]> git.proxmox.com Git - mirror_zfs.git/blob - module/zfs/zil.c
ZIL: Remove 128K into 2x68K LWB split optimization
[mirror_zfs.git] / module / zfs / zil.c
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or https://opensource.org/licenses/CDDL-1.0.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2011, 2018 by Delphix. All rights reserved.
24 * Copyright (c) 2014 Integros [integros.com]
25 * Copyright (c) 2018 Datto Inc.
26 */
27
28 /* Portions Copyright 2010 Robert Milkowski */
29
30 #include <sys/zfs_context.h>
31 #include <sys/spa.h>
32 #include <sys/spa_impl.h>
33 #include <sys/dmu.h>
34 #include <sys/zap.h>
35 #include <sys/arc.h>
36 #include <sys/stat.h>
37 #include <sys/zil.h>
38 #include <sys/zil_impl.h>
39 #include <sys/dsl_dataset.h>
40 #include <sys/vdev_impl.h>
41 #include <sys/dmu_tx.h>
42 #include <sys/dsl_pool.h>
43 #include <sys/metaslab.h>
44 #include <sys/trace_zfs.h>
45 #include <sys/abd.h>
46 #include <sys/brt.h>
47 #include <sys/wmsum.h>
48
49 /*
50 * The ZFS Intent Log (ZIL) saves "transaction records" (itxs) of system
51 * calls that change the file system. Each itx has enough information to
52 * be able to replay them after a system crash, power loss, or
53 * equivalent failure mode. These are stored in memory until either:
54 *
55 * 1. they are committed to the pool by the DMU transaction group
56 * (txg), at which point they can be discarded; or
57 * 2. they are committed to the on-disk ZIL for the dataset being
58 * modified (e.g. due to an fsync, O_DSYNC, or other synchronous
59 * requirement).
60 *
61 * In the event of a crash or power loss, the itxs contained by each
62 * dataset's on-disk ZIL will be replayed when that dataset is first
63 * instantiated (e.g. if the dataset is a normal filesystem, when it is
64 * first mounted).
65 *
66 * As hinted at above, there is one ZIL per dataset (both the in-memory
67 * representation, and the on-disk representation). The on-disk format
68 * consists of 3 parts:
69 *
70 * - a single, per-dataset, ZIL header; which points to a chain of
71 * - zero or more ZIL blocks; each of which contains
72 * - zero or more ZIL records
73 *
74 * A ZIL record holds the information necessary to replay a single
75 * system call transaction. A ZIL block can hold many ZIL records, and
76 * the blocks are chained together, similarly to a singly linked list.
77 *
78 * Each ZIL block contains a block pointer (blkptr_t) to the next ZIL
79 * block in the chain, and the ZIL header points to the first block in
80 * the chain.
81 *
82 * Note, there is not a fixed place in the pool to hold these ZIL
83 * blocks; they are dynamically allocated and freed as needed from the
84 * blocks available on the pool, though they can be preferentially
85 * allocated from a dedicated "log" vdev.
86 */
87
88 /*
89 * This controls the amount of time that a ZIL block (lwb) will remain
90 * "open" when it isn't "full", and it has a thread waiting for it to be
91 * committed to stable storage. Please refer to the zil_commit_waiter()
92 * function (and the comments within it) for more details.
93 */
94 static uint_t zfs_commit_timeout_pct = 10;
95
96 /*
97 * See zil.h for more information about these fields.
98 */
99 static zil_kstat_values_t zil_stats = {
100 { "zil_commit_count", KSTAT_DATA_UINT64 },
101 { "zil_commit_writer_count", KSTAT_DATA_UINT64 },
102 { "zil_itx_count", KSTAT_DATA_UINT64 },
103 { "zil_itx_indirect_count", KSTAT_DATA_UINT64 },
104 { "zil_itx_indirect_bytes", KSTAT_DATA_UINT64 },
105 { "zil_itx_copied_count", KSTAT_DATA_UINT64 },
106 { "zil_itx_copied_bytes", KSTAT_DATA_UINT64 },
107 { "zil_itx_needcopy_count", KSTAT_DATA_UINT64 },
108 { "zil_itx_needcopy_bytes", KSTAT_DATA_UINT64 },
109 { "zil_itx_metaslab_normal_count", KSTAT_DATA_UINT64 },
110 { "zil_itx_metaslab_normal_bytes", KSTAT_DATA_UINT64 },
111 { "zil_itx_metaslab_normal_write", KSTAT_DATA_UINT64 },
112 { "zil_itx_metaslab_normal_alloc", KSTAT_DATA_UINT64 },
113 { "zil_itx_metaslab_slog_count", KSTAT_DATA_UINT64 },
114 { "zil_itx_metaslab_slog_bytes", KSTAT_DATA_UINT64 },
115 { "zil_itx_metaslab_slog_write", KSTAT_DATA_UINT64 },
116 { "zil_itx_metaslab_slog_alloc", KSTAT_DATA_UINT64 },
117 };
118
119 static zil_sums_t zil_sums_global;
120 static kstat_t *zil_kstats_global;
121
122 /*
123 * Disable intent logging replay. This global ZIL switch affects all pools.
124 */
125 int zil_replay_disable = 0;
126
127 /*
128 * Disable the DKIOCFLUSHWRITECACHE commands that are normally sent to
129 * the disk(s) by the ZIL after an LWB write has completed. Setting this
130 * will cause ZIL corruption on power loss if a volatile out-of-order
131 * write cache is enabled.
132 */
133 static int zil_nocacheflush = 0;
134
135 /*
136 * Limit SLOG write size per commit executed with synchronous priority.
137 * Any writes above that will be executed with lower (asynchronous) priority
138 * to limit potential SLOG device abuse by single active ZIL writer.
139 */
140 static uint64_t zil_slog_bulk = 64 * 1024 * 1024;
141
142 static kmem_cache_t *zil_lwb_cache;
143 static kmem_cache_t *zil_zcw_cache;
144
145 static void zil_lwb_commit(zilog_t *zilog, lwb_t *lwb, itx_t *itx);
146 static itx_t *zil_itx_clone(itx_t *oitx);
147
148 static int
149 zil_bp_compare(const void *x1, const void *x2)
150 {
151 const dva_t *dva1 = &((zil_bp_node_t *)x1)->zn_dva;
152 const dva_t *dva2 = &((zil_bp_node_t *)x2)->zn_dva;
153
154 int cmp = TREE_CMP(DVA_GET_VDEV(dva1), DVA_GET_VDEV(dva2));
155 if (likely(cmp))
156 return (cmp);
157
158 return (TREE_CMP(DVA_GET_OFFSET(dva1), DVA_GET_OFFSET(dva2)));
159 }
160
161 static void
162 zil_bp_tree_init(zilog_t *zilog)
163 {
164 avl_create(&zilog->zl_bp_tree, zil_bp_compare,
165 sizeof (zil_bp_node_t), offsetof(zil_bp_node_t, zn_node));
166 }
167
168 static void
169 zil_bp_tree_fini(zilog_t *zilog)
170 {
171 avl_tree_t *t = &zilog->zl_bp_tree;
172 zil_bp_node_t *zn;
173 void *cookie = NULL;
174
175 while ((zn = avl_destroy_nodes(t, &cookie)) != NULL)
176 kmem_free(zn, sizeof (zil_bp_node_t));
177
178 avl_destroy(t);
179 }
180
181 int
182 zil_bp_tree_add(zilog_t *zilog, const blkptr_t *bp)
183 {
184 avl_tree_t *t = &zilog->zl_bp_tree;
185 const dva_t *dva;
186 zil_bp_node_t *zn;
187 avl_index_t where;
188
189 if (BP_IS_EMBEDDED(bp))
190 return (0);
191
192 dva = BP_IDENTITY(bp);
193
194 if (avl_find(t, dva, &where) != NULL)
195 return (SET_ERROR(EEXIST));
196
197 zn = kmem_alloc(sizeof (zil_bp_node_t), KM_SLEEP);
198 zn->zn_dva = *dva;
199 avl_insert(t, zn, where);
200
201 return (0);
202 }
203
204 static zil_header_t *
205 zil_header_in_syncing_context(zilog_t *zilog)
206 {
207 return ((zil_header_t *)zilog->zl_header);
208 }
209
210 static void
211 zil_init_log_chain(zilog_t *zilog, blkptr_t *bp)
212 {
213 zio_cksum_t *zc = &bp->blk_cksum;
214
215 (void) random_get_pseudo_bytes((void *)&zc->zc_word[ZIL_ZC_GUID_0],
216 sizeof (zc->zc_word[ZIL_ZC_GUID_0]));
217 (void) random_get_pseudo_bytes((void *)&zc->zc_word[ZIL_ZC_GUID_1],
218 sizeof (zc->zc_word[ZIL_ZC_GUID_1]));
219 zc->zc_word[ZIL_ZC_OBJSET] = dmu_objset_id(zilog->zl_os);
220 zc->zc_word[ZIL_ZC_SEQ] = 1ULL;
221 }
222
223 static int
224 zil_kstats_global_update(kstat_t *ksp, int rw)
225 {
226 zil_kstat_values_t *zs = ksp->ks_data;
227 ASSERT3P(&zil_stats, ==, zs);
228
229 if (rw == KSTAT_WRITE) {
230 return (SET_ERROR(EACCES));
231 }
232
233 zil_kstat_values_update(zs, &zil_sums_global);
234
235 return (0);
236 }
237
238 /*
239 * Read a log block and make sure it's valid.
240 */
241 static int
242 zil_read_log_block(zilog_t *zilog, boolean_t decrypt, const blkptr_t *bp,
243 blkptr_t *nbp, char **begin, char **end, arc_buf_t **abuf)
244 {
245 zio_flag_t zio_flags = ZIO_FLAG_CANFAIL;
246 arc_flags_t aflags = ARC_FLAG_WAIT;
247 zbookmark_phys_t zb;
248 int error;
249
250 if (zilog->zl_header->zh_claim_txg == 0)
251 zio_flags |= ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB;
252
253 if (!(zilog->zl_header->zh_flags & ZIL_CLAIM_LR_SEQ_VALID))
254 zio_flags |= ZIO_FLAG_SPECULATIVE;
255
256 if (!decrypt)
257 zio_flags |= ZIO_FLAG_RAW;
258
259 SET_BOOKMARK(&zb, bp->blk_cksum.zc_word[ZIL_ZC_OBJSET],
260 ZB_ZIL_OBJECT, ZB_ZIL_LEVEL, bp->blk_cksum.zc_word[ZIL_ZC_SEQ]);
261
262 error = arc_read(NULL, zilog->zl_spa, bp, arc_getbuf_func,
263 abuf, ZIO_PRIORITY_SYNC_READ, zio_flags, &aflags, &zb);
264
265 if (error == 0) {
266 zio_cksum_t cksum = bp->blk_cksum;
267
268 /*
269 * Validate the checksummed log block.
270 *
271 * Sequence numbers should be... sequential. The checksum
272 * verifier for the next block should be bp's checksum plus 1.
273 *
274 * Also check the log chain linkage and size used.
275 */
276 cksum.zc_word[ZIL_ZC_SEQ]++;
277
278 uint64_t size = BP_GET_LSIZE(bp);
279 if (BP_GET_CHECKSUM(bp) == ZIO_CHECKSUM_ZILOG2) {
280 zil_chain_t *zilc = (*abuf)->b_data;
281 char *lr = (char *)(zilc + 1);
282
283 if (memcmp(&cksum, &zilc->zc_next_blk.blk_cksum,
284 sizeof (cksum)) ||
285 zilc->zc_nused < sizeof (*zilc) ||
286 zilc->zc_nused > size) {
287 error = SET_ERROR(ECKSUM);
288 } else {
289 *begin = lr;
290 *end = lr + zilc->zc_nused - sizeof (*zilc);
291 *nbp = zilc->zc_next_blk;
292 }
293 } else {
294 char *lr = (*abuf)->b_data;
295 zil_chain_t *zilc = (zil_chain_t *)(lr + size) - 1;
296
297 if (memcmp(&cksum, &zilc->zc_next_blk.blk_cksum,
298 sizeof (cksum)) ||
299 (zilc->zc_nused > (size - sizeof (*zilc)))) {
300 error = SET_ERROR(ECKSUM);
301 } else {
302 *begin = lr;
303 *end = lr + zilc->zc_nused;
304 *nbp = zilc->zc_next_blk;
305 }
306 }
307 }
308
309 return (error);
310 }
311
312 /*
313 * Read a TX_WRITE log data block.
314 */
315 static int
316 zil_read_log_data(zilog_t *zilog, const lr_write_t *lr, void *wbuf)
317 {
318 zio_flag_t zio_flags = ZIO_FLAG_CANFAIL;
319 const blkptr_t *bp = &lr->lr_blkptr;
320 arc_flags_t aflags = ARC_FLAG_WAIT;
321 arc_buf_t *abuf = NULL;
322 zbookmark_phys_t zb;
323 int error;
324
325 if (BP_IS_HOLE(bp)) {
326 if (wbuf != NULL)
327 memset(wbuf, 0, MAX(BP_GET_LSIZE(bp), lr->lr_length));
328 return (0);
329 }
330
331 if (zilog->zl_header->zh_claim_txg == 0)
332 zio_flags |= ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB;
333
334 /*
335 * If we are not using the resulting data, we are just checking that
336 * it hasn't been corrupted so we don't need to waste CPU time
337 * decompressing and decrypting it.
338 */
339 if (wbuf == NULL)
340 zio_flags |= ZIO_FLAG_RAW;
341
342 ASSERT3U(BP_GET_LSIZE(bp), !=, 0);
343 SET_BOOKMARK(&zb, dmu_objset_id(zilog->zl_os), lr->lr_foid,
344 ZB_ZIL_LEVEL, lr->lr_offset / BP_GET_LSIZE(bp));
345
346 error = arc_read(NULL, zilog->zl_spa, bp, arc_getbuf_func, &abuf,
347 ZIO_PRIORITY_SYNC_READ, zio_flags, &aflags, &zb);
348
349 if (error == 0) {
350 if (wbuf != NULL)
351 memcpy(wbuf, abuf->b_data, arc_buf_size(abuf));
352 arc_buf_destroy(abuf, &abuf);
353 }
354
355 return (error);
356 }
357
358 void
359 zil_sums_init(zil_sums_t *zs)
360 {
361 wmsum_init(&zs->zil_commit_count, 0);
362 wmsum_init(&zs->zil_commit_writer_count, 0);
363 wmsum_init(&zs->zil_itx_count, 0);
364 wmsum_init(&zs->zil_itx_indirect_count, 0);
365 wmsum_init(&zs->zil_itx_indirect_bytes, 0);
366 wmsum_init(&zs->zil_itx_copied_count, 0);
367 wmsum_init(&zs->zil_itx_copied_bytes, 0);
368 wmsum_init(&zs->zil_itx_needcopy_count, 0);
369 wmsum_init(&zs->zil_itx_needcopy_bytes, 0);
370 wmsum_init(&zs->zil_itx_metaslab_normal_count, 0);
371 wmsum_init(&zs->zil_itx_metaslab_normal_bytes, 0);
372 wmsum_init(&zs->zil_itx_metaslab_normal_write, 0);
373 wmsum_init(&zs->zil_itx_metaslab_normal_alloc, 0);
374 wmsum_init(&zs->zil_itx_metaslab_slog_count, 0);
375 wmsum_init(&zs->zil_itx_metaslab_slog_bytes, 0);
376 wmsum_init(&zs->zil_itx_metaslab_slog_write, 0);
377 wmsum_init(&zs->zil_itx_metaslab_slog_alloc, 0);
378 }
379
380 void
381 zil_sums_fini(zil_sums_t *zs)
382 {
383 wmsum_fini(&zs->zil_commit_count);
384 wmsum_fini(&zs->zil_commit_writer_count);
385 wmsum_fini(&zs->zil_itx_count);
386 wmsum_fini(&zs->zil_itx_indirect_count);
387 wmsum_fini(&zs->zil_itx_indirect_bytes);
388 wmsum_fini(&zs->zil_itx_copied_count);
389 wmsum_fini(&zs->zil_itx_copied_bytes);
390 wmsum_fini(&zs->zil_itx_needcopy_count);
391 wmsum_fini(&zs->zil_itx_needcopy_bytes);
392 wmsum_fini(&zs->zil_itx_metaslab_normal_count);
393 wmsum_fini(&zs->zil_itx_metaslab_normal_bytes);
394 wmsum_fini(&zs->zil_itx_metaslab_normal_write);
395 wmsum_fini(&zs->zil_itx_metaslab_normal_alloc);
396 wmsum_fini(&zs->zil_itx_metaslab_slog_count);
397 wmsum_fini(&zs->zil_itx_metaslab_slog_bytes);
398 wmsum_fini(&zs->zil_itx_metaslab_slog_write);
399 wmsum_fini(&zs->zil_itx_metaslab_slog_alloc);
400 }
401
402 void
403 zil_kstat_values_update(zil_kstat_values_t *zs, zil_sums_t *zil_sums)
404 {
405 zs->zil_commit_count.value.ui64 =
406 wmsum_value(&zil_sums->zil_commit_count);
407 zs->zil_commit_writer_count.value.ui64 =
408 wmsum_value(&zil_sums->zil_commit_writer_count);
409 zs->zil_itx_count.value.ui64 =
410 wmsum_value(&zil_sums->zil_itx_count);
411 zs->zil_itx_indirect_count.value.ui64 =
412 wmsum_value(&zil_sums->zil_itx_indirect_count);
413 zs->zil_itx_indirect_bytes.value.ui64 =
414 wmsum_value(&zil_sums->zil_itx_indirect_bytes);
415 zs->zil_itx_copied_count.value.ui64 =
416 wmsum_value(&zil_sums->zil_itx_copied_count);
417 zs->zil_itx_copied_bytes.value.ui64 =
418 wmsum_value(&zil_sums->zil_itx_copied_bytes);
419 zs->zil_itx_needcopy_count.value.ui64 =
420 wmsum_value(&zil_sums->zil_itx_needcopy_count);
421 zs->zil_itx_needcopy_bytes.value.ui64 =
422 wmsum_value(&zil_sums->zil_itx_needcopy_bytes);
423 zs->zil_itx_metaslab_normal_count.value.ui64 =
424 wmsum_value(&zil_sums->zil_itx_metaslab_normal_count);
425 zs->zil_itx_metaslab_normal_bytes.value.ui64 =
426 wmsum_value(&zil_sums->zil_itx_metaslab_normal_bytes);
427 zs->zil_itx_metaslab_normal_write.value.ui64 =
428 wmsum_value(&zil_sums->zil_itx_metaslab_normal_write);
429 zs->zil_itx_metaslab_normal_alloc.value.ui64 =
430 wmsum_value(&zil_sums->zil_itx_metaslab_normal_alloc);
431 zs->zil_itx_metaslab_slog_count.value.ui64 =
432 wmsum_value(&zil_sums->zil_itx_metaslab_slog_count);
433 zs->zil_itx_metaslab_slog_bytes.value.ui64 =
434 wmsum_value(&zil_sums->zil_itx_metaslab_slog_bytes);
435 zs->zil_itx_metaslab_slog_write.value.ui64 =
436 wmsum_value(&zil_sums->zil_itx_metaslab_slog_write);
437 zs->zil_itx_metaslab_slog_alloc.value.ui64 =
438 wmsum_value(&zil_sums->zil_itx_metaslab_slog_alloc);
439 }
440
441 /*
442 * Parse the intent log, and call parse_func for each valid record within.
443 */
444 int
445 zil_parse(zilog_t *zilog, zil_parse_blk_func_t *parse_blk_func,
446 zil_parse_lr_func_t *parse_lr_func, void *arg, uint64_t txg,
447 boolean_t decrypt)
448 {
449 const zil_header_t *zh = zilog->zl_header;
450 boolean_t claimed = !!zh->zh_claim_txg;
451 uint64_t claim_blk_seq = claimed ? zh->zh_claim_blk_seq : UINT64_MAX;
452 uint64_t claim_lr_seq = claimed ? zh->zh_claim_lr_seq : UINT64_MAX;
453 uint64_t max_blk_seq = 0;
454 uint64_t max_lr_seq = 0;
455 uint64_t blk_count = 0;
456 uint64_t lr_count = 0;
457 blkptr_t blk, next_blk = {{{{0}}}};
458 int error = 0;
459
460 /*
461 * Old logs didn't record the maximum zh_claim_lr_seq.
462 */
463 if (!(zh->zh_flags & ZIL_CLAIM_LR_SEQ_VALID))
464 claim_lr_seq = UINT64_MAX;
465
466 /*
467 * Starting at the block pointed to by zh_log we read the log chain.
468 * For each block in the chain we strongly check that block to
469 * ensure its validity. We stop when an invalid block is found.
470 * For each block pointer in the chain we call parse_blk_func().
471 * For each record in each valid block we call parse_lr_func().
472 * If the log has been claimed, stop if we encounter a sequence
473 * number greater than the highest claimed sequence number.
474 */
475 zil_bp_tree_init(zilog);
476
477 for (blk = zh->zh_log; !BP_IS_HOLE(&blk); blk = next_blk) {
478 uint64_t blk_seq = blk.blk_cksum.zc_word[ZIL_ZC_SEQ];
479 int reclen;
480 char *lrp, *end;
481 arc_buf_t *abuf = NULL;
482
483 if (blk_seq > claim_blk_seq)
484 break;
485
486 error = parse_blk_func(zilog, &blk, arg, txg);
487 if (error != 0)
488 break;
489 ASSERT3U(max_blk_seq, <, blk_seq);
490 max_blk_seq = blk_seq;
491 blk_count++;
492
493 if (max_lr_seq == claim_lr_seq && max_blk_seq == claim_blk_seq)
494 break;
495
496 error = zil_read_log_block(zilog, decrypt, &blk, &next_blk,
497 &lrp, &end, &abuf);
498 if (error != 0) {
499 if (abuf)
500 arc_buf_destroy(abuf, &abuf);
501 if (claimed) {
502 char name[ZFS_MAX_DATASET_NAME_LEN];
503
504 dmu_objset_name(zilog->zl_os, name);
505
506 cmn_err(CE_WARN, "ZFS read log block error %d, "
507 "dataset %s, seq 0x%llx\n", error, name,
508 (u_longlong_t)blk_seq);
509 }
510 break;
511 }
512
513 for (; lrp < end; lrp += reclen) {
514 lr_t *lr = (lr_t *)lrp;
515 reclen = lr->lrc_reclen;
516 ASSERT3U(reclen, >=, sizeof (lr_t));
517 ASSERT3U(reclen, <=, end - lrp);
518 if (lr->lrc_seq > claim_lr_seq) {
519 arc_buf_destroy(abuf, &abuf);
520 goto done;
521 }
522
523 error = parse_lr_func(zilog, lr, arg, txg);
524 if (error != 0) {
525 arc_buf_destroy(abuf, &abuf);
526 goto done;
527 }
528 ASSERT3U(max_lr_seq, <, lr->lrc_seq);
529 max_lr_seq = lr->lrc_seq;
530 lr_count++;
531 }
532 arc_buf_destroy(abuf, &abuf);
533 }
534 done:
535 zilog->zl_parse_error = error;
536 zilog->zl_parse_blk_seq = max_blk_seq;
537 zilog->zl_parse_lr_seq = max_lr_seq;
538 zilog->zl_parse_blk_count = blk_count;
539 zilog->zl_parse_lr_count = lr_count;
540
541 zil_bp_tree_fini(zilog);
542
543 return (error);
544 }
545
546 static int
547 zil_clear_log_block(zilog_t *zilog, const blkptr_t *bp, void *tx,
548 uint64_t first_txg)
549 {
550 (void) tx;
551 ASSERT(!BP_IS_HOLE(bp));
552
553 /*
554 * As we call this function from the context of a rewind to a
555 * checkpoint, each ZIL block whose txg is later than the txg
556 * that we rewind to is invalid. Thus, we return -1 so
557 * zil_parse() doesn't attempt to read it.
