]> git.proxmox.com Git - mirror_zfs.git/blob - module/zfs/zfs_vnops.c
Use SET_ERROR for constant non-zero return codes
[mirror_zfs.git] / module / zfs / zfs_vnops.c
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22 /*
23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright (c) 2012, 2015 by Delphix. All rights reserved.
25 * Copyright (c) 2015 by Chunwei Chen. All rights reserved.
26 * Copyright 2017 Nexenta Systems, Inc.
27 */
28
29 /* Portions Copyright 2007 Jeremy Teo */
30 /* Portions Copyright 2010 Robert Milkowski */
31
32
33 #include <sys/types.h>
34 #include <sys/param.h>
35 #include <sys/time.h>
36 #include <sys/systm.h>
37 #include <sys/sysmacros.h>
38 #include <sys/resource.h>
39 #include <sys/vfs.h>
40 #include <sys/vfs_opreg.h>
41 #include <sys/file.h>
42 #include <sys/stat.h>
43 #include <sys/kmem.h>
44 #include <sys/taskq.h>
45 #include <sys/uio.h>
46 #include <sys/vmsystm.h>
47 #include <sys/atomic.h>
48 #include <vm/pvn.h>
49 #include <sys/pathname.h>
50 #include <sys/cmn_err.h>
51 #include <sys/errno.h>
52 #include <sys/unistd.h>
53 #include <sys/zfs_dir.h>
54 #include <sys/zfs_acl.h>
55 #include <sys/zfs_ioctl.h>
56 #include <sys/fs/zfs.h>
57 #include <sys/dmu.h>
58 #include <sys/dmu_objset.h>
59 #include <sys/spa.h>
60 #include <sys/txg.h>
61 #include <sys/dbuf.h>
62 #include <sys/zap.h>
63 #include <sys/sa.h>
64 #include <sys/dirent.h>
65 #include <sys/policy.h>
66 #include <sys/sunddi.h>
67 #include <sys/sid.h>
68 #include <sys/mode.h>
69 #include "fs/fs_subr.h"
70 #include <sys/zfs_ctldir.h>
71 #include <sys/zfs_fuid.h>
72 #include <sys/zfs_sa.h>
73 #include <sys/zfs_vnops.h>
74 #include <sys/dnlc.h>
75 #include <sys/zfs_rlock.h>
76 #include <sys/extdirent.h>
77 #include <sys/kidmap.h>
78 #include <sys/cred.h>
79 #include <sys/attr.h>
80 #include <sys/zpl.h>
81
82 /*
83 * Programming rules.
84 *
85 * Each vnode op performs some logical unit of work. To do this, the ZPL must
86 * properly lock its in-core state, create a DMU transaction, do the work,
87 * record this work in the intent log (ZIL), commit the DMU transaction,
88 * and wait for the intent log to commit if it is a synchronous operation.
89 * Moreover, the vnode ops must work in both normal and log replay context.
90 * The ordering of events is important to avoid deadlocks and references
91 * to freed memory. The example below illustrates the following Big Rules:
92 *
93 * (1) A check must be made in each zfs thread for a mounted file system.
94 * This is done avoiding races using ZFS_ENTER(zfsvfs).
95 * A ZFS_EXIT(zfsvfs) is needed before all returns. Any znodes
96 * must be checked with ZFS_VERIFY_ZP(zp). Both of these macros
97 * can return EIO from the calling function.
98 *
99 * (2) iput() should always be the last thing except for zil_commit()
100 * (if necessary) and ZFS_EXIT(). This is for 3 reasons:
101 * First, if it's the last reference, the vnode/znode
102 * can be freed, so the zp may point to freed memory. Second, the last
103 * reference will call zfs_zinactive(), which may induce a lot of work --
104 * pushing cached pages (which acquires range locks) and syncing out
105 * cached atime changes. Third, zfs_zinactive() may require a new tx,
106 * which could deadlock the system if you were already holding one.
107 * If you must call iput() within a tx then use zfs_iput_async().
108 *
109 * (3) All range locks must be grabbed before calling dmu_tx_assign(),
110 * as they can span dmu_tx_assign() calls.
111 *
112 * (4) If ZPL locks are held, pass TXG_NOWAIT as the second argument to
113 * dmu_tx_assign(). This is critical because we don't want to block
114 * while holding locks.
115 *
116 * If no ZPL locks are held (aside from ZFS_ENTER()), use TXG_WAIT. This
117 * reduces lock contention and CPU usage when we must wait (note that if
118 * throughput is constrained by the storage, nearly every transaction
119 * must wait).
120 *
121 * Note, in particular, that if a lock is sometimes acquired before
122 * the tx assigns, and sometimes after (e.g. z_lock), then failing
123 * to use a non-blocking assign can deadlock the system. The scenario:
124 *
125 * Thread A has grabbed a lock before calling dmu_tx_assign().
126 * Thread B is in an already-assigned tx, and blocks for this lock.
127 * Thread A calls dmu_tx_assign(TXG_WAIT) and blocks in txg_wait_open()
128 * forever, because the previous txg can't quiesce until B's tx commits.
129 *
130 * If dmu_tx_assign() returns ERESTART and zfsvfs->z_assign is TXG_NOWAIT,
131 * then drop all locks, call dmu_tx_wait(), and try again. On subsequent
132 * calls to dmu_tx_assign(), pass TXG_WAITED rather than TXG_NOWAIT,
133 * to indicate that this operation has already called dmu_tx_wait().
134 * This will ensure that we don't retry forever, waiting a short bit
135 * each time.
136 *
137 * (5) If the operation succeeded, generate the intent log entry for it
138 * before dropping locks. This ensures that the ordering of events
139 * in the intent log matches the order in which they actually occurred.
140 * During ZIL replay the zfs_log_* functions will update the sequence
141 * number to indicate the zil transaction has replayed.
142 *
143 * (6) At the end of each vnode op, the DMU tx must always commit,
144 * regardless of whether there were any errors.
145 *
146 * (7) After dropping all locks, invoke zil_commit(zilog, foid)
147 * to ensure that synchronous semantics are provided when necessary.
148 *
149 * In general, this is how things should be ordered in each vnode op:
150 *
151 * ZFS_ENTER(zfsvfs); // exit if unmounted
152 * top:
153 * zfs_dirent_lock(&dl, ...) // lock directory entry (may igrab())
154 * rw_enter(...); // grab any other locks you need
155 * tx = dmu_tx_create(...); // get DMU tx
156 * dmu_tx_hold_*(); // hold each object you might modify
157 * error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT);
158 * if (error) {
159 * rw_exit(...); // drop locks
160 * zfs_dirent_unlock(dl); // unlock directory entry
161 * iput(...); // release held vnodes
162 * if (error == ERESTART) {
163 * waited = B_TRUE;
164 * dmu_tx_wait(tx);
165 * dmu_tx_abort(tx);
166 * goto top;
167 * }
168 * dmu_tx_abort(tx); // abort DMU tx
169 * ZFS_EXIT(zfsvfs); // finished in zfs
170 * return (error); // really out of space
171 * }
172 * error = do_real_work(); // do whatever this VOP does
173 * if (error == 0)
174 * zfs_log_*(...); // on success, make ZIL entry
175 * dmu_tx_commit(tx); // commit DMU tx -- error or not
176 * rw_exit(...); // drop locks
177 * zfs_dirent_unlock(dl); // unlock directory entry
178 * iput(...); // release held vnodes
179 * zil_commit(zilog, foid); // synchronous when necessary
180 * ZFS_EXIT(zfsvfs); // finished in zfs
181 * return (error); // done, report error
182 */
183
184 /*
185 * Virus scanning is unsupported. It would be possible to add a hook
186 * here to performance the required virus scan. This could be done
187 * entirely in the kernel or potentially as an update to invoke a
188 * scanning utility.
189 */
190 static int
191 zfs_vscan(struct inode *ip, cred_t *cr, int async)
192 {
193 return (0);
194 }
195
196 /* ARGSUSED */
197 int
198 zfs_open(struct inode *ip, int mode, int flag, cred_t *cr)
199 {
200 znode_t *zp = ITOZ(ip);
201 zfsvfs_t *zfsvfs = ITOZSB(ip);
202
203 ZFS_ENTER(zfsvfs);
204 ZFS_VERIFY_ZP(zp);
205
206 /* Honor ZFS_APPENDONLY file attribute */
207 if ((mode & FMODE_WRITE) && (zp->z_pflags & ZFS_APPENDONLY) &&
208 ((flag & O_APPEND) == 0)) {
209 ZFS_EXIT(zfsvfs);
210 return (SET_ERROR(EPERM));
211 }
212
213 /* Virus scan eligible files on open */
214 if (!zfs_has_ctldir(zp) && zfsvfs->z_vscan && S_ISREG(ip->i_mode) &&
215 !(zp->z_pflags & ZFS_AV_QUARANTINED) && zp->z_size > 0) {
216 if (zfs_vscan(ip, cr, 0) != 0) {
217 ZFS_EXIT(zfsvfs);
218 return (SET_ERROR(EACCES));
219 }
220 }
221
222 /* Keep a count of the synchronous opens in the znode */
223 if (flag & O_SYNC)
224 atomic_inc_32(&zp->z_sync_cnt);
225
226 ZFS_EXIT(zfsvfs);
227 return (0);
228 }
229
230 /* ARGSUSED */
231 int
232 zfs_close(struct inode *ip, int flag, cred_t *cr)
233 {
234 znode_t *zp = ITOZ(ip);
235 zfsvfs_t *zfsvfs = ITOZSB(ip);
236
237 ZFS_ENTER(zfsvfs);
238 ZFS_VERIFY_ZP(zp);
239
240 /* Decrement the synchronous opens in the znode */
241 if (flag & O_SYNC)
242 atomic_dec_32(&zp->z_sync_cnt);
243
244 if (!zfs_has_ctldir(zp) && zfsvfs->z_vscan && S_ISREG(ip->i_mode) &&
245 !(zp->z_pflags & ZFS_AV_QUARANTINED) && zp->z_size > 0)
246 VERIFY(zfs_vscan(ip, cr, 1) == 0);
247
248 ZFS_EXIT(zfsvfs);
249 return (0);
250 }
251
252 #if defined(SEEK_HOLE) && defined(SEEK_DATA)
253 /*
254 * Lseek support for finding holes (cmd == SEEK_HOLE) and
255 * data (cmd == SEEK_DATA). "off" is an in/out parameter.
256 */
257 static int
258 zfs_holey_common(struct inode *ip, int cmd, loff_t *off)
259 {
260 znode_t *zp = ITOZ(ip);
261 uint64_t noff = (uint64_t)*off; /* new offset */
262 uint64_t file_sz;
263 int error;
264 boolean_t hole;
265
266 file_sz = zp->z_size;
267 if (noff >= file_sz) {
268 return (SET_ERROR(ENXIO));
269 }
270
271 if (cmd == SEEK_HOLE)
272 hole = B_TRUE;
273 else
274 hole = B_FALSE;
275
276 error = dmu_offset_next(ZTOZSB(zp)->z_os, zp->z_id, hole, &noff);
277
278 if (error == ESRCH)
279 return (SET_ERROR(ENXIO));
280
281 /* file was dirty, so fall back to using generic logic */
282 if (error == EBUSY) {
283 if (hole)
284 *off = file_sz;
285
286 return (0);
287 }
288
289 /*
290 * We could find a hole that begins after the logical end-of-file,
291 * because dmu_offset_next() only works on whole blocks. If the
292 * EOF falls mid-block, then indicate that the "virtual hole"
293 * at the end of the file begins at the logical EOF, rather than
294 * at the end of the last block.
295 */
296 if (noff > file_sz) {
297 ASSERT(hole);
298 noff = file_sz;
299 }
300
301 if (noff < *off)
302 return (error);
303 *off = noff;
304 return (error);
305 }
306
307 int
308 zfs_holey(struct inode *ip, int cmd, loff_t *off)
309 {
310 znode_t *zp = ITOZ(ip);
311 zfsvfs_t *zfsvfs = ITOZSB(ip);
312 int error;
313
314 ZFS_ENTER(zfsvfs);
315 ZFS_VERIFY_ZP(zp);
316
317 error = zfs_holey_common(ip, cmd, off);
318
319 ZFS_EXIT(zfsvfs);
320 return (error);
321 }
322 #endif /* SEEK_HOLE && SEEK_DATA */
323
324 #if defined(_KERNEL)
325 /*
326 * When a file is memory mapped, we must keep the IO data synchronized
327 * between the DMU cache and the memory mapped pages. What this means:
328 *
329 * On Write: If we find a memory mapped page, we write to *both*
330 * the page and the dmu buffer.
331 */
332 static void
333 update_pages(struct inode *ip, int64_t start, int len,
334 objset_t *os, uint64_t oid)
335 {
336 struct address_space *mp = ip->i_mapping;
337 struct page *pp;
338 uint64_t nbytes;
339 int64_t off;
340 void *pb;
341
342 off = start & (PAGE_SIZE-1);
343 for (start &= PAGE_MASK; len > 0; start += PAGE_SIZE) {
344 nbytes = MIN(PAGE_SIZE - off, len);
345
346 pp = find_lock_page(mp, start >> PAGE_SHIFT);
347 if (pp) {
348 if (mapping_writably_mapped(mp))
349 flush_dcache_page(pp);
350
351 pb = kmap(pp);
352 (void) dmu_read(os, oid, start+off, nbytes, pb+off,
353 DMU_READ_PREFETCH);
354 kunmap(pp);
355
356 if (mapping_writably_mapped(mp))
357 flush_dcache_page(pp);
358
359 mark_page_accessed(pp);
360 SetPageUptodate(pp);
361 ClearPageError(pp);
362 unlock_page(pp);
363 put_page(pp);
364 }
365
366 len -= nbytes;
367 off = 0;
368 }
369 }
370
371 /*
372 * When a file is memory mapped, we must keep the IO data synchronized
373 * between the DMU cache and the memory mapped pages. What this means:
374 *
375 * On Read: We "read" preferentially from memory mapped pages,
376 * else we default from the dmu buffer.
377 *
378 * NOTE: We will always "break up" the IO into PAGESIZE uiomoves when
379 * the file is memory mapped.
380 */
381 static int
382 mappedread(struct inode *ip, int nbytes, uio_t *uio)
383 {
384 struct address_space *mp = ip->i_mapping;
385 struct page *pp;
386 znode_t *zp = ITOZ(ip);
387 int64_t start, off;
388 uint64_t bytes;
389 int len = nbytes;
390 int error = 0;
391 void *pb;
392
393 start = uio->uio_loffset;
394 off = start & (PAGE_SIZE-1);
395 for (start &= PAGE_MASK; len > 0; start += PAGE_SIZE) {
396 bytes = MIN(PAGE_SIZE - off, len);
397
398 pp = find_lock_page(mp, start >> PAGE_SHIFT);
399 if (pp) {
400 ASSERT(PageUptodate(pp));
401
402 pb = kmap(pp);
403 error = uiomove(pb + off, bytes, UIO_READ, uio);
404 kunmap(pp);
405
406 if (mapping_writably_mapped(mp))
407 flush_dcache_page(pp);
408
409 mark_page_accessed(pp);
410 unlock_page(pp);
411 put_page(pp);
412 } else {
413 error = dmu_read_uio_dbuf(sa_get_db(zp->z_sa_hdl),
414 uio, bytes);
415 }
416
417 len -= bytes;
418 off = 0;
419 if (error)
420 break;
421 }
422 return (error);
423 }
424 #endif /* _KERNEL */
425
426 unsigned long zfs_read_chunk_size = 1024 * 1024; /* Tunable */
427 unsigned long zfs_delete_blocks = DMU_MAX_DELETEBLKCNT;
428
429 /*
430 * Read bytes from specified file into supplied buffer.
431 *
432 * IN: ip - inode of file to be read from.
433 * uio - structure supplying read location, range info,
434 * and return buffer.
435 * ioflag - FSYNC flags; used to provide FRSYNC semantics.
436 * O_DIRECT flag; used to bypass page cache.
437 * cr - credentials of caller.
438 *
439 * OUT: uio - updated offset and range, buffer filled.
440 *
441 * RETURN: 0 on success, error code on failure.
442 *
443 * Side Effects:
444 * inode - atime updated if byte count > 0
445 */
446 /* ARGSUSED */
447 int
448 zfs_read(struct inode *ip, uio_t *uio, int ioflag, cred_t *cr)
449 {
450 znode_t *zp = ITOZ(ip);
451 zfsvfs_t *zfsvfs = ITOZSB(ip);
452 ssize_t n, nbytes;
453 int error = 0;
454 rl_t *rl;
455 #ifdef HAVE_UIO_ZEROCOPY
456 xuio_t *xuio = NULL;
457 #endif /* HAVE_UIO_ZEROCOPY */
458
459 ZFS_ENTER(zfsvfs);
460 ZFS_VERIFY_ZP(zp);
461
462 if (zp->z_pflags & ZFS_AV_QUARANTINED) {
463 ZFS_EXIT(zfsvfs);
464 return (SET_ERROR(EACCES));
465 }
466
467 /*
468 * Validate file offset
469 */
470 if (uio->uio_loffset < (offset_t)0) {
471 ZFS_EXIT(zfsvfs);
472 return (SET_ERROR(EINVAL));
473 }
474
475 /*
476 * Fasttrack empty reads
477 */
478 if (uio->uio_resid == 0) {
479 ZFS_EXIT(zfsvfs);
480 return (0);
481 }
482
483 /*
484 * If we're in FRSYNC mode, sync out this znode before reading it.
485 */
486 if (ioflag & FRSYNC || zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
487 zil_commit(zfsvfs->z_log, zp->z_id);
488
489 /*
490 * Lock the range against changes.
491 */
492 rl = zfs_range_lock(&zp->z_range_lock, uio->uio_loffset, uio->uio_resid,
493 RL_READER);
494
495 /*
496 * If we are reading past end-of-file we can skip
497 * to the end; but we might still need to set atime.
498 */
499 if (uio->uio_loffset >= zp->z_size) {
500 error = 0;
501 goto out;
502 }
503
504 ASSERT(uio->uio_loffset < zp->z_size);
505 n = MIN(uio->uio_resid, zp->z_size - uio->uio_loffset);
506
507 #ifdef HAVE_UIO_ZEROCOPY
508 if ((uio->uio_extflg == UIO_XUIO) &&
509 (((xuio_t *)uio)->xu_type == UIOTYPE_ZEROCOPY)) {
510 int nblk;
511 int blksz = zp->z_blksz;
512 uint64_t offset = uio->uio_loffset;
513
514 xuio = (xuio_t *)uio;
515 if ((ISP2(blksz))) {
516 nblk = (P2ROUNDUP(offset + n, blksz) - P2ALIGN(offset,
517 blksz)) / blksz;
518 } else {
519 ASSERT(offset + n <= blksz);
520 nblk = 1;
521 }
522 (void) dmu_xuio_init(xuio, nblk);
523
524 if (vn_has_cached_data(ip)) {
525 /*
526 * For simplicity, we always allocate a full buffer
527 * even if we only expect to read a portion of a block.
528 */
529 while (--nblk >= 0) {
530 (void) dmu_xuio_add(xuio,
531 dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl),
532 blksz), 0, blksz);
533 }
534 }
535 }
536 #endif /* HAVE_UIO_ZEROCOPY */
537
538 while (n > 0) {
539 nbytes = MIN(n, zfs_read_chunk_size -
540 P2PHASE(uio->uio_loffset, zfs_read_chunk_size));
541
542 if (zp->z_is_mapped && !(ioflag & O_DIRECT)) {
543 error = mappedread(ip, nbytes, uio);
544 } else {
545 error = dmu_read_uio_dbuf(sa_get_db(zp->z_sa_hdl),
546 uio, nbytes);
547 }
548
549 if (error) {
550 /* convert checksum errors into IO errors */
551 if (error == ECKSUM)
552 error = SET_ERROR(EIO);
553 break;
554 }
555
556 n -= nbytes;
557 }
558 out:
559 zfs_range_unlock(rl);
560
561 ZFS_EXIT(zfsvfs);
562 return (error);
563 }
564
565 /*
566 * Write the bytes to a file.
567 *
568 * IN: ip - inode of file to be written to.
569 * uio - structure supplying write location, range info,
570 * and data buffer.
571 * ioflag - FAPPEND flag set if in append mode.
572 * O_DIRECT flag; used to bypass page cache.
573 * cr - credentials of caller.
574 *
575 * OUT: uio - updated offset and range.
576 *
577 * RETURN: 0 if success
578 * error code if failure
579 *
580 * Timestamps:
581 * ip - ctime|mtime updated if byte count > 0
582 */
583
584 /* ARGSUSED */
585 int
586 zfs_write(struct inode *ip, uio_t *uio, int ioflag, cred_t *cr)
587 {
588 znode_t *zp = ITOZ(ip);
589 rlim64_t limit = uio->uio_limit;
590 ssize_t start_resid = uio->uio_resid;
591 ssize_t tx_bytes;
592 uint64_t end_size;
593 dmu_tx_t *tx;
594 zfsvfs_t *zfsvfs = ZTOZSB(zp);
595 zilog_t *zilog;
596 offset_t woff;
597 ssize_t n, nbytes;
598 rl_t *rl;
599 int max_blksz = zfsvfs->z_max_blksz;
600 int error = 0;
601 arc_buf_t *abuf;
602 const iovec_t *aiov = NULL;
603 xuio_t *xuio = NULL;
604 int write_eof;
605 int count = 0;
606 sa_bulk_attr_t bulk[4];
607 uint64_t mtime[2], ctime[2];
608 uint32_t uid;
609 #ifdef HAVE_UIO_ZEROCOPY
610 int i_iov = 0;
611 const iovec_t *iovp = uio->uio_iov;
612 ASSERTV(int iovcnt = uio->uio_iovcnt);
613 #endif
614
615 /*
616 * Fasttrack empty write
617 */
618 n = start_resid;
619 if (n == 0)
620 return (0);
621
622 if (limit == RLIM64_INFINITY || limit > MAXOFFSET_T)
623 limit = MAXOFFSET_T;
624
625 ZFS_ENTER(zfsvfs);
626 ZFS_VERIFY_ZP(zp);
627
628 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL, &mtime, 16);
629 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, &ctime, 16);
630 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_SIZE(zfsvfs), NULL,
631 &zp->z_size, 8);
632 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL,
633 &zp->z_pflags, 8);
634
635 /*
636 * Callers might not be able to detect properly that we are read-only,
637 * so check it explicitly here.
638 */
639 if (zfs_is_readonly(zfsvfs)) {
640 ZFS_EXIT(zfsvfs);
641 return (SET_ERROR(EROFS));
642 }
643
644 /*
645 * If immutable or not appending then return EPERM
646 */
647 if ((zp->z_pflags & (ZFS_IMMUTABLE | ZFS_READONLY)) ||
648 ((zp->z_pflags & ZFS_APPENDONLY) && !(ioflag & FAPPEND) &&
649 (uio->uio_loffset < zp->z_size))) {
650 ZFS_EXIT(zfsvfs);
651 return (SET_ERROR(EPERM));
652 }
653
654 zilog = zfsvfs->z_log;
655
656 /*
657 * Validate file offset
658 */
659 woff = ioflag & FAPPEND ? zp->z_size : uio->uio_loffset;
660 if (woff < 0) {
661 ZFS_EXIT(zfsvfs);
662 return (SET_ERROR(EINVAL));
663 }
664
665 /*
666 * Pre-fault the pages to ensure slow (eg NFS) pages
667 * don't hold up txg.
