 dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl),
522 blksz), 0, blksz);
523 }
524 }
525 }
526 #endif /* HAVE_UIO_ZEROCOPY */
527
528 while (n > 0) {
529 ssize_t nbytes = MIN(n, zfs_read_chunk_size -
530 P2PHASE(uio->uio_loffset, zfs_read_chunk_size));
531
532 if (zp->z_is_mapped && !(ioflag & O_DIRECT)) {
533 error = mappedread(ip, nbytes, uio);
534 } else {
535 error = dmu_read_uio_dbuf(sa_get_db(zp->z_sa_hdl),
536 uio, nbytes);
537 }
538
539 if (error) {
540 /* convert checksum errors into IO errors */
541 if (error == ECKSUM)
542 error = SET_ERROR(EIO);
543 break;
544 }
545
546 n -= nbytes;
547 }
548
549 int64_t nread = start_resid - n;
550 dataset_kstats_update_read_kstats(&zfsvfs->z_kstat, nread);
551 task_io_account_read(nread);
552 out:
553 rangelock_exit(lr);
554
555 ZFS_EXIT(zfsvfs);
556 return (error);
557 }
558
559 /*
560 * Write the bytes to a file.
561 *
562 * IN: ip - inode of file to be written to.
563 * uio - structure supplying write location, range info,
564 * and data buffer.
565 * ioflag - FAPPEND flag set if in append mode.
566 * O_DIRECT flag; used to bypass page cache.
567 * cr - credentials of caller.
568 *
569 * OUT: uio - updated offset and range.
570 *
571 * RETURN: 0 if success
572 * error code if failure
573 *
574 * Timestamps:
575 * ip - ctime|mtime updated if byte count > 0
576 */
577
578 /* ARGSUSED */
579 int
580 zfs_write(struct inode *ip, uio_t *uio, int ioflag, cred_t *cr)
581 {
582 int error = 0;
583 ssize_t start_resid = uio->uio_resid;
584
585 /*
586 * Fasttrack empty write
587 */
588 ssize_t n = start_resid;
589 if (n == 0)
590 return (0);
591
592 rlim64_t limit = uio->uio_limit;
593 if (limit == RLIM64_INFINITY || limit > MAXOFFSET_T)
594 limit = MAXOFFSET_T;
595
596 znode_t *zp = ITOZ(ip);
597 zfsvfs_t *zfsvfs = ZTOZSB(zp);
598 ZFS_ENTER(zfsvfs);
599 ZFS_VERIFY_ZP(zp);
600
601 sa_bulk_attr_t bulk[4];
602 int count = 0;
603 uint64_t mtime[2], ctime[2];
604 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL, &mtime, 16);
605 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, &ctime, 16);
606 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_SIZE(zfsvfs), NULL,
607 &zp->z_size, 8);
608 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL,
609 &zp->z_pflags, 8);
610
611 /*
612 * Callers might not be able to detect properly that we are read-only,
613 * so check it explicitly here.
614 */
615 if (zfs_is_readonly(zfsvfs)) {
616 ZFS_EXIT(zfsvfs);
617 return (SET_ERROR(EROFS));
618 }
619
620 /*
621 * If immutable or not appending then return EPERM
622 */
623 if ((zp->z_pflags & (ZFS_IMMUTABLE | ZFS_READONLY)) ||
624 ((zp->z_pflags & ZFS_APPENDONLY) && !(ioflag & FAPPEND) &&
625 (uio->uio_loffset < zp->z_size))) {
626 ZFS_EXIT(zfsvfs);
627 return (SET_ERROR(EPERM));
628 }
629
630 /*
631 * Validate file offset
632 */
633 offset_t woff = ioflag & FAPPEND ? zp->z_size : uio->uio_loffset;
634 if (woff < 0) {
635 ZFS_EXIT(zfsvfs);
636 return (SET_ERROR(EINVAL));
637 }
638
639 int max_blksz = zfsvfs->z_max_blksz;
640 xuio_t *xuio = NULL;
641
642 /*
643 * Pre-fault the pages to ensure slow (eg NFS) pages
644 * don't hold up txg.
645 * Skip this if uio contains loaned arc_buf.
646 */
647 #ifdef HAVE_UIO_ZEROCOPY
648 if ((uio->uio_extflg == UIO_XUIO) &&
649 (((xuio_t *)uio)->xu_type == UIOTYPE_ZEROCOPY))
650 xuio = (xuio_t *)uio;
651 else
652 #endif
653 if (uio_prefaultpages(MIN(n, max_blksz), uio)) {
654 ZFS_EXIT(zfsvfs);
655 return (SET_ERROR(EFAULT));
656 }
657
658 /*
659 * If in append mode, set the io offset pointer to eof.
660 */
661 locked_range_t *lr;
662 if (ioflag & FAPPEND) {
663 /*
664 * Obtain an appending range lock to guarantee file append
665 * semantics. We reset the write offset once we have the lock.
666 */
667 lr = rangelock_enter(&zp->z_rangelock, 0, n, RL_APPEND);
668 woff = lr->lr_offset;
669 if (lr->lr_length == UINT64_MAX) {
670 /*
671 * We overlocked the file because this write will cause
672 * the file block size to increase.
673 * Note that zp_size cannot change with this lock held.
674 */
675 woff = zp->z_size;
676 }
677 uio->uio_loffset = woff;
678 } else {
679 /*
680 * Note that if the file block size will change as a result of
681 * this write, then this range lock will lock the entire file
682 * so that we can re-write the block safely.
683 */
684 lr = rangelock_enter(&zp->z_rangelock, woff, n, RL_WRITER);
685 }
686
687 if (woff >= limit) {
688 rangelock_exit(lr);
689 ZFS_EXIT(zfsvfs);
690 return (SET_ERROR(EFBIG));
691 }
692
693 if ((woff + n) > limit || woff > (limit - n))
694 n = limit - woff;
695
696 /* Will this write extend the file length? */
697 int write_eof = (woff + n > zp->z_size);
698
699 uint64_t end_size = MAX(zp->z_size, woff + n);
700 zilog_t *zilog = zfsvfs->z_log;
701 #ifdef HAVE_UIO_ZEROCOPY
702 int i_iov = 0;
703 const iovec_t *iovp = uio->uio_iov;
704 ASSERTV(int iovcnt = uio->uio_iovcnt);
705 #endif
706
707
708 /*
709 * Write the file in reasonable size chunks. Each chunk is written
710 * in a separate transaction; this keeps the intent log records small
711 * and allows us to do more fine-grained space accounting.
712 */
713 while (n > 0) {
714 woff = uio->uio_loffset;
715
716 if (zfs_id_overblockquota(zfsvfs, DMU_USERUSED_OBJECT,
717 KUID_TO_SUID(ip->i_uid)) ||
718 zfs_id_overblockquota(zfsvfs, DMU_GROUPUSED_OBJECT,
719 KGID_TO_SGID(ip->i_gid)) ||
720 (zp->z_projid != ZFS_DEFAULT_PROJID &&
721 zfs_id_overblockquota(zfsvfs, DMU_PROJECTUSED_OBJECT,
722 zp->z_projid))) {
723 error = SET_ERROR(EDQUOT);
724 break;
725 }
726
727 arc_buf_t *abuf = NULL;
728 const iovec_t *aiov = NULL;
729 if (xuio) {
730 #ifdef HAVE_UIO_ZEROCOPY
731 ASSERT(i_iov < iovcnt);
732 ASSERT3U(uio->uio_segflg, !=, UIO_BVEC);
733 aiov = &iovp[i_iov];
734 abuf = dmu_xuio_arcbuf(xuio, i_iov);
735 dmu_xuio_clear(xuio, i_iov);
736 ASSERT((aiov->iov_base == abuf->b_data) ||
737 ((char *)aiov->iov_base - (char *)abuf->b_data +
738 aiov->iov_len == arc_buf_size(abuf)));
739 i_iov++;
740 #endif
741 } else if (n >= max_blksz && woff >= zp->z_size &&
742 P2PHASE(woff, max_blksz) == 0 &&
743 zp->z_blksz == max_blksz) {
744 /*
745 * This write covers a full block. "Borrow" a buffer
746 * from the dmu so that we can fill it before we enter
747 * a transaction. This avoids the possibility of
748 * holding up the transaction if the data copy hangs
749 * up on a pagefault (e.g., from an NFS server mapping).
750 */
751 size_t cbytes;
752
753 abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl),
754 max_blksz);
755 ASSERT(abuf != NULL);
756 ASSERT(arc_buf_size(abuf) == max_blksz);
757 if ((error = uiocopy(abuf->b_data, max_blksz,
758 UIO_WRITE, uio, &cbytes))) {
759 dmu_return_arcbuf(abuf);
760 break;
761 }
762 ASSERT(cbytes == max_blksz);
763 }
764
765 /*
766 * Start a transaction.
767 */
768 dmu_tx_t *tx = dmu_tx_create(zfsvfs->z_os);
769 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
770 dmu_tx_hold_write(tx, zp->z_id, woff, MIN(n, max_blksz));
771 zfs_sa_upgrade_txholds(tx, zp);
772 error = dmu_tx_assign(tx, TXG_WAIT);
773 if (error) {
774 dmu_tx_abort(tx);
775 if (abuf != NULL)
776 dmu_return_arcbuf(abuf);
777 break;
778 }
779
780 /*
781 * If rangelock_enter() over-locked we grow the blocksize
782 * and then reduce the lock range. This will only happen
783 * on the first iteration since rangelock_reduce() will
784 * shrink down lr_length to the appropriate size.
785 */
786 if (lr->lr_length == UINT64_MAX) {
787 uint64_t new_blksz;
788
789 if (zp->z_blksz > max_blksz) {
790 /*
791 * File's blocksize is already larger than the
792 * "recordsize" property. Only let it grow to
793 * the next power of 2.
794 */
795 ASSERT(!ISP2(zp->z_blksz));
796 new_blksz = MIN(end_size,
797 1 << highbit64(zp->z_blksz));
798 } else {
799 new_blksz = MIN(end_size, max_blksz);
800 }
801 zfs_grow_blocksize(zp, new_blksz, tx);
802 rangelock_reduce(lr, woff, n);
803 }
804
805 /*
806 * XXX - should we really limit each write to z_max_blksz?
807 * Perhaps we should use SPA_MAXBLOCKSIZE chunks?
808 */
809 ssize_t nbytes = MIN(n, max_blksz - P2PHASE(woff, max_blksz));
810
811 ssize_t tx_bytes;
812 if (abuf == NULL) {
813 tx_bytes = uio->uio_resid;
814 uio->uio_fault_disable = B_TRUE;
815 error = dmu_write_uio_dbuf(sa_get_db(zp->z_sa_hdl),
816 uio, nbytes, tx);
817 if (error == EFAULT) {
818 dmu_tx_commit(tx);
819 if (uio_prefaultpages(MIN(n, max_blksz), uio)) {
820 break;
821 }
822 continue;
823 } else if (error != 0) {
824 dmu_tx_commit(tx);
825 break;
826 }
827 tx_bytes -= uio->uio_resid;
828 } else {
829 tx_bytes = nbytes;
830 ASSERT(xuio == NULL || tx_bytes == aiov->iov_len);
831 /*
832 * If this is not a full block write, but we are
833 * extending the file past EOF and this data starts
834 * block-aligned, use assign_arcbuf(). Otherwise,
835 * write via dmu_write().
836 */
837 if (tx_bytes < max_blksz && (!write_eof ||
838 aiov->iov_base != abuf->b_data)) {
839 ASSERT(xuio);
840 dmu_write(zfsvfs->z_os, zp->z_id, woff,
841 /* cppcheck-suppress nullPointer */
842 aiov->iov_len, aiov->iov_base, tx);
843 dmu_return_arcbuf(abuf);
844 xuio_stat_wbuf_copied();
845 } else {
846 ASSERT(xuio || tx_bytes == max_blksz);
847 error = dmu_assign_arcbuf_by_dbuf(
848 sa_get_db(zp->z_sa_hdl), woff, abuf, tx);
849 if (error != 0) {
850 dmu_return_arcbuf(abuf);
851 dmu_tx_commit(tx);
852 break;
853 }
854 }
855 ASSERT(tx_bytes <= uio->uio_resid);
856 uioskip(uio, tx_bytes);
857 }
858 if (tx_bytes && zp->z_is_mapped && !(ioflag & O_DIRECT)) {
859 update_pages(ip, woff,
860 tx_bytes, zfsvfs->z_os, zp->z_id);
861 }
862
863 /*
864 * If we made no progress, we're done. If we made even
865 * partial progress, update the znode and ZIL accordingly.
866 */
867 if (tx_bytes == 0) {
868 (void) sa_update(zp->z_sa_hdl, SA_ZPL_SIZE(zfsvfs),
869 (void *)&zp->z_size, sizeof (uint64_t), tx);
870 dmu_tx_commit(tx);
871 ASSERT(error != 0);
872 break;
873 }
874
875 /*
876 * Clear Set-UID/Set-GID bits on successful write if not
877 * privileged and at least one of the execute bits is set.
878 *
879 * It would be nice to to this after all writes have
880 * been done, but that would still expose the ISUID/ISGID
881 * to another app after the partial write is committed.
882 *
883 * Note: we don't call zfs_fuid_map_id() here because
884 * user 0 is not an ephemeral uid.
885 */
886 mutex_enter(&zp->z_acl_lock);
887 uint32_t uid = KUID_TO_SUID(ip->i_uid);
888 if ((zp->z_mode & (S_IXUSR | (S_IXUSR >> 3) |
889 (S_IXUSR >> 6))) != 0 &&
890 (zp->z_mode & (S_ISUID | S_ISGID)) != 0 &&
891 secpolicy_vnode_setid_retain(cr,
892 ((zp->z_mode & S_ISUID) != 0 && uid == 0)) != 0) {
893 uint64_t newmode;
894 zp->z_mode &= ~(S_ISUID | S_ISGID);
895 ip->i_mode = newmode = zp->z_mode;
896 (void) sa_update(zp->z_sa_hdl, SA_ZPL_MODE(zfsvfs),
897 (void *)&newmode, sizeof (uint64_t), tx);
898 }
899 mutex_exit(&zp->z_acl_lock);
900
901 zfs_tstamp_update_setup(zp, CONTENT_MODIFIED, mtime, ctime);
902
903 /*
904 * Update the file size (zp_size) if it has changed;
905 * account for possible concurrent updates.
906 */
907 while ((end_size = zp->z_size) < uio->uio_loffset) {
908 (void) atomic_cas_64(&zp->z_size, end_size,
909 uio->uio_loffset);
910 ASSERT(error == 0);
911 }
912 /*
913 * If we are replaying and eof is non zero then force
914 * the file size to the specified eof. Note, there's no
915 * concurrency during replay.
916 */
917 if (zfsvfs->z_replay && zfsvfs->z_replay_eof != 0)
918 zp->z_size = zfsvfs->z_replay_eof;
919
920 error = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx);
921
922 zfs_log_write(zilog, tx, TX_WRITE, zp, woff, tx_bytes, ioflag,
923 NULL, NULL);
924 dmu_tx_commit(tx);
925
926 if (error != 0)
927 break;
928 ASSERT(tx_bytes == nbytes);
929 n -= nbytes;
930
931 if (!xuio && n > 0) {
932 if (uio_prefaultpages(MIN(n, max_blksz), uio)) {
933 error = EFAULT;
934 break;
935 }
936 }
937 }
938
939 zfs_inode_update(zp);
940 rangelock_exit(lr);
941
942 /*
943 * If we're in replay mode, or we made no progress, return error.
944 * Otherwise, it's at least a partial write, so it's successful.
945 */
946 if (zfsvfs->z_replay || uio->uio_resid == start_resid) {
947 ZFS_EXIT(zfsvfs);
948 return (error);
949 }
950
951 if (ioflag & (FSYNC | FDSYNC) ||
952 zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
953 zil_commit(zilog, zp->z_id);
954
955 int64_t nwritten = start_resid - uio->uio_resid;
956 dataset_kstats_update_write_kstats(&zfsvfs->z_kstat, nwritten);
957 task_io_account_write(nwritten);
958
959 ZFS_EXIT(zfsvfs);
960 return (0);
961 }
962
963 /*
964 * Drop a reference on the passed inode asynchronously. This ensures
965 * that the caller will never drop the last reference on an inode in
966 * the current context. Doing so while holding open a tx could result
967 * in a deadlock if iput_final() re-enters the filesystem code.
968 */
969 void
970 zfs_iput_async(struct inode *ip)
971 {
972 objset_t *os = ITOZSB(ip)->z_os;
973
974 ASSERT(atomic_read(&ip->i_count) > 0);
975 ASSERT(os != NULL);
976
977 if (atomic_read(&ip->i_count) == 1)
978 VERIFY(taskq_dispatch(dsl_pool_iput_taskq(dmu_objset_pool(os)),
979 (task_func_t *)iput, ip, TQ_SLEEP) != TASKQID_INVALID);
980 else
981 iput(ip);
982 }
983
984 /* ARGSUSED */
985 void
986 zfs_get_done(zgd_t *zgd, int error)
987 {
988 znode_t *zp = zgd->zgd_private;
989
990 if (zgd->zgd_db)
991 dmu_buf_rele(zgd->zgd_db, zgd);
992
993 rangelock_exit(zgd->zgd_lr);
994
995 /*
996 * Release the vnode asynchronously as we currently have the
997 * txg stopped from syncing.
998 */
999 zfs_iput_async(ZTOI(zp));
1000
1001 kmem_free(zgd, sizeof (zgd_t));
1002 }
1003
1004 #ifdef DEBUG
1005 static int zil_fault_io = 0;
1006 #endif
1007
1008 /*
1009 * Get data to generate a TX_WRITE intent log record.
1010 */
1011 int
1012 zfs_get_data(void *arg, lr_write_t *lr, char *buf, struct lwb *lwb, zio_t *zio)
1013 {
1014 zfsvfs_t *zfsvfs = arg;
1015 objset_t *os = zfsvfs->z_os;
1016 znode_t *zp;
1017 uint64_t object = lr->lr_foid;
1018 uint64_t offset = lr->lr_offset;
1019 uint64_t size = lr->lr_length;
1020 dmu_buf_t *db;
1021 zgd_t *zgd;
1022 int error = 0;
1023
1024 ASSERT3P(lwb, !=, NULL);
1025 ASSERT3P(zio, !=, NULL);
1026 ASSERT3U(size, !=, 0);
1027
1028 /*
1029 * Nothing to do if the file has been removed
1030 */
1031 if (zfs_zget(zfsvfs, object, &zp) != 0)
1032 return (SET_ERROR(ENOENT));
1033 if (zp->z_unlinked) {
1034 /*
1035 * Release the vnode asynchronously as we currently have the
1036 * txg stopped from syncing.
1037 */
1038 zfs_iput_async(ZTOI(zp));
1039 return (SET_ERROR(ENOENT));
1040 }
1041
1042 zgd = (zgd_t *)kmem_zalloc(sizeof (zgd_t), KM_SLEEP);
1043 zgd->zgd_lwb = lwb;
1044 zgd->zgd_private = zp;
1045
1046 /*
1047 * Write records come in two flavors: immediate and indirect.
1048 * For small writes it's cheaper to store the data with the
1049 * log record (immediate); for large writes it's cheaper to
1050 * sync the data and get a pointer to it (indirect) so that
1051 * we don't have to write the data twice.
1052 */
1053 if (buf != NULL) { /* immediate write */
1054 zgd->zgd_lr = rangelock_enter(&zp->z_rangelock,
1055 offset, size, RL_READER);
1056 /* test for truncation needs to be done while range locked */
1057 if (offset >= zp->z_size) {
1058 error = SET_ERROR(ENOENT);
1059 } else {
1060 error = dmu_read(os, object, offset, size, buf,
1061 DMU_READ_NO_PREFETCH);
1062 }
1063 ASSERT(error == 0 || error == ENOENT);
1064 } else { /* indirect write */
1065 /*
1066 * Have to lock the whole block to ensure when it's
1067 * written out and its checksum is being calculated
1068 * that no one can change the data. We need to re-check
1069 * blocksize after we get the lock in case it's changed!
1070 */
1071 for (;;) {
1072 uint64_t blkoff;
1073 size = zp->z_blksz;
1074 blkoff = ISP2(size) ? P2PHASE(offset, size) : offset;
1075 offset -= blkoff;
1076 zgd->zgd_lr = rangelock_enter(&zp->z_rangelock,
1077 offset, size, RL_READER);
1078 if (zp->z_blksz == size)
1079 break;
1080 offset += blkoff;
1081 rangelock_exit(zgd->zgd_lr);
1082 }
1083 /* test for truncation needs to be done while range locked */
1084 if (lr->lr_offset >= zp->z_size)
1085 error = SET_ERROR(ENOENT);
1086 #ifdef DEBUG
1087 if (zil_fault_io) {
1088 error = SET_ERROR(EIO);
1089 zil_fault_io = 0;
1090 }
1091 #endif
1092 if (error == 0)
1093 error = dmu_buf_hold(os, object, offset, zgd, &db,
1094 DMU_READ_NO_PREFETCH);
1095
1096 if (error == 0) {
1097 blkptr_t *bp = &lr->lr_blkptr;
1098
1099 zgd->zgd_db = db;
1100 zgd->zgd_bp = bp;
1101
1102 ASSERT(db->db_offset == offset);
1103 ASSERT(db->db_size == size);
1104
1105 error = dmu_sync(zio, lr->lr_common.lrc_txg,
1106 zfs_get_done, zgd);
1107 ASSERT(error || lr->lr_length <= size);
1108
1109 /*
1110 * On success, we need to wait for the write I/O
1111 * initiated by dmu_sync() to complete before we can
1112 * release this dbuf. We will finish everything up
1113 * in the zfs_get_done() callback.
1114 */
1115 if (error == 0)
1116 return (0);
1117
1118 if (error == EALREADY) {
1119 lr->lr_common.lrc_txtype = TX_WRITE2;
1120 /*
1121 * TX_WRITE2 relies on the data previously
1122 * written by the TX_WRITE that caused
1123 * EALREADY. We zero out the BP because
1124 * it is the old, currently-on-disk BP.