558 */
559 if (bp->blk_birth >= first_txg)
560 return (-1);
561
562 if (zil_bp_tree_add(zilog, bp) != 0)
563 return (0);
564
565 zio_free(zilog->zl_spa, first_txg, bp);
566 return (0);
567 }
568
569 static int
570 zil_noop_log_record(zilog_t *zilog, const lr_t *lrc, void *tx,
571 uint64_t first_txg)
572 {
573 (void) zilog, (void) lrc, (void) tx, (void) first_txg;
574 return (0);
575 }
576
577 static int
578 zil_claim_log_block(zilog_t *zilog, const blkptr_t *bp, void *tx,
579 uint64_t first_txg)
580 {
581 /*
582 * Claim log block if not already committed and not already claimed.
583 * If tx == NULL, just verify that the block is claimable.
584 */
585 if (BP_IS_HOLE(bp) || bp->blk_birth < first_txg ||
586 zil_bp_tree_add(zilog, bp) != 0)
587 return (0);
588
589 return (zio_wait(zio_claim(NULL, zilog->zl_spa,
590 tx == NULL ? 0 : first_txg, bp, spa_claim_notify, NULL,
591 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_SCRUB)));
592 }
593
594 static int
595 zil_claim_write(zilog_t *zilog, const lr_t *lrc, void *tx, uint64_t first_txg)
596 {
597 lr_write_t *lr = (lr_write_t *)lrc;
598 int error;
599
600 ASSERT3U(lrc->lrc_reclen, >=, sizeof (*lr));
601
602 /*
603 * If the block is not readable, don't claim it. This can happen
604 * in normal operation when a log block is written to disk before
605 * some of the dmu_sync() blocks it points to. In this case, the
606 * transaction cannot have been committed to anyone (we would have
607 * waited for all writes to be stable first), so it is semantically
608 * correct to declare this the end of the log.
609 */
610 if (lr->lr_blkptr.blk_birth >= first_txg) {
611 error = zil_read_log_data(zilog, lr, NULL);
612 if (error != 0)
613 return (error);
614 }
615
616 return (zil_claim_log_block(zilog, &lr->lr_blkptr, tx, first_txg));
617 }
618
619 static int
620 zil_claim_clone_range(zilog_t *zilog, const lr_t *lrc, void *tx,
621 uint64_t first_txg)
622 {
623 const lr_clone_range_t *lr = (const lr_clone_range_t *)lrc;
624 const blkptr_t *bp;
625 spa_t *spa = zilog->zl_spa;
626 uint_t ii;
627
628 ASSERT3U(lrc->lrc_reclen, >=, sizeof (*lr));
629 ASSERT3U(lrc->lrc_reclen, >=, offsetof(lr_clone_range_t,
630 lr_bps[lr->lr_nbps]));
631
632 if (tx == NULL) {
633 return (0);
634 }
635
636 /*
637 * XXX: Do we need to byteswap lr?
638 */
639
640 for (ii = 0; ii < lr->lr_nbps; ii++) {
641 bp = &lr->lr_bps[ii];
642
643 /*
644 * When data is embedded into the BP there is no need to create
645 * BRT entry as there is no data block. Just copy the BP as it
646 * contains the data.
647 */
648 if (BP_IS_HOLE(bp) || BP_IS_EMBEDDED(bp))
649 continue;
650
651 /*
652 * We can not handle block pointers from the future, since they
653 * are not yet allocated. It should not normally happen, but
654 * just in case lets be safe and just stop here now instead of
655 * corrupting the pool.
656 */
657 if (BP_PHYSICAL_BIRTH(bp) >= first_txg)
658 return (SET_ERROR(ENOENT));
659
660 /*
661 * Assert the block is really allocated before we reference it.
662 */
663 metaslab_check_free(spa, bp);
664 }
665
666 for (ii = 0; ii < lr->lr_nbps; ii++) {
667 bp = &lr->lr_bps[ii];
668 if (!BP_IS_HOLE(bp) && !BP_IS_EMBEDDED(bp))
669 brt_pending_add(spa, bp, tx);
670 }
671
672 return (0);
673 }
674
675 static int
676 zil_claim_log_record(zilog_t *zilog, const lr_t *lrc, void *tx,
677 uint64_t first_txg)
678 {
679
680 switch (lrc->lrc_txtype) {
681 case TX_WRITE:
682 return (zil_claim_write(zilog, lrc, tx, first_txg));
683 case TX_CLONE_RANGE:
684 return (zil_claim_clone_range(zilog, lrc, tx, first_txg));
685 default:
686 return (0);
687 }
688 }
689
690 static int
691 zil_free_log_block(zilog_t *zilog, const blkptr_t *bp, void *tx,
692 uint64_t claim_txg)
693 {
694 (void) claim_txg;
695
696 zio_free(zilog->zl_spa, dmu_tx_get_txg(tx), bp);
697
698 return (0);
699 }
700
701 static int
702 zil_free_write(zilog_t *zilog, const lr_t *lrc, void *tx, uint64_t claim_txg)
703 {
704 lr_write_t *lr = (lr_write_t *)lrc;
705 blkptr_t *bp = &lr->lr_blkptr;
706
707 ASSERT3U(lrc->lrc_reclen, >=, sizeof (*lr));
708
709 /*
710 * If we previously claimed it, we need to free it.
711 */
712 if (bp->blk_birth >= claim_txg && zil_bp_tree_add(zilog, bp) == 0 &&
713 !BP_IS_HOLE(bp)) {
714 zio_free(zilog->zl_spa, dmu_tx_get_txg(tx), bp);
715 }
716
717 return (0);
718 }
719
720 static int
721 zil_free_clone_range(zilog_t *zilog, const lr_t *lrc, void *tx)
722 {
723 const lr_clone_range_t *lr = (const lr_clone_range_t *)lrc;
724 const blkptr_t *bp;
725 spa_t *spa;
726 uint_t ii;
727
728 ASSERT3U(lrc->lrc_reclen, >=, sizeof (*lr));
729 ASSERT3U(lrc->lrc_reclen, >=, offsetof(lr_clone_range_t,
730 lr_bps[lr->lr_nbps]));
731
732 if (tx == NULL) {
733 return (0);
734 }
735
736 spa = zilog->zl_spa;
737
738 for (ii = 0; ii < lr->lr_nbps; ii++) {
739 bp = &lr->lr_bps[ii];
740
741 if (!BP_IS_HOLE(bp)) {
742 zio_free(spa, dmu_tx_get_txg(tx), bp);
743 }
744 }
745
746 return (0);
747 }
748
749 static int
750 zil_free_log_record(zilog_t *zilog, const lr_t *lrc, void *tx,
751 uint64_t claim_txg)
752 {
753
754 if (claim_txg == 0) {
755 return (0);
756 }
757
758 switch (lrc->lrc_txtype) {
759 case TX_WRITE:
760 return (zil_free_write(zilog, lrc, tx, claim_txg));
761 case TX_CLONE_RANGE:
762 return (zil_free_clone_range(zilog, lrc, tx));
763 default:
764 return (0);
765 }
766 }
767
768 static int
769 zil_lwb_vdev_compare(const void *x1, const void *x2)
770 {
771 const uint64_t v1 = ((zil_vdev_node_t *)x1)->zv_vdev;
772 const uint64_t v2 = ((zil_vdev_node_t *)x2)->zv_vdev;
773
774 return (TREE_CMP(v1, v2));
775 }
776
777 /*
778 * Allocate a new lwb. We may already have a block pointer for it, in which
779 * case we get size and version from there. Or we may not yet, in which case
780 * we choose them here and later make the block allocation match.
781 */
782 static lwb_t *
783 zil_alloc_lwb(zilog_t *zilog, int sz, blkptr_t *bp, boolean_t slog,
784 uint64_t txg, lwb_state_t state)
785 {
786 lwb_t *lwb;
787
788 lwb = kmem_cache_alloc(zil_lwb_cache, KM_SLEEP);
789 lwb->lwb_zilog = zilog;
790 if (bp) {
791 lwb->lwb_blk = *bp;
792 lwb->lwb_slim = (BP_GET_CHECKSUM(bp) == ZIO_CHECKSUM_ZILOG2);
793 sz = BP_GET_LSIZE(bp);
794 } else {
795 BP_ZERO(&lwb->lwb_blk);
796 lwb->lwb_slim = (spa_version(zilog->zl_spa) >=
797 SPA_VERSION_SLIM_ZIL);
798 }
799 lwb->lwb_slog = slog;
800 lwb->lwb_error = 0;
801 if (lwb->lwb_slim) {
802 lwb->lwb_nmax = sz;
803 lwb->lwb_nused = lwb->lwb_nfilled = sizeof (zil_chain_t);
804 } else {
805 lwb->lwb_nmax = sz - sizeof (zil_chain_t);
806 lwb->lwb_nused = lwb->lwb_nfilled = 0;
807 }
808 lwb->lwb_sz = sz;
809 lwb->lwb_state = state;
810 lwb->lwb_buf = zio_buf_alloc(sz);
811 lwb->lwb_child_zio = NULL;
812 lwb->lwb_write_zio = NULL;
813 lwb->lwb_root_zio = NULL;
814 lwb->lwb_issued_timestamp = 0;
815 lwb->lwb_issued_txg = 0;
816 lwb->lwb_alloc_txg = txg;
817 lwb->lwb_max_txg = 0;
818
819 mutex_enter(&zilog->zl_lock);
820 list_insert_tail(&zilog->zl_lwb_list, lwb);
821 if (state != LWB_STATE_NEW)
822 zilog->zl_last_lwb_opened = lwb;
823 mutex_exit(&zilog->zl_lock);
824
825 return (lwb);
826 }
827
828 static void
829 zil_free_lwb(zilog_t *zilog, lwb_t *lwb)
830 {
831 ASSERT(MUTEX_HELD(&zilog->zl_lock));
832 ASSERT(lwb->lwb_state == LWB_STATE_NEW ||
833 lwb->lwb_state == LWB_STATE_FLUSH_DONE);
834 ASSERT3P(lwb->lwb_child_zio, ==, NULL);
835 ASSERT3P(lwb->lwb_write_zio, ==, NULL);
836 ASSERT3P(lwb->lwb_root_zio, ==, NULL);
837 ASSERT3U(lwb->lwb_alloc_txg, <=, spa_syncing_txg(zilog->zl_spa));
838 ASSERT3U(lwb->lwb_max_txg, <=, spa_syncing_txg(zilog->zl_spa));
839 VERIFY(list_is_empty(&lwb->lwb_itxs));
840 VERIFY(list_is_empty(&lwb->lwb_waiters));
841 ASSERT(avl_is_empty(&lwb->lwb_vdev_tree));
842 ASSERT(!MUTEX_HELD(&lwb->lwb_vdev_lock));
843
844 /*
845 * Clear the zilog's field to indicate this lwb is no longer
846 * valid, and prevent use-after-free errors.
847 */
848 if (zilog->zl_last_lwb_opened == lwb)
849 zilog->zl_last_lwb_opened = NULL;
850
851 kmem_cache_free(zil_lwb_cache, lwb);
852 }
853
854 /*
855 * Called when we create in-memory log transactions so that we know
856 * to cleanup the itxs at the end of spa_sync().
857 */
858 static void
859 zilog_dirty(zilog_t *zilog, uint64_t txg)
860 {
861 dsl_pool_t *dp = zilog->zl_dmu_pool;
862 dsl_dataset_t *ds = dmu_objset_ds(zilog->zl_os);
863
864 ASSERT(spa_writeable(zilog->zl_spa));
865
866 if (ds->ds_is_snapshot)
867 panic("dirtying snapshot!");
868
869 if (txg_list_add(&dp->dp_dirty_zilogs, zilog, txg)) {
870 /* up the hold count until we can be written out */
871 dmu_buf_add_ref(ds->ds_dbuf, zilog);
872
873 zilog->zl_dirty_max_txg = MAX(txg, zilog->zl_dirty_max_txg);
874 }
875 }
876
877 /*
878 * Determine if the zil is dirty in the specified txg. Callers wanting to
879 * ensure that the dirty state does not change must hold the itxg_lock for
880 * the specified txg. Holding the lock will ensure that the zil cannot be
881 * dirtied (zil_itx_assign) or cleaned (zil_clean) while we check its current
882 * state.
883 */
884 static boolean_t __maybe_unused
885 zilog_is_dirty_in_txg(zilog_t *zilog, uint64_t txg)
886 {
887 dsl_pool_t *dp = zilog->zl_dmu_pool;
888
889 if (txg_list_member(&dp->dp_dirty_zilogs, zilog, txg & TXG_MASK))
890 return (B_TRUE);
891 return (B_FALSE);
892 }
893
894 /*
895 * Determine if the zil is dirty. The zil is considered dirty if it has
896 * any pending itx records that have not been cleaned by zil_clean().
897 */
898 static boolean_t
899 zilog_is_dirty(zilog_t *zilog)
900 {
901 dsl_pool_t *dp = zilog->zl_dmu_pool;
902
903 for (int t = 0; t < TXG_SIZE; t++) {
904 if (txg_list_member(&dp->dp_dirty_zilogs, zilog, t))
905 return (B_TRUE);
906 }
907 return (B_FALSE);
908 }
909
910 /*
911 * Its called in zil_commit context (zil_process_commit_list()/zil_create()).
912 * It activates SPA_FEATURE_ZILSAXATTR feature, if its enabled.
913 * Check dsl_dataset_feature_is_active to avoid txg_wait_synced() on every
914 * zil_commit.
915 */
916 static void
917 zil_commit_activate_saxattr_feature(zilog_t *zilog)
918 {
919 dsl_dataset_t *ds = dmu_objset_ds(zilog->zl_os);
920 uint64_t txg = 0;
921 dmu_tx_t *tx = NULL;
922
923 if (spa_feature_is_enabled(zilog->zl_spa, SPA_FEATURE_ZILSAXATTR) &&
924 dmu_objset_type(zilog->zl_os) != DMU_OST_ZVOL &&
925 !dsl_dataset_feature_is_active(ds, SPA_FEATURE_ZILSAXATTR)) {
926 tx = dmu_tx_create(zilog->zl_os);
927 VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
928 dsl_dataset_dirty(ds, tx);
929 txg = dmu_tx_get_txg(tx);
930
931 mutex_enter(&ds->ds_lock);
932 ds->ds_feature_activation[SPA_FEATURE_ZILSAXATTR] =
933 (void *)B_TRUE;
934 mutex_exit(&ds->ds_lock);
935 dmu_tx_commit(tx);
936 txg_wait_synced(zilog->zl_dmu_pool, txg);
937 }
938 }
939
940 /*
941 * Create an on-disk intent log.
942 */
943 static lwb_t *
944 zil_create(zilog_t *zilog)
945 {
946 const zil_header_t *zh = zilog->zl_header;
947 lwb_t *lwb = NULL;
948 uint64_t txg = 0;
949 dmu_tx_t *tx = NULL;
950 blkptr_t blk;
951 int error = 0;
952 boolean_t slog = FALSE;
953 dsl_dataset_t *ds = dmu_objset_ds(zilog->zl_os);
954
955
956 /*
957 * Wait for any previous destroy to complete.
958 */
959 txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg);
960
961 ASSERT(zh->zh_claim_txg == 0);
962 ASSERT(zh->zh_replay_seq == 0);
963
964 blk = zh->zh_log;
965
966 /*
967 * Allocate an initial log block if:
968 * - there isn't one already
969 * - the existing block is the wrong endianness
970 */
971 if (BP_IS_HOLE(&blk) || BP_SHOULD_BYTESWAP(&blk)) {
972 tx = dmu_tx_create(zilog->zl_os);
973 VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
974 dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
975 txg = dmu_tx_get_txg(tx);
976
977 if (!BP_IS_HOLE(&blk)) {
978 zio_free(zilog->zl_spa, txg, &blk);
979 BP_ZERO(&blk);
980 }
981
982 error = zio_alloc_zil(zilog->zl_spa, zilog->zl_os, txg, &blk,
983 ZIL_MIN_BLKSZ, &slog);
984 if (error == 0)
985 zil_init_log_chain(zilog, &blk);
986 }
987
988 /*
989 * Allocate a log write block (lwb) for the first log block.
990 */
991 if (error == 0)
992 lwb = zil_alloc_lwb(zilog, 0, &blk, slog, txg, LWB_STATE_NEW);
993
994 /*
995 * If we just allocated the first log block, commit our transaction
996 * and wait for zil_sync() to stuff the block pointer into zh_log.
997 * (zh is part of the MOS, so we cannot modify it in open context.)
998 */
999 if (tx != NULL) {
1000 /*
1001 * If "zilsaxattr" feature is enabled on zpool, then activate
1002 * it now when we're creating the ZIL chain. We can't wait with
1003 * this until we write the first xattr log record because we
1004 * need to wait for the feature activation to sync out.
1005 */
1006 if (spa_feature_is_enabled(zilog->zl_spa,
1007 SPA_FEATURE_ZILSAXATTR) && dmu_objset_type(zilog->zl_os) !=
1008 DMU_OST_ZVOL) {
1009 mutex_enter(&ds->ds_lock);
1010 ds->ds_feature_activation[SPA_FEATURE_ZILSAXATTR] =
1011 (void *)B_TRUE;
1012 mutex_exit(&ds->ds_lock);
1013 }
1014
1015 dmu_tx_commit(tx);
1016 txg_wait_synced(zilog->zl_dmu_pool, txg);
1017 } else {
1018 /*
1019 * This branch covers the case where we enable the feature on a
1020 * zpool that has existing ZIL headers.
1021 */
1022 zil_commit_activate_saxattr_feature(zilog);
1023 }
1024 IMPLY(spa_feature_is_enabled(zilog->zl_spa, SPA_FEATURE_ZILSAXATTR) &&
1025 dmu_objset_type(zilog->zl_os) != DMU_OST_ZVOL,
1026 dsl_dataset_feature_is_active(ds, SPA_FEATURE_ZILSAXATTR));
1027
1028 ASSERT(error != 0 || memcmp(&blk, &zh->zh_log, sizeof (blk)) == 0);
1029 IMPLY(error == 0, lwb != NULL);
1030
1031 return (lwb);
1032 }
1033
1034 /*
1035 * In one tx, free all log blocks and clear the log header. If keep_first
1036 * is set, then we're replaying a log with no content. We want to keep the
1037 * first block, however, so that the first synchronous transaction doesn't
1038 * require a txg_wait_synced() in zil_create(). We don't need to
1039 * txg_wait_synced() here either when keep_first is set, because both
1040 * zil_create() and zil_destroy() will wait for any in-progress destroys
1041 * to complete.
1042 * Return B_TRUE if there were any entries to replay.
1043 */
1044 boolean_t
1045 zil_destroy(zilog_t *zilog, boolean_t keep_first)
1046 {
1047 const zil_header_t *zh = zilog->zl_header;
1048 lwb_t *lwb;
1049 dmu_tx_t *tx;
1050 uint64_t txg;
1051
1052 /*
1053 * Wait for any previous destroy to complete.
1054 */
1055 txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg);
1056
1057 zilog->zl_old_header = *zh; /* debugging aid */
1058
1059 if (BP_IS_HOLE(&zh->zh_log))
1060 return (B_FALSE);
1061
1062 tx = dmu_tx_create(zilog->zl_os);
1063 VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
1064 dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
1065 txg = dmu_tx_get_txg(tx);
1066
1067 mutex_enter(&zilog->zl_lock);
1068
1069 ASSERT3U(zilog->zl_destroy_txg, <, txg);
1070 zilog->zl_destroy_txg = txg;
1071 zilog->zl_keep_first = keep_first;
1072
1073 if (!list_is_empty(&zilog->zl_lwb_list)) {
1074 ASSERT(zh->zh_claim_txg == 0);
1075 VERIFY(!keep_first);
1076 while ((lwb = list_remove_head(&zilog->zl_lwb_list)) != NULL) {
1077 if (lwb->lwb_buf != NULL)
1078 zio_buf_free(lwb->lwb_buf, lwb->lwb_sz);
1079 if (!BP_IS_HOLE(&lwb->lwb_blk))
1080 zio_free(zilog->zl_spa, txg, &lwb->lwb_blk);
1081 zil_free_lwb(zilog, lwb);
1082 }
1083 } else if (!keep_first) {
1084 zil_destroy_sync(zilog, tx);
1085 }
1086 mutex_exit(&zilog->zl_lock);
1087
1088 dmu_tx_commit(tx);
1089
1090 return (B_TRUE);
1091 }
1092
1093 void
1094 zil_destroy_sync(zilog_t *zilog, dmu_tx_t *tx)
1095 {
1096 ASSERT(list_is_empty(&zilog->zl_lwb_list));
1097 (void) zil_parse(zilog, zil_free_log_block,
1098 zil_free_log_record, tx, zilog->zl_header->zh_claim_txg, B_FALSE);
1099 }
1100
1101 int
1102 zil_claim(dsl_pool_t *dp, dsl_dataset_t *ds, void *txarg)
1103 {
1104 dmu_tx_t *tx = txarg;
1105 zilog_t *zilog;
1106 uint64_t first_txg;
1107 zil_header_t *zh;
1108 objset_t *os;
1109 int error;
1110
1111 error = dmu_objset_own_obj(dp, ds->ds_object,
1112 DMU_OST_ANY, B_FALSE, B_FALSE, FTAG, &os);
1113 if (error != 0) {
1114 /*
1115 * EBUSY indicates that the objset is inconsistent, in which
1116 * case it can not have a ZIL.
1117 */
1118 if (error != EBUSY) {
1119 cmn_err(CE_WARN, "can't open objset for %llu, error %u",
1120 (unsigned long long)ds->ds_object, error);
1121 }
1122
1123 return (0);
1124 }
1125
1126 zilog = dmu_objset_zil(os);
1127 zh = zil_header_in_syncing_context(zilog);
1128 ASSERT3U(tx->tx_txg, ==, spa_first_txg(zilog->zl_spa));
1129 first_txg = spa_min_claim_txg(zilog->zl_spa);
1130
1131 /*
1132 * If the spa_log_state is not set to be cleared, check whether
1133 * the current uberblock is a checkpoint one and if the current
1134 * header has been claimed before moving on.
1135 *
1136 * If the current uberblock is a checkpointed uberblock then
1137 * one of the following scenarios took place:
1138 *
1139 * 1] We are currently rewinding to the checkpoint of the pool.
