]> git.proxmox.com Git - mirror_zfs.git/blob - module/zfs/zil.c
OpenZFS 8997 - ztest assertion failure in zil_lwb_write_issue
[mirror_zfs.git] / module / zfs / zil.c
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2011, 2017 by Delphix. All rights reserved.
24 * Copyright (c) 2014 Integros [integros.com]
25 */
26
27 /* Portions Copyright 2010 Robert Milkowski */
28
29 #include <sys/zfs_context.h>
30 #include <sys/spa.h>
31 #include <sys/dmu.h>
32 #include <sys/zap.h>
33 #include <sys/arc.h>
34 #include <sys/stat.h>
35 #include <sys/resource.h>
36 #include <sys/zil.h>
37 #include <sys/zil_impl.h>
38 #include <sys/dsl_dataset.h>
39 #include <sys/vdev_impl.h>
40 #include <sys/dmu_tx.h>
41 #include <sys/dsl_pool.h>
42 #include <sys/metaslab.h>
43 #include <sys/trace_zil.h>
44 #include <sys/abd.h>
45
46 /*
47 * The zfs intent log (ZIL) saves transaction records of system calls
48 * that change the file system in memory with enough information
49 * to be able to replay them. These are stored in memory until
50 * either the DMU transaction group (txg) commits them to the stable pool
51 * and they can be discarded, or they are flushed to the stable log
52 * (also in the pool) due to a fsync, O_DSYNC or other synchronous
53 * requirement. In the event of a panic or power fail then those log
54 * records (transactions) are replayed.
55 *
56 * There is one ZIL per file system. Its on-disk (pool) format consists
57 * of 3 parts:
58 *
59 * - ZIL header
60 * - ZIL blocks
61 * - ZIL records
62 *
63 * A log record holds a system call transaction. Log blocks can
64 * hold many log records and the blocks are chained together.
65 * Each ZIL block contains a block pointer (blkptr_t) to the next
66 * ZIL block in the chain. The ZIL header points to the first
67 * block in the chain. Note there is not a fixed place in the pool
68 * to hold blocks. They are dynamically allocated and freed as
69 * needed from the blocks available. Figure X shows the ZIL structure:
70 */
71
72 /*
73 * See zil.h for more information about these fields.
74 */
75 zil_stats_t zil_stats = {
76 { "zil_commit_count", KSTAT_DATA_UINT64 },
77 { "zil_commit_writer_count", KSTAT_DATA_UINT64 },
78 { "zil_itx_count", KSTAT_DATA_UINT64 },
79 { "zil_itx_indirect_count", KSTAT_DATA_UINT64 },
80 { "zil_itx_indirect_bytes", KSTAT_DATA_UINT64 },
81 { "zil_itx_copied_count", KSTAT_DATA_UINT64 },
82 { "zil_itx_copied_bytes", KSTAT_DATA_UINT64 },
83 { "zil_itx_needcopy_count", KSTAT_DATA_UINT64 },
84 { "zil_itx_needcopy_bytes", KSTAT_DATA_UINT64 },
85 { "zil_itx_metaslab_normal_count", KSTAT_DATA_UINT64 },
86 { "zil_itx_metaslab_normal_bytes", KSTAT_DATA_UINT64 },
87 { "zil_itx_metaslab_slog_count", KSTAT_DATA_UINT64 },
88 { "zil_itx_metaslab_slog_bytes", KSTAT_DATA_UINT64 },
89 };
90
91 static kstat_t *zil_ksp;
92
93 /*
94 * Disable intent logging replay. This global ZIL switch affects all pools.
95 */
96 int zil_replay_disable = 0;
97
98 /*
99 * Tunable parameter for debugging or performance analysis. Setting
100 * zfs_nocacheflush will cause corruption on power loss if a volatile
101 * out-of-order write cache is enabled.
102 */
103 int zfs_nocacheflush = 0;
104
105 /*
106 * Limit SLOG write size per commit executed with synchronous priority.
107 * Any writes above that will be executed with lower (asynchronous) priority
108 * to limit potential SLOG device abuse by single active ZIL writer.
109 */
110 unsigned long zil_slog_bulk = 768 * 1024;
111
112 static kmem_cache_t *zil_lwb_cache;
113
114 static void zil_async_to_sync(zilog_t *zilog, uint64_t foid);
115
116 #define LWB_EMPTY(lwb) ((BP_GET_LSIZE(&lwb->lwb_blk) - \
117 sizeof (zil_chain_t)) == (lwb->lwb_sz - lwb->lwb_nused))
118
119 static int
120 zil_bp_compare(const void *x1, const void *x2)
121 {
122 const dva_t *dva1 = &((zil_bp_node_t *)x1)->zn_dva;
123 const dva_t *dva2 = &((zil_bp_node_t *)x2)->zn_dva;
124
125 int cmp = AVL_CMP(DVA_GET_VDEV(dva1), DVA_GET_VDEV(dva2));
126 if (likely(cmp))
127 return (cmp);
128
129 return (AVL_CMP(DVA_GET_OFFSET(dva1), DVA_GET_OFFSET(dva2)));
130 }
131
132 static void
133 zil_bp_tree_init(zilog_t *zilog)
134 {
135 avl_create(&zilog->zl_bp_tree, zil_bp_compare,
136 sizeof (zil_bp_node_t), offsetof(zil_bp_node_t, zn_node));
137 }
138
139 static void
140 zil_bp_tree_fini(zilog_t *zilog)
141 {
142 avl_tree_t *t = &zilog->zl_bp_tree;
143 zil_bp_node_t *zn;
144 void *cookie = NULL;
145
146 while ((zn = avl_destroy_nodes(t, &cookie)) != NULL)
147 kmem_free(zn, sizeof (zil_bp_node_t));
148
149 avl_destroy(t);
150 }
151
152 int
153 zil_bp_tree_add(zilog_t *zilog, const blkptr_t *bp)
154 {
155 avl_tree_t *t = &zilog->zl_bp_tree;
156 const dva_t *dva;
157 zil_bp_node_t *zn;
158 avl_index_t where;
159
160 if (BP_IS_EMBEDDED(bp))
161 return (0);
162
163 dva = BP_IDENTITY(bp);
164
165 if (avl_find(t, dva, &where) != NULL)
166 return (SET_ERROR(EEXIST));
167
168 zn = kmem_alloc(sizeof (zil_bp_node_t), KM_SLEEP);
169 zn->zn_dva = *dva;
170 avl_insert(t, zn, where);
171
172 return (0);
173 }
174
175 static zil_header_t *
176 zil_header_in_syncing_context(zilog_t *zilog)
177 {
178 return ((zil_header_t *)zilog->zl_header);
179 }
180
181 static void
182 zil_init_log_chain(zilog_t *zilog, blkptr_t *bp)
183 {
184 zio_cksum_t *zc = &bp->blk_cksum;
185
186 zc->zc_word[ZIL_ZC_GUID_0] = spa_get_random(-1ULL);
187 zc->zc_word[ZIL_ZC_GUID_1] = spa_get_random(-1ULL);
188 zc->zc_word[ZIL_ZC_OBJSET] = dmu_objset_id(zilog->zl_os);
189 zc->zc_word[ZIL_ZC_SEQ] = 1ULL;
190 }
191
192 /*
193 * Read a log block and make sure it's valid.
194 */
195 static int
196 zil_read_log_block(zilog_t *zilog, const blkptr_t *bp, blkptr_t *nbp, void *dst,
197 char **end)
198 {
199 enum zio_flag zio_flags = ZIO_FLAG_CANFAIL;
200 arc_flags_t aflags = ARC_FLAG_WAIT;
201 arc_buf_t *abuf = NULL;
202 zbookmark_phys_t zb;
203 int error;
204
205 if (zilog->zl_header->zh_claim_txg == 0)
206 zio_flags |= ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB;
207
208 if (!(zilog->zl_header->zh_flags & ZIL_CLAIM_LR_SEQ_VALID))
209 zio_flags |= ZIO_FLAG_SPECULATIVE;
210
211 SET_BOOKMARK(&zb, bp->blk_cksum.zc_word[ZIL_ZC_OBJSET],
212 ZB_ZIL_OBJECT, ZB_ZIL_LEVEL, bp->blk_cksum.zc_word[ZIL_ZC_SEQ]);
213
214 error = arc_read(NULL, zilog->zl_spa, bp, arc_getbuf_func, &abuf,
215 ZIO_PRIORITY_SYNC_READ, zio_flags, &aflags, &zb);
216
217 if (error == 0) {
218 zio_cksum_t cksum = bp->blk_cksum;
219
220 /*
221 * Validate the checksummed log block.
222 *
223 * Sequence numbers should be... sequential. The checksum
224 * verifier for the next block should be bp's checksum plus 1.
225 *
226 * Also check the log chain linkage and size used.
227 */
228 cksum.zc_word[ZIL_ZC_SEQ]++;
229
230 if (BP_GET_CHECKSUM(bp) == ZIO_CHECKSUM_ZILOG2) {
231 zil_chain_t *zilc = abuf->b_data;
232 char *lr = (char *)(zilc + 1);
233 uint64_t len = zilc->zc_nused - sizeof (zil_chain_t);
234
235 if (bcmp(&cksum, &zilc->zc_next_blk.blk_cksum,
236 sizeof (cksum)) || BP_IS_HOLE(&zilc->zc_next_blk)) {
237 error = SET_ERROR(ECKSUM);
238 } else {
239 ASSERT3U(len, <=, SPA_OLD_MAXBLOCKSIZE);
240 bcopy(lr, dst, len);
241 *end = (char *)dst + len;
242 *nbp = zilc->zc_next_blk;
243 }
244 } else {
245 char *lr = abuf->b_data;
246 uint64_t size = BP_GET_LSIZE(bp);
247 zil_chain_t *zilc = (zil_chain_t *)(lr + size) - 1;
248
249 if (bcmp(&cksum, &zilc->zc_next_blk.blk_cksum,
250 sizeof (cksum)) || BP_IS_HOLE(&zilc->zc_next_blk) ||
251 (zilc->zc_nused > (size - sizeof (*zilc)))) {
252 error = SET_ERROR(ECKSUM);
253 } else {
254 ASSERT3U(zilc->zc_nused, <=,
255 SPA_OLD_MAXBLOCKSIZE);
256 bcopy(lr, dst, zilc->zc_nused);
257 *end = (char *)dst + zilc->zc_nused;
258 *nbp = zilc->zc_next_blk;
259 }
260 }
261
262 arc_buf_destroy(abuf, &abuf);
263 }
264
265 return (error);
266 }
267
268 /*
269 * Read a TX_WRITE log data block.
270 */
271 static int
272 zil_read_log_data(zilog_t *zilog, const lr_write_t *lr, void *wbuf)
273 {
274 enum zio_flag zio_flags = ZIO_FLAG_CANFAIL;
275 const blkptr_t *bp = &lr->lr_blkptr;
276 arc_flags_t aflags = ARC_FLAG_WAIT;
277 arc_buf_t *abuf = NULL;
278 zbookmark_phys_t zb;
279 int error;
280
281 if (BP_IS_HOLE(bp)) {
282 if (wbuf != NULL)
283 bzero(wbuf, MAX(BP_GET_LSIZE(bp), lr->lr_length));
284 return (0);
285 }
286
287 if (zilog->zl_header->zh_claim_txg == 0)
288 zio_flags |= ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB;
289
290 SET_BOOKMARK(&zb, dmu_objset_id(zilog->zl_os), lr->lr_foid,
291 ZB_ZIL_LEVEL, lr->lr_offset / BP_GET_LSIZE(bp));
292
293 error = arc_read(NULL, zilog->zl_spa, bp, arc_getbuf_func, &abuf,
294 ZIO_PRIORITY_SYNC_READ, zio_flags, &aflags, &zb);
295
296 if (error == 0) {
297 if (wbuf != NULL)
298 bcopy(abuf->b_data, wbuf, arc_buf_size(abuf));
299 arc_buf_destroy(abuf, &abuf);
300 }
301
302 return (error);
303 }
304
305 /*
306 * Parse the intent log, and call parse_func for each valid record within.