1125 */
1126 zgd->zgd_bp = NULL;
1127 BP_ZERO(bp);
1128 error = 0;
1129 }
1130 }
1131 }
1132
1133 zfs_get_done(zgd, error);
1134
1135 return (error);
1136 }
1137
1138 /*ARGSUSED*/
1139 int
1140 zfs_access(struct inode *ip, int mode, int flag, cred_t *cr)
1141 {
1142 znode_t *zp = ITOZ(ip);
1143 zfsvfs_t *zfsvfs = ITOZSB(ip);
1144 int error;
1145
1146 ZFS_ENTER(zfsvfs);
1147 ZFS_VERIFY_ZP(zp);
1148
1149 if (flag & V_ACE_MASK)
1150 error = zfs_zaccess(zp, mode, flag, B_FALSE, cr);
1151 else
1152 error = zfs_zaccess_rwx(zp, mode, flag, cr);
1153
1154 ZFS_EXIT(zfsvfs);
1155 return (error);
1156 }
1157
1158 /*
1159 * Lookup an entry in a directory, or an extended attribute directory.
1160 * If it exists, return a held inode reference for it.
1161 *
1162 * IN: dip - inode of directory to search.
1163 * nm - name of entry to lookup.
1164 * flags - LOOKUP_XATTR set if looking for an attribute.
1165 * cr - credentials of caller.
1166 * direntflags - directory lookup flags
1167 * realpnp - returned pathname.
1168 *
1169 * OUT: ipp - inode of located entry, NULL if not found.
1170 *
1171 * RETURN: 0 on success, error code on failure.
1172 *
1173 * Timestamps:
1174 * NA
1175 */
1176 /* ARGSUSED */
1177 int
1178 zfs_lookup(struct inode *dip, char *nm, struct inode **ipp, int flags,
1179 cred_t *cr, int *direntflags, pathname_t *realpnp)
1180 {
1181 znode_t *zdp = ITOZ(dip);
1182 zfsvfs_t *zfsvfs = ITOZSB(dip);
1183 int error = 0;
1184
1185 /*
1186 * Fast path lookup, however we must skip DNLC lookup
1187 * for case folding or normalizing lookups because the
1188 * DNLC code only stores the passed in name. This means
1189 * creating 'a' and removing 'A' on a case insensitive
1190 * file system would work, but DNLC still thinks 'a'
1191 * exists and won't let you create it again on the next
1192 * pass through fast path.
1193 */
1194 if (!(flags & (LOOKUP_XATTR | FIGNORECASE))) {
1195
1196 if (!S_ISDIR(dip->i_mode)) {
1197 return (SET_ERROR(ENOTDIR));
1198 } else if (zdp->z_sa_hdl == NULL) {
1199 return (SET_ERROR(EIO));
1200 }
1201
1202 if (nm[0] == 0 || (nm[0] == '.' && nm[1] == '\0')) {
1203 error = zfs_fastaccesschk_execute(zdp, cr);
1204 if (!error) {
1205 *ipp = dip;
1206 igrab(*ipp);
1207 return (0);
1208 }
1209 return (error);
1210 }
1211 }
1212
1213 ZFS_ENTER(zfsvfs);
1214 ZFS_VERIFY_ZP(zdp);
1215
1216 *ipp = NULL;
1217
1218 if (flags & LOOKUP_XATTR) {
1219 /*
1220 * We don't allow recursive attributes..
1221 * Maybe someday we will.
1222 */
1223 if (zdp->z_pflags & ZFS_XATTR) {
1224 ZFS_EXIT(zfsvfs);
1225 return (SET_ERROR(EINVAL));
1226 }
1227
1228 if ((error = zfs_get_xattrdir(zdp, ipp, cr, flags))) {
1229 ZFS_EXIT(zfsvfs);
1230 return (error);
1231 }
1232
1233 /*
1234 * Do we have permission to get into attribute directory?
1235 */
1236
1237 if ((error = zfs_zaccess(ITOZ(*ipp), ACE_EXECUTE, 0,
1238 B_FALSE, cr))) {
1239 iput(*ipp);
1240 *ipp = NULL;
1241 }
1242
1243 ZFS_EXIT(zfsvfs);
1244 return (error);
1245 }
1246
1247 if (!S_ISDIR(dip->i_mode)) {
1248 ZFS_EXIT(zfsvfs);
1249 return (SET_ERROR(ENOTDIR));
1250 }
1251
1252 /*
1253 * Check accessibility of directory.
1254 */
1255
1256 if ((error = zfs_zaccess(zdp, ACE_EXECUTE, 0, B_FALSE, cr))) {
1257 ZFS_EXIT(zfsvfs);
1258 return (error);
1259 }
1260
1261 if (zfsvfs->z_utf8 && u8_validate(nm, strlen(nm),
1262 NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
1263 ZFS_EXIT(zfsvfs);
1264 return (SET_ERROR(EILSEQ));
1265 }
1266
1267 error = zfs_dirlook(zdp, nm, ipp, flags, direntflags, realpnp);
1268 if ((error == 0) && (*ipp))
1269 zfs_inode_update(ITOZ(*ipp));
1270
1271 ZFS_EXIT(zfsvfs);
1272 return (error);
1273 }
1274
1275 /*
1276 * Attempt to create a new entry in a directory. If the entry
1277 * already exists, truncate the file if permissible, else return
1278 * an error. Return the ip of the created or trunc'd file.
1279 *
1280 * IN: dip - inode of directory to put new file entry in.
1281 * name - name of new file entry.
1282 * vap - attributes of new file.
1283 * excl - flag indicating exclusive or non-exclusive mode.
1284 * mode - mode to open file with.
1285 * cr - credentials of caller.
1286 * flag - large file flag [UNUSED].
1287 * vsecp - ACL to be set
1288 *
1289 * OUT: ipp - inode of created or trunc'd entry.
1290 *
1291 * RETURN: 0 on success, error code on failure.
1292 *
1293 * Timestamps:
1294 * dip - ctime|mtime updated if new entry created
1295 * ip - ctime|mtime always, atime if new
1296 */
1297
1298 /* ARGSUSED */
1299 int
1300 zfs_create(struct inode *dip, char *name, vattr_t *vap, int excl,
1301 int mode, struct inode **ipp, cred_t *cr, int flag, vsecattr_t *vsecp)
1302 {
1303 znode_t *zp, *dzp = ITOZ(dip);
1304 zfsvfs_t *zfsvfs = ITOZSB(dip);
1305 zilog_t *zilog;
1306 objset_t *os;
1307 zfs_dirlock_t *dl;
1308 dmu_tx_t *tx;
1309 int error;
1310 uid_t uid;
1311 gid_t gid;
1312 zfs_acl_ids_t acl_ids;
1313 boolean_t fuid_dirtied;
1314 boolean_t have_acl = B_FALSE;
1315 boolean_t waited = B_FALSE;
1316
1317 /*
1318 * If we have an ephemeral id, ACL, or XVATTR then
1319 * make sure file system is at proper version
1320 */
1321
1322 gid = crgetgid(cr);
1323 uid = crgetuid(cr);
1324
1325 if (zfsvfs->z_use_fuids == B_FALSE &&
1326 (vsecp || IS_EPHEMERAL(uid) || IS_EPHEMERAL(gid)))
1327 return (SET_ERROR(EINVAL));
1328
1329 if (name == NULL)
1330 return (SET_ERROR(EINVAL));
1331
1332 ZFS_ENTER(zfsvfs);
1333 ZFS_VERIFY_ZP(dzp);
1334 os = zfsvfs->z_os;
1335 zilog = zfsvfs->z_log;
1336
1337 if (zfsvfs->z_utf8 && u8_validate(name, strlen(name),
1338 NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
1339 ZFS_EXIT(zfsvfs);
1340 return (SET_ERROR(EILSEQ));
1341 }
1342
1343 if (vap->va_mask & ATTR_XVATTR) {
1344 if ((error = secpolicy_xvattr((xvattr_t *)vap,
1345 crgetuid(cr), cr, vap->va_mode)) != 0) {
1346 ZFS_EXIT(zfsvfs);
1347 return (error);
1348 }
1349 }
1350
1351 top:
1352 *ipp = NULL;
1353 if (*name == '\0') {
1354 /*
1355 * Null component name refers to the directory itself.
1356 */
1357 igrab(dip);
1358 zp = dzp;
1359 dl = NULL;
1360 error = 0;
1361 } else {
1362 /* possible igrab(zp) */
1363 int zflg = 0;
1364
1365 if (flag & FIGNORECASE)
1366 zflg |= ZCILOOK;
1367
1368 error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg,
1369 NULL, NULL);
1370 if (error) {
1371 if (have_acl)
1372 zfs_acl_ids_free(&acl_ids);
1373 if (strcmp(name, "..") == 0)
1374 error = SET_ERROR(EISDIR);
1375 ZFS_EXIT(zfsvfs);
1376 return (error);
1377 }
1378 }
1379
1380 if (zp == NULL) {
1381 uint64_t txtype;
1382 uint64_t projid = ZFS_DEFAULT_PROJID;
1383
1384 /*
1385 * Create a new file object and update the directory
1386 * to reference it.
1387 */
1388 if ((error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr))) {
1389 if (have_acl)
1390 zfs_acl_ids_free(&acl_ids);
1391 goto out;
1392 }
1393
1394 /*
1395 * We only support the creation of regular files in
1396 * extended attribute directories.
1397 */
1398
1399 if ((dzp->z_pflags & ZFS_XATTR) && !S_ISREG(vap->va_mode)) {
1400 if (have_acl)
1401 zfs_acl_ids_free(&acl_ids);
1402 error = SET_ERROR(EINVAL);
1403 goto out;
1404 }
1405
1406 if (!have_acl && (error = zfs_acl_ids_create(dzp, 0, vap,
1407 cr, vsecp, &acl_ids)) != 0)
1408 goto out;
1409 have_acl = B_TRUE;
1410
1411 if (S_ISREG(vap->va_mode) || S_ISDIR(vap->va_mode))
1412 projid = zfs_inherit_projid(dzp);
1413 if (zfs_acl_ids_overquota(zfsvfs, &acl_ids, projid)) {
1414 zfs_acl_ids_free(&acl_ids);
1415 error = SET_ERROR(EDQUOT);
1416 goto out;
1417 }
1418
1419 tx = dmu_tx_create(os);
1420
1421 dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes +
1422 ZFS_SA_BASE_ATTR_SIZE);
1423
1424 fuid_dirtied = zfsvfs->z_fuid_dirty;
1425 if (fuid_dirtied)
1426 zfs_fuid_txhold(zfsvfs, tx);
1427 dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name);
1428 dmu_tx_hold_sa(tx, dzp->z_sa_hdl, B_FALSE);
1429 if (!zfsvfs->z_use_sa &&
1430 acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) {
1431 dmu_tx_hold_write(tx, DMU_NEW_OBJECT,
1432 0, acl_ids.z_aclp->z_acl_bytes);
1433 }
1434
1435 error = dmu_tx_assign(tx,
1436 (waited ? TXG_NOTHROTTLE : 0) | TXG_NOWAIT);
1437 if (error) {
1438 zfs_dirent_unlock(dl);
1439 if (error == ERESTART) {
1440 waited = B_TRUE;
1441 dmu_tx_wait(tx);
1442 dmu_tx_abort(tx);
1443 goto top;
1444 }
1445 zfs_acl_ids_free(&acl_ids);
1446 dmu_tx_abort(tx);
1447 ZFS_EXIT(zfsvfs);
1448 return (error);
1449 }
1450 zfs_mknode(dzp, vap, tx, cr, 0, &zp, &acl_ids);
1451
1452 error = zfs_link_create(dl, zp, tx, ZNEW);
1453 if (error != 0) {
1454 /*
1455 * Since, we failed to add the directory entry for it,
1456 * delete the newly created dnode.
1457 */
1458 zfs_znode_delete(zp, tx);
1459 remove_inode_hash(ZTOI(zp));
1460 zfs_acl_ids_free(&acl_ids);
1461 dmu_tx_commit(tx);
1462 goto out;
1463 }
1464
1465 if (fuid_dirtied)
1466 zfs_fuid_sync(zfsvfs, tx);
1467
1468 txtype = zfs_log_create_txtype(Z_FILE, vsecp, vap);
1469 if (flag & FIGNORECASE)
1470 txtype |= TX_CI;
1471 zfs_log_create(zilog, tx, txtype, dzp, zp, name,
1472 vsecp, acl_ids.z_fuidp, vap);
1473 zfs_acl_ids_free(&acl_ids);
1474 dmu_tx_commit(tx);
1475 } else {
1476 int aflags = (flag & FAPPEND) ? V_APPEND : 0;
1477
1478 if (have_acl)
1479 zfs_acl_ids_free(&acl_ids);
1480 have_acl = B_FALSE;
1481
1482 /*
1483 * A directory entry already exists for this name.
1484 */
1485 /*
1486 * Can't truncate an existing file if in exclusive mode.
1487 */
1488 if (excl) {
1489 error = SET_ERROR(EEXIST);
1490 goto out;
1491 }
1492 /*
1493 * Can't open a directory for writing.
1494 */
1495 if (S_ISDIR(ZTOI(zp)->i_mode)) {
1496 error = SET_ERROR(EISDIR);
1497 goto out;
1498 }
1499 /*
1500 * Verify requested access to file.
1501 */
1502 if (mode && (error = zfs_zaccess_rwx(zp, mode, aflags, cr))) {
1503 goto out;
1504 }
1505
1506 mutex_enter(&dzp->z_lock);
1507 dzp->z_seq++;
1508 mutex_exit(&dzp->z_lock);
1509
1510 /*
1511 * Truncate regular files if requested.
1512 */
1513 if (S_ISREG(ZTOI(zp)->i_mode) &&
1514 (vap->va_mask & ATTR_SIZE) && (vap->va_size == 0)) {
1515 /* we can't hold any locks when calling zfs_freesp() */
1516 if (dl) {
1517 zfs_dirent_unlock(dl);
1518 dl = NULL;
1519 }
1520 error = zfs_freesp(zp, 0, 0, mode, TRUE);
1521 }
1522 }
1523 out:
1524
1525 if (dl)
1526 zfs_dirent_unlock(dl);
1527
1528 if (error) {
1529 if (zp)
1530 iput(ZTOI(zp));
1531 } else {
1532 zfs_inode_update(dzp);
1533 zfs_inode_update(zp);
1534 *ipp = ZTOI(zp);
1535 }
1536
1537 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
1538 zil_commit(zilog, 0);
1539
1540 ZFS_EXIT(zfsvfs);
1541 return (error);
1542 }
1543
1544 /* ARGSUSED */
1545 int
1546 zfs_tmpfile(struct inode *dip, vattr_t *vap, int excl,
1547 int mode, struct inode **ipp, cred_t *cr, int flag, vsecattr_t *vsecp)
1548 {
1549 znode_t *zp = NULL, *dzp = ITOZ(dip);
1550 zfsvfs_t *zfsvfs = ITOZSB(dip);
1551 objset_t *os;
1552 dmu_tx_t *tx;
1553 int error;
1554 uid_t uid;
1555 gid_t gid;
1556 zfs_acl_ids_t acl_ids;
1557 uint64_t projid = ZFS_DEFAULT_PROJID;
1558 boolean_t fuid_dirtied;
1559 boolean_t have_acl = B_FALSE;
1560 boolean_t waited = B_FALSE;
1561
1562 /*
1563 * If we have an ephemeral id, ACL, or XVATTR then
1564 * make sure file system is at proper version
1565 */
1566
1567 gid = crgetgid(cr);
1568 uid = crgetuid(cr);
1569
1570 if (zfsvfs->z_use_fuids == B_FALSE &&
1571 (vsecp || IS_EPHEMERAL(uid) || IS_EPHEMERAL(gid)))
1572 return (SET_ERROR(EINVAL));
1573
1574 ZFS_ENTER(zfsvfs);
1575 ZFS_VERIFY_ZP(dzp);
1576 os = zfsvfs->z_os;
1577
1578 if (vap->va_mask & ATTR_XVATTR) {
1579 if ((error = secpolicy_xvattr((xvattr_t *)vap,
1580 crgetuid(cr), cr, vap->va_mode)) != 0) {
1581 ZFS_EXIT(zfsvfs);
1582 return (error);
1583 }
1584 }
1585
1586 top:
1587 *ipp = NULL;
1588
1589 /*
1590 * Create a new file object and update the directory
1591 * to reference it.
1592 */
1593 if ((error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr))) {
1594 if (have_acl)
1595 zfs_acl_ids_free(&acl_ids);
1596 goto out;
1597 }
1598
1599 if (!have_acl && (error = zfs_acl_ids_create(dzp, 0, vap,
1600 cr, vsecp, &acl_ids)) != 0)
1601 goto out;
1602 have_acl = B_TRUE;
1603
1604 if (S_ISREG(vap->va_mode) || S_ISDIR(vap->va_mode))
1605 projid = zfs_inherit_projid(dzp);
1606 if (zfs_acl_ids_overquota(zfsvfs, &acl_ids, projid)) {
1607 zfs_acl_ids_free(&acl_ids);
1608 error = SET_ERROR(EDQUOT);
1609 goto out;
1610 }
1611
1612 tx = dmu_tx_create(os);
1613
1614 dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes +
1615 ZFS_SA_BASE_ATTR_SIZE);
1616 dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL);
1617
1618 fuid_dirtied = zfsvfs->z_fuid_dirty;
1619 if (fuid_dirtied)
1620 zfs_fuid_txhold(zfsvfs, tx);
1621 if (!zfsvfs->z_use_sa &&
1622 acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) {
1623 dmu_tx_hold_write(tx, DMU_NEW_OBJECT,
1624 0, acl_ids.z_aclp->z_acl_bytes);
1625 }
1626 error = dmu_tx_assign(tx, (waited ? TXG_NOTHROTTLE : 0) | TXG_NOWAIT);
1627 if (error) {
1628 if (error == ERESTART) {
1629 waited = B_TRUE;
1630 dmu_tx_wait(tx);
1631 dmu_tx_abort(tx);
1632 goto top;
1633 }
1634 zfs_acl_ids_free(&acl_ids);
1635 dmu_tx_abort(tx);
1636 ZFS_EXIT(zfsvfs);
1637 return (error);
1638 }
1639 zfs_mknode(dzp, vap, tx, cr, IS_TMPFILE, &zp, &acl_ids);
1640
1641 if (fuid_dirtied)
1642 zfs_fuid_sync(zfsvfs, tx);
1643
1644 /* Add to unlinked set */
1645 zp->z_unlinked = 1;
1646 zfs_unlinked_add(zp, tx);
1647 zfs_acl_ids_free(&acl_ids);
1648 dmu_tx_commit(tx);
1649 out:
1650
1651 if (error) {
1652 if (zp)
1653 iput(ZTOI(zp));
1654 } else {
1655 zfs_inode_update(dzp);
1656 zfs_inode_update(zp);
1657 *ipp = ZTOI(zp);
1658 }
1659
1660 ZFS_EXIT(zfsvfs);
1661 return (error);
1662 }
1663
1664 /*
1665 * Remove an entry from a directory.
1666 *
1667 * IN: dip - inode of directory to remove entry from.
1668 * name - name of entry to remove.
1669 * cr - credentials of caller.
1670 *
1671 * RETURN: 0 if success
1672 * error code if failure
1673 *
1674 * Timestamps:
1675 * dip - ctime|mtime
1676 * ip - ctime (if nlink > 0)
1677 */
1678
1679 uint64_t null_xattr = 0;
1680
1681 /*ARGSUSED*/
1682 int
1683 zfs_remove(struct inode *dip, char *name, cred_t *cr, int flags)
1684 {
1685 znode_t *zp, *dzp = ITOZ(dip);
1686 znode_t *xzp;
1687 struct inode *ip;
1688 zfsvfs_t *zfsvfs = ITOZSB(dip);
1689 zilog_t *zilog;
1690 uint64_t acl_obj, xattr_obj;
1691 uint64_t xattr_obj_unlinked = 0;
1692 uint64_t obj = 0;
1693 uint64_t links;
1694 zfs_dirlock_t *dl;
1695 dmu_tx_t *tx;
1696 boolean_t may_delete_now, delete_now = FALSE;
1697 boolean_t unlinked, toobig = FALSE;
1698 uint64_t txtype;
1699 pathname_t *realnmp = NULL;
1700 pathname_t realnm;
1701 int error;
1702 int zflg = ZEXISTS;
1703 boolean_t waited = B_FALSE;
1704
1705 if (name == NULL)
1706 return (SET_ERROR(EINVAL));
1707
1708 ZFS_ENTER(zfsvfs);
1709 ZFS_VERIFY_ZP(dzp);
1710 zilog = zfsvfs->z_log;
1711
1712 if (flags & FIGNORECASE) {
1713 zflg |= ZCILOOK;
1714 pn_alloc(&realnm);
1715 realnmp = &realnm;
1716 }
1717
1718 top:
1719 xattr_obj = 0;
1720 xzp = NULL;
1721 /*
1722 * Attempt to lock directory; fail if entry doesn't exist.
1723 */
1724 if ((error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg,
1725 NULL, realnmp))) {
1726 if (realnmp)
1727 pn_free(realnmp);
1728 ZFS_EXIT(zfsvfs);
1729 return (error);
1730 }
1731
1732 ip = ZTOI(zp);
1733
1734 if ((error = zfs_zaccess_delete(dzp, zp, cr))) {
1735 goto out;
1736 }
1737
1738 /*
1739 * Need to use rmdir for removing directories.
1740 */
1741 if (S_ISDIR(ip->i_mode)) {
1742 error = SET_ERROR(EPERM);
1743 goto out;
1744 }
1745
1746 mutex_enter(&zp->z_lock);
1747 may_delete_now = atomic_read(&ip->i_count) == 1 && !(zp->z_is_mapped);
1748 mutex_exit(&zp->z_lock);
1749
1750 /*
1751 * We may delete the znode now, or we may put it in the unlinked set;
1752 * it depends on whether we're the last link, and on whether there are
1753 * other holds on the inode. So we dmu_tx_hold() the right things to
1754 * allow for either case.