1140 * 2] We crashed in the middle of a checkpoint rewind but we
1141 * did manage to write the checkpointed uberblock to the
1142 * vdev labels, so when we tried to import the pool again
1143 * the checkpointed uberblock was selected from the import
1144 * procedure.
1145 *
1146 * In both cases we want to zero out all the ZIL blocks, except
1147 * the ones that have been claimed at the time of the checkpoint
1148 * (their zh_claim_txg != 0). The reason is that these blocks
1149 * may be corrupted since we may have reused their locations on
1150 * disk after we took the checkpoint.
1151 *
1152 * We could try to set spa_log_state to SPA_LOG_CLEAR earlier
1153 * when we first figure out whether the current uberblock is
1154 * checkpointed or not. Unfortunately, that would discard all
1155 * the logs, including the ones that are claimed, and we would
1156 * leak space.
1157 */
1158 if (spa_get_log_state(zilog->zl_spa) == SPA_LOG_CLEAR ||
1159 (zilog->zl_spa->spa_uberblock.ub_checkpoint_txg != 0 &&
1160 zh->zh_claim_txg == 0)) {
1161 if (!BP_IS_HOLE(&zh->zh_log)) {
1162 (void) zil_parse(zilog, zil_clear_log_block,
1163 zil_noop_log_record, tx, first_txg, B_FALSE);
1164 }
1165 BP_ZERO(&zh->zh_log);
1166 if (os->os_encrypted)
1167 os->os_next_write_raw[tx->tx_txg & TXG_MASK] = B_TRUE;
1168 dsl_dataset_dirty(dmu_objset_ds(os), tx);
1169 dmu_objset_disown(os, B_FALSE, FTAG);
1170 return (0);
1171 }
1172
1173 /*
1174 * If we are not rewinding and opening the pool normally, then
1175 * the min_claim_txg should be equal to the first txg of the pool.
1176 */
1177 ASSERT3U(first_txg, ==, spa_first_txg(zilog->zl_spa));
1178
1179 /*
1180 * Claim all log blocks if we haven't already done so, and remember
1181 * the highest claimed sequence number. This ensures that if we can
1182 * read only part of the log now (e.g. due to a missing device),
1183 * but we can read the entire log later, we will not try to replay
1184 * or destroy beyond the last block we successfully claimed.
1185 */
1186 ASSERT3U(zh->zh_claim_txg, <=, first_txg);
1187 if (zh->zh_claim_txg == 0 && !BP_IS_HOLE(&zh->zh_log)) {
1188 (void) zil_parse(zilog, zil_claim_log_block,
1189 zil_claim_log_record, tx, first_txg, B_FALSE);
1190 zh->zh_claim_txg = first_txg;
1191 zh->zh_claim_blk_seq = zilog->zl_parse_blk_seq;
1192 zh->zh_claim_lr_seq = zilog->zl_parse_lr_seq;
1193 if (zilog->zl_parse_lr_count || zilog->zl_parse_blk_count > 1)
1194 zh->zh_flags |= ZIL_REPLAY_NEEDED;
1195 zh->zh_flags |= ZIL_CLAIM_LR_SEQ_VALID;
1196 if (os->os_encrypted)
1197 os->os_next_write_raw[tx->tx_txg & TXG_MASK] = B_TRUE;
1198 dsl_dataset_dirty(dmu_objset_ds(os), tx);
1199 }
1200
1201 ASSERT3U(first_txg, ==, (spa_last_synced_txg(zilog->zl_spa) + 1));
1202 dmu_objset_disown(os, B_FALSE, FTAG);
1203 return (0);
1204 }
1205
1206 /*
1207 * Check the log by walking the log chain.
1208 * Checksum errors are ok as they indicate the end of the chain.
1209 * Any other error (no device or read failure) returns an error.
1210 */
1211 int
1212 zil_check_log_chain(dsl_pool_t *dp, dsl_dataset_t *ds, void *tx)
1213 {
1214 (void) dp;
1215 zilog_t *zilog;
1216 objset_t *os;
1217 blkptr_t *bp;
1218 int error;
1219
1220 ASSERT(tx == NULL);
1221
1222 error = dmu_objset_from_ds(ds, &os);
1223 if (error != 0) {
1224 cmn_err(CE_WARN, "can't open objset %llu, error %d",
1225 (unsigned long long)ds->ds_object, error);
1226 return (0);
1227 }
1228
1229 zilog = dmu_objset_zil(os);
1230 bp = (blkptr_t *)&zilog->zl_header->zh_log;
1231
1232 if (!BP_IS_HOLE(bp)) {
1233 vdev_t *vd;
1234 boolean_t valid = B_TRUE;
1235
1236 /*
1237 * Check the first block and determine if it's on a log device
1238 * which may have been removed or faulted prior to loading this
1239 * pool. If so, there's no point in checking the rest of the
1240 * log as its content should have already been synced to the
1241 * pool.
1242 */
1243 spa_config_enter(os->os_spa, SCL_STATE, FTAG, RW_READER);
1244 vd = vdev_lookup_top(os->os_spa, DVA_GET_VDEV(&bp->blk_dva[0]));
1245 if (vd->vdev_islog && vdev_is_dead(vd))
1246 valid = vdev_log_state_valid(vd);
1247 spa_config_exit(os->os_spa, SCL_STATE, FTAG);
1248
1249 if (!valid)
1250 return (0);
1251
1252 /*
1253 * Check whether the current uberblock is checkpointed (e.g.
1254 * we are rewinding) and whether the current header has been
1255 * claimed or not. If it hasn't then skip verifying it. We
1256 * do this because its ZIL blocks may be part of the pool's
1257 * state before the rewind, which is no longer valid.
1258 */
1259 zil_header_t *zh = zil_header_in_syncing_context(zilog);
1260 if (zilog->zl_spa->spa_uberblock.ub_checkpoint_txg != 0 &&
1261 zh->zh_claim_txg == 0)
1262 return (0);
1263 }
1264
1265 /*
1266 * Because tx == NULL, zil_claim_log_block() will not actually claim
1267 * any blocks, but just determine whether it is possible to do so.
1268 * In addition to checking the log chain, zil_claim_log_block()
1269 * will invoke zio_claim() with a done func of spa_claim_notify(),
1270 * which will update spa_max_claim_txg. See spa_load() for details.
1271 */
1272 error = zil_parse(zilog, zil_claim_log_block, zil_claim_log_record, tx,
1273 zilog->zl_header->zh_claim_txg ? -1ULL :
1274 spa_min_claim_txg(os->os_spa), B_FALSE);
1275
1276 return ((error == ECKSUM || error == ENOENT) ? 0 : error);
1277 }
1278
1279 /*
1280 * When an itx is "skipped", this function is used to properly mark the
1281 * waiter as "done, and signal any thread(s) waiting on it. An itx can
1282 * be skipped (and not committed to an lwb) for a variety of reasons,
1283 * one of them being that the itx was committed via spa_sync(), prior to
1284 * it being committed to an lwb; this can happen if a thread calling
1285 * zil_commit() is racing with spa_sync().
1286 */
1287 static void
1288 zil_commit_waiter_skip(zil_commit_waiter_t *zcw)
1289 {
1290 mutex_enter(&zcw->zcw_lock);
1291 ASSERT3B(zcw->zcw_done, ==, B_FALSE);
1292 zcw->zcw_done = B_TRUE;
1293 cv_broadcast(&zcw->zcw_cv);
1294 mutex_exit(&zcw->zcw_lock);
1295 }
1296
1297 /*
1298 * This function is used when the given waiter is to be linked into an
1299 * lwb's "lwb_waiter" list; i.e. when the itx is committed to the lwb.
1300 * At this point, the waiter will no longer be referenced by the itx,
1301 * and instead, will be referenced by the lwb.
1302 */
1303 static void
1304 zil_commit_waiter_link_lwb(zil_commit_waiter_t *zcw, lwb_t *lwb)
1305 {
1306 /*
1307 * The lwb_waiters field of the lwb is protected by the zilog's
1308 * zl_issuer_lock while the lwb is open and zl_lock otherwise.
1309 * zl_issuer_lock also protects leaving the open state.
1310 * zcw_lwb setting is protected by zl_issuer_lock and state !=
1311 * flush_done, which transition is protected by zl_lock.
1312 */
1313 ASSERT(MUTEX_HELD(&lwb->lwb_zilog->zl_issuer_lock));
1314 IMPLY(lwb->lwb_state != LWB_STATE_OPENED,
1315 MUTEX_HELD(&lwb->lwb_zilog->zl_lock));
1316 ASSERT3S(lwb->lwb_state, !=, LWB_STATE_NEW);
1317 ASSERT3S(lwb->lwb_state, !=, LWB_STATE_FLUSH_DONE);
1318
1319 ASSERT(!list_link_active(&zcw->zcw_node));
1320 list_insert_tail(&lwb->lwb_waiters, zcw);
1321 ASSERT3P(zcw->zcw_lwb, ==, NULL);
1322 zcw->zcw_lwb = lwb;
1323 }
1324
1325 /*
1326 * This function is used when zio_alloc_zil() fails to allocate a ZIL
1327 * block, and the given waiter must be linked to the "nolwb waiters"
1328 * list inside of zil_process_commit_list().
1329 */
1330 static void
1331 zil_commit_waiter_link_nolwb(zil_commit_waiter_t *zcw, list_t *nolwb)
1332 {
1333 ASSERT(!list_link_active(&zcw->zcw_node));
1334 list_insert_tail(nolwb, zcw);
1335 ASSERT3P(zcw->zcw_lwb, ==, NULL);
1336 }
1337
1338 void
1339 zil_lwb_add_block(lwb_t *lwb, const blkptr_t *bp)
1340 {
1341 avl_tree_t *t = &lwb->lwb_vdev_tree;
1342 avl_index_t where;
1343 zil_vdev_node_t *zv, zvsearch;
1344 int ndvas = BP_GET_NDVAS(bp);
1345 int i;
1346
1347 ASSERT3S(lwb->lwb_state, !=, LWB_STATE_WRITE_DONE);
1348 ASSERT3S(lwb->lwb_state, !=, LWB_STATE_FLUSH_DONE);
1349
1350 if (zil_nocacheflush)
1351 return;
1352
1353 mutex_enter(&lwb->lwb_vdev_lock);
1354 for (i = 0; i < ndvas; i++) {
1355 zvsearch.zv_vdev = DVA_GET_VDEV(&bp->blk_dva[i]);
1356 if (avl_find(t, &zvsearch, &where) == NULL) {
1357 zv = kmem_alloc(sizeof (*zv), KM_SLEEP);
1358 zv->zv_vdev = zvsearch.zv_vdev;
1359 avl_insert(t, zv, where);
1360 }
1361 }
1362 mutex_exit(&lwb->lwb_vdev_lock);
1363 }
1364
1365 static void
1366 zil_lwb_flush_defer(lwb_t *lwb, lwb_t *nlwb)
1367 {
1368 avl_tree_t *src = &lwb->lwb_vdev_tree;
1369 avl_tree_t *dst = &nlwb->lwb_vdev_tree;
1370 void *cookie = NULL;
1371 zil_vdev_node_t *zv;
1372
1373 ASSERT3S(lwb->lwb_state, ==, LWB_STATE_WRITE_DONE);
1374 ASSERT3S(nlwb->lwb_state, !=, LWB_STATE_WRITE_DONE);
1375 ASSERT3S(nlwb->lwb_state, !=, LWB_STATE_FLUSH_DONE);
1376
1377 /*
1378 * While 'lwb' is at a point in its lifetime where lwb_vdev_tree does
1379 * not need the protection of lwb_vdev_lock (it will only be modified
1380 * while holding zilog->zl_lock) as its writes and those of its
1381 * children have all completed. The younger 'nlwb' may be waiting on
1382 * future writes to additional vdevs.
1383 */
1384 mutex_enter(&nlwb->lwb_vdev_lock);
1385 /*
1386 * Tear down the 'lwb' vdev tree, ensuring that entries which do not
1387 * exist in 'nlwb' are moved to it, freeing any would-be duplicates.
1388 */
1389 while ((zv = avl_destroy_nodes(src, &cookie)) != NULL) {
1390 avl_index_t where;
1391
1392 if (avl_find(dst, zv, &where) == NULL) {
1393 avl_insert(dst, zv, where);
1394 } else {
1395 kmem_free(zv, sizeof (*zv));
1396 }
1397 }
1398 mutex_exit(&nlwb->lwb_vdev_lock);
1399 }
1400
1401 void
1402 zil_lwb_add_txg(lwb_t *lwb, uint64_t txg)
1403 {
1404 lwb->lwb_max_txg = MAX(lwb->lwb_max_txg, txg);
1405 }
1406
1407 /*
1408 * This function is a called after all vdevs associated with a given lwb
1409 * write have completed their DKIOCFLUSHWRITECACHE command; or as soon
1410 * as the lwb write completes, if "zil_nocacheflush" is set. Further,
1411 * all "previous" lwb's will have completed before this function is
1412 * called; i.e. this function is called for all previous lwbs before
1413 * it's called for "this" lwb (enforced via zio the dependencies
1414 * configured in zil_lwb_set_zio_dependency()).
1415 *
1416 * The intention is for this function to be called as soon as the
1417 * contents of an lwb are considered "stable" on disk, and will survive
1418 * any sudden loss of power. At this point, any threads waiting for the
1419 * lwb to reach this state are signalled, and the "waiter" structures
1420 * are marked "done".
1421 */
1422 static void
1423 zil_lwb_flush_vdevs_done(zio_t *zio)
1424 {
1425 lwb_t *lwb = zio->io_private;
1426 zilog_t *zilog = lwb->lwb_zilog;
1427 zil_commit_waiter_t *zcw;
1428 itx_t *itx;
1429
1430 spa_config_exit(zilog->zl_spa, SCL_STATE, lwb);
1431
1432 hrtime_t t = gethrtime() - lwb->lwb_issued_timestamp;
1433
1434 mutex_enter(&zilog->zl_lock);
1435
1436 zilog->zl_last_lwb_latency = (zilog->zl_last_lwb_latency * 7 + t) / 8;
1437
1438 lwb->lwb_root_zio = NULL;
1439
1440 ASSERT3S(lwb->lwb_state, ==, LWB_STATE_WRITE_DONE);
1441 lwb->lwb_state = LWB_STATE_FLUSH_DONE;
1442
1443 if (zilog->zl_last_lwb_opened == lwb) {
1444 /*
1445 * Remember the highest committed log sequence number
1446 * for ztest. We only update this value when all the log
1447 * writes succeeded, because ztest wants to ASSERT that
1448 * it got the whole log chain.
1449 */
1450 zilog->zl_commit_lr_seq = zilog->zl_lr_seq;
1451 }
1452
1453 while ((itx = list_remove_head(&lwb->lwb_itxs)) != NULL)
1454 zil_itx_destroy(itx);
1455
1456 while ((zcw = list_remove_head(&lwb->lwb_waiters)) != NULL) {
1457 mutex_enter(&zcw->zcw_lock);
1458
1459 ASSERT3P(zcw->zcw_lwb, ==, lwb);
1460 zcw->zcw_lwb = NULL;
1461 /*
1462 * We expect any ZIO errors from child ZIOs to have been
1463 * propagated "up" to this specific LWB's root ZIO, in
1464 * order for this error handling to work correctly. This
1465 * includes ZIO errors from either this LWB's write or
1466 * flush, as well as any errors from other dependent LWBs
1467 * (e.g. a root LWB ZIO that might be a child of this LWB).
1468 *
1469 * With that said, it's important to note that LWB flush
1470 * errors are not propagated up to the LWB root ZIO.
1471 * This is incorrect behavior, and results in VDEV flush
1472 * errors not being handled correctly here. See the
1473 * comment above the call to "zio_flush" for details.
1474 */
1475
1476 zcw->zcw_zio_error = zio->io_error;
1477
1478 ASSERT3B(zcw->zcw_done, ==, B_FALSE);
1479 zcw->zcw_done = B_TRUE;
1480 cv_broadcast(&zcw->zcw_cv);
1481
1482 mutex_exit(&zcw->zcw_lock);
1483 }
1484
1485 uint64_t txg = lwb->lwb_issued_txg;
1486
1487 /* Once we drop the lock, lwb may be freed by zil_sync(). */
1488 mutex_exit(&zilog->zl_lock);
1489
1490 mutex_enter(&zilog->zl_lwb_io_lock);
1491 ASSERT3U(zilog->zl_lwb_inflight[txg & TXG_MASK], >, 0);
1492 zilog->zl_lwb_inflight[txg & TXG_MASK]--;
1493 if (zilog->zl_lwb_inflight[txg & TXG_MASK] == 0)
1494 cv_broadcast(&zilog->zl_lwb_io_cv);
1495 mutex_exit(&zilog->zl_lwb_io_lock);
1496 }
1497
1498 /*
1499 * Wait for the completion of all issued write/flush of that txg provided.
1500 * It guarantees zil_lwb_flush_vdevs_done() is called and returned.
1501 */
1502 static void
1503 zil_lwb_flush_wait_all(zilog_t *zilog, uint64_t txg)
1504 {
1505 ASSERT3U(txg, ==, spa_syncing_txg(zilog->zl_spa));
1506
1507 mutex_enter(&zilog->zl_lwb_io_lock);
1508 while (zilog->zl_lwb_inflight[txg & TXG_MASK] > 0)
1509 cv_wait(&zilog->zl_lwb_io_cv, &zilog->zl_lwb_io_lock);
1510 mutex_exit(&zilog->zl_lwb_io_lock);
1511
1512 #ifdef ZFS_DEBUG
1513 mutex_enter(&zilog->zl_lock);
1514 mutex_enter(&zilog->zl_lwb_io_lock);
1515 lwb_t *lwb = list_head(&zilog->zl_lwb_list);
1516 while (lwb != NULL) {
1517 if (lwb->lwb_issued_txg <= txg) {
1518 ASSERT(lwb->lwb_state != LWB_STATE_ISSUED);
1519 ASSERT(lwb->lwb_state != LWB_STATE_WRITE_DONE);
1520 IMPLY(lwb->lwb_issued_txg > 0,
1521 lwb->lwb_state == LWB_STATE_FLUSH_DONE);
1522 }
1523 IMPLY(lwb->lwb_state == LWB_STATE_WRITE_DONE ||
1524 lwb->lwb_state == LWB_STATE_FLUSH_DONE,
1525 lwb->lwb_buf == NULL);
1526 lwb = list_next(&zilog->zl_lwb_list, lwb);
1527 }
1528 mutex_exit(&zilog->zl_lwb_io_lock);
1529 mutex_exit(&zilog->zl_lock);
1530 #endif
1531 }
1532
1533 /*
1534 * This is called when an lwb's write zio completes. The callback's
1535 * purpose is to issue the DKIOCFLUSHWRITECACHE commands for the vdevs
1536 * in the lwb's lwb_vdev_tree. The tree will contain the vdevs involved
1537 * in writing out this specific lwb's data, and in the case that cache
1538 * flushes have been deferred, vdevs involved in writing the data for
1539 * previous lwbs. The writes corresponding to all the vdevs in the
1540 * lwb_vdev_tree will have completed by the time this is called, due to
1541 * the zio dependencies configured in zil_lwb_set_zio_dependency(),
1542 * which takes deferred flushes into account. The lwb will be "done"
1543 * once zil_lwb_flush_vdevs_done() is called, which occurs in the zio
1544 * completion callback for the lwb's root zio.
1545 */
1546 static void
1547 zil_lwb_write_done(zio_t *zio)
1548 {
1549 lwb_t *lwb = zio->io_private;
1550 spa_t *spa = zio->io_spa;
1551 zilog_t *zilog = lwb->lwb_zilog;
1552 avl_tree_t *t = &lwb->lwb_vdev_tree;
1553 void *cookie = NULL;
1554 zil_vdev_node_t *zv;
1555 lwb_t *nlwb;
1556
1557 ASSERT3S(spa_config_held(spa, SCL_STATE, RW_READER), !=, 0);
1558
1559 abd_free(zio->io_abd);
1560 zio_buf_free(lwb->lwb_buf, lwb->lwb_sz);
1561 lwb->lwb_buf = NULL;
1562
1563 mutex_enter(&zilog->zl_lock);
1564 ASSERT3S(lwb->lwb_state, ==, LWB_STATE_ISSUED);
1565 lwb->lwb_state = LWB_STATE_WRITE_DONE;
1566 lwb->lwb_child_zio = NULL;
1567 lwb->lwb_write_zio = NULL;
1568
1569 /*
1570 * If nlwb is not yet issued, zil_lwb_set_zio_dependency() is not
1571 * called for it yet, and when it will be, it won't be able to make
1572 * its write ZIO a parent this ZIO. In such case we can not defer
1573 * our flushes or below may be a race between the done callbacks.
1574 */
1575 nlwb = list_next(&zilog->zl_lwb_list, lwb);
1576 if (nlwb && nlwb->lwb_state != LWB_STATE_ISSUED)
1577 nlwb = NULL;
1578 mutex_exit(&zilog->zl_lock);
1579
1580 if (avl_numnodes(t) == 0)
1581 return;
1582
1583 /*
1584 * If there was an IO error, we're not going to call zio_flush()
1585 * on these vdevs, so we simply empty the tree and free the
1586 * nodes. We avoid calling zio_flush() since there isn't any
1587 * good reason for doing so, after the lwb block failed to be
1588 * written out.
1589 *
1590 * Additionally, we don't perform any further error handling at
1591 * this point (e.g. setting "zcw_zio_error" appropriately), as
1592 * we expect that to occur in "zil_lwb_flush_vdevs_done" (thus,
1593 * we expect any error seen here, to have been propagated to
1594 * that function).
1595 */
1596 if (zio->io_error != 0) {
1597 while ((zv = avl_destroy_nodes(t, &cookie)) != NULL)
1598 kmem_free(zv, sizeof (*zv));
1599 return;
1600 }
1601
1602 /*
1603 * If this lwb does not have any threads waiting for it to
1604 * complete, we want to defer issuing the DKIOCFLUSHWRITECACHE
1605 * command to the vdevs written to by "this" lwb, and instead
1606 * rely on the "next" lwb to handle the DKIOCFLUSHWRITECACHE
1607 * command for those vdevs. Thus, we merge the vdev tree of
1608 * "this" lwb with the vdev tree of the "next" lwb in the list,
1609 * and assume the "next" lwb will handle flushing the vdevs (or
1610 * deferring the flush(s) again).
1611 *
1612 * This is a useful performance optimization, especially for
1613 * workloads with lots of async write activity and few sync
1614 * write and/or fsync activity, as it has the potential to
1615 * coalesce multiple flush commands to a vdev into one.
1616 */
1617 if (list_is_empty(&lwb->lwb_waiters) && nlwb != NULL) {
1618 zil_lwb_flush_defer(lwb, nlwb);
1619 ASSERT(avl_is_empty(&lwb->lwb_vdev_tree));
1620 return;
1621 }
1622
1623 while ((zv = avl_destroy_nodes(t, &cookie)) != NULL) {
1624 vdev_t *vd = vdev_lookup_top(spa, zv->zv_vdev);
1625 if (vd != NULL) {
1626 /*
1627 * The "ZIO_FLAG_DONT_PROPAGATE" is currently
1628 * always used within "zio_flush". This means,
1629 * any errors when flushing the vdev(s), will
1630 * (unfortunately) not be handled correctly,
1631 * since these "zio_flush" errors will not be
1632 * propagated up to "zil_lwb_flush_vdevs_done".