307 */
308 int
309 zil_parse(zilog_t *zilog, zil_parse_blk_func_t *parse_blk_func,
310 zil_parse_lr_func_t *parse_lr_func, void *arg, uint64_t txg)
311 {
312 const zil_header_t *zh = zilog->zl_header;
313 boolean_t claimed = !!zh->zh_claim_txg;
314 uint64_t claim_blk_seq = claimed ? zh->zh_claim_blk_seq : UINT64_MAX;
315 uint64_t claim_lr_seq = claimed ? zh->zh_claim_lr_seq : UINT64_MAX;
316 uint64_t max_blk_seq = 0;
317 uint64_t max_lr_seq = 0;
318 uint64_t blk_count = 0;
319 uint64_t lr_count = 0;
320 blkptr_t blk, next_blk;
321 char *lrbuf, *lrp;
322 int error = 0;
323
324 bzero(&next_blk, sizeof (blkptr_t));
325
326 /*
327 * Old logs didn't record the maximum zh_claim_lr_seq.
328 */
329 if (!(zh->zh_flags & ZIL_CLAIM_LR_SEQ_VALID))
330 claim_lr_seq = UINT64_MAX;
331
332 /*
333 * Starting at the block pointed to by zh_log we read the log chain.
334 * For each block in the chain we strongly check that block to
335 * ensure its validity. We stop when an invalid block is found.
336 * For each block pointer in the chain we call parse_blk_func().
337 * For each record in each valid block we call parse_lr_func().
338 * If the log has been claimed, stop if we encounter a sequence
339 * number greater than the highest claimed sequence number.
340 */
341 lrbuf = zio_buf_alloc(SPA_OLD_MAXBLOCKSIZE);
342 zil_bp_tree_init(zilog);
343
344 for (blk = zh->zh_log; !BP_IS_HOLE(&blk); blk = next_blk) {
345 uint64_t blk_seq = blk.blk_cksum.zc_word[ZIL_ZC_SEQ];
346 int reclen;
347 char *end = NULL;
348
349 if (blk_seq > claim_blk_seq)
350 break;
351 if ((error = parse_blk_func(zilog, &blk, arg, txg)) != 0)
352 break;
353 ASSERT3U(max_blk_seq, <, blk_seq);
354 max_blk_seq = blk_seq;
355 blk_count++;
356
357 if (max_lr_seq == claim_lr_seq && max_blk_seq == claim_blk_seq)
358 break;
359
360 error = zil_read_log_block(zilog, &blk, &next_blk, lrbuf, &end);
361 if (error != 0)
362 break;
363
364 for (lrp = lrbuf; lrp < end; lrp += reclen) {
365 lr_t *lr = (lr_t *)lrp;
366 reclen = lr->lrc_reclen;
367 ASSERT3U(reclen, >=, sizeof (lr_t));
368 if (lr->lrc_seq > claim_lr_seq)
369 goto done;
370 if ((error = parse_lr_func(zilog, lr, arg, txg)) != 0)
371 goto done;
372 ASSERT3U(max_lr_seq, <, lr->lrc_seq);
373 max_lr_seq = lr->lrc_seq;
374 lr_count++;
375 }
376 }
377 done:
378 zilog->zl_parse_error = error;
379 zilog->zl_parse_blk_seq = max_blk_seq;
380 zilog->zl_parse_lr_seq = max_lr_seq;
381 zilog->zl_parse_blk_count = blk_count;
382 zilog->zl_parse_lr_count = lr_count;
383
384 ASSERT(!claimed || !(zh->zh_flags & ZIL_CLAIM_LR_SEQ_VALID) ||
385 (max_blk_seq == claim_blk_seq && max_lr_seq == claim_lr_seq));
386
387 zil_bp_tree_fini(zilog);
388 zio_buf_free(lrbuf, SPA_OLD_MAXBLOCKSIZE);
389
390 return (error);
391 }
392
393 static int
394 zil_claim_log_block(zilog_t *zilog, blkptr_t *bp, void *tx, uint64_t first_txg)
395 {
396 /*
397 * Claim log block if not already committed and not already claimed.
398 * If tx == NULL, just verify that the block is claimable.
399 */
400 if (BP_IS_HOLE(bp) || bp->blk_birth < first_txg ||
401 zil_bp_tree_add(zilog, bp) != 0)
402 return (0);
403
404 return (zio_wait(zio_claim(NULL, zilog->zl_spa,
405 tx == NULL ? 0 : first_txg, bp, spa_claim_notify, NULL,
406 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB)));
407 }
408
409 static int
410 zil_claim_log_record(zilog_t *zilog, lr_t *lrc, void *tx, uint64_t first_txg)
411 {
412 lr_write_t *lr = (lr_write_t *)lrc;
413 int error;
414
415 if (lrc->lrc_txtype != TX_WRITE)
416 return (0);
417
418 /*
419 * If the block is not readable, don't claim it. This can happen
420 * in normal operation when a log block is written to disk before
421 * some of the dmu_sync() blocks it points to. In this case, the
422 * transaction cannot have been committed to anyone (we would have
423 * waited for all writes to be stable first), so it is semantically
424 * correct to declare this the end of the log.
425 */
426 if (lr->lr_blkptr.blk_birth >= first_txg &&
427 (error = zil_read_log_data(zilog, lr, NULL)) != 0)
428 return (error);
429 return (zil_claim_log_block(zilog, &lr->lr_blkptr, tx, first_txg));
430 }
431
432 /* ARGSUSED */
433 static int
434 zil_free_log_block(zilog_t *zilog, blkptr_t *bp, void *tx, uint64_t claim_txg)
435 {
436 zio_free_zil(zilog->zl_spa, dmu_tx_get_txg(tx), bp);
437
438 return (0);
439 }
440
441 static int
442 zil_free_log_record(zilog_t *zilog, lr_t *lrc, void *tx, uint64_t claim_txg)
443 {
444 lr_write_t *lr = (lr_write_t *)lrc;
445 blkptr_t *bp = &lr->lr_blkptr;
446
447 /*
448 * If we previously claimed it, we need to free it.
449 */
450 if (claim_txg != 0 && lrc->lrc_txtype == TX_WRITE &&
451 bp->blk_birth >= claim_txg && zil_bp_tree_add(zilog, bp) == 0 &&
452 !BP_IS_HOLE(bp))
453 zio_free(zilog->zl_spa, dmu_tx_get_txg(tx), bp);
454
455 return (0);
456 }
457
458 static lwb_t *
459 zil_alloc_lwb(zilog_t *zilog, blkptr_t *bp, boolean_t slog, uint64_t txg,
460 boolean_t fastwrite)
461 {
462 lwb_t *lwb;
463
464 lwb = kmem_cache_alloc(zil_lwb_cache, KM_SLEEP);
465 lwb->lwb_zilog = zilog;
466 lwb->lwb_blk = *bp;
467 lwb->lwb_fastwrite = fastwrite;
468 lwb->lwb_slog = slog;
469 lwb->lwb_buf = zio_buf_alloc(BP_GET_LSIZE(bp));
470 lwb->lwb_max_txg = txg;
471 lwb->lwb_zio = NULL;
472 lwb->lwb_tx = NULL;
473 if (BP_GET_CHECKSUM(bp) == ZIO_CHECKSUM_ZILOG2) {
474 lwb->lwb_nused = sizeof (zil_chain_t);
475 lwb->lwb_sz = BP_GET_LSIZE(bp);
476 } else {
477 lwb->lwb_nused = 0;
478 lwb->lwb_sz = BP_GET_LSIZE(bp) - sizeof (zil_chain_t);
479 }
480
481 mutex_enter(&zilog->zl_lock);
482 list_insert_tail(&zilog->zl_lwb_list, lwb);
483 mutex_exit(&zilog->zl_lock);
484
485 return (lwb);
486 }
487
488 /*
489 * Called when we create in-memory log transactions so that we know
490 * to cleanup the itxs at the end of spa_sync().
491 */
492 void
493 zilog_dirty(zilog_t *zilog, uint64_t txg)
494 {
495 dsl_pool_t *dp = zilog->zl_dmu_pool;
496 dsl_dataset_t *ds = dmu_objset_ds(zilog->zl_os);
497
498 if (ds->ds_is_snapshot)
499 panic("dirtying snapshot!");
500
501 if (txg_list_add(&dp->dp_dirty_zilogs, zilog, txg)) {
502 /* up the hold count until we can be written out */
503 dmu_buf_add_ref(ds->ds_dbuf, zilog);
504 }
505 }
506
507 /*
508 * Determine if the zil is dirty in the specified txg. Callers wanting to
509 * ensure that the dirty state does not change must hold the itxg_lock for
510 * the specified txg. Holding the lock will ensure that the zil cannot be
511 * dirtied (zil_itx_assign) or cleaned (zil_clean) while we check its current
512 * state.
513 */
514 boolean_t
515 zilog_is_dirty_in_txg(zilog_t *zilog, uint64_t txg)
516 {
517 dsl_pool_t *dp = zilog->zl_dmu_pool;
518
519 if (txg_list_member(&dp->dp_dirty_zilogs, zilog, txg & TXG_MASK))
520 return (B_TRUE);
521 return (B_FALSE);
522 }
523
524 /*
525 * Determine if the zil is dirty. The zil is considered dirty if it has
526 * any pending itx records that have not been cleaned by zil_clean().
527 */
528 boolean_t
529 zilog_is_dirty(zilog_t *zilog)
530 {
531 dsl_pool_t *dp = zilog->zl_dmu_pool;
532 int t;
533
534 for (t = 0; t < TXG_SIZE; t++) {
535 if (txg_list_member(&dp->dp_dirty_zilogs, zilog, t))
536 return (B_TRUE);
537 }
538 return (B_FALSE);
539 }
540
541 /*
542 * Create an on-disk intent log.
543 */
544 static lwb_t *
545 zil_create(zilog_t *zilog)
546 {
547 const zil_header_t *zh = zilog->zl_header;
548 lwb_t *lwb = NULL;
549 uint64_t txg = 0;
550 dmu_tx_t *tx = NULL;
551 blkptr_t blk;
552 int error = 0;
553 boolean_t fastwrite = FALSE;
554 boolean_t slog = FALSE;
555
556 /*
557 * Wait for any previous destroy to complete.
558 */
559 txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg);
560
561 ASSERT(zh->zh_claim_txg == 0);
562 ASSERT(zh->zh_replay_seq == 0);
563
564 blk = zh->zh_log;
565
566 /*
567 * Allocate an initial log block if:
568 * - there isn't one already
569 * - the existing block is the wrong endianness
570 */
571 if (BP_IS_HOLE(&blk) || BP_SHOULD_BYTESWAP(&blk)) {
572 tx = dmu_tx_create(zilog->zl_os);
573 VERIFY(dmu_tx_assign(tx, TXG_WAIT) == 0);
574 dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
575 txg = dmu_tx_get_txg(tx);
576
577 if (!BP_IS_HOLE(&blk)) {
578 zio_free_zil(zilog->zl_spa, txg, &blk);
579 BP_ZERO(&blk);
580 }
581
582 error = zio_alloc_zil(zilog->zl_spa, txg, &blk,
583 ZIL_MIN_BLKSZ, &slog);
584 fastwrite = TRUE;
585
586 if (error == 0)
587 zil_init_log_chain(zilog, &blk);
588 }
589
590 /*
591 * Allocate a log write buffer (lwb) for the first log block.
592 */
593 if (error == 0)
594 lwb = zil_alloc_lwb(zilog, &blk, slog, txg, fastwrite);
595
596 /*
597 * If we just allocated the first log block, commit our transaction
598 * and wait for zil_sync() to stuff the block poiner into zh_log.
599 * (zh is part of the MOS, so we cannot modify it in open context.)