1755 */
1756 obj = zp->z_id;
1757 tx = dmu_tx_create(zfsvfs->z_os);
1758 dmu_tx_hold_zap(tx, dzp->z_id, FALSE, name);
1759 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
1760 zfs_sa_upgrade_txholds(tx, zp);
1761 zfs_sa_upgrade_txholds(tx, dzp);
1762 if (may_delete_now) {
1763 toobig = zp->z_size > zp->z_blksz * zfs_delete_blocks;
1764 /* if the file is too big, only hold_free a token amount */
1765 dmu_tx_hold_free(tx, zp->z_id, 0,
1766 (toobig ? DMU_MAX_ACCESS : DMU_OBJECT_END));
1767 }
1768
1769 /* are there any extended attributes? */
1770 error = sa_lookup(zp->z_sa_hdl, SA_ZPL_XATTR(zfsvfs),
1771 &xattr_obj, sizeof (xattr_obj));
1772 if (error == 0 && xattr_obj) {
1773 error = zfs_zget(zfsvfs, xattr_obj, &xzp);
1774 ASSERT0(error);
1775 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE);
1776 dmu_tx_hold_sa(tx, xzp->z_sa_hdl, B_FALSE);
1777 }
1778
1779 mutex_enter(&zp->z_lock);
1780 if ((acl_obj = zfs_external_acl(zp)) != 0 && may_delete_now)
1781 dmu_tx_hold_free(tx, acl_obj, 0, DMU_OBJECT_END);
1782 mutex_exit(&zp->z_lock);
1783
1784 /* charge as an update -- would be nice not to charge at all */
1785 dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL);
1786
1787 /*
1788 * Mark this transaction as typically resulting in a net free of space
1789 */
1790 dmu_tx_mark_netfree(tx);
1791
1792 error = dmu_tx_assign(tx, (waited ? TXG_NOTHROTTLE : 0) | TXG_NOWAIT);
1793 if (error) {
1794 zfs_dirent_unlock(dl);
1795 if (error == ERESTART) {
1796 waited = B_TRUE;
1797 dmu_tx_wait(tx);
1798 dmu_tx_abort(tx);
1799 iput(ip);
1800 if (xzp)
1801 iput(ZTOI(xzp));
1802 goto top;
1803 }
1804 if (realnmp)
1805 pn_free(realnmp);
1806 dmu_tx_abort(tx);
1807 iput(ip);
1808 if (xzp)
1809 iput(ZTOI(xzp));
1810 ZFS_EXIT(zfsvfs);
1811 return (error);
1812 }
1813
1814 /*
1815 * Remove the directory entry.
1816 */
1817 error = zfs_link_destroy(dl, zp, tx, zflg, &unlinked);
1818
1819 if (error) {
1820 dmu_tx_commit(tx);
1821 goto out;
1822 }
1823
1824 if (unlinked) {
1825 /*
1826 * Hold z_lock so that we can make sure that the ACL obj
1827 * hasn't changed. Could have been deleted due to
1828 * zfs_sa_upgrade().
1829 */
1830 mutex_enter(&zp->z_lock);
1831 (void) sa_lookup(zp->z_sa_hdl, SA_ZPL_XATTR(zfsvfs),
1832 &xattr_obj_unlinked, sizeof (xattr_obj_unlinked));
1833 delete_now = may_delete_now && !toobig &&
1834 atomic_read(&ip->i_count) == 1 && !(zp->z_is_mapped) &&
1835 xattr_obj == xattr_obj_unlinked && zfs_external_acl(zp) ==
1836 acl_obj;
1837 }
1838
1839 if (delete_now) {
1840 if (xattr_obj_unlinked) {
1841 ASSERT3U(ZTOI(xzp)->i_nlink, ==, 2);
1842 mutex_enter(&xzp->z_lock);
1843 xzp->z_unlinked = 1;
1844 clear_nlink(ZTOI(xzp));
1845 links = 0;
1846 error = sa_update(xzp->z_sa_hdl, SA_ZPL_LINKS(zfsvfs),
1847 &links, sizeof (links), tx);
1848 ASSERT3U(error, ==, 0);
1849 mutex_exit(&xzp->z_lock);
1850 zfs_unlinked_add(xzp, tx);
1851
1852 if (zp->z_is_sa)
1853 error = sa_remove(zp->z_sa_hdl,
1854 SA_ZPL_XATTR(zfsvfs), tx);
1855 else
1856 error = sa_update(zp->z_sa_hdl,
1857 SA_ZPL_XATTR(zfsvfs), &null_xattr,
1858 sizeof (uint64_t), tx);
1859 ASSERT0(error);
1860 }
1861 /*
1862 * Add to the unlinked set because a new reference could be
1863 * taken concurrently resulting in a deferred destruction.
1864 */
1865 zfs_unlinked_add(zp, tx);
1866 mutex_exit(&zp->z_lock);
1867 } else if (unlinked) {
1868 mutex_exit(&zp->z_lock);
1869 zfs_unlinked_add(zp, tx);
1870 }
1871
1872 txtype = TX_REMOVE;
1873 if (flags & FIGNORECASE)
1874 txtype |= TX_CI;
1875 zfs_log_remove(zilog, tx, txtype, dzp, name, obj);
1876
1877 dmu_tx_commit(tx);
1878 out:
1879 if (realnmp)
1880 pn_free(realnmp);
1881
1882 zfs_dirent_unlock(dl);
1883 zfs_inode_update(dzp);
1884 zfs_inode_update(zp);
1885
1886 if (delete_now)
1887 iput(ip);
1888 else
1889 zfs_iput_async(ip);
1890
1891 if (xzp) {
1892 zfs_inode_update(xzp);
1893 zfs_iput_async(ZTOI(xzp));
1894 }
1895
1896 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
1897 zil_commit(zilog, 0);
1898
1899 ZFS_EXIT(zfsvfs);
1900 return (error);
1901 }
1902
1903 /*
1904 * Create a new directory and insert it into dip using the name
1905 * provided. Return a pointer to the inserted directory.
1906 *
1907 * IN: dip - inode of directory to add subdir to.
1908 * dirname - name of new directory.
1909 * vap - attributes of new directory.
1910 * cr - credentials of caller.
1911 * vsecp - ACL to be set
1912 *
1913 * OUT: ipp - inode of created directory.
1914 *
1915 * RETURN: 0 if success
1916 * error code if failure
1917 *
1918 * Timestamps:
1919 * dip - ctime|mtime updated
1920 * ipp - ctime|mtime|atime updated
1921 */
1922 /*ARGSUSED*/
1923 int
1924 zfs_mkdir(struct inode *dip, char *dirname, vattr_t *vap, struct inode **ipp,
1925 cred_t *cr, int flags, vsecattr_t *vsecp)
1926 {
1927 znode_t *zp, *dzp = ITOZ(dip);
1928 zfsvfs_t *zfsvfs = ITOZSB(dip);
1929 zilog_t *zilog;
1930 zfs_dirlock_t *dl;
1931 uint64_t txtype;
1932 dmu_tx_t *tx;
1933 int error;
1934 int zf = ZNEW;
1935 uid_t uid;
1936 gid_t gid = crgetgid(cr);
1937 zfs_acl_ids_t acl_ids;
1938 boolean_t fuid_dirtied;
1939 boolean_t waited = B_FALSE;
1940
1941 ASSERT(S_ISDIR(vap->va_mode));
1942
1943 /*
1944 * If we have an ephemeral id, ACL, or XVATTR then
1945 * make sure file system is at proper version
1946 */
1947
1948 uid = crgetuid(cr);
1949 if (zfsvfs->z_use_fuids == B_FALSE &&
1950 (vsecp || IS_EPHEMERAL(uid) || IS_EPHEMERAL(gid)))
1951 return (SET_ERROR(EINVAL));
1952
1953 if (dirname == NULL)
1954 return (SET_ERROR(EINVAL));
1955
1956 ZFS_ENTER(zfsvfs);
1957 ZFS_VERIFY_ZP(dzp);
1958 zilog = zfsvfs->z_log;
1959
1960 if (dzp->z_pflags & ZFS_XATTR) {
1961 ZFS_EXIT(zfsvfs);
1962 return (SET_ERROR(EINVAL));
1963 }
1964
1965 if (zfsvfs->z_utf8 && u8_validate(dirname,
1966 strlen(dirname), NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
1967 ZFS_EXIT(zfsvfs);
1968 return (SET_ERROR(EILSEQ));
1969 }
1970 if (flags & FIGNORECASE)
1971 zf |= ZCILOOK;
1972
1973 if (vap->va_mask & ATTR_XVATTR) {
1974 if ((error = secpolicy_xvattr((xvattr_t *)vap,
1975 crgetuid(cr), cr, vap->va_mode)) != 0) {
1976 ZFS_EXIT(zfsvfs);
1977 return (error);
1978 }
1979 }
1980
1981 if ((error = zfs_acl_ids_create(dzp, 0, vap, cr,
1982 vsecp, &acl_ids)) != 0) {
1983 ZFS_EXIT(zfsvfs);
1984 return (error);
1985 }
1986 /*
1987 * First make sure the new directory doesn't exist.
1988 *
1989 * Existence is checked first to make sure we don't return
1990 * EACCES instead of EEXIST which can cause some applications
1991 * to fail.
1992 */
1993 top:
1994 *ipp = NULL;
1995
1996 if ((error = zfs_dirent_lock(&dl, dzp, dirname, &zp, zf,
1997 NULL, NULL))) {
1998 zfs_acl_ids_free(&acl_ids);
1999 ZFS_EXIT(zfsvfs);
2000 return (error);
2001 }
2002
2003 if ((error = zfs_zaccess(dzp, ACE_ADD_SUBDIRECTORY, 0, B_FALSE, cr))) {
2004 zfs_acl_ids_free(&acl_ids);
2005 zfs_dirent_unlock(dl);
2006 ZFS_EXIT(zfsvfs);
2007 return (error);
2008 }
2009
2010 if (zfs_acl_ids_overquota(zfsvfs, &acl_ids, zfs_inherit_projid(dzp))) {
2011 zfs_acl_ids_free(&acl_ids);
2012 zfs_dirent_unlock(dl);
2013 ZFS_EXIT(zfsvfs);
2014 return (SET_ERROR(EDQUOT));
2015 }
2016
2017 /*
2018 * Add a new entry to the directory.
2019 */
2020 tx = dmu_tx_create(zfsvfs->z_os);
2021 dmu_tx_hold_zap(tx, dzp->z_id, TRUE, dirname);
2022 dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, FALSE, NULL);
2023 fuid_dirtied = zfsvfs->z_fuid_dirty;
2024 if (fuid_dirtied)
2025 zfs_fuid_txhold(zfsvfs, tx);
2026 if (!zfsvfs->z_use_sa && acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) {
2027 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0,
2028 acl_ids.z_aclp->z_acl_bytes);
2029 }
2030
2031 dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes +
2032 ZFS_SA_BASE_ATTR_SIZE);
2033
2034 error = dmu_tx_assign(tx, (waited ? TXG_NOTHROTTLE : 0) | TXG_NOWAIT);
2035 if (error) {
2036 zfs_dirent_unlock(dl);
2037 if (error == ERESTART) {
2038 waited = B_TRUE;
2039 dmu_tx_wait(tx);
2040 dmu_tx_abort(tx);
2041 goto top;
2042 }
2043 zfs_acl_ids_free(&acl_ids);
2044 dmu_tx_abort(tx);
2045 ZFS_EXIT(zfsvfs);
2046 return (error);
2047 }
2048
2049 /*
2050 * Create new node.
2051 */
2052 zfs_mknode(dzp, vap, tx, cr, 0, &zp, &acl_ids);
2053
2054 /*
2055 * Now put new name in parent dir.
2056 */
2057 error = zfs_link_create(dl, zp, tx, ZNEW);
2058 if (error != 0) {
2059 zfs_znode_delete(zp, tx);
2060 remove_inode_hash(ZTOI(zp));
2061 goto out;
2062 }
2063
2064 if (fuid_dirtied)
2065 zfs_fuid_sync(zfsvfs, tx);
2066
2067 *ipp = ZTOI(zp);
2068
2069 txtype = zfs_log_create_txtype(Z_DIR, vsecp, vap);
2070 if (flags & FIGNORECASE)
2071 txtype |= TX_CI;
2072 zfs_log_create(zilog, tx, txtype, dzp, zp, dirname, vsecp,
2073 acl_ids.z_fuidp, vap);
2074
2075 out:
2076 zfs_acl_ids_free(&acl_ids);
2077
2078 dmu_tx_commit(tx);
2079
2080 zfs_dirent_unlock(dl);
2081
2082 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
2083 zil_commit(zilog, 0);
2084
2085 if (error != 0) {
2086 iput(ZTOI(zp));
2087 } else {
2088 zfs_inode_update(dzp);
2089 zfs_inode_update(zp);
2090 }
2091 ZFS_EXIT(zfsvfs);
2092 return (error);
2093 }
2094
2095 /*
2096 * Remove a directory subdir entry. If the current working
2097 * directory is the same as the subdir to be removed, the
2098 * remove will fail.
2099 *
2100 * IN: dip - inode of directory to remove from.
2101 * name - name of directory to be removed.
2102 * cwd - inode of current working directory.
2103 * cr - credentials of caller.
2104 * flags - case flags
2105 *
2106 * RETURN: 0 on success, error code on failure.
2107 *
2108 * Timestamps:
2109 * dip - ctime|mtime updated
2110 */
2111 /*ARGSUSED*/
2112 int
2113 zfs_rmdir(struct inode *dip, char *name, struct inode *cwd, cred_t *cr,
2114 int flags)
2115 {
2116 znode_t *dzp = ITOZ(dip);
2117 znode_t *zp;
2118 struct inode *ip;
2119 zfsvfs_t *zfsvfs = ITOZSB(dip);
2120 zilog_t *zilog;
2121 zfs_dirlock_t *dl;
2122 dmu_tx_t *tx;
2123 int error;
2124 int zflg = ZEXISTS;
2125 boolean_t waited = B_FALSE;
2126
2127 if (name == NULL)
2128 return (SET_ERROR(EINVAL));
2129
2130 ZFS_ENTER(zfsvfs);
2131 ZFS_VERIFY_ZP(dzp);
2132 zilog = zfsvfs->z_log;
2133
2134 if (flags & FIGNORECASE)
2135 zflg |= ZCILOOK;
2136 top:
2137 zp = NULL;
2138
2139 /*
2140 * Attempt to lock directory; fail if entry doesn't exist.
2141 */
2142 if ((error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg,
2143 NULL, NULL))) {
2144 ZFS_EXIT(zfsvfs);
2145 return (error);
2146 }
2147
2148 ip = ZTOI(zp);
2149
2150 if ((error = zfs_zaccess_delete(dzp, zp, cr))) {
2151 goto out;
2152 }
2153
2154 if (!S_ISDIR(ip->i_mode)) {
2155 error = SET_ERROR(ENOTDIR);
2156 goto out;
2157 }
2158
2159 if (ip == cwd) {
2160 error = SET_ERROR(EINVAL);
2161 goto out;
2162 }
2163
2164 /*
2165 * Grab a lock on the directory to make sure that no one is
2166 * trying to add (or lookup) entries while we are removing it.
2167 */
2168 rw_enter(&zp->z_name_lock, RW_WRITER);
2169
2170 /*
2171 * Grab a lock on the parent pointer to make sure we play well
2172 * with the treewalk and directory rename code.
2173 */
2174 rw_enter(&zp->z_parent_lock, RW_WRITER);
2175
2176 tx = dmu_tx_create(zfsvfs->z_os);
2177 dmu_tx_hold_zap(tx, dzp->z_id, FALSE, name);
2178 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
2179 dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL);
2180 zfs_sa_upgrade_txholds(tx, zp);
2181 zfs_sa_upgrade_txholds(tx, dzp);
2182 dmu_tx_mark_netfree(tx);
2183 error = dmu_tx_assign(tx, (waited ? TXG_NOTHROTTLE : 0) | TXG_NOWAIT);
2184 if (error) {
2185 rw_exit(&zp->z_parent_lock);
2186 rw_exit(&zp->z_name_lock);
2187 zfs_dirent_unlock(dl);
2188 if (error == ERESTART) {
2189 waited = B_TRUE;
2190 dmu_tx_wait(tx);
2191 dmu_tx_abort(tx);
2192 iput(ip);
2193 goto top;
2194 }
2195 dmu_tx_abort(tx);
2196 iput(ip);
2197 ZFS_EXIT(zfsvfs);
2198 return (error);
2199 }
2200
2201 error = zfs_link_destroy(dl, zp, tx, zflg, NULL);
2202
2203 if (error == 0) {
2204 uint64_t txtype = TX_RMDIR;
2205 if (flags & FIGNORECASE)
2206 txtype |= TX_CI;
2207 zfs_log_remove(zilog, tx, txtype, dzp, name, ZFS_NO_OBJECT);
2208 }
2209
2210 dmu_tx_commit(tx);
2211
2212 rw_exit(&zp->z_parent_lock);
2213 rw_exit(&zp->z_name_lock);
2214 out:
2215 zfs_dirent_unlock(dl);
2216
2217 zfs_inode_update(dzp);
2218 zfs_inode_update(zp);
2219 iput(ip);
2220
2221 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
2222 zil_commit(zilog, 0);
2223
2224 ZFS_EXIT(zfsvfs);
2225 return (error);
2226 }
2227
2228 /*
2229 * Read as many directory entries as will fit into the provided
2230 * dirent buffer from the given directory cursor position.
2231 *
2232 * IN: ip - inode of directory to read.
2233 * dirent - buffer for directory entries.
2234 *
2235 * OUT: dirent - filler buffer of directory entries.
2236 *
2237 * RETURN: 0 if success
2238 * error code if failure
2239 *
2240 * Timestamps:
2241 * ip - atime updated
2242 *
2243 * Note that the low 4 bits of the cookie returned by zap is always zero.
2244 * This allows us to use the low range for "special" directory entries:
2245 * We use 0 for '.', and 1 for '..'. If this is the root of the filesystem,
2246 * we use the offset 2 for the '.zfs' directory.
2247 */
2248 /* ARGSUSED */
2249 int
2250 zfs_readdir(struct inode *ip, zpl_dir_context_t *ctx, cred_t *cr)
2251 {
2252 znode_t *zp = ITOZ(ip);
2253 zfsvfs_t *zfsvfs = ITOZSB(ip);
2254 objset_t *os;
2255 zap_cursor_t zc;
2256 zap_attribute_t zap;
2257 int error;
2258 uint8_t prefetch;
2259 uint8_t type;
2260 int done = 0;
2261 uint64_t parent;
2262 uint64_t offset; /* must be unsigned; checks for < 1 */
2263
2264 ZFS_ENTER(zfsvfs);
2265 ZFS_VERIFY_ZP(zp);
2266
2267 if ((error = sa_lookup(zp->z_sa_hdl, SA_ZPL_PARENT(zfsvfs),
2268 &parent, sizeof (parent))) != 0)
2269 goto out;
2270
2271 /*
2272 * Quit if directory has been removed (posix)
2273 */
2274 if (zp->z_unlinked)
2275 goto out;
2276
2277 error = 0;
2278 os = zfsvfs->z_os;
2279 offset = ctx->pos;
2280 prefetch = zp->z_zn_prefetch;
2281
2282 /*
2283 * Initialize the iterator cursor.
2284 */
2285 if (offset <= 3) {
2286 /*
2287 * Start iteration from the beginning of the directory.
2288 */
2289 zap_cursor_init(&zc, os, zp->z_id);
2290 } else {
2291 /*
2292 * The offset is a serialized cursor.
2293 */
2294 zap_cursor_init_serialized(&zc, os, zp->z_id, offset);
2295 }
2296
2297 /*
2298 * Transform to file-system independent format
2299 */
2300 while (!done) {
2301 uint64_t objnum;
2302 /*
2303 * Special case `.', `..', and `.zfs'.
2304 */
2305 if (offset == 0) {
2306 (void) strcpy(zap.za_name, ".");
2307 zap.za_normalization_conflict = 0;
2308 objnum = zp->z_id;
2309 type = DT_DIR;
2310 } else if (offset == 1) {
2311 (void) strcpy(zap.za_name, "..");
2312 zap.za_normalization_conflict = 0;
2313 objnum = parent;
2314 type = DT_DIR;
2315 } else if (offset == 2 && zfs_show_ctldir(zp)) {
2316 (void) strcpy(zap.za_name, ZFS_CTLDIR_NAME);
2317 zap.za_normalization_conflict = 0;
2318 objnum = ZFSCTL_INO_ROOT;
2319 type = DT_DIR;
2320 } else {
2321 /*
2322 * Grab next entry.
2323 */
2324 if ((error = zap_cursor_retrieve(&zc, &zap))) {
2325 if (error == ENOENT)
2326 break;
2327 else
2328 goto update;
2329 }
2330
2331 /*
2332 * Allow multiple entries provided the first entry is
2333 * the object id. Non-zpl consumers may safely make
2334 * use of the additional space.
2335 *
2336 * XXX: This should be a feature flag for compatibility
2337 */
2338 if (zap.za_integer_length != 8 ||
2339 zap.za_num_integers == 0) {
2340 cmn_err(CE_WARN, "zap_readdir: bad directory "
2341 "entry, obj = %lld, offset = %lld, "
2342 "length = %d, num = %lld\n",
2343 (u_longlong_t)zp->z_id,
2344 (u_longlong_t)offset,
2345 zap.za_integer_length,
2346 (u_longlong_t)zap.za_num_integers);
2347 error = SET_ERROR(ENXIO);
2348 goto update;
2349 }
2350
2351 objnum = ZFS_DIRENT_OBJ(zap.za_first_integer);
2352 type = ZFS_DIRENT_TYPE(zap.za_first_integer);
2353 }
2354
2355 done = !zpl_dir_emit(ctx, zap.za_name, strlen(zap.za_name),
2356 objnum, type);
2357 if (done)
2358 break;
2359
2360 /* Prefetch znode */
2361 if (prefetch) {
2362 dmu_prefetch(os, objnum, 0, 0, 0,
2363 ZIO_PRIORITY_SYNC_READ);
2364 }
2365
2366 /*
2367 * Move to the next entry, fill in the previous offset.
2368 */
2369 if (offset > 2 || (offset == 2 && !zfs_show_ctldir(zp))) {
2370 zap_cursor_advance(&zc);
2371 offset = zap_cursor_serialize(&zc);
2372 } else {
2373 offset += 1;
2374 }
2375 ctx->pos = offset;
2376 }
2377 zp->z_zn_prefetch = B_FALSE; /* a lookup will re-enable pre-fetching */
2378
2379 update:
2380 zap_cursor_fini(&zc);
2381 if (error == ENOENT)
2382 error = 0;
2383 out:
2384 ZFS_EXIT(zfsvfs);
2385
2386 return (error);
2387 }
2388
2389 ulong_t zfs_fsync_sync_cnt = 4;
2390
2391 int
2392 zfs_fsync(struct inode *ip, int syncflag, cred_t *cr)
2393 {
2394 znode_t *zp = ITOZ(ip);
2395 zfsvfs_t *zfsvfs = ITOZSB(ip);
2396
2397 (void) tsd_set(zfs_fsyncer_key, (void *)zfs_fsync_sync_cnt);
2398
2399 if (zfsvfs->z_os->os_sync != ZFS_SYNC_DISABLED) {
2400 ZFS_ENTER(zfsvfs);
2401 ZFS_VERIFY_ZP(zp);
2402 zil_commit(zfsvfs->z_log, zp->z_id);
2403 ZFS_EXIT(zfsvfs);
2404 }
2405 tsd_set(zfs_fsyncer_key, NULL);
2406
2407 return (0);
2408 }
2409
2410
2411 /*
2412 * Get the requested file attributes and place them in the provided
2413 * vattr structure.