1633 */
1634 zio_flush(lwb->lwb_root_zio, vd);
1635 }
1636 kmem_free(zv, sizeof (*zv));
1637 }
1638 }
1639
1640 /*
1641 * Build the zio dependency chain, which is used to preserve the ordering of
1642 * lwb completions that is required by the semantics of the ZIL. Each new lwb
1643 * zio becomes a parent of the previous lwb zio, such that the new lwb's zio
1644 * cannot complete until the previous lwb's zio completes.
1645 *
1646 * This is required by the semantics of zil_commit(): the commit waiters
1647 * attached to the lwbs will be woken in the lwb zio's completion callback,
1648 * so this zio dependency graph ensures the waiters are woken in the correct
1649 * order (the same order the lwbs were created).
1650 */
1651 static void
1652 zil_lwb_set_zio_dependency(zilog_t *zilog, lwb_t *lwb)
1653 {
1654 ASSERT(MUTEX_HELD(&zilog->zl_lock));
1655
1656 lwb_t *prev_lwb = list_prev(&zilog->zl_lwb_list, lwb);
1657 if (prev_lwb == NULL ||
1658 prev_lwb->lwb_state == LWB_STATE_FLUSH_DONE)
1659 return;
1660
1661 /*
1662 * If the previous lwb's write hasn't already completed, we also want
1663 * to order the completion of the lwb write zios (above, we only order
1664 * the completion of the lwb root zios). This is required because of
1665 * how we can defer the DKIOCFLUSHWRITECACHE commands for each lwb.
1666 *
1667 * When the DKIOCFLUSHWRITECACHE commands are deferred, the previous
1668 * lwb will rely on this lwb to flush the vdevs written to by that
1669 * previous lwb. Thus, we need to ensure this lwb doesn't issue the
1670 * flush until after the previous lwb's write completes. We ensure
1671 * this ordering by setting the zio parent/child relationship here.
1672 *
1673 * Without this relationship on the lwb's write zio, it's possible
1674 * for this lwb's write to complete prior to the previous lwb's write
1675 * completing; and thus, the vdevs for the previous lwb would be
1676 * flushed prior to that lwb's data being written to those vdevs (the
1677 * vdevs are flushed in the lwb write zio's completion handler,
1678 * zil_lwb_write_done()).
1679 */
1680 if (prev_lwb->lwb_state == LWB_STATE_ISSUED) {
1681 ASSERT3P(prev_lwb->lwb_write_zio, !=, NULL);
1682 zio_add_child(lwb->lwb_write_zio, prev_lwb->lwb_write_zio);
1683 } else {
1684 ASSERT3S(prev_lwb->lwb_state, ==, LWB_STATE_WRITE_DONE);
1685 }
1686
1687 ASSERT3P(prev_lwb->lwb_root_zio, !=, NULL);
1688 zio_add_child(lwb->lwb_root_zio, prev_lwb->lwb_root_zio);
1689 }
1690
1691
1692 /*
1693 * This function's purpose is to "open" an lwb such that it is ready to
1694 * accept new itxs being committed to it. This function is idempotent; if
1695 * the passed in lwb has already been opened, it is essentially a no-op.
1696 */
1697 static void
1698 zil_lwb_write_open(zilog_t *zilog, lwb_t *lwb)
1699 {
1700 ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
1701
1702 if (lwb->lwb_state != LWB_STATE_NEW) {
1703 ASSERT3S(lwb->lwb_state, ==, LWB_STATE_OPENED);
1704 return;
1705 }
1706
1707 mutex_enter(&zilog->zl_lock);
1708 lwb->lwb_state = LWB_STATE_OPENED;
1709 zilog->zl_last_lwb_opened = lwb;
1710 mutex_exit(&zilog->zl_lock);
1711 }
1712
1713 /*
1714 * Define a limited set of intent log block sizes.
1715 *
1716 * These must be a multiple of 4KB. Note only the amount used (again
1717 * aligned to 4KB) actually gets written. However, we can't always just
1718 * allocate SPA_OLD_MAXBLOCKSIZE as the slog space could be exhausted.
1719 */
1720 static const struct {
1721 uint64_t limit;
1722 uint64_t blksz;
1723 } zil_block_buckets[] = {
1724 { 4096, 4096 }, /* non TX_WRITE */
1725 { 8192 + 4096, 8192 + 4096 }, /* database */
1726 { 32768 + 4096, 32768 + 4096 }, /* NFS writes */
1727 { 65536 + 4096, 65536 + 4096 }, /* 64KB writes */
1728 { UINT64_MAX, SPA_OLD_MAXBLOCKSIZE}, /* > 128KB writes */
1729 };
1730
1731 /*
1732 * Maximum block size used by the ZIL. This is picked up when the ZIL is
1733 * initialized. Otherwise this should not be used directly; see
1734 * zl_max_block_size instead.
1735 */
1736 static uint_t zil_maxblocksize = SPA_OLD_MAXBLOCKSIZE;
1737
1738 /*
1739 * Close the log block for being issued and allocate the next one.
1740 * Has to be called under zl_issuer_lock to chain more lwbs.
1741 */
1742 static lwb_t *
1743 zil_lwb_write_close(zilog_t *zilog, lwb_t *lwb, lwb_state_t state)
1744 {
1745 int i;
1746
1747 ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
1748 ASSERT3S(lwb->lwb_state, ==, LWB_STATE_OPENED);
1749 lwb->lwb_state = LWB_STATE_CLOSED;
1750
1751 /*
1752 * If there was an allocation failure then returned NULL will trigger
1753 * zil_commit_writer_stall() at the caller. This is inherently racy,
1754 * since allocation may not have happened yet.
1755 */
1756 if (lwb->lwb_error != 0)
1757 return (NULL);
1758
1759 /*
1760 * Log blocks are pre-allocated. Here we select the size of the next
1761 * block, based on size used in the last block.
1762 * - first find the smallest bucket that will fit the block from a
1763 * limited set of block sizes. This is because it's faster to write
1764 * blocks allocated from the same metaslab as they are adjacent or
1765 * close.
1766 * - next find the maximum from the new suggested size and an array of
1767 * previous sizes. This lessens a picket fence effect of wrongly
1768 * guessing the size if we have a stream of say 2k, 64k, 2k, 64k
1769 * requests.
1770 *
1771 * Note we only write what is used, but we can't just allocate
1772 * the maximum block size because we can exhaust the available
1773 * pool log space.
1774 */
1775 uint64_t zil_blksz = zilog->zl_cur_used + sizeof (zil_chain_t);
1776 for (i = 0; zil_blksz > zil_block_buckets[i].limit; i++)
1777 continue;
1778 zil_blksz = MIN(zil_block_buckets[i].blksz, zilog->zl_max_block_size);
1779 zilog->zl_prev_blks[zilog->zl_prev_rotor] = zil_blksz;
1780 for (i = 0; i < ZIL_PREV_BLKS; i++)
1781 zil_blksz = MAX(zil_blksz, zilog->zl_prev_blks[i]);
1782 DTRACE_PROBE3(zil__block__size, zilog_t *, zilog,
1783 uint64_t, zil_blksz,
1784 uint64_t, zilog->zl_prev_blks[zilog->zl_prev_rotor]);
1785 zilog->zl_prev_rotor = (zilog->zl_prev_rotor + 1) & (ZIL_PREV_BLKS - 1);
1786
1787 return (zil_alloc_lwb(zilog, zil_blksz, NULL, 0, 0, state));
1788 }
1789
1790 /*
1791 * Finalize previously closed block and issue the write zio.
1792 */
1793 static void
1794 zil_lwb_write_issue(zilog_t *zilog, lwb_t *lwb)
1795 {
1796 spa_t *spa = zilog->zl_spa;
1797 zil_chain_t *zilc;
1798 boolean_t slog;
1799 zbookmark_phys_t zb;
1800 zio_priority_t prio;
1801 int error;
1802
1803 ASSERT3S(lwb->lwb_state, ==, LWB_STATE_CLOSED);
1804
1805 /* Actually fill the lwb with the data. */
1806 for (itx_t *itx = list_head(&lwb->lwb_itxs); itx;
1807 itx = list_next(&lwb->lwb_itxs, itx))
1808 zil_lwb_commit(zilog, lwb, itx);
1809 lwb->lwb_nused = lwb->lwb_nfilled;
1810 ASSERT3U(lwb->lwb_nused, <=, lwb->lwb_nmax);
1811
1812 lwb->lwb_root_zio = zio_root(spa, zil_lwb_flush_vdevs_done, lwb,
1813 ZIO_FLAG_CANFAIL);
1814
1815 /*
1816 * The lwb is now ready to be issued, but it can be only if it already
1817 * got its block pointer allocated or the allocation has failed.
1818 * Otherwise leave it as-is, relying on some other thread to issue it
1819 * after allocating its block pointer via calling zil_lwb_write_issue()
1820 * for the previous lwb(s) in the chain.
1821 */
1822 mutex_enter(&zilog->zl_lock);
1823 lwb->lwb_state = LWB_STATE_READY;
1824 if (BP_IS_HOLE(&lwb->lwb_blk) && lwb->lwb_error == 0) {
1825 mutex_exit(&zilog->zl_lock);
1826 return;
1827 }
1828 mutex_exit(&zilog->zl_lock);
1829
1830 next_lwb:
1831 if (lwb->lwb_slim)
1832 zilc = (zil_chain_t *)lwb->lwb_buf;
1833 else
1834 zilc = (zil_chain_t *)(lwb->lwb_buf + lwb->lwb_nmax);
1835 int wsz = lwb->lwb_sz;
1836 if (lwb->lwb_error == 0) {
1837 abd_t *lwb_abd = abd_get_from_buf(lwb->lwb_buf, lwb->lwb_sz);
1838 if (!lwb->lwb_slog || zilog->zl_cur_used <= zil_slog_bulk)
1839 prio = ZIO_PRIORITY_SYNC_WRITE;
1840 else
1841 prio = ZIO_PRIORITY_ASYNC_WRITE;
1842 SET_BOOKMARK(&zb, lwb->lwb_blk.blk_cksum.zc_word[ZIL_ZC_OBJSET],
1843 ZB_ZIL_OBJECT, ZB_ZIL_LEVEL,
1844 lwb->lwb_blk.blk_cksum.zc_word[ZIL_ZC_SEQ]);
1845 lwb->lwb_write_zio = zio_rewrite(lwb->lwb_root_zio, spa, 0,
1846 &lwb->lwb_blk, lwb_abd, lwb->lwb_sz, zil_lwb_write_done,
1847 lwb, prio, ZIO_FLAG_CANFAIL, &zb);
1848 zil_lwb_add_block(lwb, &lwb->lwb_blk);
1849
1850 if (lwb->lwb_slim) {
1851 /* For Slim ZIL only write what is used. */
1852 wsz = P2ROUNDUP_TYPED(lwb->lwb_nused, ZIL_MIN_BLKSZ,
1853 int);
1854 ASSERT3S(wsz, <=, lwb->lwb_sz);
1855 zio_shrink(lwb->lwb_write_zio, wsz);
1856 wsz = lwb->lwb_write_zio->io_size;
1857 }
1858 memset(lwb->lwb_buf + lwb->lwb_nused, 0, wsz - lwb->lwb_nused);
1859 zilc->zc_pad = 0;
1860 zilc->zc_nused = lwb->lwb_nused;
1861 zilc->zc_eck.zec_cksum = lwb->lwb_blk.blk_cksum;
1862 } else {
1863 /*
1864 * We can't write the lwb if there was an allocation failure,
1865 * so create a null zio instead just to maintain dependencies.
1866 */
1867 lwb->lwb_write_zio = zio_null(lwb->lwb_root_zio, spa, NULL,
1868 zil_lwb_write_done, lwb, ZIO_FLAG_CANFAIL);
1869 lwb->lwb_write_zio->io_error = lwb->lwb_error;
1870 }
1871 if (lwb->lwb_child_zio)
1872 zio_add_child(lwb->lwb_write_zio, lwb->lwb_child_zio);
1873
1874 /*
1875 * Open transaction to allocate the next block pointer.
1876 */
1877 dmu_tx_t *tx = dmu_tx_create(zilog->zl_os);
1878 VERIFY0(dmu_tx_assign(tx, TXG_WAIT | TXG_NOTHROTTLE));
1879 dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
1880 uint64_t txg = dmu_tx_get_txg(tx);
1881
1882 /*
1883 * Allocate next the block pointer unless we are already in error.
1884 */
1885 lwb_t *nlwb = list_next(&zilog->zl_lwb_list, lwb);
1886 blkptr_t *bp = &zilc->zc_next_blk;
1887 BP_ZERO(bp);
1888 error = lwb->lwb_error;
1889 if (error == 0) {
1890 error = zio_alloc_zil(spa, zilog->zl_os, txg, bp, nlwb->lwb_sz,
1891 &slog);
1892 }
1893 if (error == 0) {
1894 ASSERT3U(bp->blk_birth, ==, txg);
1895 BP_SET_CHECKSUM(bp, nlwb->lwb_slim ? ZIO_CHECKSUM_ZILOG2 :
1896 ZIO_CHECKSUM_ZILOG);
1897 bp->blk_cksum = lwb->lwb_blk.blk_cksum;
1898 bp->blk_cksum.zc_word[ZIL_ZC_SEQ]++;
1899 }
1900
1901 /*
1902 * Reduce TXG open time by incrementing inflight counter and committing
1903 * the transaciton. zil_sync() will wait for it to return to zero.
1904 */
1905 mutex_enter(&zilog->zl_lwb_io_lock);
1906 lwb->lwb_issued_txg = txg;
1907 zilog->zl_lwb_inflight[txg & TXG_MASK]++;
1908 zilog->zl_lwb_max_issued_txg = MAX(txg, zilog->zl_lwb_max_issued_txg);
1909 mutex_exit(&zilog->zl_lwb_io_lock);
1910 dmu_tx_commit(tx);
1911
1912 spa_config_enter(spa, SCL_STATE, lwb, RW_READER);
1913
1914 /*
1915 * We've completed all potentially blocking operations. Update the
1916 * nlwb and allow it proceed without possible lock order reversals.
1917 */
1918 mutex_enter(&zilog->zl_lock);
1919 zil_lwb_set_zio_dependency(zilog, lwb);
1920 lwb->lwb_state = LWB_STATE_ISSUED;
1921
1922 if (nlwb) {
1923 nlwb->lwb_blk = *bp;
1924 nlwb->lwb_error = error;
1925 nlwb->lwb_slog = slog;
1926 nlwb->lwb_alloc_txg = txg;
1927 if (nlwb->lwb_state != LWB_STATE_READY)
1928 nlwb = NULL;
1929 }
1930 mutex_exit(&zilog->zl_lock);
1931
1932 if (lwb->lwb_slog) {
1933 ZIL_STAT_BUMP(zilog, zil_itx_metaslab_slog_count);
1934 ZIL_STAT_INCR(zilog, zil_itx_metaslab_slog_bytes,
1935 lwb->lwb_nused);
1936 ZIL_STAT_INCR(zilog, zil_itx_metaslab_slog_write,
1937 wsz);
1938 ZIL_STAT_INCR(zilog, zil_itx_metaslab_slog_alloc,
1939 BP_GET_LSIZE(&lwb->lwb_blk));
1940 } else {
1941 ZIL_STAT_BUMP(zilog, zil_itx_metaslab_normal_count);
1942 ZIL_STAT_INCR(zilog, zil_itx_metaslab_normal_bytes,
1943 lwb->lwb_nused);
1944 ZIL_STAT_INCR(zilog, zil_itx_metaslab_normal_write,
1945 wsz);
1946 ZIL_STAT_INCR(zilog, zil_itx_metaslab_normal_alloc,
1947 BP_GET_LSIZE(&lwb->lwb_blk));
1948 }
1949 lwb->lwb_issued_timestamp = gethrtime();
1950 if (lwb->lwb_child_zio)
1951 zio_nowait(lwb->lwb_child_zio);
1952 zio_nowait(lwb->lwb_write_zio);
1953 zio_nowait(lwb->lwb_root_zio);
1954
1955 /*
1956 * If nlwb was ready when we gave it the block pointer,
1957 * it is on us to issue it and possibly following ones.
1958 */
1959 lwb = nlwb;
1960 if (lwb)
1961 goto next_lwb;
1962 }
1963
1964 /*
1965 * Maximum amount of data that can be put into single log block.
1966 */
1967 uint64_t
1968 zil_max_log_data(zilog_t *zilog, size_t hdrsize)
1969 {
1970 return (zilog->zl_max_block_size - sizeof (zil_chain_t) - hdrsize);
1971 }
1972
1973 /*
1974 * Maximum amount of log space we agree to waste to reduce number of
1975 * WR_NEED_COPY chunks to reduce zl_get_data() overhead (~6%).
1976 */
1977 static inline uint64_t
1978 zil_max_waste_space(zilog_t *zilog)
1979 {
1980 return (zil_max_log_data(zilog, sizeof (lr_write_t)) / 16);
1981 }
1982
1983 /*
1984 * Maximum amount of write data for WR_COPIED. For correctness, consumers
1985 * must fall back to WR_NEED_COPY if we can't fit the entire record into one
1986 * maximum sized log block, because each WR_COPIED record must fit in a
1987 * single log block. Below that it is a tradeoff of additional memory copy
1988 * and possibly worse log space efficiency vs additional range lock/unlock.
1989 */
1990 static uint_t zil_maxcopied = 7680;
1991
1992 uint64_t
1993 zil_max_copied_data(zilog_t *zilog)
1994 {
1995 uint64_t max_data = zil_max_log_data(zilog, sizeof (lr_write_t));
1996 return (MIN(max_data, zil_maxcopied));
1997 }
1998
1999 /*
2000 * Estimate space needed in the lwb for the itx. Allocate more lwbs or
2001 * split the itx as needed, but don't touch the actual transaction data.
2002 * Has to be called under zl_issuer_lock to call zil_lwb_write_close()
2003 * to chain more lwbs.
2004 */
2005 static lwb_t *
2006 zil_lwb_assign(zilog_t *zilog, lwb_t *lwb, itx_t *itx, list_t *ilwbs)
2007 {
2008 itx_t *citx;
2009 lr_t *lr, *clr;
2010 lr_write_t *lrw;
2011 uint64_t dlen, dnow, lwb_sp, reclen, max_log_data;
2012
2013 ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
2014 ASSERT3P(lwb, !=, NULL);
2015 ASSERT3P(lwb->lwb_buf, !=, NULL);
2016
2017 zil_lwb_write_open(zilog, lwb);
2018
2019 lr = &itx->itx_lr;
2020 lrw = (lr_write_t *)lr;
2021
2022 /*
2023 * A commit itx doesn't represent any on-disk state; instead
2024 * it's simply used as a place holder on the commit list, and
2025 * provides a mechanism for attaching a "commit waiter" onto the
2026 * correct lwb (such that the waiter can be signalled upon
2027 * completion of that lwb). Thus, we don't process this itx's
2028 * log record if it's a commit itx (these itx's don't have log
2029 * records), and instead link the itx's waiter onto the lwb's
2030 * list of waiters.
2031 *
2032 * For more details, see the comment above zil_commit().
2033 */
2034 if (lr->lrc_txtype == TX_COMMIT) {
2035 zil_commit_waiter_link_lwb(itx->itx_private, lwb);
2036 list_insert_tail(&lwb->lwb_itxs, itx);
2037 return (lwb);
2038 }
2039
2040 reclen = lr->lrc_reclen;
2041 if (lr->lrc_txtype == TX_WRITE && itx->itx_wr_state == WR_NEED_COPY) {
2042 ASSERT3U(reclen, ==, sizeof (lr_write_t));
2043 dlen = P2ROUNDUP_TYPED(
2044 lrw->lr_length, sizeof (uint64_t), uint64_t);
2045 } else {
2046 ASSERT3U(reclen, >=, sizeof (lr_t));
2047 dlen = 0;
2048 }
2049 ASSERT3U(reclen, <=, zil_max_log_data(zilog, 0));
2050 zilog->zl_cur_used += (reclen + dlen);
2051
2052 cont:
2053 /*
2054 * If this record won't fit in the current log block, start a new one.
2055 * For WR_NEED_COPY optimize layout for minimal number of chunks.
2056 */
2057 lwb_sp = lwb->lwb_nmax - lwb->lwb_nused;
2058 max_log_data = zil_max_log_data(zilog, sizeof (lr_write_t));
2059 if (reclen > lwb_sp || (reclen + dlen > lwb_sp &&
2060 lwb_sp < zil_max_waste_space(zilog) &&
2061 (dlen % max_log_data == 0 ||
2062 lwb_sp < reclen + dlen % max_log_data))) {
2063 list_insert_tail(ilwbs, lwb);
2064 lwb = zil_lwb_write_close(zilog, lwb, LWB_STATE_OPENED);
2065 if (lwb == NULL)
2066 return (NULL);
2067 lwb_sp = lwb->lwb_nmax - lwb->lwb_nused;
2068 }
2069
2070 /*
2071 * There must be enough space in the log block to hold reclen.
2072 * For WR_COPIED, we need to fit the whole record in one block,
2073 * and reclen is the write record header size + the data size.
2074 * For WR_NEED_COPY, we can create multiple records, splitting
2075 * the data into multiple blocks, so we only need to fit one
2076 * word of data per block; in this case reclen is just the header
2077 * size (no data).
2078 */
2079 ASSERT3U(reclen + MIN(dlen, sizeof (uint64_t)), <=, lwb_sp);
2080
2081 dnow = MIN(dlen, lwb_sp - reclen);
2082 if (dlen > dnow) {
2083 ASSERT3U(lr->lrc_txtype, ==, TX_WRITE);
2084 ASSERT3U(itx->itx_wr_state, ==, WR_NEED_COPY);
2085 citx = zil_itx_clone(itx);
2086 clr = &citx->itx_lr;
2087 lr_write_t *clrw = (lr_write_t *)clr;
2088 clrw->lr_length = dnow;
2089 lrw->lr_offset += dnow;
2090 lrw->lr_length -= dnow;
2091 } else {
2092 citx = itx;
2093 clr = lr;
2094 }
2095
2096 /*
2097 * We're actually making an entry, so update lrc_seq to be the
2098 * log record sequence number. Note that this is generally not
2099 * equal to the itx sequence number because not all transactions
2100 * are synchronous, and sometimes spa_sync() gets there first.