668 * Skip this if uio contains loaned arc_buf.
669 */
670 #ifdef HAVE_UIO_ZEROCOPY
671 if ((uio->uio_extflg == UIO_XUIO) &&
672 (((xuio_t *)uio)->xu_type == UIOTYPE_ZEROCOPY))
673 xuio = (xuio_t *)uio;
674 else
675 #endif
676 uio_prefaultpages(MIN(n, max_blksz), uio);
677
678 /*
679 * If in append mode, set the io offset pointer to eof.
680 */
681 if (ioflag & FAPPEND) {
682 /*
683 * Obtain an appending range lock to guarantee file append
684 * semantics. We reset the write offset once we have the lock.
685 */
686 rl = zfs_range_lock(&zp->z_range_lock, 0, n, RL_APPEND);
687 woff = rl->r_off;
688 if (rl->r_len == UINT64_MAX) {
689 /*
690 * We overlocked the file because this write will cause
691 * the file block size to increase.
692 * Note that zp_size cannot change with this lock held.
693 */
694 woff = zp->z_size;
695 }
696 uio->uio_loffset = woff;
697 } else {
698 /*
699 * Note that if the file block size will change as a result of
700 * this write, then this range lock will lock the entire file
701 * so that we can re-write the block safely.
702 */
703 rl = zfs_range_lock(&zp->z_range_lock, woff, n, RL_WRITER);
704 }
705
706 if (woff >= limit) {
707 zfs_range_unlock(rl);
708 ZFS_EXIT(zfsvfs);
709 return (SET_ERROR(EFBIG));
710 }
711
712 if ((woff + n) > limit || woff > (limit - n))
713 n = limit - woff;
714
715 /* Will this write extend the file length? */
716 write_eof = (woff + n > zp->z_size);
717
718 end_size = MAX(zp->z_size, woff + n);
719
720 /*
721 * Write the file in reasonable size chunks. Each chunk is written
722 * in a separate transaction; this keeps the intent log records small
723 * and allows us to do more fine-grained space accounting.
724 */
725 while (n > 0) {
726 abuf = NULL;
727 woff = uio->uio_loffset;
728 if (zfs_owner_overquota(zfsvfs, zp, B_FALSE) ||
729 zfs_owner_overquota(zfsvfs, zp, B_TRUE)) {
730 if (abuf != NULL)
731 dmu_return_arcbuf(abuf);
732 error = SET_ERROR(EDQUOT);
733 break;
734 }
735
736 if (xuio && abuf == NULL) {
737 #ifdef HAVE_UIO_ZEROCOPY
738 ASSERT(i_iov < iovcnt);
739 ASSERT3U(uio->uio_segflg, !=, UIO_BVEC);
740 aiov = &iovp[i_iov];
741 abuf = dmu_xuio_arcbuf(xuio, i_iov);
742 dmu_xuio_clear(xuio, i_iov);
743 ASSERT((aiov->iov_base == abuf->b_data) ||
744 ((char *)aiov->iov_base - (char *)abuf->b_data +
745 aiov->iov_len == arc_buf_size(abuf)));
746 i_iov++;
747 #endif
748 } else if (abuf == NULL && n >= max_blksz &&
749 woff >= zp->z_size &&
750 P2PHASE(woff, max_blksz) == 0 &&
751 zp->z_blksz == max_blksz) {
752 /*
753 * This write covers a full block. "Borrow" a buffer
754 * from the dmu so that we can fill it before we enter
755 * a transaction. This avoids the possibility of
756 * holding up the transaction if the data copy hangs
757 * up on a pagefault (e.g., from an NFS server mapping).
758 */
759 size_t cbytes;
760
761 abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl),
762 max_blksz);
763 ASSERT(abuf != NULL);
764 ASSERT(arc_buf_size(abuf) == max_blksz);
765 if ((error = uiocopy(abuf->b_data, max_blksz,
766 UIO_WRITE, uio, &cbytes))) {
767 dmu_return_arcbuf(abuf);
768 break;
769 }
770 ASSERT(cbytes == max_blksz);
771 }
772
773 /*
774 * Start a transaction.
775 */
776 tx = dmu_tx_create(zfsvfs->z_os);
777 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
778 dmu_tx_hold_write(tx, zp->z_id, woff, MIN(n, max_blksz));
779 zfs_sa_upgrade_txholds(tx, zp);
780 error = dmu_tx_assign(tx, TXG_WAIT);
781 if (error) {
782 dmu_tx_abort(tx);
783 if (abuf != NULL)
784 dmu_return_arcbuf(abuf);
785 break;
786 }
787
788 /*
789 * If zfs_range_lock() over-locked we grow the blocksize
790 * and then reduce the lock range. This will only happen
791 * on the first iteration since zfs_range_reduce() will
792 * shrink down r_len to the appropriate size.
793 */
794 if (rl->r_len == UINT64_MAX) {
795 uint64_t new_blksz;
796
797 if (zp->z_blksz > max_blksz) {
798 /*
799 * File's blocksize is already larger than the
800 * "recordsize" property. Only let it grow to
801 * the next power of 2.
802 */
803 ASSERT(!ISP2(zp->z_blksz));
804 new_blksz = MIN(end_size,
805 1 << highbit64(zp->z_blksz));
806 } else {
807 new_blksz = MIN(end_size, max_blksz);
808 }
809 zfs_grow_blocksize(zp, new_blksz, tx);
810 zfs_range_reduce(rl, woff, n);
811 }
812
813 /*
814 * XXX - should we really limit each write to z_max_blksz?
815 * Perhaps we should use SPA_MAXBLOCKSIZE chunks?
816 */
817 nbytes = MIN(n, max_blksz - P2PHASE(woff, max_blksz));
818
819 if (abuf == NULL) {
820 tx_bytes = uio->uio_resid;
821 error = dmu_write_uio_dbuf(sa_get_db(zp->z_sa_hdl),
822 uio, nbytes, tx);
823 tx_bytes -= uio->uio_resid;
824 } else {
825 tx_bytes = nbytes;
826 ASSERT(xuio == NULL || tx_bytes == aiov->iov_len);
827 /*
828 * If this is not a full block write, but we are
829 * extending the file past EOF and this data starts
830 * block-aligned, use assign_arcbuf(). Otherwise,
831 * write via dmu_write().
832 */
833 if (tx_bytes < max_blksz && (!write_eof ||
834 aiov->iov_base != abuf->b_data)) {
835 ASSERT(xuio);
836 dmu_write(zfsvfs->z_os, zp->z_id, woff,
837 // cppcheck-suppress nullPointer
838 aiov->iov_len, aiov->iov_base, tx);
839 dmu_return_arcbuf(abuf);
840 xuio_stat_wbuf_copied();
841 } else {
842 ASSERT(xuio || tx_bytes == max_blksz);
843 dmu_assign_arcbuf(sa_get_db(zp->z_sa_hdl),
844 woff, abuf, tx);
845 }
846 ASSERT(tx_bytes <= uio->uio_resid);
847 uioskip(uio, tx_bytes);
848 }
849 if (tx_bytes && zp->z_is_mapped && !(ioflag & O_DIRECT)) {
850 update_pages(ip, woff,
851 tx_bytes, zfsvfs->z_os, zp->z_id);
852 }
853
854 /*
855 * If we made no progress, we're done. If we made even
856 * partial progress, update the znode and ZIL accordingly.
857 */
858 if (tx_bytes == 0) {
859 (void) sa_update(zp->z_sa_hdl, SA_ZPL_SIZE(zfsvfs),
860 (void *)&zp->z_size, sizeof (uint64_t), tx);
861 dmu_tx_commit(tx);
862 ASSERT(error != 0);
863 break;
864 }
865
866 /*
867 * Clear Set-UID/Set-GID bits on successful write if not
868 * privileged and at least one of the execute bits is set.
869 *
870 * It would be nice to to this after all writes have
871 * been done, but that would still expose the ISUID/ISGID
872 * to another app after the partial write is committed.
873 *
874 * Note: we don't call zfs_fuid_map_id() here because
875 * user 0 is not an ephemeral uid.
876 */
877 mutex_enter(&zp->z_acl_lock);
878 uid = KUID_TO_SUID(ip->i_uid);
879 if ((zp->z_mode & (S_IXUSR | (S_IXUSR >> 3) |
880 (S_IXUSR >> 6))) != 0 &&
881 (zp->z_mode & (S_ISUID | S_ISGID)) != 0 &&
882 secpolicy_vnode_setid_retain(cr,
883 ((zp->z_mode & S_ISUID) != 0 && uid == 0)) != 0) {
884 uint64_t newmode;
885 zp->z_mode &= ~(S_ISUID | S_ISGID);
886 ip->i_mode = newmode = zp->z_mode;
887 (void) sa_update(zp->z_sa_hdl, SA_ZPL_MODE(zfsvfs),
888 (void *)&newmode, sizeof (uint64_t), tx);
889 }
890 mutex_exit(&zp->z_acl_lock);
891
892 zfs_tstamp_update_setup(zp, CONTENT_MODIFIED, mtime, ctime);
893
894 /*
895 * Update the file size (zp_size) if it has changed;
896 * account for possible concurrent updates.
897 */
898 while ((end_size = zp->z_size) < uio->uio_loffset) {
899 (void) atomic_cas_64(&zp->z_size, end_size,
900 uio->uio_loffset);
901 ASSERT(error == 0);
902 }
903 /*
904 * If we are replaying and eof is non zero then force
905 * the file size to the specified eof. Note, there's no
906 * concurrency during replay.
907 */
908 if (zfsvfs->z_replay && zfsvfs->z_replay_eof != 0)
909 zp->z_size = zfsvfs->z_replay_eof;
910
911 error = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx);
912
913 zfs_log_write(zilog, tx, TX_WRITE, zp, woff, tx_bytes, ioflag,
914 NULL, NULL);
915 dmu_tx_commit(tx);
916
917 if (error != 0)
918 break;
919 ASSERT(tx_bytes == nbytes);
920 n -= nbytes;
921
922 if (!xuio && n > 0)
923 uio_prefaultpages(MIN(n, max_blksz), uio);
924 }
925
926 zfs_inode_update(zp);
927 zfs_range_unlock(rl);
928
929 /*
930 * If we're in replay mode, or we made no progress, return error.
931 * Otherwise, it's at least a partial write, so it's successful.
932 */
933 if (zfsvfs->z_replay || uio->uio_resid == start_resid) {
934 ZFS_EXIT(zfsvfs);
935 return (error);
936 }
937
938 if (ioflag & (FSYNC | FDSYNC) ||
939 zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
940 zil_commit(zilog, zp->z_id);
941
942 ZFS_EXIT(zfsvfs);
943 return (0);
944 }
945
946 /*
947 * Drop a reference on the passed inode asynchronously. This ensures
948 * that the caller will never drop the last reference on an inode in
949 * the current context. Doing so while holding open a tx could result
950 * in a deadlock if iput_final() re-enters the filesystem code.
951 */
952 void
953 zfs_iput_async(struct inode *ip)
954 {
955 objset_t *os = ITOZSB(ip)->z_os;
956
957 ASSERT(atomic_read(&ip->i_count) > 0);
958 ASSERT(os != NULL);
959
960 if (atomic_read(&ip->i_count) == 1)
961 VERIFY(taskq_dispatch(dsl_pool_iput_taskq(dmu_objset_pool(os)),
962 (task_func_t *)iput, ip, TQ_SLEEP) != TASKQID_INVALID);
963 else
964 iput(ip);
965 }
966
967 void
968 zfs_get_done(zgd_t *zgd, int error)
969 {
970 znode_t *zp = zgd->zgd_private;
971
972 if (zgd->zgd_db)
973 dmu_buf_rele(zgd->zgd_db, zgd);
974
975 zfs_range_unlock(zgd->zgd_rl);
976
977 /*
978 * Release the vnode asynchronously as we currently have the
979 * txg stopped from syncing.
980 */
981 zfs_iput_async(ZTOI(zp));
982
983 if (error == 0 && zgd->zgd_bp)
984 zil_add_block(zgd->zgd_zilog, zgd->zgd_bp);
985
986 kmem_free(zgd, sizeof (zgd_t));
987 }
988
989 #ifdef DEBUG
990 static int zil_fault_io = 0;
991 #endif
992
993 /*
994 * Get data to generate a TX_WRITE intent log record.
995 */
996 int
997 zfs_get_data(void *arg, lr_write_t *lr, char *buf, zio_t *zio)
998 {
999 zfsvfs_t *zfsvfs = arg;
1000 objset_t *os = zfsvfs->z_os;
1001 znode_t *zp;
1002 uint64_t object = lr->lr_foid;
1003 uint64_t offset = lr->lr_offset;
1004 uint64_t size = lr->lr_length;
1005 dmu_buf_t *db;
1006 zgd_t *zgd;
1007 int error = 0;
1008
1009 ASSERT(zio != NULL);
1010 ASSERT(size != 0);
1011
1012 /*
1013 * Nothing to do if the file has been removed
1014 */
1015 if (zfs_zget(zfsvfs, object, &zp) != 0)
1016 return (SET_ERROR(ENOENT));
1017 if (zp->z_unlinked) {
1018 /*
1019 * Release the vnode asynchronously as we currently have the
1020 * txg stopped from syncing.
1021 */
1022 zfs_iput_async(ZTOI(zp));
1023 return (SET_ERROR(ENOENT));
1024 }
1025
1026 zgd = (zgd_t *)kmem_zalloc(sizeof (zgd_t), KM_SLEEP);
1027 zgd->zgd_zilog = zfsvfs->z_log;
1028 zgd->zgd_private = zp;
1029
1030 /*
1031 * Write records come in two flavors: immediate and indirect.
1032 * For small writes it's cheaper to store the data with the
1033 * log record (immediate); for large writes it's cheaper to
1034 * sync the data and get a pointer to it (indirect) so that
1035 * we don't have to write the data twice.
1036 */
1037 if (buf != NULL) { /* immediate write */
1038 zgd->zgd_rl = zfs_range_lock(&zp->z_range_lock, offset, size,
1039 RL_READER);
1040 /* test for truncation needs to be done while range locked */
1041 if (offset >= zp->z_size) {
1042 error = SET_ERROR(ENOENT);
1043 } else {
1044 error = dmu_read(os, object, offset, size, buf,
1045 DMU_READ_NO_PREFETCH);
1046 }
1047 ASSERT(error == 0 || error == ENOENT);
1048 } else { /* indirect write */
1049 /*
1050 * Have to lock the whole block to ensure when it's
1051 * written out and it's checksum is being calculated
1052 * that no one can change the data. We need to re-check
1053 * blocksize after we get the lock in case it's changed!
1054 */
1055 for (;;) {
1056 uint64_t blkoff;
1057 size = zp->z_blksz;
1058 blkoff = ISP2(size) ? P2PHASE(offset, size) : offset;
1059 offset -= blkoff;
1060 zgd->zgd_rl = zfs_range_lock(&zp->z_range_lock, offset,
1061 size, RL_READER);
1062 if (zp->z_blksz == size)
1063 break;
1064 offset += blkoff;
1065 zfs_range_unlock(zgd->zgd_rl);
1066 }
1067 /* test for truncation needs to be done while range locked */
1068 if (lr->lr_offset >= zp->z_size)
1069 error = SET_ERROR(ENOENT);
1070 #ifdef DEBUG
1071 if (zil_fault_io) {
1072 error = SET_ERROR(EIO);
1073 zil_fault_io = 0;
1074 }
1075 #endif
1076 if (error == 0)
1077 error = dmu_buf_hold(os, object, offset, zgd, &db,
1078 DMU_READ_NO_PREFETCH);
1079
1080 if (error == 0) {
1081 blkptr_t *bp = &lr->lr_blkptr;
1082
1083 zgd->zgd_db = db;
1084 zgd->zgd_bp = bp;
1085
1086 ASSERT(db->db_offset == offset);
1087 ASSERT(db->db_size == size);
1088
1089 error = dmu_sync(zio, lr->lr_common.lrc_txg,
1090 zfs_get_done, zgd);
1091 ASSERT(error || lr->lr_length <= size);
1092
1093 /*
1094 * On success, we need to wait for the write I/O
1095 * initiated by dmu_sync() to complete before we can
1096 * release this dbuf. We will finish everything up
1097 * in the zfs_get_done() callback.
1098 */
1099 if (error == 0)
1100 return (0);
1101
1102 if (error == EALREADY) {
1103 lr->lr_common.lrc_txtype = TX_WRITE2;
1104 error = 0;
1105 }
1106 }
1107 }
1108
1109 zfs_get_done(zgd, error);
1110
1111 return (error);
1112 }
1113
1114 /*ARGSUSED*/
1115 int
1116 zfs_access(struct inode *ip, int mode, int flag, cred_t *cr)
1117 {
1118 znode_t *zp = ITOZ(ip);
1119 zfsvfs_t *zfsvfs = ITOZSB(ip);
1120 int error;
1121
1122 ZFS_ENTER(zfsvfs);
1123 ZFS_VERIFY_ZP(zp);
1124
1125 if (flag & V_ACE_MASK)
1126 error = zfs_zaccess(zp, mode, flag, B_FALSE, cr);
1127 else
1128 error = zfs_zaccess_rwx(zp, mode, flag, cr);
1129
1130 ZFS_EXIT(zfsvfs);
1131 return (error);
1132 }
1133
1134 /*
1135 * Lookup an entry in a directory, or an extended attribute directory.
1136 * If it exists, return a held inode reference for it.
1137 *
1138 * IN: dip - inode of directory to search.
1139 * nm - name of entry to lookup.
1140 * flags - LOOKUP_XATTR set if looking for an attribute.
1141 * cr - credentials of caller.
1142 * direntflags - directory lookup flags
1143 * realpnp - returned pathname.
1144 *
1145 * OUT: ipp - inode of located entry, NULL if not found.
1146 *
1147 * RETURN: 0 on success, error code on failure.
1148 *
1149 * Timestamps:
1150 * NA
1151 */
1152 /* ARGSUSED */
1153 int
1154 zfs_lookup(struct inode *dip, char *nm, struct inode **ipp, int flags,
1155 cred_t *cr, int *direntflags, pathname_t *realpnp)
1156 {
1157 znode_t *zdp = ITOZ(dip);
1158 zfsvfs_t *zfsvfs = ITOZSB(dip);
1159 int error = 0;
1160
1161 /*
1162 * Fast path lookup, however we must skip DNLC lookup
1163 * for case folding or normalizing lookups because the
1164 * DNLC code only stores the passed in name. This means
1165 * creating 'a' and removing 'A' on a case insensitive
1166 * file system would work, but DNLC still thinks 'a'
1167 * exists and won't let you create it again on the next
1168 * pass through fast path.
1169 */
1170 if (!(flags & (LOOKUP_XATTR | FIGNORECASE))) {
1171
1172 if (!S_ISDIR(dip->i_mode)) {
1173 return (SET_ERROR(ENOTDIR));
1174 } else if (zdp->z_sa_hdl == NULL) {
1175 return (SET_ERROR(EIO));
1176 }
1177
1178 if (nm[0] == 0 || (nm[0] == '.' && nm[1] == '\0')) {
1179 error = zfs_fastaccesschk_execute(zdp, cr);
1180 if (!error) {
1181 *ipp = dip;
1182 igrab(*ipp);
1183 return (0);
1184 }
1185 return (error);
1186 #ifdef HAVE_DNLC
1187 } else if (!zdp->z_zfsvfs->z_norm &&
1188 (zdp->z_zfsvfs->z_case == ZFS_CASE_SENSITIVE)) {
1189
1190 vnode_t *tvp = dnlc_lookup(dvp, nm);
1191
1192 if (tvp) {
1193 error = zfs_fastaccesschk_execute(zdp, cr);
1194 if (error) {
1195 iput(tvp);
1196 return (error);
1197 }
1198 if (tvp == DNLC_NO_VNODE) {
1199 iput(tvp);
1200 return (SET_ERROR(ENOENT));
1201 } else {
1202 *vpp = tvp;
1203 return (specvp_check(vpp, cr));
1204 }
1205 }
1206 #endif /* HAVE_DNLC */
1207 }
1208 }
1209
1210 ZFS_ENTER(zfsvfs);
1211 ZFS_VERIFY_ZP(zdp);
1212
1213 *ipp = NULL;
1214
1215 if (flags & LOOKUP_XATTR) {
1216 /*
1217 * We don't allow recursive attributes..
1218 * Maybe someday we will.
1219 */
1220 if (zdp->z_pflags & ZFS_XATTR) {
1221 ZFS_EXIT(zfsvfs);
1222 return (SET_ERROR(EINVAL));
1223 }
1224
1225 if ((error = zfs_get_xattrdir(zdp, ipp, cr, flags))) {
1226 ZFS_EXIT(zfsvfs);
1227 return (error);
1228 }
1229
1230 /*
1231 * Do we have permission to get into attribute directory?
1232 */
1233
1234 if ((error = zfs_zaccess(ITOZ(*ipp), ACE_EXECUTE, 0,
1235 B_FALSE, cr))) {
1236 iput(*ipp);
1237 *ipp = NULL;
1238 }
1239
1240 ZFS_EXIT(zfsvfs);
1241 return (error);
1242 }
1243
1244 if (!S_ISDIR(dip->i_mode)) {
1245 ZFS_EXIT(zfsvfs);
1246 return (SET_ERROR(ENOTDIR));
1247 }
1248
1249 /*
1250 * Check accessibility of directory.
1251 */
1252
1253 if ((error = zfs_zaccess(zdp, ACE_EXECUTE, 0, B_FALSE, cr))) {
1254 ZFS_EXIT(zfsvfs);
1255 return (error);
1256 }
1257
1258 if (zfsvfs->z_utf8 && u8_validate(nm, strlen(nm),
1259 NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
1260 ZFS_EXIT(zfsvfs);
1261 return (SET_ERROR(EILSEQ));
1262 }
1263
1264 error = zfs_dirlook(zdp, nm, ipp, flags, direntflags, realpnp);
1265 if ((error == 0) && (*ipp))
1266 zfs_inode_update(ITOZ(*ipp));
1267
1268 ZFS_EXIT(zfsvfs);
1269 return (error);
1270 }
1271
1272 /*
1273 * Attempt to create a new entry in a directory. If the entry
1274 * already exists, truncate the file if permissible, else return
1275 * an error. Return the ip of the created or trunc'd file.
1276 *
1277 * IN: dip - inode of directory to put new file entry in.
1278 * name - name of new file entry.
1279 * vap - attributes of new file.
1280 * excl - flag indicating exclusive or non-exclusive mode.
1281 * mode - mode to open file with.
1282 * cr - credentials of caller.
1283 * flag - large file flag [UNUSED].
1284 * vsecp - ACL to be set
1285 *
1286 * OUT: ipp - inode of created or trunc'd entry.