2414 *
2415 * IN: ip - inode of file.
2416 * vap - va_mask identifies requested attributes.
2417 * If ATTR_XVATTR set, then optional attrs are requested
2418 * flags - ATTR_NOACLCHECK (CIFS server context)
2419 * cr - credentials of caller.
2420 *
2421 * OUT: vap - attribute values.
2422 *
2423 * RETURN: 0 (always succeeds)
2424 */
2425 /* ARGSUSED */
2426 int
2427 zfs_getattr(struct inode *ip, vattr_t *vap, int flags, cred_t *cr)
2428 {
2429 znode_t *zp = ITOZ(ip);
2430 zfsvfs_t *zfsvfs = ITOZSB(ip);
2431 int error = 0;
2432 uint64_t links;
2433 uint64_t atime[2], mtime[2], ctime[2];
2434 xvattr_t *xvap = (xvattr_t *)vap; /* vap may be an xvattr_t * */
2435 xoptattr_t *xoap = NULL;
2436 boolean_t skipaclchk = (flags & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE;
2437 sa_bulk_attr_t bulk[3];
2438 int count = 0;
2439
2440 ZFS_ENTER(zfsvfs);
2441 ZFS_VERIFY_ZP(zp);
2442
2443 zfs_fuid_map_ids(zp, cr, &vap->va_uid, &vap->va_gid);
2444
2445 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_ATIME(zfsvfs), NULL, &atime, 16);
2446 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL, &mtime, 16);
2447 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, &ctime, 16);
2448
2449 if ((error = sa_bulk_lookup(zp->z_sa_hdl, bulk, count)) != 0) {
2450 ZFS_EXIT(zfsvfs);
2451 return (error);
2452 }
2453
2454 /*
2455 * If ACL is trivial don't bother looking for ACE_READ_ATTRIBUTES.
2456 * Also, if we are the owner don't bother, since owner should
2457 * always be allowed to read basic attributes of file.
2458 */
2459 if (!(zp->z_pflags & ZFS_ACL_TRIVIAL) &&
2460 (vap->va_uid != crgetuid(cr))) {
2461 if ((error = zfs_zaccess(zp, ACE_READ_ATTRIBUTES, 0,
2462 skipaclchk, cr))) {
2463 ZFS_EXIT(zfsvfs);
2464 return (error);
2465 }
2466 }
2467
2468 /*
2469 * Return all attributes. It's cheaper to provide the answer
2470 * than to determine whether we were asked the question.
2471 */
2472
2473 mutex_enter(&zp->z_lock);
2474 vap->va_type = vn_mode_to_vtype(zp->z_mode);
2475 vap->va_mode = zp->z_mode;
2476 vap->va_fsid = ZTOI(zp)->i_sb->s_dev;
2477 vap->va_nodeid = zp->z_id;
2478 if ((zp->z_id == zfsvfs->z_root) && zfs_show_ctldir(zp))
2479 links = ZTOI(zp)->i_nlink + 1;
2480 else
2481 links = ZTOI(zp)->i_nlink;
2482 vap->va_nlink = MIN(links, ZFS_LINK_MAX);
2483 vap->va_size = i_size_read(ip);
2484 vap->va_rdev = ip->i_rdev;
2485 vap->va_seq = ip->i_generation;
2486
2487 /*
2488 * Add in any requested optional attributes and the create time.
2489 * Also set the corresponding bits in the returned attribute bitmap.
2490 */
2491 if ((xoap = xva_getxoptattr(xvap)) != NULL && zfsvfs->z_use_fuids) {
2492 if (XVA_ISSET_REQ(xvap, XAT_ARCHIVE)) {
2493 xoap->xoa_archive =
2494 ((zp->z_pflags & ZFS_ARCHIVE) != 0);
2495 XVA_SET_RTN(xvap, XAT_ARCHIVE);
2496 }
2497
2498 if (XVA_ISSET_REQ(xvap, XAT_READONLY)) {
2499 xoap->xoa_readonly =
2500 ((zp->z_pflags & ZFS_READONLY) != 0);
2501 XVA_SET_RTN(xvap, XAT_READONLY);
2502 }
2503
2504 if (XVA_ISSET_REQ(xvap, XAT_SYSTEM)) {
2505 xoap->xoa_system =
2506 ((zp->z_pflags & ZFS_SYSTEM) != 0);
2507 XVA_SET_RTN(xvap, XAT_SYSTEM);
2508 }
2509
2510 if (XVA_ISSET_REQ(xvap, XAT_HIDDEN)) {
2511 xoap->xoa_hidden =
2512 ((zp->z_pflags & ZFS_HIDDEN) != 0);
2513 XVA_SET_RTN(xvap, XAT_HIDDEN);
2514 }
2515
2516 if (XVA_ISSET_REQ(xvap, XAT_NOUNLINK)) {
2517 xoap->xoa_nounlink =
2518 ((zp->z_pflags & ZFS_NOUNLINK) != 0);
2519 XVA_SET_RTN(xvap, XAT_NOUNLINK);
2520 }
2521
2522 if (XVA_ISSET_REQ(xvap, XAT_IMMUTABLE)) {
2523 xoap->xoa_immutable =
2524 ((zp->z_pflags & ZFS_IMMUTABLE) != 0);
2525 XVA_SET_RTN(xvap, XAT_IMMUTABLE);
2526 }
2527
2528 if (XVA_ISSET_REQ(xvap, XAT_APPENDONLY)) {
2529 xoap->xoa_appendonly =
2530 ((zp->z_pflags & ZFS_APPENDONLY) != 0);
2531 XVA_SET_RTN(xvap, XAT_APPENDONLY);
2532 }
2533
2534 if (XVA_ISSET_REQ(xvap, XAT_NODUMP)) {
2535 xoap->xoa_nodump =
2536 ((zp->z_pflags & ZFS_NODUMP) != 0);
2537 XVA_SET_RTN(xvap, XAT_NODUMP);
2538 }
2539
2540 if (XVA_ISSET_REQ(xvap, XAT_OPAQUE)) {
2541 xoap->xoa_opaque =
2542 ((zp->z_pflags & ZFS_OPAQUE) != 0);
2543 XVA_SET_RTN(xvap, XAT_OPAQUE);
2544 }
2545
2546 if (XVA_ISSET_REQ(xvap, XAT_AV_QUARANTINED)) {
2547 xoap->xoa_av_quarantined =
2548 ((zp->z_pflags & ZFS_AV_QUARANTINED) != 0);
2549 XVA_SET_RTN(xvap, XAT_AV_QUARANTINED);
2550 }
2551
2552 if (XVA_ISSET_REQ(xvap, XAT_AV_MODIFIED)) {
2553 xoap->xoa_av_modified =
2554 ((zp->z_pflags & ZFS_AV_MODIFIED) != 0);
2555 XVA_SET_RTN(xvap, XAT_AV_MODIFIED);
2556 }
2557
2558 if (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP) &&
2559 S_ISREG(ip->i_mode)) {
2560 zfs_sa_get_scanstamp(zp, xvap);
2561 }
2562
2563 if (XVA_ISSET_REQ(xvap, XAT_CREATETIME)) {
2564 uint64_t times[2];
2565
2566 (void) sa_lookup(zp->z_sa_hdl, SA_ZPL_CRTIME(zfsvfs),
2567 times, sizeof (times));
2568 ZFS_TIME_DECODE(&xoap->xoa_createtime, times);
2569 XVA_SET_RTN(xvap, XAT_CREATETIME);
2570 }
2571
2572 if (XVA_ISSET_REQ(xvap, XAT_REPARSE)) {
2573 xoap->xoa_reparse = ((zp->z_pflags & ZFS_REPARSE) != 0);
2574 XVA_SET_RTN(xvap, XAT_REPARSE);
2575 }
2576 if (XVA_ISSET_REQ(xvap, XAT_GEN)) {
2577 xoap->xoa_generation = ip->i_generation;
2578 XVA_SET_RTN(xvap, XAT_GEN);
2579 }
2580
2581 if (XVA_ISSET_REQ(xvap, XAT_OFFLINE)) {
2582 xoap->xoa_offline =
2583 ((zp->z_pflags & ZFS_OFFLINE) != 0);
2584 XVA_SET_RTN(xvap, XAT_OFFLINE);
2585 }
2586
2587 if (XVA_ISSET_REQ(xvap, XAT_SPARSE)) {
2588 xoap->xoa_sparse =
2589 ((zp->z_pflags & ZFS_SPARSE) != 0);
2590 XVA_SET_RTN(xvap, XAT_SPARSE);
2591 }
2592
2593 if (XVA_ISSET_REQ(xvap, XAT_PROJINHERIT)) {
2594 xoap->xoa_projinherit =
2595 ((zp->z_pflags & ZFS_PROJINHERIT) != 0);
2596 XVA_SET_RTN(xvap, XAT_PROJINHERIT);
2597 }
2598
2599 if (XVA_ISSET_REQ(xvap, XAT_PROJID)) {
2600 xoap->xoa_projid = zp->z_projid;
2601 XVA_SET_RTN(xvap, XAT_PROJID);
2602 }
2603 }
2604
2605 ZFS_TIME_DECODE(&vap->va_atime, atime);
2606 ZFS_TIME_DECODE(&vap->va_mtime, mtime);
2607 ZFS_TIME_DECODE(&vap->va_ctime, ctime);
2608
2609 mutex_exit(&zp->z_lock);
2610
2611 sa_object_size(zp->z_sa_hdl, &vap->va_blksize, &vap->va_nblocks);
2612
2613 if (zp->z_blksz == 0) {
2614 /*
2615 * Block size hasn't been set; suggest maximal I/O transfers.
2616 */
2617 vap->va_blksize = zfsvfs->z_max_blksz;
2618 }
2619
2620 ZFS_EXIT(zfsvfs);
2621 return (0);
2622 }
2623
2624 /*
2625 * Get the basic file attributes and place them in the provided kstat
2626 * structure. The inode is assumed to be the authoritative source
2627 * for most of the attributes. However, the znode currently has the
2628 * authoritative atime, blksize, and block count.
2629 *
2630 * IN: ip - inode of file.
2631 *
2632 * OUT: sp - kstat values.
2633 *
2634 * RETURN: 0 (always succeeds)
2635 */
2636 /* ARGSUSED */
2637 int
2638 zfs_getattr_fast(struct inode *ip, struct kstat *sp)
2639 {
2640 znode_t *zp = ITOZ(ip);
2641 zfsvfs_t *zfsvfs = ITOZSB(ip);
2642 uint32_t blksize;
2643 u_longlong_t nblocks;
2644
2645 ZFS_ENTER(zfsvfs);
2646 ZFS_VERIFY_ZP(zp);
2647
2648 mutex_enter(&zp->z_lock);
2649
2650 generic_fillattr(ip, sp);
2651
2652 sa_object_size(zp->z_sa_hdl, &blksize, &nblocks);
2653 sp->blksize = blksize;
2654 sp->blocks = nblocks;
2655
2656 if (unlikely(zp->z_blksz == 0)) {
2657 /*
2658 * Block size hasn't been set; suggest maximal I/O transfers.
2659 */
2660 sp->blksize = zfsvfs->z_max_blksz;
2661 }
2662
2663 mutex_exit(&zp->z_lock);
2664
2665 /*
2666 * Required to prevent NFS client from detecting different inode
2667 * numbers of snapshot root dentry before and after snapshot mount.
2668 */
2669 if (zfsvfs->z_issnap) {
2670 if (ip->i_sb->s_root->d_inode == ip)
2671 sp->ino = ZFSCTL_INO_SNAPDIRS -
2672 dmu_objset_id(zfsvfs->z_os);
2673 }
2674
2675 ZFS_EXIT(zfsvfs);
2676
2677 return (0);
2678 }
2679
2680 /*
2681 * For the operation of changing file's user/group/project, we need to
2682 * handle not only the main object that is assigned to the file directly,
2683 * but also the ones that are used by the file via hidden xattr directory.
2684 *
2685 * Because the xattr directory may contains many EA entries, as to it may
2686 * be impossible to change all of them via the transaction of changing the
2687 * main object's user/group/project attributes. Then we have to change them
2688 * via other multiple independent transactions one by one. It may be not good
2689 * solution, but we have no better idea yet.
2690 */
2691 static int
2692 zfs_setattr_dir(znode_t *dzp)
2693 {
2694 struct inode *dxip = ZTOI(dzp);
2695 struct inode *xip = NULL;
2696 zfsvfs_t *zfsvfs = ITOZSB(dxip);
2697 objset_t *os = zfsvfs->z_os;
2698 zap_cursor_t zc;
2699 zap_attribute_t zap;
2700 zfs_dirlock_t *dl;
2701 znode_t *zp;
2702 dmu_tx_t *tx = NULL;
2703 uint64_t uid, gid;
2704 sa_bulk_attr_t bulk[4];
2705 int count = 0;
2706 int err;
2707
2708 zap_cursor_init(&zc, os, dzp->z_id);
2709 while ((err = zap_cursor_retrieve(&zc, &zap)) == 0) {
2710 if (zap.za_integer_length != 8 || zap.za_num_integers != 1) {
2711 err = ENXIO;
2712 break;
2713 }
2714
2715 err = zfs_dirent_lock(&dl, dzp, (char *)zap.za_name, &zp,
2716 ZEXISTS, NULL, NULL);
2717 if (err == ENOENT)
2718 goto next;
2719 if (err)
2720 break;
2721
2722 xip = ZTOI(zp);
2723 if (KUID_TO_SUID(xip->i_uid) == KUID_TO_SUID(dxip->i_uid) &&
2724 KGID_TO_SGID(xip->i_gid) == KGID_TO_SGID(dxip->i_gid) &&
2725 zp->z_projid == dzp->z_projid)
2726 goto next;
2727
2728 tx = dmu_tx_create(os);
2729 if (!(zp->z_pflags & ZFS_PROJID))
2730 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE);
2731 else
2732 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
2733
2734 err = dmu_tx_assign(tx, TXG_WAIT);
2735 if (err)
2736 break;
2737
2738 mutex_enter(&dzp->z_lock);
2739
2740 if (KUID_TO_SUID(xip->i_uid) != KUID_TO_SUID(dxip->i_uid)) {
2741 xip->i_uid = dxip->i_uid;
2742 uid = zfs_uid_read(dxip);
2743 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_UID(zfsvfs), NULL,
2744 &uid, sizeof (uid));
2745 }
2746
2747 if (KGID_TO_SGID(xip->i_gid) != KGID_TO_SGID(dxip->i_gid)) {
2748 xip->i_gid = dxip->i_gid;
2749 gid = zfs_gid_read(dxip);
2750 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_GID(zfsvfs), NULL,
2751 &gid, sizeof (gid));
2752 }
2753
2754 if (zp->z_projid != dzp->z_projid) {
2755 if (!(zp->z_pflags & ZFS_PROJID)) {
2756 zp->z_pflags |= ZFS_PROJID;
2757 SA_ADD_BULK_ATTR(bulk, count,
2758 SA_ZPL_FLAGS(zfsvfs), NULL, &zp->z_pflags,
2759 sizeof (zp->z_pflags));
2760 }
2761
2762 zp->z_projid = dzp->z_projid;
2763 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_PROJID(zfsvfs),
2764 NULL, &zp->z_projid, sizeof (zp->z_projid));
2765 }
2766
2767 mutex_exit(&dzp->z_lock);
2768
2769 if (likely(count > 0)) {
2770 err = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx);
2771 dmu_tx_commit(tx);
2772 } else {
2773 dmu_tx_abort(tx);
2774 }
2775 tx = NULL;
2776 if (err != 0 && err != ENOENT)
2777 break;
2778
2779 next:
2780 if (xip) {
2781 iput(xip);
2782 xip = NULL;
2783 zfs_dirent_unlock(dl);
2784 }
2785 zap_cursor_advance(&zc);
2786 }
2787
2788 if (tx)
2789 dmu_tx_abort(tx);
2790 if (xip) {
2791 iput(xip);
2792 zfs_dirent_unlock(dl);
2793 }
2794 zap_cursor_fini(&zc);
2795
2796 return (err == ENOENT ? 0 : err);
2797 }
2798
2799 /*
2800 * Set the file attributes to the values contained in the
2801 * vattr structure.
2802 *
2803 * IN: ip - inode of file to be modified.
2804 * vap - new attribute values.
2805 * If ATTR_XVATTR set, then optional attrs are being set
2806 * flags - ATTR_UTIME set if non-default time values provided.
2807 * - ATTR_NOACLCHECK (CIFS context only).
2808 * cr - credentials of caller.
2809 *
2810 * RETURN: 0 if success
2811 * error code if failure
2812 *
2813 * Timestamps:
2814 * ip - ctime updated, mtime updated if size changed.
2815 */
2816 /* ARGSUSED */
2817 int
2818 zfs_setattr(struct inode *ip, vattr_t *vap, int flags, cred_t *cr)
2819 {
2820 znode_t *zp = ITOZ(ip);
2821 zfsvfs_t *zfsvfs = ITOZSB(ip);
2822 objset_t *os = zfsvfs->z_os;
2823 zilog_t *zilog;
2824 dmu_tx_t *tx;
2825 vattr_t oldva;
2826 xvattr_t *tmpxvattr;
2827 uint_t mask = vap->va_mask;
2828 uint_t saved_mask = 0;
2829 int trim_mask = 0;
2830 uint64_t new_mode;
2831 uint64_t new_kuid = 0, new_kgid = 0, new_uid, new_gid;
2832 uint64_t xattr_obj;
2833 uint64_t mtime[2], ctime[2], atime[2];
2834 uint64_t projid = ZFS_INVALID_PROJID;
2835 znode_t *attrzp;
2836 int need_policy = FALSE;
2837 int err, err2 = 0;
2838 zfs_fuid_info_t *fuidp = NULL;
2839 xvattr_t *xvap = (xvattr_t *)vap; /* vap may be an xvattr_t * */
2840 xoptattr_t *xoap;
2841 zfs_acl_t *aclp;
2842 boolean_t skipaclchk = (flags & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE;
2843 boolean_t fuid_dirtied = B_FALSE;
2844 boolean_t handle_eadir = B_FALSE;
2845 sa_bulk_attr_t *bulk, *xattr_bulk;
2846 int count = 0, xattr_count = 0, bulks = 8;
2847
2848 if (mask == 0)
2849 return (0);
2850
2851 ZFS_ENTER(zfsvfs);
2852 ZFS_VERIFY_ZP(zp);
2853
2854 /*
2855 * If this is a xvattr_t, then get a pointer to the structure of
2856 * optional attributes. If this is NULL, then we have a vattr_t.
2857 */
2858 xoap = xva_getxoptattr(xvap);
2859 if (xoap != NULL && (mask & ATTR_XVATTR)) {
2860 if (XVA_ISSET_REQ(xvap, XAT_PROJID)) {
2861 if (!dmu_objset_projectquota_enabled(os) ||
2862 (!S_ISREG(ip->i_mode) && !S_ISDIR(ip->i_mode))) {
2863 ZFS_EXIT(zfsvfs);
2864 return (SET_ERROR(ENOTSUP));
2865 }
2866
2867 projid = xoap->xoa_projid;
2868 if (unlikely(projid == ZFS_INVALID_PROJID)) {
2869 ZFS_EXIT(zfsvfs);
2870 return (SET_ERROR(EINVAL));
2871 }
2872
2873 if (projid == zp->z_projid && zp->z_pflags & ZFS_PROJID)
2874 projid = ZFS_INVALID_PROJID;
2875 else
2876 need_policy = TRUE;
2877 }
2878
2879 if (XVA_ISSET_REQ(xvap, XAT_PROJINHERIT) &&
2880 (xoap->xoa_projinherit !=
2881 ((zp->z_pflags & ZFS_PROJINHERIT) != 0)) &&
2882 (!dmu_objset_projectquota_enabled(os) ||
2883 (!S_ISREG(ip->i_mode) && !S_ISDIR(ip->i_mode)))) {
2884 ZFS_EXIT(zfsvfs);
2885 return (SET_ERROR(ENOTSUP));
2886 }
2887 }
2888
2889 zilog = zfsvfs->z_log;
2890
2891 /*
2892 * Make sure that if we have ephemeral uid/gid or xvattr specified
2893 * that file system is at proper version level
2894 */
2895
2896 if (zfsvfs->z_use_fuids == B_FALSE &&
2897 (((mask & ATTR_UID) && IS_EPHEMERAL(vap->va_uid)) ||
2898 ((mask & ATTR_GID) && IS_EPHEMERAL(vap->va_gid)) ||
2899 (mask & ATTR_XVATTR))) {
2900 ZFS_EXIT(zfsvfs);
2901 return (SET_ERROR(EINVAL));
2902 }
2903
2904 if (mask & ATTR_SIZE && S_ISDIR(ip->i_mode)) {
2905 ZFS_EXIT(zfsvfs);
2906 return (SET_ERROR(EISDIR));
2907 }
2908
2909 if (mask & ATTR_SIZE && !S_ISREG(ip->i_mode) && !S_ISFIFO(ip->i_mode)) {
2910 ZFS_EXIT(zfsvfs);
2911 return (SET_ERROR(EINVAL));
2912 }
2913
2914 tmpxvattr = kmem_alloc(sizeof (xvattr_t), KM_SLEEP);
2915 xva_init(tmpxvattr);
2916
2917 bulk = kmem_alloc(sizeof (sa_bulk_attr_t) * bulks, KM_SLEEP);
2918 xattr_bulk = kmem_alloc(sizeof (sa_bulk_attr_t) * bulks, KM_SLEEP);
2919
2920 /*
2921 * Immutable files can only alter immutable bit and atime
2922 */
2923 if ((zp->z_pflags & ZFS_IMMUTABLE) &&
2924 ((mask & (ATTR_SIZE|ATTR_UID|ATTR_GID|ATTR_MTIME|ATTR_MODE)) ||
2925 ((mask & ATTR_XVATTR) && XVA_ISSET_REQ(xvap, XAT_CREATETIME)))) {
2926 err = SET_ERROR(EPERM);
2927 goto out3;
2928 }
2929
2930 if ((mask & ATTR_SIZE) && (zp->z_pflags & ZFS_READONLY)) {
2931 err = SET_ERROR(EPERM);
2932 goto out3;
2933 }
2934
2935 /*
2936 * Verify timestamps doesn't overflow 32 bits.