2101 */
2102 clr->lrc_seq = ++zilog->zl_lr_seq;
2103
2104 lwb->lwb_nused += reclen + dnow;
2105 ASSERT3U(lwb->lwb_nused, <=, lwb->lwb_nmax);
2106 ASSERT0(P2PHASE(lwb->lwb_nused, sizeof (uint64_t)));
2107
2108 zil_lwb_add_txg(lwb, lr->lrc_txg);
2109 list_insert_tail(&lwb->lwb_itxs, citx);
2110
2111 dlen -= dnow;
2112 if (dlen > 0) {
2113 zilog->zl_cur_used += reclen;
2114 goto cont;
2115 }
2116
2117 if (lr->lrc_txtype == TX_WRITE &&
2118 lr->lrc_txg > spa_freeze_txg(zilog->zl_spa))
2119 txg_wait_synced(zilog->zl_dmu_pool, lr->lrc_txg);
2120
2121 return (lwb);
2122 }
2123
2124 /*
2125 * Fill the actual transaction data into the lwb, following zil_lwb_assign().
2126 * Does not require locking.
2127 */
2128 static void
2129 zil_lwb_commit(zilog_t *zilog, lwb_t *lwb, itx_t *itx)
2130 {
2131 lr_t *lr, *lrb;
2132 lr_write_t *lrw, *lrwb;
2133 char *lr_buf;
2134 uint64_t dlen, reclen;
2135
2136 lr = &itx->itx_lr;
2137 lrw = (lr_write_t *)lr;
2138
2139 if (lr->lrc_txtype == TX_COMMIT)
2140 return;
2141
2142 if (lr->lrc_txtype == TX_WRITE && itx->itx_wr_state == WR_NEED_COPY) {
2143 dlen = P2ROUNDUP_TYPED(
2144 lrw->lr_length, sizeof (uint64_t), uint64_t);
2145 } else {
2146 dlen = 0;
2147 }
2148 reclen = lr->lrc_reclen;
2149 ASSERT3U(reclen + dlen, <=, lwb->lwb_nused - lwb->lwb_nfilled);
2150
2151 lr_buf = lwb->lwb_buf + lwb->lwb_nfilled;
2152 memcpy(lr_buf, lr, reclen);
2153 lrb = (lr_t *)lr_buf; /* Like lr, but inside lwb. */
2154 lrwb = (lr_write_t *)lrb; /* Like lrw, but inside lwb. */
2155
2156 ZIL_STAT_BUMP(zilog, zil_itx_count);
2157
2158 /*
2159 * If it's a write, fetch the data or get its blkptr as appropriate.
2160 */
2161 if (lr->lrc_txtype == TX_WRITE) {
2162 if (itx->itx_wr_state == WR_COPIED) {
2163 ZIL_STAT_BUMP(zilog, zil_itx_copied_count);
2164 ZIL_STAT_INCR(zilog, zil_itx_copied_bytes,
2165 lrw->lr_length);
2166 } else {
2167 char *dbuf;
2168 int error;
2169
2170 if (itx->itx_wr_state == WR_NEED_COPY) {
2171 dbuf = lr_buf + reclen;
2172 lrb->lrc_reclen += dlen;
2173 ZIL_STAT_BUMP(zilog, zil_itx_needcopy_count);
2174 ZIL_STAT_INCR(zilog, zil_itx_needcopy_bytes,
2175 dlen);
2176 } else {
2177 ASSERT3S(itx->itx_wr_state, ==, WR_INDIRECT);
2178 dbuf = NULL;
2179 ZIL_STAT_BUMP(zilog, zil_itx_indirect_count);
2180 ZIL_STAT_INCR(zilog, zil_itx_indirect_bytes,
2181 lrw->lr_length);
2182 if (lwb->lwb_child_zio == NULL) {
2183 lwb->lwb_child_zio = zio_null(NULL,
2184 zilog->zl_spa, NULL, NULL, NULL,
2185 ZIO_FLAG_CANFAIL);
2186 }
2187 }
2188
2189 /*
2190 * The "lwb_child_zio" we pass in will become a child of
2191 * "lwb_write_zio", when one is created, so one will be
2192 * a parent of any zio's created by the "zl_get_data".
2193 * This way "lwb_write_zio" will first wait for children
2194 * block pointers before own writing, and then for their
2195 * writing completion before the vdev cache flushing.
2196 */
2197 error = zilog->zl_get_data(itx->itx_private,
2198 itx->itx_gen, lrwb, dbuf, lwb,
2199 lwb->lwb_child_zio);
2200 if (dbuf != NULL && error == 0) {
2201 /* Zero any padding bytes in the last block. */
2202 memset((char *)dbuf + lrwb->lr_length, 0,
2203 dlen - lrwb->lr_length);
2204 }
2205
2206 /*
2207 * Typically, the only return values we should see from
2208 * ->zl_get_data() are 0, EIO, ENOENT, EEXIST or
2209 * EALREADY. However, it is also possible to see other
2210 * error values such as ENOSPC or EINVAL from
2211 * dmu_read() -> dnode_hold() -> dnode_hold_impl() or
2212 * ENXIO as well as a multitude of others from the
2213 * block layer through dmu_buf_hold() -> dbuf_read()
2214 * -> zio_wait(), as well as through dmu_read() ->
2215 * dnode_hold() -> dnode_hold_impl() -> dbuf_read() ->
2216 * zio_wait(). When these errors happen, we can assume
2217 * that neither an immediate write nor an indirect
2218 * write occurred, so we need to fall back to
2219 * txg_wait_synced(). This is unusual, so we print to
2220 * dmesg whenever one of these errors occurs.
2221 */
2222 switch (error) {
2223 case 0:
2224 break;
2225 default:
2226 cmn_err(CE_WARN, "zil_lwb_commit() received "
2227 "unexpected error %d from ->zl_get_data()"
2228 ". Falling back to txg_wait_synced().",
2229 error);
2230 zfs_fallthrough;
2231 case EIO:
2232 txg_wait_synced(zilog->zl_dmu_pool,
2233 lr->lrc_txg);
2234 zfs_fallthrough;
2235 case ENOENT:
2236 zfs_fallthrough;
2237 case EEXIST:
2238 zfs_fallthrough;
2239 case EALREADY:
2240 return;
2241 }
2242 }
2243 }
2244
2245 lwb->lwb_nfilled += reclen + dlen;
2246 ASSERT3S(lwb->lwb_nfilled, <=, lwb->lwb_nused);
2247 ASSERT0(P2PHASE(lwb->lwb_nfilled, sizeof (uint64_t)));
2248 }
2249
2250 itx_t *
2251 zil_itx_create(uint64_t txtype, size_t olrsize)
2252 {
2253 size_t itxsize, lrsize;
2254 itx_t *itx;
2255
2256 ASSERT3U(olrsize, >=, sizeof (lr_t));
2257 lrsize = P2ROUNDUP_TYPED(olrsize, sizeof (uint64_t), size_t);
2258 ASSERT3U(lrsize, >=, olrsize);
2259 itxsize = offsetof(itx_t, itx_lr) + lrsize;
2260
2261 itx = zio_data_buf_alloc(itxsize);
2262 itx->itx_lr.lrc_txtype = txtype;
2263 itx->itx_lr.lrc_reclen = lrsize;
2264 itx->itx_lr.lrc_seq = 0; /* defensive */
2265 memset((char *)&itx->itx_lr + olrsize, 0, lrsize - olrsize);
2266 itx->itx_sync = B_TRUE; /* default is synchronous */
2267 itx->itx_callback = NULL;
2268 itx->itx_callback_data = NULL;
2269 itx->itx_size = itxsize;
2270
2271 return (itx);
2272 }
2273
2274 static itx_t *
2275 zil_itx_clone(itx_t *oitx)
2276 {
2277 ASSERT3U(oitx->itx_size, >=, sizeof (itx_t));
2278 ASSERT3U(oitx->itx_size, ==,
2279 offsetof(itx_t, itx_lr) + oitx->itx_lr.lrc_reclen);
2280
2281 itx_t *itx = zio_data_buf_alloc(oitx->itx_size);
2282 memcpy(itx, oitx, oitx->itx_size);
2283 itx->itx_callback = NULL;
2284 itx->itx_callback_data = NULL;
2285 return (itx);
2286 }
2287
2288 void
2289 zil_itx_destroy(itx_t *itx)
2290 {
2291 ASSERT3U(itx->itx_size, >=, sizeof (itx_t));
2292 ASSERT3U(itx->itx_lr.lrc_reclen, ==,
2293 itx->itx_size - offsetof(itx_t, itx_lr));
2294 IMPLY(itx->itx_lr.lrc_txtype == TX_COMMIT, itx->itx_callback == NULL);
2295 IMPLY(itx->itx_callback != NULL, itx->itx_lr.lrc_txtype != TX_COMMIT);
2296
2297 if (itx->itx_callback != NULL)
2298 itx->itx_callback(itx->itx_callback_data);
2299
2300 zio_data_buf_free(itx, itx->itx_size);
2301 }
2302
2303 /*
2304 * Free up the sync and async itxs. The itxs_t has already been detached
2305 * so no locks are needed.
2306 */
2307 static void
2308 zil_itxg_clean(void *arg)
2309 {
2310 itx_t *itx;
2311 list_t *list;
2312 avl_tree_t *t;
2313 void *cookie;
2314 itxs_t *itxs = arg;
2315 itx_async_node_t *ian;
2316
2317 list = &itxs->i_sync_list;
2318 while ((itx = list_remove_head(list)) != NULL) {
2319 /*
2320 * In the general case, commit itxs will not be found
2321 * here, as they'll be committed to an lwb via
2322 * zil_lwb_assign(), and free'd in that function. Having
2323 * said that, it is still possible for commit itxs to be
2324 * found here, due to the following race:
2325 *
2326 * - a thread calls zil_commit() which assigns the
2327 * commit itx to a per-txg i_sync_list
2328 * - zil_itxg_clean() is called (e.g. via spa_sync())
2329 * while the waiter is still on the i_sync_list
2330 *
2331 * There's nothing to prevent syncing the txg while the
2332 * waiter is on the i_sync_list. This normally doesn't
2333 * happen because spa_sync() is slower than zil_commit(),
2334 * but if zil_commit() calls txg_wait_synced() (e.g.
2335 * because zil_create() or zil_commit_writer_stall() is
2336 * called) we will hit this case.
2337 */
2338 if (itx->itx_lr.lrc_txtype == TX_COMMIT)
2339 zil_commit_waiter_skip(itx->itx_private);
2340
2341 zil_itx_destroy(itx);
2342 }
2343
2344 cookie = NULL;
2345 t = &itxs->i_async_tree;
2346 while ((ian = avl_destroy_nodes(t, &cookie)) != NULL) {
2347 list = &ian->ia_list;
2348 while ((itx = list_remove_head(list)) != NULL) {
2349 /* commit itxs should never be on the async lists. */
2350 ASSERT3U(itx->itx_lr.lrc_txtype, !=, TX_COMMIT);
2351 zil_itx_destroy(itx);
2352 }
2353 list_destroy(list);
2354 kmem_free(ian, sizeof (itx_async_node_t));
2355 }
2356 avl_destroy(t);
2357
2358 kmem_free(itxs, sizeof (itxs_t));
2359 }
2360
2361 static int
2362 zil_aitx_compare(const void *x1, const void *x2)
2363 {
2364 const uint64_t o1 = ((itx_async_node_t *)x1)->ia_foid;
2365 const uint64_t o2 = ((itx_async_node_t *)x2)->ia_foid;
2366
2367 return (TREE_CMP(o1, o2));
2368 }
2369
2370 /*
2371 * Remove all async itx with the given oid.
2372 */
2373 void
2374 zil_remove_async(zilog_t *zilog, uint64_t oid)
2375 {
2376 uint64_t otxg, txg;
2377 itx_async_node_t *ian, ian_search;
2378 avl_tree_t *t;
2379 avl_index_t where;
2380 list_t clean_list;
2381 itx_t *itx;
2382
2383 ASSERT(oid != 0);
2384 list_create(&clean_list, sizeof (itx_t), offsetof(itx_t, itx_node));
2385
2386 if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) /* ziltest support */
2387 otxg = ZILTEST_TXG;
2388 else
2389 otxg = spa_last_synced_txg(zilog->zl_spa) + 1;
2390
2391 for (txg = otxg; txg < (otxg + TXG_CONCURRENT_STATES); txg++) {
2392 itxg_t *itxg = &zilog->zl_itxg[txg & TXG_MASK];
2393
2394 mutex_enter(&itxg->itxg_lock);
2395 if (itxg->itxg_txg != txg) {
2396 mutex_exit(&itxg->itxg_lock);
2397 continue;
2398 }
2399
2400 /*
2401 * Locate the object node and append its list.
2402 */
2403 t = &itxg->itxg_itxs->i_async_tree;
2404 ian_search.ia_foid = oid;
2405 ian = avl_find(t, &ian_search, &where);
2406 if (ian != NULL)
2407 list_move_tail(&clean_list, &ian->ia_list);
2408 mutex_exit(&itxg->itxg_lock);
2409 }
2410 while ((itx = list_remove_head(&clean_list)) != NULL) {
2411 /* commit itxs should never be on the async lists. */
2412 ASSERT3U(itx->itx_lr.lrc_txtype, !=, TX_COMMIT);
2413 zil_itx_destroy(itx);
2414 }
2415 list_destroy(&clean_list);
2416 }
2417
2418 void
2419 zil_itx_assign(zilog_t *zilog, itx_t *itx, dmu_tx_t *tx)
2420 {
2421 uint64_t txg;
2422 itxg_t *itxg;
2423 itxs_t *itxs, *clean = NULL;
2424
2425 /*
2426 * Ensure the data of a renamed file is committed before the rename.
2427 */
2428 if ((itx->itx_lr.lrc_txtype & ~TX_CI) == TX_RENAME)
2429 zil_async_to_sync(zilog, itx->itx_oid);
2430
2431 if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX)
2432 txg = ZILTEST_TXG;
2433 else
2434 txg = dmu_tx_get_txg(tx);
2435
2436 itxg = &zilog->zl_itxg[txg & TXG_MASK];
2437 mutex_enter(&itxg->itxg_lock);
2438 itxs = itxg->itxg_itxs;
2439 if (itxg->itxg_txg != txg) {
2440 if (itxs != NULL) {
2441 /*
2442 * The zil_clean callback hasn't got around to cleaning
2443 * this itxg. Save the itxs for release below.
2444 * This should be rare.
2445 */
2446 zfs_dbgmsg("zil_itx_assign: missed itx cleanup for "
2447 "txg %llu", (u_longlong_t)itxg->itxg_txg);
2448 clean = itxg->itxg_itxs;
2449 }
2450 itxg->itxg_txg = txg;
2451 itxs = itxg->itxg_itxs = kmem_zalloc(sizeof (itxs_t),
2452 KM_SLEEP);
2453
2454 list_create(&itxs->i_sync_list, sizeof (itx_t),
2455 offsetof(itx_t, itx_node));
2456 avl_create(&itxs->i_async_tree, zil_aitx_compare,
2457 sizeof (itx_async_node_t),
2458 offsetof(itx_async_node_t, ia_node));
2459 }
2460 if (itx->itx_sync) {
2461 list_insert_tail(&itxs->i_sync_list, itx);
2462 } else {
2463 avl_tree_t *t = &itxs->i_async_tree;
2464 uint64_t foid =
2465 LR_FOID_GET_OBJ(((lr_ooo_t *)&itx->itx_lr)->lr_foid);
2466 itx_async_node_t *ian;
2467 avl_index_t where;
2468
2469 ian = avl_find(t, &foid, &where);
2470 if (ian == NULL) {
2471 ian = kmem_alloc(sizeof (itx_async_node_t),
2472 KM_SLEEP);
2473 list_create(&ian->ia_list, sizeof (itx_t),
2474 offsetof(itx_t, itx_node));
2475 ian->ia_foid = foid;
2476 avl_insert(t, ian, where);
2477 }
2478 list_insert_tail(&ian->ia_list, itx);
2479 }
2480
2481 itx->itx_lr.lrc_txg = dmu_tx_get_txg(tx);
2482
2483 /*
2484 * We don't want to dirty the ZIL using ZILTEST_TXG, because
2485 * zil_clean() will never be called using ZILTEST_TXG. Thus, we
2486 * need to be careful to always dirty the ZIL using the "real"
2487 * TXG (not itxg_txg) even when the SPA is frozen.
2488 */
2489 zilog_dirty(zilog, dmu_tx_get_txg(tx));
2490 mutex_exit(&itxg->itxg_lock);
2491
2492 /* Release the old itxs now we've dropped the lock */
2493 if (clean != NULL)
2494 zil_itxg_clean(clean);
2495 }
2496
2497 /*
2498 * If there are any in-memory intent log transactions which have now been
2499 * synced then start up a taskq to free them. We should only do this after we
2500 * have written out the uberblocks (i.e. txg has been committed) so that
2501 * don't inadvertently clean out in-memory log records that would be required
2502 * by zil_commit().
2503 */
2504 void
2505 zil_clean(zilog_t *zilog, uint64_t synced_txg)
2506 {
2507 itxg_t *itxg = &zilog->zl_itxg[synced_txg & TXG_MASK];
2508 itxs_t *clean_me;
2509
2510 ASSERT3U(synced_txg, <, ZILTEST_TXG);
2511
2512 mutex_enter(&itxg->itxg_lock);
2513 if (itxg->itxg_itxs == NULL || itxg->itxg_txg == ZILTEST_TXG) {
2514 mutex_exit(&itxg->itxg_lock);
2515 return;
2516 }
2517 ASSERT3U(itxg->itxg_txg, <=, synced_txg);
2518 ASSERT3U(itxg->itxg_txg, !=, 0);
2519 clean_me = itxg->itxg_itxs;
2520 itxg->itxg_itxs = NULL;
2521 itxg->itxg_txg = 0;
2522 mutex_exit(&itxg->itxg_lock);
2523 /*
2524 * Preferably start a task queue to free up the old itxs but
2525 * if taskq_dispatch can't allocate resources to do that then
2526 * free it in-line. This should be rare. Note, using TQ_SLEEP
2527 * created a bad performance problem.
2528 */
2529 ASSERT3P(zilog->zl_dmu_pool, !=, NULL);
2530 ASSERT3P(zilog->zl_dmu_pool->dp_zil_clean_taskq, !=, NULL);
2531 taskqid_t id = taskq_dispatch(zilog->zl_dmu_pool->dp_zil_clean_taskq,
2532 zil_itxg_clean, clean_me, TQ_NOSLEEP);
2533 if (id == TASKQID_INVALID)
2534 zil_itxg_clean(clean_me);
2535 }
2536
2537 /*
2538 * This function will traverse the queue of itxs that need to be
2539 * committed, and move them onto the ZIL's zl_itx_commit_list.
2540 */
2541 static uint64_t
2542 zil_get_commit_list(zilog_t *zilog)
2543 {
2544 uint64_t otxg, txg, wtxg = 0;
2545 list_t *commit_list = &zilog->zl_itx_commit_list;
2546
2547 ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
2548
2549 if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) /* ziltest support */
2550 otxg = ZILTEST_TXG;
2551 else
2552 otxg = spa_last_synced_txg(zilog->zl_spa) + 1;
2553
2554 /*
2555 * This is inherently racy, since there is nothing to prevent
2556 * the last synced txg from changing. That's okay since we'll
2557 * only commit things in the future.
2558 */
2559 for (txg = otxg; txg < (otxg + TXG_CONCURRENT_STATES); txg++) {
2560 itxg_t *itxg = &zilog->zl_itxg[txg & TXG_MASK];
2561
2562 mutex_enter(&itxg->itxg_lock);
2563 if (itxg->itxg_txg != txg) {
2564 mutex_exit(&itxg->itxg_lock);
2565 continue;
2566 }
2567
2568 /*
2569 * If we're adding itx records to the zl_itx_commit_list,
2570 * then the zil better be dirty in this "txg". We can assert
2571 * that here since we're holding the itxg_lock which will
2572 * prevent spa_sync from cleaning it. Once we add the itxs
2573 * to the zl_itx_commit_list we must commit it to disk even
2574 * if it's unnecessary (i.e. the txg was synced).
2575 */
2576 ASSERT(zilog_is_dirty_in_txg(zilog, txg) ||
2577 spa_freeze_txg(zilog->zl_spa) != UINT64_MAX);
2578 list_t *sync_list = &itxg->itxg_itxs->i_sync_list;
2579 if (unlikely(zilog->zl_suspend > 0)) {
2580 /*
2581 * ZIL was just suspended, but we lost the race.
2582 * Allow all earlier itxs to be committed, but ask
2583 * caller to do txg_wait_synced(txg) for any new.
2584 */
2585 if (!list_is_empty(sync_list))
2586 wtxg = MAX(wtxg, txg);
2587 } else {
2588 list_move_tail(commit_list, sync_list);
2589 }
2590
2591 mutex_exit(&itxg->itxg_lock);
2592 }
2593 return (wtxg);
2594 }
2595
2596 /*
2597 * Move the async itxs for a specified object to commit into sync lists.
2598 */
2599 void
2600 zil_async_to_sync(zilog_t *zilog, uint64_t foid)
2601 {
2602 uint64_t otxg, txg;
2603 itx_async_node_t *ian, ian_search;
2604 avl_tree_t *t;
2605 avl_index_t where;
2606
2607 if (spa_freeze_txg(zilog->zl_spa) != UINT64_MAX) /* ziltest support */
2608 otxg = ZILTEST_TXG;
2609 else
2610 otxg = spa_last_synced_txg(zilog->zl_spa) + 1;
2611
2612 /*
2613 * This is inherently racy, since there is nothing to prevent
2614 * the last synced txg from changing.
2615 */
2616 for (txg = otxg; txg < (otxg + TXG_CONCURRENT_STATES); txg++) {
2617 itxg_t *itxg = &zilog->zl_itxg[txg & TXG_MASK];
2618
2619 mutex_enter(&itxg->itxg_lock);
2620 if (itxg->itxg_txg != txg) {
2621 mutex_exit(&itxg->itxg_lock);
2622 continue;
2623 }
2624
2625 /*
2626 * If a foid is specified then find that node and append its
2627 * list. Otherwise walk the tree appending all the lists
2628 * to the sync list. We add to the end rather than the
2629 * beginning to ensure the create has happened.
2630 */
2631 t = &itxg->itxg_itxs->i_async_tree;
2632 if (foid != 0) {
2633 ian_search.ia_foid = foid;
2634 ian = avl_find(t, &ian_search, &where);
2635 if (ian != NULL) {
2636 list_move_tail(&itxg->itxg_itxs->i_sync_list,
2637 &ian->ia_list);
2638 }
2639 } else {
2640 void *cookie = NULL;
2641
2642 while ((ian = avl_destroy_nodes(t, &cookie)) != NULL) {
2643 list_move_tail(&itxg->itxg_itxs->i_sync_list,
2644 &ian->ia_list);
2645 list_destroy(&ian->ia_list);
2646 kmem_free(ian, sizeof (itx_async_node_t));
2647 }
2648 }
2649 mutex_exit(&itxg->itxg_lock);
2650 }
2651 }
2652
2653 /*
2654 * This function will prune commit itxs that are at the head of the
2655 * commit list (it won't prune past the first non-commit itx), and
2656 * either: a) attach them to the last lwb that's still pending
2657 * completion, or b) skip them altogether.
2658 *
2659 * This is used as a performance optimization to prevent commit itxs
2660 * from generating new lwbs when it's unnecessary to do so.
