]> git.proxmox.com Git - mirror_zfs.git/blob - module/zfs/zio.c
zinject: inject device errors into ioctls
[mirror_zfs.git] / module / zfs / zio.c
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or https://opensource.org/licenses/CDDL-1.0.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2011, 2022 by Delphix. All rights reserved.
24 * Copyright (c) 2011 Nexenta Systems, Inc. All rights reserved.
25 * Copyright (c) 2017, Intel Corporation.
26 * Copyright (c) 2019, Klara Inc.
27 * Copyright (c) 2019, Allan Jude
28 * Copyright (c) 2021, Datto, Inc.
29 */
30
31 #include <sys/sysmacros.h>
32 #include <sys/zfs_context.h>
33 #include <sys/fm/fs/zfs.h>
34 #include <sys/spa.h>
35 #include <sys/txg.h>
36 #include <sys/spa_impl.h>
37 #include <sys/vdev_impl.h>
38 #include <sys/vdev_trim.h>
39 #include <sys/zio_impl.h>
40 #include <sys/zio_compress.h>
41 #include <sys/zio_checksum.h>
42 #include <sys/dmu_objset.h>
43 #include <sys/arc.h>
44 #include <sys/brt.h>
45 #include <sys/ddt.h>
46 #include <sys/blkptr.h>
47 #include <sys/zfeature.h>
48 #include <sys/dsl_scan.h>
49 #include <sys/metaslab_impl.h>
50 #include <sys/time.h>
51 #include <sys/trace_zfs.h>
52 #include <sys/abd.h>
53 #include <sys/dsl_crypt.h>
54 #include <cityhash.h>
55
56 /*
57 * ==========================================================================
58 * I/O type descriptions
59 * ==========================================================================
60 */
61 const char *const zio_type_name[ZIO_TYPES] = {
62 /*
63 * Note: Linux kernel thread name length is limited
64 * so these names will differ from upstream open zfs.
65 */
66 "z_null", "z_rd", "z_wr", "z_fr", "z_cl", "z_ioctl", "z_trim"
67 };
68
69 int zio_dva_throttle_enabled = B_TRUE;
70 static int zio_deadman_log_all = B_FALSE;
71
72 /*
73 * ==========================================================================
74 * I/O kmem caches
75 * ==========================================================================
76 */
77 static kmem_cache_t *zio_cache;
78 static kmem_cache_t *zio_link_cache;
79 kmem_cache_t *zio_buf_cache[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT];
80 kmem_cache_t *zio_data_buf_cache[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT];
81 #if defined(ZFS_DEBUG) && !defined(_KERNEL)
82 static uint64_t zio_buf_cache_allocs[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT];
83 static uint64_t zio_buf_cache_frees[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT];
84 #endif
85
86 /* Mark IOs as "slow" if they take longer than 30 seconds */
87 static uint_t zio_slow_io_ms = (30 * MILLISEC);
88
89 #define BP_SPANB(indblkshift, level) \
90 (((uint64_t)1) << ((level) * ((indblkshift) - SPA_BLKPTRSHIFT)))
91 #define COMPARE_META_LEVEL 0x80000000ul
92 /*
93 * The following actions directly effect the spa's sync-to-convergence logic.
94 * The values below define the sync pass when we start performing the action.
95 * Care should be taken when changing these values as they directly impact
96 * spa_sync() performance. Tuning these values may introduce subtle performance
97 * pathologies and should only be done in the context of performance analysis.
98 * These tunables will eventually be removed and replaced with #defines once
99 * enough analysis has been done to determine optimal values.
100 *
101 * The 'zfs_sync_pass_deferred_free' pass must be greater than 1 to ensure that
102 * regular blocks are not deferred.
103 *
104 * Starting in sync pass 8 (zfs_sync_pass_dont_compress), we disable
105 * compression (including of metadata). In practice, we don't have this
106 * many sync passes, so this has no effect.
107 *
108 * The original intent was that disabling compression would help the sync
109 * passes to converge. However, in practice disabling compression increases
110 * the average number of sync passes, because when we turn compression off, a
111 * lot of block's size will change and thus we have to re-allocate (not
112 * overwrite) them. It also increases the number of 128KB allocations (e.g.
113 * for indirect blocks and spacemaps) because these will not be compressed.
114 * The 128K allocations are especially detrimental to performance on highly
115 * fragmented systems, which may have very few free segments of this size,
116 * and may need to load new metaslabs to satisfy 128K allocations.
117 */
118
119 /* defer frees starting in this pass */
120 uint_t zfs_sync_pass_deferred_free = 2;
121
122 /* don't compress starting in this pass */
123 static uint_t zfs_sync_pass_dont_compress = 8;
124
125 /* rewrite new bps starting in this pass */
126 static uint_t zfs_sync_pass_rewrite = 2;
127
128 /*
129 * An allocating zio is one that either currently has the DVA allocate
130 * stage set or will have it later in its lifetime.
131 */
132 #define IO_IS_ALLOCATING(zio) ((zio)->io_orig_pipeline & ZIO_STAGE_DVA_ALLOCATE)
133
134 /*
135 * Enable smaller cores by excluding metadata
136 * allocations as well.
137 */
138 int zio_exclude_metadata = 0;
139 static int zio_requeue_io_start_cut_in_line = 1;
140
141 #ifdef ZFS_DEBUG
142 static const int zio_buf_debug_limit = 16384;
143 #else
144 static const int zio_buf_debug_limit = 0;
145 #endif
146
147 static inline void __zio_execute(zio_t *zio);
148
149 static void zio_taskq_dispatch(zio_t *, zio_taskq_type_t, boolean_t);
150
151 void
152 zio_init(void)
153 {
154 size_t c;
155
156 zio_cache = kmem_cache_create("zio_cache",
157 sizeof (zio_t), 0, NULL, NULL, NULL, NULL, NULL, 0);
158 zio_link_cache = kmem_cache_create("zio_link_cache",
159 sizeof (zio_link_t), 0, NULL, NULL, NULL, NULL, NULL, 0);
160
161 for (c = 0; c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; c++) {
162 size_t size = (c + 1) << SPA_MINBLOCKSHIFT;
163 size_t align, cflags, data_cflags;
164 char name[32];
165
166 /*
167 * Create cache for each half-power of 2 size, starting from
168 * SPA_MINBLOCKSIZE. It should give us memory space efficiency
169 * of ~7/8, sufficient for transient allocations mostly using
170 * these caches.
171 */
172 size_t p2 = size;
173 while (!ISP2(p2))
174 p2 &= p2 - 1;
175 if (!IS_P2ALIGNED(size, p2 / 2))
176 continue;
177
178 #ifndef _KERNEL
179 /*
180 * If we are using watchpoints, put each buffer on its own page,
181 * to eliminate the performance overhead of trapping to the
182 * kernel when modifying a non-watched buffer that shares the
183 * page with a watched buffer.
184 */
185 if (arc_watch && !IS_P2ALIGNED(size, PAGESIZE))
186 continue;
187 #endif
188
189 if (IS_P2ALIGNED(size, PAGESIZE))
190 align = PAGESIZE;
191 else
192 align = 1 << (highbit64(size ^ (size - 1)) - 1);
193
194 cflags = (zio_exclude_metadata || size > zio_buf_debug_limit) ?
195 KMC_NODEBUG : 0;
196 data_cflags = KMC_NODEBUG;
197 if (cflags == data_cflags) {
198 /*
199 * Resulting kmem caches would be identical.
200 * Save memory by creating only one.
201 */
202 (void) snprintf(name, sizeof (name),
203 "zio_buf_comb_%lu", (ulong_t)size);
204 zio_buf_cache[c] = kmem_cache_create(name, size, align,
205 NULL, NULL, NULL, NULL, NULL, cflags);
206 zio_data_buf_cache[c] = zio_buf_cache[c];
207 continue;
208 }
209 (void) snprintf(name, sizeof (name), "zio_buf_%lu",
210 (ulong_t)size);
211 zio_buf_cache[c] = kmem_cache_create(name, size, align,
212 NULL, NULL, NULL, NULL, NULL, cflags);
213
214 (void) snprintf(name, sizeof (name), "zio_data_buf_%lu",
215 (ulong_t)size);
216 zio_data_buf_cache[c] = kmem_cache_create(name, size, align,
217 NULL, NULL, NULL, NULL, NULL, data_cflags);
218 }
219
220 while (--c != 0) {
221 ASSERT(zio_buf_cache[c] != NULL);
222 if (zio_buf_cache[c - 1] == NULL)
223 zio_buf_cache[c - 1] = zio_buf_cache[c];
224
225 ASSERT(zio_data_buf_cache[c] != NULL);
226 if (zio_data_buf_cache[c - 1] == NULL)
227 zio_data_buf_cache[c - 1] = zio_data_buf_cache[c];
228 }
229
230 zio_inject_init();
231
232 lz4_init();
233 }
234
235 void
236 zio_fini(void)
237 {
238 size_t n = SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT;
239
240 #if defined(ZFS_DEBUG) && !defined(_KERNEL)
241 for (size_t i = 0; i < n; i++) {
242 if (zio_buf_cache_allocs[i] != zio_buf_cache_frees[i])
243 (void) printf("zio_fini: [%d] %llu != %llu\n",
244 (int)((i + 1) << SPA_MINBLOCKSHIFT),
245 (long long unsigned)zio_buf_cache_allocs[i],
246 (long long unsigned)zio_buf_cache_frees[i]);
247 }
248 #endif
249
250 /*
251 * The same kmem cache can show up multiple times in both zio_buf_cache
252 * and zio_data_buf_cache. Do a wasteful but trivially correct scan to
253 * sort it out.
254 */
255 for (size_t i = 0; i < n; i++) {
256 kmem_cache_t *cache = zio_buf_cache[i];
257 if (cache == NULL)
258 continue;
259 for (size_t j = i; j < n; j++) {
260 if (cache == zio_buf_cache[j])
261 zio_buf_cache[j] = NULL;
262 if (cache == zio_data_buf_cache[j])
263 zio_data_buf_cache[j] = NULL;
264 }
265 kmem_cache_destroy(cache);
266 }
267
268 for (size_t i = 0; i < n; i++) {
269 kmem_cache_t *cache = zio_data_buf_cache[i];
270 if (cache == NULL)
271 continue;
272 for (size_t j = i; j < n; j++) {
273 if (cache == zio_data_buf_cache[j])
274 zio_data_buf_cache[j] = NULL;
275 }
276 kmem_cache_destroy(cache);
277 }
278
279 for (size_t i = 0; i < n; i++) {
280 VERIFY3P(zio_buf_cache[i], ==, NULL);
281 VERIFY3P(zio_data_buf_cache[i], ==, NULL);
282 }
283
284 kmem_cache_destroy(zio_link_cache);
285 kmem_cache_destroy(zio_cache);
286
287 zio_inject_fini();
288
289 lz4_fini();
290 }
291
292 /*
293 * ==========================================================================
294 * Allocate and free I/O buffers
295 * ==========================================================================
296 */
297
298 #ifdef ZFS_DEBUG
299 static const ulong_t zio_buf_canary = (ulong_t)0xdeadc0dedead210b;
300 #endif
301
302 /*
303 * Use empty space after the buffer to detect overflows.
304 *
305 * Since zio_init() creates kmem caches only for certain set of buffer sizes,
306 * allocations of different sizes may have some unused space after the data.
307 * Filling part of that space with a known pattern on allocation and checking
308 * it on free should allow us to detect some buffer overflows.