1287 *
1288 * RETURN: 0 on success, error code on failure.
1289 *
1290 * Timestamps:
1291 * dip - ctime|mtime updated if new entry created
1292 * ip - ctime|mtime always, atime if new
1293 */
1294
1295 /* ARGSUSED */
1296 int
1297 zfs_create(struct inode *dip, char *name, vattr_t *vap, int excl,
1298 int mode, struct inode **ipp, cred_t *cr, int flag, vsecattr_t *vsecp)
1299 {
1300 znode_t *zp, *dzp = ITOZ(dip);
1301 zfsvfs_t *zfsvfs = ITOZSB(dip);
1302 zilog_t *zilog;
1303 objset_t *os;
1304 zfs_dirlock_t *dl;
1305 dmu_tx_t *tx;
1306 int error;
1307 uid_t uid;
1308 gid_t gid;
1309 zfs_acl_ids_t acl_ids;
1310 boolean_t fuid_dirtied;
1311 boolean_t have_acl = B_FALSE;
1312 boolean_t waited = B_FALSE;
1313
1314 /*
1315 * If we have an ephemeral id, ACL, or XVATTR then
1316 * make sure file system is at proper version
1317 */
1318
1319 gid = crgetgid(cr);
1320 uid = crgetuid(cr);
1321
1322 if (zfsvfs->z_use_fuids == B_FALSE &&
1323 (vsecp || IS_EPHEMERAL(uid) || IS_EPHEMERAL(gid)))
1324 return (SET_ERROR(EINVAL));
1325
1326 if (name == NULL)
1327 return (SET_ERROR(EINVAL));
1328
1329 ZFS_ENTER(zfsvfs);
1330 ZFS_VERIFY_ZP(dzp);
1331 os = zfsvfs->z_os;
1332 zilog = zfsvfs->z_log;
1333
1334 if (zfsvfs->z_utf8 && u8_validate(name, strlen(name),
1335 NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
1336 ZFS_EXIT(zfsvfs);
1337 return (SET_ERROR(EILSEQ));
1338 }
1339
1340 if (vap->va_mask & ATTR_XVATTR) {
1341 if ((error = secpolicy_xvattr((xvattr_t *)vap,
1342 crgetuid(cr), cr, vap->va_mode)) != 0) {
1343 ZFS_EXIT(zfsvfs);
1344 return (error);
1345 }
1346 }
1347
1348 top:
1349 *ipp = NULL;
1350 if (*name == '\0') {
1351 /*
1352 * Null component name refers to the directory itself.
1353 */
1354 igrab(dip);
1355 zp = dzp;
1356 dl = NULL;
1357 error = 0;
1358 } else {
1359 /* possible igrab(zp) */
1360 int zflg = 0;
1361
1362 if (flag & FIGNORECASE)
1363 zflg |= ZCILOOK;
1364
1365 error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg,
1366 NULL, NULL);
1367 if (error) {
1368 if (have_acl)
1369 zfs_acl_ids_free(&acl_ids);
1370 if (strcmp(name, "..") == 0)
1371 error = SET_ERROR(EISDIR);
1372 ZFS_EXIT(zfsvfs);
1373 return (error);
1374 }
1375 }
1376
1377 if (zp == NULL) {
1378 uint64_t txtype;
1379
1380 /*
1381 * Create a new file object and update the directory
1382 * to reference it.
1383 */
1384 if ((error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr))) {
1385 if (have_acl)
1386 zfs_acl_ids_free(&acl_ids);
1387 goto out;
1388 }
1389
1390 /*
1391 * We only support the creation of regular files in
1392 * extended attribute directories.
1393 */
1394
1395 if ((dzp->z_pflags & ZFS_XATTR) && !S_ISREG(vap->va_mode)) {
1396 if (have_acl)
1397 zfs_acl_ids_free(&acl_ids);
1398 error = SET_ERROR(EINVAL);
1399 goto out;
1400 }
1401
1402 if (!have_acl && (error = zfs_acl_ids_create(dzp, 0, vap,
1403 cr, vsecp, &acl_ids)) != 0)
1404 goto out;
1405 have_acl = B_TRUE;
1406
1407 if (zfs_acl_ids_overquota(zfsvfs, &acl_ids)) {
1408 zfs_acl_ids_free(&acl_ids);
1409 error = SET_ERROR(EDQUOT);
1410 goto out;
1411 }
1412
1413 tx = dmu_tx_create(os);
1414
1415 dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes +
1416 ZFS_SA_BASE_ATTR_SIZE);
1417
1418 fuid_dirtied = zfsvfs->z_fuid_dirty;
1419 if (fuid_dirtied)
1420 zfs_fuid_txhold(zfsvfs, tx);
1421 dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name);
1422 dmu_tx_hold_sa(tx, dzp->z_sa_hdl, B_FALSE);
1423 if (!zfsvfs->z_use_sa &&
1424 acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) {
1425 dmu_tx_hold_write(tx, DMU_NEW_OBJECT,
1426 0, acl_ids.z_aclp->z_acl_bytes);
1427 }
1428 error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT);
1429 if (error) {
1430 zfs_dirent_unlock(dl);
1431 if (error == ERESTART) {
1432 waited = B_TRUE;
1433 dmu_tx_wait(tx);
1434 dmu_tx_abort(tx);
1435 goto top;
1436 }
1437 zfs_acl_ids_free(&acl_ids);
1438 dmu_tx_abort(tx);
1439 ZFS_EXIT(zfsvfs);
1440 return (error);
1441 }
1442 zfs_mknode(dzp, vap, tx, cr, 0, &zp, &acl_ids);
1443
1444 if (fuid_dirtied)
1445 zfs_fuid_sync(zfsvfs, tx);
1446
1447 (void) zfs_link_create(dl, zp, tx, ZNEW);
1448 txtype = zfs_log_create_txtype(Z_FILE, vsecp, vap);
1449 if (flag & FIGNORECASE)
1450 txtype |= TX_CI;
1451 zfs_log_create(zilog, tx, txtype, dzp, zp, name,
1452 vsecp, acl_ids.z_fuidp, vap);
1453 zfs_acl_ids_free(&acl_ids);
1454 dmu_tx_commit(tx);
1455 } else {
1456 int aflags = (flag & FAPPEND) ? V_APPEND : 0;
1457
1458 if (have_acl)
1459 zfs_acl_ids_free(&acl_ids);
1460 have_acl = B_FALSE;
1461
1462 /*
1463 * A directory entry already exists for this name.
1464 */
1465 /*
1466 * Can't truncate an existing file if in exclusive mode.
1467 */
1468 if (excl) {
1469 error = SET_ERROR(EEXIST);
1470 goto out;
1471 }
1472 /*
1473 * Can't open a directory for writing.
1474 */
1475 if (S_ISDIR(ZTOI(zp)->i_mode)) {
1476 error = SET_ERROR(EISDIR);
1477 goto out;
1478 }
1479 /*
1480 * Verify requested access to file.
1481 */
1482 if (mode && (error = zfs_zaccess_rwx(zp, mode, aflags, cr))) {
1483 goto out;
1484 }
1485
1486 mutex_enter(&dzp->z_lock);
1487 dzp->z_seq++;
1488 mutex_exit(&dzp->z_lock);
1489
1490 /*
1491 * Truncate regular files if requested.
1492 */
1493 if (S_ISREG(ZTOI(zp)->i_mode) &&
1494 (vap->va_mask & ATTR_SIZE) && (vap->va_size == 0)) {
1495 /* we can't hold any locks when calling zfs_freesp() */
1496 if (dl) {
1497 zfs_dirent_unlock(dl);
1498 dl = NULL;
1499 }
1500 error = zfs_freesp(zp, 0, 0, mode, TRUE);
1501 }
1502 }
1503 out:
1504
1505 if (dl)
1506 zfs_dirent_unlock(dl);
1507
1508 if (error) {
1509 if (zp)
1510 iput(ZTOI(zp));
1511 } else {
1512 zfs_inode_update(dzp);
1513 zfs_inode_update(zp);
1514 *ipp = ZTOI(zp);
1515 }
1516
1517 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
1518 zil_commit(zilog, 0);
1519
1520 ZFS_EXIT(zfsvfs);
1521 return (error);
1522 }
1523
1524 /* ARGSUSED */
1525 int
1526 zfs_tmpfile(struct inode *dip, vattr_t *vap, int excl,
1527 int mode, struct inode **ipp, cred_t *cr, int flag, vsecattr_t *vsecp)
1528 {
1529 znode_t *zp = NULL, *dzp = ITOZ(dip);
1530 zfsvfs_t *zfsvfs = ITOZSB(dip);
1531 objset_t *os;
1532 dmu_tx_t *tx;
1533 int error;
1534 uid_t uid;
1535 gid_t gid;
1536 zfs_acl_ids_t acl_ids;
1537 boolean_t fuid_dirtied;
1538 boolean_t have_acl = B_FALSE;
1539 boolean_t waited = B_FALSE;
1540
1541 /*
1542 * If we have an ephemeral id, ACL, or XVATTR then
1543 * make sure file system is at proper version
1544 */
1545
1546 gid = crgetgid(cr);
1547 uid = crgetuid(cr);
1548
1549 if (zfsvfs->z_use_fuids == B_FALSE &&
1550 (vsecp || IS_EPHEMERAL(uid) || IS_EPHEMERAL(gid)))
1551 return (SET_ERROR(EINVAL));
1552
1553 ZFS_ENTER(zfsvfs);
1554 ZFS_VERIFY_ZP(dzp);
1555 os = zfsvfs->z_os;
1556
1557 if (vap->va_mask & ATTR_XVATTR) {
1558 if ((error = secpolicy_xvattr((xvattr_t *)vap,
1559 crgetuid(cr), cr, vap->va_mode)) != 0) {
1560 ZFS_EXIT(zfsvfs);
1561 return (error);
1562 }
1563 }
1564
1565 top:
1566 *ipp = NULL;
1567
1568 /*
1569 * Create a new file object and update the directory
1570 * to reference it.
1571 */
1572 if ((error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr))) {
1573 if (have_acl)
1574 zfs_acl_ids_free(&acl_ids);
1575 goto out;
1576 }
1577
1578 if (!have_acl && (error = zfs_acl_ids_create(dzp, 0, vap,
1579 cr, vsecp, &acl_ids)) != 0)
1580 goto out;
1581 have_acl = B_TRUE;
1582
1583 if (zfs_acl_ids_overquota(zfsvfs, &acl_ids)) {
1584 zfs_acl_ids_free(&acl_ids);
1585 error = SET_ERROR(EDQUOT);
1586 goto out;
1587 }
1588
1589 tx = dmu_tx_create(os);
1590
1591 dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes +
1592 ZFS_SA_BASE_ATTR_SIZE);
1593 dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL);
1594
1595 fuid_dirtied = zfsvfs->z_fuid_dirty;
1596 if (fuid_dirtied)
1597 zfs_fuid_txhold(zfsvfs, tx);
1598 if (!zfsvfs->z_use_sa &&
1599 acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) {
1600 dmu_tx_hold_write(tx, DMU_NEW_OBJECT,
1601 0, acl_ids.z_aclp->z_acl_bytes);
1602 }
1603 error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT);
1604 if (error) {
1605 if (error == ERESTART) {
1606 waited = B_TRUE;
1607 dmu_tx_wait(tx);
1608 dmu_tx_abort(tx);
1609 goto top;
1610 }
1611 zfs_acl_ids_free(&acl_ids);
1612 dmu_tx_abort(tx);
1613 ZFS_EXIT(zfsvfs);
1614 return (error);
1615 }
1616 zfs_mknode(dzp, vap, tx, cr, IS_TMPFILE, &zp, &acl_ids);
1617
1618 if (fuid_dirtied)
1619 zfs_fuid_sync(zfsvfs, tx);
1620
1621 /* Add to unlinked set */
1622 zp->z_unlinked = 1;
1623 zfs_unlinked_add(zp, tx);
1624 zfs_acl_ids_free(&acl_ids);
1625 dmu_tx_commit(tx);
1626 out:
1627
1628 if (error) {
1629 if (zp)
1630 iput(ZTOI(zp));
1631 } else {
1632 zfs_inode_update(dzp);
1633 zfs_inode_update(zp);
1634 *ipp = ZTOI(zp);
1635 }
1636
1637 ZFS_EXIT(zfsvfs);
1638 return (error);
1639 }
1640
1641 /*
1642 * Remove an entry from a directory.
1643 *
1644 * IN: dip - inode of directory to remove entry from.
1645 * name - name of entry to remove.
1646 * cr - credentials of caller.
1647 *
1648 * RETURN: 0 if success
1649 * error code if failure
1650 *
1651 * Timestamps:
1652 * dip - ctime|mtime
1653 * ip - ctime (if nlink > 0)
1654 */
1655
1656 uint64_t null_xattr = 0;
1657
1658 /*ARGSUSED*/
1659 int
1660 zfs_remove(struct inode *dip, char *name, cred_t *cr, int flags)
1661 {
1662 znode_t *zp, *dzp = ITOZ(dip);
1663 znode_t *xzp;
1664 struct inode *ip;
1665 zfsvfs_t *zfsvfs = ITOZSB(dip);
1666 zilog_t *zilog;
1667 uint64_t acl_obj, xattr_obj;
1668 uint64_t xattr_obj_unlinked = 0;
1669 uint64_t obj = 0;
1670 uint64_t links;
1671 zfs_dirlock_t *dl;
1672 dmu_tx_t *tx;
1673 boolean_t may_delete_now, delete_now = FALSE;
1674 boolean_t unlinked, toobig = FALSE;
1675 uint64_t txtype;
1676 pathname_t *realnmp = NULL;
1677 pathname_t realnm;
1678 int error;
1679 int zflg = ZEXISTS;
1680 boolean_t waited = B_FALSE;
1681
1682 if (name == NULL)
1683 return (SET_ERROR(EINVAL));
1684
1685 ZFS_ENTER(zfsvfs);
1686 ZFS_VERIFY_ZP(dzp);
1687 zilog = zfsvfs->z_log;
1688
1689 if (flags & FIGNORECASE) {
1690 zflg |= ZCILOOK;
1691 pn_alloc(&realnm);
1692 realnmp = &realnm;
1693 }
1694
1695 top:
1696 xattr_obj = 0;
1697 xzp = NULL;
1698 /*
1699 * Attempt to lock directory; fail if entry doesn't exist.
1700 */
1701 if ((error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg,
1702 NULL, realnmp))) {
1703 if (realnmp)
1704 pn_free(realnmp);
1705 ZFS_EXIT(zfsvfs);
1706 return (error);
1707 }
1708
1709 ip = ZTOI(zp);
1710
1711 if ((error = zfs_zaccess_delete(dzp, zp, cr))) {
1712 goto out;
1713 }
1714
1715 /*
1716 * Need to use rmdir for removing directories.
1717 */
1718 if (S_ISDIR(ip->i_mode)) {
1719 error = SET_ERROR(EPERM);
1720 goto out;
1721 }
1722
1723 #ifdef HAVE_DNLC
1724 if (realnmp)
1725 dnlc_remove(dvp, realnmp->pn_buf);
1726 else
1727 dnlc_remove(dvp, name);
1728 #endif /* HAVE_DNLC */
1729
1730 mutex_enter(&zp->z_lock);
1731 may_delete_now = atomic_read(&ip->i_count) == 1 && !(zp->z_is_mapped);
1732 mutex_exit(&zp->z_lock);
1733
1734 /*
1735 * We may delete the znode now, or we may put it in the unlinked set;
1736 * it depends on whether we're the last link, and on whether there are
1737 * other holds on the inode. So we dmu_tx_hold() the right things to
1738 * allow for either case.
1739 */
1740 obj = zp->z_id;
1741 tx = dmu_tx_create(zfsvfs->z_os);
1742 dmu_tx_hold_zap(tx, dzp->z_id, FALSE, name);
1743 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
1744 zfs_sa_upgrade_txholds(tx, zp);
1745 zfs_sa_upgrade_txholds(tx, dzp);
1746 if (may_delete_now) {
1747 toobig = zp->z_size > zp->z_blksz * zfs_delete_blocks;
1748 /* if the file is too big, only hold_free a token amount */
1749 dmu_tx_hold_free(tx, zp->z_id, 0,
1750 (toobig ? DMU_MAX_ACCESS : DMU_OBJECT_END));
1751 }
1752
1753 /* are there any extended attributes? */
1754 error = sa_lookup(zp->z_sa_hdl, SA_ZPL_XATTR(zfsvfs),
1755 &xattr_obj, sizeof (xattr_obj));
1756 if (error == 0 && xattr_obj) {
1757 error = zfs_zget(zfsvfs, xattr_obj, &xzp);
1758 ASSERT0(error);
1759 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE);
1760 dmu_tx_hold_sa(tx, xzp->z_sa_hdl, B_FALSE);
1761 }
1762
1763 mutex_enter(&zp->z_lock);
1764 if ((acl_obj = zfs_external_acl(zp)) != 0 && may_delete_now)
1765 dmu_tx_hold_free(tx, acl_obj, 0, DMU_OBJECT_END);
1766 mutex_exit(&zp->z_lock);
1767
1768 /* charge as an update -- would be nice not to charge at all */
1769 dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL);
1770
1771 /*
1772 * Mark this transaction as typically resulting in a net free of space
1773 */
1774 dmu_tx_mark_netfree(tx);
1775
1776 error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT);
1777 if (error) {
1778 zfs_dirent_unlock(dl);
1779 if (error == ERESTART) {
1780 waited = B_TRUE;
1781 dmu_tx_wait(tx);
1782 dmu_tx_abort(tx);
1783 iput(ip);
1784 if (xzp)
1785 iput(ZTOI(xzp));
1786 goto top;
1787 }
1788 if (realnmp)
1789 pn_free(realnmp);
1790 dmu_tx_abort(tx);
1791 iput(ip);
1792 if (xzp)
1793 iput(ZTOI(xzp));
1794 ZFS_EXIT(zfsvfs);
1795 return (error);
1796 }
1797
1798 /*
1799 * Remove the directory entry.
1800 */
1801 error = zfs_link_destroy(dl, zp, tx, zflg, &unlinked);
1802
1803 if (error) {
1804 dmu_tx_commit(tx);
1805 goto out;
1806 }
1807
1808 if (unlinked) {
1809 /*
1810 * Hold z_lock so that we can make sure that the ACL obj
1811 * hasn't changed. Could have been deleted due to
1812 * zfs_sa_upgrade().
1813 */
1814 mutex_enter(&zp->z_lock);
1815 (void) sa_lookup(zp->z_sa_hdl, SA_ZPL_XATTR(zfsvfs),
1816 &xattr_obj_unlinked, sizeof (xattr_obj_unlinked));
1817 delete_now = may_delete_now && !toobig &&
1818 atomic_read(&ip->i_count) == 1 && !(zp->z_is_mapped) &&
1819 xattr_obj == xattr_obj_unlinked && zfs_external_acl(zp) ==
1820 acl_obj;
1821 }
1822
1823 if (delete_now) {
1824 if (xattr_obj_unlinked) {
1825 ASSERT3U(ZTOI(xzp)->i_nlink, ==, 2);
1826 mutex_enter(&xzp->z_lock);
1827 xzp->z_unlinked = 1;
1828 clear_nlink(ZTOI(xzp));
1829 links = 0;
1830 error = sa_update(xzp->z_sa_hdl, SA_ZPL_LINKS(zfsvfs),
1831 &links, sizeof (links), tx);
1832 ASSERT3U(error, ==, 0);
1833 mutex_exit(&xzp->z_lock);
1834 zfs_unlinked_add(xzp, tx);
1835
1836 if (zp->z_is_sa)
1837 error = sa_remove(zp->z_sa_hdl,
1838 SA_ZPL_XATTR(zfsvfs), tx);
1839 else
1840 error = sa_update(zp->z_sa_hdl,
1841 SA_ZPL_XATTR(zfsvfs), &null_xattr,
1842 sizeof (uint64_t), tx);
1843 ASSERT0(error);
1844 }
1845 /*
1846 * Add to the unlinked set because a new reference could be
1847 * taken concurrently resulting in a deferred destruction.
1848 */
1849 zfs_unlinked_add(zp, tx);
1850 mutex_exit(&zp->z_lock);
1851 } else if (unlinked) {
1852 mutex_exit(&zp->z_lock);
1853 zfs_unlinked_add(zp, tx);
1854 }
1855
1856 txtype = TX_REMOVE;
1857 if (flags & FIGNORECASE)
1858 txtype |= TX_CI;
1859 zfs_log_remove(zilog, tx, txtype, dzp, name, obj);
1860
1861 dmu_tx_commit(tx);
1862 out:
1863 if (realnmp)
1864 pn_free(realnmp);
1865
1866 zfs_dirent_unlock(dl);
1867 zfs_inode_update(dzp);
1868 zfs_inode_update(zp);
1869
1870 if (delete_now)
1871 iput(ip);
1872 else
1873 zfs_iput_async(ip);
1874
1875 if (xzp) {
1876 zfs_inode_update(xzp);
1877 zfs_iput_async(ZTOI(xzp));
1878 }
1879
1880 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
1881 zil_commit(zilog, 0);
1882
1883 ZFS_EXIT(zfsvfs);
1884 return (error);
1885 }
1886
1887 /*
1888 * Create a new directory and insert it into dip using the name
1889 * provided. Return a pointer to the inserted directory.
1890 *
1891 * IN: dip - inode of directory to add subdir to.
1892 * dirname - name of new directory.
1893 * vap - attributes of new directory.
1894 * cr - credentials of caller.
1895 * vsecp - ACL to be set
1896 *
1897 * OUT: ipp - inode of created directory.
1898 *
1899 * RETURN: 0 if success
1900 * error code if failure
1901 *
1902 * Timestamps:
1903 * dip - ctime|mtime updated
1904 * ipp - ctime|mtime|atime updated
1905 */
1906 /*ARGSUSED*/
1907 int
1908 zfs_mkdir(struct inode *dip, char *dirname, vattr_t *vap, struct inode **ipp,
1909 cred_t *cr, int flags, vsecattr_t *vsecp)
1910 {
1911 znode_t *zp, *dzp = ITOZ(dip);
1912 zfsvfs_t *zfsvfs = ITOZSB(dip);
1913 zilog_t *zilog;
1914 zfs_dirlock_t *dl;
1915 uint64_t txtype;
1916 dmu_tx_t *tx;
1917 int error;
1918 int zf = ZNEW;
1919 uid_t uid;
1920 gid_t gid = crgetgid(cr);
1921 zfs_acl_ids_t acl_ids;
1922 boolean_t fuid_dirtied;
1923 boolean_t waited = B_FALSE;
1924
1925 ASSERT(S_ISDIR(vap->va_mode));
1926
1927 /*
1928 * If we have an ephemeral id, ACL, or XVATTR then
1929 * make sure file system is at proper version
1930 */
1931
1932 uid = crgetuid(cr);
1933 if (zfsvfs->z_use_fuids == B_FALSE &&
1934 (vsecp || IS_EPHEMERAL(uid) || IS_EPHEMERAL(gid)))
1935 return (SET_ERROR(EINVAL));
1936
1937 if (dirname == NULL)
1938 return (SET_ERROR(EINVAL));
1939
1940 ZFS_ENTER(zfsvfs);
1941 ZFS_VERIFY_ZP(dzp);
1942 zilog = zfsvfs->z_log;
1943
1944 if (dzp->z_pflags & ZFS_XATTR) {
1945 ZFS_EXIT(zfsvfs);
1946 return (SET_ERROR(EINVAL));
1947 }
1948
1949 if (zfsvfs->z_utf8 && u8_validate(dirname,
1950 strlen(dirname), NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
1951 ZFS_EXIT(zfsvfs);
1952 return (SET_ERROR(EILSEQ));
1953 }
1954 if (flags & FIGNORECASE)
1955 zf |= ZCILOOK;
1956
1957 if (vap->va_mask & ATTR_XVATTR) {
1958 if ((error = secpolicy_xvattr((xvattr_t *)vap,
1959 crgetuid(cr), cr, vap->va_mode)) != 0) {
1960 ZFS_EXIT(zfsvfs);
1961 return (error);
1962 }
1963 }
1964
1965 if ((error = zfs_acl_ids_create(dzp, 0, vap, cr,
1966 vsecp, &acl_ids)) != 0) {
1967 ZFS_EXIT(zfsvfs);
1968 return (error);
1969 }
1970 /*
1971 * First make sure the new directory doesn't exist.