2661 */
2662 static void
2663 zil_prune_commit_list(zilog_t *zilog)
2664 {
2665 itx_t *itx;
2666
2667 ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
2668
2669 while ((itx = list_head(&zilog->zl_itx_commit_list)) != NULL) {
2670 lr_t *lrc = &itx->itx_lr;
2671 if (lrc->lrc_txtype != TX_COMMIT)
2672 break;
2673
2674 mutex_enter(&zilog->zl_lock);
2675
2676 lwb_t *last_lwb = zilog->zl_last_lwb_opened;
2677 if (last_lwb == NULL ||
2678 last_lwb->lwb_state == LWB_STATE_FLUSH_DONE) {
2679 /*
2680 * All of the itxs this waiter was waiting on
2681 * must have already completed (or there were
2682 * never any itx's for it to wait on), so it's
2683 * safe to skip this waiter and mark it done.
2684 */
2685 zil_commit_waiter_skip(itx->itx_private);
2686 } else {
2687 zil_commit_waiter_link_lwb(itx->itx_private, last_lwb);
2688 }
2689
2690 mutex_exit(&zilog->zl_lock);
2691
2692 list_remove(&zilog->zl_itx_commit_list, itx);
2693 zil_itx_destroy(itx);
2694 }
2695
2696 IMPLY(itx != NULL, itx->itx_lr.lrc_txtype != TX_COMMIT);
2697 }
2698
2699 static void
2700 zil_commit_writer_stall(zilog_t *zilog)
2701 {
2702 /*
2703 * When zio_alloc_zil() fails to allocate the next lwb block on
2704 * disk, we must call txg_wait_synced() to ensure all of the
2705 * lwbs in the zilog's zl_lwb_list are synced and then freed (in
2706 * zil_sync()), such that any subsequent ZIL writer (i.e. a call
2707 * to zil_process_commit_list()) will have to call zil_create(),
2708 * and start a new ZIL chain.
2709 *
2710 * Since zil_alloc_zil() failed, the lwb that was previously
2711 * issued does not have a pointer to the "next" lwb on disk.
2712 * Thus, if another ZIL writer thread was to allocate the "next"
2713 * on-disk lwb, that block could be leaked in the event of a
2714 * crash (because the previous lwb on-disk would not point to
2715 * it).
2716 *
2717 * We must hold the zilog's zl_issuer_lock while we do this, to
2718 * ensure no new threads enter zil_process_commit_list() until
2719 * all lwb's in the zl_lwb_list have been synced and freed
2720 * (which is achieved via the txg_wait_synced() call).
2721 */
2722 ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
2723 txg_wait_synced(zilog->zl_dmu_pool, 0);
2724 ASSERT(list_is_empty(&zilog->zl_lwb_list));
2725 }
2726
2727 static void
2728 zil_burst_done(zilog_t *zilog)
2729 {
2730 if (!list_is_empty(&zilog->zl_itx_commit_list) ||
2731 zilog->zl_cur_used == 0)
2732 return;
2733
2734 if (zilog->zl_parallel)
2735 zilog->zl_parallel--;
2736
2737 zilog->zl_cur_used = 0;
2738 }
2739
2740 /*
2741 * This function will traverse the commit list, creating new lwbs as
2742 * needed, and committing the itxs from the commit list to these newly
2743 * created lwbs. Additionally, as a new lwb is created, the previous
2744 * lwb will be issued to the zio layer to be written to disk.
2745 */
2746 static void
2747 zil_process_commit_list(zilog_t *zilog, zil_commit_waiter_t *zcw, list_t *ilwbs)
2748 {
2749 spa_t *spa = zilog->zl_spa;
2750 list_t nolwb_itxs;
2751 list_t nolwb_waiters;
2752 lwb_t *lwb, *plwb;
2753 itx_t *itx;
2754
2755 ASSERT(MUTEX_HELD(&zilog->zl_issuer_lock));
2756
2757 /*
2758 * Return if there's nothing to commit before we dirty the fs by
2759 * calling zil_create().
2760 */
2761 if (list_is_empty(&zilog->zl_itx_commit_list))
2762 return;
2763
2764 list_create(&nolwb_itxs, sizeof (itx_t), offsetof(itx_t, itx_node));
2765 list_create(&nolwb_waiters, sizeof (zil_commit_waiter_t),
2766 offsetof(zil_commit_waiter_t, zcw_node));
2767
2768 lwb = list_tail(&zilog->zl_lwb_list);
2769 if (lwb == NULL) {
2770 lwb = zil_create(zilog);
2771 } else {
2772 /*
2773 * Activate SPA_FEATURE_ZILSAXATTR for the cases where ZIL will
2774 * have already been created (zl_lwb_list not empty).
2775 */
2776 zil_commit_activate_saxattr_feature(zilog);
2777 ASSERT(lwb->lwb_state == LWB_STATE_NEW ||
2778 lwb->lwb_state == LWB_STATE_OPENED);
2779
2780 /*
2781 * If the lwb is still opened, it means the workload is really
2782 * multi-threaded and we won the chance of write aggregation.
2783 * If it is not opened yet, but previous lwb is still not
2784 * flushed, it still means the workload is multi-threaded, but
2785 * there was too much time between the commits to aggregate, so
2786 * we try aggregation next times, but without too much hopes.
2787 */
2788 if (lwb->lwb_state == LWB_STATE_OPENED) {
2789 zilog->zl_parallel = ZIL_BURSTS;
2790 } else if ((plwb = list_prev(&zilog->zl_lwb_list, lwb))
2791 != NULL && plwb->lwb_state != LWB_STATE_FLUSH_DONE) {
2792 zilog->zl_parallel = MAX(zilog->zl_parallel,
2793 ZIL_BURSTS / 2);
2794 }
2795 }
2796
2797 while ((itx = list_remove_head(&zilog->zl_itx_commit_list)) != NULL) {
2798 lr_t *lrc = &itx->itx_lr;
2799 uint64_t txg = lrc->lrc_txg;
2800
2801 ASSERT3U(txg, !=, 0);
2802
2803 if (lrc->lrc_txtype == TX_COMMIT) {
2804 DTRACE_PROBE2(zil__process__commit__itx,
2805 zilog_t *, zilog, itx_t *, itx);
2806 } else {
2807 DTRACE_PROBE2(zil__process__normal__itx,
2808 zilog_t *, zilog, itx_t *, itx);
2809 }
2810
2811 boolean_t synced = txg <= spa_last_synced_txg(spa);
2812 boolean_t frozen = txg > spa_freeze_txg(spa);
2813
2814 /*
2815 * If the txg of this itx has already been synced out, then
2816 * we don't need to commit this itx to an lwb. This is
2817 * because the data of this itx will have already been
2818 * written to the main pool. This is inherently racy, and
2819 * it's still ok to commit an itx whose txg has already
2820 * been synced; this will result in a write that's
2821 * unnecessary, but will do no harm.
2822 *
2823 * With that said, we always want to commit TX_COMMIT itxs
2824 * to an lwb, regardless of whether or not that itx's txg
2825 * has been synced out. We do this to ensure any OPENED lwb
2826 * will always have at least one zil_commit_waiter_t linked
2827 * to the lwb.
2828 *
2829 * As a counter-example, if we skipped TX_COMMIT itx's
2830 * whose txg had already been synced, the following
2831 * situation could occur if we happened to be racing with
2832 * spa_sync:
2833 *
2834 * 1. We commit a non-TX_COMMIT itx to an lwb, where the
2835 * itx's txg is 10 and the last synced txg is 9.
2836 * 2. spa_sync finishes syncing out txg 10.
2837 * 3. We move to the next itx in the list, it's a TX_COMMIT
2838 * whose txg is 10, so we skip it rather than committing
2839 * it to the lwb used in (1).
2840 *
2841 * If the itx that is skipped in (3) is the last TX_COMMIT
2842 * itx in the commit list, than it's possible for the lwb
2843 * used in (1) to remain in the OPENED state indefinitely.
2844 *
2845 * To prevent the above scenario from occurring, ensuring
2846 * that once an lwb is OPENED it will transition to ISSUED
2847 * and eventually DONE, we always commit TX_COMMIT itx's to
2848 * an lwb here, even if that itx's txg has already been
2849 * synced.
2850 *
2851 * Finally, if the pool is frozen, we _always_ commit the
2852 * itx. The point of freezing the pool is to prevent data
2853 * from being written to the main pool via spa_sync, and
2854 * instead rely solely on the ZIL to persistently store the
2855 * data; i.e. when the pool is frozen, the last synced txg
2856 * value can't be trusted.
2857 */
2858 if (frozen || !synced || lrc->lrc_txtype == TX_COMMIT) {
2859 if (lwb != NULL) {
2860 lwb = zil_lwb_assign(zilog, lwb, itx, ilwbs);
2861 if (lwb == NULL) {
2862 list_insert_tail(&nolwb_itxs, itx);
2863 } else if ((zcw->zcw_lwb != NULL &&
2864 zcw->zcw_lwb != lwb) || zcw->zcw_done) {
2865 /*
2866 * Our lwb is done, leave the rest of
2867 * itx list to somebody else who care.
2868 */
2869 zilog->zl_parallel = ZIL_BURSTS;
2870 break;
2871 }
2872 } else {
2873 if (lrc->lrc_txtype == TX_COMMIT) {
2874 zil_commit_waiter_link_nolwb(
2875 itx->itx_private, &nolwb_waiters);
2876 }
2877 list_insert_tail(&nolwb_itxs, itx);
2878 }
2879 } else {
2880 ASSERT3S(lrc->lrc_txtype, !=, TX_COMMIT);
2881 zil_itx_destroy(itx);
2882 }
2883 }
2884
2885 if (lwb == NULL) {
2886 /*
2887 * This indicates zio_alloc_zil() failed to allocate the
2888 * "next" lwb on-disk. When this happens, we must stall
2889 * the ZIL write pipeline; see the comment within
2890 * zil_commit_writer_stall() for more details.
2891 */
2892 while ((lwb = list_remove_head(ilwbs)) != NULL)
2893 zil_lwb_write_issue(zilog, lwb);
2894 zil_commit_writer_stall(zilog);
2895
2896 /*
2897 * Additionally, we have to signal and mark the "nolwb"
2898 * waiters as "done" here, since without an lwb, we
2899 * can't do this via zil_lwb_flush_vdevs_done() like
2900 * normal.
2901 */
2902 zil_commit_waiter_t *zcw;
2903 while ((zcw = list_remove_head(&nolwb_waiters)) != NULL)
2904 zil_commit_waiter_skip(zcw);
2905
2906 /*
2907 * And finally, we have to destroy the itx's that
2908 * couldn't be committed to an lwb; this will also call
2909 * the itx's callback if one exists for the itx.
2910 */
2911 while ((itx = list_remove_head(&nolwb_itxs)) != NULL)
2912 zil_itx_destroy(itx);
2913 } else {
2914 ASSERT(list_is_empty(&nolwb_waiters));
2915 ASSERT3P(lwb, !=, NULL);
2916 ASSERT(lwb->lwb_state == LWB_STATE_NEW ||
2917 lwb->lwb_state == LWB_STATE_OPENED);
2918
2919 /*
2920 * At this point, the ZIL block pointed at by the "lwb"
2921 * variable is in "new" or "opened" state.
2922 *
2923 * If it's "new", then no itxs have been committed to it, so
2924 * there's no point in issuing its zio (i.e. it's "empty").
2925 *
2926 * If it's "opened", then it contains one or more itxs that
2927 * eventually need to be committed to stable storage. In
2928 * this case we intentionally do not issue the lwb's zio
2929 * to disk yet, and instead rely on one of the following
2930 * two mechanisms for issuing the zio:
2931 *
2932 * 1. Ideally, there will be more ZIL activity occurring on
2933 * the system, such that this function will be immediately
2934 * called again by different thread and this lwb will be
2935 * closed by zil_lwb_assign(). This way, the lwb will be
2936 * "full" when it is issued to disk, and we'll make use of
2937 * the lwb's size the best we can.
2938 *
2939 * 2. If there isn't sufficient ZIL activity occurring on
2940 * the system, zil_commit_waiter() will close it and issue
2941 * the zio. If this occurs, the lwb is not guaranteed
2942 * to be "full" by the time its zio is issued, and means
2943 * the size of the lwb was "too large" given the amount
2944 * of ZIL activity occurring on the system at that time.
2945 *
2946 * We do this for a couple of reasons:
2947 *
2948 * 1. To try and reduce the number of IOPs needed to
2949 * write the same number of itxs. If an lwb has space
2950 * available in its buffer for more itxs, and more itxs
2951 * will be committed relatively soon (relative to the
2952 * latency of performing a write), then it's beneficial
2953 * to wait for these "next" itxs. This way, more itxs
2954 * can be committed to stable storage with fewer writes.
2955 *
2956 * 2. To try and use the largest lwb block size that the
2957 * incoming rate of itxs can support. Again, this is to
2958 * try and pack as many itxs into as few lwbs as
2959 * possible, without significantly impacting the latency
2960 * of each individual itx.
2961 */
2962 if (lwb->lwb_state == LWB_STATE_OPENED && !zilog->zl_parallel) {
2963 list_insert_tail(ilwbs, lwb);
2964 lwb = zil_lwb_write_close(zilog, lwb, LWB_STATE_NEW);
2965 zil_burst_done(zilog);
2966 if (lwb == NULL) {
2967 while ((lwb = list_remove_head(ilwbs)) != NULL)
2968 zil_lwb_write_issue(zilog, lwb);
2969 zil_commit_writer_stall(zilog);
2970 }
2971 }
2972 }
2973 }
2974
2975 /*
2976 * This function is responsible for ensuring the passed in commit waiter
2977 * (and associated commit itx) is committed to an lwb. If the waiter is
2978 * not already committed to an lwb, all itxs in the zilog's queue of
2979 * itxs will be processed. The assumption is the passed in waiter's
2980 * commit itx will found in the queue just like the other non-commit
2981 * itxs, such that when the entire queue is processed, the waiter will
2982 * have been committed to an lwb.
2983 *
2984 * The lwb associated with the passed in waiter is not guaranteed to
2985 * have been issued by the time this function completes. If the lwb is
2986 * not issued, we rely on future calls to zil_commit_writer() to issue
2987 * the lwb, or the timeout mechanism found in zil_commit_waiter().
2988 */
2989 static uint64_t
2990 zil_commit_writer(zilog_t *zilog, zil_commit_waiter_t *zcw)
2991 {
2992 list_t ilwbs;
2993 lwb_t *lwb;
2994 uint64_t wtxg = 0;
2995
2996 ASSERT(!MUTEX_HELD(&zilog->zl_lock));
2997 ASSERT(spa_writeable(zilog->zl_spa));
2998
2999 list_create(&ilwbs, sizeof (lwb_t), offsetof(lwb_t, lwb_issue_node));
3000 mutex_enter(&zilog->zl_issuer_lock);
3001
3002 if (zcw->zcw_lwb != NULL || zcw->zcw_done) {
3003 /*
3004 * It's possible that, while we were waiting to acquire
3005 * the "zl_issuer_lock", another thread committed this
3006 * waiter to an lwb. If that occurs, we bail out early,
3007 * without processing any of the zilog's queue of itxs.
3008 *
3009 * On certain workloads and system configurations, the
3010 * "zl_issuer_lock" can become highly contended. In an
3011 * attempt to reduce this contention, we immediately drop
3012 * the lock if the waiter has already been processed.
3013 *
3014 * We've measured this optimization to reduce CPU spent
3015 * contending on this lock by up to 5%, using a system
3016 * with 32 CPUs, low latency storage (~50 usec writes),
3017 * and 1024 threads performing sync writes.
3018 */
3019 goto out;
3020 }
3021
3022 ZIL_STAT_BUMP(zilog, zil_commit_writer_count);
3023
3024 wtxg = zil_get_commit_list(zilog);
3025 zil_prune_commit_list(zilog);
3026 zil_process_commit_list(zilog, zcw, &ilwbs);
3027
3028 out:
3029 mutex_exit(&zilog->zl_issuer_lock);
3030 while ((lwb = list_remove_head(&ilwbs)) != NULL)
3031 zil_lwb_write_issue(zilog, lwb);
3032 list_destroy(&ilwbs);
3033 return (wtxg);
3034 }
3035
3036 static void
3037 zil_commit_waiter_timeout(zilog_t *zilog, zil_commit_waiter_t *zcw)
3038 {
3039 ASSERT(!MUTEX_HELD(&zilog->zl_issuer_lock));
3040 ASSERT(MUTEX_HELD(&zcw->zcw_lock));
3041 ASSERT3B(zcw->zcw_done, ==, B_FALSE);
3042
3043 lwb_t *lwb = zcw->zcw_lwb;
3044 ASSERT3P(lwb, !=, NULL);
3045 ASSERT3S(lwb->lwb_state, !=, LWB_STATE_NEW);
3046
3047 /*
3048 * If the lwb has already been issued by another thread, we can
3049 * immediately return since there's no work to be done (the
3050 * point of this function is to issue the lwb). Additionally, we
3051 * do this prior to acquiring the zl_issuer_lock, to avoid
3052 * acquiring it when it's not necessary to do so.
3053 */
3054 if (lwb->lwb_state != LWB_STATE_OPENED)
3055 return;
3056
3057 /*
3058 * In order to call zil_lwb_write_close() we must hold the
3059 * zilog's "zl_issuer_lock". We can't simply acquire that lock,
3060 * since we're already holding the commit waiter's "zcw_lock",
3061 * and those two locks are acquired in the opposite order
3062 * elsewhere.
3063 */
3064 mutex_exit(&zcw->zcw_lock);
3065 mutex_enter(&zilog->zl_issuer_lock);
3066 mutex_enter(&zcw->zcw_lock);
3067
3068 /*
3069 * Since we just dropped and re-acquired the commit waiter's
3070 * lock, we have to re-check to see if the waiter was marked
3071 * "done" during that process. If the waiter was marked "done",
3072 * the "lwb" pointer is no longer valid (it can be free'd after
3073 * the waiter is marked "done"), so without this check we could
3074 * wind up with a use-after-free error below.
3075 */
3076 if (zcw->zcw_done) {
3077 mutex_exit(&zilog->zl_issuer_lock);
3078 return;
3079 }
3080
3081 ASSERT3P(lwb, ==, zcw->zcw_lwb);
3082
3083 /*
3084 * We've already checked this above, but since we hadn't acquired
3085 * the zilog's zl_issuer_lock, we have to perform this check a
3086 * second time while holding the lock.
3087 *
3088 * We don't need to hold the zl_lock since the lwb cannot transition
3089 * from OPENED to CLOSED while we hold the zl_issuer_lock. The lwb
3090 * _can_ transition from CLOSED to DONE, but it's OK to race with
3091 * that transition since we treat the lwb the same, whether it's in
3092 * the CLOSED, ISSUED or DONE states.
3093 *
3094 * The important thing, is we treat the lwb differently depending on
3095 * if it's OPENED or CLOSED, and block any other threads that might
3096 * attempt to close/issue this lwb. For that reason we hold the
3097 * zl_issuer_lock when checking the lwb_state; we must not call
3098 * zil_lwb_write_close() if the lwb had already been closed/issued.
3099 *
3100 * See the comment above the lwb_state_t structure definition for
3101 * more details on the lwb states, and locking requirements.
3102 */
3103 if (lwb->lwb_state != LWB_STATE_OPENED) {
3104 mutex_exit(&zilog->zl_issuer_lock);
3105 return;
3106 }
3107
3108 /*
3109 * We do not need zcw_lock once we hold zl_issuer_lock and know lwb
3110 * is still open. But we have to drop it to avoid a deadlock in case
3111 * callback of zio issued by zil_lwb_write_issue() try to get it,
3112 * while zil_lwb_write_issue() is blocked on attempt to issue next
3113 * lwb it found in LWB_STATE_READY state.
3114 */
3115 mutex_exit(&zcw->zcw_lock);
3116
3117 /*
3118 * As described in the comments above zil_commit_waiter() and
3119 * zil_process_commit_list(), we need to issue this lwb's zio
3120 * since we've reached the commit waiter's timeout and it still
3121 * hasn't been issued.
3122 */
3123 lwb_t *nlwb = zil_lwb_write_close(zilog, lwb, LWB_STATE_NEW);
3124
3125 ASSERT3S(lwb->lwb_state, ==, LWB_STATE_CLOSED);
3126
3127 zil_burst_done(zilog);
3128
3129 if (nlwb == NULL) {
3130 /*
3131 * When zil_lwb_write_close() returns NULL, this
3132 * indicates zio_alloc_zil() failed to allocate the
3133 * "next" lwb on-disk. When this occurs, the ZIL write
3134 * pipeline must be stalled; see the comment within the
3135 * zil_commit_writer_stall() function for more details.
3136 */
3137 zil_lwb_write_issue(zilog, lwb);
3138 zil_commit_writer_stall(zilog);
3139 mutex_exit(&zilog->zl_issuer_lock);
3140 } else {
3141 mutex_exit(&zilog->zl_issuer_lock);
3142 zil_lwb_write_issue(zilog, lwb);
3143 }
3144 mutex_enter(&zcw->zcw_lock);
3145 }
3146
3147 /*
3148 * This function is responsible for performing the following two tasks:
3149 *
3150 * 1. its primary responsibility is to block until the given "commit
3151 * waiter" is considered "done".
3152 *
3153 * 2. its secondary responsibility is to issue the zio for the lwb that
3154 * the given "commit waiter" is waiting on, if this function has
3155 * waited "long enough" and the lwb is still in the "open" state.
3156 *
3157 * Given a sufficient amount of itxs being generated and written using
3158 * the ZIL, the lwb's zio will be issued via the zil_lwb_assign()
3159 * function. If this does not occur, this secondary responsibility will
3160 * ensure the lwb is issued even if there is not other synchronous
3161 * activity on the system.
3162 *
3163 * For more details, see zil_process_commit_list(); more specifically,
3164 * the comment at the bottom of that function.
3165 */
3166 static void
3167 zil_commit_waiter(zilog_t *zilog, zil_commit_waiter_t *zcw)
3168 {
3169 ASSERT(!MUTEX_HELD(&zilog->zl_lock));
3170 ASSERT(!MUTEX_HELD(&zilog->zl_issuer_lock));
3171 ASSERT(spa_writeable(zilog->zl_spa));
3172
3173 mutex_enter(&zcw->zcw_lock);
3174
3175 /*
3176 * The timeout is scaled based on the lwb latency to avoid
3177 * significantly impacting the latency of each individual itx.
3178 * For more details, see the comment at the bottom of the
3179 * zil_process_commit_list() function.
3180 */
3181 int pct = MAX(zfs_commit_timeout_pct, 1);
3182 hrtime_t sleep = (zilog->zl_last_lwb_latency * pct) / 100;
3183 hrtime_t wakeup = gethrtime() + sleep;
3184 boolean_t timedout = B_FALSE;
3185
3186 while (!zcw->zcw_done) {
3187 ASSERT(MUTEX_HELD(&zcw->zcw_lock));
3188
3189 lwb_t *lwb = zcw->zcw_lwb;
3190
3191 /*
3192 * Usually, the waiter will have a non-NULL lwb field here,
3193 * but it's possible for it to be NULL as a result of
3194 * zil_commit() racing with spa_sync().