2937 * ZFS can handle large timestamps, but 32bit syscalls can't
2938 * handle times greater than 2039. This check should be removed
2939 * once large timestamps are fully supported.
2940 */
2941 if (mask & (ATTR_ATIME | ATTR_MTIME)) {
2942 if (((mask & ATTR_ATIME) &&
2943 TIMESPEC_OVERFLOW(&vap->va_atime)) ||
2944 ((mask & ATTR_MTIME) &&
2945 TIMESPEC_OVERFLOW(&vap->va_mtime))) {
2946 err = SET_ERROR(EOVERFLOW);
2947 goto out3;
2948 }
2949 }
2950
2951 top:
2952 attrzp = NULL;
2953 aclp = NULL;
2954
2955 /* Can this be moved to before the top label? */
2956 if (zfs_is_readonly(zfsvfs)) {
2957 err = SET_ERROR(EROFS);
2958 goto out3;
2959 }
2960
2961 /*
2962 * First validate permissions
2963 */
2964
2965 if (mask & ATTR_SIZE) {
2966 err = zfs_zaccess(zp, ACE_WRITE_DATA, 0, skipaclchk, cr);
2967 if (err)
2968 goto out3;
2969
2970 /*
2971 * XXX - Note, we are not providing any open
2972 * mode flags here (like FNDELAY), so we may
2973 * block if there are locks present... this
2974 * should be addressed in openat().
2975 */
2976 /* XXX - would it be OK to generate a log record here? */
2977 err = zfs_freesp(zp, vap->va_size, 0, 0, FALSE);
2978 if (err)
2979 goto out3;
2980 }
2981
2982 if (mask & (ATTR_ATIME|ATTR_MTIME) ||
2983 ((mask & ATTR_XVATTR) && (XVA_ISSET_REQ(xvap, XAT_HIDDEN) ||
2984 XVA_ISSET_REQ(xvap, XAT_READONLY) ||
2985 XVA_ISSET_REQ(xvap, XAT_ARCHIVE) ||
2986 XVA_ISSET_REQ(xvap, XAT_OFFLINE) ||
2987 XVA_ISSET_REQ(xvap, XAT_SPARSE) ||
2988 XVA_ISSET_REQ(xvap, XAT_CREATETIME) ||
2989 XVA_ISSET_REQ(xvap, XAT_SYSTEM)))) {
2990 need_policy = zfs_zaccess(zp, ACE_WRITE_ATTRIBUTES, 0,
2991 skipaclchk, cr);
2992 }
2993
2994 if (mask & (ATTR_UID|ATTR_GID)) {
2995 int idmask = (mask & (ATTR_UID|ATTR_GID));
2996 int take_owner;
2997 int take_group;
2998
2999 /*
3000 * NOTE: even if a new mode is being set,
3001 * we may clear S_ISUID/S_ISGID bits.
3002 */
3003
3004 if (!(mask & ATTR_MODE))
3005 vap->va_mode = zp->z_mode;
3006
3007 /*
3008 * Take ownership or chgrp to group we are a member of
3009 */
3010
3011 take_owner = (mask & ATTR_UID) && (vap->va_uid == crgetuid(cr));
3012 take_group = (mask & ATTR_GID) &&
3013 zfs_groupmember(zfsvfs, vap->va_gid, cr);
3014
3015 /*
3016 * If both ATTR_UID and ATTR_GID are set then take_owner and
3017 * take_group must both be set in order to allow taking
3018 * ownership.
3019 *
3020 * Otherwise, send the check through secpolicy_vnode_setattr()
3021 *
3022 */
3023
3024 if (((idmask == (ATTR_UID|ATTR_GID)) &&
3025 take_owner && take_group) ||
3026 ((idmask == ATTR_UID) && take_owner) ||
3027 ((idmask == ATTR_GID) && take_group)) {
3028 if (zfs_zaccess(zp, ACE_WRITE_OWNER, 0,
3029 skipaclchk, cr) == 0) {
3030 /*
3031 * Remove setuid/setgid for non-privileged users
3032 */
3033 (void) secpolicy_setid_clear(vap, cr);
3034 trim_mask = (mask & (ATTR_UID|ATTR_GID));
3035 } else {
3036 need_policy = TRUE;
3037 }
3038 } else {
3039 need_policy = TRUE;
3040 }
3041 }
3042
3043 mutex_enter(&zp->z_lock);
3044 oldva.va_mode = zp->z_mode;
3045 zfs_fuid_map_ids(zp, cr, &oldva.va_uid, &oldva.va_gid);
3046 if (mask & ATTR_XVATTR) {
3047 /*
3048 * Update xvattr mask to include only those attributes
3049 * that are actually changing.
3050 *
3051 * the bits will be restored prior to actually setting
3052 * the attributes so the caller thinks they were set.
3053 */
3054 if (XVA_ISSET_REQ(xvap, XAT_APPENDONLY)) {
3055 if (xoap->xoa_appendonly !=
3056 ((zp->z_pflags & ZFS_APPENDONLY) != 0)) {
3057 need_policy = TRUE;
3058 } else {
3059 XVA_CLR_REQ(xvap, XAT_APPENDONLY);
3060 XVA_SET_REQ(tmpxvattr, XAT_APPENDONLY);
3061 }
3062 }
3063
3064 if (XVA_ISSET_REQ(xvap, XAT_PROJINHERIT)) {
3065 if (xoap->xoa_projinherit !=
3066 ((zp->z_pflags & ZFS_PROJINHERIT) != 0)) {
3067 need_policy = TRUE;
3068 } else {
3069 XVA_CLR_REQ(xvap, XAT_PROJINHERIT);
3070 XVA_SET_REQ(tmpxvattr, XAT_PROJINHERIT);
3071 }
3072 }
3073
3074 if (XVA_ISSET_REQ(xvap, XAT_NOUNLINK)) {
3075 if (xoap->xoa_nounlink !=
3076 ((zp->z_pflags & ZFS_NOUNLINK) != 0)) {
3077 need_policy = TRUE;
3078 } else {
3079 XVA_CLR_REQ(xvap, XAT_NOUNLINK);
3080 XVA_SET_REQ(tmpxvattr, XAT_NOUNLINK);
3081 }
3082 }
3083
3084 if (XVA_ISSET_REQ(xvap, XAT_IMMUTABLE)) {
3085 if (xoap->xoa_immutable !=
3086 ((zp->z_pflags & ZFS_IMMUTABLE) != 0)) {
3087 need_policy = TRUE;
3088 } else {
3089 XVA_CLR_REQ(xvap, XAT_IMMUTABLE);
3090 XVA_SET_REQ(tmpxvattr, XAT_IMMUTABLE);
3091 }
3092 }
3093
3094 if (XVA_ISSET_REQ(xvap, XAT_NODUMP)) {
3095 if (xoap->xoa_nodump !=
3096 ((zp->z_pflags & ZFS_NODUMP) != 0)) {
3097 need_policy = TRUE;
3098 } else {
3099 XVA_CLR_REQ(xvap, XAT_NODUMP);
3100 XVA_SET_REQ(tmpxvattr, XAT_NODUMP);
3101 }
3102 }
3103
3104 if (XVA_ISSET_REQ(xvap, XAT_AV_MODIFIED)) {
3105 if (xoap->xoa_av_modified !=
3106 ((zp->z_pflags & ZFS_AV_MODIFIED) != 0)) {
3107 need_policy = TRUE;
3108 } else {
3109 XVA_CLR_REQ(xvap, XAT_AV_MODIFIED);
3110 XVA_SET_REQ(tmpxvattr, XAT_AV_MODIFIED);
3111 }
3112 }
3113
3114 if (XVA_ISSET_REQ(xvap, XAT_AV_QUARANTINED)) {
3115 if ((!S_ISREG(ip->i_mode) &&
3116 xoap->xoa_av_quarantined) ||
3117 xoap->xoa_av_quarantined !=
3118 ((zp->z_pflags & ZFS_AV_QUARANTINED) != 0)) {
3119 need_policy = TRUE;
3120 } else {
3121 XVA_CLR_REQ(xvap, XAT_AV_QUARANTINED);
3122 XVA_SET_REQ(tmpxvattr, XAT_AV_QUARANTINED);
3123 }
3124 }
3125
3126 if (XVA_ISSET_REQ(xvap, XAT_REPARSE)) {
3127 mutex_exit(&zp->z_lock);
3128 err = SET_ERROR(EPERM);
3129 goto out3;
3130 }
3131
3132 if (need_policy == FALSE &&
3133 (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP) ||
3134 XVA_ISSET_REQ(xvap, XAT_OPAQUE))) {
3135 need_policy = TRUE;
3136 }
3137 }
3138
3139 mutex_exit(&zp->z_lock);
3140
3141 if (mask & ATTR_MODE) {
3142 if (zfs_zaccess(zp, ACE_WRITE_ACL, 0, skipaclchk, cr) == 0) {
3143 err = secpolicy_setid_setsticky_clear(ip, vap,
3144 &oldva, cr);
3145 if (err)
3146 goto out3;
3147
3148 trim_mask |= ATTR_MODE;
3149 } else {
3150 need_policy = TRUE;
3151 }
3152 }
3153
3154 if (need_policy) {
3155 /*
3156 * If trim_mask is set then take ownership
3157 * has been granted or write_acl is present and user
3158 * has the ability to modify mode. In that case remove
3159 * UID|GID and or MODE from mask so that
3160 * secpolicy_vnode_setattr() doesn't revoke it.
3161 */
3162
3163 if (trim_mask) {
3164 saved_mask = vap->va_mask;
3165 vap->va_mask &= ~trim_mask;
3166 }
3167 err = secpolicy_vnode_setattr(cr, ip, vap, &oldva, flags,
3168 (int (*)(void *, int, cred_t *))zfs_zaccess_unix, zp);
3169 if (err)
3170 goto out3;
3171
3172 if (trim_mask)
3173 vap->va_mask |= saved_mask;
3174 }
3175
3176 /*
3177 * secpolicy_vnode_setattr, or take ownership may have
3178 * changed va_mask
3179 */
3180 mask = vap->va_mask;
3181
3182 if ((mask & (ATTR_UID | ATTR_GID)) || projid != ZFS_INVALID_PROJID) {
3183 handle_eadir = B_TRUE;
3184 err = sa_lookup(zp->z_sa_hdl, SA_ZPL_XATTR(zfsvfs),
3185 &xattr_obj, sizeof (xattr_obj));
3186
3187 if (err == 0 && xattr_obj) {
3188 err = zfs_zget(ZTOZSB(zp), xattr_obj, &attrzp);
3189 if (err)
3190 goto out2;
3191 }
3192 if (mask & ATTR_UID) {
3193 new_kuid = zfs_fuid_create(zfsvfs,
3194 (uint64_t)vap->va_uid, cr, ZFS_OWNER, &fuidp);
3195 if (new_kuid != KUID_TO_SUID(ZTOI(zp)->i_uid) &&
3196 zfs_id_overquota(zfsvfs, DMU_USERUSED_OBJECT,
3197 new_kuid)) {
3198 if (attrzp)
3199 iput(ZTOI(attrzp));
3200 err = SET_ERROR(EDQUOT);
3201 goto out2;
3202 }
3203 }
3204
3205 if (mask & ATTR_GID) {
3206 new_kgid = zfs_fuid_create(zfsvfs,
3207 (uint64_t)vap->va_gid, cr, ZFS_GROUP, &fuidp);
3208 if (new_kgid != KGID_TO_SGID(ZTOI(zp)->i_gid) &&
3209 zfs_id_overquota(zfsvfs, DMU_GROUPUSED_OBJECT,
3210 new_kgid)) {
3211 if (attrzp)
3212 iput(ZTOI(attrzp));
3213 err = SET_ERROR(EDQUOT);
3214 goto out2;
3215 }
3216 }
3217
3218 if (projid != ZFS_INVALID_PROJID &&
3219 zfs_id_overquota(zfsvfs, DMU_PROJECTUSED_OBJECT, projid)) {
3220 if (attrzp)
3221 iput(ZTOI(attrzp));
3222 err = EDQUOT;
3223 goto out2;
3224 }
3225 }
3226 tx = dmu_tx_create(os);
3227
3228 if (mask & ATTR_MODE) {
3229 uint64_t pmode = zp->z_mode;
3230 uint64_t acl_obj;
3231 new_mode = (pmode & S_IFMT) | (vap->va_mode & ~S_IFMT);
3232
3233 zfs_acl_chmod_setattr(zp, &aclp, new_mode);
3234
3235 mutex_enter(&zp->z_lock);
3236 if (!zp->z_is_sa && ((acl_obj = zfs_external_acl(zp)) != 0)) {
3237 /*
3238 * Are we upgrading ACL from old V0 format
3239 * to V1 format?
3240 */
3241 if (zfsvfs->z_version >= ZPL_VERSION_FUID &&
3242 zfs_znode_acl_version(zp) ==
3243 ZFS_ACL_VERSION_INITIAL) {
3244 dmu_tx_hold_free(tx, acl_obj, 0,
3245 DMU_OBJECT_END);
3246 dmu_tx_hold_write(tx, DMU_NEW_OBJECT,
3247 0, aclp->z_acl_bytes);
3248 } else {
3249 dmu_tx_hold_write(tx, acl_obj, 0,
3250 aclp->z_acl_bytes);
3251 }
3252 } else if (!zp->z_is_sa && aclp->z_acl_bytes > ZFS_ACE_SPACE) {
3253 dmu_tx_hold_write(tx, DMU_NEW_OBJECT,
3254 0, aclp->z_acl_bytes);
3255 }
3256 mutex_exit(&zp->z_lock);
3257 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE);
3258 } else {
3259 if (((mask & ATTR_XVATTR) &&
3260 XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP)) ||
3261 (projid != ZFS_INVALID_PROJID &&
3262 !(zp->z_pflags & ZFS_PROJID)))
3263 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE);
3264 else
3265 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
3266 }
3267
3268 if (attrzp) {
3269 dmu_tx_hold_sa(tx, attrzp->z_sa_hdl, B_FALSE);
3270 }
3271
3272 fuid_dirtied = zfsvfs->z_fuid_dirty;
3273 if (fuid_dirtied)
3274 zfs_fuid_txhold(zfsvfs, tx);
3275
3276 zfs_sa_upgrade_txholds(tx, zp);
3277
3278 err = dmu_tx_assign(tx, TXG_WAIT);
3279 if (err)
3280 goto out;
3281
3282 count = 0;
3283 /*
3284 * Set each attribute requested.
3285 * We group settings according to the locks they need to acquire.
3286 *
3287 * Note: you cannot set ctime directly, although it will be
3288 * updated as a side-effect of calling this function.
3289 */
3290
3291 if (projid != ZFS_INVALID_PROJID && !(zp->z_pflags & ZFS_PROJID)) {
3292 /*
3293 * For the existed object that is upgraded from old system,
3294 * its on-disk layout has no slot for the project ID attribute.
3295 * But quota accounting logic needs to access related slots by
3296 * offset directly. So we need to adjust old objects' layout
3297 * to make the project ID to some unified and fixed offset.
3298 */
3299 if (attrzp)
3300 err = sa_add_projid(attrzp->z_sa_hdl, tx, projid);
3301 if (err == 0)
3302 err = sa_add_projid(zp->z_sa_hdl, tx, projid);
3303
3304 if (unlikely(err == EEXIST))
3305 err = 0;
3306 else if (err != 0)
3307 goto out;
3308 else
3309 projid = ZFS_INVALID_PROJID;
3310 }
3311
3312 if (mask & (ATTR_UID|ATTR_GID|ATTR_MODE))
3313 mutex_enter(&zp->z_acl_lock);
3314 mutex_enter(&zp->z_lock);
3315
3316 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL,
3317 &zp->z_pflags, sizeof (zp->z_pflags));
3318
3319 if (attrzp) {
3320 if (mask & (ATTR_UID|ATTR_GID|ATTR_MODE))
3321 mutex_enter(&attrzp->z_acl_lock);
3322 mutex_enter(&attrzp->z_lock);
3323 SA_ADD_BULK_ATTR(xattr_bulk, xattr_count,
3324 SA_ZPL_FLAGS(zfsvfs), NULL, &attrzp->z_pflags,
3325 sizeof (attrzp->z_pflags));
3326 if (projid != ZFS_INVALID_PROJID) {
3327 attrzp->z_projid = projid;
3328 SA_ADD_BULK_ATTR(xattr_bulk, xattr_count,
3329 SA_ZPL_PROJID(zfsvfs), NULL, &attrzp->z_projid,
3330 sizeof (attrzp->z_projid));
3331 }
3332 }
3333
3334 if (mask & (ATTR_UID|ATTR_GID)) {
3335
3336 if (mask & ATTR_UID) {
3337 ZTOI(zp)->i_uid = SUID_TO_KUID(new_kuid);
3338 new_uid = zfs_uid_read(ZTOI(zp));
3339 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_UID(zfsvfs), NULL,
3340 &new_uid, sizeof (new_uid));
3341 if (attrzp) {
3342 SA_ADD_BULK_ATTR(xattr_bulk, xattr_count,
3343 SA_ZPL_UID(zfsvfs), NULL, &new_uid,
3344 sizeof (new_uid));
3345 ZTOI(attrzp)->i_uid = SUID_TO_KUID(new_uid);
3346 }
3347 }
3348
3349 if (mask & ATTR_GID) {
3350 ZTOI(zp)->i_gid = SGID_TO_KGID(new_kgid);
3351 new_gid = zfs_gid_read(ZTOI(zp));
3352 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_GID(zfsvfs),
3353 NULL, &new_gid, sizeof (new_gid));
3354 if (attrzp) {
3355 SA_ADD_BULK_ATTR(xattr_bulk, xattr_count,
3356 SA_ZPL_GID(zfsvfs), NULL, &new_gid,
3357 sizeof (new_gid));
3358 ZTOI(attrzp)->i_gid = SGID_TO_KGID(new_kgid);
3359 }
3360 }
3361 if (!(mask & ATTR_MODE)) {
3362 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MODE(zfsvfs),
3363 NULL, &new_mode, sizeof (new_mode));
3364 new_mode = zp->z_mode;
3365 }
3366 err = zfs_acl_chown_setattr(zp);
3367 ASSERT(err == 0);
3368 if (attrzp) {
3369 err = zfs_acl_chown_setattr(attrzp);
3370 ASSERT(err == 0);
3371 }
3372 }
3373
3374 if (mask & ATTR_MODE) {
3375 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MODE(zfsvfs), NULL,
3376 &new_mode, sizeof (new_mode));
3377 zp->z_mode = ZTOI(zp)->i_mode = new_mode;
3378 ASSERT3P(aclp, !=, NULL);
3379 err = zfs_aclset_common(zp, aclp, cr, tx);
3380 ASSERT0(err);
3381 if (zp->z_acl_cached)
3382 zfs_acl_free(zp->z_acl_cached);
3383 zp->z_acl_cached = aclp;
3384 aclp = NULL;
3385 }
3386
3387 if ((mask & ATTR_ATIME) || zp->z_atime_dirty) {
3388 zp->z_atime_dirty = 0;
3389 ZFS_TIME_ENCODE(&ip->i_atime, atime);
3390 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_ATIME(zfsvfs), NULL,
3391 &atime, sizeof (atime));
3392 }
3393
3394 if (mask & (ATTR_MTIME | ATTR_SIZE)) {
3395 ZFS_TIME_ENCODE(&vap->va_mtime, mtime);
3396 ZTOI(zp)->i_mtime = zpl_inode_timespec_trunc(vap->va_mtime,
3397 ZTOI(zp)->i_sb->s_time_gran);
3398
3399 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL,
3400 mtime, sizeof (mtime));
3401 }
3402
3403 if (mask & (ATTR_CTIME | ATTR_SIZE)) {
3404 ZFS_TIME_ENCODE(&vap->va_ctime, ctime);
3405 ZTOI(zp)->i_ctime = zpl_inode_timespec_trunc(vap->va_ctime,
3406 ZTOI(zp)->i_sb->s_time_gran);
3407 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL,
3408 ctime, sizeof (ctime));
3409 }
3410
3411 if (projid != ZFS_INVALID_PROJID) {
3412 zp->z_projid = projid;
3413 SA_ADD_BULK_ATTR(bulk, count,
3414 SA_ZPL_PROJID(zfsvfs), NULL, &zp->z_projid,
3415 sizeof (zp->z_projid));
3416 }
3417
3418 if (attrzp && mask) {
3419 SA_ADD_BULK_ATTR(xattr_bulk, xattr_count,
3420 SA_ZPL_CTIME(zfsvfs), NULL, &ctime,
3421 sizeof (ctime));
3422 }
3423
3424 /*
3425 * Do this after setting timestamps to prevent timestamp
3426 * update from toggling bit
3427 */
3428
3429 if (xoap && (mask & ATTR_XVATTR)) {
3430
3431 /*
3432 * restore trimmed off masks
3433 * so that return masks can be set for caller.