1972 *
1973 * Existence is checked first to make sure we don't return
1974 * EACCES instead of EEXIST which can cause some applications
1975 * to fail.
1976 */
1977 top:
1978 *ipp = NULL;
1979
1980 if ((error = zfs_dirent_lock(&dl, dzp, dirname, &zp, zf,
1981 NULL, NULL))) {
1982 zfs_acl_ids_free(&acl_ids);
1983 ZFS_EXIT(zfsvfs);
1984 return (error);
1985 }
1986
1987 if ((error = zfs_zaccess(dzp, ACE_ADD_SUBDIRECTORY, 0, B_FALSE, cr))) {
1988 zfs_acl_ids_free(&acl_ids);
1989 zfs_dirent_unlock(dl);
1990 ZFS_EXIT(zfsvfs);
1991 return (error);
1992 }
1993
1994 if (zfs_acl_ids_overquota(zfsvfs, &acl_ids)) {
1995 zfs_acl_ids_free(&acl_ids);
1996 zfs_dirent_unlock(dl);
1997 ZFS_EXIT(zfsvfs);
1998 return (SET_ERROR(EDQUOT));
1999 }
2000
2001 /*
2002 * Add a new entry to the directory.
2003 */
2004 tx = dmu_tx_create(zfsvfs->z_os);
2005 dmu_tx_hold_zap(tx, dzp->z_id, TRUE, dirname);
2006 dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, FALSE, NULL);
2007 fuid_dirtied = zfsvfs->z_fuid_dirty;
2008 if (fuid_dirtied)
2009 zfs_fuid_txhold(zfsvfs, tx);
2010 if (!zfsvfs->z_use_sa && acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) {
2011 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0,
2012 acl_ids.z_aclp->z_acl_bytes);
2013 }
2014
2015 dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes +
2016 ZFS_SA_BASE_ATTR_SIZE);
2017
2018 error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT);
2019 if (error) {
2020 zfs_dirent_unlock(dl);
2021 if (error == ERESTART) {
2022 waited = B_TRUE;
2023 dmu_tx_wait(tx);
2024 dmu_tx_abort(tx);
2025 goto top;
2026 }
2027 zfs_acl_ids_free(&acl_ids);
2028 dmu_tx_abort(tx);
2029 ZFS_EXIT(zfsvfs);
2030 return (error);
2031 }
2032
2033 /*
2034 * Create new node.
2035 */
2036 zfs_mknode(dzp, vap, tx, cr, 0, &zp, &acl_ids);
2037
2038 if (fuid_dirtied)
2039 zfs_fuid_sync(zfsvfs, tx);
2040
2041 /*
2042 * Now put new name in parent dir.
2043 */
2044 (void) zfs_link_create(dl, zp, tx, ZNEW);
2045
2046 *ipp = ZTOI(zp);
2047
2048 txtype = zfs_log_create_txtype(Z_DIR, vsecp, vap);
2049 if (flags & FIGNORECASE)
2050 txtype |= TX_CI;
2051 zfs_log_create(zilog, tx, txtype, dzp, zp, dirname, vsecp,
2052 acl_ids.z_fuidp, vap);
2053
2054 zfs_acl_ids_free(&acl_ids);
2055
2056 dmu_tx_commit(tx);
2057
2058 zfs_dirent_unlock(dl);
2059
2060 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
2061 zil_commit(zilog, 0);
2062
2063 zfs_inode_update(dzp);
2064 zfs_inode_update(zp);
2065 ZFS_EXIT(zfsvfs);
2066 return (0);
2067 }
2068
2069 /*
2070 * Remove a directory subdir entry. If the current working
2071 * directory is the same as the subdir to be removed, the
2072 * remove will fail.
2073 *
2074 * IN: dip - inode of directory to remove from.
2075 * name - name of directory to be removed.
2076 * cwd - inode of current working directory.
2077 * cr - credentials of caller.
2078 * flags - case flags
2079 *
2080 * RETURN: 0 on success, error code on failure.
2081 *
2082 * Timestamps:
2083 * dip - ctime|mtime updated
2084 */
2085 /*ARGSUSED*/
2086 int
2087 zfs_rmdir(struct inode *dip, char *name, struct inode *cwd, cred_t *cr,
2088 int flags)
2089 {
2090 znode_t *dzp = ITOZ(dip);
2091 znode_t *zp;
2092 struct inode *ip;
2093 zfsvfs_t *zfsvfs = ITOZSB(dip);
2094 zilog_t *zilog;
2095 zfs_dirlock_t *dl;
2096 dmu_tx_t *tx;
2097 int error;
2098 int zflg = ZEXISTS;
2099 boolean_t waited = B_FALSE;
2100
2101 if (name == NULL)
2102 return (SET_ERROR(EINVAL));
2103
2104 ZFS_ENTER(zfsvfs);
2105 ZFS_VERIFY_ZP(dzp);
2106 zilog = zfsvfs->z_log;
2107
2108 if (flags & FIGNORECASE)
2109 zflg |= ZCILOOK;
2110 top:
2111 zp = NULL;
2112
2113 /*
2114 * Attempt to lock directory; fail if entry doesn't exist.
2115 */
2116 if ((error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg,
2117 NULL, NULL))) {
2118 ZFS_EXIT(zfsvfs);
2119 return (error);
2120 }
2121
2122 ip = ZTOI(zp);
2123
2124 if ((error = zfs_zaccess_delete(dzp, zp, cr))) {
2125 goto out;
2126 }
2127
2128 if (!S_ISDIR(ip->i_mode)) {
2129 error = SET_ERROR(ENOTDIR);
2130 goto out;
2131 }
2132
2133 if (ip == cwd) {
2134 error = SET_ERROR(EINVAL);
2135 goto out;
2136 }
2137
2138 /*
2139 * Grab a lock on the directory to make sure that no one is
2140 * trying to add (or lookup) entries while we are removing it.
2141 */
2142 rw_enter(&zp->z_name_lock, RW_WRITER);
2143
2144 /*
2145 * Grab a lock on the parent pointer to make sure we play well
2146 * with the treewalk and directory rename code.
2147 */
2148 rw_enter(&zp->z_parent_lock, RW_WRITER);
2149
2150 tx = dmu_tx_create(zfsvfs->z_os);
2151 dmu_tx_hold_zap(tx, dzp->z_id, FALSE, name);
2152 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
2153 dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL);
2154 zfs_sa_upgrade_txholds(tx, zp);
2155 zfs_sa_upgrade_txholds(tx, dzp);
2156 dmu_tx_mark_netfree(tx);
2157 error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT);
2158 if (error) {
2159 rw_exit(&zp->z_parent_lock);
2160 rw_exit(&zp->z_name_lock);
2161 zfs_dirent_unlock(dl);
2162 if (error == ERESTART) {
2163 waited = B_TRUE;
2164 dmu_tx_wait(tx);
2165 dmu_tx_abort(tx);
2166 iput(ip);
2167 goto top;
2168 }
2169 dmu_tx_abort(tx);
2170 iput(ip);
2171 ZFS_EXIT(zfsvfs);
2172 return (error);
2173 }
2174
2175 error = zfs_link_destroy(dl, zp, tx, zflg, NULL);
2176
2177 if (error == 0) {
2178 uint64_t txtype = TX_RMDIR;
2179 if (flags & FIGNORECASE)
2180 txtype |= TX_CI;
2181 zfs_log_remove(zilog, tx, txtype, dzp, name, ZFS_NO_OBJECT);
2182 }
2183
2184 dmu_tx_commit(tx);
2185
2186 rw_exit(&zp->z_parent_lock);
2187 rw_exit(&zp->z_name_lock);
2188 out:
2189 zfs_dirent_unlock(dl);
2190
2191 zfs_inode_update(dzp);
2192 zfs_inode_update(zp);
2193 iput(ip);
2194
2195 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
2196 zil_commit(zilog, 0);
2197
2198 ZFS_EXIT(zfsvfs);
2199 return (error);
2200 }
2201
2202 /*
2203 * Read as many directory entries as will fit into the provided
2204 * dirent buffer from the given directory cursor position.
2205 *
2206 * IN: ip - inode of directory to read.
2207 * dirent - buffer for directory entries.
2208 *
2209 * OUT: dirent - filler buffer of directory entries.
2210 *
2211 * RETURN: 0 if success
2212 * error code if failure
2213 *
2214 * Timestamps:
2215 * ip - atime updated
2216 *
2217 * Note that the low 4 bits of the cookie returned by zap is always zero.
2218 * This allows us to use the low range for "special" directory entries:
2219 * We use 0 for '.', and 1 for '..'. If this is the root of the filesystem,
2220 * we use the offset 2 for the '.zfs' directory.
2221 */
2222 /* ARGSUSED */
2223 int
2224 zfs_readdir(struct inode *ip, struct dir_context *ctx, cred_t *cr)
2225 {
2226 znode_t *zp = ITOZ(ip);
2227 zfsvfs_t *zfsvfs = ITOZSB(ip);
2228 objset_t *os;
2229 zap_cursor_t zc;
2230 zap_attribute_t zap;
2231 int error;
2232 uint8_t prefetch;
2233 uint8_t type;
2234 int done = 0;
2235 uint64_t parent;
2236 uint64_t offset; /* must be unsigned; checks for < 1 */
2237
2238 ZFS_ENTER(zfsvfs);
2239 ZFS_VERIFY_ZP(zp);
2240
2241 if ((error = sa_lookup(zp->z_sa_hdl, SA_ZPL_PARENT(zfsvfs),
2242 &parent, sizeof (parent))) != 0)
2243 goto out;
2244
2245 /*
2246 * Quit if directory has been removed (posix)
2247 */
2248 if (zp->z_unlinked)
2249 goto out;
2250
2251 error = 0;
2252 os = zfsvfs->z_os;
2253 offset = ctx->pos;
2254 prefetch = zp->z_zn_prefetch;
2255
2256 /*
2257 * Initialize the iterator cursor.
2258 */
2259 if (offset <= 3) {
2260 /*
2261 * Start iteration from the beginning of the directory.
2262 */
2263 zap_cursor_init(&zc, os, zp->z_id);
2264 } else {
2265 /*
2266 * The offset is a serialized cursor.
2267 */
2268 zap_cursor_init_serialized(&zc, os, zp->z_id, offset);
2269 }
2270
2271 /*
2272 * Transform to file-system independent format
2273 */
2274 while (!done) {
2275 uint64_t objnum;
2276 /*
2277 * Special case `.', `..', and `.zfs'.
2278 */
2279 if (offset == 0) {
2280 (void) strcpy(zap.za_name, ".");
2281 zap.za_normalization_conflict = 0;
2282 objnum = zp->z_id;
2283 type = DT_DIR;
2284 } else if (offset == 1) {
2285 (void) strcpy(zap.za_name, "..");
2286 zap.za_normalization_conflict = 0;
2287 objnum = parent;
2288 type = DT_DIR;
2289 } else if (offset == 2 && zfs_show_ctldir(zp)) {
2290 (void) strcpy(zap.za_name, ZFS_CTLDIR_NAME);
2291 zap.za_normalization_conflict = 0;
2292 objnum = ZFSCTL_INO_ROOT;
2293 type = DT_DIR;
2294 } else {
2295 /*
2296 * Grab next entry.
2297 */
2298 if ((error = zap_cursor_retrieve(&zc, &zap))) {
2299 if (error == ENOENT)
2300 break;
2301 else
2302 goto update;
2303 }
2304
2305 /*
2306 * Allow multiple entries provided the first entry is
2307 * the object id. Non-zpl consumers may safely make
2308 * use of the additional space.
2309 *
2310 * XXX: This should be a feature flag for compatibility
2311 */
2312 if (zap.za_integer_length != 8 ||
2313 zap.za_num_integers == 0) {
2314 cmn_err(CE_WARN, "zap_readdir: bad directory "
2315 "entry, obj = %lld, offset = %lld, "
2316 "length = %d, num = %lld\n",
2317 (u_longlong_t)zp->z_id,
2318 (u_longlong_t)offset,
2319 zap.za_integer_length,
2320 (u_longlong_t)zap.za_num_integers);
2321 error = SET_ERROR(ENXIO);
2322 goto update;
2323 }
2324
2325 objnum = ZFS_DIRENT_OBJ(zap.za_first_integer);
2326 type = ZFS_DIRENT_TYPE(zap.za_first_integer);
2327 }
2328
2329 done = !dir_emit(ctx, zap.za_name, strlen(zap.za_name),
2330 objnum, type);
2331 if (done)
2332 break;
2333
2334 /* Prefetch znode */
2335 if (prefetch) {
2336 dmu_prefetch(os, objnum, 0, 0, 0,
2337 ZIO_PRIORITY_SYNC_READ);
2338 }
2339
2340 /*
2341 * Move to the next entry, fill in the previous offset.
2342 */
2343 if (offset > 2 || (offset == 2 && !zfs_show_ctldir(zp))) {
2344 zap_cursor_advance(&zc);
2345 offset = zap_cursor_serialize(&zc);
2346 } else {
2347 offset += 1;
2348 }
2349 ctx->pos = offset;
2350 }
2351 zp->z_zn_prefetch = B_FALSE; /* a lookup will re-enable pre-fetching */
2352
2353 update:
2354 zap_cursor_fini(&zc);
2355 if (error == ENOENT)
2356 error = 0;
2357 out:
2358 ZFS_EXIT(zfsvfs);
2359
2360 return (error);
2361 }
2362
2363 ulong_t zfs_fsync_sync_cnt = 4;
2364
2365 int
2366 zfs_fsync(struct inode *ip, int syncflag, cred_t *cr)
2367 {
2368 znode_t *zp = ITOZ(ip);
2369 zfsvfs_t *zfsvfs = ITOZSB(ip);
2370
2371 (void) tsd_set(zfs_fsyncer_key, (void *)zfs_fsync_sync_cnt);
2372
2373 if (zfsvfs->z_os->os_sync != ZFS_SYNC_DISABLED) {
2374 ZFS_ENTER(zfsvfs);
2375 ZFS_VERIFY_ZP(zp);
2376 zil_commit(zfsvfs->z_log, zp->z_id);
2377 ZFS_EXIT(zfsvfs);
2378 }
2379 tsd_set(zfs_fsyncer_key, NULL);
2380
2381 return (0);
2382 }
2383
2384
2385 /*
2386 * Get the requested file attributes and place them in the provided
2387 * vattr structure.
2388 *
2389 * IN: ip - inode of file.
2390 * vap - va_mask identifies requested attributes.
2391 * If ATTR_XVATTR set, then optional attrs are requested
2392 * flags - ATTR_NOACLCHECK (CIFS server context)
2393 * cr - credentials of caller.
2394 *
2395 * OUT: vap - attribute values.
2396 *
2397 * RETURN: 0 (always succeeds)
2398 */
2399 /* ARGSUSED */
2400 int
2401 zfs_getattr(struct inode *ip, vattr_t *vap, int flags, cred_t *cr)
2402 {
2403 znode_t *zp = ITOZ(ip);
2404 zfsvfs_t *zfsvfs = ITOZSB(ip);
2405 int error = 0;
2406 uint64_t links;
2407 uint64_t atime[2], mtime[2], ctime[2];
2408 xvattr_t *xvap = (xvattr_t *)vap; /* vap may be an xvattr_t * */
2409 xoptattr_t *xoap = NULL;
2410 boolean_t skipaclchk = (flags & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE;
2411 sa_bulk_attr_t bulk[3];
2412 int count = 0;
2413
2414 ZFS_ENTER(zfsvfs);
2415 ZFS_VERIFY_ZP(zp);
2416
2417 zfs_fuid_map_ids(zp, cr, &vap->va_uid, &vap->va_gid);
2418
2419 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_ATIME(zfsvfs), NULL, &atime, 16);
2420 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL, &mtime, 16);
2421 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, &ctime, 16);
2422
2423 if ((error = sa_bulk_lookup(zp->z_sa_hdl, bulk, count)) != 0) {
2424 ZFS_EXIT(zfsvfs);
2425 return (error);
2426 }
2427
2428 /*
2429 * If ACL is trivial don't bother looking for ACE_READ_ATTRIBUTES.
2430 * Also, if we are the owner don't bother, since owner should
2431 * always be allowed to read basic attributes of file.
2432 */
2433 if (!(zp->z_pflags & ZFS_ACL_TRIVIAL) &&
2434 (vap->va_uid != crgetuid(cr))) {
2435 if ((error = zfs_zaccess(zp, ACE_READ_ATTRIBUTES, 0,
2436 skipaclchk, cr))) {
2437 ZFS_EXIT(zfsvfs);
2438 return (error);
2439 }
2440 }
2441
2442 /*
2443 * Return all attributes. It's cheaper to provide the answer
2444 * than to determine whether we were asked the question.
2445 */
2446
2447 mutex_enter(&zp->z_lock);
2448 vap->va_type = vn_mode_to_vtype(zp->z_mode);
2449 vap->va_mode = zp->z_mode;
2450 vap->va_fsid = ZTOI(zp)->i_sb->s_dev;
2451 vap->va_nodeid = zp->z_id;
2452 if ((zp->z_id == zfsvfs->z_root) && zfs_show_ctldir(zp))
2453 links = ZTOI(zp)->i_nlink + 1;
2454 else
2455 links = ZTOI(zp)->i_nlink;
2456 vap->va_nlink = MIN(links, ZFS_LINK_MAX);
2457 vap->va_size = i_size_read(ip);
2458 vap->va_rdev = ip->i_rdev;
2459 vap->va_seq = ip->i_generation;
2460
2461 /*
2462 * Add in any requested optional attributes and the create time.
2463 * Also set the corresponding bits in the returned attribute bitmap.
2464 */
2465 if ((xoap = xva_getxoptattr(xvap)) != NULL && zfsvfs->z_use_fuids) {
2466 if (XVA_ISSET_REQ(xvap, XAT_ARCHIVE)) {
2467 xoap->xoa_archive =
2468 ((zp->z_pflags & ZFS_ARCHIVE) != 0);
2469 XVA_SET_RTN(xvap, XAT_ARCHIVE);
2470 }
2471
2472 if (XVA_ISSET_REQ(xvap, XAT_READONLY)) {
2473 xoap->xoa_readonly =
2474 ((zp->z_pflags & ZFS_READONLY) != 0);
2475 XVA_SET_RTN(xvap, XAT_READONLY);
2476 }
2477
2478 if (XVA_ISSET_REQ(xvap, XAT_SYSTEM)) {
2479 xoap->xoa_system =
2480 ((zp->z_pflags & ZFS_SYSTEM) != 0);
2481 XVA_SET_RTN(xvap, XAT_SYSTEM);
2482 }
2483
2484 if (XVA_ISSET_REQ(xvap, XAT_HIDDEN)) {
2485 xoap->xoa_hidden =
2486 ((zp->z_pflags & ZFS_HIDDEN) != 0);
2487 XVA_SET_RTN(xvap, XAT_HIDDEN);
2488 }
2489
2490 if (XVA_ISSET_REQ(xvap, XAT_NOUNLINK)) {
2491 xoap->xoa_nounlink =
2492 ((zp->z_pflags & ZFS_NOUNLINK) != 0);
2493 XVA_SET_RTN(xvap, XAT_NOUNLINK);
2494 }
2495
2496 if (XVA_ISSET_REQ(xvap, XAT_IMMUTABLE)) {
2497 xoap->xoa_immutable =
2498 ((zp->z_pflags & ZFS_IMMUTABLE) != 0);
2499 XVA_SET_RTN(xvap, XAT_IMMUTABLE);
2500 }
2501
2502 if (XVA_ISSET_REQ(xvap, XAT_APPENDONLY)) {
2503 xoap->xoa_appendonly =
2504 ((zp->z_pflags & ZFS_APPENDONLY) != 0);
2505 XVA_SET_RTN(xvap, XAT_APPENDONLY);
2506 }
2507
2508 if (XVA_ISSET_REQ(xvap, XAT_NODUMP)) {
2509 xoap->xoa_nodump =
2510 ((zp->z_pflags & ZFS_NODUMP) != 0);
2511 XVA_SET_RTN(xvap, XAT_NODUMP);
2512 }
2513
2514 if (XVA_ISSET_REQ(xvap, XAT_OPAQUE)) {
2515 xoap->xoa_opaque =
2516 ((zp->z_pflags & ZFS_OPAQUE) != 0);
2517 XVA_SET_RTN(xvap, XAT_OPAQUE);
2518 }
2519
2520 if (XVA_ISSET_REQ(xvap, XAT_AV_QUARANTINED)) {
2521 xoap->xoa_av_quarantined =
2522 ((zp->z_pflags & ZFS_AV_QUARANTINED) != 0);
2523 XVA_SET_RTN(xvap, XAT_AV_QUARANTINED);
2524 }
2525
2526 if (XVA_ISSET_REQ(xvap, XAT_AV_MODIFIED)) {
2527 xoap->xoa_av_modified =
2528 ((zp->z_pflags & ZFS_AV_MODIFIED) != 0);
2529 XVA_SET_RTN(xvap, XAT_AV_MODIFIED);
2530 }
2531
2532 if (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP) &&
2533 S_ISREG(ip->i_mode)) {
2534 zfs_sa_get_scanstamp(zp, xvap);
2535 }
2536
2537 if (XVA_ISSET_REQ(xvap, XAT_CREATETIME)) {
2538 uint64_t times[2];
2539
2540 (void) sa_lookup(zp->z_sa_hdl, SA_ZPL_CRTIME(zfsvfs),
2541 times, sizeof (times));
2542 ZFS_TIME_DECODE(&xoap->xoa_createtime, times);
2543 XVA_SET_RTN(xvap, XAT_CREATETIME);
2544 }
2545
2546 if (XVA_ISSET_REQ(xvap, XAT_REPARSE)) {
2547 xoap->xoa_reparse = ((zp->z_pflags & ZFS_REPARSE) != 0);
2548 XVA_SET_RTN(xvap, XAT_REPARSE);
2549 }
2550 if (XVA_ISSET_REQ(xvap, XAT_GEN)) {
2551 xoap->xoa_generation = ip->i_generation;
2552 XVA_SET_RTN(xvap, XAT_GEN);
2553 }
2554
2555 if (XVA_ISSET_REQ(xvap, XAT_OFFLINE)) {
2556 xoap->xoa_offline =
2557 ((zp->z_pflags & ZFS_OFFLINE) != 0);
2558 XVA_SET_RTN(xvap, XAT_OFFLINE);
2559 }
2560
2561 if (XVA_ISSET_REQ(xvap, XAT_SPARSE)) {
2562 xoap->xoa_sparse =
2563 ((zp->z_pflags & ZFS_SPARSE) != 0);
2564 XVA_SET_RTN(xvap, XAT_SPARSE);
2565 }
2566 }
2567
2568 ZFS_TIME_DECODE(&vap->va_atime, atime);
2569 ZFS_TIME_DECODE(&vap->va_mtime, mtime);
2570 ZFS_TIME_DECODE(&vap->va_ctime, ctime);
2571
2572 mutex_exit(&zp->z_lock);
2573
2574 sa_object_size(zp->z_sa_hdl, &vap->va_blksize, &vap->va_nblocks);
2575
2576 if (zp->z_blksz == 0) {
2577 /*
2578 * Block size hasn't been set; suggest maximal I/O transfers.