600 */
601 if (tx != NULL) {
602 dmu_tx_commit(tx);
603 txg_wait_synced(zilog->zl_dmu_pool, txg);
604 }
605
606 ASSERT(bcmp(&blk, &zh->zh_log, sizeof (blk)) == 0);
607
608 return (lwb);
609 }
610
611 /*
612 * In one tx, free all log blocks and clear the log header.
613 * If keep_first is set, then we're replaying a log with no content.
614 * We want to keep the first block, however, so that the first
615 * synchronous transaction doesn't require a txg_wait_synced()
616 * in zil_create(). We don't need to txg_wait_synced() here either
617 * when keep_first is set, because both zil_create() and zil_destroy()
618 * will wait for any in-progress destroys to complete.
619 */
620 void
621 zil_destroy(zilog_t *zilog, boolean_t keep_first)
622 {
623 const zil_header_t *zh = zilog->zl_header;
624 lwb_t *lwb;
625 dmu_tx_t *tx;
626 uint64_t txg;
627
628 /*
629 * Wait for any previous destroy to complete.
630 */
631 txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg);
632
633 zilog->zl_old_header = *zh; /* debugging aid */
634
635 if (BP_IS_HOLE(&zh->zh_log))
636 return;
637
638 tx = dmu_tx_create(zilog->zl_os);
639 VERIFY(dmu_tx_assign(tx, TXG_WAIT) == 0);
640 dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
641 txg = dmu_tx_get_txg(tx);
642
643 mutex_enter(&zilog->zl_lock);
644
645 ASSERT3U(zilog->zl_destroy_txg, <, txg);
646 zilog->zl_destroy_txg = txg;
647 zilog->zl_keep_first = keep_first;
648
649 if (!list_is_empty(&zilog->zl_lwb_list)) {
650 ASSERT(zh->zh_claim_txg == 0);
651 VERIFY(!keep_first);
652 while ((lwb = list_head(&zilog->zl_lwb_list)) != NULL) {
653 ASSERT(lwb->lwb_zio == NULL);
654 if (lwb->lwb_fastwrite)
655 metaslab_fastwrite_unmark(zilog->zl_spa,
656 &lwb->lwb_blk);
657 list_remove(&zilog->zl_lwb_list, lwb);
658 if (lwb->lwb_buf != NULL)
659 zio_buf_free(lwb->lwb_buf, lwb->lwb_sz);
660 zio_free_zil(zilog->zl_spa, txg, &lwb->lwb_blk);
661 kmem_cache_free(zil_lwb_cache, lwb);
662 }
663 } else if (!keep_first) {
664 zil_destroy_sync(zilog, tx);
665 }
666 mutex_exit(&zilog->zl_lock);
667
668 dmu_tx_commit(tx);
669 }
670
671 void
672 zil_destroy_sync(zilog_t *zilog, dmu_tx_t *tx)
673 {
674 ASSERT(list_is_empty(&zilog->zl_lwb_list));
675 (void) zil_parse(zilog, zil_free_log_block,
676 zil_free_log_record, tx, zilog->zl_header->zh_claim_txg);
677 }
678
679 int
680 zil_claim(dsl_pool_t *dp, dsl_dataset_t *ds, void *txarg)
681 {
682 dmu_tx_t *tx = txarg;
683 uint64_t first_txg = dmu_tx_get_txg(tx);
684 zilog_t *zilog;
685 zil_header_t *zh;
686 objset_t *os;
687 int error;
688
689 error = dmu_objset_own_obj(dp, ds->ds_object,
690 DMU_OST_ANY, B_FALSE, FTAG, &os);
691 if (error != 0) {
692 /*
693 * EBUSY indicates that the objset is inconsistent, in which
694 * case it can not have a ZIL.
695 */
696 if (error != EBUSY) {
697 cmn_err(CE_WARN, "can't open objset for %llu, error %u",
698 (unsigned long long)ds->ds_object, error);
699 }
700
701 return (0);
702 }
703
704 zilog = dmu_objset_zil(os);
705 zh = zil_header_in_syncing_context(zilog);
706
707 if (spa_get_log_state(zilog->zl_spa) == SPA_LOG_CLEAR) {
708 if (!BP_IS_HOLE(&zh->zh_log))
709 zio_free_zil(zilog->zl_spa, first_txg, &zh->zh_log);
710 BP_ZERO(&zh->zh_log);
711 dsl_dataset_dirty(dmu_objset_ds(os), tx);
712 dmu_objset_disown(os, FTAG);
713 return (0);
714 }
715
716 /*
717 * Claim all log blocks if we haven't already done so, and remember
718 * the highest claimed sequence number. This ensures that if we can
719 * read only part of the log now (e.g. due to a missing device),
720 * but we can read the entire log later, we will not try to replay
721 * or destroy beyond the last block we successfully claimed.
722 */
723 ASSERT3U(zh->zh_claim_txg, <=, first_txg);
724 if (zh->zh_claim_txg == 0 && !BP_IS_HOLE(&zh->zh_log)) {
725 (void) zil_parse(zilog, zil_claim_log_block,
726 zil_claim_log_record, tx, first_txg);
727 zh->zh_claim_txg = first_txg;
728 zh->zh_claim_blk_seq = zilog->zl_parse_blk_seq;
729 zh->zh_claim_lr_seq = zilog->zl_parse_lr_seq;
730 if (zilog->zl_parse_lr_count || zilog->zl_parse_blk_count > 1)
731 zh->zh_flags |= ZIL_REPLAY_NEEDED;
732 zh->zh_flags |= ZIL_CLAIM_LR_SEQ_VALID;
733 dsl_dataset_dirty(dmu_objset_ds(os), tx);
734 }
735
736 ASSERT3U(first_txg, ==, (spa_last_synced_txg(zilog->zl_spa) + 1));
737 dmu_objset_disown(os, FTAG);
738 return (0);
739 }
740
741 /*
742 * Check the log by walking the log chain.
743 * Checksum errors are ok as they indicate the end of the chain.
744 * Any other error (no device or read failure) returns an error.
745 */
746 /* ARGSUSED */
747 int
748 zil_check_log_chain(dsl_pool_t *dp, dsl_dataset_t *ds, void *tx)
749 {
750 zilog_t *zilog;
751 objset_t *os;
752 blkptr_t *bp;
753 int error;
754
755 ASSERT(tx == NULL);
756
757 error = dmu_objset_from_ds(ds, &os);
758 if (error != 0) {
759 cmn_err(CE_WARN, "can't open objset %llu, error %d",
760 (unsigned long long)ds->ds_object, error);
761 return (0);
762 }
763
764 zilog = dmu_objset_zil(os);
765 bp = (blkptr_t *)&zilog->zl_header->zh_log;
766
767 /*
768 * Check the first block and determine if it's on a log device
769 * which may have been removed or faulted prior to loading this
770 * pool. If so, there's no point in checking the rest of the log
771 * as its content should have already been synced to the pool.
772 */
773 if (!BP_IS_HOLE(bp)) {
774 vdev_t *vd;
775 boolean_t valid = B_TRUE;
776
777 spa_config_enter(os->os_spa, SCL_STATE, FTAG, RW_READER);
778 vd = vdev_lookup_top(os->os_spa, DVA_GET_VDEV(&bp->blk_dva[0]));
779 if (vd->vdev_islog && vdev_is_dead(vd))
780 valid = vdev_log_state_valid(vd);
781 spa_config_exit(os->os_spa, SCL_STATE, FTAG);
782
783 if (!valid)
784 return (0);
785 }
786
787 /*
788 * Because tx == NULL, zil_claim_log_block() will not actually claim
789 * any blocks, but just determine whether it is possible to do so.
790 * In addition to checking the log chain, zil_claim_log_block()
791 * will invoke zio_claim() with a done func of spa_claim_notify(),
792 * which will update spa_max_claim_txg. See spa_load() for details.
793 */
794 error = zil_parse(zilog, zil_claim_log_block, zil_claim_log_record, tx,
795 zilog->zl_header->zh_claim_txg ? -1ULL : spa_first_txg(os->os_spa));
796
797 return ((error == ECKSUM || error == ENOENT) ? 0 : error);
798 }
799
800 static int
801 zil_vdev_compare(const void *x1, const void *x2)
802 {
803 const uint64_t v1 = ((zil_vdev_node_t *)x1)->zv_vdev;
804 const uint64_t v2 = ((zil_vdev_node_t *)x2)->zv_vdev;
805
806 return (AVL_CMP(v1, v2));
807 }
808
809 void
810 zil_add_block(zilog_t *zilog, const blkptr_t *bp)
811 {
812 avl_tree_t *t = &zilog->zl_vdev_tree;
813 avl_index_t where;
814 zil_vdev_node_t *zv, zvsearch;
815 int ndvas = BP_GET_NDVAS(bp);
816 int i;
817
818 if (zfs_nocacheflush)
819 return;
820
821 ASSERT(zilog->zl_writer);
822
823 /*
824 * Even though we're zl_writer, we still need a lock because the
825 * zl_get_data() callbacks may have dmu_sync() done callbacks
826 * that will run concurrently.
827 */
828 mutex_enter(&zilog->zl_vdev_lock);
829 for (i = 0; i < ndvas; i++) {
830 zvsearch.zv_vdev = DVA_GET_VDEV(&bp->blk_dva[i]);
831 if (avl_find(t, &zvsearch, &where) == NULL) {
832 zv = kmem_alloc(sizeof (*zv), KM_SLEEP);
833 zv->zv_vdev = zvsearch.zv_vdev;
834 avl_insert(t, zv, where);
835 }
836 }
837 mutex_exit(&zilog->zl_vdev_lock);
838 }
839
840 static void
841 zil_flush_vdevs(zilog_t *zilog)
842 {
843 spa_t *spa = zilog->zl_spa;
844 avl_tree_t *t = &zilog->zl_vdev_tree;
845 void *cookie = NULL;
846 zil_vdev_node_t *zv;
847 zio_t *zio;
848
849 ASSERT(zilog->zl_writer);
850
851 /*
852 * We don't need zl_vdev_lock here because we're the zl_writer,
853 * and all zl_get_data() callbacks are done.
854 */
855 if (avl_numnodes(t) == 0)
856 return;
857
858 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
859
860 zio = zio_root(spa, NULL, NULL, ZIO_FLAG_CANFAIL);
861
862 while ((zv = avl_destroy_nodes(t, &cookie)) != NULL) {
863 vdev_t *vd = vdev_lookup_top(spa, zv->zv_vdev);
864 if (vd != NULL)
865 zio_flush(zio, vd);
866 kmem_free(zv, sizeof (*zv));
867 }
868
869 /*
870 * Wait for all the flushes to complete. Not all devices actually
871 * support the DKIOCFLUSHWRITECACHE ioctl, so it's OK if it fails.
872 */
873 (void) zio_wait(zio);
874
875 spa_config_exit(spa, SCL_STATE, FTAG);
876 }
877
878 /*
879 * Function called when a log block write completes
880 */
881 static void
882 zil_lwb_write_done(zio_t *zio)
883 {
884 lwb_t *lwb = zio->io_private;
885 zilog_t *zilog = lwb->lwb_zilog;
886 dmu_tx_t *tx = lwb->lwb_tx;
887
888 ASSERT(BP_GET_COMPRESS(zio->io_bp) == ZIO_COMPRESS_OFF);
889 ASSERT(BP_GET_TYPE(zio->io_bp) == DMU_OT_INTENT_LOG);
890 ASSERT(BP_GET_LEVEL(zio->io_bp) == 0);
891 ASSERT(BP_GET_BYTEORDER(zio->io_bp) == ZFS_HOST_BYTEORDER);
892 ASSERT(!BP_IS_GANG(zio->io_bp));
893 ASSERT(!BP_IS_HOLE(zio->io_bp));
894 ASSERT(BP_GET_FILL(zio->io_bp) == 0);
895
896 /*
897 * Ensure the lwb buffer pointer is cleared before releasing
898 * the txg. If we have had an allocation failure and
899 * the txg is waiting to sync then we want want zil_sync()
900 * to remove the lwb so that it's not picked up as the next new
901 * one in zil_commit_writer(). zil_sync() will only remove
902 * the lwb if lwb_buf is null.