3434 */
3435
3436 if (XVA_ISSET_REQ(tmpxvattr, XAT_APPENDONLY)) {
3437 XVA_SET_REQ(xvap, XAT_APPENDONLY);
3438 }
3439 if (XVA_ISSET_REQ(tmpxvattr, XAT_NOUNLINK)) {
3440 XVA_SET_REQ(xvap, XAT_NOUNLINK);
3441 }
3442 if (XVA_ISSET_REQ(tmpxvattr, XAT_IMMUTABLE)) {
3443 XVA_SET_REQ(xvap, XAT_IMMUTABLE);
3444 }
3445 if (XVA_ISSET_REQ(tmpxvattr, XAT_NODUMP)) {
3446 XVA_SET_REQ(xvap, XAT_NODUMP);
3447 }
3448 if (XVA_ISSET_REQ(tmpxvattr, XAT_AV_MODIFIED)) {
3449 XVA_SET_REQ(xvap, XAT_AV_MODIFIED);
3450 }
3451 if (XVA_ISSET_REQ(tmpxvattr, XAT_AV_QUARANTINED)) {
3452 XVA_SET_REQ(xvap, XAT_AV_QUARANTINED);
3453 }
3454 if (XVA_ISSET_REQ(tmpxvattr, XAT_PROJINHERIT)) {
3455 XVA_SET_REQ(xvap, XAT_PROJINHERIT);
3456 }
3457
3458 if (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP))
3459 ASSERT(S_ISREG(ip->i_mode));
3460
3461 zfs_xvattr_set(zp, xvap, tx);
3462 }
3463
3464 if (fuid_dirtied)
3465 zfs_fuid_sync(zfsvfs, tx);
3466
3467 if (mask != 0)
3468 zfs_log_setattr(zilog, tx, TX_SETATTR, zp, vap, mask, fuidp);
3469
3470 mutex_exit(&zp->z_lock);
3471 if (mask & (ATTR_UID|ATTR_GID|ATTR_MODE))
3472 mutex_exit(&zp->z_acl_lock);
3473
3474 if (attrzp) {
3475 if (mask & (ATTR_UID|ATTR_GID|ATTR_MODE))
3476 mutex_exit(&attrzp->z_acl_lock);
3477 mutex_exit(&attrzp->z_lock);
3478 }
3479 out:
3480 if (err == 0 && xattr_count > 0) {
3481 err2 = sa_bulk_update(attrzp->z_sa_hdl, xattr_bulk,
3482 xattr_count, tx);
3483 ASSERT(err2 == 0);
3484 }
3485
3486 if (aclp)
3487 zfs_acl_free(aclp);
3488
3489 if (fuidp) {
3490 zfs_fuid_info_free(fuidp);
3491 fuidp = NULL;
3492 }
3493
3494 if (err) {
3495 dmu_tx_abort(tx);
3496 if (attrzp)
3497 iput(ZTOI(attrzp));
3498 if (err == ERESTART)
3499 goto top;
3500 } else {
3501 if (count > 0)
3502 err2 = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx);
3503 dmu_tx_commit(tx);
3504 if (attrzp) {
3505 if (err2 == 0 && handle_eadir)
3506 err2 = zfs_setattr_dir(attrzp);
3507 iput(ZTOI(attrzp));
3508 }
3509 zfs_inode_update(zp);
3510 }
3511
3512 out2:
3513 if (os->os_sync == ZFS_SYNC_ALWAYS)
3514 zil_commit(zilog, 0);
3515
3516 out3:
3517 kmem_free(xattr_bulk, sizeof (sa_bulk_attr_t) * bulks);
3518 kmem_free(bulk, sizeof (sa_bulk_attr_t) * bulks);
3519 kmem_free(tmpxvattr, sizeof (xvattr_t));
3520 ZFS_EXIT(zfsvfs);
3521 return (err);
3522 }
3523
3524 typedef struct zfs_zlock {
3525 krwlock_t *zl_rwlock; /* lock we acquired */
3526 znode_t *zl_znode; /* znode we held */
3527 struct zfs_zlock *zl_next; /* next in list */
3528 } zfs_zlock_t;
3529
3530 /*
3531 * Drop locks and release vnodes that were held by zfs_rename_lock().
3532 */
3533 static void
3534 zfs_rename_unlock(zfs_zlock_t **zlpp)
3535 {
3536 zfs_zlock_t *zl;
3537
3538 while ((zl = *zlpp) != NULL) {
3539 if (zl->zl_znode != NULL)
3540 zfs_iput_async(ZTOI(zl->zl_znode));
3541 rw_exit(zl->zl_rwlock);
3542 *zlpp = zl->zl_next;
3543 kmem_free(zl, sizeof (*zl));
3544 }
3545 }
3546
3547 /*
3548 * Search back through the directory tree, using the ".." entries.
3549 * Lock each directory in the chain to prevent concurrent renames.
3550 * Fail any attempt to move a directory into one of its own descendants.
3551 * XXX - z_parent_lock can overlap with map or grow locks
3552 */
3553 static int
3554 zfs_rename_lock(znode_t *szp, znode_t *tdzp, znode_t *sdzp, zfs_zlock_t **zlpp)
3555 {
3556 zfs_zlock_t *zl;
3557 znode_t *zp = tdzp;
3558 uint64_t rootid = ZTOZSB(zp)->z_root;
3559 uint64_t oidp = zp->z_id;
3560 krwlock_t *rwlp = &szp->z_parent_lock;
3561 krw_t rw = RW_WRITER;
3562
3563 /*
3564 * First pass write-locks szp and compares to zp->z_id.
3565 * Later passes read-lock zp and compare to zp->z_parent.
3566 */
3567 do {
3568 if (!rw_tryenter(rwlp, rw)) {
3569 /*
3570 * Another thread is renaming in this path.
3571 * Note that if we are a WRITER, we don't have any
3572 * parent_locks held yet.
3573 */
3574 if (rw == RW_READER && zp->z_id > szp->z_id) {
3575 /*
3576 * Drop our locks and restart
3577 */
3578 zfs_rename_unlock(&zl);
3579 *zlpp = NULL;
3580 zp = tdzp;
3581 oidp = zp->z_id;
3582 rwlp = &szp->z_parent_lock;
3583 rw = RW_WRITER;
3584 continue;
3585 } else {
3586 /*
3587 * Wait for other thread to drop its locks
3588 */
3589 rw_enter(rwlp, rw);
3590 }
3591 }
3592
3593 zl = kmem_alloc(sizeof (*zl), KM_SLEEP);
3594 zl->zl_rwlock = rwlp;
3595 zl->zl_znode = NULL;
3596 zl->zl_next = *zlpp;
3597 *zlpp = zl;
3598
3599 if (oidp == szp->z_id) /* We're a descendant of szp */
3600 return (SET_ERROR(EINVAL));
3601
3602 if (oidp == rootid) /* We've hit the top */
3603 return (0);
3604
3605 if (rw == RW_READER) { /* i.e. not the first pass */
3606 int error = zfs_zget(ZTOZSB(zp), oidp, &zp);
3607 if (error)
3608 return (error);
3609 zl->zl_znode = zp;
3610 }
3611 (void) sa_lookup(zp->z_sa_hdl, SA_ZPL_PARENT(ZTOZSB(zp)),
3612 &oidp, sizeof (oidp));
3613 rwlp = &zp->z_parent_lock;
3614 rw = RW_READER;
3615
3616 } while (zp->z_id != sdzp->z_id);
3617
3618 return (0);
3619 }
3620
3621 /*
3622 * Move an entry from the provided source directory to the target
3623 * directory. Change the entry name as indicated.
3624 *
3625 * IN: sdip - Source directory containing the "old entry".
3626 * snm - Old entry name.
3627 * tdip - Target directory to contain the "new entry".
3628 * tnm - New entry name.
3629 * cr - credentials of caller.
3630 * flags - case flags
3631 *
3632 * RETURN: 0 on success, error code on failure.
3633 *
3634 * Timestamps:
3635 * sdip,tdip - ctime|mtime updated
3636 */
3637 /*ARGSUSED*/
3638 int
3639 zfs_rename(struct inode *sdip, char *snm, struct inode *tdip, char *tnm,
3640 cred_t *cr, int flags)
3641 {
3642 znode_t *tdzp, *szp, *tzp;
3643 znode_t *sdzp = ITOZ(sdip);
3644 zfsvfs_t *zfsvfs = ITOZSB(sdip);
3645 zilog_t *zilog;
3646 zfs_dirlock_t *sdl, *tdl;
3647 dmu_tx_t *tx;
3648 zfs_zlock_t *zl;
3649 int cmp, serr, terr;
3650 int error = 0;
3651 int zflg = 0;
3652 boolean_t waited = B_FALSE;
3653
3654 if (snm == NULL || tnm == NULL)
3655 return (SET_ERROR(EINVAL));
3656
3657 ZFS_ENTER(zfsvfs);
3658 ZFS_VERIFY_ZP(sdzp);
3659 zilog = zfsvfs->z_log;
3660
3661 tdzp = ITOZ(tdip);
3662 ZFS_VERIFY_ZP(tdzp);
3663
3664 /*
3665 * We check i_sb because snapshots and the ctldir must have different
3666 * super blocks.
3667 */
3668 if (tdip->i_sb != sdip->i_sb || zfsctl_is_node(tdip)) {
3669 ZFS_EXIT(zfsvfs);
3670 return (SET_ERROR(EXDEV));
3671 }
3672
3673 if (zfsvfs->z_utf8 && u8_validate(tnm,
3674 strlen(tnm), NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
3675 ZFS_EXIT(zfsvfs);
3676 return (SET_ERROR(EILSEQ));
3677 }
3678
3679 if (flags & FIGNORECASE)
3680 zflg |= ZCILOOK;
3681
3682 top:
3683 szp = NULL;
3684 tzp = NULL;
3685 zl = NULL;
3686
3687 /*
3688 * This is to prevent the creation of links into attribute space
3689 * by renaming a linked file into/outof an attribute directory.
3690 * See the comment in zfs_link() for why this is considered bad.
3691 */
3692 if ((tdzp->z_pflags & ZFS_XATTR) != (sdzp->z_pflags & ZFS_XATTR)) {
3693 ZFS_EXIT(zfsvfs);
3694 return (SET_ERROR(EINVAL));
3695 }
3696
3697 /*
3698 * Lock source and target directory entries. To prevent deadlock,
3699 * a lock ordering must be defined. We lock the directory with
3700 * the smallest object id first, or if it's a tie, the one with
3701 * the lexically first name.
3702 */
3703 if (sdzp->z_id < tdzp->z_id) {
3704 cmp = -1;
3705 } else if (sdzp->z_id > tdzp->z_id) {
3706 cmp = 1;
3707 } else {
3708 /*
3709 * First compare the two name arguments without
3710 * considering any case folding.
3711 */
3712 int nofold = (zfsvfs->z_norm & ~U8_TEXTPREP_TOUPPER);
3713
3714 cmp = u8_strcmp(snm, tnm, 0, nofold, U8_UNICODE_LATEST, &error);
3715 ASSERT(error == 0 || !zfsvfs->z_utf8);
3716 if (cmp == 0) {
3717 /*
3718 * POSIX: "If the old argument and the new argument
3719 * both refer to links to the same existing file,
3720 * the rename() function shall return successfully
3721 * and perform no other action."
3722 */
3723 ZFS_EXIT(zfsvfs);
3724 return (0);
3725 }
3726 /*
3727 * If the file system is case-folding, then we may
3728 * have some more checking to do. A case-folding file
3729 * system is either supporting mixed case sensitivity
3730 * access or is completely case-insensitive. Note
3731 * that the file system is always case preserving.
3732 *
3733 * In mixed sensitivity mode case sensitive behavior
3734 * is the default. FIGNORECASE must be used to
3735 * explicitly request case insensitive behavior.
3736 *
3737 * If the source and target names provided differ only
3738 * by case (e.g., a request to rename 'tim' to 'Tim'),
3739 * we will treat this as a special case in the
3740 * case-insensitive mode: as long as the source name
3741 * is an exact match, we will allow this to proceed as
3742 * a name-change request.
3743 */
3744 if ((zfsvfs->z_case == ZFS_CASE_INSENSITIVE ||
3745 (zfsvfs->z_case == ZFS_CASE_MIXED &&
3746 flags & FIGNORECASE)) &&
3747 u8_strcmp(snm, tnm, 0, zfsvfs->z_norm, U8_UNICODE_LATEST,
3748 &error) == 0) {
3749 /*
3750 * case preserving rename request, require exact
3751 * name matches
3752 */
3753 zflg |= ZCIEXACT;
3754 zflg &= ~ZCILOOK;
3755 }
3756 }
3757
3758 /*
3759 * If the source and destination directories are the same, we should
3760 * grab the z_name_lock of that directory only once.
3761 */
3762 if (sdzp == tdzp) {
3763 zflg |= ZHAVELOCK;
3764 rw_enter(&sdzp->z_name_lock, RW_READER);
3765 }
3766
3767 if (cmp < 0) {
3768 serr = zfs_dirent_lock(&sdl, sdzp, snm, &szp,
3769 ZEXISTS | zflg, NULL, NULL);
3770 terr = zfs_dirent_lock(&tdl,
3771 tdzp, tnm, &tzp, ZRENAMING | zflg, NULL, NULL);
3772 } else {
3773 terr = zfs_dirent_lock(&tdl,
3774 tdzp, tnm, &tzp, zflg, NULL, NULL);
3775 serr = zfs_dirent_lock(&sdl,
3776 sdzp, snm, &szp, ZEXISTS | ZRENAMING | zflg,
3777 NULL, NULL);
3778 }
3779
3780 if (serr) {
3781 /*
3782 * Source entry invalid or not there.
3783 */
3784 if (!terr) {
3785 zfs_dirent_unlock(tdl);
3786 if (tzp)
3787 iput(ZTOI(tzp));
3788 }
3789
3790 if (sdzp == tdzp)
3791 rw_exit(&sdzp->z_name_lock);
3792
3793 if (strcmp(snm, "..") == 0)
3794 serr = EINVAL;
3795 ZFS_EXIT(zfsvfs);
3796 return (serr);
3797 }
3798 if (terr) {
3799 zfs_dirent_unlock(sdl);
3800 iput(ZTOI(szp));
3801
3802 if (sdzp == tdzp)
3803 rw_exit(&sdzp->z_name_lock);
3804
3805 if (strcmp(tnm, "..") == 0)
3806 terr = EINVAL;
3807 ZFS_EXIT(zfsvfs);
3808 return (terr);
3809 }
3810
3811 /*
3812 * If we are using project inheritance, means if the directory has
3813 * ZFS_PROJINHERIT set, then its descendant directories will inherit
3814 * not only the project ID, but also the ZFS_PROJINHERIT flag. Under
3815 * such case, we only allow renames into our tree when the project
3816 * IDs are the same.
3817 */
3818 if (tdzp->z_pflags & ZFS_PROJINHERIT &&
3819 tdzp->z_projid != szp->z_projid) {
3820 error = SET_ERROR(EXDEV);
3821 goto out;
3822 }
3823
3824 /*
3825 * Must have write access at the source to remove the old entry
3826 * and write access at the target to create the new entry.
3827 * Note that if target and source are the same, this can be
3828 * done in a single check.
3829 */
3830
3831 if ((error = zfs_zaccess_rename(sdzp, szp, tdzp, tzp, cr)))
3832 goto out;
3833
3834 if (S_ISDIR(ZTOI(szp)->i_mode)) {
3835 /*
3836 * Check to make sure rename is valid.
3837 * Can't do a move like this: /usr/a/b to /usr/a/b/c/d
3838 */
3839 if ((error = zfs_rename_lock(szp, tdzp, sdzp, &zl)))
3840 goto out;
3841 }
3842
3843 /*
3844 * Does target exist?
3845 */
3846 if (tzp) {
3847 /*
3848 * Source and target must be the same type.
3849 */
3850 if (S_ISDIR(ZTOI(szp)->i_mode)) {
3851 if (!S_ISDIR(ZTOI(tzp)->i_mode)) {
3852 error = SET_ERROR(ENOTDIR);
3853 goto out;
3854 }
3855 } else {
3856 if (S_ISDIR(ZTOI(tzp)->i_mode)) {
3857 error = SET_ERROR(EISDIR);
3858 goto out;
3859 }
3860 }
3861 /*
3862 * POSIX dictates that when the source and target
3863 * entries refer to the same file object, rename
3864 * must do nothing and exit without error.
3865 */
3866 if (szp->z_id == tzp->z_id) {
3867 error = 0;
3868 goto out;
3869 }
3870 }
3871
3872 tx = dmu_tx_create(zfsvfs->z_os);
3873 dmu_tx_hold_sa(tx, szp->z_sa_hdl, B_FALSE);
3874 dmu_tx_hold_sa(tx, sdzp->z_sa_hdl, B_FALSE);
3875 dmu_tx_hold_zap(tx, sdzp->z_id, FALSE, snm);
3876 dmu_tx_hold_zap(tx, tdzp->z_id, TRUE, tnm);
3877 if (sdzp != tdzp) {
3878 dmu_tx_hold_sa(tx, tdzp->z_sa_hdl, B_FALSE);
3879 zfs_sa_upgrade_txholds(tx, tdzp);
3880 }
3881 if (tzp) {
3882 dmu_tx_hold_sa(tx, tzp->z_sa_hdl, B_FALSE);
3883 zfs_sa_upgrade_txholds(tx, tzp);
3884 }
3885
3886 zfs_sa_upgrade_txholds(tx, szp);
3887 dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL);
3888 error = dmu_tx_assign(tx, (waited ? TXG_NOTHROTTLE : 0) | TXG_NOWAIT);
3889 if (error) {
3890 if (zl != NULL)
3891 zfs_rename_unlock(&zl);
3892 zfs_dirent_unlock(sdl);
3893 zfs_dirent_unlock(tdl);
3894
3895 if (sdzp == tdzp)
3896 rw_exit(&sdzp->z_name_lock);
3897
3898 if (error == ERESTART) {
3899 waited = B_TRUE;
3900 dmu_tx_wait(tx);
3901 dmu_tx_abort(tx);
3902 iput(ZTOI(szp));
3903 if (tzp)
3904 iput(ZTOI(tzp));
3905 goto top;
3906 }
3907 dmu_tx_abort(tx);
3908 iput(ZTOI(szp));
3909 if (tzp)
3910 iput(ZTOI(tzp));
3911 ZFS_EXIT(zfsvfs);
3912 return (error);
3913 }
3914
3915 if (tzp) /* Attempt to remove the existing target */
3916 error = zfs_link_destroy(tdl, tzp, tx, zflg, NULL);
3917
3918 if (error == 0) {
3919 error = zfs_link_create(tdl, szp, tx, ZRENAMING);
3920 if (error == 0) {
3921 szp->z_pflags |= ZFS_AV_MODIFIED;
3922 if (tdzp->z_pflags & ZFS_PROJINHERIT)
3923 szp->z_pflags |= ZFS_PROJINHERIT;
3924
3925 error = sa_update(szp->z_sa_hdl, SA_ZPL_FLAGS(zfsvfs),
3926 (void *)&szp->z_pflags, sizeof (uint64_t), tx);
3927 ASSERT0(error);
3928
3929 error = zfs_link_destroy(sdl, szp, tx, ZRENAMING, NULL);
3930 if (error == 0) {
3931 zfs_log_rename(zilog, tx, TX_RENAME |
3932 (flags & FIGNORECASE ? TX_CI : 0), sdzp,
3933 sdl->dl_name, tdzp, tdl->dl_name, szp);
3934 } else {
3935 /*
3936 * At this point, we have successfully created
3937 * the target name, but have failed to remove
3938 * the source name. Since the create was done
3939 * with the ZRENAMING flag, there are
3940 * complications; for one, the link count is
3941 * wrong. The easiest way to deal with this
3942 * is to remove the newly created target, and
3943 * return the original error. This must
3944 * succeed; fortunately, it is very unlikely to
3945 * fail, since we just created it.
3946 */
3947 VERIFY3U(zfs_link_destroy(tdl, szp, tx,
3948 ZRENAMING, NULL), ==, 0);
3949 }
3950 } else {
3951 /*
3952 * If we had removed the existing target, subsequent
3953 * call to zfs_link_create() to add back the same entry
3954 * but, the new dnode (szp) should not fail.
3955 */
3956 ASSERT(tzp == NULL);
3957 }
3958 }
3959
3960 dmu_tx_commit(tx);
3961 out:
3962 if (zl != NULL)
3963 zfs_rename_unlock(&zl);
3964
3965 zfs_dirent_unlock(sdl);
3966 zfs_dirent_unlock(tdl);
3967
3968 zfs_inode_update(sdzp);
3969 if (sdzp == tdzp)
3970 rw_exit(&sdzp->z_name_lock);
3971
3972 if (sdzp != tdzp)
3973 zfs_inode_update(tdzp);
3974
3975 zfs_inode_update(szp);
3976 iput(ZTOI(szp));
3977 if (tzp) {
3978 zfs_inode_update(tzp);
3979 iput(ZTOI(tzp));
3980 }
3981
3982 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
3983 zil_commit(zilog, 0);
3984
3985 ZFS_EXIT(zfsvfs);
3986 return (error);
3987 }
3988
3989 /*
3990 * Insert the indicated symbolic reference entry into the directory.
3991 *
3992 * IN: dip - Directory to contain new symbolic link.
3993 * link - Name for new symlink entry.
3994 * vap - Attributes of new entry.
3995 * target - Target path of new symlink.
3996 *
3997 * cr - credentials of caller.
3998 * flags - case flags
3999 *
4000 * RETURN: 0 on success, error code on failure.
4001 *
4002 * Timestamps:
4003 * dip - ctime|mtime updated
4004 */
4005 /*ARGSUSED*/
4006 int
4007 zfs_symlink(struct inode *dip, char *name, vattr_t *vap, char *link,
4008 struct inode **ipp, cred_t *cr, int flags)
4009 {
4010 znode_t *zp, *dzp = ITOZ(dip);
4011 zfs_dirlock_t *dl;
4012 dmu_tx_t *tx;
4013 zfsvfs_t *zfsvfs = ITOZSB(dip);
4014 zilog_t *zilog;
4015 uint64_t len = strlen(link);
4016 int error;
4017 int zflg = ZNEW;
4018 zfs_acl_ids_t acl_ids;
4019 boolean_t fuid_dirtied;
4020 uint64_t txtype = TX_SYMLINK;
4021 boolean_t waited = B_FALSE;
4022
4023 ASSERT(S_ISLNK(vap->va_mode));
4024
4025 if (name == NULL)
4026 return (SET_ERROR(EINVAL));
4027
4028 ZFS_ENTER(zfsvfs);
4029 ZFS_VERIFY_ZP(dzp);
4030 zilog = zfsvfs->z_log;
4031
4032 if (zfsvfs->z_utf8 && u8_validate(name, strlen(name),
4033 NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
4034 ZFS_EXIT(zfsvfs);
4035 return (SET_ERROR(EILSEQ));
4036 }
4037 if (flags & FIGNORECASE)
4038 zflg |= ZCILOOK;
4039
4040 if (len > MAXPATHLEN) {
4041 ZFS_EXIT(zfsvfs);
4042 return (SET_ERROR(ENAMETOOLONG));
4043 }
4044
4045 if ((error = zfs_acl_ids_create(dzp, 0,
4046 vap, cr, NULL, &acl_ids)) != 0) {
4047 ZFS_EXIT(zfsvfs);
4048 return (error);
4049 }
4050 top:
4051 *ipp = NULL;
4052
4053 /*
4054 * Attempt to lock directory; fail if entry already exists.