309 */
310 static void
311 zio_buf_put_canary(ulong_t *p, size_t size, kmem_cache_t **cache, size_t c)
312 {
313 #ifdef ZFS_DEBUG
314 size_t off = P2ROUNDUP(size, sizeof (ulong_t));
315 ulong_t *canary = p + off / sizeof (ulong_t);
316 size_t asize = (c + 1) << SPA_MINBLOCKSHIFT;
317 if (c + 1 < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT &&
318 cache[c] == cache[c + 1])
319 asize = (c + 2) << SPA_MINBLOCKSHIFT;
320 for (; off < asize; canary++, off += sizeof (ulong_t))
321 *canary = zio_buf_canary;
322 #endif
323 }
324
325 static void
326 zio_buf_check_canary(ulong_t *p, size_t size, kmem_cache_t **cache, size_t c)
327 {
328 #ifdef ZFS_DEBUG
329 size_t off = P2ROUNDUP(size, sizeof (ulong_t));
330 ulong_t *canary = p + off / sizeof (ulong_t);
331 size_t asize = (c + 1) << SPA_MINBLOCKSHIFT;
332 if (c + 1 < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT &&
333 cache[c] == cache[c + 1])
334 asize = (c + 2) << SPA_MINBLOCKSHIFT;
335 for (; off < asize; canary++, off += sizeof (ulong_t)) {
336 if (unlikely(*canary != zio_buf_canary)) {
337 PANIC("ZIO buffer overflow %p (%zu) + %zu %#lx != %#lx",
338 p, size, (canary - p) * sizeof (ulong_t),
339 *canary, zio_buf_canary);
340 }
341 }
342 #endif
343 }
344
345 /*
346 * Use zio_buf_alloc to allocate ZFS metadata. This data will appear in a
347 * crashdump if the kernel panics, so use it judiciously. Obviously, it's
348 * useful to inspect ZFS metadata, but if possible, we should avoid keeping
349 * excess / transient data in-core during a crashdump.
350 */
351 void *
352 zio_buf_alloc(size_t size)
353 {
354 size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
355
356 VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
357 #if defined(ZFS_DEBUG) && !defined(_KERNEL)
358 atomic_add_64(&zio_buf_cache_allocs[c], 1);
359 #endif
360
361 void *p = kmem_cache_alloc(zio_buf_cache[c], KM_PUSHPAGE);
362 zio_buf_put_canary(p, size, zio_buf_cache, c);
363 return (p);
364 }
365
366 /*
367 * Use zio_data_buf_alloc to allocate data. The data will not appear in a
368 * crashdump if the kernel panics. This exists so that we will limit the amount
369 * of ZFS data that shows up in a kernel crashdump. (Thus reducing the amount
370 * of kernel heap dumped to disk when the kernel panics)
371 */
372 void *
373 zio_data_buf_alloc(size_t size)
374 {
375 size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
376
377 VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
378
379 void *p = kmem_cache_alloc(zio_data_buf_cache[c], KM_PUSHPAGE);
380 zio_buf_put_canary(p, size, zio_data_buf_cache, c);
381 return (p);
382 }
383
384 void
385 zio_buf_free(void *buf, size_t size)
386 {
387 size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
388
389 VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
390 #if defined(ZFS_DEBUG) && !defined(_KERNEL)
391 atomic_add_64(&zio_buf_cache_frees[c], 1);
392 #endif
393
394 zio_buf_check_canary(buf, size, zio_buf_cache, c);
395 kmem_cache_free(zio_buf_cache[c], buf);
396 }
397
398 void
399 zio_data_buf_free(void *buf, size_t size)
400 {
401 size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
402
403 VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
404
405 zio_buf_check_canary(buf, size, zio_data_buf_cache, c);
406 kmem_cache_free(zio_data_buf_cache[c], buf);
407 }
408
409 static void
410 zio_abd_free(void *abd, size_t size)
411 {
412 (void) size;
413 abd_free((abd_t *)abd);
414 }
415
416 /*
417 * ==========================================================================
418 * Push and pop I/O transform buffers
419 * ==========================================================================
420 */
421 void
422 zio_push_transform(zio_t *zio, abd_t *data, uint64_t size, uint64_t bufsize,
423 zio_transform_func_t *transform)
424 {
425 zio_transform_t *zt = kmem_alloc(sizeof (zio_transform_t), KM_SLEEP);
426
427 zt->zt_orig_abd = zio->io_abd;
428 zt->zt_orig_size = zio->io_size;
429 zt->zt_bufsize = bufsize;
430 zt->zt_transform = transform;
431
432 zt->zt_next = zio->io_transform_stack;
433 zio->io_transform_stack = zt;
434
435 zio->io_abd = data;
436 zio->io_size = size;
437 }
438
439 void
440 zio_pop_transforms(zio_t *zio)
441 {
442 zio_transform_t *zt;
443
444 while ((zt = zio->io_transform_stack) != NULL) {
445 if (zt->zt_transform != NULL)
446 zt->zt_transform(zio,
447 zt->zt_orig_abd, zt->zt_orig_size);
448
449 if (zt->zt_bufsize != 0)
450 abd_free(zio->io_abd);
451
452 zio->io_abd = zt->zt_orig_abd;
453 zio->io_size = zt->zt_orig_size;
454 zio->io_transform_stack = zt->zt_next;
455
456 kmem_free(zt, sizeof (zio_transform_t));
457 }
458 }
459
460 /*
461 * ==========================================================================
462 * I/O transform callbacks for subblocks, decompression, and decryption
463 * ==========================================================================
464 */
465 static void
466 zio_subblock(zio_t *zio, abd_t *data, uint64_t size)
467 {
468 ASSERT(zio->io_size > size);
469
470 if (zio->io_type == ZIO_TYPE_READ)
471 abd_copy(data, zio->io_abd, size);
472 }
473
474 static void
475 zio_decompress(zio_t *zio, abd_t *data, uint64_t size)
476 {
477 if (zio->io_error == 0) {
478 void *tmp = abd_borrow_buf(data, size);
479 int ret = zio_decompress_data(BP_GET_COMPRESS(zio->io_bp),
480 zio->io_abd, tmp, zio->io_size, size,
481 &zio->io_prop.zp_complevel);
482 abd_return_buf_copy(data, tmp, size);
483
484 if (zio_injection_enabled && ret == 0)
485 ret = zio_handle_fault_injection(zio, EINVAL);
486
487 if (ret != 0)
488 zio->io_error = SET_ERROR(EIO);
489 }
490 }
491
492 static void
493 zio_decrypt(zio_t *zio, abd_t *data, uint64_t size)
494 {
495 int ret;
496 void *tmp;
497 blkptr_t *bp = zio->io_bp;
498 spa_t *spa = zio->io_spa;
499 uint64_t dsobj = zio->io_bookmark.zb_objset;
500 uint64_t lsize = BP_GET_LSIZE(bp);
501 dmu_object_type_t ot = BP_GET_TYPE(bp);
502 uint8_t salt[ZIO_DATA_SALT_LEN];
503 uint8_t iv[ZIO_DATA_IV_LEN];
504 uint8_t mac[ZIO_DATA_MAC_LEN];
505 boolean_t no_crypt = B_FALSE;
506
507 ASSERT(BP_USES_CRYPT(bp));
508 ASSERT3U(size, !=, 0);
509
510 if (zio->io_error != 0)
511 return;
512
513 /*
514 * Verify the cksum of MACs stored in an indirect bp. It will always
515 * be possible to verify this since it does not require an encryption
516 * key.
517 */
518 if (BP_HAS_INDIRECT_MAC_CKSUM(bp)) {
519 zio_crypt_decode_mac_bp(bp, mac);
520
521 if (BP_GET_COMPRESS(bp) != ZIO_COMPRESS_OFF) {
522 /*
523 * We haven't decompressed the data yet, but
524 * zio_crypt_do_indirect_mac_checksum() requires
525 * decompressed data to be able to parse out the MACs
526 * from the indirect block. We decompress it now and
527 * throw away the result after we are finished.
528 */
529 tmp = zio_buf_alloc(lsize);
530 ret = zio_decompress_data(BP_GET_COMPRESS(bp),
531 zio->io_abd, tmp, zio->io_size, lsize,
532 &zio->io_prop.zp_complevel);
533 if (ret != 0) {
534 ret = SET_ERROR(EIO);
535 goto error;
536 }
537 ret = zio_crypt_do_indirect_mac_checksum(B_FALSE,
538 tmp, lsize, BP_SHOULD_BYTESWAP(bp), mac);
539 zio_buf_free(tmp, lsize);
540 } else {
541 ret = zio_crypt_do_indirect_mac_checksum_abd(B_FALSE,
542 zio->io_abd, size, BP_SHOULD_BYTESWAP(bp), mac);
543 }
544 abd_copy(data, zio->io_abd, size);
545
546 if (zio_injection_enabled && ot != DMU_OT_DNODE && ret == 0) {
547 ret = zio_handle_decrypt_injection(spa,
548 &zio->io_bookmark, ot, ECKSUM);
549 }
550 if (ret != 0)
551 goto error;
552
553 return;
554 }
555
556 /*
557 * If this is an authenticated block, just check the MAC. It would be
558 * nice to separate this out into its own flag, but when this was done,
559 * we had run out of bits in what is now zio_flag_t. Future cleanup
560 * could make this a flag bit.
561 */
562 if (BP_IS_AUTHENTICATED(bp)) {
563 if (ot == DMU_OT_OBJSET) {
564 ret = spa_do_crypt_objset_mac_abd(B_FALSE, spa,
565 dsobj, zio->io_abd, size, BP_SHOULD_BYTESWAP(bp));
566 } else {
567 zio_crypt_decode_mac_bp(bp, mac);
568 ret = spa_do_crypt_mac_abd(B_FALSE, spa, dsobj,
569 zio->io_abd, size, mac);
570 if (zio_injection_enabled && ret == 0) {
571 ret = zio_handle_decrypt_injection(spa,
572 &zio->io_bookmark, ot, ECKSUM);
573 }
574 }
575 abd_copy(data, zio->io_abd, size);
576
577 if (ret != 0)
578 goto error;
579
580 return;
581 }
582
583 zio_crypt_decode_params_bp(bp, salt, iv);
584
585 if (ot == DMU_OT_INTENT_LOG) {
586 tmp = abd_borrow_buf_copy(zio->io_abd, sizeof (zil_chain_t));
587 zio_crypt_decode_mac_zil(tmp, mac);
588 abd_return_buf(zio->io_abd, tmp, sizeof (zil_chain_t));
589 } else {
590 zio_crypt_decode_mac_bp(bp, mac);
591 }
592
593 ret = spa_do_crypt_abd(B_FALSE, spa, &zio->io_bookmark, BP_GET_TYPE(bp),
594 BP_GET_DEDUP(bp), BP_SHOULD_BYTESWAP(bp), salt, iv, mac, size, data,
595 zio->io_abd, &no_crypt);
596 if (no_crypt)
597 abd_copy(data, zio->io_abd, size);
598
599 if (ret != 0)
600 goto error;
601
602 return;
603
604 error:
605 /* assert that the key was found unless this was speculative */
606 ASSERT(ret != EACCES || (zio->io_flags & ZIO_FLAG_SPECULATIVE));
607
608 /*
609 * If there was a decryption / authentication error return EIO as
610 * the io_error. If this was not a speculative zio, create an ereport.