903 */
904 abd_put(zio->io_abd);
905 zio_buf_free(lwb->lwb_buf, lwb->lwb_sz);
906 mutex_enter(&zilog->zl_lock);
907 lwb->lwb_zio = NULL;
908 lwb->lwb_fastwrite = FALSE;
909 lwb->lwb_buf = NULL;
910 lwb->lwb_tx = NULL;
911 mutex_exit(&zilog->zl_lock);
912
913 /*
914 * Now that we've written this log block, we have a stable pointer
915 * to the next block in the chain, so it's OK to let the txg in
916 * which we allocated the next block sync.
917 */
918 dmu_tx_commit(tx);
919 }
920
921 /*
922 * Initialize the io for a log block.
923 */
924 static void
925 zil_lwb_write_init(zilog_t *zilog, lwb_t *lwb)
926 {
927 zbookmark_phys_t zb;
928 zio_priority_t prio;
929
930 SET_BOOKMARK(&zb, lwb->lwb_blk.blk_cksum.zc_word[ZIL_ZC_OBJSET],
931 ZB_ZIL_OBJECT, ZB_ZIL_LEVEL,
932 lwb->lwb_blk.blk_cksum.zc_word[ZIL_ZC_SEQ]);
933
934 if (zilog->zl_root_zio == NULL) {
935 zilog->zl_root_zio = zio_root(zilog->zl_spa, NULL, NULL,
936 ZIO_FLAG_CANFAIL);
937 }
938
939 /* Lock so zil_sync() doesn't fastwrite_unmark after zio is created */
940 mutex_enter(&zilog->zl_lock);
941 if (lwb->lwb_zio == NULL) {
942 abd_t *lwb_abd = abd_get_from_buf(lwb->lwb_buf,
943 BP_GET_LSIZE(&lwb->lwb_blk));
944 if (!lwb->lwb_fastwrite) {
945 metaslab_fastwrite_mark(zilog->zl_spa, &lwb->lwb_blk);
946 lwb->lwb_fastwrite = 1;
947 }
948 if (!lwb->lwb_slog || zilog->zl_cur_used <= zil_slog_bulk)
949 prio = ZIO_PRIORITY_SYNC_WRITE;
950 else
951 prio = ZIO_PRIORITY_ASYNC_WRITE;
952 lwb->lwb_zio = zio_rewrite(zilog->zl_root_zio, zilog->zl_spa,
953 0, &lwb->lwb_blk, lwb_abd, BP_GET_LSIZE(&lwb->lwb_blk),
954 zil_lwb_write_done, lwb, prio,
955 ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_PROPAGATE |
956 ZIO_FLAG_FASTWRITE, &zb);
957 }
958 mutex_exit(&zilog->zl_lock);
959 }
960
961 /*
962 * Define a limited set of intent log block sizes.
963 *
964 * These must be a multiple of 4KB. Note only the amount used (again
965 * aligned to 4KB) actually gets written. However, we can't always just
966 * allocate SPA_OLD_MAXBLOCKSIZE as the slog space could be exhausted.
967 */
968 uint64_t zil_block_buckets[] = {
969 4096, /* non TX_WRITE */
970 8192+4096, /* data base */
971 32*1024 + 4096, /* NFS writes */
972 UINT64_MAX
973 };
974
975 /*
976 * Start a log block write and advance to the next log block.
977 * Calls are serialized.
978 */
979 static lwb_t *
980 zil_lwb_write_start(zilog_t *zilog, lwb_t *lwb)
981 {
982 lwb_t *nlwb = NULL;
983 zil_chain_t *zilc;
984 spa_t *spa = zilog->zl_spa;
985 blkptr_t *bp;
986 dmu_tx_t *tx;
987 uint64_t txg;
988 uint64_t zil_blksz, wsz;
989 int i, error;
990 boolean_t slog;
991
992 if (BP_GET_CHECKSUM(&lwb->lwb_blk) == ZIO_CHECKSUM_ZILOG2) {
993 zilc = (zil_chain_t *)lwb->lwb_buf;
994 bp = &zilc->zc_next_blk;
995 } else {
996 zilc = (zil_chain_t *)(lwb->lwb_buf + lwb->lwb_sz);
997 bp = &zilc->zc_next_blk;
998 }
999
1000 ASSERT(lwb->lwb_nused <= lwb->lwb_sz);
1001
1002 /*
1003 * Allocate the next block and save its address in this block
1004 * before writing it in order to establish the log chain.
1005 * Note that if the allocation of nlwb synced before we wrote
1006 * the block that points at it (lwb), we'd leak it if we crashed.
1007 * Therefore, we don't do dmu_tx_commit() until zil_lwb_write_done().
1008 * We dirty the dataset to ensure that zil_sync() will be called
1009 * to clean up in the event of allocation failure or I/O failure.
1010 */
1011 tx = dmu_tx_create(zilog->zl_os);
1012
1013 /*
1014 * Since we are not going to create any new dirty data, and we
1015 * can even help with clearing the existing dirty data, we
1016 * should not be subject to the dirty data based delays. We
1017 * use TXG_NOTHROTTLE to bypass the delay mechanism.
1018 */
1019 VERIFY0(dmu_tx_assign(tx, TXG_WAIT | TXG_NOTHROTTLE));
1020
1021 dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
1022 txg = dmu_tx_get_txg(tx);
1023
1024 lwb->lwb_tx = tx;
1025
1026 /*
1027 * Log blocks are pre-allocated. Here we select the size of the next
1028 * block, based on size used in the last block.
1029 * - first find the smallest bucket that will fit the block from a
1030 * limited set of block sizes. This is because it's faster to write
1031 * blocks allocated from the same metaslab as they are adjacent or
1032 * close.
1033 * - next find the maximum from the new suggested size and an array of
1034 * previous sizes. This lessens a picket fence effect of wrongly
1035 * guesssing the size if we have a stream of say 2k, 64k, 2k, 64k
1036 * requests.
1037 *
1038 * Note we only write what is used, but we can't just allocate
1039 * the maximum block size because we can exhaust the available
1040 * pool log space.
1041 */
1042 zil_blksz = zilog->zl_cur_used + sizeof (zil_chain_t);
1043 for (i = 0; zil_blksz > zil_block_buckets[i]; i++)
1044 continue;
1045 zil_blksz = zil_block_buckets[i];
1046 if (zil_blksz == UINT64_MAX)
1047 zil_blksz = SPA_OLD_MAXBLOCKSIZE;
1048 zilog->zl_prev_blks[zilog->zl_prev_rotor] = zil_blksz;
1049 for (i = 0; i < ZIL_PREV_BLKS; i++)
1050 zil_blksz = MAX(zil_blksz, zilog->zl_prev_blks[i]);
1051 zilog->zl_prev_rotor = (zilog->zl_prev_rotor + 1) & (ZIL_PREV_BLKS - 1);
1052
1053 BP_ZERO(bp);
1054 error = zio_alloc_zil(spa, txg, bp, zil_blksz, &slog);
1055 if (slog) {
1056 ZIL_STAT_BUMP(zil_itx_metaslab_slog_count);
1057 ZIL_STAT_INCR(zil_itx_metaslab_slog_bytes, lwb->lwb_nused);
1058 } else {
1059 ZIL_STAT_BUMP(zil_itx_metaslab_normal_count);
1060 ZIL_STAT_INCR(zil_itx_metaslab_normal_bytes, lwb->lwb_nused);
1061 }
1062 if (error == 0) {
1063 ASSERT3U(bp->blk_birth, ==, txg);
1064 bp->blk_cksum = lwb->lwb_blk.blk_cksum;
1065 bp->blk_cksum.zc_word[ZIL_ZC_SEQ]++;
1066
1067 /*
1068 * Allocate a new log write buffer (lwb).
1069 */
1070 nlwb = zil_alloc_lwb(zilog, bp, slog, txg, TRUE);
1071
1072 /* Record the block for later vdev flushing */
1073 zil_add_block(zilog, &lwb->lwb_blk);
1074 }
1075
1076 if (BP_GET_CHECKSUM(&lwb->lwb_blk) == ZIO_CHECKSUM_ZILOG2) {
1077 /* For Slim ZIL only write what is used. */
1078 wsz = P2ROUNDUP_TYPED(lwb->lwb_nused, ZIL_MIN_BLKSZ, uint64_t);
1079 ASSERT3U(wsz, <=, lwb->lwb_sz);
1080 zio_shrink(lwb->lwb_zio, wsz);
1081
1082 } else {
1083 wsz = lwb->lwb_sz;
1084 }
1085
1086 zilc->zc_pad = 0;
1087 zilc->zc_nused = lwb->lwb_nused;
1088 zilc->zc_eck.zec_cksum = lwb->lwb_blk.blk_cksum;
1089
1090 /*
1091 * clear unused data for security
1092 */
1093 bzero(lwb->lwb_buf + lwb->lwb_nused, wsz - lwb->lwb_nused);
1094
1095 zio_nowait(lwb->lwb_zio); /* Kick off the write for the old log block */
1096
1097 /*
1098 * If there was an allocation failure then nlwb will be null which
1099 * forces a txg_wait_synced().
1100 */
1101 return (nlwb);
1102 }
1103
1104 static lwb_t *
1105 zil_lwb_commit(zilog_t *zilog, itx_t *itx, lwb_t *lwb)
1106 {
1107 lr_t *lrcb, *lrc;
1108 lr_write_t *lrwb, *lrw;
1109 char *lr_buf;
1110 uint64_t dlen, dnow, lwb_sp, reclen, txg;
1111
1112 if (lwb == NULL)
1113 return (NULL);
1114
1115 ASSERT(lwb->lwb_buf != NULL);
1116
1117 lrc = &itx->itx_lr; /* Common log record inside itx. */
1118 lrw = (lr_write_t *)lrc; /* Write log record inside itx. */
1119 if (lrc->lrc_txtype == TX_WRITE && itx->itx_wr_state == WR_NEED_COPY) {
1120 dlen = P2ROUNDUP_TYPED(
1121 lrw->lr_length, sizeof (uint64_t), uint64_t);
1122 } else {
1123 dlen = 0;
1124 }
1125 reclen = lrc->lrc_reclen;
1126 zilog->zl_cur_used += (reclen + dlen);
1127 txg = lrc->lrc_txg;
1128
1129 zil_lwb_write_init(zilog, lwb);
1130
1131 cont:
1132 /*
1133 * If this record won't fit in the current log block, start a new one.
1134 * For WR_NEED_COPY optimize layout for minimal number of chunks.
1135 */
1136 lwb_sp = lwb->lwb_sz - lwb->lwb_nused;
1137 if (reclen > lwb_sp || (reclen + dlen > lwb_sp &&
1138 lwb_sp < ZIL_MAX_WASTE_SPACE && (dlen % ZIL_MAX_LOG_DATA == 0 ||
1139 lwb_sp < reclen + dlen % ZIL_MAX_LOG_DATA))) {
1140 lwb = zil_lwb_write_start(zilog, lwb);
1141 if (lwb == NULL)
1142 return (NULL);
1143 zil_lwb_write_init(zilog, lwb);
1144 ASSERT(LWB_EMPTY(lwb));
1145 lwb_sp = lwb->lwb_sz - lwb->lwb_nused;
1146 ASSERT3U(reclen + MIN(dlen, sizeof (uint64_t)), <=, lwb_sp);
1147 }
1148
1149 dnow = MIN(dlen, lwb_sp - reclen);
1150 lr_buf = lwb->lwb_buf + lwb->lwb_nused;
1151 bcopy(lrc, lr_buf, reclen);
1152 lrcb = (lr_t *)lr_buf; /* Like lrc, but inside lwb. */
1153 lrwb = (lr_write_t *)lrcb; /* Like lrw, but inside lwb. */
1154
1155 ZIL_STAT_BUMP(zil_itx_count);
1156
1157 /*
1158 * If it's a write, fetch the data or get its blkptr as appropriate.