2579 */
2580 vap->va_blksize = zfsvfs->z_max_blksz;
2581 }
2582
2583 ZFS_EXIT(zfsvfs);
2584 return (0);
2585 }
2586
2587 /*
2588 * Get the basic file attributes and place them in the provided kstat
2589 * structure. The inode is assumed to be the authoritative source
2590 * for most of the attributes. However, the znode currently has the
2591 * authoritative atime, blksize, and block count.
2592 *
2593 * IN: ip - inode of file.
2594 *
2595 * OUT: sp - kstat values.
2596 *
2597 * RETURN: 0 (always succeeds)
2598 */
2599 /* ARGSUSED */
2600 int
2601 zfs_getattr_fast(struct inode *ip, struct kstat *sp)
2602 {
2603 znode_t *zp = ITOZ(ip);
2604 zfsvfs_t *zfsvfs = ITOZSB(ip);
2605 uint32_t blksize;
2606 u_longlong_t nblocks;
2607
2608 ZFS_ENTER(zfsvfs);
2609 ZFS_VERIFY_ZP(zp);
2610
2611 mutex_enter(&zp->z_lock);
2612
2613 generic_fillattr(ip, sp);
2614
2615 sa_object_size(zp->z_sa_hdl, &blksize, &nblocks);
2616 sp->blksize = blksize;
2617 sp->blocks = nblocks;
2618
2619 if (unlikely(zp->z_blksz == 0)) {
2620 /*
2621 * Block size hasn't been set; suggest maximal I/O transfers.
2622 */
2623 sp->blksize = zfsvfs->z_max_blksz;
2624 }
2625
2626 mutex_exit(&zp->z_lock);
2627
2628 /*
2629 * Required to prevent NFS client from detecting different inode
2630 * numbers of snapshot root dentry before and after snapshot mount.
2631 */
2632 if (zfsvfs->z_issnap) {
2633 if (ip->i_sb->s_root->d_inode == ip)
2634 sp->ino = ZFSCTL_INO_SNAPDIRS -
2635 dmu_objset_id(zfsvfs->z_os);
2636 }
2637
2638 ZFS_EXIT(zfsvfs);
2639
2640 return (0);
2641 }
2642
2643 /*
2644 * Set the file attributes to the values contained in the
2645 * vattr structure.
2646 *
2647 * IN: ip - inode of file to be modified.
2648 * vap - new attribute values.
2649 * If ATTR_XVATTR set, then optional attrs are being set
2650 * flags - ATTR_UTIME set if non-default time values provided.
2651 * - ATTR_NOACLCHECK (CIFS context only).
2652 * cr - credentials of caller.
2653 *
2654 * RETURN: 0 if success
2655 * error code if failure
2656 *
2657 * Timestamps:
2658 * ip - ctime updated, mtime updated if size changed.
2659 */
2660 /* ARGSUSED */
2661 int
2662 zfs_setattr(struct inode *ip, vattr_t *vap, int flags, cred_t *cr)
2663 {
2664 znode_t *zp = ITOZ(ip);
2665 zfsvfs_t *zfsvfs = ITOZSB(ip);
2666 zilog_t *zilog;
2667 dmu_tx_t *tx;
2668 vattr_t oldva;
2669 xvattr_t *tmpxvattr;
2670 uint_t mask = vap->va_mask;
2671 uint_t saved_mask = 0;
2672 int trim_mask = 0;
2673 uint64_t new_mode;
2674 uint64_t new_kuid = 0, new_kgid = 0, new_uid, new_gid;
2675 uint64_t xattr_obj;
2676 uint64_t mtime[2], ctime[2], atime[2];
2677 znode_t *attrzp;
2678 int need_policy = FALSE;
2679 int err, err2;
2680 zfs_fuid_info_t *fuidp = NULL;
2681 xvattr_t *xvap = (xvattr_t *)vap; /* vap may be an xvattr_t * */
2682 xoptattr_t *xoap;
2683 zfs_acl_t *aclp;
2684 boolean_t skipaclchk = (flags & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE;
2685 boolean_t fuid_dirtied = B_FALSE;
2686 sa_bulk_attr_t *bulk, *xattr_bulk;
2687 int count = 0, xattr_count = 0;
2688
2689 if (mask == 0)
2690 return (0);
2691
2692 ZFS_ENTER(zfsvfs);
2693 ZFS_VERIFY_ZP(zp);
2694
2695 zilog = zfsvfs->z_log;
2696
2697 /*
2698 * Make sure that if we have ephemeral uid/gid or xvattr specified
2699 * that file system is at proper version level
2700 */
2701
2702 if (zfsvfs->z_use_fuids == B_FALSE &&
2703 (((mask & ATTR_UID) && IS_EPHEMERAL(vap->va_uid)) ||
2704 ((mask & ATTR_GID) && IS_EPHEMERAL(vap->va_gid)) ||
2705 (mask & ATTR_XVATTR))) {
2706 ZFS_EXIT(zfsvfs);
2707 return (SET_ERROR(EINVAL));
2708 }
2709
2710 if (mask & ATTR_SIZE && S_ISDIR(ip->i_mode)) {
2711 ZFS_EXIT(zfsvfs);
2712 return (SET_ERROR(EISDIR));
2713 }
2714
2715 if (mask & ATTR_SIZE && !S_ISREG(ip->i_mode) && !S_ISFIFO(ip->i_mode)) {
2716 ZFS_EXIT(zfsvfs);
2717 return (SET_ERROR(EINVAL));
2718 }
2719
2720 /*
2721 * If this is an xvattr_t, then get a pointer to the structure of
2722 * optional attributes. If this is NULL, then we have a vattr_t.
2723 */
2724 xoap = xva_getxoptattr(xvap);
2725
2726 tmpxvattr = kmem_alloc(sizeof (xvattr_t), KM_SLEEP);
2727 xva_init(tmpxvattr);
2728
2729 bulk = kmem_alloc(sizeof (sa_bulk_attr_t) * 7, KM_SLEEP);
2730 xattr_bulk = kmem_alloc(sizeof (sa_bulk_attr_t) * 7, KM_SLEEP);
2731
2732 /*
2733 * Immutable files can only alter immutable bit and atime
2734 */
2735 if ((zp->z_pflags & ZFS_IMMUTABLE) &&
2736 ((mask & (ATTR_SIZE|ATTR_UID|ATTR_GID|ATTR_MTIME|ATTR_MODE)) ||
2737 ((mask & ATTR_XVATTR) && XVA_ISSET_REQ(xvap, XAT_CREATETIME)))) {
2738 err = SET_ERROR(EPERM);
2739 goto out3;
2740 }
2741
2742 if ((mask & ATTR_SIZE) && (zp->z_pflags & ZFS_READONLY)) {
2743 err = SET_ERROR(EPERM);
2744 goto out3;
2745 }
2746
2747 /*
2748 * Verify timestamps doesn't overflow 32 bits.
2749 * ZFS can handle large timestamps, but 32bit syscalls can't
2750 * handle times greater than 2039. This check should be removed
2751 * once large timestamps are fully supported.
2752 */
2753 if (mask & (ATTR_ATIME | ATTR_MTIME)) {
2754 if (((mask & ATTR_ATIME) &&
2755 TIMESPEC_OVERFLOW(&vap->va_atime)) ||
2756 ((mask & ATTR_MTIME) &&
2757 TIMESPEC_OVERFLOW(&vap->va_mtime))) {
2758 err = SET_ERROR(EOVERFLOW);
2759 goto out3;
2760 }
2761 }
2762
2763 top:
2764 attrzp = NULL;
2765 aclp = NULL;
2766
2767 /* Can this be moved to before the top label? */
2768 if (zfs_is_readonly(zfsvfs)) {
2769 err = SET_ERROR(EROFS);
2770 goto out3;
2771 }
2772
2773 /*
2774 * First validate permissions
2775 */
2776
2777 if (mask & ATTR_SIZE) {
2778 err = zfs_zaccess(zp, ACE_WRITE_DATA, 0, skipaclchk, cr);
2779 if (err)
2780 goto out3;
2781
2782 /*
2783 * XXX - Note, we are not providing any open
2784 * mode flags here (like FNDELAY), so we may
2785 * block if there are locks present... this
2786 * should be addressed in openat().
2787 */
2788 /* XXX - would it be OK to generate a log record here? */
2789 err = zfs_freesp(zp, vap->va_size, 0, 0, FALSE);
2790 if (err)
2791 goto out3;
2792 }
2793
2794 if (mask & (ATTR_ATIME|ATTR_MTIME) ||
2795 ((mask & ATTR_XVATTR) && (XVA_ISSET_REQ(xvap, XAT_HIDDEN) ||
2796 XVA_ISSET_REQ(xvap, XAT_READONLY) ||
2797 XVA_ISSET_REQ(xvap, XAT_ARCHIVE) ||
2798 XVA_ISSET_REQ(xvap, XAT_OFFLINE) ||
2799 XVA_ISSET_REQ(xvap, XAT_SPARSE) ||
2800 XVA_ISSET_REQ(xvap, XAT_CREATETIME) ||
2801 XVA_ISSET_REQ(xvap, XAT_SYSTEM)))) {
2802 need_policy = zfs_zaccess(zp, ACE_WRITE_ATTRIBUTES, 0,
2803 skipaclchk, cr);
2804 }
2805
2806 if (mask & (ATTR_UID|ATTR_GID)) {
2807 int idmask = (mask & (ATTR_UID|ATTR_GID));
2808 int take_owner;
2809 int take_group;
2810
2811 /*
2812 * NOTE: even if a new mode is being set,
2813 * we may clear S_ISUID/S_ISGID bits.
2814 */
2815
2816 if (!(mask & ATTR_MODE))
2817 vap->va_mode = zp->z_mode;
2818
2819 /*
2820 * Take ownership or chgrp to group we are a member of
2821 */
2822
2823 take_owner = (mask & ATTR_UID) && (vap->va_uid == crgetuid(cr));
2824 take_group = (mask & ATTR_GID) &&
2825 zfs_groupmember(zfsvfs, vap->va_gid, cr);
2826
2827 /*
2828 * If both ATTR_UID and ATTR_GID are set then take_owner and
2829 * take_group must both be set in order to allow taking
2830 * ownership.
2831 *
2832 * Otherwise, send the check through secpolicy_vnode_setattr()
2833 *
2834 */
2835
2836 if (((idmask == (ATTR_UID|ATTR_GID)) &&
2837 take_owner && take_group) ||
2838 ((idmask == ATTR_UID) && take_owner) ||
2839 ((idmask == ATTR_GID) && take_group)) {
2840 if (zfs_zaccess(zp, ACE_WRITE_OWNER, 0,
2841 skipaclchk, cr) == 0) {
2842 /*
2843 * Remove setuid/setgid for non-privileged users
2844 */
2845 (void) secpolicy_setid_clear(vap, cr);
2846 trim_mask = (mask & (ATTR_UID|ATTR_GID));
2847 } else {
2848 need_policy = TRUE;
2849 }
2850 } else {
2851 need_policy = TRUE;
2852 }
2853 }
2854
2855 mutex_enter(&zp->z_lock);
2856 oldva.va_mode = zp->z_mode;
2857 zfs_fuid_map_ids(zp, cr, &oldva.va_uid, &oldva.va_gid);
2858 if (mask & ATTR_XVATTR) {
2859 /*
2860 * Update xvattr mask to include only those attributes
2861 * that are actually changing.
2862 *
2863 * the bits will be restored prior to actually setting
2864 * the attributes so the caller thinks they were set.
2865 */
2866 if (XVA_ISSET_REQ(xvap, XAT_APPENDONLY)) {
2867 if (xoap->xoa_appendonly !=
2868 ((zp->z_pflags & ZFS_APPENDONLY) != 0)) {
2869 need_policy = TRUE;
2870 } else {
2871 XVA_CLR_REQ(xvap, XAT_APPENDONLY);
2872 XVA_SET_REQ(tmpxvattr, XAT_APPENDONLY);
2873 }
2874 }
2875
2876 if (XVA_ISSET_REQ(xvap, XAT_NOUNLINK)) {
2877 if (xoap->xoa_nounlink !=
2878 ((zp->z_pflags & ZFS_NOUNLINK) != 0)) {
2879 need_policy = TRUE;
2880 } else {
2881 XVA_CLR_REQ(xvap, XAT_NOUNLINK);
2882 XVA_SET_REQ(tmpxvattr, XAT_NOUNLINK);
2883 }
2884 }
2885
2886 if (XVA_ISSET_REQ(xvap, XAT_IMMUTABLE)) {
2887 if (xoap->xoa_immutable !=
2888 ((zp->z_pflags & ZFS_IMMUTABLE) != 0)) {
2889 need_policy = TRUE;
2890 } else {
2891 XVA_CLR_REQ(xvap, XAT_IMMUTABLE);
2892 XVA_SET_REQ(tmpxvattr, XAT_IMMUTABLE);
2893 }
2894 }
2895
2896 if (XVA_ISSET_REQ(xvap, XAT_NODUMP)) {
2897 if (xoap->xoa_nodump !=
2898 ((zp->z_pflags & ZFS_NODUMP) != 0)) {
2899 need_policy = TRUE;
2900 } else {
2901 XVA_CLR_REQ(xvap, XAT_NODUMP);
2902 XVA_SET_REQ(tmpxvattr, XAT_NODUMP);
2903 }
2904 }
2905
2906 if (XVA_ISSET_REQ(xvap, XAT_AV_MODIFIED)) {
2907 if (xoap->xoa_av_modified !=
2908 ((zp->z_pflags & ZFS_AV_MODIFIED) != 0)) {
2909 need_policy = TRUE;
2910 } else {
2911 XVA_CLR_REQ(xvap, XAT_AV_MODIFIED);
2912 XVA_SET_REQ(tmpxvattr, XAT_AV_MODIFIED);
2913 }
2914 }
2915
2916 if (XVA_ISSET_REQ(xvap, XAT_AV_QUARANTINED)) {
2917 if ((!S_ISREG(ip->i_mode) &&
2918 xoap->xoa_av_quarantined) ||
2919 xoap->xoa_av_quarantined !=
2920 ((zp->z_pflags & ZFS_AV_QUARANTINED) != 0)) {
2921 need_policy = TRUE;
2922 } else {
2923 XVA_CLR_REQ(xvap, XAT_AV_QUARANTINED);
2924 XVA_SET_REQ(tmpxvattr, XAT_AV_QUARANTINED);
2925 }
2926 }
2927
2928 if (XVA_ISSET_REQ(xvap, XAT_REPARSE)) {
2929 mutex_exit(&zp->z_lock);
2930 err = SET_ERROR(EPERM);
2931 goto out3;
2932 }
2933
2934 if (need_policy == FALSE &&
2935 (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP) ||
2936 XVA_ISSET_REQ(xvap, XAT_OPAQUE))) {
2937 need_policy = TRUE;
2938 }
2939 }
2940
2941 mutex_exit(&zp->z_lock);
2942
2943 if (mask & ATTR_MODE) {
2944 if (zfs_zaccess(zp, ACE_WRITE_ACL, 0, skipaclchk, cr) == 0) {
2945 err = secpolicy_setid_setsticky_clear(ip, vap,
2946 &oldva, cr);
2947 if (err)
2948 goto out3;
2949
2950 trim_mask |= ATTR_MODE;
2951 } else {
2952 need_policy = TRUE;
2953 }
2954 }
2955
2956 if (need_policy) {
2957 /*
2958 * If trim_mask is set then take ownership
2959 * has been granted or write_acl is present and user
2960 * has the ability to modify mode. In that case remove
2961 * UID|GID and or MODE from mask so that
2962 * secpolicy_vnode_setattr() doesn't revoke it.
2963 */
2964
2965 if (trim_mask) {
2966 saved_mask = vap->va_mask;
2967 vap->va_mask &= ~trim_mask;
2968 }
2969 err = secpolicy_vnode_setattr(cr, ip, vap, &oldva, flags,
2970 (int (*)(void *, int, cred_t *))zfs_zaccess_unix, zp);
2971 if (err)
2972 goto out3;
2973
2974 if (trim_mask)
2975 vap->va_mask |= saved_mask;
2976 }
2977
2978 /*
2979 * secpolicy_vnode_setattr, or take ownership may have
2980 * changed va_mask
2981 */
2982 mask = vap->va_mask;
2983
2984 if ((mask & (ATTR_UID | ATTR_GID))) {
2985 err = sa_lookup(zp->z_sa_hdl, SA_ZPL_XATTR(zfsvfs),
2986 &xattr_obj, sizeof (xattr_obj));
2987
2988 if (err == 0 && xattr_obj) {
2989 err = zfs_zget(ZTOZSB(zp), xattr_obj, &attrzp);
2990 if (err)
2991 goto out2;
2992 }
2993 if (mask & ATTR_UID) {
2994 new_kuid = zfs_fuid_create(zfsvfs,
2995 (uint64_t)vap->va_uid, cr, ZFS_OWNER, &fuidp);
2996 if (new_kuid != KUID_TO_SUID(ZTOI(zp)->i_uid) &&
2997 zfs_fuid_overquota(zfsvfs, B_FALSE, new_kuid)) {
2998 if (attrzp)
2999 iput(ZTOI(attrzp));
3000 err = SET_ERROR(EDQUOT);
3001 goto out2;
3002 }
3003 }
3004
3005 if (mask & ATTR_GID) {
3006 new_kgid = zfs_fuid_create(zfsvfs,
3007 (uint64_t)vap->va_gid, cr, ZFS_GROUP, &fuidp);
3008 if (new_kgid != KGID_TO_SGID(ZTOI(zp)->i_gid) &&
3009 zfs_fuid_overquota(zfsvfs, B_TRUE, new_kgid)) {
3010 if (attrzp)
3011 iput(ZTOI(attrzp));
3012 err = SET_ERROR(EDQUOT);
3013 goto out2;
3014 }
3015 }
3016 }
3017 tx = dmu_tx_create(zfsvfs->z_os);
3018
3019 if (mask & ATTR_MODE) {
3020 uint64_t pmode = zp->z_mode;
3021 uint64_t acl_obj;
3022 new_mode = (pmode & S_IFMT) | (vap->va_mode & ~S_IFMT);
3023
3024 zfs_acl_chmod_setattr(zp, &aclp, new_mode);
3025
3026 mutex_enter(&zp->z_lock);
3027 if (!zp->z_is_sa && ((acl_obj = zfs_external_acl(zp)) != 0)) {
3028 /*
3029 * Are we upgrading ACL from old V0 format
3030 * to V1 format?
3031 */
3032 if (zfsvfs->z_version >= ZPL_VERSION_FUID &&
3033 zfs_znode_acl_version(zp) ==
3034 ZFS_ACL_VERSION_INITIAL) {
3035 dmu_tx_hold_free(tx, acl_obj, 0,
3036 DMU_OBJECT_END);
3037 dmu_tx_hold_write(tx, DMU_NEW_OBJECT,
3038 0, aclp->z_acl_bytes);
3039 } else {
3040 dmu_tx_hold_write(tx, acl_obj, 0,
3041 aclp->z_acl_bytes);
3042 }
3043 } else if (!zp->z_is_sa && aclp->z_acl_bytes > ZFS_ACE_SPACE) {
3044 dmu_tx_hold_write(tx, DMU_NEW_OBJECT,
3045 0, aclp->z_acl_bytes);
3046 }
3047 mutex_exit(&zp->z_lock);
3048 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE);
3049 } else {
3050 if ((mask & ATTR_XVATTR) &&
3051 XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP))
3052 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE);
3053 else
3054 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
3055 }
3056
3057 if (attrzp) {
3058 dmu_tx_hold_sa(tx, attrzp->z_sa_hdl, B_FALSE);
3059 }
3060
3061 fuid_dirtied = zfsvfs->z_fuid_dirty;
3062 if (fuid_dirtied)
3063 zfs_fuid_txhold(zfsvfs, tx);
3064
3065 zfs_sa_upgrade_txholds(tx, zp);
3066
3067 err = dmu_tx_assign(tx, TXG_WAIT);
3068 if (err)
3069 goto out;
3070
3071 count = 0;
3072 /*
3073 * Set each attribute requested.
3074 * We group settings according to the locks they need to acquire.
3075 *
3076 * Note: you cannot set ctime directly, although it will be
3077 * updated as a side-effect of calling this function.