611 */
612 if (ret == ECKSUM) {
613 zio->io_error = SET_ERROR(EIO);
614 if ((zio->io_flags & ZIO_FLAG_SPECULATIVE) == 0) {
615 spa_log_error(spa, &zio->io_bookmark,
616 BP_GET_LOGICAL_BIRTH(zio->io_bp));
617 (void) zfs_ereport_post(FM_EREPORT_ZFS_AUTHENTICATION,
618 spa, NULL, &zio->io_bookmark, zio, 0);
619 }
620 } else {
621 zio->io_error = ret;
622 }
623 }
624
625 /*
626 * ==========================================================================
627 * I/O parent/child relationships and pipeline interlocks
628 * ==========================================================================
629 */
630 zio_t *
631 zio_walk_parents(zio_t *cio, zio_link_t **zl)
632 {
633 list_t *pl = &cio->io_parent_list;
634
635 *zl = (*zl == NULL) ? list_head(pl) : list_next(pl, *zl);
636 if (*zl == NULL)
637 return (NULL);
638
639 ASSERT((*zl)->zl_child == cio);
640 return ((*zl)->zl_parent);
641 }
642
643 zio_t *
644 zio_walk_children(zio_t *pio, zio_link_t **zl)
645 {
646 list_t *cl = &pio->io_child_list;
647
648 ASSERT(MUTEX_HELD(&pio->io_lock));
649
650 *zl = (*zl == NULL) ? list_head(cl) : list_next(cl, *zl);
651 if (*zl == NULL)
652 return (NULL);
653
654 ASSERT((*zl)->zl_parent == pio);
655 return ((*zl)->zl_child);
656 }
657
658 zio_t *
659 zio_unique_parent(zio_t *cio)
660 {
661 zio_link_t *zl = NULL;
662 zio_t *pio = zio_walk_parents(cio, &zl);
663
664 VERIFY3P(zio_walk_parents(cio, &zl), ==, NULL);
665 return (pio);
666 }
667
668 void
669 zio_add_child(zio_t *pio, zio_t *cio)
670 {
671 /*
672 * Logical I/Os can have logical, gang, or vdev children.
673 * Gang I/Os can have gang or vdev children.
674 * Vdev I/Os can only have vdev children.
675 * The following ASSERT captures all of these constraints.
676 */
677 ASSERT3S(cio->io_child_type, <=, pio->io_child_type);
678
679 /* Parent should not have READY stage if child doesn't have it. */
680 IMPLY((cio->io_pipeline & ZIO_STAGE_READY) == 0 &&
681 (cio->io_child_type != ZIO_CHILD_VDEV),
682 (pio->io_pipeline & ZIO_STAGE_READY) == 0);
683
684 zio_link_t *zl = kmem_cache_alloc(zio_link_cache, KM_SLEEP);
685 zl->zl_parent = pio;
686 zl->zl_child = cio;
687
688 mutex_enter(&pio->io_lock);
689 mutex_enter(&cio->io_lock);
690
691 ASSERT(pio->io_state[ZIO_WAIT_DONE] == 0);
692
693 uint64_t *countp = pio->io_children[cio->io_child_type];
694 for (int w = 0; w < ZIO_WAIT_TYPES; w++)
695 countp[w] += !cio->io_state[w];
696
697 list_insert_head(&pio->io_child_list, zl);
698 list_insert_head(&cio->io_parent_list, zl);
699
700 mutex_exit(&cio->io_lock);
701 mutex_exit(&pio->io_lock);
702 }
703
704 void
705 zio_add_child_first(zio_t *pio, zio_t *cio)
706 {
707 /*
708 * Logical I/Os can have logical, gang, or vdev children.
709 * Gang I/Os can have gang or vdev children.
710 * Vdev I/Os can only have vdev children.
711 * The following ASSERT captures all of these constraints.
712 */
713 ASSERT3S(cio->io_child_type, <=, pio->io_child_type);
714
715 /* Parent should not have READY stage if child doesn't have it. */
716 IMPLY((cio->io_pipeline & ZIO_STAGE_READY) == 0 &&
717 (cio->io_child_type != ZIO_CHILD_VDEV),
718 (pio->io_pipeline & ZIO_STAGE_READY) == 0);
719
720 zio_link_t *zl = kmem_cache_alloc(zio_link_cache, KM_SLEEP);
721 zl->zl_parent = pio;
722 zl->zl_child = cio;
723
724 ASSERT(list_is_empty(&cio->io_parent_list));
725 list_insert_head(&cio->io_parent_list, zl);
726
727 mutex_enter(&pio->io_lock);
728
729 ASSERT(pio->io_state[ZIO_WAIT_DONE] == 0);
730
731 uint64_t *countp = pio->io_children[cio->io_child_type];
732 for (int w = 0; w < ZIO_WAIT_TYPES; w++)
733 countp[w] += !cio->io_state[w];
734
735 list_insert_head(&pio->io_child_list, zl);
736
737 mutex_exit(&pio->io_lock);
738 }
739
740 static void
741 zio_remove_child(zio_t *pio, zio_t *cio, zio_link_t *zl)
742 {
743 ASSERT(zl->zl_parent == pio);
744 ASSERT(zl->zl_child == cio);
745
746 mutex_enter(&pio->io_lock);
747 mutex_enter(&cio->io_lock);
748
749 list_remove(&pio->io_child_list, zl);
750 list_remove(&cio->io_parent_list, zl);
751
752 mutex_exit(&cio->io_lock);
753 mutex_exit(&pio->io_lock);
754 kmem_cache_free(zio_link_cache, zl);
755 }
756
757 static boolean_t
758 zio_wait_for_children(zio_t *zio, uint8_t childbits, enum zio_wait_type wait)
759 {
760 boolean_t waiting = B_FALSE;
761
762 mutex_enter(&zio->io_lock);
763 ASSERT(zio->io_stall == NULL);
764 for (int c = 0; c < ZIO_CHILD_TYPES; c++) {
765 if (!(ZIO_CHILD_BIT_IS_SET(childbits, c)))
766 continue;
767
768 uint64_t *countp = &zio->io_children[c][wait];
769 if (*countp != 0) {
770 zio->io_stage >>= 1;
771 ASSERT3U(zio->io_stage, !=, ZIO_STAGE_OPEN);
772 zio->io_stall = countp;
773 waiting = B_TRUE;
774 break;
775 }
776 }
777 mutex_exit(&zio->io_lock);
778 return (waiting);
779 }
780
781 __attribute__((always_inline))
782 static inline void
783 zio_notify_parent(zio_t *pio, zio_t *zio, enum zio_wait_type wait,
784 zio_t **next_to_executep)
785 {
786 uint64_t *countp = &pio->io_children[zio->io_child_type][wait];
787 int *errorp = &pio->io_child_error[zio->io_child_type];
788
789 mutex_enter(&pio->io_lock);
790 if (zio->io_error && !(zio->io_flags & ZIO_FLAG_DONT_PROPAGATE))
791 *errorp = zio_worst_error(*errorp, zio->io_error);
792 pio->io_reexecute |= zio->io_reexecute;
793 ASSERT3U(*countp, >, 0);
794
795 (*countp)--;
796
797 if (*countp == 0 && pio->io_stall == countp) {
798 zio_taskq_type_t type =
799 pio->io_stage < ZIO_STAGE_VDEV_IO_START ? ZIO_TASKQ_ISSUE :
800 ZIO_TASKQ_INTERRUPT;
801 pio->io_stall = NULL;
802 mutex_exit(&pio->io_lock);
803
804 /*
805 * If we can tell the caller to execute this parent next, do
806 * so. We only do this if the parent's zio type matches the
807 * child's type. Otherwise dispatch the parent zio in its
808 * own taskq.
809 *
810 * Having the caller execute the parent when possible reduces
811 * locking on the zio taskq's, reduces context switch
812 * overhead, and has no recursion penalty. Note that one
813 * read from disk typically causes at least 3 zio's: a
814 * zio_null(), the logical zio_read(), and then a physical
815 * zio. When the physical ZIO completes, we are able to call
816 * zio_done() on all 3 of these zio's from one invocation of
817 * zio_execute() by returning the parent back to
818 * zio_execute(). Since the parent isn't executed until this
819 * thread returns back to zio_execute(), the caller should do
820 * so promptly.
821 *
822 * In other cases, dispatching the parent prevents
823 * overflowing the stack when we have deeply nested
824 * parent-child relationships, as we do with the "mega zio"
825 * of writes for spa_sync(), and the chain of ZIL blocks.
826 */
827 if (next_to_executep != NULL && *next_to_executep == NULL &&
828 pio->io_type == zio->io_type) {
829 *next_to_executep = pio;
830 } else {
831 zio_taskq_dispatch(pio, type, B_FALSE);
832 }
833 } else {
834 mutex_exit(&pio->io_lock);
835 }
836 }
837
838 static void
839 zio_inherit_child_errors(zio_t *zio, enum zio_child c)
840 {
841 if (zio->io_child_error[c] != 0 && zio->io_error == 0)
842 zio->io_error = zio->io_child_error[c];
843 }
844
845 int
846 zio_bookmark_compare(const void *x1, const void *x2)
847 {
848 const zio_t *z1 = x1;
849 const zio_t *z2 = x2;
850
851 if (z1->io_bookmark.zb_objset < z2->io_bookmark.zb_objset)
852 return (-1);
853 if (z1->io_bookmark.zb_objset > z2->io_bookmark.zb_objset)
854 return (1);
855
856 if (z1->io_bookmark.zb_object < z2->io_bookmark.zb_object)
857 return (-1);
858 if (z1->io_bookmark.zb_object > z2->io_bookmark.zb_object)
859 return (1);
860
861 if (z1->io_bookmark.zb_level < z2->io_bookmark.zb_level)
862 return (-1);
863 if (z1->io_bookmark.zb_level > z2->io_bookmark.zb_level)
864 return (1);
865
866 if (z1->io_bookmark.zb_blkid < z2->io_bookmark.zb_blkid)
867 return (-1);
868 if (z1->io_bookmark.zb_blkid > z2->io_bookmark.zb_blkid)
869 return (1);
870
871 if (z1 < z2)
872 return (-1);
873 if (z1 > z2)
874 return (1);
875
876 return (0);
877 }
878
879 /*
880 * ==========================================================================
881 * Create the various types of I/O (read, write, free, etc)
882 * ==========================================================================
883 */
884 static zio_t *
885 zio_create(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp,
886 abd_t *data, uint64_t lsize, uint64_t psize, zio_done_func_t *done,
887 void *private, zio_type_t type, zio_priority_t priority,
888 zio_flag_t flags, vdev_t *vd, uint64_t offset,
889 const zbookmark_phys_t *zb, enum zio_stage stage,
890 enum zio_stage pipeline)
891 {
892 zio_t *zio;
893
894 IMPLY(type != ZIO_TYPE_TRIM, psize <= SPA_MAXBLOCKSIZE);
895 ASSERT(P2PHASE(psize, SPA_MINBLOCKSIZE) == 0);
896 ASSERT(P2PHASE(offset, SPA_MINBLOCKSIZE) == 0);
897
898 ASSERT(!vd || spa_config_held(spa, SCL_STATE_ALL, RW_READER));
899 ASSERT(!bp || !(flags & ZIO_FLAG_CONFIG_WRITER));
900 ASSERT(vd || stage == ZIO_STAGE_OPEN);
901
902 IMPLY(lsize != psize, (flags & ZIO_FLAG_RAW_COMPRESS) != 0);
903
904 zio = kmem_cache_alloc(zio_cache, KM_SLEEP);
905 memset(zio, 0, sizeof (zio_t));
906
907 mutex_init(&zio->io_lock, NULL, MUTEX_NOLOCKDEP, NULL);
908 cv_init(&zio->io_cv, NULL, CV_DEFAULT, NULL);
909
910 list_create(&zio->io_parent_list, sizeof (zio_link_t),
911 offsetof(zio_link_t, zl_parent_node));
912 list_create(&zio->io_child_list, sizeof (zio_link_t),
913 offsetof(zio_link_t, zl_child_node));
914 metaslab_trace_init(&zio->io_alloc_list);
915
916 if (vd != NULL)
917 zio->io_child_type = ZIO_CHILD_VDEV;
918 else if (flags & ZIO_FLAG_GANG_CHILD)
919 zio->io_child_type = ZIO_CHILD_GANG;
920 else if (flags & ZIO_FLAG_DDT_CHILD)
921 zio->io_child_type = ZIO_CHILD_DDT;
922 else
923 zio->io_child_type = ZIO_CHILD_LOGICAL;
924
925 if (bp != NULL) {
926 if (type != ZIO_TYPE_WRITE ||
927 zio->io_child_type == ZIO_CHILD_DDT) {
928 zio->io_bp_copy = *bp;
929 zio->io_bp = &zio->io_bp_copy; /* so caller can free */
930 } else {
931 zio->io_bp = (blkptr_t *)bp;
932 }
933 zio->io_bp_orig = *bp;
934 if (zio->io_child_type == ZIO_CHILD_LOGICAL)
935 zio->io_logical = zio;
936 if (zio->io_child_type > ZIO_CHILD_GANG && BP_IS_GANG(bp))
937 pipeline |= ZIO_GANG_STAGES;
938 }
939
940 zio->io_spa = spa;
941 zio->io_txg = txg;
942 zio->io_done = done;
943 zio->io_private = private;
944 zio->io_type = type;
945 zio->io_priority = priority;
946 zio->io_vd = vd;
947 zio->io_offset = offset;
948 zio->io_orig_abd = zio->io_abd = data;
949 zio->io_orig_size = zio->io_size = psize;
950 zio->io_lsize = lsize;
951 zio->io_orig_flags = zio->io_flags = flags;
952 zio->io_orig_stage = zio->io_stage = stage;
953 zio->io_orig_pipeline = zio->io_pipeline = pipeline;
954 zio->io_pipeline_trace = ZIO_STAGE_OPEN;
955 zio->io_allocator = ZIO_ALLOCATOR_NONE;
956
957 zio->io_state[ZIO_WAIT_READY] = (stage >= ZIO_STAGE_READY) ||
958 (pipeline & ZIO_STAGE_READY) == 0;
959 zio->io_state[ZIO_WAIT_DONE] = (stage >= ZIO_STAGE_DONE);
960
961 if (zb != NULL)
962 zio->io_bookmark = *zb;
963
964 if (pio != NULL) {
965 zio->io_metaslab_class = pio->io_metaslab_class;
966 if (zio->io_logical == NULL)
967 zio->io_logical = pio->io_logical;
968 if (zio->io_child_type == ZIO_CHILD_GANG)
969 zio->io_gang_leader = pio->io_gang_leader;
970 zio_add_child_first(pio, zio);
971 }
972
973 taskq_init_ent(&zio->io_tqent);
974
975 return (zio);
976 }
977
978 void
979 zio_destroy(zio_t *zio)
980 {
981 metaslab_trace_fini(&zio->io_alloc_list);
982 list_destroy(&zio->io_parent_list);
983 list_destroy(&zio->io_child_list);
984 mutex_destroy(&zio->io_lock);
985 cv_destroy(&zio->io_cv);
986 kmem_cache_free(zio_cache, zio);
987 }
988
989 /*
990 * ZIO intended to be between others. Provides synchronization at READY
991 * and DONE pipeline stages and calls the respective callbacks.