1159 */
1160 if (lrc->lrc_txtype == TX_WRITE) {
1161 if (txg > spa_freeze_txg(zilog->zl_spa))
1162 txg_wait_synced(zilog->zl_dmu_pool, txg);
1163 if (itx->itx_wr_state == WR_COPIED) {
1164 ZIL_STAT_BUMP(zil_itx_copied_count);
1165 ZIL_STAT_INCR(zil_itx_copied_bytes, lrw->lr_length);
1166 } else {
1167 char *dbuf;
1168 int error;
1169
1170 if (itx->itx_wr_state == WR_NEED_COPY) {
1171 dbuf = lr_buf + reclen;
1172 lrcb->lrc_reclen += dnow;
1173 if (lrwb->lr_length > dnow)
1174 lrwb->lr_length = dnow;
1175 lrw->lr_offset += dnow;
1176 lrw->lr_length -= dnow;
1177 ZIL_STAT_BUMP(zil_itx_needcopy_count);
1178 ZIL_STAT_INCR(zil_itx_needcopy_bytes, dnow);
1179 } else {
1180 ASSERT(itx->itx_wr_state == WR_INDIRECT);
1181 dbuf = NULL;
1182 ZIL_STAT_BUMP(zil_itx_indirect_count);
1183 ZIL_STAT_INCR(zil_itx_indirect_bytes,
1184 lrw->lr_length);
1185 }
1186 error = zilog->zl_get_data(
1187 itx->itx_private, lrwb, dbuf, lwb->lwb_zio);
1188 if (error == EIO) {
1189 txg_wait_synced(zilog->zl_dmu_pool, txg);
1190 return (lwb);
1191 }
1192 if (error != 0) {
1193 ASSERT(error == ENOENT || error == EEXIST ||
1194 error == EALREADY);
1195 return (lwb);
1196 }
1197 }
1198 }
1199
1200 /*
1201 * We're actually making an entry, so update lrc_seq to be the
1202 * log record sequence number. Note that this is generally not
1203 * equal to the itx sequence number because not all transactions
1204 * are synchronous, and sometimes spa_sync() gets there first.
1205 */
1206 lrcb->lrc_seq = ++zilog->zl_lr_seq; /* we are single threaded */
1207 lwb->lwb_nused += reclen + dnow;
1208 lwb->lwb_max_txg = MAX(lwb->lwb_max_txg, txg);
1209 ASSERT3U(lwb->lwb_nused, <=, lwb->lwb_sz);
1210 ASSERT0(P2PHASE(lwb->lwb_nused, sizeof (uint64_t)));
1211
1212 dlen -= dnow;
1213 if (dlen > 0) {
1214 zilog->zl_cur_used += reclen;
1215 goto cont;
1216 }
1217
1218 return (lwb);
1219 }
1220
1221 itx_t *
1222 zil_itx_create(uint64_t txtype, size_t lrsize)
1223 {
1224 size_t itxsize;
1225 itx_t *itx;
1226
1227 lrsize = P2ROUNDUP_TYPED(lrsize, sizeof (uint64_t), size_t);
1228 itxsize = offsetof(itx_t, itx_lr) + lrsize;
1229
1230 itx = zio_data_buf_alloc(itxsize);
1231 itx->itx_lr.lrc_txtype = txtype;
1232 itx->itx_lr.lrc_reclen = lrsize;
1233 itx->itx_lr.lrc_seq = 0; /* defensive */
1234 itx->itx_sync = B_TRUE; /* default is synchronous */
1235 itx->itx_callback = NULL;
1236 itx->itx_callback_data = NULL;
1237 itx->itx_size = itxsize;
1238
1239 return (itx);
1240 }
1241
1242 void
1243 zil_itx_destroy(itx_t *itx)
1244 {
1245 zio_data_buf_free(itx, itx->itx_size);
1246 }
1247
1248 /*
1249 * Free up the sync and async itxs. The itxs_t has already been detached
1250 * so no locks are needed.
1251 */
1252 static void
1253 zil_itxg_clean(itxs_t *itxs)
1254 {
1255 itx_t *itx;
1256 list_t *list;
1257 avl_tree_t *t;
1258 void *cookie;
1259 itx_async_node_t *ian;
1260
1261 list = &itxs->i_sync_list;
1262 while ((itx = list_head(list)) != NULL) {
1263 if (itx->itx_callback != NULL)
1264 itx->itx_callback(itx->itx_callback_data);
1265 list_remove(list, itx);
1266 zil_itx_destroy(itx);
1267 }
1268
1269 cookie = NULL;
1270 t = &itxs->i_async_tree;
1271 while ((ian = avl_destroy_nodes(t, &cookie)) != NULL) {
1272 list = &ian->ia_list;
1273 while ((itx = list_head(list)) != NULL) {
1274 if (itx->itx_callback != NULL)
1275 itx->itx_callback(itx->itx_callback_data);
1276 list_remove(list, itx);
1277 zil_itx_destroy(itx);
1278 }
1279 list_destroy(list);
1280 kmem_free(ian, sizeof (itx_async_node_t));
1281 }
1282 avl_destroy(t);
1283
1284 kmem_free(itxs, sizeof (itxs_t));
1285 }
1286
1287 static int
1288 zil_aitx_compare(const void *x1, const void *x2)
1289 {
1290 const uint64_t o1 = ((itx_async_node_t *)x1)->ia_foid;
1291 const uint64_t o2 = ((itx_async_node_t *)x2)->ia_foid;
1292
1293 return (AVL_CMP(o1, o2));
1294 }
1295
1296 /*
1297 * Remove all async itx with the given oid.
1298 */
1299 static void
1300 zil_remove_async(zilog_t *zilog, uint64_t oid)
1301 {
1302 uint64_t otxg, txg;
1303 itx_async_node_t *ian;
1304 avl_tree_t *t;
1305 avl_index_t where;
1306 list_t clean_list;
1307 itx_t *itx;
1308
1309 ASSERT(oid != 0);
1310 list_create(&clean_list, sizeof (itx_t), offsetof(itx_t, itx_node));
1311
1312 if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) /* ziltest support */
1313 otxg = ZILTEST_TXG;
1314 else
1315 otxg = spa_last_synced_txg(zilog->zl_spa) + 1;
1316
1317 for (txg = otxg; txg < (otxg + TXG_CONCURRENT_STATES); txg++) {
1318 itxg_t *itxg = &zilog->zl_itxg[txg & TXG_MASK];
1319
1320 mutex_enter(&itxg->itxg_lock);
1321 if (itxg->itxg_txg != txg) {
1322 mutex_exit(&itxg->itxg_lock);
1323 continue;
1324 }
1325
1326 /*
1327 * Locate the object node and append its list.
1328 */
1329 t = &itxg->itxg_itxs->i_async_tree;
1330 ian = avl_find(t, &oid, &where);
1331 if (ian != NULL)
1332 list_move_tail(&clean_list, &ian->ia_list);
1333 mutex_exit(&itxg->itxg_lock);
1334 }
1335 while ((itx = list_head(&clean_list)) != NULL) {
1336 if (itx->itx_callback != NULL)
1337 itx->itx_callback(itx->itx_callback_data);
1338 list_remove(&clean_list, itx);
1339 zil_itx_destroy(itx);
1340 }
1341 list_destroy(&clean_list);
1342 }
1343
1344 void
1345 zil_itx_assign(zilog_t *zilog, itx_t *itx, dmu_tx_t *tx)
1346 {
1347 uint64_t txg;
1348 itxg_t *itxg;
1349 itxs_t *itxs, *clean = NULL;
1350
1351 /*
1352 * Object ids can be re-instantiated in the next txg so
1353 * remove any async transactions to avoid future leaks.
1354 * This can happen if a fsync occurs on the re-instantiated
1355 * object for a WR_INDIRECT or WR_NEED_COPY write, which gets
1356 * the new file data and flushes a write record for the old object.
1357 */
1358 if ((itx->itx_lr.lrc_txtype & ~TX_CI) == TX_REMOVE)
1359 zil_remove_async(zilog, itx->itx_oid);
1360
1361 /*
1362 * Ensure the data of a renamed file is committed before the rename.
1363 */
1364 if ((itx->itx_lr.lrc_txtype & ~TX_CI) == TX_RENAME)
1365 zil_async_to_sync(zilog, itx->itx_oid);
1366
1367 if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX)
1368 txg = ZILTEST_TXG;
1369 else
1370 txg = dmu_tx_get_txg(tx);
1371
1372 itxg = &zilog->zl_itxg[txg & TXG_MASK];
1373 mutex_enter(&itxg->itxg_lock);
1374 itxs = itxg->itxg_itxs;
1375 if (itxg->itxg_txg != txg) {
1376 if (itxs != NULL) {
1377 /*
1378 * The zil_clean callback hasn't got around to cleaning
1379 * this itxg. Save the itxs for release below.
1380 * This should be rare.
1381 */
1382 zfs_dbgmsg("zil_itx_assign: missed itx cleanup for "
1383 "txg %llu", itxg->itxg_txg);
1384 clean = itxg->itxg_itxs;
1385 }
1386 itxg->itxg_txg = txg;
1387 itxs = itxg->itxg_itxs = kmem_zalloc(sizeof (itxs_t),
1388 KM_SLEEP);
1389
1390 list_create(&itxs->i_sync_list, sizeof (itx_t),
1391 offsetof(itx_t, itx_node));
1392 avl_create(&itxs->i_async_tree, zil_aitx_compare,
1393 sizeof (itx_async_node_t),
1394 offsetof(itx_async_node_t, ia_node));
1395 }
1396 if (itx->itx_sync) {
1397 list_insert_tail(&itxs->i_sync_list, itx);
1398 } else {
1399 avl_tree_t *t = &itxs->i_async_tree;
1400 uint64_t foid =
1401 LR_FOID_GET_OBJ(((lr_ooo_t *)&itx->itx_lr)->lr_foid);
1402 itx_async_node_t *ian;
1403 avl_index_t where;
1404
1405 ian = avl_find(t, &foid, &where);
1406 if (ian == NULL) {
1407 ian = kmem_alloc(sizeof (itx_async_node_t),
1408 KM_SLEEP);
1409 list_create(&ian->ia_list, sizeof (itx_t),
1410 offsetof(itx_t, itx_node));
1411 ian->ia_foid = foid;
1412 avl_insert(t, ian, where);
1413 }
1414 list_insert_tail(&ian->ia_list, itx);
1415 }
1416
1417 itx->itx_lr.lrc_txg = dmu_tx_get_txg(tx);
1418 zilog_dirty(zilog, txg);
1419 mutex_exit(&itxg->itxg_lock);
1420
1421 /* Release the old itxs now we've dropped the lock */
1422 if (clean != NULL)
1423 zil_itxg_clean(clean);
1424 }
1425
1426 /*
1427 * If there are any in-memory intent log transactions which have now been
1428 * synced then start up a taskq to free them. We should only do this after we
1429 * have written out the uberblocks (i.e. txg has been comitted) so that
1430 * don't inadvertently clean out in-memory log records that would be required
1431 * by zil_commit().
1432 */
1433 void
1434 zil_clean(zilog_t *zilog, uint64_t synced_txg)
1435 {
1436 itxg_t *itxg = &zilog->zl_itxg[synced_txg & TXG_MASK];
1437 itxs_t *clean_me;
1438
1439 mutex_enter(&itxg->itxg_lock);
1440 if (itxg->itxg_itxs == NULL || itxg->itxg_txg == ZILTEST_TXG) {
1441 mutex_exit(&itxg->itxg_lock);
1442 return;
1443 }
1444 ASSERT3U(itxg->itxg_txg, <=, synced_txg);
1445 ASSERT(itxg->itxg_txg != 0);
1446 ASSERT(zilog->zl_clean_taskq != NULL);
1447 clean_me = itxg->itxg_itxs;
1448 itxg->itxg_itxs = NULL;
1449 itxg->itxg_txg = 0;
1450 mutex_exit(&itxg->itxg_lock);
1451 /*
1452 * Preferably start a task queue to free up the old itxs but
1453 * if taskq_dispatch can't allocate resources to do that then
1454 * free it in-line. This should be rare. Note, using TQ_SLEEP
1455 * created a bad performance problem.