3078 */
3079
3080
3081 if (mask & (ATTR_UID|ATTR_GID|ATTR_MODE))
3082 mutex_enter(&zp->z_acl_lock);
3083 mutex_enter(&zp->z_lock);
3084
3085 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL,
3086 &zp->z_pflags, sizeof (zp->z_pflags));
3087
3088 if (attrzp) {
3089 if (mask & (ATTR_UID|ATTR_GID|ATTR_MODE))
3090 mutex_enter(&attrzp->z_acl_lock);
3091 mutex_enter(&attrzp->z_lock);
3092 SA_ADD_BULK_ATTR(xattr_bulk, xattr_count,
3093 SA_ZPL_FLAGS(zfsvfs), NULL, &attrzp->z_pflags,
3094 sizeof (attrzp->z_pflags));
3095 }
3096
3097 if (mask & (ATTR_UID|ATTR_GID)) {
3098
3099 if (mask & ATTR_UID) {
3100 ZTOI(zp)->i_uid = SUID_TO_KUID(new_kuid);
3101 new_uid = zfs_uid_read(ZTOI(zp));
3102 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_UID(zfsvfs), NULL,
3103 &new_uid, sizeof (new_uid));
3104 if (attrzp) {
3105 SA_ADD_BULK_ATTR(xattr_bulk, xattr_count,
3106 SA_ZPL_UID(zfsvfs), NULL, &new_uid,
3107 sizeof (new_uid));
3108 ZTOI(attrzp)->i_uid = SUID_TO_KUID(new_uid);
3109 }
3110 }
3111
3112 if (mask & ATTR_GID) {
3113 ZTOI(zp)->i_gid = SGID_TO_KGID(new_kgid);
3114 new_gid = zfs_gid_read(ZTOI(zp));
3115 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_GID(zfsvfs),
3116 NULL, &new_gid, sizeof (new_gid));
3117 if (attrzp) {
3118 SA_ADD_BULK_ATTR(xattr_bulk, xattr_count,
3119 SA_ZPL_GID(zfsvfs), NULL, &new_gid,
3120 sizeof (new_gid));
3121 ZTOI(attrzp)->i_gid = SGID_TO_KGID(new_kgid);
3122 }
3123 }
3124 if (!(mask & ATTR_MODE)) {
3125 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MODE(zfsvfs),
3126 NULL, &new_mode, sizeof (new_mode));
3127 new_mode = zp->z_mode;
3128 }
3129 err = zfs_acl_chown_setattr(zp);
3130 ASSERT(err == 0);
3131 if (attrzp) {
3132 err = zfs_acl_chown_setattr(attrzp);
3133 ASSERT(err == 0);
3134 }
3135 }
3136
3137 if (mask & ATTR_MODE) {
3138 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MODE(zfsvfs), NULL,
3139 &new_mode, sizeof (new_mode));
3140 zp->z_mode = ZTOI(zp)->i_mode = new_mode;
3141 ASSERT3P(aclp, !=, NULL);
3142 err = zfs_aclset_common(zp, aclp, cr, tx);
3143 ASSERT0(err);
3144 if (zp->z_acl_cached)
3145 zfs_acl_free(zp->z_acl_cached);
3146 zp->z_acl_cached = aclp;
3147 aclp = NULL;
3148 }
3149
3150 if ((mask & ATTR_ATIME) || zp->z_atime_dirty) {
3151 zp->z_atime_dirty = 0;
3152 ZFS_TIME_ENCODE(&ip->i_atime, atime);
3153 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_ATIME(zfsvfs), NULL,
3154 &atime, sizeof (atime));
3155 }
3156
3157 if (mask & ATTR_MTIME) {
3158 ZFS_TIME_ENCODE(&vap->va_mtime, mtime);
3159 ZTOI(zp)->i_mtime = timespec_trunc(vap->va_mtime,
3160 ZTOI(zp)->i_sb->s_time_gran);
3161
3162 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL,
3163 mtime, sizeof (mtime));
3164 }
3165
3166 if (mask & ATTR_CTIME) {
3167 ZFS_TIME_ENCODE(&vap->va_ctime, ctime);
3168 ZTOI(zp)->i_ctime = timespec_trunc(vap->va_ctime,
3169 ZTOI(zp)->i_sb->s_time_gran);
3170 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL,
3171 ctime, sizeof (ctime));
3172 }
3173
3174 if (attrzp && mask) {
3175 SA_ADD_BULK_ATTR(xattr_bulk, xattr_count,
3176 SA_ZPL_CTIME(zfsvfs), NULL, &ctime,
3177 sizeof (ctime));
3178 }
3179
3180 /*
3181 * Do this after setting timestamps to prevent timestamp
3182 * update from toggling bit
3183 */
3184
3185 if (xoap && (mask & ATTR_XVATTR)) {
3186
3187 /*
3188 * restore trimmed off masks
3189 * so that return masks can be set for caller.
3190 */
3191
3192 if (XVA_ISSET_REQ(tmpxvattr, XAT_APPENDONLY)) {
3193 XVA_SET_REQ(xvap, XAT_APPENDONLY);
3194 }
3195 if (XVA_ISSET_REQ(tmpxvattr, XAT_NOUNLINK)) {
3196 XVA_SET_REQ(xvap, XAT_NOUNLINK);
3197 }
3198 if (XVA_ISSET_REQ(tmpxvattr, XAT_IMMUTABLE)) {
3199 XVA_SET_REQ(xvap, XAT_IMMUTABLE);
3200 }
3201 if (XVA_ISSET_REQ(tmpxvattr, XAT_NODUMP)) {
3202 XVA_SET_REQ(xvap, XAT_NODUMP);
3203 }
3204 if (XVA_ISSET_REQ(tmpxvattr, XAT_AV_MODIFIED)) {
3205 XVA_SET_REQ(xvap, XAT_AV_MODIFIED);
3206 }
3207 if (XVA_ISSET_REQ(tmpxvattr, XAT_AV_QUARANTINED)) {
3208 XVA_SET_REQ(xvap, XAT_AV_QUARANTINED);
3209 }
3210
3211 if (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP))
3212 ASSERT(S_ISREG(ip->i_mode));
3213
3214 zfs_xvattr_set(zp, xvap, tx);
3215 }
3216
3217 if (fuid_dirtied)
3218 zfs_fuid_sync(zfsvfs, tx);
3219
3220 if (mask != 0)
3221 zfs_log_setattr(zilog, tx, TX_SETATTR, zp, vap, mask, fuidp);
3222
3223 mutex_exit(&zp->z_lock);
3224 if (mask & (ATTR_UID|ATTR_GID|ATTR_MODE))
3225 mutex_exit(&zp->z_acl_lock);
3226
3227 if (attrzp) {
3228 if (mask & (ATTR_UID|ATTR_GID|ATTR_MODE))
3229 mutex_exit(&attrzp->z_acl_lock);
3230 mutex_exit(&attrzp->z_lock);
3231 }
3232 out:
3233 if (err == 0 && attrzp) {
3234 err2 = sa_bulk_update(attrzp->z_sa_hdl, xattr_bulk,
3235 xattr_count, tx);
3236 ASSERT(err2 == 0);
3237 }
3238
3239 if (aclp)
3240 zfs_acl_free(aclp);
3241
3242 if (fuidp) {
3243 zfs_fuid_info_free(fuidp);
3244 fuidp = NULL;
3245 }
3246
3247 if (err) {
3248 dmu_tx_abort(tx);
3249 if (attrzp)
3250 iput(ZTOI(attrzp));
3251 if (err == ERESTART)
3252 goto top;
3253 } else {
3254 err2 = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx);
3255 dmu_tx_commit(tx);
3256 if (attrzp)
3257 iput(ZTOI(attrzp));
3258 zfs_inode_update(zp);
3259 }
3260
3261 out2:
3262 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
3263 zil_commit(zilog, 0);
3264
3265 out3:
3266 kmem_free(xattr_bulk, sizeof (sa_bulk_attr_t) * 7);
3267 kmem_free(bulk, sizeof (sa_bulk_attr_t) * 7);
3268 kmem_free(tmpxvattr, sizeof (xvattr_t));
3269 ZFS_EXIT(zfsvfs);
3270 return (err);
3271 }
3272
3273 typedef struct zfs_zlock {
3274 krwlock_t *zl_rwlock; /* lock we acquired */
3275 znode_t *zl_znode; /* znode we held */
3276 struct zfs_zlock *zl_next; /* next in list */
3277 } zfs_zlock_t;
3278
3279 /*
3280 * Drop locks and release vnodes that were held by zfs_rename_lock().
3281 */
3282 static void
3283 zfs_rename_unlock(zfs_zlock_t **zlpp)
3284 {
3285 zfs_zlock_t *zl;
3286
3287 while ((zl = *zlpp) != NULL) {
3288 if (zl->zl_znode != NULL)
3289 zfs_iput_async(ZTOI(zl->zl_znode));
3290 rw_exit(zl->zl_rwlock);
3291 *zlpp = zl->zl_next;
3292 kmem_free(zl, sizeof (*zl));
3293 }
3294 }
3295
3296 /*
3297 * Search back through the directory tree, using the ".." entries.
3298 * Lock each directory in the chain to prevent concurrent renames.
3299 * Fail any attempt to move a directory into one of its own descendants.
3300 * XXX - z_parent_lock can overlap with map or grow locks
3301 */
3302 static int
3303 zfs_rename_lock(znode_t *szp, znode_t *tdzp, znode_t *sdzp, zfs_zlock_t **zlpp)
3304 {
3305 zfs_zlock_t *zl;
3306 znode_t *zp = tdzp;
3307 uint64_t rootid = ZTOZSB(zp)->z_root;
3308 uint64_t oidp = zp->z_id;
3309 krwlock_t *rwlp = &szp->z_parent_lock;
3310 krw_t rw = RW_WRITER;
3311
3312 /*
3313 * First pass write-locks szp and compares to zp->z_id.
3314 * Later passes read-lock zp and compare to zp->z_parent.
3315 */
3316 do {
3317 if (!rw_tryenter(rwlp, rw)) {
3318 /*
3319 * Another thread is renaming in this path.
3320 * Note that if we are a WRITER, we don't have any
3321 * parent_locks held yet.
3322 */
3323 if (rw == RW_READER && zp->z_id > szp->z_id) {
3324 /*
3325 * Drop our locks and restart
3326 */
3327 zfs_rename_unlock(&zl);
3328 *zlpp = NULL;
3329 zp = tdzp;
3330 oidp = zp->z_id;
3331 rwlp = &szp->z_parent_lock;
3332 rw = RW_WRITER;
3333 continue;
3334 } else {
3335 /*
3336 * Wait for other thread to drop its locks
3337 */
3338 rw_enter(rwlp, rw);
3339 }
3340 }
3341
3342 zl = kmem_alloc(sizeof (*zl), KM_SLEEP);
3343 zl->zl_rwlock = rwlp;
3344 zl->zl_znode = NULL;
3345 zl->zl_next = *zlpp;
3346 *zlpp = zl;
3347
3348 if (oidp == szp->z_id) /* We're a descendant of szp */
3349 return (SET_ERROR(EINVAL));
3350
3351 if (oidp == rootid) /* We've hit the top */
3352 return (0);
3353
3354 if (rw == RW_READER) { /* i.e. not the first pass */
3355 int error = zfs_zget(ZTOZSB(zp), oidp, &zp);
3356 if (error)
3357 return (error);
3358 zl->zl_znode = zp;
3359 }
3360 (void) sa_lookup(zp->z_sa_hdl, SA_ZPL_PARENT(ZTOZSB(zp)),
3361 &oidp, sizeof (oidp));
3362 rwlp = &zp->z_parent_lock;
3363 rw = RW_READER;
3364
3365 } while (zp->z_id != sdzp->z_id);
3366
3367 return (0);
3368 }
3369
3370 /*
3371 * Move an entry from the provided source directory to the target
3372 * directory. Change the entry name as indicated.
3373 *
3374 * IN: sdip - Source directory containing the "old entry".
3375 * snm - Old entry name.
3376 * tdip - Target directory to contain the "new entry".
3377 * tnm - New entry name.
3378 * cr - credentials of caller.
3379 * flags - case flags
3380 *
3381 * RETURN: 0 on success, error code on failure.
3382 *
3383 * Timestamps:
3384 * sdip,tdip - ctime|mtime updated
3385 */
3386 /*ARGSUSED*/
3387 int
3388 zfs_rename(struct inode *sdip, char *snm, struct inode *tdip, char *tnm,
3389 cred_t *cr, int flags)
3390 {
3391 znode_t *tdzp, *szp, *tzp;
3392 znode_t *sdzp = ITOZ(sdip);
3393 zfsvfs_t *zfsvfs = ITOZSB(sdip);
3394 zilog_t *zilog;
3395 zfs_dirlock_t *sdl, *tdl;
3396 dmu_tx_t *tx;
3397 zfs_zlock_t *zl;
3398 int cmp, serr, terr;
3399 int error = 0;
3400 int zflg = 0;
3401 boolean_t waited = B_FALSE;
3402
3403 if (snm == NULL || tnm == NULL)
3404 return (SET_ERROR(EINVAL));
3405
3406 ZFS_ENTER(zfsvfs);
3407 ZFS_VERIFY_ZP(sdzp);
3408 zilog = zfsvfs->z_log;
3409
3410 tdzp = ITOZ(tdip);
3411 ZFS_VERIFY_ZP(tdzp);
3412
3413 /*
3414 * We check i_sb because snapshots and the ctldir must have different
3415 * super blocks.
3416 */
3417 if (tdip->i_sb != sdip->i_sb || zfsctl_is_node(tdip)) {
3418 ZFS_EXIT(zfsvfs);
3419 return (SET_ERROR(EXDEV));
3420 }
3421
3422 if (zfsvfs->z_utf8 && u8_validate(tnm,
3423 strlen(tnm), NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
3424 ZFS_EXIT(zfsvfs);
3425 return (SET_ERROR(EILSEQ));
3426 }
3427
3428 if (flags & FIGNORECASE)
3429 zflg |= ZCILOOK;
3430
3431 top:
3432 szp = NULL;
3433 tzp = NULL;
3434 zl = NULL;
3435
3436 /*
3437 * This is to prevent the creation of links into attribute space
3438 * by renaming a linked file into/outof an attribute directory.
3439 * See the comment in zfs_link() for why this is considered bad.
3440 */
3441 if ((tdzp->z_pflags & ZFS_XATTR) != (sdzp->z_pflags & ZFS_XATTR)) {
3442 ZFS_EXIT(zfsvfs);
3443 return (SET_ERROR(EINVAL));
3444 }
3445
3446 /*
3447 * Lock source and target directory entries. To prevent deadlock,
3448 * a lock ordering must be defined. We lock the directory with
3449 * the smallest object id first, or if it's a tie, the one with
3450 * the lexically first name.
3451 */
3452 if (sdzp->z_id < tdzp->z_id) {
3453 cmp = -1;
3454 } else if (sdzp->z_id > tdzp->z_id) {
3455 cmp = 1;
3456 } else {
3457 /*
3458 * First compare the two name arguments without
3459 * considering any case folding.
3460 */
3461 int nofold = (zfsvfs->z_norm & ~U8_TEXTPREP_TOUPPER);
3462
3463 cmp = u8_strcmp(snm, tnm, 0, nofold, U8_UNICODE_LATEST, &error);
3464 ASSERT(error == 0 || !zfsvfs->z_utf8);
3465 if (cmp == 0) {
3466 /*
3467 * POSIX: "If the old argument and the new argument
3468 * both refer to links to the same existing file,
3469 * the rename() function shall return successfully
3470 * and perform no other action."
3471 */
3472 ZFS_EXIT(zfsvfs);
3473 return (0);
3474 }
3475 /*
3476 * If the file system is case-folding, then we may
3477 * have some more checking to do. A case-folding file
3478 * system is either supporting mixed case sensitivity
3479 * access or is completely case-insensitive. Note
3480 * that the file system is always case preserving.
3481 *
3482 * In mixed sensitivity mode case sensitive behavior
3483 * is the default. FIGNORECASE must be used to
3484 * explicitly request case insensitive behavior.
3485 *
3486 * If the source and target names provided differ only
3487 * by case (e.g., a request to rename 'tim' to 'Tim'),
3488 * we will treat this as a special case in the
3489 * case-insensitive mode: as long as the source name
3490 * is an exact match, we will allow this to proceed as
3491 * a name-change request.
3492 */
3493 if ((zfsvfs->z_case == ZFS_CASE_INSENSITIVE ||
3494 (zfsvfs->z_case == ZFS_CASE_MIXED &&
3495 flags & FIGNORECASE)) &&
3496 u8_strcmp(snm, tnm, 0, zfsvfs->z_norm, U8_UNICODE_LATEST,
3497 &error) == 0) {
3498 /*
3499 * case preserving rename request, require exact
3500 * name matches
3501 */
3502 zflg |= ZCIEXACT;
3503 zflg &= ~ZCILOOK;
3504 }
3505 }
3506
3507 /*
3508 * If the source and destination directories are the same, we should
3509 * grab the z_name_lock of that directory only once.
3510 */
3511 if (sdzp == tdzp) {
3512 zflg |= ZHAVELOCK;
3513 rw_enter(&sdzp->z_name_lock, RW_READER);
3514 }
3515
3516 if (cmp < 0) {
3517 serr = zfs_dirent_lock(&sdl, sdzp, snm, &szp,
3518 ZEXISTS | zflg, NULL, NULL);
3519 terr = zfs_dirent_lock(&tdl,
3520 tdzp, tnm, &tzp, ZRENAMING | zflg, NULL, NULL);
3521 } else {
3522 terr = zfs_dirent_lock(&tdl,
3523 tdzp, tnm, &tzp, zflg, NULL, NULL);
3524 serr = zfs_dirent_lock(&sdl,
3525 sdzp, snm, &szp, ZEXISTS | ZRENAMING | zflg,
3526 NULL, NULL);
3527 }
3528
3529 if (serr) {
3530 /*
3531 * Source entry invalid or not there.
3532 */
3533 if (!terr) {
3534 zfs_dirent_unlock(tdl);
3535 if (tzp)
3536 iput(ZTOI(tzp));
3537 }
3538
3539 if (sdzp == tdzp)
3540 rw_exit(&sdzp->z_name_lock);
3541
3542 if (strcmp(snm, "..") == 0)
3543 serr = EINVAL;
3544 ZFS_EXIT(zfsvfs);
3545 return (serr);
3546 }
3547 if (terr) {
3548 zfs_dirent_unlock(sdl);
3549 iput(ZTOI(szp));
3550
3551 if (sdzp == tdzp)
3552 rw_exit(&sdzp->z_name_lock);
3553
3554 if (strcmp(tnm, "..") == 0)
3555 terr = EINVAL;
3556 ZFS_EXIT(zfsvfs);
3557 return (terr);
3558 }
3559
3560 /*
3561 * Must have write access at the source to remove the old entry
3562 * and write access at the target to create the new entry.
3563 * Note that if target and source are the same, this can be
3564 * done in a single check.
3565 */
3566
3567 if ((error = zfs_zaccess_rename(sdzp, szp, tdzp, tzp, cr)))
3568 goto out;
3569
3570 if (S_ISDIR(ZTOI(szp)->i_mode)) {
3571 /*
3572 * Check to make sure rename is valid.
3573 * Can't do a move like this: /usr/a/b to /usr/a/b/c/d
3574 */
3575 if ((error = zfs_rename_lock(szp, tdzp, sdzp, &zl)))
3576 goto out;
3577 }
3578
3579 /*
3580 * Does target exist?
3581 */
3582 if (tzp) {
3583 /*
3584 * Source and target must be the same type.
3585 */
3586 if (S_ISDIR(ZTOI(szp)->i_mode)) {
3587 if (!S_ISDIR(ZTOI(tzp)->i_mode)) {
3588 error = SET_ERROR(ENOTDIR);
3589 goto out;
3590 }
3591 } else {
3592 if (S_ISDIR(ZTOI(tzp)->i_mode)) {
3593 error = SET_ERROR(EISDIR);
3594 goto out;
3595 }
3596 }
3597 /*
3598 * POSIX dictates that when the source and target
3599 * entries refer to the same file object, rename
3600 * must do nothing and exit without error.
3601 */
3602 if (szp->z_id == tzp->z_id) {
3603 error = 0;
3604 goto out;
3605 }
3606 }
3607
3608 tx = dmu_tx_create(zfsvfs->z_os);
3609 dmu_tx_hold_sa(tx, szp->z_sa_hdl, B_FALSE);
3610 dmu_tx_hold_sa(tx, sdzp->z_sa_hdl, B_FALSE);
3611 dmu_tx_hold_zap(tx, sdzp->z_id, FALSE, snm);
3612 dmu_tx_hold_zap(tx, tdzp->z_id, TRUE, tnm);
3613 if (sdzp != tdzp) {
3614 dmu_tx_hold_sa(tx, tdzp->z_sa_hdl, B_FALSE);
3615 zfs_sa_upgrade_txholds(tx, tdzp);
3616 }
3617 if (tzp) {
3618 dmu_tx_hold_sa(tx, tzp->z_sa_hdl, B_FALSE);
3619 zfs_sa_upgrade_txholds(tx, tzp);
3620 }
3621
3622 zfs_sa_upgrade_txholds(tx, szp);
3623 dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL);
3624 error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT);
3625 if (error) {
3626 if (zl != NULL)
3627 zfs_rename_unlock(&zl);
3628 zfs_dirent_unlock(sdl);
3629 zfs_dirent_unlock(tdl);
3630
3631 if (sdzp == tdzp)
3632 rw_exit(&sdzp->z_name_lock);
3633
3634 if (error == ERESTART) {
3635 waited = B_TRUE;
3636 dmu_tx_wait(tx);
3637 dmu_tx_abort(tx);
3638 iput(ZTOI(szp));
3639 if (tzp)
3640 iput(ZTOI(tzp));
3641 goto top;
3642 }
3643 dmu_tx_abort(tx);
3644 iput(ZTOI(szp));
3645 if (tzp)
3646 iput(ZTOI(tzp));
3647 ZFS_EXIT(zfsvfs);
3648 return (error);
3649 }
3650
3651 if (tzp) /* Attempt to remove the existing target */
3652 error = zfs_link_destroy(tdl, tzp, tx, zflg, NULL);
3653
3654 if (error == 0) {
3655 error = zfs_link_create(tdl, szp, tx, ZRENAMING);
3656 if (error == 0) {
3657 szp->z_pflags |= ZFS_AV_MODIFIED;
3658
3659 error = sa_update(szp->z_sa_hdl, SA_ZPL_FLAGS(zfsvfs),
3660 (void *)&szp->z_pflags, sizeof (uint64_t), tx);
3661 ASSERT0(error);
3662
3663 error = zfs_link_destroy(sdl, szp, tx, ZRENAMING, NULL);
3664 if (error == 0) {
3665 zfs_log_rename(zilog, tx, TX_RENAME |
3666 (flags & FIGNORECASE ? TX_CI : 0), sdzp,
3667 sdl->dl_name, tdzp, tdl->dl_name, szp);
3668 } else {
3669 /*
3670 * At this point, we have successfully created
3671 * the target name, but have failed to remove
3672 * the source name. Since the create was done
3673 * with the ZRENAMING flag, there are
3674 * complications; for one, the link count is
3675 * wrong. The easiest way to deal with this
3676 * is to remove the newly created target, and
3677 * return the original error. This must
3678 * succeed; fortunately, it is very unlikely to
3679 * fail, since we just created it.
3680 */
3681 VERIFY3U(zfs_link_destroy(tdl, szp, tx,
3682 ZRENAMING, NULL), ==, 0);
3683 }
3684 }
3685 }
3686
3687 dmu_tx_commit(tx);
3688 out:
3689 if (zl != NULL)
3690 zfs_rename_unlock(&zl);
3691
3692 zfs_dirent_unlock(sdl);
3693 zfs_dirent_unlock(tdl);
3694
3695 zfs_inode_update(sdzp);
3696 if (sdzp == tdzp)
3697 rw_exit(&sdzp->z_name_lock);
3698
3699 if (sdzp != tdzp)
3700 zfs_inode_update(tdzp);
3701
3702 zfs_inode_update(szp);
3703 iput(ZTOI(szp));
3704 if (tzp) {
3705 zfs_inode_update(tzp);
3706 iput(ZTOI(tzp));
3707 }
3708
3709 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
3710 zil_commit(zilog, 0);
3711
3712 ZFS_EXIT(zfsvfs);
3713 return (error);
3714 }
3715
3716 /*
3717 * Insert the indicated symbolic reference entry into the directory.