992 */
993 zio_t *
994 zio_null(zio_t *pio, spa_t *spa, vdev_t *vd, zio_done_func_t *done,
995 void *private, zio_flag_t flags)
996 {
997 zio_t *zio;
998
999 zio = zio_create(pio, spa, 0, NULL, NULL, 0, 0, done, private,
1000 ZIO_TYPE_NULL, ZIO_PRIORITY_NOW, flags, vd, 0, NULL,
1001 ZIO_STAGE_OPEN, ZIO_INTERLOCK_PIPELINE);
1002
1003 return (zio);
1004 }
1005
1006 /*
1007 * ZIO intended to be a root of a tree. Unlike null ZIO does not have a
1008 * READY pipeline stage (is ready on creation), so it should not be used
1009 * as child of any ZIO that may need waiting for grandchildren READY stage
1010 * (any other ZIO type).
1011 */
1012 zio_t *
1013 zio_root(spa_t *spa, zio_done_func_t *done, void *private, zio_flag_t flags)
1014 {
1015 zio_t *zio;
1016
1017 zio = zio_create(NULL, spa, 0, NULL, NULL, 0, 0, done, private,
1018 ZIO_TYPE_NULL, ZIO_PRIORITY_NOW, flags, NULL, 0, NULL,
1019 ZIO_STAGE_OPEN, ZIO_ROOT_PIPELINE);
1020
1021 return (zio);
1022 }
1023
1024 static int
1025 zfs_blkptr_verify_log(spa_t *spa, const blkptr_t *bp,
1026 enum blk_verify_flag blk_verify, const char *fmt, ...)
1027 {
1028 va_list adx;
1029 char buf[256];
1030
1031 va_start(adx, fmt);
1032 (void) vsnprintf(buf, sizeof (buf), fmt, adx);
1033 va_end(adx);
1034
1035 zfs_dbgmsg("bad blkptr at %px: "
1036 "DVA[0]=%#llx/%#llx "
1037 "DVA[1]=%#llx/%#llx "
1038 "DVA[2]=%#llx/%#llx "
1039 "prop=%#llx "
1040 "pad=%#llx,%#llx "
1041 "phys_birth=%#llx "
1042 "birth=%#llx "
1043 "fill=%#llx "
1044 "cksum=%#llx/%#llx/%#llx/%#llx",
1045 bp,
1046 (long long)bp->blk_dva[0].dva_word[0],
1047 (long long)bp->blk_dva[0].dva_word[1],
1048 (long long)bp->blk_dva[1].dva_word[0],
1049 (long long)bp->blk_dva[1].dva_word[1],
1050 (long long)bp->blk_dva[2].dva_word[0],
1051 (long long)bp->blk_dva[2].dva_word[1],
1052 (long long)bp->blk_prop,
1053 (long long)bp->blk_pad[0],
1054 (long long)bp->blk_pad[1],
1055 (long long)BP_GET_PHYSICAL_BIRTH(bp),
1056 (long long)BP_GET_LOGICAL_BIRTH(bp),
1057 (long long)bp->blk_fill,
1058 (long long)bp->blk_cksum.zc_word[0],
1059 (long long)bp->blk_cksum.zc_word[1],
1060 (long long)bp->blk_cksum.zc_word[2],
1061 (long long)bp->blk_cksum.zc_word[3]);
1062 switch (blk_verify) {
1063 case BLK_VERIFY_HALT:
1064 zfs_panic_recover("%s: %s", spa_name(spa), buf);
1065 break;
1066 case BLK_VERIFY_LOG:
1067 zfs_dbgmsg("%s: %s", spa_name(spa), buf);
1068 break;
1069 case BLK_VERIFY_ONLY:
1070 break;
1071 }
1072
1073 return (1);
1074 }
1075
1076 /*
1077 * Verify the block pointer fields contain reasonable values. This means
1078 * it only contains known object types, checksum/compression identifiers,
1079 * block sizes within the maximum allowed limits, valid DVAs, etc.
1080 *
1081 * If everything checks out B_TRUE is returned. The zfs_blkptr_verify
1082 * argument controls the behavior when an invalid field is detected.
1083 *
1084 * Values for blk_verify_flag:
1085 * BLK_VERIFY_ONLY: evaluate the block
1086 * BLK_VERIFY_LOG: evaluate the block and log problems
1087 * BLK_VERIFY_HALT: call zfs_panic_recover on error
1088 *
1089 * Values for blk_config_flag:
1090 * BLK_CONFIG_HELD: caller holds SCL_VDEV for writer
1091 * BLK_CONFIG_NEEDED: caller holds no config lock, SCL_VDEV will be
1092 * obtained for reader
1093 * BLK_CONFIG_SKIP: skip checks which require SCL_VDEV, for better
1094 * performance
1095 */
1096 boolean_t
1097 zfs_blkptr_verify(spa_t *spa, const blkptr_t *bp,
1098 enum blk_config_flag blk_config, enum blk_verify_flag blk_verify)
1099 {
1100 int errors = 0;
1101
1102 if (!DMU_OT_IS_VALID(BP_GET_TYPE(bp))) {
1103 errors += zfs_blkptr_verify_log(spa, bp, blk_verify,
1104 "blkptr at %px has invalid TYPE %llu",
1105 bp, (longlong_t)BP_GET_TYPE(bp));
1106 }
1107 if (BP_GET_CHECKSUM(bp) >= ZIO_CHECKSUM_FUNCTIONS) {
1108 errors += zfs_blkptr_verify_log(spa, bp, blk_verify,
1109 "blkptr at %px has invalid CHECKSUM %llu",
1110 bp, (longlong_t)BP_GET_CHECKSUM(bp));
1111 }
1112 if (BP_GET_COMPRESS(bp) >= ZIO_COMPRESS_FUNCTIONS) {
1113 errors += zfs_blkptr_verify_log(spa, bp, blk_verify,
1114 "blkptr at %px has invalid COMPRESS %llu",
1115 bp, (longlong_t)BP_GET_COMPRESS(bp));
1116 }
1117 if (BP_GET_LSIZE(bp) > SPA_MAXBLOCKSIZE) {
1118 errors += zfs_blkptr_verify_log(spa, bp, blk_verify,
1119 "blkptr at %px has invalid LSIZE %llu",
1120 bp, (longlong_t)BP_GET_LSIZE(bp));
1121 }
1122 if (BP_GET_PSIZE(bp) > SPA_MAXBLOCKSIZE) {
1123 errors += zfs_blkptr_verify_log(spa, bp, blk_verify,
1124 "blkptr at %px has invalid PSIZE %llu",
1125 bp, (longlong_t)BP_GET_PSIZE(bp));
1126 }
1127
1128 if (BP_IS_EMBEDDED(bp)) {
1129 if (BPE_GET_ETYPE(bp) >= NUM_BP_EMBEDDED_TYPES) {
1130 errors += zfs_blkptr_verify_log(spa, bp, blk_verify,
1131 "blkptr at %px has invalid ETYPE %llu",
1132 bp, (longlong_t)BPE_GET_ETYPE(bp));
1133 }
1134 }
1135
1136 /*
1137 * Do not verify individual DVAs if the config is not trusted. This
1138 * will be done once the zio is executed in vdev_mirror_map_alloc.
1139 */
1140 if (!spa->spa_trust_config)
1141 return (errors == 0);
1142
1143 switch (blk_config) {
1144 case BLK_CONFIG_HELD:
1145 ASSERT(spa_config_held(spa, SCL_VDEV, RW_WRITER));
1146 break;
1147 case BLK_CONFIG_NEEDED:
1148 spa_config_enter(spa, SCL_VDEV, bp, RW_READER);
1149 break;
1150 case BLK_CONFIG_SKIP:
1151 return (errors == 0);
1152 default:
1153 panic("invalid blk_config %u", blk_config);
1154 }
1155
1156 /*
1157 * Pool-specific checks.
1158 *
1159 * Note: it would be nice to verify that the logical birth
1160 * and physical birth are not too large. However,
1161 * spa_freeze() allows the birth time of log blocks (and
1162 * dmu_sync()-ed blocks that are in the log) to be arbitrarily
1163 * large.
1164 */
1165 for (int i = 0; i < BP_GET_NDVAS(bp); i++) {
1166 const dva_t *dva = &bp->blk_dva[i];
1167 uint64_t vdevid = DVA_GET_VDEV(dva);
1168
1169 if (vdevid >= spa->spa_root_vdev->vdev_children) {
1170 errors += zfs_blkptr_verify_log(spa, bp, blk_verify,
1171 "blkptr at %px DVA %u has invalid VDEV %llu",
1172 bp, i, (longlong_t)vdevid);
1173 continue;
1174 }
1175 vdev_t *vd = spa->spa_root_vdev->vdev_child[vdevid];
1176 if (vd == NULL) {
1177 errors += zfs_blkptr_verify_log(spa, bp, blk_verify,
1178 "blkptr at %px DVA %u has invalid VDEV %llu",
1179 bp, i, (longlong_t)vdevid);
1180 continue;
1181 }
1182 if (vd->vdev_ops == &vdev_hole_ops) {
1183 errors += zfs_blkptr_verify_log(spa, bp, blk_verify,
1184 "blkptr at %px DVA %u has hole VDEV %llu",
1185 bp, i, (longlong_t)vdevid);
1186 continue;
1187 }
1188 if (vd->vdev_ops == &vdev_missing_ops) {
1189 /*
1190 * "missing" vdevs are valid during import, but we
1191 * don't have their detailed info (e.g. asize), so
1192 * we can't perform any more checks on them.