1456 */
1457 if (taskq_dispatch(zilog->zl_clean_taskq,
1458 (void (*)(void *))zil_itxg_clean, clean_me, TQ_NOSLEEP) == 0)
1459 zil_itxg_clean(clean_me);
1460 }
1461
1462 /*
1463 * Get the list of itxs to commit into zl_itx_commit_list.
1464 */
1465 static void
1466 zil_get_commit_list(zilog_t *zilog)
1467 {
1468 uint64_t otxg, txg;
1469 list_t *commit_list = &zilog->zl_itx_commit_list;
1470
1471 if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) /* ziltest support */
1472 otxg = ZILTEST_TXG;
1473 else
1474 otxg = spa_last_synced_txg(zilog->zl_spa) + 1;
1475
1476 /*
1477 * This is inherently racy, since there is nothing to prevent
1478 * the last synced txg from changing. That's okay since we'll
1479 * only commit things in the future.
1480 */
1481 for (txg = otxg; txg < (otxg + TXG_CONCURRENT_STATES); txg++) {
1482 itxg_t *itxg = &zilog->zl_itxg[txg & TXG_MASK];
1483
1484 mutex_enter(&itxg->itxg_lock);
1485 if (itxg->itxg_txg != txg) {
1486 mutex_exit(&itxg->itxg_lock);
1487 continue;
1488 }
1489
1490 /*
1491 * If we're adding itx records to the zl_itx_commit_list,
1492 * then the zil better be dirty in this "txg". We can assert
1493 * that here since we're holding the itxg_lock which will
1494 * prevent spa_sync from cleaning it. Once we add the itxs
1495 * to the zl_itx_commit_list we must commit it to disk even
1496 * if it's unnecessary (i.e. the txg was synced).
1497 */
1498 ASSERT(zilog_is_dirty_in_txg(zilog, txg) ||
1499 spa_freeze_txg(zilog->zl_spa) != UINT64_MAX);
1500 list_move_tail(commit_list, &itxg->itxg_itxs->i_sync_list);
1501
1502 mutex_exit(&itxg->itxg_lock);
1503 }
1504 }
1505
1506 /*
1507 * Move the async itxs for a specified object to commit into sync lists.
1508 */
1509 static void
1510 zil_async_to_sync(zilog_t *zilog, uint64_t foid)
1511 {
1512 uint64_t otxg, txg;
1513 itx_async_node_t *ian;
1514 avl_tree_t *t;
1515 avl_index_t where;
1516
1517 if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) /* ziltest support */
1518 otxg = ZILTEST_TXG;
1519 else
1520 otxg = spa_last_synced_txg(zilog->zl_spa) + 1;
1521
1522 /*
1523 * This is inherently racy, since there is nothing to prevent
1524 * the last synced txg from changing.
1525 */
1526 for (txg = otxg; txg < (otxg + TXG_CONCURRENT_STATES); txg++) {
1527 itxg_t *itxg = &zilog->zl_itxg[txg & TXG_MASK];
1528
1529 mutex_enter(&itxg->itxg_lock);
1530 if (itxg->itxg_txg != txg) {
1531 mutex_exit(&itxg->itxg_lock);
1532 continue;
1533 }
1534
1535 /*
1536 * If a foid is specified then find that node and append its
1537 * list. Otherwise walk the tree appending all the lists
1538 * to the sync list. We add to the end rather than the
1539 * beginning to ensure the create has happened.
1540 */
1541 t = &itxg->itxg_itxs->i_async_tree;
1542 if (foid != 0) {
1543 ian = avl_find(t, &foid, &where);
1544 if (ian != NULL) {
1545 list_move_tail(&itxg->itxg_itxs->i_sync_list,
1546 &ian->ia_list);
1547 }
1548 } else {
1549 void *cookie = NULL;
1550
1551 while ((ian = avl_destroy_nodes(t, &cookie)) != NULL) {
1552 list_move_tail(&itxg->itxg_itxs->i_sync_list,
1553 &ian->ia_list);
1554 list_destroy(&ian->ia_list);
1555 kmem_free(ian, sizeof (itx_async_node_t));
1556 }
1557 }
1558 mutex_exit(&itxg->itxg_lock);
1559 }
1560 }
1561
1562 static void
1563 zil_commit_writer(zilog_t *zilog)
1564 {
1565 uint64_t txg;
1566 itx_t *itx;
1567 lwb_t *lwb;
1568 spa_t *spa = zilog->zl_spa;
1569 int error = 0;
1570
1571 ASSERT(zilog->zl_root_zio == NULL);
1572
1573 mutex_exit(&zilog->zl_lock);
1574
1575 zil_get_commit_list(zilog);
1576
1577 /*
1578 * Return if there's nothing to commit before we dirty the fs by
1579 * calling zil_create().
1580 */
1581 if (list_head(&zilog->zl_itx_commit_list) == NULL) {
1582 mutex_enter(&zilog->zl_lock);
1583 return;
1584 }
1585
1586 if (zilog->zl_suspend) {
1587 lwb = NULL;
1588 } else {
1589 lwb = list_tail(&zilog->zl_lwb_list);
1590 if (lwb == NULL)
1591 lwb = zil_create(zilog);
1592 }
1593
1594 DTRACE_PROBE1(zil__cw1, zilog_t *, zilog);
1595 for (itx = list_head(&zilog->zl_itx_commit_list); itx != NULL;
1596 itx = list_next(&zilog->zl_itx_commit_list, itx)) {
1597 txg = itx->itx_lr.lrc_txg;
1598 ASSERT3U(txg, !=, 0);
1599
1600 /*
1601 * This is inherently racy and may result in us writing
1602 * out a log block for a txg that was just synced. This is
1603 * ok since we'll end cleaning up that log block the next
1604 * time we call zil_sync().
1605 */
1606 if (txg > spa_last_synced_txg(spa) || txg > spa_freeze_txg(spa))
1607 lwb = zil_lwb_commit(zilog, itx, lwb);
1608 }
1609 DTRACE_PROBE1(zil__cw2, zilog_t *, zilog);
1610
1611 /* write the last block out */
1612 if (lwb != NULL && lwb->lwb_zio != NULL)
1613 lwb = zil_lwb_write_start(zilog, lwb);
1614
1615 zilog->zl_cur_used = 0;
1616
1617 /*
1618 * Wait if necessary for the log blocks to be on stable storage.
1619 */
1620 if (zilog->zl_root_zio) {
1621 error = zio_wait(zilog->zl_root_zio);
1622 zilog->zl_root_zio = NULL;
1623 zil_flush_vdevs(zilog);
1624 }
1625
1626 if (error || lwb == NULL)
1627 txg_wait_synced(zilog->zl_dmu_pool, 0);
1628
1629 while ((itx = list_head(&zilog->zl_itx_commit_list))) {
1630 txg = itx->itx_lr.lrc_txg;
1631 ASSERT(txg);
1632
1633 if (itx->itx_callback != NULL)
1634 itx->itx_callback(itx->itx_callback_data);
1635 list_remove(&zilog->zl_itx_commit_list, itx);
1636 zil_itx_destroy(itx);
1637 }
1638
1639 mutex_enter(&zilog->zl_lock);
1640
1641 /*
1642 * Remember the highest committed log sequence number for ztest.
1643 * We only update this value when all the log writes succeeded,
1644 * because ztest wants to ASSERT that it got the whole log chain.
1645 */
1646 if (error == 0 && lwb != NULL)
1647 zilog->zl_commit_lr_seq = zilog->zl_lr_seq;
1648 }
1649
1650 /*
1651 * Commit zfs transactions to stable storage.
1652 * If foid is 0 push out all transactions, otherwise push only those
1653 * for that object or might reference that object.
1654 *
1655 * itxs are committed in batches. In a heavily stressed zil there will be
1656 * a commit writer thread who is writing out a bunch of itxs to the log
1657 * for a set of committing threads (cthreads) in the same batch as the writer.
1658 * Those cthreads are all waiting on the same cv for that batch.
1659 *
1660 * There will also be a different and growing batch of threads that are
1661 * waiting to commit (qthreads). When the committing batch completes
1662 * a transition occurs such that the cthreads exit and the qthreads become
1663 * cthreads. One of the new cthreads becomes the writer thread for the
1664 * batch. Any new threads arriving become new qthreads.
1665 *
1666 * Only 2 condition variables are needed and there's no transition
1667 * between the two cvs needed. They just flip-flop between qthreads
1668 * and cthreads.
1669 *
1670 * Using this scheme we can efficiently wakeup up only those threads
1671 * that have been committed.
1672 */
1673 void
1674 zil_commit(zilog_t *zilog, uint64_t foid)
1675 {
1676 uint64_t mybatch;
1677
1678 if (zilog->zl_sync == ZFS_SYNC_DISABLED)
1679 return;
1680
1681 ZIL_STAT_BUMP(zil_commit_count);
1682
1683 /* move the async itxs for the foid to the sync queues */
1684 zil_async_to_sync(zilog, foid);
1685
1686 mutex_enter(&zilog->zl_lock);
1687 mybatch = zilog->zl_next_batch;
1688 while (zilog->zl_writer) {
1689 cv_wait(&zilog->zl_cv_batch[mybatch & 1], &zilog->zl_lock);
1690 if (mybatch <= zilog->zl_com_batch) {
1691 mutex_exit(&zilog->zl_lock);
1692 return;
1693 }
1694 }
1695
1696 zilog->zl_next_batch++;
1697 zilog->zl_writer = B_TRUE;
1698 ZIL_STAT_BUMP(zil_commit_writer_count);
1699 zil_commit_writer(zilog);
1700 zilog->zl_com_batch = mybatch;
1701 zilog->zl_writer = B_FALSE;
1702
1703 /* wake up one thread to become the next writer */
1704 cv_signal(&zilog->zl_cv_batch[(mybatch+1) & 1]);
1705
1706 /* wake up all threads waiting for this batch to be committed */
1707 cv_broadcast(&zilog->zl_cv_batch[mybatch & 1]);
1708
1709 mutex_exit(&zilog->zl_lock);
1710 }
1711
1712 /*
1713 * Called in syncing context to free committed log blocks and update log header.
1714 */
1715 void
1716 zil_sync(zilog_t *zilog, dmu_tx_t *tx)
1717 {
1718 zil_header_t *zh = zil_header_in_syncing_context(zilog);
1719 uint64_t txg = dmu_tx_get_txg(tx);
1720 spa_t *spa = zilog->zl_spa;
1721 uint64_t *replayed_seq = &zilog->zl_replayed_seq[txg & TXG_MASK];
1722 lwb_t *lwb;
1723
1724 /*
1725 * We don't zero out zl_destroy_txg, so make sure we don't try
1726 * to destroy it twice.
1727 */
1728 if (spa_sync_pass(spa) != 1)
1729 return;
1730
1731 mutex_enter(&zilog->zl_lock);
1732
1733 ASSERT(zilog->zl_stop_sync == 0);
1734
1735 if (*replayed_seq != 0) {
1736 ASSERT(zh->zh_replay_seq < *replayed_seq);
1737 zh->zh_replay_seq = *replayed_seq;
1738 *replayed_seq = 0;
1739 }
1740
1741 if (zilog->zl_destroy_txg == txg) {
1742 blkptr_t blk = zh->zh_log;
1743
1744 ASSERT(list_head(&zilog->zl_lwb_list) == NULL);
1745
1746 bzero(zh, sizeof (zil_header_t));
1747 bzero(zilog->zl_replayed_seq, sizeof (zilog->zl_replayed_seq));
1748
1749 if (zilog->zl_keep_first) {
1750 /*
1751 * If this block was part of log chain that couldn't
1752 * be claimed because a device was missing during
1753 * zil_claim(), but that device later returns,
1754 * then this block could erroneously appear valid.
1755 * To guard against this, assign a new GUID to the new
1756 * log chain so it doesn't matter what blk points to.