3718 *
3719 * IN: dip - Directory to contain new symbolic link.
3720 * link - Name for new symlink entry.
3721 * vap - Attributes of new entry.
3722 * target - Target path of new symlink.
3723 *
3724 * cr - credentials of caller.
3725 * flags - case flags
3726 *
3727 * RETURN: 0 on success, error code on failure.
3728 *
3729 * Timestamps:
3730 * dip - ctime|mtime updated
3731 */
3732 /*ARGSUSED*/
3733 int
3734 zfs_symlink(struct inode *dip, char *name, vattr_t *vap, char *link,
3735 struct inode **ipp, cred_t *cr, int flags)
3736 {
3737 znode_t *zp, *dzp = ITOZ(dip);
3738 zfs_dirlock_t *dl;
3739 dmu_tx_t *tx;
3740 zfsvfs_t *zfsvfs = ITOZSB(dip);
3741 zilog_t *zilog;
3742 uint64_t len = strlen(link);
3743 int error;
3744 int zflg = ZNEW;
3745 zfs_acl_ids_t acl_ids;
3746 boolean_t fuid_dirtied;
3747 uint64_t txtype = TX_SYMLINK;
3748 boolean_t waited = B_FALSE;
3749
3750 ASSERT(S_ISLNK(vap->va_mode));
3751
3752 if (name == NULL)
3753 return (SET_ERROR(EINVAL));
3754
3755 ZFS_ENTER(zfsvfs);
3756 ZFS_VERIFY_ZP(dzp);
3757 zilog = zfsvfs->z_log;
3758
3759 if (zfsvfs->z_utf8 && u8_validate(name, strlen(name),
3760 NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
3761 ZFS_EXIT(zfsvfs);
3762 return (SET_ERROR(EILSEQ));
3763 }
3764 if (flags & FIGNORECASE)
3765 zflg |= ZCILOOK;
3766
3767 if (len > MAXPATHLEN) {
3768 ZFS_EXIT(zfsvfs);
3769 return (SET_ERROR(ENAMETOOLONG));
3770 }
3771
3772 if ((error = zfs_acl_ids_create(dzp, 0,
3773 vap, cr, NULL, &acl_ids)) != 0) {
3774 ZFS_EXIT(zfsvfs);
3775 return (error);
3776 }
3777 top:
3778 *ipp = NULL;
3779
3780 /*
3781 * Attempt to lock directory; fail if entry already exists.
3782 */
3783 error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg, NULL, NULL);
3784 if (error) {
3785 zfs_acl_ids_free(&acl_ids);
3786 ZFS_EXIT(zfsvfs);
3787 return (error);
3788 }
3789
3790 if ((error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr))) {
3791 zfs_acl_ids_free(&acl_ids);
3792 zfs_dirent_unlock(dl);
3793 ZFS_EXIT(zfsvfs);
3794 return (error);
3795 }
3796
3797 if (zfs_acl_ids_overquota(zfsvfs, &acl_ids)) {
3798 zfs_acl_ids_free(&acl_ids);
3799 zfs_dirent_unlock(dl);
3800 ZFS_EXIT(zfsvfs);
3801 return (SET_ERROR(EDQUOT));
3802 }
3803 tx = dmu_tx_create(zfsvfs->z_os);
3804 fuid_dirtied = zfsvfs->z_fuid_dirty;
3805 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0, MAX(1, len));
3806 dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name);
3807 dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes +
3808 ZFS_SA_BASE_ATTR_SIZE + len);
3809 dmu_tx_hold_sa(tx, dzp->z_sa_hdl, B_FALSE);
3810 if (!zfsvfs->z_use_sa && acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) {
3811 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0,
3812 acl_ids.z_aclp->z_acl_bytes);
3813 }
3814 if (fuid_dirtied)
3815 zfs_fuid_txhold(zfsvfs, tx);
3816 error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT);
3817 if (error) {
3818 zfs_dirent_unlock(dl);
3819 if (error == ERESTART) {
3820 waited = B_TRUE;
3821 dmu_tx_wait(tx);
3822 dmu_tx_abort(tx);
3823 goto top;
3824 }
3825 zfs_acl_ids_free(&acl_ids);
3826 dmu_tx_abort(tx);
3827 ZFS_EXIT(zfsvfs);
3828 return (error);
3829 }
3830
3831 /*
3832 * Create a new object for the symlink.
3833 * for version 4 ZPL datsets the symlink will be an SA attribute
3834 */
3835 zfs_mknode(dzp, vap, tx, cr, 0, &zp, &acl_ids);
3836
3837 if (fuid_dirtied)
3838 zfs_fuid_sync(zfsvfs, tx);
3839
3840 mutex_enter(&zp->z_lock);
3841 if (zp->z_is_sa)
3842 error = sa_update(zp->z_sa_hdl, SA_ZPL_SYMLINK(zfsvfs),
3843 link, len, tx);
3844 else
3845 zfs_sa_symlink(zp, link, len, tx);
3846 mutex_exit(&zp->z_lock);
3847
3848 zp->z_size = len;
3849 (void) sa_update(zp->z_sa_hdl, SA_ZPL_SIZE(zfsvfs),
3850 &zp->z_size, sizeof (zp->z_size), tx);
3851 /*
3852 * Insert the new object into the directory.
3853 */
3854 (void) zfs_link_create(dl, zp, tx, ZNEW);
3855
3856 if (flags & FIGNORECASE)
3857 txtype |= TX_CI;
3858 zfs_log_symlink(zilog, tx, txtype, dzp, zp, name, link);
3859
3860 zfs_inode_update(dzp);
3861 zfs_inode_update(zp);
3862
3863 zfs_acl_ids_free(&acl_ids);
3864
3865 dmu_tx_commit(tx);
3866
3867 zfs_dirent_unlock(dl);
3868
3869 *ipp = ZTOI(zp);
3870
3871 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
3872 zil_commit(zilog, 0);
3873
3874 ZFS_EXIT(zfsvfs);
3875 return (error);
3876 }
3877
3878 /*
3879 * Return, in the buffer contained in the provided uio structure,
3880 * the symbolic path referred to by ip.
3881 *
3882 * IN: ip - inode of symbolic link
3883 * uio - structure to contain the link path.
3884 * cr - credentials of caller.
3885 *
3886 * RETURN: 0 if success
3887 * error code if failure
3888 *
3889 * Timestamps:
3890 * ip - atime updated
3891 */
3892 /* ARGSUSED */
3893 int
3894 zfs_readlink(struct inode *ip, uio_t *uio, cred_t *cr)
3895 {
3896 znode_t *zp = ITOZ(ip);
3897 zfsvfs_t *zfsvfs = ITOZSB(ip);
3898 int error;
3899
3900 ZFS_ENTER(zfsvfs);
3901 ZFS_VERIFY_ZP(zp);
3902
3903 mutex_enter(&zp->z_lock);
3904 if (zp->z_is_sa)
3905 error = sa_lookup_uio(zp->z_sa_hdl,
3906 SA_ZPL_SYMLINK(zfsvfs), uio);
3907 else
3908 error = zfs_sa_readlink(zp, uio);
3909 mutex_exit(&zp->z_lock);
3910
3911 ZFS_EXIT(zfsvfs);
3912 return (error);
3913 }
3914
3915 /*
3916 * Insert a new entry into directory tdip referencing sip.
3917 *
3918 * IN: tdip - Directory to contain new entry.
3919 * sip - inode of new entry.
3920 * name - name of new entry.
3921 * cr - credentials of caller.
3922 *
3923 * RETURN: 0 if success
3924 * error code if failure
3925 *
3926 * Timestamps:
3927 * tdip - ctime|mtime updated
3928 * sip - ctime updated
3929 */
3930 /* ARGSUSED */
3931 int
3932 zfs_link(struct inode *tdip, struct inode *sip, char *name, cred_t *cr,
3933 int flags)
3934 {
3935 znode_t *dzp = ITOZ(tdip);
3936 znode_t *tzp, *szp;
3937 zfsvfs_t *zfsvfs = ITOZSB(tdip);
3938 zilog_t *zilog;
3939 zfs_dirlock_t *dl;
3940 dmu_tx_t *tx;
3941 int error;
3942 int zf = ZNEW;
3943 uint64_t parent;
3944 uid_t owner;
3945 boolean_t waited = B_FALSE;
3946 boolean_t is_tmpfile = 0;
3947 uint64_t txg;
3948 #ifdef HAVE_TMPFILE
3949 is_tmpfile = (sip->i_nlink == 0 && (sip->i_state & I_LINKABLE));
3950 #endif
3951 ASSERT(S_ISDIR(tdip->i_mode));
3952
3953 if (name == NULL)
3954 return (SET_ERROR(EINVAL));
3955
3956 ZFS_ENTER(zfsvfs);
3957 ZFS_VERIFY_ZP(dzp);
3958 zilog = zfsvfs->z_log;
3959
3960 /*
3961 * POSIX dictates that we return EPERM here.
3962 * Better choices include ENOTSUP or EISDIR.
3963 */
3964 if (S_ISDIR(sip->i_mode)) {
3965 ZFS_EXIT(zfsvfs);
3966 return (SET_ERROR(EPERM));
3967 }
3968
3969 szp = ITOZ(sip);
3970 ZFS_VERIFY_ZP(szp);
3971
3972 /*
3973 * We check i_sb because snapshots and the ctldir must have different
3974 * super blocks.
3975 */
3976 if (sip->i_sb != tdip->i_sb || zfsctl_is_node(sip)) {
3977 ZFS_EXIT(zfsvfs);
3978 return (SET_ERROR(EXDEV));
3979 }
3980
3981 /* Prevent links to .zfs/shares files */
3982
3983 if ((error = sa_lookup(szp->z_sa_hdl, SA_ZPL_PARENT(zfsvfs),
3984 &parent, sizeof (uint64_t))) != 0) {
3985 ZFS_EXIT(zfsvfs);
3986 return (error);
3987 }
3988 if (parent == zfsvfs->z_shares_dir) {
3989 ZFS_EXIT(zfsvfs);
3990 return (SET_ERROR(EPERM));
3991 }
3992
3993 if (zfsvfs->z_utf8 && u8_validate(name,
3994 strlen(name), NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
3995 ZFS_EXIT(zfsvfs);
3996 return (SET_ERROR(EILSEQ));
3997 }
3998 if (flags & FIGNORECASE)
3999 zf |= ZCILOOK;
4000
4001 /*
4002 * We do not support links between attributes and non-attributes
4003 * because of the potential security risk of creating links
4004 * into "normal" file space in order to circumvent restrictions
4005 * imposed in attribute space.
4006 */
4007 if ((szp->z_pflags & ZFS_XATTR) != (dzp->z_pflags & ZFS_XATTR)) {
4008 ZFS_EXIT(zfsvfs);
4009 return (SET_ERROR(EINVAL));
4010 }
4011
4012 owner = zfs_fuid_map_id(zfsvfs, KUID_TO_SUID(sip->i_uid),
4013 cr, ZFS_OWNER);
4014 if (owner != crgetuid(cr) && secpolicy_basic_link(cr) != 0) {
4015 ZFS_EXIT(zfsvfs);
4016 return (SET_ERROR(EPERM));
4017 }
4018
4019 if ((error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr))) {
4020 ZFS_EXIT(zfsvfs);
4021 return (error);
4022 }
4023
4024 top:
4025 /*
4026 * Attempt to lock directory; fail if entry already exists.
4027 */
4028 error = zfs_dirent_lock(&dl, dzp, name, &tzp, zf, NULL, NULL);
4029 if (error) {
4030 ZFS_EXIT(zfsvfs);
4031 return (error);
4032 }
4033
4034 tx = dmu_tx_create(zfsvfs->z_os);
4035 dmu_tx_hold_sa(tx, szp->z_sa_hdl, B_FALSE);
4036 dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name);
4037 if (is_tmpfile)
4038 dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL);
4039
4040 zfs_sa_upgrade_txholds(tx, szp);
4041 zfs_sa_upgrade_txholds(tx, dzp);
4042 error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT);
4043 if (error) {
4044 zfs_dirent_unlock(dl);
4045 if (error == ERESTART) {
4046 waited = B_TRUE;
4047 dmu_tx_wait(tx);
4048 dmu_tx_abort(tx);
4049 goto top;
4050 }
4051 dmu_tx_abort(tx);
4052 ZFS_EXIT(zfsvfs);
4053 return (error);
4054 }
4055 /* unmark z_unlinked so zfs_link_create will not reject */
4056 if (is_tmpfile)
4057 szp->z_unlinked = 0;
4058 error = zfs_link_create(dl, szp, tx, 0);
4059
4060 if (error == 0) {
4061 uint64_t txtype = TX_LINK;
4062 /*
4063 * tmpfile is created to be in z_unlinkedobj, so remove it.
4064 * Also, we don't log in ZIL, be cause all previous file
4065 * operation on the tmpfile are ignored by ZIL. Instead we
4066 * always wait for txg to sync to make sure all previous
4067 * operation are sync safe.
4068 */
4069 if (is_tmpfile) {
4070 VERIFY(zap_remove_int(zfsvfs->z_os,
4071 zfsvfs->z_unlinkedobj, szp->z_id, tx) == 0);
4072 } else {
4073 if (flags & FIGNORECASE)
4074 txtype |= TX_CI;
4075 zfs_log_link(zilog, tx, txtype, dzp, szp, name);
4076 }
4077 } else if (is_tmpfile) {
4078 /* restore z_unlinked since when linking failed */
4079 szp->z_unlinked = 1;
4080 }
4081 txg = dmu_tx_get_txg(tx);
4082 dmu_tx_commit(tx);
4083
4084 zfs_dirent_unlock(dl);
4085
4086 if (!is_tmpfile && zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
4087 zil_commit(zilog, 0);
4088
4089 if (is_tmpfile)
4090 txg_wait_synced(dmu_objset_pool(zfsvfs->z_os), txg);
4091
4092 zfs_inode_update(dzp);
4093 zfs_inode_update(szp);
4094 ZFS_EXIT(zfsvfs);
4095 return (error);
4096 }
4097
4098 static void
4099 zfs_putpage_commit_cb(void *arg)
4100 {
4101 struct page *pp = arg;
4102
4103 ClearPageError(pp);
4104 end_page_writeback(pp);
4105 }
4106
4107 /*
4108 * Push a page out to disk, once the page is on stable storage the
4109 * registered commit callback will be run as notification of completion.
4110 *
4111 * IN: ip - page mapped for inode.
4112 * pp - page to push (page is locked)
4113 * wbc - writeback control data
4114 *
4115 * RETURN: 0 if success
4116 * error code if failure
4117 *
4118 * Timestamps:
4119 * ip - ctime|mtime updated
4120 */
4121 /* ARGSUSED */
4122 int
4123 zfs_putpage(struct inode *ip, struct page *pp, struct writeback_control *wbc)
4124 {
4125 znode_t *zp = ITOZ(ip);
4126 zfsvfs_t *zfsvfs = ITOZSB(ip);
4127 loff_t offset;
4128 loff_t pgoff;
4129 unsigned int pglen;
4130 rl_t *rl;
4131 dmu_tx_t *tx;
4132 caddr_t va;
4133 int err = 0;
4134 uint64_t mtime[2], ctime[2];
4135 sa_bulk_attr_t bulk[3];
4136 int cnt = 0;
4137 struct address_space *mapping;
4138
4139 ZFS_ENTER(zfsvfs);
4140 ZFS_VERIFY_ZP(zp);
4141
4142 ASSERT(PageLocked(pp));
4143
4144 pgoff = page_offset(pp); /* Page byte-offset in file */
4145 offset = i_size_read(ip); /* File length in bytes */
4146 pglen = MIN(PAGE_SIZE, /* Page length in bytes */
4147 P2ROUNDUP(offset, PAGE_SIZE)-pgoff);
4148
4149 /* Page is beyond end of file */
4150 if (pgoff >= offset) {
4151 unlock_page(pp);
4152 ZFS_EXIT(zfsvfs);
4153 return (0);
4154 }
4155
4156 /* Truncate page length to end of file */
4157 if (pgoff + pglen > offset)
4158 pglen = offset - pgoff;
4159
4160 #if 0
4161 /*
4162 * FIXME: Allow mmap writes past its quota. The correct fix
4163 * is to register a page_mkwrite() handler to count the page
4164 * against its quota when it is about to be dirtied.
4165 */
4166 if (zfs_owner_overquota(zfsvfs, zp, B_FALSE) ||
4167 zfs_owner_overquota(zfsvfs, zp, B_TRUE)) {
4168 err = EDQUOT;
4169 }
4170 #endif
4171
4172 /*
4173 * The ordering here is critical and must adhere to the following
4174 * rules in order to avoid deadlocking in either zfs_read() or
4175 * zfs_free_range() due to a lock inversion.
4176 *
4177 * 1) The page must be unlocked prior to acquiring the range lock.
4178 * This is critical because zfs_read() calls find_lock_page()
4179 * which may block on the page lock while holding the range lock.
4180 *
4181 * 2) Before setting or clearing write back on a page the range lock
4182 * must be held in order to prevent a lock inversion with the
4183 * zfs_free_range() function.
4184 *
4185 * This presents a problem because upon entering this function the
4186 * page lock is already held. To safely acquire the range lock the
4187 * page lock must be dropped. This creates a window where another
4188 * process could truncate, invalidate, dirty, or write out the page.
4189 *
4190 * Therefore, after successfully reacquiring the range and page locks
4191 * the current page state is checked. In the common case everything
4192 * will be as is expected and it can be written out. However, if
4193 * the page state has changed it must be handled accordingly.
4194 */
4195 mapping = pp->mapping;
4196 redirty_page_for_writepage(wbc, pp);
4197 unlock_page(pp);
4198
4199 rl = zfs_range_lock(&zp->z_range_lock, pgoff, pglen, RL_WRITER);
4200 lock_page(pp);
4201
4202 /* Page mapping changed or it was no longer dirty, we're done */
4203 if (unlikely((mapping != pp->mapping) || !PageDirty(pp))) {
4204 unlock_page(pp);
4205 zfs_range_unlock(rl);
4206 ZFS_EXIT(zfsvfs);
4207 return (0);
4208 }
4209
4210 /* Another process started write block if required */
4211 if (PageWriteback(pp)) {
4212 unlock_page(pp);
4213 zfs_range_unlock(rl);
4214
4215 if (wbc->sync_mode != WB_SYNC_NONE)
4216 wait_on_page_writeback(pp);
4217
4218 ZFS_EXIT(zfsvfs);
4219 return (0);
4220 }
4221
4222 /* Clear the dirty flag the required locks are held */
4223 if (!clear_page_dirty_for_io(pp)) {
4224 unlock_page(pp);
4225 zfs_range_unlock(rl);
4226 ZFS_EXIT(zfsvfs);
4227 return (0);
4228 }
4229
4230 /*
4231 * Counterpart for redirty_page_for_writepage() above. This page
4232 * was in fact not skipped and should not be counted as if it were.
4233 */
4234 wbc->pages_skipped--;
4235 set_page_writeback(pp);
4236 unlock_page(pp);
4237
4238 tx = dmu_tx_create(zfsvfs->z_os);
4239 dmu_tx_hold_write(tx, zp->z_id, pgoff, pglen);
4240 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
4241 zfs_sa_upgrade_txholds(tx, zp);
4242
4243 err = dmu_tx_assign(tx, TXG_NOWAIT);
4244 if (err != 0) {
4245 if (err == ERESTART)
4246 dmu_tx_wait(tx);
4247
4248 dmu_tx_abort(tx);
4249 __set_page_dirty_nobuffers(pp);
4250 ClearPageError(pp);
4251 end_page_writeback(pp);
4252 zfs_range_unlock(rl);
4253 ZFS_EXIT(zfsvfs);
4254 return (err);
4255 }
4256
4257 va = kmap(pp);
4258 ASSERT3U(pglen, <=, PAGE_SIZE);
4259 dmu_write(zfsvfs->z_os, zp->z_id, pgoff, pglen, va, tx);
4260 kunmap(pp);
4261
4262 SA_ADD_BULK_ATTR(bulk, cnt, SA_ZPL_MTIME(zfsvfs), NULL, &mtime, 16);
4263 SA_ADD_BULK_ATTR(bulk, cnt, SA_ZPL_CTIME(zfsvfs), NULL, &ctime, 16);
4264 SA_ADD_BULK_ATTR(bulk, cnt, SA_ZPL_FLAGS(zfsvfs), NULL,
4265 &zp->z_pflags, 8);
4266
4267 /* Preserve the mtime and ctime provided by the inode */
4268 ZFS_TIME_ENCODE(&ip->i_mtime, mtime);
4269 ZFS_TIME_ENCODE(&ip->i_ctime, ctime);
4270 zp->z_atime_dirty = 0;
4271 zp->z_seq++;
4272
4273 err = sa_bulk_update(zp->z_sa_hdl, bulk, cnt, tx);
4274
4275 zfs_log_write(zfsvfs->z_log, tx, TX_WRITE, zp, pgoff, pglen, 0,
4276 zfs_putpage_commit_cb, pp);
4277 dmu_tx_commit(tx);
4278
4279 zfs_range_unlock(rl);
4280
4281 if (wbc->sync_mode != WB_SYNC_NONE) {
4282 /*
4283 * Note that this is rarely called under writepages(), because
4284 * writepages() normally handles the entire commit for
4285 * performance reasons.
4286 */
4287 zil_commit(zfsvfs->z_log, zp->z_id);
4288 }
4289
4290 ZFS_EXIT(zfsvfs);
4291 return (err);
4292 }
4293
4294 /*
4295 * Update the system attributes when the inode has been dirtied. For the
4296 * moment we only update the mode, atime, mtime, and ctime.
4297 */
4298 int
4299 zfs_dirty_inode(struct inode *ip, int flags)
4300 {
4301 znode_t *zp = ITOZ(ip);
4302 zfsvfs_t *zfsvfs = ITOZSB(ip);
4303 dmu_tx_t *tx;
4304 uint64_t mode, atime[2], mtime[2], ctime[2];
4305 sa_bulk_attr_t bulk[4];
4306 int error = 0;
4307 int cnt = 0;
4308
4309 if (zfs_is_readonly(zfsvfs) || dmu_objset_is_snapshot(zfsvfs->z_os))
4310 return (0);
4311
4312 ZFS_ENTER(zfsvfs);
4313 ZFS_VERIFY_ZP(zp);
4314
4315 #ifdef I_DIRTY_TIME
4316 /*
4317 * This is the lazytime semantic indroduced in Linux 4.0
4318 * This flag will only be called from update_time when lazytime is set.
4319 * (Note, I_DIRTY_SYNC will also set if not lazytime)
4320 * Fortunately mtime and ctime are managed within ZFS itself, so we
4321 * only need to dirty atime.