1193 */
1194 continue;
1195 }
1196 uint64_t offset = DVA_GET_OFFSET(dva);
1197 uint64_t asize = DVA_GET_ASIZE(dva);
1198 if (DVA_GET_GANG(dva))
1199 asize = vdev_gang_header_asize(vd);
1200 if (offset + asize > vd->vdev_asize) {
1201 errors += zfs_blkptr_verify_log(spa, bp, blk_verify,
1202 "blkptr at %px DVA %u has invalid OFFSET %llu",
1203 bp, i, (longlong_t)offset);
1204 }
1205 }
1206 if (blk_config == BLK_CONFIG_NEEDED)
1207 spa_config_exit(spa, SCL_VDEV, bp);
1208
1209 return (errors == 0);
1210 }
1211
1212 boolean_t
1213 zfs_dva_valid(spa_t *spa, const dva_t *dva, const blkptr_t *bp)
1214 {
1215 (void) bp;
1216 uint64_t vdevid = DVA_GET_VDEV(dva);
1217
1218 if (vdevid >= spa->spa_root_vdev->vdev_children)
1219 return (B_FALSE);
1220
1221 vdev_t *vd = spa->spa_root_vdev->vdev_child[vdevid];
1222 if (vd == NULL)
1223 return (B_FALSE);
1224
1225 if (vd->vdev_ops == &vdev_hole_ops)
1226 return (B_FALSE);
1227
1228 if (vd->vdev_ops == &vdev_missing_ops) {
1229 return (B_FALSE);
1230 }
1231
1232 uint64_t offset = DVA_GET_OFFSET(dva);
1233 uint64_t asize = DVA_GET_ASIZE(dva);
1234
1235 if (DVA_GET_GANG(dva))
1236 asize = vdev_gang_header_asize(vd);
1237 if (offset + asize > vd->vdev_asize)
1238 return (B_FALSE);
1239
1240 return (B_TRUE);
1241 }
1242
1243 zio_t *
1244 zio_read(zio_t *pio, spa_t *spa, const blkptr_t *bp,
1245 abd_t *data, uint64_t size, zio_done_func_t *done, void *private,
1246 zio_priority_t priority, zio_flag_t flags, const zbookmark_phys_t *zb)
1247 {
1248 zio_t *zio;
1249
1250 zio = zio_create(pio, spa, BP_GET_BIRTH(bp), bp,
1251 data, size, size, done, private,
1252 ZIO_TYPE_READ, priority, flags, NULL, 0, zb,
1253 ZIO_STAGE_OPEN, (flags & ZIO_FLAG_DDT_CHILD) ?
1254 ZIO_DDT_CHILD_READ_PIPELINE : ZIO_READ_PIPELINE);
1255
1256 return (zio);
1257 }
1258
1259 zio_t *
1260 zio_write(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp,
1261 abd_t *data, uint64_t lsize, uint64_t psize, const zio_prop_t *zp,
1262 zio_done_func_t *ready, zio_done_func_t *children_ready,
1263 zio_done_func_t *done, void *private, zio_priority_t priority,
1264 zio_flag_t flags, const zbookmark_phys_t *zb)
1265 {
1266 zio_t *zio;
1267
1268 ASSERT(zp->zp_checksum >= ZIO_CHECKSUM_OFF &&
1269 zp->zp_checksum < ZIO_CHECKSUM_FUNCTIONS &&
1270 zp->zp_compress >= ZIO_COMPRESS_OFF &&
1271 zp->zp_compress < ZIO_COMPRESS_FUNCTIONS &&
1272 DMU_OT_IS_VALID(zp->zp_type) &&
1273 zp->zp_level < 32 &&
1274 zp->zp_copies > 0 &&
1275 zp->zp_copies <= spa_max_replication(spa));
1276
1277 zio = zio_create(pio, spa, txg, bp, data, lsize, psize, done, private,
1278 ZIO_TYPE_WRITE, priority, flags, NULL, 0, zb,
1279 ZIO_STAGE_OPEN, (flags & ZIO_FLAG_DDT_CHILD) ?
1280 ZIO_DDT_CHILD_WRITE_PIPELINE : ZIO_WRITE_PIPELINE);
1281
1282 zio->io_ready = ready;
1283 zio->io_children_ready = children_ready;
1284 zio->io_prop = *zp;
1285
1286 /*
1287 * Data can be NULL if we are going to call zio_write_override() to
1288 * provide the already-allocated BP. But we may need the data to
1289 * verify a dedup hit (if requested). In this case, don't try to
1290 * dedup (just take the already-allocated BP verbatim). Encrypted
1291 * dedup blocks need data as well so we also disable dedup in this
1292 * case.
1293 */
1294 if (data == NULL &&
1295 (zio->io_prop.zp_dedup_verify || zio->io_prop.zp_encrypt)) {
1296 zio->io_prop.zp_dedup = zio->io_prop.zp_dedup_verify = B_FALSE;
1297 }
1298
1299 return (zio);
1300 }
1301
1302 zio_t *
1303 zio_rewrite(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp, abd_t *data,
1304 uint64_t size, zio_done_func_t *done, void *private,
1305 zio_priority_t priority, zio_flag_t flags, zbookmark_phys_t *zb)
1306 {
1307 zio_t *zio;
1308
1309 zio = zio_create(pio, spa, txg, bp, data, size, size, done, private,
1310 ZIO_TYPE_WRITE, priority, flags | ZIO_FLAG_IO_REWRITE, NULL, 0, zb,
1311 ZIO_STAGE_OPEN, ZIO_REWRITE_PIPELINE);
1312
1313 return (zio);
1314 }
1315
1316 void
1317 zio_write_override(zio_t *zio, blkptr_t *bp, int copies, boolean_t nopwrite,
1318 boolean_t brtwrite)
1319 {
1320 ASSERT(zio->io_type == ZIO_TYPE_WRITE);
1321 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1322 ASSERT(zio->io_stage == ZIO_STAGE_OPEN);
1323 ASSERT(zio->io_txg == spa_syncing_txg(zio->io_spa));
1324 ASSERT(!brtwrite || !nopwrite);
1325
1326 /*
1327 * We must reset the io_prop to match the values that existed
1328 * when the bp was first written by dmu_sync() keeping in mind
1329 * that nopwrite and dedup are mutually exclusive.
1330 */
1331 zio->io_prop.zp_dedup = nopwrite ? B_FALSE : zio->io_prop.zp_dedup;
1332 zio->io_prop.zp_nopwrite = nopwrite;
1333 zio->io_prop.zp_brtwrite = brtwrite;
1334 zio->io_prop.zp_copies = copies;
1335 zio->io_bp_override = bp;
1336 }
1337
1338 void
1339 zio_free(spa_t *spa, uint64_t txg, const blkptr_t *bp)
1340 {
1341
1342 (void) zfs_blkptr_verify(spa, bp, BLK_CONFIG_NEEDED, BLK_VERIFY_HALT);
1343
1344 /*
1345 * The check for EMBEDDED is a performance optimization. We
1346 * process the free here (by ignoring it) rather than
1347 * putting it on the list and then processing it in zio_free_sync().
1348 */
1349 if (BP_IS_EMBEDDED(bp))
1350 return;
1351
1352 /*
1353 * Frees that are for the currently-syncing txg, are not going to be
1354 * deferred, and which will not need to do a read (i.e. not GANG or
1355 * DEDUP), can be processed immediately. Otherwise, put them on the
1356 * in-memory list for later processing.
1357 *
1358 * Note that we only defer frees after zfs_sync_pass_deferred_free
1359 * when the log space map feature is disabled. [see relevant comment
1360 * in spa_sync_iterate_to_convergence()]
1361 */
1362 if (BP_IS_GANG(bp) ||
1363 BP_GET_DEDUP(bp) ||
1364 txg != spa->spa_syncing_txg ||
1365 (spa_sync_pass(spa) >= zfs_sync_pass_deferred_free &&
1366 !spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP)) ||
1367 brt_maybe_exists(spa, bp)) {
1368 metaslab_check_free(spa, bp);
1369 bplist_append(&spa->spa_free_bplist[txg & TXG_MASK], bp);
1370 } else {
1371 VERIFY3P(zio_free_sync(NULL, spa, txg, bp, 0), ==, NULL);
1372 }
1373 }
1374
1375 /*
1376 * To improve performance, this function may return NULL if we were able
1377 * to do the free immediately. This avoids the cost of creating a zio
1378 * (and linking it to the parent, etc).
1379 */
1380 zio_t *
1381 zio_free_sync(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp,
1382 zio_flag_t flags)
1383 {
1384 ASSERT(!BP_IS_HOLE(bp));
1385 ASSERT(spa_syncing_txg(spa) == txg);
1386
1387 if (BP_IS_EMBEDDED(bp))
1388 return (NULL);
1389
1390 metaslab_check_free(spa, bp);
1391 arc_freed(spa, bp);
1392 dsl_scan_freed(spa, bp);
1393
1394 if (BP_IS_GANG(bp) ||
1395 BP_GET_DEDUP(bp) ||
1396 brt_maybe_exists(spa, bp)) {
1397 /*
1398 * GANG, DEDUP and BRT blocks can induce a read (for the gang
1399 * block header, the DDT or the BRT), so issue them
1400 * asynchronously so that this thread is not tied up.
1401 */
1402 enum zio_stage stage =
1403 ZIO_FREE_PIPELINE | ZIO_STAGE_ISSUE_ASYNC;
1404
1405 return (zio_create(pio, spa, txg, bp, NULL, BP_GET_PSIZE(bp),
1406 BP_GET_PSIZE(bp), NULL, NULL,
1407 ZIO_TYPE_FREE, ZIO_PRIORITY_NOW,
1408 flags, NULL, 0, NULL, ZIO_STAGE_OPEN, stage));
1409 } else {
1410 metaslab_free(spa, bp, txg, B_FALSE);
1411 return (NULL);
1412 }
1413 }
1414
1415 zio_t *
1416 zio_claim(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp,
1417 zio_done_func_t *done, void *private, zio_flag_t flags)
1418 {
1419 zio_t *zio;
1420
1421 (void) zfs_blkptr_verify(spa, bp, (flags & ZIO_FLAG_CONFIG_WRITER) ?
1422 BLK_CONFIG_HELD : BLK_CONFIG_NEEDED, BLK_VERIFY_HALT);
1423
1424 if (BP_IS_EMBEDDED(bp))
1425 return (zio_null(pio, spa, NULL, NULL, NULL, 0));
1426
1427 /*
1428 * A claim is an allocation of a specific block. Claims are needed
1429 * to support immediate writes in the intent log. The issue is that
1430 * immediate writes contain committed data, but in a txg that was
1431 * *not* committed. Upon opening the pool after an unclean shutdown,
1432 * the intent log claims all blocks that contain immediate write data
1433 * so that the SPA knows they're in use.
1434 *
1435 * All claims *must* be resolved in the first txg -- before the SPA
1436 * starts allocating blocks -- so that nothing is allocated twice.
1437 * If txg == 0 we just verify that the block is claimable.