3195 *
3196 * When zil_clean() is called, it's possible for the itxg
3197 * list (which may be cleaned via a taskq) to contain
3198 * commit itxs. When this occurs, the commit waiters linked
3199 * off of these commit itxs will not be committed to an
3200 * lwb. Additionally, these commit waiters will not be
3201 * marked done until zil_commit_waiter_skip() is called via
3202 * zil_itxg_clean().
3203 *
3204 * Thus, it's possible for this commit waiter (i.e. the
3205 * "zcw" variable) to be found in this "in between" state;
3206 * where it's "zcw_lwb" field is NULL, and it hasn't yet
3207 * been skipped, so it's "zcw_done" field is still B_FALSE.
3208 */
3209 IMPLY(lwb != NULL, lwb->lwb_state != LWB_STATE_NEW);
3210
3211 if (lwb != NULL && lwb->lwb_state == LWB_STATE_OPENED) {
3212 ASSERT3B(timedout, ==, B_FALSE);
3213
3214 /*
3215 * If the lwb hasn't been issued yet, then we
3216 * need to wait with a timeout, in case this
3217 * function needs to issue the lwb after the
3218 * timeout is reached; responsibility (2) from
3219 * the comment above this function.
3220 */
3221 int rc = cv_timedwait_hires(&zcw->zcw_cv,
3222 &zcw->zcw_lock, wakeup, USEC2NSEC(1),
3223 CALLOUT_FLAG_ABSOLUTE);
3224
3225 if (rc != -1 || zcw->zcw_done)
3226 continue;
3227
3228 timedout = B_TRUE;
3229 zil_commit_waiter_timeout(zilog, zcw);
3230
3231 if (!zcw->zcw_done) {
3232 /*
3233 * If the commit waiter has already been
3234 * marked "done", it's possible for the
3235 * waiter's lwb structure to have already
3236 * been freed. Thus, we can only reliably
3237 * make these assertions if the waiter
3238 * isn't done.
3239 */
3240 ASSERT3P(lwb, ==, zcw->zcw_lwb);
3241 ASSERT3S(lwb->lwb_state, !=, LWB_STATE_OPENED);
3242 }
3243 } else {
3244 /*
3245 * If the lwb isn't open, then it must have already
3246 * been issued. In that case, there's no need to
3247 * use a timeout when waiting for the lwb to
3248 * complete.
3249 *
3250 * Additionally, if the lwb is NULL, the waiter
3251 * will soon be signaled and marked done via
3252 * zil_clean() and zil_itxg_clean(), so no timeout
3253 * is required.
3254 */
3255
3256 IMPLY(lwb != NULL,
3257 lwb->lwb_state == LWB_STATE_CLOSED ||
3258 lwb->lwb_state == LWB_STATE_READY ||
3259 lwb->lwb_state == LWB_STATE_ISSUED ||
3260 lwb->lwb_state == LWB_STATE_WRITE_DONE ||
3261 lwb->lwb_state == LWB_STATE_FLUSH_DONE);
3262 cv_wait(&zcw->zcw_cv, &zcw->zcw_lock);
3263 }
3264 }
3265
3266 mutex_exit(&zcw->zcw_lock);
3267 }
3268
3269 static zil_commit_waiter_t *
3270 zil_alloc_commit_waiter(void)
3271 {
3272 zil_commit_waiter_t *zcw = kmem_cache_alloc(zil_zcw_cache, KM_SLEEP);
3273
3274 cv_init(&zcw->zcw_cv, NULL, CV_DEFAULT, NULL);
3275 mutex_init(&zcw->zcw_lock, NULL, MUTEX_DEFAULT, NULL);
3276 list_link_init(&zcw->zcw_node);
3277 zcw->zcw_lwb = NULL;
3278 zcw->zcw_done = B_FALSE;
3279 zcw->zcw_zio_error = 0;
3280
3281 return (zcw);
3282 }
3283
3284 static void
3285 zil_free_commit_waiter(zil_commit_waiter_t *zcw)
3286 {
3287 ASSERT(!list_link_active(&zcw->zcw_node));
3288 ASSERT3P(zcw->zcw_lwb, ==, NULL);
3289 ASSERT3B(zcw->zcw_done, ==, B_TRUE);
3290 mutex_destroy(&zcw->zcw_lock);
3291 cv_destroy(&zcw->zcw_cv);
3292 kmem_cache_free(zil_zcw_cache, zcw);
3293 }
3294
3295 /*
3296 * This function is used to create a TX_COMMIT itx and assign it. This
3297 * way, it will be linked into the ZIL's list of synchronous itxs, and
3298 * then later committed to an lwb (or skipped) when
3299 * zil_process_commit_list() is called.
3300 */
3301 static void
3302 zil_commit_itx_assign(zilog_t *zilog, zil_commit_waiter_t *zcw)
3303 {
3304 dmu_tx_t *tx = dmu_tx_create(zilog->zl_os);
3305
3306 /*
3307 * Since we are not going to create any new dirty data, and we
3308 * can even help with clearing the existing dirty data, we
3309 * should not be subject to the dirty data based delays. We
3310 * use TXG_NOTHROTTLE to bypass the delay mechanism.
3311 */
3312 VERIFY0(dmu_tx_assign(tx, TXG_WAIT | TXG_NOTHROTTLE));
3313
3314 itx_t *itx = zil_itx_create(TX_COMMIT, sizeof (lr_t));
3315 itx->itx_sync = B_TRUE;
3316 itx->itx_private = zcw;
3317
3318 zil_itx_assign(zilog, itx, tx);
3319
3320 dmu_tx_commit(tx);
3321 }
3322
3323 /*
3324 * Commit ZFS Intent Log transactions (itxs) to stable storage.
3325 *
3326 * When writing ZIL transactions to the on-disk representation of the
3327 * ZIL, the itxs are committed to a Log Write Block (lwb). Multiple
3328 * itxs can be committed to a single lwb. Once a lwb is written and
3329 * committed to stable storage (i.e. the lwb is written, and vdevs have
3330 * been flushed), each itx that was committed to that lwb is also
3331 * considered to be committed to stable storage.
3332 *
3333 * When an itx is committed to an lwb, the log record (lr_t) contained
3334 * by the itx is copied into the lwb's zio buffer, and once this buffer
3335 * is written to disk, it becomes an on-disk ZIL block.
3336 *
3337 * As itxs are generated, they're inserted into the ZIL's queue of
3338 * uncommitted itxs. The semantics of zil_commit() are such that it will
3339 * block until all itxs that were in the queue when it was called, are
3340 * committed to stable storage.
3341 *
3342 * If "foid" is zero, this means all "synchronous" and "asynchronous"
3343 * itxs, for all objects in the dataset, will be committed to stable
3344 * storage prior to zil_commit() returning. If "foid" is non-zero, all
3345 * "synchronous" itxs for all objects, but only "asynchronous" itxs
3346 * that correspond to the foid passed in, will be committed to stable
3347 * storage prior to zil_commit() returning.
3348 *
3349 * Generally speaking, when zil_commit() is called, the consumer doesn't
3350 * actually care about _all_ of the uncommitted itxs. Instead, they're
3351 * simply trying to waiting for a specific itx to be committed to disk,
3352 * but the interface(s) for interacting with the ZIL don't allow such
3353 * fine-grained communication. A better interface would allow a consumer
3354 * to create and assign an itx, and then pass a reference to this itx to
3355 * zil_commit(); such that zil_commit() would return as soon as that
3356 * specific itx was committed to disk (instead of waiting for _all_
3357 * itxs to be committed).
3358 *
3359 * When a thread calls zil_commit() a special "commit itx" will be
3360 * generated, along with a corresponding "waiter" for this commit itx.
3361 * zil_commit() will wait on this waiter's CV, such that when the waiter
3362 * is marked done, and signaled, zil_commit() will return.
3363 *
3364 * This commit itx is inserted into the queue of uncommitted itxs. This
3365 * provides an easy mechanism for determining which itxs were in the
3366 * queue prior to zil_commit() having been called, and which itxs were
3367 * added after zil_commit() was called.
3368 *
3369 * The commit itx is special; it doesn't have any on-disk representation.
3370 * When a commit itx is "committed" to an lwb, the waiter associated
3371 * with it is linked onto the lwb's list of waiters. Then, when that lwb
3372 * completes, each waiter on the lwb's list is marked done and signaled
3373 * -- allowing the thread waiting on the waiter to return from zil_commit().
3374 *
3375 * It's important to point out a few critical factors that allow us
3376 * to make use of the commit itxs, commit waiters, per-lwb lists of
3377 * commit waiters, and zio completion callbacks like we're doing:
3378 *
3379 * 1. The list of waiters for each lwb is traversed, and each commit
3380 * waiter is marked "done" and signaled, in the zio completion
3381 * callback of the lwb's zio[*].
3382 *
3383 * * Actually, the waiters are signaled in the zio completion
3384 * callback of the root zio for the DKIOCFLUSHWRITECACHE commands
3385 * that are sent to the vdevs upon completion of the lwb zio.
3386 *
3387 * 2. When the itxs are inserted into the ZIL's queue of uncommitted
3388 * itxs, the order in which they are inserted is preserved[*]; as
3389 * itxs are added to the queue, they are added to the tail of
3390 * in-memory linked lists.
3391 *
3392 * When committing the itxs to lwbs (to be written to disk), they
3393 * are committed in the same order in which the itxs were added to
3394 * the uncommitted queue's linked list(s); i.e. the linked list of
3395 * itxs to commit is traversed from head to tail, and each itx is
3396 * committed to an lwb in that order.
3397 *
3398 * * To clarify:
3399 *
3400 * - the order of "sync" itxs is preserved w.r.t. other
3401 * "sync" itxs, regardless of the corresponding objects.
3402 * - the order of "async" itxs is preserved w.r.t. other
3403 * "async" itxs corresponding to the same object.
3404 * - the order of "async" itxs is *not* preserved w.r.t. other
3405 * "async" itxs corresponding to different objects.
3406 * - the order of "sync" itxs w.r.t. "async" itxs (or vice
3407 * versa) is *not* preserved, even for itxs that correspond
3408 * to the same object.
3409 *
3410 * For more details, see: zil_itx_assign(), zil_async_to_sync(),
3411 * zil_get_commit_list(), and zil_process_commit_list().
3412 *
3413 * 3. The lwbs represent a linked list of blocks on disk. Thus, any
3414 * lwb cannot be considered committed to stable storage, until its
3415 * "previous" lwb is also committed to stable storage. This fact,
3416 * coupled with the fact described above, means that itxs are
3417 * committed in (roughly) the order in which they were generated.
3418 * This is essential because itxs are dependent on prior itxs.
3419 * Thus, we *must not* deem an itx as being committed to stable
3420 * storage, until *all* prior itxs have also been committed to
3421 * stable storage.
3422 *
3423 * To enforce this ordering of lwb zio's, while still leveraging as
3424 * much of the underlying storage performance as possible, we rely
3425 * on two fundamental concepts:
3426 *
3427 * 1. The creation and issuance of lwb zio's is protected by
3428 * the zilog's "zl_issuer_lock", which ensures only a single
3429 * thread is creating and/or issuing lwb's at a time
3430 * 2. The "previous" lwb is a child of the "current" lwb
3431 * (leveraging the zio parent-child dependency graph)
3432 *
3433 * By relying on this parent-child zio relationship, we can have
3434 * many lwb zio's concurrently issued to the underlying storage,
3435 * but the order in which they complete will be the same order in
3436 * which they were created.
3437 */
3438 void
3439 zil_commit(zilog_t *zilog, uint64_t foid)
3440 {
3441 /*
3442 * We should never attempt to call zil_commit on a snapshot for
3443 * a couple of reasons:
3444 *
3445 * 1. A snapshot may never be modified, thus it cannot have any
3446 * in-flight itxs that would have modified the dataset.
3447 *
3448 * 2. By design, when zil_commit() is called, a commit itx will
3449 * be assigned to this zilog; as a result, the zilog will be
3450 * dirtied. We must not dirty the zilog of a snapshot; there's
3451 * checks in the code that enforce this invariant, and will
3452 * cause a panic if it's not upheld.
3453 */
3454 ASSERT3B(dmu_objset_is_snapshot(zilog->zl_os), ==, B_FALSE);
3455
3456 if (zilog->zl_sync == ZFS_SYNC_DISABLED)
3457 return;
3458
3459 if (!spa_writeable(zilog->zl_spa)) {
3460 /*
3461 * If the SPA is not writable, there should never be any
3462 * pending itxs waiting to be committed to disk. If that
3463 * weren't true, we'd skip writing those itxs out, and
3464 * would break the semantics of zil_commit(); thus, we're
3465 * verifying that truth before we return to the caller.
3466 */
3467 ASSERT(list_is_empty(&zilog->zl_lwb_list));
3468 ASSERT3P(zilog->zl_last_lwb_opened, ==, NULL);
3469 for (int i = 0; i < TXG_SIZE; i++)
3470 ASSERT3P(zilog->zl_itxg[i].itxg_itxs, ==, NULL);
3471 return;
3472 }
3473
3474 /*
3475 * If the ZIL is suspended, we don't want to dirty it by calling
3476 * zil_commit_itx_assign() below, nor can we write out
3477 * lwbs like would be done in zil_commit_write(). Thus, we
3478 * simply rely on txg_wait_synced() to maintain the necessary
3479 * semantics, and avoid calling those functions altogether.
3480 */
3481 if (zilog->zl_suspend > 0) {
3482 txg_wait_synced(zilog->zl_dmu_pool, 0);
3483 return;
3484 }
3485
3486 zil_commit_impl(zilog, foid);
3487 }
3488
3489 void
3490 zil_commit_impl(zilog_t *zilog, uint64_t foid)
3491 {
3492 ZIL_STAT_BUMP(zilog, zil_commit_count);
3493
3494 /*
3495 * Move the "async" itxs for the specified foid to the "sync"
3496 * queues, such that they will be later committed (or skipped)
3497 * to an lwb when zil_process_commit_list() is called.
3498 *
3499 * Since these "async" itxs must be committed prior to this
3500 * call to zil_commit returning, we must perform this operation
3501 * before we call zil_commit_itx_assign().
3502 */
3503 zil_async_to_sync(zilog, foid);
3504
3505 /*
3506 * We allocate a new "waiter" structure which will initially be
3507 * linked to the commit itx using the itx's "itx_private" field.
3508 * Since the commit itx doesn't represent any on-disk state,
3509 * when it's committed to an lwb, rather than copying the its
3510 * lr_t into the lwb's buffer, the commit itx's "waiter" will be
3511 * added to the lwb's list of waiters. Then, when the lwb is
3512 * committed to stable storage, each waiter in the lwb's list of
3513 * waiters will be marked "done", and signalled.
3514 *
3515 * We must create the waiter and assign the commit itx prior to
3516 * calling zil_commit_writer(), or else our specific commit itx
3517 * is not guaranteed to be committed to an lwb prior to calling
3518 * zil_commit_waiter().
3519 */
3520 zil_commit_waiter_t *zcw = zil_alloc_commit_waiter();
3521 zil_commit_itx_assign(zilog, zcw);
3522
3523 uint64_t wtxg = zil_commit_writer(zilog, zcw);
3524 zil_commit_waiter(zilog, zcw);
3525
3526 if (zcw->zcw_zio_error != 0) {
3527 /*
3528 * If there was an error writing out the ZIL blocks that
3529 * this thread is waiting on, then we fallback to
3530 * relying on spa_sync() to write out the data this
3531 * thread is waiting on. Obviously this has performance
3532 * implications, but the expectation is for this to be
3533 * an exceptional case, and shouldn't occur often.
3534 */
3535 DTRACE_PROBE2(zil__commit__io__error,
3536 zilog_t *, zilog, zil_commit_waiter_t *, zcw);
3537 txg_wait_synced(zilog->zl_dmu_pool, 0);
3538 } else if (wtxg != 0) {
3539 txg_wait_synced(zilog->zl_dmu_pool, wtxg);
3540 }
3541
3542 zil_free_commit_waiter(zcw);
3543 }
3544
3545 /*
3546 * Called in syncing context to free committed log blocks and update log header.
3547 */
3548 void
3549 zil_sync(zilog_t *zilog, dmu_tx_t *tx)
3550 {
3551 zil_header_t *zh = zil_header_in_syncing_context(zilog);
3552 uint64_t txg = dmu_tx_get_txg(tx);
3553 spa_t *spa = zilog->zl_spa;
3554 uint64_t *replayed_seq = &zilog->zl_replayed_seq[txg & TXG_MASK];
3555 lwb_t *lwb;
3556
3557 /*
3558 * We don't zero out zl_destroy_txg, so make sure we don't try
3559 * to destroy it twice.
3560 */
3561 if (spa_sync_pass(spa) != 1)
3562 return;
3563
3564 zil_lwb_flush_wait_all(zilog, txg);
3565
3566 mutex_enter(&zilog->zl_lock);
3567
3568 ASSERT(zilog->zl_stop_sync == 0);
3569
3570 if (*replayed_seq != 0) {
3571 ASSERT(zh->zh_replay_seq < *replayed_seq);
3572 zh->zh_replay_seq = *replayed_seq;
3573 *replayed_seq = 0;
3574 }
3575
3576 if (zilog->zl_destroy_txg == txg) {
3577 blkptr_t blk = zh->zh_log;
3578 dsl_dataset_t *ds = dmu_objset_ds(zilog->zl_os);
3579
3580 ASSERT(list_is_empty(&zilog->zl_lwb_list));
3581
3582 memset(zh, 0, sizeof (zil_header_t));
3583 memset(zilog->zl_replayed_seq, 0,
3584 sizeof (zilog->zl_replayed_seq));
3585
3586 if (zilog->zl_keep_first) {
3587 /*
3588 * If this block was part of log chain that couldn't
3589 * be claimed because a device was missing during
3590 * zil_claim(), but that device later returns,
3591 * then this block could erroneously appear valid.
3592 * To guard against this, assign a new GUID to the new
3593 * log chain so it doesn't matter what blk points to.
3594 */
3595 zil_init_log_chain(zilog, &blk);
3596 zh->zh_log = blk;
3597 } else {
3598 /*
3599 * A destroyed ZIL chain can't contain any TX_SETSAXATTR
3600 * records. So, deactivate the feature for this dataset.
3601 * We activate it again when we start a new ZIL chain.
3602 */
3603 if (dsl_dataset_feature_is_active(ds,
3604 SPA_FEATURE_ZILSAXATTR))
3605 dsl_dataset_deactivate_feature(ds,
3606 SPA_FEATURE_ZILSAXATTR, tx);
3607 }
3608 }
3609
3610 while ((lwb = list_head(&zilog->zl_lwb_list)) != NULL) {
3611 zh->zh_log = lwb->lwb_blk;
3612 if (lwb->lwb_state != LWB_STATE_FLUSH_DONE ||
3613 lwb->lwb_alloc_txg > txg || lwb->lwb_max_txg > txg)
3614 break;
3615 list_remove(&zilog->zl_lwb_list, lwb);
3616 if (!BP_IS_HOLE(&lwb->lwb_blk))
3617 zio_free(spa, txg, &lwb->lwb_blk);
3618 zil_free_lwb(zilog, lwb);
3619
3620 /*
3621 * If we don't have anything left in the lwb list then
3622 * we've had an allocation failure and we need to zero
3623 * out the zil_header blkptr so that we don't end
3624 * up freeing the same block twice.
3625 */
3626 if (list_is_empty(&zilog->zl_lwb_list))
3627 BP_ZERO(&zh->zh_log);
3628 }
3629
3630 mutex_exit(&zilog->zl_lock);
3631 }
3632
3633 static int
3634 zil_lwb_cons(void *vbuf, void *unused, int kmflag)
3635 {
3636 (void) unused, (void) kmflag;
3637 lwb_t *lwb = vbuf;
3638 list_create(&lwb->lwb_itxs, sizeof (itx_t), offsetof(itx_t, itx_node));
3639 list_create(&lwb->lwb_waiters, sizeof (zil_commit_waiter_t),
3640 offsetof(zil_commit_waiter_t, zcw_node));
3641 avl_create(&lwb->lwb_vdev_tree, zil_lwb_vdev_compare,
3642 sizeof (zil_vdev_node_t), offsetof(zil_vdev_node_t, zv_node));
3643 mutex_init(&lwb->lwb_vdev_lock, NULL, MUTEX_DEFAULT, NULL);
3644 return (0);
3645 }
3646
3647 static void
3648 zil_lwb_dest(void *vbuf, void *unused)
3649 {
3650 (void) unused;
3651 lwb_t *lwb = vbuf;
3652 mutex_destroy(&lwb->lwb_vdev_lock);
3653 avl_destroy(&lwb->lwb_vdev_tree);
3654 list_destroy(&lwb->lwb_waiters);
3655 list_destroy(&lwb->lwb_itxs);
3656 }
3657
3658 void
3659 zil_init(void)
3660 {
3661 zil_lwb_cache = kmem_cache_create("zil_lwb_cache",
3662 sizeof (lwb_t), 0, zil_lwb_cons, zil_lwb_dest, NULL, NULL, NULL, 0);
3663
3664 zil_zcw_cache = kmem_cache_create("zil_zcw_cache",
3665 sizeof (zil_commit_waiter_t), 0, NULL, NULL, NULL, NULL, NULL, 0);
3666
3667 zil_sums_init(&zil_sums_global);
3668 zil_kstats_global = kstat_create("zfs", 0, "zil", "misc",
3669 KSTAT_TYPE_NAMED, sizeof (zil_stats) / sizeof (kstat_named_t),
3670 KSTAT_FLAG_VIRTUAL);
3671
3672 if (zil_kstats_global != NULL) {
3673 zil_kstats_global->ks_data = &zil_stats;
3674 zil_kstats_global->ks_update = zil_kstats_global_update;
3675 zil_kstats_global->ks_private = NULL;
3676 kstat_install(zil_kstats_global);
3677 }
3678 }
3679
3680 void
3681 zil_fini(void)
3682 {
3683 kmem_cache_destroy(zil_zcw_cache);
3684 kmem_cache_destroy(zil_lwb_cache);
3685
3686 if (zil_kstats_global != NULL) {
3687 kstat_delete(zil_kstats_global);
3688 zil_kstats_global = NULL;
3689 }
3690
3691 zil_sums_fini(&zil_sums_global);
3692 }
3693
3694 void
3695 zil_set_sync(zilog_t *zilog, uint64_t sync)
3696 {
3697 zilog->zl_sync = sync;
3698 }
3699
3700 void
3701 zil_set_logbias(zilog_t *zilog, uint64_t logbias)
3702 {
3703 zilog->zl_logbias = logbias;
3704 }
3705
3706 zilog_t *
3707 zil_alloc(objset_t *os, zil_header_t *zh_phys)
3708 {
3709 zilog_t *zilog;
3710
3711 zilog = kmem_zalloc(sizeof (zilog_t), KM_SLEEP);
3712
3713 zilog->zl_header = zh_phys;
3714 zilog->zl_os = os;
3715 zilog->zl_spa = dmu_objset_spa(os);
3716 zilog->zl_dmu_pool = dmu_objset_pool(os);
3717 zilog->zl_destroy_txg = TXG_INITIAL - 1;
3718 zilog->zl_logbias = dmu_objset_logbias(os);
3719 zilog->zl_sync = dmu_objset_syncprop(os);
3720 zilog->zl_dirty_max_txg = 0;
3721 zilog->zl_last_lwb_opened = NULL;
3722 zilog->zl_last_lwb_latency = 0;
3723 zilog->zl_max_block_size = zil_maxblocksize;
3724
3725 mutex_init(&zilog->zl_lock, NULL, MUTEX_DEFAULT, NULL);
3726 mutex_init(&zilog->zl_issuer_lock, NULL, MUTEX_DEFAULT, NULL);
3727 mutex_init(&zilog->zl_lwb_io_lock, NULL, MUTEX_DEFAULT, NULL);
3728
3729 for (int i = 0; i < TXG_SIZE; i++) {
3730 mutex_init(&zilog->zl_itxg[i].itxg_lock, NULL,
3731 MUTEX_DEFAULT, NULL);
3732 }
3733
3734 list_create(&zilog->zl_lwb_list, sizeof (lwb_t),
3735 offsetof(lwb_t, lwb_node));
3736
3737 list_create(&zilog->zl_itx_commit_list, sizeof (itx_t),
3738 offsetof(itx_t, itx_node));
3739
3740 cv_init(&zilog->zl_cv_suspend, NULL, CV_DEFAULT, NULL);
3741 cv_init(&zilog->zl_lwb_io_cv, NULL, CV_DEFAULT, NULL);
3742
3743 return (zilog);
3744 }
3745
3746 void
3747 zil_free(zilog_t *zilog)
3748 {
3749 int i;
3750
3751 zilog->zl_stop_sync = 1;
3752
3753 ASSERT0(zilog->zl_suspend);
3754 ASSERT0(zilog->zl_suspending);
3755
3756 ASSERT(list_is_empty(&zilog->zl_lwb_list));
3757 list_destroy(&zilog->zl_lwb_list);
3758
3759 ASSERT(list_is_empty(&zilog->zl_itx_commit_list));
3760 list_destroy(&zilog->zl_itx_commit_list);
3761
3762 for (i = 0; i < TXG_SIZE; i++) {
3763 /*
3764 * It's possible for an itx to be generated that doesn't dirty
3765 * a txg (e.g. ztest TX_TRUNCATE). So there's no zil_clean()
3766 * callback to remove the entry. We remove those here.