4322 */
4323 if (flags == I_DIRTY_TIME) {
4324 zp->z_atime_dirty = 1;
4325 goto out;
4326 }
4327 #endif
4328
4329 tx = dmu_tx_create(zfsvfs->z_os);
4330
4331 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
4332 zfs_sa_upgrade_txholds(tx, zp);
4333
4334 error = dmu_tx_assign(tx, TXG_WAIT);
4335 if (error) {
4336 dmu_tx_abort(tx);
4337 goto out;
4338 }
4339
4340 mutex_enter(&zp->z_lock);
4341 zp->z_atime_dirty = 0;
4342
4343 SA_ADD_BULK_ATTR(bulk, cnt, SA_ZPL_MODE(zfsvfs), NULL, &mode, 8);
4344 SA_ADD_BULK_ATTR(bulk, cnt, SA_ZPL_ATIME(zfsvfs), NULL, &atime, 16);
4345 SA_ADD_BULK_ATTR(bulk, cnt, SA_ZPL_MTIME(zfsvfs), NULL, &mtime, 16);
4346 SA_ADD_BULK_ATTR(bulk, cnt, SA_ZPL_CTIME(zfsvfs), NULL, &ctime, 16);
4347
4348 /* Preserve the mode, mtime and ctime provided by the inode */
4349 ZFS_TIME_ENCODE(&ip->i_atime, atime);
4350 ZFS_TIME_ENCODE(&ip->i_mtime, mtime);
4351 ZFS_TIME_ENCODE(&ip->i_ctime, ctime);
4352 mode = ip->i_mode;
4353
4354 zp->z_mode = mode;
4355
4356 error = sa_bulk_update(zp->z_sa_hdl, bulk, cnt, tx);
4357 mutex_exit(&zp->z_lock);
4358
4359 dmu_tx_commit(tx);
4360 out:
4361 ZFS_EXIT(zfsvfs);
4362 return (error);
4363 }
4364
4365 /*ARGSUSED*/
4366 void
4367 zfs_inactive(struct inode *ip)
4368 {
4369 znode_t *zp = ITOZ(ip);
4370 zfsvfs_t *zfsvfs = ITOZSB(ip);
4371 uint64_t atime[2];
4372 int error;
4373 int need_unlock = 0;
4374
4375 /* Only read lock if we haven't already write locked, e.g. rollback */
4376 if (!RW_WRITE_HELD(&zfsvfs->z_teardown_inactive_lock)) {
4377 need_unlock = 1;
4378 rw_enter(&zfsvfs->z_teardown_inactive_lock, RW_READER);
4379 }
4380 if (zp->z_sa_hdl == NULL) {
4381 if (need_unlock)
4382 rw_exit(&zfsvfs->z_teardown_inactive_lock);
4383 return;
4384 }
4385
4386 if (zp->z_atime_dirty && zp->z_unlinked == 0) {
4387 dmu_tx_t *tx = dmu_tx_create(zfsvfs->z_os);
4388
4389 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
4390 zfs_sa_upgrade_txholds(tx, zp);
4391 error = dmu_tx_assign(tx, TXG_WAIT);
4392 if (error) {
4393 dmu_tx_abort(tx);
4394 } else {
4395 ZFS_TIME_ENCODE(&ip->i_atime, atime);
4396 mutex_enter(&zp->z_lock);
4397 (void) sa_update(zp->z_sa_hdl, SA_ZPL_ATIME(zfsvfs),
4398 (void *)&atime, sizeof (atime), tx);
4399 zp->z_atime_dirty = 0;
4400 mutex_exit(&zp->z_lock);
4401 dmu_tx_commit(tx);
4402 }
4403 }
4404
4405 zfs_zinactive(zp);
4406 if (need_unlock)
4407 rw_exit(&zfsvfs->z_teardown_inactive_lock);
4408 }
4409
4410 /*
4411 * Bounds-check the seek operation.
4412 *
4413 * IN: ip - inode seeking within
4414 * ooff - old file offset
4415 * noffp - pointer to new file offset
4416 * ct - caller context
4417 *
4418 * RETURN: 0 if success
4419 * EINVAL if new offset invalid
4420 */
4421 /* ARGSUSED */
4422 int
4423 zfs_seek(struct inode *ip, offset_t ooff, offset_t *noffp)
4424 {
4425 if (S_ISDIR(ip->i_mode))
4426 return (0);
4427 return ((*noffp < 0 || *noffp > MAXOFFSET_T) ? EINVAL : 0);
4428 }
4429
4430 /*
4431 * Fill pages with data from the disk.
4432 */
4433 static int
4434 zfs_fillpage(struct inode *ip, struct page *pl[], int nr_pages)
4435 {
4436 znode_t *zp = ITOZ(ip);
4437 zfsvfs_t *zfsvfs = ITOZSB(ip);
4438 objset_t *os;
4439 struct page *cur_pp;
4440 u_offset_t io_off, total;
4441 size_t io_len;
4442 loff_t i_size;
4443 unsigned page_idx;
4444 int err;
4445
4446 os = zfsvfs->z_os;
4447 io_len = nr_pages << PAGE_SHIFT;
4448 i_size = i_size_read(ip);
4449 io_off = page_offset(pl[0]);
4450
4451 if (io_off + io_len > i_size)
4452 io_len = i_size - io_off;
4453
4454 /*
4455 * Iterate over list of pages and read each page individually.
4456 */
4457 page_idx = 0;
4458 for (total = io_off + io_len; io_off < total; io_off += PAGESIZE) {
4459 caddr_t va;
4460
4461 cur_pp = pl[page_idx++];
4462 va = kmap(cur_pp);
4463 err = dmu_read(os, zp->z_id, io_off, PAGESIZE, va,
4464 DMU_READ_PREFETCH);
4465 kunmap(cur_pp);
4466 if (err) {
4467 /* convert checksum errors into IO errors */
4468 if (err == ECKSUM)
4469 err = SET_ERROR(EIO);
4470 return (err);
4471 }
4472 }
4473
4474 return (0);
4475 }
4476
4477 /*
4478 * Uses zfs_fillpage to read data from the file and fill the pages.
4479 *
4480 * IN: ip - inode of file to get data from.
4481 * pl - list of pages to read
4482 * nr_pages - number of pages to read
4483 *
4484 * RETURN: 0 on success, error code on failure.
4485 *
4486 * Timestamps:
4487 * vp - atime updated
4488 */
4489 /* ARGSUSED */
4490 int
4491 zfs_getpage(struct inode *ip, struct page *pl[], int nr_pages)
4492 {
4493 znode_t *zp = ITOZ(ip);
4494 zfsvfs_t *zfsvfs = ITOZSB(ip);
4495 int err;
4496
4497 if (pl == NULL)
4498 return (0);
4499
4500 ZFS_ENTER(zfsvfs);
4501 ZFS_VERIFY_ZP(zp);
4502
4503 err = zfs_fillpage(ip, pl, nr_pages);
4504
4505 ZFS_EXIT(zfsvfs);
4506 return (err);
4507 }
4508
4509 /*
4510 * Check ZFS specific permissions to memory map a section of a file.
4511 *
4512 * IN: ip - inode of the file to mmap
4513 * off - file offset
4514 * addrp - start address in memory region
4515 * len - length of memory region
4516 * vm_flags- address flags
4517 *
4518 * RETURN: 0 if success
4519 * error code if failure
4520 */
4521 /*ARGSUSED*/
4522 int
4523 zfs_map(struct inode *ip, offset_t off, caddr_t *addrp, size_t len,
4524 unsigned long vm_flags)
4525 {
4526 znode_t *zp = ITOZ(ip);
4527 zfsvfs_t *zfsvfs = ITOZSB(ip);
4528
4529 ZFS_ENTER(zfsvfs);
4530 ZFS_VERIFY_ZP(zp);
4531
4532 if ((vm_flags & VM_WRITE) && (zp->z_pflags &
4533 (ZFS_IMMUTABLE | ZFS_READONLY | ZFS_APPENDONLY))) {
4534 ZFS_EXIT(zfsvfs);
4535 return (SET_ERROR(EPERM));
4536 }
4537
4538 if ((vm_flags & (VM_READ | VM_EXEC)) &&
4539 (zp->z_pflags & ZFS_AV_QUARANTINED)) {
4540 ZFS_EXIT(zfsvfs);
4541 return (SET_ERROR(EACCES));
4542 }
4543
4544 if (off < 0 || len > MAXOFFSET_T - off) {
4545 ZFS_EXIT(zfsvfs);
4546 return (SET_ERROR(ENXIO));
4547 }
4548
4549 ZFS_EXIT(zfsvfs);
4550 return (0);
4551 }
4552
4553 /*
4554 * convoff - converts the given data (start, whence) to the
4555 * given whence.
4556 */
4557 int
4558 convoff(struct inode *ip, flock64_t *lckdat, int whence, offset_t offset)
4559 {
4560 vattr_t vap;
4561 int error;
4562
4563 if ((lckdat->l_whence == 2) || (whence == 2)) {
4564 if ((error = zfs_getattr(ip, &vap, 0, CRED()) != 0))
4565 return (error);
4566 }
4567
4568 switch (lckdat->l_whence) {
4569 case 1:
4570 lckdat->l_start += offset;
4571 break;
4572 case 2:
4573 lckdat->l_start += vap.va_size;
4574 /* FALLTHRU */
4575 case 0:
4576 break;
4577 default:
4578 return (SET_ERROR(EINVAL));
4579 }
4580
4581 if (lckdat->l_start < 0)
4582 return (SET_ERROR(EINVAL));
4583
4584 switch (whence) {
4585 case 1:
4586 lckdat->l_start -= offset;
4587 break;
4588 case 2:
4589 lckdat->l_start -= vap.va_size;
4590 /* FALLTHRU */
4591 case 0:
4592 break;
4593 default:
4594 return (SET_ERROR(EINVAL));
4595 }
4596
4597 lckdat->l_whence = (short)whence;
4598 return (0);
4599 }
4600
4601 /*
4602 * Free or allocate space in a file. Currently, this function only
4603 * supports the `F_FREESP' command. However, this command is somewhat
4604 * misnamed, as its functionality includes the ability to allocate as
4605 * well as free space.
4606 *
4607 * IN: ip - inode of file to free data in.
4608 * cmd - action to take (only F_FREESP supported).
4609 * bfp - section of file to free/alloc.
4610 * flag - current file open mode flags.
4611 * offset - current file offset.
4612 * cr - credentials of caller [UNUSED].
4613 *
4614 * RETURN: 0 on success, error code on failure.
4615 *
4616 * Timestamps:
4617 * ip - ctime|mtime updated
4618 */
4619 /* ARGSUSED */
4620 int
4621 zfs_space(struct inode *ip, int cmd, flock64_t *bfp, int flag,
4622 offset_t offset, cred_t *cr)
4623 {
4624 znode_t *zp = ITOZ(ip);
4625 zfsvfs_t *zfsvfs = ITOZSB(ip);
4626 uint64_t off, len;
4627 int error;
4628
4629 ZFS_ENTER(zfsvfs);
4630 ZFS_VERIFY_ZP(zp);
4631
4632 if (cmd != F_FREESP) {
4633 ZFS_EXIT(zfsvfs);
4634 return (SET_ERROR(EINVAL));
4635 }
4636
4637 /*
4638 * Callers might not be able to detect properly that we are read-only,
4639 * so check it explicitly here.
4640 */
4641 if (zfs_is_readonly(zfsvfs)) {
4642 ZFS_EXIT(zfsvfs);
4643 return (SET_ERROR(EROFS));
4644 }
4645
4646 if ((error = convoff(ip, bfp, 0, offset))) {
4647 ZFS_EXIT(zfsvfs);
4648 return (error);
4649 }
4650
4651 if (bfp->l_len < 0) {
4652 ZFS_EXIT(zfsvfs);
4653 return (SET_ERROR(EINVAL));
4654 }
4655
4656 /*
4657 * Permissions aren't checked on Solaris because on this OS
4658 * zfs_space() can only be called with an opened file handle.
4659 * On Linux we can get here through truncate_range() which
4660 * operates directly on inodes, so we need to check access rights.
4661 */
4662 if ((error = zfs_zaccess(zp, ACE_WRITE_DATA, 0, B_FALSE, cr))) {
4663 ZFS_EXIT(zfsvfs);
4664 return (error);
4665 }
4666
4667 off = bfp->l_start;
4668 len = bfp->l_len; /* 0 means from off to end of file */
4669
4670 error = zfs_freesp(zp, off, len, flag, TRUE);
4671
4672 ZFS_EXIT(zfsvfs);
4673 return (error);
4674 }
4675
4676 /*ARGSUSED*/
4677 int
4678 zfs_fid(struct inode *ip, fid_t *fidp)
4679 {
4680 znode_t *zp = ITOZ(ip);
4681 zfsvfs_t *zfsvfs = ITOZSB(ip);
4682 uint32_t gen;
4683 uint64_t gen64;
4684 uint64_t object = zp->z_id;
4685 zfid_short_t *zfid;
4686 int size, i, error;
4687
4688 ZFS_ENTER(zfsvfs);
4689 ZFS_VERIFY_ZP(zp);
4690
4691 if ((error = sa_lookup(zp->z_sa_hdl, SA_ZPL_GEN(zfsvfs),
4692 &gen64, sizeof (uint64_t))) != 0) {
4693 ZFS_EXIT(zfsvfs);
4694 return (error);
4695 }
4696
4697 gen = (uint32_t)gen64;
4698
4699 size = SHORT_FID_LEN;
4700
4701 zfid = (zfid_short_t *)fidp;
4702
4703 zfid->zf_len = size;
4704
4705 for (i = 0; i < sizeof (zfid->zf_object); i++)
4706 zfid->zf_object[i] = (uint8_t)(object >> (8 * i));
4707
4708 /* Must have a non-zero generation number to distinguish from .zfs */
4709 if (gen == 0)
4710 gen = 1;
4711 for (i = 0; i < sizeof (zfid->zf_gen); i++)
4712 zfid->zf_gen[i] = (uint8_t)(gen >> (8 * i));
4713
4714 ZFS_EXIT(zfsvfs);
4715 return (0);
4716 }
4717
4718 /*ARGSUSED*/
4719 int
4720 zfs_getsecattr(struct inode *ip, vsecattr_t *vsecp, int flag, cred_t *cr)
4721 {
4722 znode_t *zp = ITOZ(ip);
4723 zfsvfs_t *zfsvfs = ITOZSB(ip);
4724 int error;
4725 boolean_t skipaclchk = (flag & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE;
4726
4727 ZFS_ENTER(zfsvfs);
4728 ZFS_VERIFY_ZP(zp);
4729 error = zfs_getacl(zp, vsecp, skipaclchk, cr);
4730 ZFS_EXIT(zfsvfs);
4731
4732 return (error);
4733 }
4734
4735 /*ARGSUSED*/
4736 int
4737 zfs_setsecattr(struct inode *ip, vsecattr_t *vsecp, int flag, cred_t *cr)
4738 {
4739 znode_t *zp = ITOZ(ip);
4740 zfsvfs_t *zfsvfs = ITOZSB(ip);
4741 int error;
4742 boolean_t skipaclchk = (flag & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE;
4743 zilog_t *zilog = zfsvfs->z_log;
4744
4745 ZFS_ENTER(zfsvfs);
4746 ZFS_VERIFY_ZP(zp);
4747
4748 error = zfs_setacl(zp, vsecp, skipaclchk, cr);
4749
4750 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
4751 zil_commit(zilog, 0);
4752
4753 ZFS_EXIT(zfsvfs);
4754 return (error);
4755 }
4756
4757 #ifdef HAVE_UIO_ZEROCOPY
4758 /*
4759 * Tunable, both must be a power of 2.
4760 *
4761 * zcr_blksz_min: the smallest read we may consider to loan out an arcbuf
4762 * zcr_blksz_max: if set to less than the file block size, allow loaning out of
4763 * an arcbuf for a partial block read
4764 */
4765 int zcr_blksz_min = (1 << 10); /* 1K */
4766 int zcr_blksz_max = (1 << 17); /* 128K */
4767
4768 /*ARGSUSED*/
4769 static int
4770 zfs_reqzcbuf(struct inode *ip, enum uio_rw ioflag, xuio_t *xuio, cred_t *cr)
4771 {
4772 znode_t *zp = ITOZ(ip);
4773 zfsvfs_t *zfsvfs = ITOZSB(ip);
4774 int max_blksz = zfsvfs->z_max_blksz;
4775 uio_t *uio = &xuio->xu_uio;
4776 ssize_t size = uio->uio_resid;
4777 offset_t offset = uio->uio_loffset;
4778 int blksz;
4779 int fullblk, i;
4780 arc_buf_t *abuf;
4781 ssize_t maxsize;
4782 int preamble, postamble;
4783
4784 if (xuio->xu_type != UIOTYPE_ZEROCOPY)
4785 return (SET_ERROR(EINVAL));
4786
4787 ZFS_ENTER(zfsvfs);
4788 ZFS_VERIFY_ZP(zp);
4789 switch (ioflag) {
4790 case UIO_WRITE:
4791 /*
4792 * Loan out an arc_buf for write if write size is bigger than
4793 * max_blksz, and the file's block size is also max_blksz.
4794 */
4795 blksz = max_blksz;
4796 if (size < blksz || zp->z_blksz != blksz) {
4797 ZFS_EXIT(zfsvfs);
4798 return (SET_ERROR(EINVAL));
4799 }
4800 /*
4801 * Caller requests buffers for write before knowing where the
4802 * write offset might be (e.g. NFS TCP write).
4803 */
4804 if (offset == -1) {
4805 preamble = 0;
4806 } else {
4807 preamble = P2PHASE(offset, blksz);
4808 if (preamble) {
4809 preamble = blksz - preamble;
4810 size -= preamble;
4811 }
4812 }
4813
4814 postamble = P2PHASE(size, blksz);
4815 size -= postamble;
4816
4817 fullblk = size / blksz;
4818 (void) dmu_xuio_init(xuio,
4819 (preamble != 0) + fullblk + (postamble != 0));
4820
4821 /*
4822 * Have to fix iov base/len for partial buffers. They
4823 * currently represent full arc_buf's.
4824 */
4825 if (preamble) {
4826 /* data begins in the middle of the arc_buf */
4827 abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl),
4828 blksz);
4829 ASSERT(abuf);
4830 (void) dmu_xuio_add(xuio, abuf,
4831 blksz - preamble, preamble);
4832 }
4833
4834 for (i = 0; i < fullblk; i++) {
4835 abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl),
4836 blksz);
4837 ASSERT(abuf);
4838 (void) dmu_xuio_add(xuio, abuf, 0, blksz);
4839 }
4840
4841 if (postamble) {
4842 /* data ends in the middle of the arc_buf */
4843 abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl),
4844 blksz);
4845 ASSERT(abuf);
4846 (void) dmu_xuio_add(xuio, abuf, 0, postamble);
4847 }
4848 break;
4849 case UIO_READ:
4850 /*
4851 * Loan out an arc_buf for read if the read size is larger than
4852 * the current file block size. Block alignment is not
4853 * considered. Partial arc_buf will be loaned out for read.
4854 */
4855 blksz = zp->z_blksz;
4856 if (blksz < zcr_blksz_min)
4857 blksz = zcr_blksz_min;
4858 if (blksz > zcr_blksz_max)
4859 blksz = zcr_blksz_max;
4860 /* avoid potential complexity of dealing with it */
4861 if (blksz > max_blksz) {
4862 ZFS_EXIT(zfsvfs);
4863 return (SET_ERROR(EINVAL));
4864 }
4865
4866 maxsize = zp->z_size - uio->uio_loffset;
4867 if (size > maxsize)
4868 size = maxsize;
4869
4870 if (size < blksz) {
4871 ZFS_EXIT(zfsvfs);
4872 return (SET_ERROR(EINVAL));
4873 }
4874 break;
4875 default:
4876 ZFS_EXIT(zfsvfs);
4877 return (SET_ERROR(EINVAL));
4878 }
4879
4880 uio->uio_extflg = UIO_XUIO;
4881 XUIO_XUZC_RW(xuio) = ioflag;
4882 ZFS_EXIT(zfsvfs);
4883 return (0);
4884 }
4885
4886 /*ARGSUSED*/
4887 static int
4888 zfs_retzcbuf(struct inode *ip, xuio_t *xuio, cred_t *cr)
4889 {
4890 int i;
4891 arc_buf_t *abuf;
4892 int ioflag = XUIO_XUZC_RW(xuio);
4893
4894 ASSERT(xuio->xu_type == UIOTYPE_ZEROCOPY);
4895
4896 i = dmu_xuio_cnt(xuio);
4897 while (i-- > 0) {
4898 abuf = dmu_xuio_arcbuf(xuio, i);
4899 /*
4900 * if abuf == NULL, it must be a write buffer
4901 * that has been returned in zfs_write().
4902 */
4903 if (abuf)
4904 dmu_return_arcbuf(abuf);
4905 ASSERT(abuf || ioflag == UIO_WRITE);
4906 }
4907
4908 dmu_xuio_fini(xuio);
4909 return (0);
4910 }
4911 #endif /* HAVE_UIO_ZEROCOPY */
4912
4913 #if defined(_KERNEL) && defined(HAVE_SPL)
4914 EXPORT_SYMBOL(zfs_open);
4915 EXPORT_SYMBOL(zfs_close);
4916 EXPORT_SYMBOL(zfs_read);
4917 EXPORT_SYMBOL(zfs_write);
4918 EXPORT_SYMBOL(zfs_access);
4919 EXPORT_SYMBOL(zfs_lookup);
4920 EXPORT_SYMBOL(zfs_create);
4921 EXPORT_SYMBOL(zfs_tmpfile);
4922 EXPORT_SYMBOL(zfs_remove);
4923 EXPORT_SYMBOL(zfs_mkdir);
4924 EXPORT_SYMBOL(zfs_rmdir);
4925 EXPORT_SYMBOL(zfs_readdir);
4926 EXPORT_SYMBOL(zfs_fsync);
4927 EXPORT_SYMBOL(zfs_getattr);
4928 EXPORT_SYMBOL(zfs_getattr_fast);
4929 EXPORT_SYMBOL(zfs_setattr);
4930 EXPORT_SYMBOL(zfs_rename);
4931 EXPORT_SYMBOL(zfs_symlink);
4932 EXPORT_SYMBOL(zfs_readlink);
4933 EXPORT_SYMBOL(zfs_link);
4934 EXPORT_SYMBOL(zfs_inactive);
4935 EXPORT_SYMBOL(zfs_space);
4936 EXPORT_SYMBOL(zfs_fid);
4937 EXPORT_SYMBOL(zfs_getsecattr);
4938 EXPORT_SYMBOL(zfs_setsecattr);
4939 EXPORT_SYMBOL(zfs_getpage);
4940 EXPORT_SYMBOL(zfs_putpage);
4941 EXPORT_SYMBOL(zfs_dirty_inode);
4942 EXPORT_SYMBOL(zfs_map);
4943
4944 /* CSTYLED */
4945 module_param(zfs_delete_blocks, ulong, 0644);
4946 MODULE_PARM_DESC(zfs_delete_blocks, "Delete files larger than N blocks async");
4947 module_param(zfs_read_chunk_size, long, 0644);
4948 MODULE_PARM_DESC(zfs_read_chunk_size, "Bytes to read per chunk");
4949 #endif