1438 */
1439 ASSERT3U(BP_GET_LOGICAL_BIRTH(&spa->spa_uberblock.ub_rootbp), <,
1440 spa_min_claim_txg(spa));
1441 ASSERT(txg == spa_min_claim_txg(spa) || txg == 0);
1442 ASSERT(!BP_GET_DEDUP(bp) || !spa_writeable(spa)); /* zdb(8) */
1443
1444 zio = zio_create(pio, spa, txg, bp, NULL, BP_GET_PSIZE(bp),
1445 BP_GET_PSIZE(bp), done, private, ZIO_TYPE_CLAIM, ZIO_PRIORITY_NOW,
1446 flags, NULL, 0, NULL, ZIO_STAGE_OPEN, ZIO_CLAIM_PIPELINE);
1447 ASSERT0(zio->io_queued_timestamp);
1448
1449 return (zio);
1450 }
1451
1452 zio_t *
1453 zio_ioctl(zio_t *pio, spa_t *spa, vdev_t *vd, int cmd,
1454 zio_done_func_t *done, void *private, zio_flag_t flags)
1455 {
1456 zio_t *zio = zio_create(pio, spa, 0, NULL, NULL, 0, 0, done, private,
1457 ZIO_TYPE_IOCTL, ZIO_PRIORITY_NOW, flags, vd, 0, NULL,
1458 ZIO_STAGE_OPEN, ZIO_IOCTL_PIPELINE);
1459 zio->io_cmd = cmd;
1460 return (zio);
1461 }
1462
1463 zio_t *
1464 zio_trim(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size,
1465 zio_done_func_t *done, void *private, zio_priority_t priority,
1466 zio_flag_t flags, enum trim_flag trim_flags)
1467 {
1468 zio_t *zio;
1469
1470 ASSERT0(vd->vdev_children);
1471 ASSERT0(P2PHASE(offset, 1ULL << vd->vdev_ashift));
1472 ASSERT0(P2PHASE(size, 1ULL << vd->vdev_ashift));
1473 ASSERT3U(size, !=, 0);
1474
1475 zio = zio_create(pio, vd->vdev_spa, 0, NULL, NULL, size, size, done,
1476 private, ZIO_TYPE_TRIM, priority, flags | ZIO_FLAG_PHYSICAL,
1477 vd, offset, NULL, ZIO_STAGE_OPEN, ZIO_TRIM_PIPELINE);
1478 zio->io_trim_flags = trim_flags;
1479
1480 return (zio);
1481 }
1482
1483 zio_t *
1484 zio_read_phys(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size,
1485 abd_t *data, int checksum, zio_done_func_t *done, void *private,
1486 zio_priority_t priority, zio_flag_t flags, boolean_t labels)
1487 {
1488 zio_t *zio;
1489
1490 ASSERT(vd->vdev_children == 0);
1491 ASSERT(!labels || offset + size <= VDEV_LABEL_START_SIZE ||
1492 offset >= vd->vdev_psize - VDEV_LABEL_END_SIZE);
1493 ASSERT3U(offset + size, <=, vd->vdev_psize);
1494
1495 zio = zio_create(pio, vd->vdev_spa, 0, NULL, data, size, size, done,
1496 private, ZIO_TYPE_READ, priority, flags | ZIO_FLAG_PHYSICAL, vd,
1497 offset, NULL, ZIO_STAGE_OPEN, ZIO_READ_PHYS_PIPELINE);
1498
1499 zio->io_prop.zp_checksum = checksum;
1500
1501 return (zio);
1502 }
1503
1504 zio_t *
1505 zio_write_phys(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size,
1506 abd_t *data, int checksum, zio_done_func_t *done, void *private,
1507 zio_priority_t priority, zio_flag_t flags, boolean_t labels)
1508 {
1509 zio_t *zio;
1510
1511 ASSERT(vd->vdev_children == 0);
1512 ASSERT(!labels || offset + size <= VDEV_LABEL_START_SIZE ||
1513 offset >= vd->vdev_psize - VDEV_LABEL_END_SIZE);
1514 ASSERT3U(offset + size, <=, vd->vdev_psize);
1515
1516 zio = zio_create(pio, vd->vdev_spa, 0, NULL, data, size, size, done,
1517 private, ZIO_TYPE_WRITE, priority, flags | ZIO_FLAG_PHYSICAL, vd,
1518 offset, NULL, ZIO_STAGE_OPEN, ZIO_WRITE_PHYS_PIPELINE);
1519
1520 zio->io_prop.zp_checksum = checksum;
1521
1522 if (zio_checksum_table[checksum].ci_flags & ZCHECKSUM_FLAG_EMBEDDED) {
1523 /*
1524 * zec checksums are necessarily destructive -- they modify
1525 * the end of the write buffer to hold the verifier/checksum.
1526 * Therefore, we must make a local copy in case the data is
1527 * being written to multiple places in parallel.
1528 */
1529 abd_t *wbuf = abd_alloc_sametype(data, size);
1530 abd_copy(wbuf, data, size);
1531
1532 zio_push_transform(zio, wbuf, size, size, NULL);
1533 }
1534
1535 return (zio);
1536 }
1537
1538 /*
1539 * Create a child I/O to do some work for us.
1540 */
1541 zio_t *
1542 zio_vdev_child_io(zio_t *pio, blkptr_t *bp, vdev_t *vd, uint64_t offset,
1543 abd_t *data, uint64_t size, int type, zio_priority_t priority,
1544 zio_flag_t flags, zio_done_func_t *done, void *private)
1545 {
1546 enum zio_stage pipeline = ZIO_VDEV_CHILD_PIPELINE;
1547 zio_t *zio;
1548
1549 /*
1550 * vdev child I/Os do not propagate their error to the parent.
1551 * Therefore, for correct operation the caller *must* check for
1552 * and handle the error in the child i/o's done callback.
1553 * The only exceptions are i/os that we don't care about
1554 * (OPTIONAL or REPAIR).
1555 */
1556 ASSERT((flags & ZIO_FLAG_OPTIONAL) || (flags & ZIO_FLAG_IO_REPAIR) ||
1557 done != NULL);
1558
1559 if (type == ZIO_TYPE_READ && bp != NULL) {
1560 /*
1561 * If we have the bp, then the child should perform the
1562 * checksum and the parent need not. This pushes error
1563 * detection as close to the leaves as possible and
1564 * eliminates redundant checksums in the interior nodes.
1565 */
1566 pipeline |= ZIO_STAGE_CHECKSUM_VERIFY;
1567 pio->io_pipeline &= ~ZIO_STAGE_CHECKSUM_VERIFY;
1568 }
1569
1570 if (vd->vdev_ops->vdev_op_leaf) {
1571 ASSERT0(vd->vdev_children);
1572 offset += VDEV_LABEL_START_SIZE;
1573 }
1574
1575 flags |= ZIO_VDEV_CHILD_FLAGS(pio);
1576
1577 /*
1578 * If we've decided to do a repair, the write is not speculative --
1579 * even if the original read was.
1580 */
1581 if (flags & ZIO_FLAG_IO_REPAIR)
1582 flags &= ~ZIO_FLAG_SPECULATIVE;
1583
1584 /*
1585 * If we're creating a child I/O that is not associated with a
1586 * top-level vdev, then the child zio is not an allocating I/O.
1587 * If this is a retried I/O then we ignore it since we will
1588 * have already processed the original allocating I/O.
1589 */
1590 if (flags & ZIO_FLAG_IO_ALLOCATING &&
1591 (vd != vd->vdev_top || (flags & ZIO_FLAG_IO_RETRY))) {
1592 ASSERT(pio->io_metaslab_class != NULL);
1593 ASSERT(pio->io_metaslab_class->mc_alloc_throttle_enabled);
1594 ASSERT(type == ZIO_TYPE_WRITE);
1595 ASSERT(priority == ZIO_PRIORITY_ASYNC_WRITE);
1596 ASSERT(!(flags & ZIO_FLAG_IO_REPAIR));
1597 ASSERT(!(pio->io_flags & ZIO_FLAG_IO_REWRITE) ||
1598 pio->io_child_type == ZIO_CHILD_GANG);
1599
1600 flags &= ~ZIO_FLAG_IO_ALLOCATING;
1601 }
1602
1603 zio = zio_create(pio, pio->io_spa, pio->io_txg, bp, data, size, size,
1604 done, private, type, priority, flags, vd, offset, &pio->io_bookmark,
1605 ZIO_STAGE_VDEV_IO_START >> 1, pipeline);
1606 ASSERT3U(zio->io_child_type, ==, ZIO_CHILD_VDEV);
1607
1608 return (zio);
1609 }
1610
1611 zio_t *
1612 zio_vdev_delegated_io(vdev_t *vd, uint64_t offset, abd_t *data, uint64_t size,
1613 zio_type_t type, zio_priority_t priority, zio_flag_t flags,
1614 zio_done_func_t *done, void *private)
1615 {
1616 zio_t *zio;
1617
1618 ASSERT(vd->vdev_ops->vdev_op_leaf);
1619
1620 zio = zio_create(NULL, vd->vdev_spa, 0, NULL,
1621 data, size, size, done, private, type, priority,
1622 flags | ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_RETRY | ZIO_FLAG_DELEGATED,
1623 vd, offset, NULL,
1624 ZIO_STAGE_VDEV_IO_START >> 1, ZIO_VDEV_CHILD_PIPELINE);
1625
1626 return (zio);
1627 }
1628
1629 void
1630 zio_flush(zio_t *pio, vdev_t *vd)
1631 {
1632 if (vd->vdev_nowritecache)
1633 return;
1634 if (vd->vdev_children == 0) {
1635 zio_nowait(zio_ioctl(pio, vd->vdev_spa, vd,
1636 DKIOCFLUSHWRITECACHE, NULL, NULL, ZIO_FLAG_CANFAIL |
1637 ZIO_FLAG_DONT_PROPAGATE | ZIO_FLAG_DONT_RETRY));
1638 } else {
1639 for (uint64_t c = 0; c < vd->vdev_children; c++)
1640 zio_flush(pio, vd->vdev_child[c]);
1641 }
1642 }
1643
1644 void
1645 zio_shrink(zio_t *zio, uint64_t size)
1646 {
1647 ASSERT3P(zio->io_executor, ==, NULL);
1648 ASSERT3U(zio->io_orig_size, ==, zio->io_size);
1649 ASSERT3U(size, <=, zio->io_size);
1650
1651 /*
1652 * We don't shrink for raidz because of problems with the
1653 * reconstruction when reading back less than the block size.
1654 * Note, BP_IS_RAIDZ() assumes no compression.