3767 *
3768 * Also free up the ziltest itxs.
3769 */
3770 if (zilog->zl_itxg[i].itxg_itxs)
3771 zil_itxg_clean(zilog->zl_itxg[i].itxg_itxs);
3772 mutex_destroy(&zilog->zl_itxg[i].itxg_lock);
3773 }
3774
3775 mutex_destroy(&zilog->zl_issuer_lock);
3776 mutex_destroy(&zilog->zl_lock);
3777 mutex_destroy(&zilog->zl_lwb_io_lock);
3778
3779 cv_destroy(&zilog->zl_cv_suspend);
3780 cv_destroy(&zilog->zl_lwb_io_cv);
3781
3782 kmem_free(zilog, sizeof (zilog_t));
3783 }
3784
3785 /*
3786 * Open an intent log.
3787 */
3788 zilog_t *
3789 zil_open(objset_t *os, zil_get_data_t *get_data, zil_sums_t *zil_sums)
3790 {
3791 zilog_t *zilog = dmu_objset_zil(os);
3792
3793 ASSERT3P(zilog->zl_get_data, ==, NULL);
3794 ASSERT3P(zilog->zl_last_lwb_opened, ==, NULL);
3795 ASSERT(list_is_empty(&zilog->zl_lwb_list));
3796
3797 zilog->zl_get_data = get_data;
3798 zilog->zl_sums = zil_sums;
3799
3800 return (zilog);
3801 }
3802
3803 /*
3804 * Close an intent log.
3805 */
3806 void
3807 zil_close(zilog_t *zilog)
3808 {
3809 lwb_t *lwb;
3810 uint64_t txg;
3811
3812 if (!dmu_objset_is_snapshot(zilog->zl_os)) {
3813 zil_commit(zilog, 0);
3814 } else {
3815 ASSERT(list_is_empty(&zilog->zl_lwb_list));
3816 ASSERT0(zilog->zl_dirty_max_txg);
3817 ASSERT3B(zilog_is_dirty(zilog), ==, B_FALSE);
3818 }
3819
3820 mutex_enter(&zilog->zl_lock);
3821 txg = zilog->zl_dirty_max_txg;
3822 lwb = list_tail(&zilog->zl_lwb_list);
3823 if (lwb != NULL) {
3824 txg = MAX(txg, lwb->lwb_alloc_txg);
3825 txg = MAX(txg, lwb->lwb_max_txg);
3826 }
3827 mutex_exit(&zilog->zl_lock);
3828
3829 /*
3830 * zl_lwb_max_issued_txg may be larger than lwb_max_txg. It depends
3831 * on the time when the dmu_tx transaction is assigned in
3832 * zil_lwb_write_issue().
3833 */
3834 mutex_enter(&zilog->zl_lwb_io_lock);
3835 txg = MAX(zilog->zl_lwb_max_issued_txg, txg);
3836 mutex_exit(&zilog->zl_lwb_io_lock);
3837
3838 /*
3839 * We need to use txg_wait_synced() to wait until that txg is synced.
3840 * zil_sync() will guarantee all lwbs up to that txg have been
3841 * written out, flushed, and cleaned.
3842 */
3843 if (txg != 0)
3844 txg_wait_synced(zilog->zl_dmu_pool, txg);
3845
3846 if (zilog_is_dirty(zilog))
3847 zfs_dbgmsg("zil (%px) is dirty, txg %llu", zilog,
3848 (u_longlong_t)txg);
3849 if (txg < spa_freeze_txg(zilog->zl_spa))
3850 VERIFY(!zilog_is_dirty(zilog));
3851
3852 zilog->zl_get_data = NULL;
3853
3854 /*
3855 * We should have only one lwb left on the list; remove it now.
3856 */
3857 mutex_enter(&zilog->zl_lock);
3858 lwb = list_remove_head(&zilog->zl_lwb_list);
3859 if (lwb != NULL) {
3860 ASSERT(list_is_empty(&zilog->zl_lwb_list));
3861 ASSERT3S(lwb->lwb_state, ==, LWB_STATE_NEW);
3862 zio_buf_free(lwb->lwb_buf, lwb->lwb_sz);
3863 zil_free_lwb(zilog, lwb);
3864 }
3865 mutex_exit(&zilog->zl_lock);
3866 }
3867
3868 static const char *suspend_tag = "zil suspending";
3869
3870 /*
3871 * Suspend an intent log. While in suspended mode, we still honor
3872 * synchronous semantics, but we rely on txg_wait_synced() to do it.
3873 * On old version pools, we suspend the log briefly when taking a
3874 * snapshot so that it will have an empty intent log.
3875 *
3876 * Long holds are not really intended to be used the way we do here --
3877 * held for such a short time. A concurrent caller of dsl_dataset_long_held()
3878 * could fail. Therefore we take pains to only put a long hold if it is
3879 * actually necessary. Fortunately, it will only be necessary if the
3880 * objset is currently mounted (or the ZVOL equivalent). In that case it
3881 * will already have a long hold, so we are not really making things any worse.
3882 *
3883 * Ideally, we would locate the existing long-holder (i.e. the zfsvfs_t or
3884 * zvol_state_t), and use their mechanism to prevent their hold from being
3885 * dropped (e.g. VFS_HOLD()). However, that would be even more pain for
3886 * very little gain.
3887 *
3888 * if cookiep == NULL, this does both the suspend & resume.
3889 * Otherwise, it returns with the dataset "long held", and the cookie
3890 * should be passed into zil_resume().
3891 */
3892 int
3893 zil_suspend(const char *osname, void **cookiep)
3894 {
3895 objset_t *os;
3896 zilog_t *zilog;
3897 const zil_header_t *zh;
3898 int error;
3899
3900 error = dmu_objset_hold(osname, suspend_tag, &os);
3901 if (error != 0)
3902 return (error);
3903 zilog = dmu_objset_zil(os);
3904
3905 mutex_enter(&zilog->zl_lock);
3906 zh = zilog->zl_header;
3907
3908 if (zh->zh_flags & ZIL_REPLAY_NEEDED) { /* unplayed log */
3909 mutex_exit(&zilog->zl_lock);
3910 dmu_objset_rele(os, suspend_tag);
3911 return (SET_ERROR(EBUSY));
3912 }
3913
3914 /*
3915 * Don't put a long hold in the cases where we can avoid it. This
3916 * is when there is no cookie so we are doing a suspend & resume
3917 * (i.e. called from zil_vdev_offline()), and there's nothing to do
3918 * for the suspend because it's already suspended, or there's no ZIL.
3919 */
3920 if (cookiep == NULL && !zilog->zl_suspending &&
3921 (zilog->zl_suspend > 0 || BP_IS_HOLE(&zh->zh_log))) {
3922 mutex_exit(&zilog->zl_lock);
3923 dmu_objset_rele(os, suspend_tag);
3924 return (0);
3925 }
3926
3927 dsl_dataset_long_hold(dmu_objset_ds(os), suspend_tag);
3928 dsl_pool_rele(dmu_objset_pool(os), suspend_tag);
3929
3930 zilog->zl_suspend++;
3931
3932 if (zilog->zl_suspend > 1) {
3933 /*
3934 * Someone else is already suspending it.
3935 * Just wait for them to finish.
3936 */
3937
3938 while (zilog->zl_suspending)
3939 cv_wait(&zilog->zl_cv_suspend, &zilog->zl_lock);
3940 mutex_exit(&zilog->zl_lock);
3941
3942 if (cookiep == NULL)
3943 zil_resume(os);
3944 else
3945 *cookiep = os;
3946 return (0);
3947 }
3948
3949 /*
3950 * If there is no pointer to an on-disk block, this ZIL must not
3951 * be active (e.g. filesystem not mounted), so there's nothing
3952 * to clean up.
3953 */
3954 if (BP_IS_HOLE(&zh->zh_log)) {
3955 ASSERT(cookiep != NULL); /* fast path already handled */
3956
3957 *cookiep = os;
3958 mutex_exit(&zilog->zl_lock);
3959 return (0);
3960 }
3961
3962 /*
3963 * The ZIL has work to do. Ensure that the associated encryption
3964 * key will remain mapped while we are committing the log by
3965 * grabbing a reference to it. If the key isn't loaded we have no
3966 * choice but to return an error until the wrapping key is loaded.
3967 */
3968 if (os->os_encrypted &&
3969 dsl_dataset_create_key_mapping(dmu_objset_ds(os)) != 0) {
3970 zilog->zl_suspend--;
3971 mutex_exit(&zilog->zl_lock);
3972 dsl_dataset_long_rele(dmu_objset_ds(os), suspend_tag);
3973 dsl_dataset_rele(dmu_objset_ds(os), suspend_tag);
3974 return (SET_ERROR(EACCES));
3975 }
3976
3977 zilog->zl_suspending = B_TRUE;
3978 mutex_exit(&zilog->zl_lock);
3979
3980 /*
3981 * We need to use zil_commit_impl to ensure we wait for all
3982 * LWB_STATE_OPENED, _CLOSED and _READY lwbs to be committed
3983 * to disk before proceeding. If we used zil_commit instead, it
3984 * would just call txg_wait_synced(), because zl_suspend is set.
3985 * txg_wait_synced() doesn't wait for these lwb's to be
3986 * LWB_STATE_FLUSH_DONE before returning.
3987 */
3988 zil_commit_impl(zilog, 0);
3989
3990 /*
3991 * Now that we've ensured all lwb's are LWB_STATE_FLUSH_DONE, we
3992 * use txg_wait_synced() to ensure the data from the zilog has
3993 * migrated to the main pool before calling zil_destroy().
3994 */
3995 txg_wait_synced(zilog->zl_dmu_pool, 0);
3996
3997 zil_destroy(zilog, B_FALSE);
3998
3999 mutex_enter(&zilog->zl_lock);
4000 zilog->zl_suspending = B_FALSE;
4001 cv_broadcast(&zilog->zl_cv_suspend);
4002 mutex_exit(&zilog->zl_lock);
4003
4004 if (os->os_encrypted)
4005 dsl_dataset_remove_key_mapping(dmu_objset_ds(os));
4006
4007 if (cookiep == NULL)
4008 zil_resume(os);
4009 else
4010 *cookiep = os;
4011 return (0);
4012 }
4013
4014 void
4015 zil_resume(void *cookie)
4016 {
4017 objset_t *os = cookie;
4018 zilog_t *zilog = dmu_objset_zil(os);
4019
4020 mutex_enter(&zilog->zl_lock);
4021 ASSERT(zilog->zl_suspend != 0);
4022 zilog->zl_suspend--;
4023 mutex_exit(&zilog->zl_lock);
4024 dsl_dataset_long_rele(dmu_objset_ds(os), suspend_tag);
4025 dsl_dataset_rele(dmu_objset_ds(os), suspend_tag);
4026 }
4027
4028 typedef struct zil_replay_arg {
4029 zil_replay_func_t *const *zr_replay;
4030 void *zr_arg;
4031 boolean_t zr_byteswap;
4032 char *zr_lr;
4033 } zil_replay_arg_t;
4034
4035 static int
4036 zil_replay_error(zilog_t *zilog, const lr_t *lr, int error)
4037 {
4038 char name[ZFS_MAX_DATASET_NAME_LEN];
4039
4040 zilog->zl_replaying_seq--; /* didn't actually replay this one */
4041
4042 dmu_objset_name(zilog->zl_os, name);
4043
4044 cmn_err(CE_WARN, "ZFS replay transaction error %d, "
4045 "dataset %s, seq 0x%llx, txtype %llu %s\n", error, name,
4046 (u_longlong_t)lr->lrc_seq,
4047 (u_longlong_t)(lr->lrc_txtype & ~TX_CI),
4048 (lr->lrc_txtype & TX_CI) ? "CI" : "");
4049
4050 return (error);
4051 }
4052
4053 static int
4054 zil_replay_log_record(zilog_t *zilog, const lr_t *lr, void *zra,
4055 uint64_t claim_txg)
4056 {
4057 zil_replay_arg_t *zr = zra;
4058 const zil_header_t *zh = zilog->zl_header;
4059 uint64_t reclen = lr->lrc_reclen;
4060 uint64_t txtype = lr->lrc_txtype;
4061 int error = 0;
4062
4063 zilog->zl_replaying_seq = lr->lrc_seq;
4064
4065 if (lr->lrc_seq <= zh->zh_replay_seq) /* already replayed */
4066 return (0);
4067
4068 if (lr->lrc_txg < claim_txg) /* already committed */
4069 return (0);
4070
4071 /* Strip case-insensitive bit, still present in log record */
4072 txtype &= ~TX_CI;
4073
4074 if (txtype == 0 || txtype >= TX_MAX_TYPE)
4075 return (zil_replay_error(zilog, lr, EINVAL));
4076
4077 /*
4078 * If this record type can be logged out of order, the object
4079 * (lr_foid) may no longer exist. That's legitimate, not an error.
4080 */
4081 if (TX_OOO(txtype)) {
4082 error = dmu_object_info(zilog->zl_os,
4083 LR_FOID_GET_OBJ(((lr_ooo_t *)lr)->lr_foid), NULL);
4084 if (error == ENOENT || error == EEXIST)
4085 return (0);
4086 }
4087
4088 /*
4089 * Make a copy of the data so we can revise and extend it.
4090 */
4091 memcpy(zr->zr_lr, lr, reclen);
4092
4093 /*
4094 * If this is a TX_WRITE with a blkptr, suck in the data.
4095 */
4096 if (txtype == TX_WRITE && reclen == sizeof (lr_write_t)) {
4097 error = zil_read_log_data(zilog, (lr_write_t *)lr,
4098 zr->zr_lr + reclen);
4099 if (error != 0)
4100 return (zil_replay_error(zilog, lr, error));
4101 }
4102
4103 /*
4104 * The log block containing this lr may have been byteswapped
4105 * so that we can easily examine common fields like lrc_txtype.
4106 * However, the log is a mix of different record types, and only the
4107 * replay vectors know how to byteswap their records. Therefore, if
4108 * the lr was byteswapped, undo it before invoking the replay vector.
4109 */
4110 if (zr->zr_byteswap)
4111 byteswap_uint64_array(zr->zr_lr, reclen);
4112
4113 /*
4114 * We must now do two things atomically: replay this log record,
4115 * and update the log header sequence number to reflect the fact that
4116 * we did so. At the end of each replay function the sequence number
4117 * is updated if we are in replay mode.
4118 */
4119 error = zr->zr_replay[txtype](zr->zr_arg, zr->zr_lr, zr->zr_byteswap);
4120 if (error != 0) {
4121 /*
4122 * The DMU's dnode layer doesn't see removes until the txg
4123 * commits, so a subsequent claim can spuriously fail with
4124 * EEXIST. So if we receive any error we try syncing out
4125 * any removes then retry the transaction. Note that we
4126 * specify B_FALSE for byteswap now, so we don't do it twice.
4127 */
4128 txg_wait_synced(spa_get_dsl(zilog->zl_spa), 0);
4129 error = zr->zr_replay[txtype](zr->zr_arg, zr->zr_lr, B_FALSE);
4130 if (error != 0)
4131 return (zil_replay_error(zilog, lr, error));
4132 }
4133 return (0);
4134 }
4135
4136 static int
4137 zil_incr_blks(zilog_t *zilog, const blkptr_t *bp, void *arg, uint64_t claim_txg)
4138 {
4139 (void) bp, (void) arg, (void) claim_txg;
4140
4141 zilog->zl_replay_blks++;
4142
4143 return (0);
4144 }
4145
4146 /*
4147 * If this dataset has a non-empty intent log, replay it and destroy it.
4148 * Return B_TRUE if there were any entries to replay.
4149 */
4150 boolean_t
4151 zil_replay(objset_t *os, void *arg,
4152 zil_replay_func_t *const replay_func[TX_MAX_TYPE])
4153 {
4154 zilog_t *zilog = dmu_objset_zil(os);
4155 const zil_header_t *zh = zilog->zl_header;
4156 zil_replay_arg_t zr;
4157
4158 if ((zh->zh_flags & ZIL_REPLAY_NEEDED) == 0) {
4159 return (zil_destroy(zilog, B_TRUE));
4160 }
4161
4162 zr.zr_replay = replay_func;
4163 zr.zr_arg = arg;
4164 zr.zr_byteswap = BP_SHOULD_BYTESWAP(&zh->zh_log);
4165 zr.zr_lr = vmem_alloc(2 * SPA_MAXBLOCKSIZE, KM_SLEEP);
4166
4167 /*
4168 * Wait for in-progress removes to sync before starting replay.
4169 */
4170 txg_wait_synced(zilog->zl_dmu_pool, 0);
4171
4172 zilog->zl_replay = B_TRUE;
4173 zilog->zl_replay_time = ddi_get_lbolt();
4174 ASSERT(zilog->zl_replay_blks == 0);
4175 (void) zil_parse(zilog, zil_incr_blks, zil_replay_log_record, &zr,
4176 zh->zh_claim_txg, B_TRUE);
4177 vmem_free(zr.zr_lr, 2 * SPA_MAXBLOCKSIZE);
4178
4179 zil_destroy(zilog, B_FALSE);
4180 txg_wait_synced(zilog->zl_dmu_pool, zilog->zl_destroy_txg);
4181 zilog->zl_replay = B_FALSE;
4182
4183 return (B_TRUE);
4184 }
4185
4186 boolean_t
4187 zil_replaying(zilog_t *zilog, dmu_tx_t *tx)
4188 {
4189 if (zilog->zl_sync == ZFS_SYNC_DISABLED)
4190 return (B_TRUE);
4191
4192 if (zilog->zl_replay) {
4193 dsl_dataset_dirty(dmu_objset_ds(zilog->zl_os), tx);
4194 zilog->zl_replayed_seq[dmu_tx_get_txg(tx) & TXG_MASK] =
4195 zilog->zl_replaying_seq;
4196 return (B_TRUE);
4197 }
4198
4199 return (B_FALSE);
4200 }
4201
4202 int
4203 zil_reset(const char *osname, void *arg)
4204 {
4205 (void) arg;
4206
4207 int error = zil_suspend(osname, NULL);
4208 /* EACCES means crypto key not loaded */
4209 if ((error == EACCES) || (error == EBUSY))
4210 return (SET_ERROR(error));
4211 if (error != 0)
4212 return (SET_ERROR(EEXIST));
4213 return (0);
4214 }
4215
4216 EXPORT_SYMBOL(zil_alloc);
4217 EXPORT_SYMBOL(zil_free);
4218 EXPORT_SYMBOL(zil_open);
4219 EXPORT_SYMBOL(zil_close);
4220 EXPORT_SYMBOL(zil_replay);
4221 EXPORT_SYMBOL(zil_replaying);
4222 EXPORT_SYMBOL(zil_destroy);
4223 EXPORT_SYMBOL(zil_destroy_sync);
4224 EXPORT_SYMBOL(zil_itx_create);
4225 EXPORT_SYMBOL(zil_itx_destroy);
4226 EXPORT_SYMBOL(zil_itx_assign);
4227 EXPORT_SYMBOL(zil_commit);
4228 EXPORT_SYMBOL(zil_claim);
4229 EXPORT_SYMBOL(zil_check_log_chain);
4230 EXPORT_SYMBOL(zil_sync);
4231 EXPORT_SYMBOL(zil_clean);
4232 EXPORT_SYMBOL(zil_suspend);
4233 EXPORT_SYMBOL(zil_resume);
4234 EXPORT_SYMBOL(zil_lwb_add_block);
4235 EXPORT_SYMBOL(zil_bp_tree_add);
4236 EXPORT_SYMBOL(zil_set_sync);
4237 EXPORT_SYMBOL(zil_set_logbias);
4238 EXPORT_SYMBOL(zil_sums_init);
4239 EXPORT_SYMBOL(zil_sums_fini);
4240 EXPORT_SYMBOL(zil_kstat_values_update);
4241
4242 ZFS_MODULE_PARAM(zfs, zfs_, commit_timeout_pct, UINT, ZMOD_RW,
4243 "ZIL block open timeout percentage");
4244
4245 ZFS_MODULE_PARAM(zfs_zil, zil_, replay_disable, INT, ZMOD_RW,
4246 "Disable intent logging replay");
4247
4248 ZFS_MODULE_PARAM(zfs_zil, zil_, nocacheflush, INT, ZMOD_RW,
4249 "Disable ZIL cache flushes");
4250
4251 ZFS_MODULE_PARAM(zfs_zil, zil_, slog_bulk, U64, ZMOD_RW,
4252 "Limit in bytes slog sync writes per commit");
4253
4254 ZFS_MODULE_PARAM(zfs_zil, zil_, maxblocksize, UINT, ZMOD_RW,
4255 "Limit in bytes of ZIL log block size");
4256
4257 ZFS_MODULE_PARAM(zfs_zil, zil_, maxcopied, UINT, ZMOD_RW,
4258 "Limit in bytes WR_COPIED size");