4055 */
4056 error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg, NULL, NULL);
4057 if (error) {
4058 zfs_acl_ids_free(&acl_ids);
4059 ZFS_EXIT(zfsvfs);
4060 return (error);
4061 }
4062
4063 if ((error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr))) {
4064 zfs_acl_ids_free(&acl_ids);
4065 zfs_dirent_unlock(dl);
4066 ZFS_EXIT(zfsvfs);
4067 return (error);
4068 }
4069
4070 if (zfs_acl_ids_overquota(zfsvfs, &acl_ids, ZFS_DEFAULT_PROJID)) {
4071 zfs_acl_ids_free(&acl_ids);
4072 zfs_dirent_unlock(dl);
4073 ZFS_EXIT(zfsvfs);
4074 return (SET_ERROR(EDQUOT));
4075 }
4076 tx = dmu_tx_create(zfsvfs->z_os);
4077 fuid_dirtied = zfsvfs->z_fuid_dirty;
4078 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0, MAX(1, len));
4079 dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name);
4080 dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes +
4081 ZFS_SA_BASE_ATTR_SIZE + len);
4082 dmu_tx_hold_sa(tx, dzp->z_sa_hdl, B_FALSE);
4083 if (!zfsvfs->z_use_sa && acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) {
4084 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0,
4085 acl_ids.z_aclp->z_acl_bytes);
4086 }
4087 if (fuid_dirtied)
4088 zfs_fuid_txhold(zfsvfs, tx);
4089 error = dmu_tx_assign(tx, (waited ? TXG_NOTHROTTLE : 0) | TXG_NOWAIT);
4090 if (error) {
4091 zfs_dirent_unlock(dl);
4092 if (error == ERESTART) {
4093 waited = B_TRUE;
4094 dmu_tx_wait(tx);
4095 dmu_tx_abort(tx);
4096 goto top;
4097 }
4098 zfs_acl_ids_free(&acl_ids);
4099 dmu_tx_abort(tx);
4100 ZFS_EXIT(zfsvfs);
4101 return (error);
4102 }
4103
4104 /*
4105 * Create a new object for the symlink.
4106 * for version 4 ZPL datsets the symlink will be an SA attribute
4107 */
4108 zfs_mknode(dzp, vap, tx, cr, 0, &zp, &acl_ids);
4109
4110 if (fuid_dirtied)
4111 zfs_fuid_sync(zfsvfs, tx);
4112
4113 mutex_enter(&zp->z_lock);
4114 if (zp->z_is_sa)
4115 error = sa_update(zp->z_sa_hdl, SA_ZPL_SYMLINK(zfsvfs),
4116 link, len, tx);
4117 else
4118 zfs_sa_symlink(zp, link, len, tx);
4119 mutex_exit(&zp->z_lock);
4120
4121 zp->z_size = len;
4122 (void) sa_update(zp->z_sa_hdl, SA_ZPL_SIZE(zfsvfs),
4123 &zp->z_size, sizeof (zp->z_size), tx);
4124 /*
4125 * Insert the new object into the directory.
4126 */
4127 error = zfs_link_create(dl, zp, tx, ZNEW);
4128 if (error != 0) {
4129 zfs_znode_delete(zp, tx);
4130 remove_inode_hash(ZTOI(zp));
4131 } else {
4132 if (flags & FIGNORECASE)
4133 txtype |= TX_CI;
4134 zfs_log_symlink(zilog, tx, txtype, dzp, zp, name, link);
4135
4136 zfs_inode_update(dzp);
4137 zfs_inode_update(zp);
4138 }
4139
4140 zfs_acl_ids_free(&acl_ids);
4141
4142 dmu_tx_commit(tx);
4143
4144 zfs_dirent_unlock(dl);
4145
4146 if (error == 0) {
4147 *ipp = ZTOI(zp);
4148
4149 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
4150 zil_commit(zilog, 0);
4151 } else {
4152 iput(ZTOI(zp));
4153 }
4154
4155 ZFS_EXIT(zfsvfs);
4156 return (error);
4157 }
4158
4159 /*
4160 * Return, in the buffer contained in the provided uio structure,
4161 * the symbolic path referred to by ip.
4162 *
4163 * IN: ip - inode of symbolic link
4164 * uio - structure to contain the link path.
4165 * cr - credentials of caller.
4166 *
4167 * RETURN: 0 if success
4168 * error code if failure
4169 *
4170 * Timestamps:
4171 * ip - atime updated
4172 */
4173 /* ARGSUSED */
4174 int
4175 zfs_readlink(struct inode *ip, uio_t *uio, cred_t *cr)
4176 {
4177 znode_t *zp = ITOZ(ip);
4178 zfsvfs_t *zfsvfs = ITOZSB(ip);
4179 int error;
4180
4181 ZFS_ENTER(zfsvfs);
4182 ZFS_VERIFY_ZP(zp);
4183
4184 mutex_enter(&zp->z_lock);
4185 if (zp->z_is_sa)
4186 error = sa_lookup_uio(zp->z_sa_hdl,
4187 SA_ZPL_SYMLINK(zfsvfs), uio);
4188 else
4189 error = zfs_sa_readlink(zp, uio);
4190 mutex_exit(&zp->z_lock);
4191
4192 ZFS_EXIT(zfsvfs);
4193 return (error);
4194 }
4195
4196 /*
4197 * Insert a new entry into directory tdip referencing sip.
4198 *
4199 * IN: tdip - Directory to contain new entry.
4200 * sip - inode of new entry.
4201 * name - name of new entry.
4202 * cr - credentials of caller.
4203 *
4204 * RETURN: 0 if success
4205 * error code if failure
4206 *
4207 * Timestamps:
4208 * tdip - ctime|mtime updated
4209 * sip - ctime updated
4210 */
4211 /* ARGSUSED */
4212 int
4213 zfs_link(struct inode *tdip, struct inode *sip, char *name, cred_t *cr,
4214 int flags)
4215 {
4216 znode_t *dzp = ITOZ(tdip);
4217 znode_t *tzp, *szp;
4218 zfsvfs_t *zfsvfs = ITOZSB(tdip);
4219 zilog_t *zilog;
4220 zfs_dirlock_t *dl;
4221 dmu_tx_t *tx;
4222 int error;
4223 int zf = ZNEW;
4224 uint64_t parent;
4225 uid_t owner;
4226 boolean_t waited = B_FALSE;
4227 boolean_t is_tmpfile = 0;
4228 uint64_t txg;
4229 #ifdef HAVE_TMPFILE
4230 is_tmpfile = (sip->i_nlink == 0 && (sip->i_state & I_LINKABLE));
4231 #endif
4232 ASSERT(S_ISDIR(tdip->i_mode));
4233
4234 if (name == NULL)
4235 return (SET_ERROR(EINVAL));
4236
4237 ZFS_ENTER(zfsvfs);
4238 ZFS_VERIFY_ZP(dzp);
4239 zilog = zfsvfs->z_log;
4240
4241 /*
4242 * POSIX dictates that we return EPERM here.
4243 * Better choices include ENOTSUP or EISDIR.
4244 */
4245 if (S_ISDIR(sip->i_mode)) {
4246 ZFS_EXIT(zfsvfs);
4247 return (SET_ERROR(EPERM));
4248 }
4249
4250 szp = ITOZ(sip);
4251 ZFS_VERIFY_ZP(szp);
4252
4253 /*
4254 * If we are using project inheritance, means if the directory has
4255 * ZFS_PROJINHERIT set, then its descendant directories will inherit
4256 * not only the project ID, but also the ZFS_PROJINHERIT flag. Under
4257 * such case, we only allow hard link creation in our tree when the
4258 * project IDs are the same.
4259 */
4260 if (dzp->z_pflags & ZFS_PROJINHERIT && dzp->z_projid != szp->z_projid) {
4261 ZFS_EXIT(zfsvfs);
4262 return (SET_ERROR(EXDEV));
4263 }
4264
4265 /*
4266 * We check i_sb because snapshots and the ctldir must have different
4267 * super blocks.
4268 */
4269 if (sip->i_sb != tdip->i_sb || zfsctl_is_node(sip)) {
4270 ZFS_EXIT(zfsvfs);
4271 return (SET_ERROR(EXDEV));
4272 }
4273
4274 /* Prevent links to .zfs/shares files */
4275
4276 if ((error = sa_lookup(szp->z_sa_hdl, SA_ZPL_PARENT(zfsvfs),
4277 &parent, sizeof (uint64_t))) != 0) {
4278 ZFS_EXIT(zfsvfs);
4279 return (error);
4280 }
4281 if (parent == zfsvfs->z_shares_dir) {
4282 ZFS_EXIT(zfsvfs);
4283 return (SET_ERROR(EPERM));
4284 }
4285
4286 if (zfsvfs->z_utf8 && u8_validate(name,
4287 strlen(name), NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
4288 ZFS_EXIT(zfsvfs);
4289 return (SET_ERROR(EILSEQ));
4290 }
4291 if (flags & FIGNORECASE)
4292 zf |= ZCILOOK;
4293
4294 /*
4295 * We do not support links between attributes and non-attributes
4296 * because of the potential security risk of creating links
4297 * into "normal" file space in order to circumvent restrictions
4298 * imposed in attribute space.
4299 */
4300 if ((szp->z_pflags & ZFS_XATTR) != (dzp->z_pflags & ZFS_XATTR)) {
4301 ZFS_EXIT(zfsvfs);
4302 return (SET_ERROR(EINVAL));
4303 }
4304
4305 owner = zfs_fuid_map_id(zfsvfs, KUID_TO_SUID(sip->i_uid),
4306 cr, ZFS_OWNER);
4307 if (owner != crgetuid(cr) && secpolicy_basic_link(cr) != 0) {
4308 ZFS_EXIT(zfsvfs);
4309 return (SET_ERROR(EPERM));
4310 }
4311
4312 if ((error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr))) {
4313 ZFS_EXIT(zfsvfs);
4314 return (error);
4315 }
4316
4317 top:
4318 /*
4319 * Attempt to lock directory; fail if entry already exists.
4320 */
4321 error = zfs_dirent_lock(&dl, dzp, name, &tzp, zf, NULL, NULL);
4322 if (error) {
4323 ZFS_EXIT(zfsvfs);
4324 return (error);
4325 }
4326
4327 tx = dmu_tx_create(zfsvfs->z_os);
4328 dmu_tx_hold_sa(tx, szp->z_sa_hdl, B_FALSE);
4329 dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name);
4330 if (is_tmpfile)
4331 dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL);
4332
4333 zfs_sa_upgrade_txholds(tx, szp);
4334 zfs_sa_upgrade_txholds(tx, dzp);
4335 error = dmu_tx_assign(tx, (waited ? TXG_NOTHROTTLE : 0) | TXG_NOWAIT);
4336 if (error) {
4337 zfs_dirent_unlock(dl);
4338 if (error == ERESTART) {
4339 waited = B_TRUE;
4340 dmu_tx_wait(tx);
4341 dmu_tx_abort(tx);
4342 goto top;
4343 }
4344 dmu_tx_abort(tx);
4345 ZFS_EXIT(zfsvfs);
4346 return (error);
4347 }
4348 /* unmark z_unlinked so zfs_link_create will not reject */
4349 if (is_tmpfile)
4350 szp->z_unlinked = 0;
4351 error = zfs_link_create(dl, szp, tx, 0);
4352
4353 if (error == 0) {
4354 uint64_t txtype = TX_LINK;
4355 /*
4356 * tmpfile is created to be in z_unlinkedobj, so remove it.
4357 * Also, we don't log in ZIL, be cause all previous file
4358 * operation on the tmpfile are ignored by ZIL. Instead we
4359 * always wait for txg to sync to make sure all previous
4360 * operation are sync safe.
4361 */
4362 if (is_tmpfile) {
4363 VERIFY(zap_remove_int(zfsvfs->z_os,
4364 zfsvfs->z_unlinkedobj, szp->z_id, tx) == 0);
4365 } else {
4366 if (flags & FIGNORECASE)
4367 txtype |= TX_CI;
4368 zfs_log_link(zilog, tx, txtype, dzp, szp, name);
4369 }
4370 } else if (is_tmpfile) {
4371 /* restore z_unlinked since when linking failed */
4372 szp->z_unlinked = 1;
4373 }
4374 txg = dmu_tx_get_txg(tx);
4375 dmu_tx_commit(tx);
4376
4377 zfs_dirent_unlock(dl);
4378
4379 if (!is_tmpfile && zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
4380 zil_commit(zilog, 0);
4381
4382 if (is_tmpfile)
4383 txg_wait_synced(dmu_objset_pool(zfsvfs->z_os), txg);
4384
4385 zfs_inode_update(dzp);
4386 zfs_inode_update(szp);
4387 ZFS_EXIT(zfsvfs);
4388 return (error);
4389 }
4390
4391 static void
4392 zfs_putpage_commit_cb(void *arg)
4393 {
4394 struct page *pp = arg;
4395
4396 ClearPageError(pp);
4397 end_page_writeback(pp);
4398 }
4399
4400 /*
4401 * Push a page out to disk, once the page is on stable storage the
4402 * registered commit callback will be run as notification of completion.
4403 *
4404 * IN: ip - page mapped for inode.
4405 * pp - page to push (page is locked)
4406 * wbc - writeback control data
4407 *
4408 * RETURN: 0 if success
4409 * error code if failure
4410 *
4411 * Timestamps:
4412 * ip - ctime|mtime updated
4413 */
4414 /* ARGSUSED */
4415 int
4416 zfs_putpage(struct inode *ip, struct page *pp, struct writeback_control *wbc)
4417 {
4418 znode_t *zp = ITOZ(ip);
4419 zfsvfs_t *zfsvfs = ITOZSB(ip);
4420 loff_t offset;
4421 loff_t pgoff;
4422 unsigned int pglen;
4423 dmu_tx_t *tx;
4424 caddr_t va;
4425 int err = 0;
4426 uint64_t mtime[2], ctime[2];
4427 sa_bulk_attr_t bulk[3];
4428 int cnt = 0;
4429 struct address_space *mapping;
4430
4431 ZFS_ENTER(zfsvfs);
4432 ZFS_VERIFY_ZP(zp);
4433
4434 ASSERT(PageLocked(pp));
4435
4436 pgoff = page_offset(pp); /* Page byte-offset in file */
4437 offset = i_size_read(ip); /* File length in bytes */
4438 pglen = MIN(PAGE_SIZE, /* Page length in bytes */
4439 P2ROUNDUP(offset, PAGE_SIZE)-pgoff);
4440
4441 /* Page is beyond end of file */
4442 if (pgoff >= offset) {
4443 unlock_page(pp);
4444 ZFS_EXIT(zfsvfs);
4445 return (0);
4446 }
4447
4448 /* Truncate page length to end of file */
4449 if (pgoff + pglen > offset)
4450 pglen = offset - pgoff;
4451
4452 #if 0
4453 /*
4454 * FIXME: Allow mmap writes past its quota. The correct fix
4455 * is to register a page_mkwrite() handler to count the page
4456 * against its quota when it is about to be dirtied.
4457 */
4458 if (zfs_id_overblockquota(zfsvfs, DMU_USERUSED_OBJECT,
4459 KUID_TO_SUID(ip->i_uid)) ||
4460 zfs_id_overblockquota(zfsvfs, DMU_GROUPUSED_OBJECT,
4461 KGID_TO_SGID(ip->i_gid)) ||
4462 (zp->z_projid != ZFS_DEFAULT_PROJID &&
4463 zfs_id_overblockquota(zfsvfs, DMU_PROJECTUSED_OBJECT,
4464 zp->z_projid))) {
4465 err = EDQUOT;
4466 }
4467 #endif
4468
4469 /*
4470 * The ordering here is critical and must adhere to the following
4471 * rules in order to avoid deadlocking in either zfs_read() or
4472 * zfs_free_range() due to a lock inversion.
4473 *
4474 * 1) The page must be unlocked prior to acquiring the range lock.
4475 * This is critical because zfs_read() calls find_lock_page()
4476 * which may block on the page lock while holding the range lock.
4477 *
4478 * 2) Before setting or clearing write back on a page the range lock
4479 * must be held in order to prevent a lock inversion with the
4480 * zfs_free_range() function.
4481 *
4482 * This presents a problem because upon entering this function the
4483 * page lock is already held. To safely acquire the range lock the
4484 * page lock must be dropped. This creates a window where another
4485 * process could truncate, invalidate, dirty, or write out the page.
4486 *
4487 * Therefore, after successfully reacquiring the range and page locks
4488 * the current page state is checked. In the common case everything
4489 * will be as is expected and it can be written out. However, if
4490 * the page state has changed it must be handled accordingly.
4491 */
4492 mapping = pp->mapping;
4493 redirty_page_for_writepage(wbc, pp);
4494 unlock_page(pp);
4495
4496 locked_range_t *lr = rangelock_enter(&zp->z_rangelock,
4497 pgoff, pglen, RL_WRITER);
4498 lock_page(pp);
4499
4500 /* Page mapping changed or it was no longer dirty, we're done */
4501 if (unlikely((mapping != pp->mapping) || !PageDirty(pp))) {
4502 unlock_page(pp);
4503 rangelock_exit(lr);
4504 ZFS_EXIT(zfsvfs);
4505 return (0);
4506 }
4507
4508 /* Another process started write block if required */
4509 if (PageWriteback(pp)) {
4510 unlock_page(pp);
4511 rangelock_exit(lr);
4512
4513 if (wbc->sync_mode != WB_SYNC_NONE)
4514 wait_on_page_writeback(pp);
4515
4516 ZFS_EXIT(zfsvfs);
4517 return (0);
4518 }
4519
4520 /* Clear the dirty flag the required locks are held */
4521 if (!clear_page_dirty_for_io(pp)) {
4522 unlock_page(pp);
4523 rangelock_exit(lr);
4524 ZFS_EXIT(zfsvfs);
4525 return (0);
4526 }
4527
4528 /*
4529 * Counterpart for redirty_page_for_writepage() above. This page
4530 * was in fact not skipped and should not be counted as if it were.
4531 */
4532 wbc->pages_skipped--;
4533 set_page_writeback(pp);
4534 unlock_page(pp);
4535
4536 tx = dmu_tx_create(zfsvfs->z_os);
4537 dmu_tx_hold_write(tx, zp->z_id, pgoff, pglen);
4538 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
4539 zfs_sa_upgrade_txholds(tx, zp);
4540
4541 err = dmu_tx_assign(tx, TXG_NOWAIT);
4542 if (err != 0) {
4543 if (err == ERESTART)
4544 dmu_tx_wait(tx);
4545
4546 dmu_tx_abort(tx);
4547 __set_page_dirty_nobuffers(pp);
4548 ClearPageError(pp);
4549 end_page_writeback(pp);
4550 rangelock_exit(lr);
4551 ZFS_EXIT(zfsvfs);
4552 return (err);
4553 }
4554
4555 va = kmap(pp);
4556 ASSERT3U(pglen, <=, PAGE_SIZE);
4557 dmu_write(zfsvfs->z_os, zp->z_id, pgoff, pglen, va, tx);
4558 kunmap(pp);
4559
4560 SA_ADD_BULK_ATTR(bulk, cnt, SA_ZPL_MTIME(zfsvfs), NULL, &mtime, 16);
4561 SA_ADD_BULK_ATTR(bulk, cnt, SA_ZPL_CTIME(zfsvfs), NULL, &ctime, 16);
4562 SA_ADD_BULK_ATTR(bulk, cnt, SA_ZPL_FLAGS(zfsvfs), NULL,
4563 &zp->z_pflags, 8);
4564
4565 /* Preserve the mtime and ctime provided by the inode */
4566 ZFS_TIME_ENCODE(&ip->i_mtime, mtime);
4567 ZFS_TIME_ENCODE(&ip->i_ctime, ctime);
4568 zp->z_atime_dirty = 0;
4569 zp->z_seq++;
4570
4571 err = sa_bulk_update(zp->z_sa_hdl, bulk, cnt, tx);
4572
4573 zfs_log_write(zfsvfs->z_log, tx, TX_WRITE, zp, pgoff, pglen, 0,
4574 zfs_putpage_commit_cb, pp);
4575 dmu_tx_commit(tx);
4576
4577 rangelock_exit(lr);
4578
4579 if (wbc->sync_mode != WB_SYNC_NONE) {
4580 /*
4581 * Note that this is rarely called under writepages(), because
4582 * writepages() normally handles the entire commit for
4583 * performance reasons.
4584 */
4585 zil_commit(zfsvfs->z_log, zp->z_id);
4586 }
4587
4588 ZFS_EXIT(zfsvfs);
4589 return (err);
4590 }
4591
4592 /*
4593 * Update the system attributes when the inode has been dirtied. For the
4594 * moment we only update the mode, atime, mtime, and ctime.
4595 */
4596 int
4597 zfs_dirty_inode(struct inode *ip, int flags)
4598 {
4599 znode_t *zp = ITOZ(ip);
4600 zfsvfs_t *zfsvfs = ITOZSB(ip);
4601 dmu_tx_t *tx;
4602 uint64_t mode, atime[2], mtime[2], ctime[2];
4603 sa_bulk_attr_t bulk[4];
4604 int error = 0;
4605 int cnt = 0;
4606
4607 if (zfs_is_readonly(zfsvfs) || dmu_objset_is_snapshot(zfsvfs->z_os))
4608 return (0);
4609
4610 ZFS_ENTER(zfsvfs);
4611 ZFS_VERIFY_ZP(zp);
4612
4613 #ifdef I_DIRTY_TIME
4614 /*
4615 * This is the lazytime semantic indroduced in Linux 4.0
4616 * This flag will only be called from update_time when lazytime is set.
4617 * (Note, I_DIRTY_SYNC will also set if not lazytime)
4618 * Fortunately mtime and ctime are managed within ZFS itself, so we
4619 * only need to dirty atime.