1655 */
1656 ASSERT(BP_GET_COMPRESS(zio->io_bp) == ZIO_COMPRESS_OFF);
1657 if (!BP_IS_RAIDZ(zio->io_bp)) {
1658 /* we are not doing a raw write */
1659 ASSERT3U(zio->io_size, ==, zio->io_lsize);
1660 zio->io_orig_size = zio->io_size = zio->io_lsize = size;
1661 }
1662 }
1663
1664 /*
1665 * Round provided allocation size up to a value that can be allocated
1666 * by at least some vdev(s) in the pool with minimum or no additional
1667 * padding and without extra space usage on others
1668 */
1669 static uint64_t
1670 zio_roundup_alloc_size(spa_t *spa, uint64_t size)
1671 {
1672 if (size > spa->spa_min_alloc)
1673 return (roundup(size, spa->spa_gcd_alloc));
1674 return (spa->spa_min_alloc);
1675 }
1676
1677 /*
1678 * ==========================================================================
1679 * Prepare to read and write logical blocks
1680 * ==========================================================================
1681 */
1682
1683 static zio_t *
1684 zio_read_bp_init(zio_t *zio)
1685 {
1686 blkptr_t *bp = zio->io_bp;
1687 uint64_t psize =
1688 BP_IS_EMBEDDED(bp) ? BPE_GET_PSIZE(bp) : BP_GET_PSIZE(bp);
1689
1690 ASSERT3P(zio->io_bp, ==, &zio->io_bp_copy);
1691
1692 if (BP_GET_COMPRESS(bp) != ZIO_COMPRESS_OFF &&
1693 zio->io_child_type == ZIO_CHILD_LOGICAL &&
1694 !(zio->io_flags & ZIO_FLAG_RAW_COMPRESS)) {
1695 zio_push_transform(zio, abd_alloc_sametype(zio->io_abd, psize),
1696 psize, psize, zio_decompress);
1697 }
1698
1699 if (((BP_IS_PROTECTED(bp) && !(zio->io_flags & ZIO_FLAG_RAW_ENCRYPT)) ||
1700 BP_HAS_INDIRECT_MAC_CKSUM(bp)) &&
1701 zio->io_child_type == ZIO_CHILD_LOGICAL) {
1702 zio_push_transform(zio, abd_alloc_sametype(zio->io_abd, psize),
1703 psize, psize, zio_decrypt);
1704 }
1705
1706 if (BP_IS_EMBEDDED(bp) && BPE_GET_ETYPE(bp) == BP_EMBEDDED_TYPE_DATA) {
1707 int psize = BPE_GET_PSIZE(bp);
1708 void *data = abd_borrow_buf(zio->io_abd, psize);
1709
1710 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1711 decode_embedded_bp_compressed(bp, data);
1712 abd_return_buf_copy(zio->io_abd, data, psize);
1713 } else {
1714 ASSERT(!BP_IS_EMBEDDED(bp));
1715 }
1716
1717 if (BP_GET_DEDUP(bp) && zio->io_child_type == ZIO_CHILD_LOGICAL)
1718 zio->io_pipeline = ZIO_DDT_READ_PIPELINE;
1719
1720 return (zio);
1721 }
1722
1723 static zio_t *
1724 zio_write_bp_init(zio_t *zio)
1725 {
1726 if (!IO_IS_ALLOCATING(zio))
1727 return (zio);
1728
1729 ASSERT(zio->io_child_type != ZIO_CHILD_DDT);
1730
1731 if (zio->io_bp_override) {
1732 blkptr_t *bp = zio->io_bp;
1733 zio_prop_t *zp = &zio->io_prop;
1734
1735 ASSERT(BP_GET_LOGICAL_BIRTH(bp) != zio->io_txg);
1736
1737 *bp = *zio->io_bp_override;
1738 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1739
1740 if (zp->zp_brtwrite)
1741 return (zio);
1742
1743 ASSERT(!BP_GET_DEDUP(zio->io_bp_override));
1744
1745 if (BP_IS_EMBEDDED(bp))
1746 return (zio);
1747
1748 /*
1749 * If we've been overridden and nopwrite is set then
1750 * set the flag accordingly to indicate that a nopwrite
1751 * has already occurred.
1752 */
1753 if (!BP_IS_HOLE(bp) && zp->zp_nopwrite) {
1754 ASSERT(!zp->zp_dedup);
1755 ASSERT3U(BP_GET_CHECKSUM(bp), ==, zp->zp_checksum);
1756 zio->io_flags |= ZIO_FLAG_NOPWRITE;
1757 return (zio);
1758 }
1759
1760 ASSERT(!zp->zp_nopwrite);
1761
1762 if (BP_IS_HOLE(bp) || !zp->zp_dedup)
1763 return (zio);
1764
1765 ASSERT((zio_checksum_table[zp->zp_checksum].ci_flags &
1766 ZCHECKSUM_FLAG_DEDUP) || zp->zp_dedup_verify);
1767
1768 if (BP_GET_CHECKSUM(bp) == zp->zp_checksum &&
1769 !zp->zp_encrypt) {
1770 BP_SET_DEDUP(bp, 1);
1771 zio->io_pipeline |= ZIO_STAGE_DDT_WRITE;
1772 return (zio);
1773 }
1774
1775 /*
1776 * We were unable to handle this as an override bp, treat
1777 * it as a regular write I/O.
1778 */
1779 zio->io_bp_override = NULL;
1780 *bp = zio->io_bp_orig;
1781 zio->io_pipeline = zio->io_orig_pipeline;
1782 }
1783
1784 return (zio);
1785 }
1786
1787 static zio_t *
1788 zio_write_compress(zio_t *zio)
1789 {
1790 spa_t *spa = zio->io_spa;
1791 zio_prop_t *zp = &zio->io_prop;
1792 enum zio_compress compress = zp->zp_compress;
1793 blkptr_t *bp = zio->io_bp;
1794 uint64_t lsize = zio->io_lsize;
1795 uint64_t psize = zio->io_size;
1796 uint32_t pass = 1;
1797
1798 /*
1799 * If our children haven't all reached the ready stage,
1800 * wait for them and then repeat this pipeline stage.
1801 */
1802 if (zio_wait_for_children(zio, ZIO_CHILD_LOGICAL_BIT |
1803 ZIO_CHILD_GANG_BIT, ZIO_WAIT_READY)) {
1804 return (NULL);
1805 }
1806
1807 if (!IO_IS_ALLOCATING(zio))
1808 return (zio);
1809
1810 if (zio->io_children_ready != NULL) {
1811 /*
1812 * Now that all our children are ready, run the callback
1813 * associated with this zio in case it wants to modify the
1814 * data to be written.
1815 */
1816 ASSERT3U(zp->zp_level, >, 0);
1817 zio->io_children_ready(zio);
1818 }
1819
1820 ASSERT(zio->io_child_type != ZIO_CHILD_DDT);
1821 ASSERT(zio->io_bp_override == NULL);
1822
1823 if (!BP_IS_HOLE(bp) && BP_GET_LOGICAL_BIRTH(bp) == zio->io_txg) {
1824 /*
1825 * We're rewriting an existing block, which means we're
1826 * working on behalf of spa_sync(). For spa_sync() to
1827 * converge, it must eventually be the case that we don't
1828 * have to allocate new blocks. But compression changes
1829 * the blocksize, which forces a reallocate, and makes
1830 * convergence take longer. Therefore, after the first
1831 * few passes, stop compressing to ensure convergence.
1832 */
1833 pass = spa_sync_pass(spa);
1834
1835 ASSERT(zio->io_txg == spa_syncing_txg(spa));
1836 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1837 ASSERT(!BP_GET_DEDUP(bp));
1838
1839 if (pass >= zfs_sync_pass_dont_compress)
1840 compress = ZIO_COMPRESS_OFF;
1841
1842 /* Make sure someone doesn't change their mind on overwrites */
1843 ASSERT(BP_IS_EMBEDDED(bp) || BP_IS_GANG(bp) ||
1844 MIN(zp->zp_copies, spa_max_replication(spa))
1845 == BP_GET_NDVAS(bp));
1846 }
1847
1848 /* If it's a compressed write that is not raw, compress the buffer. */
1849 if (compress != ZIO_COMPRESS_OFF &&
1850 !(zio->io_flags & ZIO_FLAG_RAW_COMPRESS)) {
1851 void *cbuf = NULL;
1852 psize = zio_compress_data(compress, zio->io_abd, &cbuf, lsize,
1853 zp->zp_complevel);
1854 if (psize == 0) {
1855 compress = ZIO_COMPRESS_OFF;
1856 } else if (psize >= lsize) {
1857 compress = ZIO_COMPRESS_OFF;
1858 if (cbuf != NULL)
1859 zio_buf_free(cbuf, lsize);
1860 } else if (!zp->zp_dedup && !zp->zp_encrypt &&
1861 psize <= BPE_PAYLOAD_SIZE &&
1862 zp->zp_level == 0 && !DMU_OT_HAS_FILL(zp->zp_type) &&
1863 spa_feature_is_enabled(spa, SPA_FEATURE_EMBEDDED_DATA)) {
1864 encode_embedded_bp_compressed(bp,
1865 cbuf, compress, lsize, psize);
1866 BPE_SET_ETYPE(bp, BP_EMBEDDED_TYPE_DATA);
1867 BP_SET_TYPE(bp, zio->io_prop.zp_type);
1868 BP_SET_LEVEL(bp, zio->io_prop.zp_level);
1869 zio_buf_free(cbuf, lsize);
1870 BP_SET_LOGICAL_BIRTH(bp, zio->io_txg);
1871 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1872 ASSERT(spa_feature_is_active(spa,
1873 SPA_FEATURE_EMBEDDED_DATA));
1874 return (zio);
1875 } else {
1876 /*
1877 * Round compressed size up to the minimum allocation
1878 * size of the smallest-ashift device, and zero the
1879 * tail. This ensures that the compressed size of the
1880 * BP (and thus compressratio property) are correct,
1881 * in that we charge for the padding used to fill out
1882 * the last sector.
1883 */
1884 size_t rounded = (size_t)zio_roundup_alloc_size(spa,
1885 psize);
1886 if (rounded >= lsize) {
1887 compress = ZIO_COMPRESS_OFF;
1888 zio_buf_free(cbuf, lsize);
1889 psize = lsize;
1890 } else {
1891 abd_t *cdata = abd_get_from_buf(cbuf, lsize);
1892 abd_take_ownership_of_buf(cdata, B_TRUE);
1893 abd_zero_off(cdata, psize, rounded - psize);
1894 psize = rounded;
1895 zio_push_transform(zio, cdata,
1896 psize, lsize, NULL);
1897 }
1898 }
1899
1900 /*
1901 * We were unable to handle this as an override bp, treat
1902 * it as a regular write I/O.
1903 */
1904 zio->io_bp_override = NULL;
1905 *bp = zio->io_bp_orig;
1906 zio->io_pipeline = zio->io_orig_pipeline;
1907
1908 } else if ((zio->io_flags & ZIO_FLAG_RAW_ENCRYPT) != 0 &&
1909 zp->zp_type == DMU_OT_DNODE) {
1910 /*
1911 * The DMU actually relies on the zio layer's compression
1912 * to free metadnode blocks that have had all contained
1913 * dnodes freed. As a result, even when doing a raw
1914 * receive, we must check whether the block can be compressed
1915 * to a hole.
1916 */
1917 psize = zio_compress_data(ZIO_COMPRESS_EMPTY,
1918 zio->io_abd, NULL, lsize, zp->zp_complevel);
1919 if (psize == 0 || psize >= lsize)
1920 compress = ZIO_COMPRESS_OFF;
1921 } else if (zio->io_flags & ZIO_FLAG_RAW_COMPRESS &&
1922 !(zio->io_flags & ZIO_FLAG_RAW_ENCRYPT)) {
1923 /*
1924 * If we are raw receiving an encrypted dataset we should not
1925 * take this codepath because it will change the on-disk block
1926 * and decryption will fail.
1927 */
1928 size_t rounded = MIN((size_t)zio_roundup_alloc_size(spa, psize),
1929 lsize);
1930
1931 if (rounded != psize) {
1932 abd_t *cdata = abd_alloc_linear(rounded, B_TRUE);
1933 abd_zero_off(cdata, psize, rounded - psize);
1934 abd_copy_off(cdata, zio->io_abd, 0, 0, psize);
1935 psize = rounded;
1936 zio_push_transform(zio, cdata,
1937 psize, rounded, NULL);
1938 }
1939 } else {
1940 ASSERT3U(psize, !=, 0);
1941 }
1942
1943 /*
1944 * The final pass of spa_sync() must be all rewrites, but the first
1945 * few passes offer a trade-off: allocating blocks defers convergence,
1946 * but newly allocated blocks are sequential, so they can be written
1947 * to disk faster. Therefore, we allow the first few passes of
1948 * spa_sync() to allocate new blocks, but force rewrites after that.
1949 * There should only be a handful of blocks after pass 1 in any case.