1757 */
1758 zil_init_log_chain(zilog, &blk);
1759 zh->zh_log = blk;
1760 }
1761 }
1762
1763 while ((lwb = list_head(&zilog->zl_lwb_list)) != NULL) {
1764 zh->zh_log = lwb->lwb_blk;
1765 if (lwb->lwb_buf != NULL || lwb->lwb_max_txg > txg)
1766 break;
1767
1768 ASSERT(lwb->lwb_zio == NULL);
1769
1770 list_remove(&zilog->zl_lwb_list, lwb);
1771 zio_free_zil(spa, txg, &lwb->lwb_blk);
1772 kmem_cache_free(zil_lwb_cache, lwb);
1773
1774 /*
1775 * If we don't have anything left in the lwb list then
1776 * we've had an allocation failure and we need to zero
1777 * out the zil_header blkptr so that we don't end
1778 * up freeing the same block twice.
1779 */
1780 if (list_head(&zilog->zl_lwb_list) == NULL)
1781 BP_ZERO(&zh->zh_log);
1782 }
1783
1784 /*
1785 * Remove fastwrite on any blocks that have been pre-allocated for
1786 * the next commit. This prevents fastwrite counter pollution by
1787 * unused, long-lived LWBs.
1788 */
1789 for (; lwb != NULL; lwb = list_next(&zilog->zl_lwb_list, lwb)) {
1790 if (lwb->lwb_fastwrite && !lwb->lwb_zio) {
1791 metaslab_fastwrite_unmark(zilog->zl_spa, &lwb->lwb_blk);
1792 lwb->lwb_fastwrite = 0;
1793 }
1794 }
1795
1796 mutex_exit(&zilog->zl_lock);
1797 }
1798
1799 void
1800 zil_init(void)
1801 {
1802 zil_lwb_cache = kmem_cache_create("zil_lwb_cache",
1803 sizeof (struct lwb), 0, NULL, NULL, NULL, NULL, NULL, 0);
1804
1805 zil_ksp = kstat_create("zfs", 0, "zil", "misc",
1806 KSTAT_TYPE_NAMED, sizeof (zil_stats) / sizeof (kstat_named_t),
1807 KSTAT_FLAG_VIRTUAL);
1808
1809 if (zil_ksp != NULL) {
1810 zil_ksp->ks_data = &zil_stats;
1811 kstat_install(zil_ksp);
1812 }
1813 }
1814
1815 void
1816 zil_fini(void)
1817 {
1818 kmem_cache_destroy(zil_lwb_cache);
1819
1820 if (zil_ksp != NULL) {
1821 kstat_delete(zil_ksp);
1822 zil_ksp = NULL;
1823 }
1824 }
1825
1826 void
1827 zil_set_sync(zilog_t *zilog, uint64_t sync)
1828 {
1829 zilog->zl_sync = sync;
1830 }
1831
1832 void
1833 zil_set_logbias(zilog_t *zilog, uint64_t logbias)
1834 {
1835 zilog->zl_logbias = logbias;
1836 }
1837
1838 zilog_t *
1839 zil_alloc(objset_t *os, zil_header_t *zh_phys)
1840 {
1841 zilog_t *zilog;
1842 int i;
1843
1844 zilog = kmem_zalloc(sizeof (zilog_t), KM_SLEEP);
1845
1846 zilog->zl_header = zh_phys;
1847 zilog->zl_os = os;
1848 zilog->zl_spa = dmu_objset_spa(os);
1849 zilog->zl_dmu_pool = dmu_objset_pool(os);
1850 zilog->zl_destroy_txg = TXG_INITIAL - 1;
1851 zilog->zl_logbias = dmu_objset_logbias(os);
1852 zilog->zl_sync = dmu_objset_syncprop(os);
1853 zilog->zl_next_batch = 1;
1854
1855 mutex_init(&zilog->zl_lock, NULL, MUTEX_DEFAULT, NULL);
1856
1857 for (i = 0; i < TXG_SIZE; i++) {
1858 mutex_init(&zilog->zl_itxg[i].itxg_lock, NULL,
1859 MUTEX_DEFAULT, NULL);
1860 }
1861
1862 list_create(&zilog->zl_lwb_list, sizeof (lwb_t),
1863 offsetof(lwb_t, lwb_node));
1864
1865 list_create(&zilog->zl_itx_commit_list, sizeof (itx_t),
1866 offsetof(itx_t, itx_node));
1867
1868 mutex_init(&zilog->zl_vdev_lock, NULL, MUTEX_DEFAULT, NULL);
1869
1870 avl_create(&zilog->zl_vdev_tree, zil_vdev_compare,
1871 sizeof (zil_vdev_node_t), offsetof(zil_vdev_node_t, zv_node));
1872
1873 cv_init(&zilog->zl_cv_writer, NULL, CV_DEFAULT, NULL);
1874 cv_init(&zilog->zl_cv_suspend, NULL, CV_DEFAULT, NULL);
1875 cv_init(&zilog->zl_cv_batch[0], NULL, CV_DEFAULT, NULL);
1876 cv_init(&zilog->zl_cv_batch[1], NULL, CV_DEFAULT, NULL);
1877
1878 return (zilog);
1879 }
1880
1881 void
1882 zil_free(zilog_t *zilog)
1883 {
1884 int i;
1885
1886 zilog->zl_stop_sync = 1;
1887
1888 ASSERT0(zilog->zl_suspend);
1889 ASSERT0(zilog->zl_suspending);
1890
1891 ASSERT(list_is_empty(&zilog->zl_lwb_list));
1892 list_destroy(&zilog->zl_lwb_list);
1893
1894 avl_destroy(&zilog->zl_vdev_tree);
1895 mutex_destroy(&zilog->zl_vdev_lock);
1896
1897 ASSERT(list_is_empty(&zilog->zl_itx_commit_list));
1898 list_destroy(&zilog->zl_itx_commit_list);
1899
1900 for (i = 0; i < TXG_SIZE; i++) {
1901 /*
1902 * It's possible for an itx to be generated that doesn't dirty
1903 * a txg (e.g. ztest TX_TRUNCATE). So there's no zil_clean()
1904 * callback to remove the entry. We remove those here.
1905 *
1906 * Also free up the ziltest itxs.
1907 */
1908 if (zilog->zl_itxg[i].itxg_itxs)
1909 zil_itxg_clean(zilog->zl_itxg[i].itxg_itxs);
1910 mutex_destroy(&zilog->zl_itxg[i].itxg_lock);
1911 }
1912
1913 mutex_destroy(&zilog->zl_lock);
1914
1915 cv_destroy(&zilog->zl_cv_writer);
1916 cv_destroy(&zilog->zl_cv_suspend);
1917 cv_destroy(&zilog->zl_cv_batch[0]);
1918 cv_destroy(&zilog->zl_cv_batch[1]);
1919
1920 kmem_free(zilog, sizeof (zilog_t));
1921 }
1922
1923 /*
1924 * Open an intent log.
1925 */
1926 zilog_t *
1927 zil_open(objset_t *os, zil_get_data_t *get_data)
1928 {
1929 zilog_t *zilog = dmu_objset_zil(os);
1930
1931 ASSERT(zilog->zl_clean_taskq == NULL);
1932 ASSERT(zilog->zl_get_data == NULL);
1933 ASSERT(list_is_empty(&zilog->zl_lwb_list));
1934
1935 zilog->zl_get_data = get_data;
1936 zilog->zl_clean_taskq = taskq_create("zil_clean", 1, defclsyspri,
1937 2, 2, TASKQ_PREPOPULATE);
1938
1939 return (zilog);
1940 }
1941
1942 /*
1943 * Close an intent log.
1944 */
1945 void
1946 zil_close(zilog_t *zilog)
1947 {
1948 lwb_t *lwb;
1949 uint64_t txg = 0;
1950
1951 zil_commit(zilog, 0); /* commit all itx */
1952
1953 /*
1954 * The lwb_max_txg for the stubby lwb will reflect the last activity
1955 * for the zil. After a txg_wait_synced() on the txg we know all the
1956 * callbacks have occurred that may clean the zil. Only then can we
1957 * destroy the zl_clean_taskq.
1958 */
1959 mutex_enter(&zilog->zl_lock);
1960 lwb = list_tail(&zilog->zl_lwb_list);
1961 if (lwb != NULL)
1962 txg = lwb->lwb_max_txg;
1963 mutex_exit(&zilog->zl_lock);
1964 if (txg)
1965 txg_wait_synced(zilog->zl_dmu_pool, txg);
1966
1967 if (zilog_is_dirty(zilog))
1968 zfs_dbgmsg("zil (%p) is dirty, txg %llu", zilog, txg);
1969 if (txg < spa_freeze_txg(zilog->zl_spa))
1970 VERIFY(!zilog_is_dirty(zilog));
1971
1972 taskq_destroy(zilog->zl_clean_taskq);
1973 zilog->zl_clean_taskq = NULL;
1974 zilog->zl_get_data = NULL;
1975
1976 /*
1977 * We should have only one LWB left on the list; remove it now.
1978 */
1979 mutex_enter(&zilog->zl_lock);
1980 lwb = list_head(&zilog->zl_lwb_list);
1981 if (lwb != NULL) {
1982 ASSERT(lwb == list_tail(&zilog->zl_lwb_list));
1983 ASSERT(lwb->lwb_zio == NULL);
1984 if (lwb->lwb_fastwrite)
1985 metaslab_fastwrite_unmark(zilog->zl_spa, &lwb->lwb_blk);
1986 list_remove(&zilog->zl_lwb_list, lwb);
1987 zio_buf_free(lwb->lwb_buf, lwb->lwb_sz);
1988 kmem_cache_free(zil_lwb_cache, lwb);
1989 }
1990 mutex_exit(&zilog->zl_lock);
1991 }
1992
1993 static char *suspend_tag = "zil suspending";
1994
1995 /*
1996 * Suspend an intent log. While in suspended mode, we still honor
1997 * synchronous semantics, but we rely on txg_wait_synced() to do it.
1998 * On old version pools, we suspend the log briefly when taking a
1999 * snapshot so that it will have an empty intent log.
2000 *
2001 * Long holds are not really intended to be used the way we do here --
2002 * held for such a short time. A concurrent caller of dsl_dataset_long_held()
2003 * could fail. Therefore we take pains to only put a long hold if it is
2004 * actually necessary. Fortunately, it will only be necessary if the
2005 * objset is currently mounted (or the ZVOL equivalent). In that case it
2006 * will already have a long hold, so we are not really making things any worse.
2007 *
2008 * Ideally, we would locate the existing long-holder (i.e. the zfsvfs_t or
2009 * zvol_state_t), and use their mechanism to prevent their hold from being
2010 * dropped (e.g. VFS_HOLD()). However, that would be even more pain for
2011 * very little gain.
2012 *
2013 * if cookiep == NULL, this does both the suspend & resume.
2014 * Otherwise, it returns with the dataset "long held", and the cookie
2015 * should be passed into zil_resume().
2016 */
2017 int
2018 zil_suspend(const char *osname, void **cookiep)
2019 {
2020 objset_t *os;
2021 zilog_t *zilog;
2022 const zil_header_t *zh;
2023 int error;
2024
2025 error = dmu_objset_hold(osname, suspend_tag, &os);
2026 if (error != 0)
2027 return (error);
2028 zilog = dmu_objset_zil(os);
2029
2030 mutex_enter(&zilog->zl_lock);
2031 zh = zilog->zl_header;
2032
2033 if (zh->zh_flags & ZIL_REPLAY_NEEDED) { /* unplayed log */
2034 mutex_exit(&zilog->zl_lock);
2035 dmu_objset_rele(os, suspend_tag);
2036 return (SET_ERROR(EBUSY));
2037 }
2038
2039 /*
2040 * Don't put a long hold in the cases where we can avoid it. This
2041 * is when there is no cookie so we are doing a suspend & resume
2042 * (i.e. called from zil_vdev_offline()), and there's nothing to do
2043 * for the suspend because it's already suspended, or there's no ZIL.