4620 */
4621 if (flags == I_DIRTY_TIME) {
4622 zp->z_atime_dirty = 1;
4623 goto out;
4624 }
4625 #endif
4626
4627 tx = dmu_tx_create(zfsvfs->z_os);
4628
4629 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
4630 zfs_sa_upgrade_txholds(tx, zp);
4631
4632 error = dmu_tx_assign(tx, TXG_WAIT);
4633 if (error) {
4634 dmu_tx_abort(tx);
4635 goto out;
4636 }
4637
4638 mutex_enter(&zp->z_lock);
4639 zp->z_atime_dirty = 0;
4640
4641 SA_ADD_BULK_ATTR(bulk, cnt, SA_ZPL_MODE(zfsvfs), NULL, &mode, 8);
4642 SA_ADD_BULK_ATTR(bulk, cnt, SA_ZPL_ATIME(zfsvfs), NULL, &atime, 16);
4643 SA_ADD_BULK_ATTR(bulk, cnt, SA_ZPL_MTIME(zfsvfs), NULL, &mtime, 16);
4644 SA_ADD_BULK_ATTR(bulk, cnt, SA_ZPL_CTIME(zfsvfs), NULL, &ctime, 16);
4645
4646 /* Preserve the mode, mtime and ctime provided by the inode */
4647 ZFS_TIME_ENCODE(&ip->i_atime, atime);
4648 ZFS_TIME_ENCODE(&ip->i_mtime, mtime);
4649 ZFS_TIME_ENCODE(&ip->i_ctime, ctime);
4650 mode = ip->i_mode;
4651
4652 zp->z_mode = mode;
4653
4654 error = sa_bulk_update(zp->z_sa_hdl, bulk, cnt, tx);
4655 mutex_exit(&zp->z_lock);
4656
4657 dmu_tx_commit(tx);
4658 out:
4659 ZFS_EXIT(zfsvfs);
4660 return (error);
4661 }
4662
4663 /*ARGSUSED*/
4664 void
4665 zfs_inactive(struct inode *ip)
4666 {
4667 znode_t *zp = ITOZ(ip);
4668 zfsvfs_t *zfsvfs = ITOZSB(ip);
4669 uint64_t atime[2];
4670 int error;
4671 int need_unlock = 0;
4672
4673 /* Only read lock if we haven't already write locked, e.g. rollback */
4674 if (!RW_WRITE_HELD(&zfsvfs->z_teardown_inactive_lock)) {
4675 need_unlock = 1;
4676 rw_enter(&zfsvfs->z_teardown_inactive_lock, RW_READER);
4677 }
4678 if (zp->z_sa_hdl == NULL) {
4679 if (need_unlock)
4680 rw_exit(&zfsvfs->z_teardown_inactive_lock);
4681 return;
4682 }
4683
4684 if (zp->z_atime_dirty && zp->z_unlinked == 0) {
4685 dmu_tx_t *tx = dmu_tx_create(zfsvfs->z_os);
4686
4687 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
4688 zfs_sa_upgrade_txholds(tx, zp);
4689 error = dmu_tx_assign(tx, TXG_WAIT);
4690 if (error) {
4691 dmu_tx_abort(tx);
4692 } else {
4693 ZFS_TIME_ENCODE(&ip->i_atime, atime);
4694 mutex_enter(&zp->z_lock);
4695 (void) sa_update(zp->z_sa_hdl, SA_ZPL_ATIME(zfsvfs),
4696 (void *)&atime, sizeof (atime), tx);
4697 zp->z_atime_dirty = 0;
4698 mutex_exit(&zp->z_lock);
4699 dmu_tx_commit(tx);
4700 }
4701 }
4702
4703 zfs_zinactive(zp);
4704 if (need_unlock)
4705 rw_exit(&zfsvfs->z_teardown_inactive_lock);
4706 }
4707
4708 /*
4709 * Bounds-check the seek operation.
4710 *
4711 * IN: ip - inode seeking within
4712 * ooff - old file offset
4713 * noffp - pointer to new file offset
4714 * ct - caller context
4715 *
4716 * RETURN: 0 if success
4717 * EINVAL if new offset invalid
4718 */
4719 /* ARGSUSED */
4720 int
4721 zfs_seek(struct inode *ip, offset_t ooff, offset_t *noffp)
4722 {
4723 if (S_ISDIR(ip->i_mode))
4724 return (0);
4725 return ((*noffp < 0 || *noffp > MAXOFFSET_T) ? EINVAL : 0);
4726 }
4727
4728 /*
4729 * Fill pages with data from the disk.
4730 */
4731 static int
4732 zfs_fillpage(struct inode *ip, struct page *pl[], int nr_pages)
4733 {
4734 znode_t *zp = ITOZ(ip);
4735 zfsvfs_t *zfsvfs = ITOZSB(ip);
4736 objset_t *os;
4737 struct page *cur_pp;
4738 u_offset_t io_off, total;
4739 size_t io_len;
4740 loff_t i_size;
4741 unsigned page_idx;
4742 int err;
4743
4744 os = zfsvfs->z_os;
4745 io_len = nr_pages << PAGE_SHIFT;
4746 i_size = i_size_read(ip);
4747 io_off = page_offset(pl[0]);
4748
4749 if (io_off + io_len > i_size)
4750 io_len = i_size - io_off;
4751
4752 /*
4753 * Iterate over list of pages and read each page individually.
4754 */
4755 page_idx = 0;
4756 for (total = io_off + io_len; io_off < total; io_off += PAGESIZE) {
4757 caddr_t va;
4758
4759 cur_pp = pl[page_idx++];
4760 va = kmap(cur_pp);
4761 err = dmu_read(os, zp->z_id, io_off, PAGESIZE, va,
4762 DMU_READ_PREFETCH);
4763 kunmap(cur_pp);
4764 if (err) {
4765 /* convert checksum errors into IO errors */
4766 if (err == ECKSUM)
4767 err = SET_ERROR(EIO);
4768 return (err);
4769 }
4770 }
4771
4772 return (0);
4773 }
4774
4775 /*
4776 * Uses zfs_fillpage to read data from the file and fill the pages.
4777 *
4778 * IN: ip - inode of file to get data from.
4779 * pl - list of pages to read
4780 * nr_pages - number of pages to read
4781 *
4782 * RETURN: 0 on success, error code on failure.
4783 *
4784 * Timestamps:
4785 * vp - atime updated
4786 */
4787 /* ARGSUSED */
4788 int
4789 zfs_getpage(struct inode *ip, struct page *pl[], int nr_pages)
4790 {
4791 znode_t *zp = ITOZ(ip);
4792 zfsvfs_t *zfsvfs = ITOZSB(ip);
4793 int err;
4794
4795 if (pl == NULL)
4796 return (0);
4797
4798 ZFS_ENTER(zfsvfs);
4799 ZFS_VERIFY_ZP(zp);
4800
4801 err = zfs_fillpage(ip, pl, nr_pages);
4802
4803 ZFS_EXIT(zfsvfs);
4804 return (err);
4805 }
4806
4807 /*
4808 * Check ZFS specific permissions to memory map a section of a file.
4809 *
4810 * IN: ip - inode of the file to mmap
4811 * off - file offset
4812 * addrp - start address in memory region
4813 * len - length of memory region
4814 * vm_flags- address flags
4815 *
4816 * RETURN: 0 if success
4817 * error code if failure
4818 */
4819 /*ARGSUSED*/
4820 int
4821 zfs_map(struct inode *ip, offset_t off, caddr_t *addrp, size_t len,
4822 unsigned long vm_flags)
4823 {
4824 znode_t *zp = ITOZ(ip);
4825 zfsvfs_t *zfsvfs = ITOZSB(ip);
4826
4827 ZFS_ENTER(zfsvfs);
4828 ZFS_VERIFY_ZP(zp);
4829
4830 if ((vm_flags & VM_WRITE) && (zp->z_pflags &
4831 (ZFS_IMMUTABLE | ZFS_READONLY | ZFS_APPENDONLY))) {
4832 ZFS_EXIT(zfsvfs);
4833 return (SET_ERROR(EPERM));
4834 }
4835
4836 if ((vm_flags & (VM_READ | VM_EXEC)) &&
4837 (zp->z_pflags & ZFS_AV_QUARANTINED)) {
4838 ZFS_EXIT(zfsvfs);
4839 return (SET_ERROR(EACCES));
4840 }
4841
4842 if (off < 0 || len > MAXOFFSET_T - off) {
4843 ZFS_EXIT(zfsvfs);
4844 return (SET_ERROR(ENXIO));
4845 }
4846
4847 ZFS_EXIT(zfsvfs);
4848 return (0);
4849 }
4850
4851 /*
4852 * convoff - converts the given data (start, whence) to the
4853 * given whence.
4854 */
4855 int
4856 convoff(struct inode *ip, flock64_t *lckdat, int whence, offset_t offset)
4857 {
4858 vattr_t vap;
4859 int error;
4860
4861 if ((lckdat->l_whence == 2) || (whence == 2)) {
4862 if ((error = zfs_getattr(ip, &vap, 0, CRED())))
4863 return (error);
4864 }
4865
4866 switch (lckdat->l_whence) {
4867 case 1:
4868 lckdat->l_start += offset;
4869 break;
4870 case 2:
4871 lckdat->l_start += vap.va_size;
4872 /* FALLTHRU */
4873 case 0:
4874 break;
4875 default:
4876 return (SET_ERROR(EINVAL));
4877 }
4878
4879 if (lckdat->l_start < 0)
4880 return (SET_ERROR(EINVAL));
4881
4882 switch (whence) {
4883 case 1:
4884 lckdat->l_start -= offset;
4885 break;
4886 case 2:
4887 lckdat->l_start -= vap.va_size;
4888 /* FALLTHRU */
4889 case 0:
4890 break;
4891 default:
4892 return (SET_ERROR(EINVAL));
4893 }
4894
4895 lckdat->l_whence = (short)whence;
4896 return (0);
4897 }
4898
4899 /*
4900 * Free or allocate space in a file. Currently, this function only
4901 * supports the `F_FREESP' command. However, this command is somewhat
4902 * misnamed, as its functionality includes the ability to allocate as
4903 * well as free space.
4904 *
4905 * IN: ip - inode of file to free data in.
4906 * cmd - action to take (only F_FREESP supported).
4907 * bfp - section of file to free/alloc.
4908 * flag - current file open mode flags.
4909 * offset - current file offset.
4910 * cr - credentials of caller [UNUSED].
4911 *
4912 * RETURN: 0 on success, error code on failure.
4913 *
4914 * Timestamps:
4915 * ip - ctime|mtime updated
4916 */
4917 /* ARGSUSED */
4918 int
4919 zfs_space(struct inode *ip, int cmd, flock64_t *bfp, int flag,
4920 offset_t offset, cred_t *cr)
4921 {
4922 znode_t *zp = ITOZ(ip);
4923 zfsvfs_t *zfsvfs = ITOZSB(ip);
4924 uint64_t off, len;
4925 int error;
4926
4927 ZFS_ENTER(zfsvfs);
4928 ZFS_VERIFY_ZP(zp);
4929
4930 if (cmd != F_FREESP) {
4931 ZFS_EXIT(zfsvfs);
4932 return (SET_ERROR(EINVAL));
4933 }
4934
4935 /*
4936 * Callers might not be able to detect properly that we are read-only,
4937 * so check it explicitly here.
4938 */
4939 if (zfs_is_readonly(zfsvfs)) {
4940 ZFS_EXIT(zfsvfs);
4941 return (SET_ERROR(EROFS));
4942 }
4943
4944 if ((error = convoff(ip, bfp, 0, offset))) {
4945 ZFS_EXIT(zfsvfs);
4946 return (error);
4947 }
4948
4949 if (bfp->l_len < 0) {
4950 ZFS_EXIT(zfsvfs);
4951 return (SET_ERROR(EINVAL));
4952 }
4953
4954 /*
4955 * Permissions aren't checked on Solaris because on this OS
4956 * zfs_space() can only be called with an opened file handle.
4957 * On Linux we can get here through truncate_range() which
4958 * operates directly on inodes, so we need to check access rights.
4959 */
4960 if ((error = zfs_zaccess(zp, ACE_WRITE_DATA, 0, B_FALSE, cr))) {
4961 ZFS_EXIT(zfsvfs);
4962 return (error);
4963 }
4964
4965 off = bfp->l_start;
4966 len = bfp->l_len; /* 0 means from off to end of file */
4967
4968 error = zfs_freesp(zp, off, len, flag, TRUE);
4969
4970 ZFS_EXIT(zfsvfs);
4971 return (error);
4972 }
4973
4974 /*ARGSUSED*/
4975 int
4976 zfs_fid(struct inode *ip, fid_t *fidp)
4977 {
4978 znode_t *zp = ITOZ(ip);
4979 zfsvfs_t *zfsvfs = ITOZSB(ip);
4980 uint32_t gen;
4981 uint64_t gen64;
4982 uint64_t object = zp->z_id;
4983 zfid_short_t *zfid;
4984 int size, i, error;
4985
4986 ZFS_ENTER(zfsvfs);
4987 ZFS_VERIFY_ZP(zp);
4988
4989 if ((error = sa_lookup(zp->z_sa_hdl, SA_ZPL_GEN(zfsvfs),
4990 &gen64, sizeof (uint64_t))) != 0) {
4991 ZFS_EXIT(zfsvfs);
4992 return (error);
4993 }
4994
4995 gen = (uint32_t)gen64;
4996
4997 size = SHORT_FID_LEN;
4998
4999 zfid = (zfid_short_t *)fidp;
5000
5001 zfid->zf_len = size;
5002
5003 for (i = 0; i < sizeof (zfid->zf_object); i++)
5004 zfid->zf_object[i] = (uint8_t)(object >> (8 * i));
5005
5006 /* Must have a non-zero generation number to distinguish from .zfs */
5007 if (gen == 0)
5008 gen = 1;
5009 for (i = 0; i < sizeof (zfid->zf_gen); i++)
5010 zfid->zf_gen[i] = (uint8_t)(gen >> (8 * i));
5011
5012 ZFS_EXIT(zfsvfs);
5013 return (0);
5014 }
5015
5016 /*ARGSUSED*/
5017 int
5018 zfs_getsecattr(struct inode *ip, vsecattr_t *vsecp, int flag, cred_t *cr)
5019 {
5020 znode_t *zp = ITOZ(ip);
5021 zfsvfs_t *zfsvfs = ITOZSB(ip);
5022 int error;
5023 boolean_t skipaclchk = (flag & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE;
5024
5025 ZFS_ENTER(zfsvfs);
5026 ZFS_VERIFY_ZP(zp);
5027 error = zfs_getacl(zp, vsecp, skipaclchk, cr);
5028 ZFS_EXIT(zfsvfs);
5029
5030 return (error);
5031 }
5032
5033 /*ARGSUSED*/
5034 int
5035 zfs_setsecattr(struct inode *ip, vsecattr_t *vsecp, int flag, cred_t *cr)
5036 {
5037 znode_t *zp = ITOZ(ip);
5038 zfsvfs_t *zfsvfs = ITOZSB(ip);
5039 int error;
5040 boolean_t skipaclchk = (flag & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE;
5041 zilog_t *zilog = zfsvfs->z_log;
5042
5043 ZFS_ENTER(zfsvfs);
5044 ZFS_VERIFY_ZP(zp);
5045
5046 error = zfs_setacl(zp, vsecp, skipaclchk, cr);
5047
5048 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
5049 zil_commit(zilog, 0);
5050
5051 ZFS_EXIT(zfsvfs);
5052 return (error);
5053 }
5054
5055 #ifdef HAVE_UIO_ZEROCOPY
5056 /*
5057 * Tunable, both must be a power of 2.
5058 *
5059 * zcr_blksz_min: the smallest read we may consider to loan out an arcbuf
5060 * zcr_blksz_max: if set to less than the file block size, allow loaning out of
5061 * an arcbuf for a partial block read
5062 */
5063 int zcr_blksz_min = (1 << 10); /* 1K */
5064 int zcr_blksz_max = (1 << 17); /* 128K */
5065
5066 /*ARGSUSED*/
5067 static int
5068 zfs_reqzcbuf(struct inode *ip, enum uio_rw ioflag, xuio_t *xuio, cred_t *cr)
5069 {
5070 znode_t *zp = ITOZ(ip);
5071 zfsvfs_t *zfsvfs = ITOZSB(ip);
5072 int max_blksz = zfsvfs->z_max_blksz;
5073 uio_t *uio = &xuio->xu_uio;
5074 ssize_t size = uio->uio_resid;
5075 offset_t offset = uio->uio_loffset;
5076 int blksz;
5077 int fullblk, i;
5078 arc_buf_t *abuf;
5079 ssize_t maxsize;
5080 int preamble, postamble;
5081
5082 if (xuio->xu_type != UIOTYPE_ZEROCOPY)
5083 return (SET_ERROR(EINVAL));
5084
5085 ZFS_ENTER(zfsvfs);
5086 ZFS_VERIFY_ZP(zp);
5087 switch (ioflag) {
5088 case UIO_WRITE:
5089 /*
5090 * Loan out an arc_buf for write if write size is bigger than
5091 * max_blksz, and the file's block size is also max_blksz.
5092 */
5093 blksz = max_blksz;
5094 if (size < blksz || zp->z_blksz != blksz) {
5095 ZFS_EXIT(zfsvfs);
5096 return (SET_ERROR(EINVAL));
5097 }
5098 /*
5099 * Caller requests buffers for write before knowing where the
5100 * write offset might be (e.g. NFS TCP write).
5101 */
5102 if (offset == -1) {
5103 preamble = 0;
5104 } else {
5105 preamble = P2PHASE(offset, blksz);
5106 if (preamble) {
5107 preamble = blksz - preamble;
5108 size -= preamble;
5109 }
5110 }
5111
5112 postamble = P2PHASE(size, blksz);
5113 size -= postamble;
5114
5115 fullblk = size / blksz;
5116 (void) dmu_xuio_init(xuio,
5117 (preamble != 0) + fullblk + (postamble != 0));
5118
5119 /*
5120 * Have to fix iov base/len for partial buffers. They
5121 * currently represent full arc_buf's.
5122 */
5123 if (preamble) {
5124 /* data begins in the middle of the arc_buf */
5125 abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl),
5126 blksz);
5127 ASSERT(abuf);
5128 (void) dmu_xuio_add(xuio, abuf,
5129 blksz - preamble, preamble);
5130 }
5131
5132 for (i = 0; i < fullblk; i++) {
5133 abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl),
5134 blksz);
5135 ASSERT(abuf);
5136 (void) dmu_xuio_add(xuio, abuf, 0, blksz);
5137 }
5138
5139 if (postamble) {
5140 /* data ends in the middle of the arc_buf */
5141 abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl),
5142 blksz);
5143 ASSERT(abuf);
5144 (void) dmu_xuio_add(xuio, abuf, 0, postamble);
5145 }
5146 break;
5147 case UIO_READ:
5148 /*
5149 * Loan out an arc_buf for read if the read size is larger than
5150 * the current file block size. Block alignment is not
5151 * considered. Partial arc_buf will be loaned out for read.
5152 */
5153 blksz = zp->z_blksz;
5154 if (blksz < zcr_blksz_min)
5155 blksz = zcr_blksz_min;
5156 if (blksz > zcr_blksz_max)
5157 blksz = zcr_blksz_max;
5158 /* avoid potential complexity of dealing with it */
5159 if (blksz > max_blksz) {
5160 ZFS_EXIT(zfsvfs);
5161 return (SET_ERROR(EINVAL));
5162 }
5163
5164 maxsize = zp->z_size - uio->uio_loffset;
5165 if (size > maxsize)
5166 size = maxsize;
5167
5168 if (size < blksz) {
5169 ZFS_EXIT(zfsvfs);
5170 return (SET_ERROR(EINVAL));
5171 }
5172 break;
5173 default:
5174 ZFS_EXIT(zfsvfs);
5175 return (SET_ERROR(EINVAL));
5176 }
5177
5178 uio->uio_extflg = UIO_XUIO;
5179 XUIO_XUZC_RW(xuio) = ioflag;
5180 ZFS_EXIT(zfsvfs);
5181 return (0);
5182 }
5183
5184 /*ARGSUSED*/
5185 static int
5186 zfs_retzcbuf(struct inode *ip, xuio_t *xuio, cred_t *cr)
5187 {
5188 int i;
5189 arc_buf_t *abuf;
5190 int ioflag = XUIO_XUZC_RW(xuio);
5191
5192 ASSERT(xuio->xu_type == UIOTYPE_ZEROCOPY);
5193
5194 i = dmu_xuio_cnt(xuio);
5195 while (i-- > 0) {
5196 abuf = dmu_xuio_arcbuf(xuio, i);
5197 /*
5198 * if abuf == NULL, it must be a write buffer
5199 * that has been returned in zfs_write().
5200 */
5201 if (abuf)
5202 dmu_return_arcbuf(abuf);
5203 ASSERT(abuf || ioflag == UIO_WRITE);
5204 }
5205
5206 dmu_xuio_fini(xuio);
5207 return (0);
5208 }
5209 #endif /* HAVE_UIO_ZEROCOPY */
5210
5211 #if defined(_KERNEL)
5212 EXPORT_SYMBOL(zfs_open);
5213 EXPORT_SYMBOL(zfs_close);
5214 EXPORT_SYMBOL(zfs_read);
5215 EXPORT_SYMBOL(zfs_write);
5216 EXPORT_SYMBOL(zfs_access);
5217 EXPORT_SYMBOL(zfs_lookup);
5218 EXPORT_SYMBOL(zfs_create);
5219 EXPORT_SYMBOL(zfs_tmpfile);
5220 EXPORT_SYMBOL(zfs_remove);
5221 EXPORT_SYMBOL(zfs_mkdir);
5222 EXPORT_SYMBOL(zfs_rmdir);
5223 EXPORT_SYMBOL(zfs_readdir);
5224 EXPORT_SYMBOL(zfs_fsync);
5225 EXPORT_SYMBOL(zfs_getattr);
5226 EXPORT_SYMBOL(zfs_getattr_fast);
5227 EXPORT_SYMBOL(zfs_setattr);
5228 EXPORT_SYMBOL(zfs_rename);
5229 EXPORT_SYMBOL(zfs_symlink);
5230 EXPORT_SYMBOL(zfs_readlink);
5231 EXPORT_SYMBOL(zfs_link);
5232 EXPORT_SYMBOL(zfs_inactive);
5233 EXPORT_SYMBOL(zfs_space);
5234 EXPORT_SYMBOL(zfs_fid);
5235 EXPORT_SYMBOL(zfs_getsecattr);
5236 EXPORT_SYMBOL(zfs_setsecattr);
5237 EXPORT_SYMBOL(zfs_getpage);
5238 EXPORT_SYMBOL(zfs_putpage);
5239 EXPORT_SYMBOL(zfs_dirty_inode);
5240 EXPORT_SYMBOL(zfs_map);
5241
5242 /* CSTYLED */
5243 module_param(zfs_delete_blocks, ulong, 0644);
5244 MODULE_PARM_DESC(zfs_delete_blocks, "Delete files larger than N blocks async");
5245 module_param(zfs_read_chunk_size, long, 0644);
5246 MODULE_PARM_DESC(zfs_read_chunk_size, "Bytes to read per chunk");
5247 #endif