2044 */
2045 if (cookiep == NULL && !zilog->zl_suspending &&
2046 (zilog->zl_suspend > 0 || BP_IS_HOLE(&zh->zh_log))) {
2047 mutex_exit(&zilog->zl_lock);
2048 dmu_objset_rele(os, suspend_tag);
2049 return (0);
2050 }
2051
2052 dsl_dataset_long_hold(dmu_objset_ds(os), suspend_tag);
2053 dsl_pool_rele(dmu_objset_pool(os), suspend_tag);
2054
2055 zilog->zl_suspend++;
2056
2057 if (zilog->zl_suspend > 1) {
2058 /*
2059 * Someone else is already suspending it.
2060 * Just wait for them to finish.
2061 */
2062
2063 while (zilog->zl_suspending)
2064 cv_wait(&zilog->zl_cv_suspend, &zilog->zl_lock);
2065 mutex_exit(&zilog->zl_lock);
2066
2067 if (cookiep == NULL)
2068 zil_resume(os);
2069 else
2070 *cookiep = os;
2071 return (0);
2072 }
2073
2074 /*
2075 * If there is no pointer to an on-disk block, this ZIL must not
2076 * be active (e.g. filesystem not mounted), so there's nothing
2077 * to clean up.
2078 */
2079 if (BP_IS_HOLE(&zh->zh_log)) {
2080 ASSERT(cookiep != NULL); /* fast path already handled */
2081
2082 *cookiep = os;
2083 mutex_exit(&zilog->zl_lock);
2084 return (0);
2085 }
2086
2087 zilog->zl_suspending = B_TRUE;
2088 mutex_exit(&zilog->zl_lock);
2089
2090 zil_commit(zilog, 0);
2091
2092 zil_destroy(zilog, B_FALSE);
2093
2094 mutex_enter(&zilog->zl_lock);
2095 zilog->zl_suspending = B_FALSE;
2096 cv_broadcast(&zilog->zl_cv_suspend);
2097 mutex_exit(&zilog->zl_lock);
2098
2099 if (cookiep == NULL)
2100 zil_resume(os);
2101 else
2102 *cookiep = os;
2103 return (0);
2104 }
2105
2106 void
2107 zil_resume(void *cookie)
2108 {
2109 objset_t *os = cookie;
2110 zilog_t *zilog = dmu_objset_zil(os);
2111
2112 mutex_enter(&zilog->zl_lock);
2113 ASSERT(zilog->zl_suspend != 0);
2114 zilog->zl_suspend--;
2115 mutex_exit(&zilog->zl_lock);
2116 dsl_dataset_long_rele(dmu_objset_ds(os), suspend_tag);
2117 dsl_dataset_rele(dmu_objset_ds(os), suspend_tag);
2118 }
2119
2120 typedef struct zil_replay_arg {
2121 zil_replay_func_t *zr_replay;
2122 void *zr_arg;
2123 boolean_t zr_byteswap;
2124 char *zr_lr;
2125 } zil_replay_arg_t;
2126
2127 static int
2128 zil_replay_error(zilog_t *zilog, lr_t *lr, int error)
2129 {
2130 char name[ZFS_MAX_DATASET_NAME_LEN];
2131
2132 zilog->zl_replaying_seq--; /* didn't actually replay this one */
2133
2134 dmu_objset_name(zilog->zl_os, name);
2135
2136 cmn_err(CE_WARN, "ZFS replay transaction error %d, "
2137 "dataset %s, seq 0x%llx, txtype %llu %s\n", error, name,
2138 (u_longlong_t)lr->lrc_seq,
2139 (u_longlong_t)(lr->lrc_txtype & ~TX_CI),
2140 (lr->lrc_txtype & TX_CI) ? "CI" : "");
2141
2142 return (error);
2143 }
2144
2145 static int
2146 zil_replay_log_record(zilog_t *zilog, lr_t *lr, void *zra, uint64_t claim_txg)
2147 {
2148 zil_replay_arg_t *zr = zra;
2149 const zil_header_t *zh = zilog->zl_header;
2150 uint64_t reclen = lr->lrc_reclen;
2151 uint64_t txtype = lr->lrc_txtype;
2152 int error = 0;
2153
2154 zilog->zl_replaying_seq = lr->lrc_seq;
2155
2156 if (lr->lrc_seq <= zh->zh_replay_seq) /* already replayed */
2157 return (0);
2158
2159 if (lr->lrc_txg < claim_txg) /* already committed */
2160 return (0);
2161
2162 /* Strip case-insensitive bit, still present in log record */
2163 txtype &= ~TX_CI;
2164
2165 if (txtype == 0 || txtype >= TX_MAX_TYPE)
2166 return (zil_replay_error(zilog, lr, EINVAL));
2167
2168 /*
2169 * If this record type can be logged out of order, the object
2170 * (lr_foid) may no longer exist. That's legitimate, not an error.
2171 */
2172 if (TX_OOO(txtype)) {
2173 error = dmu_object_info(zilog->zl_os,
2174 LR_FOID_GET_OBJ(((lr_ooo_t *)lr)->lr_foid), NULL);
2175 if (error == ENOENT || error == EEXIST)
2176 return (0);
2177 }
2178
2179 /*
2180 * Make a copy of the data so we can revise and extend it.
2181 */
2182 bcopy(lr, zr->zr_lr, reclen);
2183
2184 /*
2185 * If this is a TX_WRITE with a blkptr, suck in the data.
2186 */
2187 if (txtype == TX_WRITE && reclen == sizeof (lr_write_t)) {
2188 error = zil_read_log_data(zilog, (lr_write_t *)lr,
2189 zr->zr_lr + reclen);
2190 if (error != 0)
2191 return (zil_replay_error(zilog, lr, error));
2192 }
2193
2194 /*
2195 * The log block containing this lr may have been byteswapped
2196 * so that we can easily examine common fields like lrc_txtype.
2197 * However, the log is a mix of different record types, and only the
2198 * replay vectors know how to byteswap their records. Therefore, if
2199 * the lr was byteswapped, undo it before invoking the replay vector.
2200 */
2201 if (zr->zr_byteswap)
2202 byteswap_uint64_array(zr->zr_lr, reclen);
2203
2204 /*
2205 * We must now do two things atomically: replay this log record,
2206 * and update the log header sequence number to reflect the fact that
2207 * we did so. At the end of each replay function the sequence number
2208 * is updated if we are in replay mode.
2209 */
2210 error = zr->zr_replay[txtype](zr->zr_arg, zr->zr_lr, zr->zr_byteswap);
2211 if (error != 0) {
2212 /*
2213 * The DMU's dnode layer doesn't see removes until the txg
2214 * commits, so a subsequent claim can spuriously fail with
2215 * EEXIST. So if we receive any error we try syncing out
2216 * any removes then retry the transaction. Note that we
2217 * specify B_FALSE for byteswap now, so we don't do it twice.
2218 */
2219 txg_wait_synced(spa_get_dsl(zilog->zl_spa), 0);
2220 error = zr->zr_replay[txtype](zr->zr_arg, zr->zr_lr, B_FALSE);
2221 if (error != 0)
2222 return (zil_replay_error(zilog, lr, error));
2223 }
2224 return (0);
2225 }
2226
2227 /* ARGSUSED */
2228 static int
2229 zil_incr_blks(zilog_t *zilog, blkptr_t *bp, void *arg, uint64_t claim_txg)
2230 {
2231 zilog->zl_replay_blks++;
2232
2233 return (0);
2234 }
2235
2236 /*
2237 * If this dataset has a non-empty intent log, replay it and destroy it.
2238 */
2239 void
2240 zil_replay(objset_t *os, void *arg, zil_replay_func_t replay_func[TX_MAX_TYPE])
2241 {
2242 zilog_t *zilog = dmu_objset_zil(os);
2243 const zil_header_t *zh = zilog->zl_header;
2244 zil_replay_arg_t zr;
2245
2246 if ((zh->zh_flags & ZIL_REPLAY_NEEDED) == 0) {
2247 zil_destroy(zilog, B_TRUE);
2248 return;
2249 }
2250
2251 zr.zr_replay = replay_func;
2252 zr.zr_arg = arg;
2253 zr.zr_byteswap = BP_SHOULD_BYTESWAP(&zh->zh_log);
2254 zr.zr_lr = vmem_alloc(2 * SPA_MAXBLOCKSIZE, KM_SLEEP);
2255
2256 /*
2257 * Wait for in-progress removes to sync before starting replay.
2258 */
2259 txg_wait_synced(zilog->zl_dmu_pool, 0);
2260
2261 zilog->zl_replay = B_TRUE;
2262 zilog->zl_replay_time = ddi_get_lbolt();
2263 ASSERT(zilog->zl_replay_blks == 0);
2264 (void) zil_parse(zilog, zil_incr_blks, zil_replay_log_record, &zr,
2265 zh->zh_claim_txg);
2266 vmem_free(zr.zr_lr, 2 * SPA_MAXBLOCKSIZE);
2267
2268 zil_destroy(zilog, B_FALSE);
2269 txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg);
2270 zilog->zl_replay = B_FALSE;
2271 }
2272
2273 boolean_t
2274 zil_replaying(zilog_t *zilog, dmu_tx_t *tx)
2275 {
2276 if (zilog->zl_sync == ZFS_SYNC_DISABLED)
2277 return (B_TRUE);
2278
2279 if (zilog->zl_replay) {
2280 dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
2281 zilog->zl_replayed_seq[dmu_tx_get_txg(tx) & TXG_MASK] =
2282 zilog->zl_replaying_seq;
2283 return (B_TRUE);
2284 }
2285
2286 return (B_FALSE);
2287 }
2288
2289 /* ARGSUSED */
2290 int
2291 zil_vdev_offline(const char *osname, void *arg)
2292 {
2293 int error;
2294
2295 error = zil_suspend(osname, NULL);
2296 if (error != 0)
2297 return (SET_ERROR(EEXIST));
2298 return (0);
2299 }
2300
2301 #if defined(_KERNEL) && defined(HAVE_SPL)
2302 EXPORT_SYMBOL(zil_alloc);
2303 EXPORT_SYMBOL(zil_free);
2304 EXPORT_SYMBOL(zil_open);
2305 EXPORT_SYMBOL(zil_close);
2306 EXPORT_SYMBOL(zil_replay);
2307 EXPORT_SYMBOL(zil_replaying);
2308 EXPORT_SYMBOL(zil_destroy);
2309 EXPORT_SYMBOL(zil_destroy_sync);
2310 EXPORT_SYMBOL(zil_itx_create);
2311 EXPORT_SYMBOL(zil_itx_destroy);
2312 EXPORT_SYMBOL(zil_itx_assign);
2313 EXPORT_SYMBOL(zil_commit);
2314 EXPORT_SYMBOL(zil_vdev_offline);
2315 EXPORT_SYMBOL(zil_claim);
2316 EXPORT_SYMBOL(zil_check_log_chain);
2317 EXPORT_SYMBOL(zil_sync);
2318 EXPORT_SYMBOL(zil_clean);
2319 EXPORT_SYMBOL(zil_suspend);
2320 EXPORT_SYMBOL(zil_resume);
2321 EXPORT_SYMBOL(zil_add_block);
2322 EXPORT_SYMBOL(zil_bp_tree_add);
2323 EXPORT_SYMBOL(zil_set_sync);
2324 EXPORT_SYMBOL(zil_set_logbias);
2325
2326 /* BEGIN CSTYLED */
2327 module_param(zil_replay_disable, int, 0644);
2328 MODULE_PARM_DESC(zil_replay_disable, "Disable intent logging replay");
2329
2330 module_param(zfs_nocacheflush, int, 0644);
2331 MODULE_PARM_DESC(zfs_nocacheflush, "Disable cache flushes");
2332
2333 module_param(zil_slog_bulk, ulong, 0644);
2334 MODULE_PARM_DESC(zil_slog_bulk, "Limit in bytes slog sync writes per commit");
2335 /* END CSTYLED */
2336 #endif