1950 */
1951 if (!BP_IS_HOLE(bp) && BP_GET_LOGICAL_BIRTH(bp) == zio->io_txg &&
1952 BP_GET_PSIZE(bp) == psize &&
1953 pass >= zfs_sync_pass_rewrite) {
1954 VERIFY3U(psize, !=, 0);
1955 enum zio_stage gang_stages = zio->io_pipeline & ZIO_GANG_STAGES;
1956
1957 zio->io_pipeline = ZIO_REWRITE_PIPELINE | gang_stages;
1958 zio->io_flags |= ZIO_FLAG_IO_REWRITE;
1959 } else {
1960 BP_ZERO(bp);
1961 zio->io_pipeline = ZIO_WRITE_PIPELINE;
1962 }
1963
1964 if (psize == 0) {
1965 if (BP_GET_LOGICAL_BIRTH(&zio->io_bp_orig) != 0 &&
1966 spa_feature_is_active(spa, SPA_FEATURE_HOLE_BIRTH)) {
1967 BP_SET_LSIZE(bp, lsize);
1968 BP_SET_TYPE(bp, zp->zp_type);
1969 BP_SET_LEVEL(bp, zp->zp_level);
1970 BP_SET_BIRTH(bp, zio->io_txg, 0);
1971 }
1972 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1973 } else {
1974 ASSERT(zp->zp_checksum != ZIO_CHECKSUM_GANG_HEADER);
1975 BP_SET_LSIZE(bp, lsize);
1976 BP_SET_TYPE(bp, zp->zp_type);
1977 BP_SET_LEVEL(bp, zp->zp_level);
1978 BP_SET_PSIZE(bp, psize);
1979 BP_SET_COMPRESS(bp, compress);
1980 BP_SET_CHECKSUM(bp, zp->zp_checksum);
1981 BP_SET_DEDUP(bp, zp->zp_dedup);
1982 BP_SET_BYTEORDER(bp, ZFS_HOST_BYTEORDER);
1983 if (zp->zp_dedup) {
1984 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1985 ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE));
1986 ASSERT(!zp->zp_encrypt ||
1987 DMU_OT_IS_ENCRYPTED(zp->zp_type));
1988 zio->io_pipeline = ZIO_DDT_WRITE_PIPELINE;
1989 }
1990 if (zp->zp_nopwrite) {
1991 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1992 ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE));
1993 zio->io_pipeline |= ZIO_STAGE_NOP_WRITE;
1994 }
1995 }
1996 return (zio);
1997 }
1998
1999 static zio_t *
2000 zio_free_bp_init(zio_t *zio)
2001 {
2002 blkptr_t *bp = zio->io_bp;
2003
2004 if (zio->io_child_type == ZIO_CHILD_LOGICAL) {
2005 if (BP_GET_DEDUP(bp))
2006 zio->io_pipeline = ZIO_DDT_FREE_PIPELINE;
2007 }
2008
2009 ASSERT3P(zio->io_bp, ==, &zio->io_bp_copy);
2010
2011 return (zio);
2012 }
2013
2014 /*
2015 * ==========================================================================
2016 * Execute the I/O pipeline
2017 * ==========================================================================
2018 */
2019
2020 static void
2021 zio_taskq_dispatch(zio_t *zio, zio_taskq_type_t q, boolean_t cutinline)
2022 {
2023 spa_t *spa = zio->io_spa;
2024 zio_type_t t = zio->io_type;
2025 int flags = (cutinline ? TQ_FRONT : 0);
2026
2027 /*
2028 * If we're a config writer or a probe, the normal issue and
2029 * interrupt threads may all be blocked waiting for the config lock.
2030 * In this case, select the otherwise-unused taskq for ZIO_TYPE_NULL.
2031 */
2032 if (zio->io_flags & (ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_PROBE))
2033 t = ZIO_TYPE_NULL;
2034
2035 /*
2036 * A similar issue exists for the L2ARC write thread until L2ARC 2.0.
2037 */
2038 if (t == ZIO_TYPE_WRITE && zio->io_vd && zio->io_vd->vdev_aux)
2039 t = ZIO_TYPE_NULL;
2040
2041 /*
2042 * If this is a high priority I/O, then use the high priority taskq if
2043 * available.
2044 */
2045 if ((zio->io_priority == ZIO_PRIORITY_NOW ||
2046 zio->io_priority == ZIO_PRIORITY_SYNC_WRITE) &&
2047 spa->spa_zio_taskq[t][q + 1].stqs_count != 0)
2048 q++;
2049
2050 ASSERT3U(q, <, ZIO_TASKQ_TYPES);
2051
2052 /*
2053 * NB: We are assuming that the zio can only be dispatched
2054 * to a single taskq at a time. It would be a grievous error
2055 * to dispatch the zio to another taskq at the same time.
2056 */
2057 ASSERT(taskq_empty_ent(&zio->io_tqent));
2058 spa_taskq_dispatch_ent(spa, t, q, zio_execute, zio, flags,
2059 &zio->io_tqent, zio);
2060 }
2061
2062 static boolean_t
2063 zio_taskq_member(zio_t *zio, zio_taskq_type_t q)
2064 {
2065 spa_t *spa = zio->io_spa;
2066
2067 taskq_t *tq = taskq_of_curthread();
2068
2069 for (zio_type_t t = 0; t < ZIO_TYPES; t++) {
2070 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
2071 uint_t i;
2072 for (i = 0; i < tqs->stqs_count; i++) {
2073 if (tqs->stqs_taskq[i] == tq)
2074 return (B_TRUE);
2075 }
2076 }
2077
2078 return (B_FALSE);
2079 }
2080
2081 static zio_t *
2082 zio_issue_async(zio_t *zio)
2083 {
2084 ASSERT((zio->io_type != ZIO_TYPE_WRITE) || ZIO_HAS_ALLOCATOR(zio));
2085 zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, B_FALSE);
2086 return (NULL);
2087 }
2088
2089 void
2090 zio_interrupt(void *zio)
2091 {
2092 zio_taskq_dispatch(zio, ZIO_TASKQ_INTERRUPT, B_FALSE);
2093 }
2094
2095 void
2096 zio_delay_interrupt(zio_t *zio)
2097 {
2098 /*
2099 * The timeout_generic() function isn't defined in userspace, so
2100 * rather than trying to implement the function, the zio delay
2101 * functionality has been disabled for userspace builds.
2102 */
2103
2104 #ifdef _KERNEL
2105 /*
2106 * If io_target_timestamp is zero, then no delay has been registered
2107 * for this IO, thus jump to the end of this function and "skip" the
2108 * delay; issuing it directly to the zio layer.
2109 */
2110 if (zio->io_target_timestamp != 0) {
2111 hrtime_t now = gethrtime();
2112
2113 if (now >= zio->io_target_timestamp) {
2114 /*
2115 * This IO has already taken longer than the target
2116 * delay to complete, so we don't want to delay it
2117 * any longer; we "miss" the delay and issue it
2118 * directly to the zio layer. This is likely due to
2119 * the target latency being set to a value less than
2120 * the underlying hardware can satisfy (e.g. delay
2121 * set to 1ms, but the disks take 10ms to complete an
2122 * IO request).
2123 */
2124
2125 DTRACE_PROBE2(zio__delay__miss, zio_t *, zio,
2126 hrtime_t, now);
2127
2128 zio_interrupt(zio);
2129 } else {
2130 taskqid_t tid;
2131 hrtime_t diff = zio->io_target_timestamp - now;
2132 clock_t expire_at_tick = ddi_get_lbolt() +
2133 NSEC_TO_TICK(diff);
2134
2135 DTRACE_PROBE3(zio__delay__hit, zio_t *, zio,
2136 hrtime_t, now, hrtime_t, diff);
2137
2138 if (NSEC_TO_TICK(diff) == 0) {
2139 /* Our delay is less than a jiffy - just spin */
2140 zfs_sleep_until(zio->io_target_timestamp);
2141 zio_interrupt(zio);
2142 } else {
2143 /*
2144 * Use taskq_dispatch_delay() in the place of
2145 * OpenZFS's timeout_generic().
2146 */
2147 tid = taskq_dispatch_delay(system_taskq,
2148 zio_interrupt, zio, TQ_NOSLEEP,
2149 expire_at_tick);
2150 if (tid == TASKQID_INVALID) {
2151 /*
2152 * Couldn't allocate a task. Just
2153 * finish the zio without a delay.
2154 */
2155 zio_interrupt(zio);
2156 }
2157 }
2158 }
2159 return;
2160 }
2161 #endif
2162 DTRACE_PROBE1(zio__delay__skip, zio_t *, zio);
2163 zio_interrupt(zio);
2164 }
2165
2166 static void
2167 zio_deadman_impl(zio_t *pio, int ziodepth)
2168 {
2169 zio_t *cio, *cio_next;
2170 zio_link_t *zl = NULL;
2171 vdev_t *vd = pio->io_vd;
2172
2173 if (zio_deadman_log_all || (vd != NULL && vd->vdev_ops->vdev_op_leaf)) {
2174 vdev_queue_t *vq = vd ? &vd->vdev_queue : NULL;
2175 zbookmark_phys_t *zb = &pio->io_bookmark;
2176 uint64_t delta = gethrtime() - pio->io_timestamp;
2177 uint64_t failmode = spa_get_deadman_failmode(pio->io_spa);
2178
2179 zfs_dbgmsg("slow zio[%d]: zio=%px timestamp=%llu "
2180 "delta=%llu queued=%llu io=%llu "
2181 "path=%s "
2182 "last=%llu type=%d "
2183 "priority=%d flags=0x%llx stage=0x%x "
2184 "pipeline=0x%x pipeline-trace=0x%x "
2185 "objset=%llu object=%llu "
2186 "level=%llu blkid=%llu "
2187 "offset=%llu size=%llu "
2188 "error=%d",
2189 ziodepth, pio, pio->io_timestamp,
2190 (u_longlong_t)delta, pio->io_delta, pio->io_delay,
2191 vd ? vd->vdev_path : "NULL",
2192 vq ? vq->vq_io_complete_ts : 0, pio->io_type,
2193 pio->io_priority, (u_longlong_t)pio->io_flags,
2194 pio->io_stage, pio->io_pipeline, pio->io_pipeline_trace,
2195 (u_longlong_t)zb->zb_objset, (u_longlong_t)zb->zb_object,
2196 (u_longlong_t)zb->zb_level, (u_longlong_t)zb->zb_blkid,
2197 (u_longlong_t)pio->io_offset, (u_longlong_t)pio->io_size,
2198 pio->io_error);
2199 (void) zfs_ereport_post(FM_EREPORT_ZFS_DEADMAN,
2200 pio->io_spa, vd, zb, pio, 0);
2201
2202 if (failmode == ZIO_FAILURE_MODE_CONTINUE &&
2203 taskq_empty_ent(&pio->io_tqent)) {
2204 zio_interrupt(pio);
2205 }
2206 }
2207
2208 mutex_enter(&pio->io_lock);
2209 for (cio = zio_walk_children(pio, &zl); cio != NULL; cio = cio_next) {
2210 cio_next = zio_walk_children(pio, &zl);
2211 zio_deadman_impl(cio, ziodepth + 1);
2212 }
2213 mutex_exit(&pio->io_lock);
2214 }
2215
2216 /*
2217 * Log the critical information describing this zio and all of its children
2218 * using the zfs_dbgmsg() interface then post deadman event for the ZED.
2219 */
2220 void
2221 zio_deadman(zio_t *pio, const char *tag)
2222 {
2223 spa_t *spa = pio->io_spa;
2224 char *name = spa_name(spa);
2225
2226 if (!zfs_deadman_enabled || spa_suspended(spa))
2227 return;
2228
2229 zio_deadman_impl(pio, 0);
2230
2231 switch (spa_get_deadman_failmode(spa)) {
2232 case ZIO_FAILURE_MODE_WAIT:
2233 zfs_dbgmsg("%s waiting for hung I/O to pool '%s'", tag, name);
2234 break;
2235
2236 case ZIO_FAILURE_MODE_CONTINUE:
2237 zfs_dbgmsg("%s restarting hung I/O for pool '%s'", tag, name);
2238 break;
2239
2240 case ZIO_FAILURE_MODE_PANIC:
2241 fm_panic("%s determined I/O to pool '%s' is hung.", tag, name);
2242 break;
2243 }
2244 }
2245
2246 /*
2247 * Execute the I/O pipeline until one of the following occurs:
2248 * (1) the I/O completes; (2) the pipeline stalls waiting for
2249 * dependent child I/Os; (3) the I/O issues, so we're waiting
2250 * for an I/O completion interrupt; (4) the I/O is delegated by
2251 * vdev-level caching or aggregation; (5) the I/O is deferred
2252 * due to vdev-level queueing; (6) the I/O is handed off to
2253 * another thread. In all cases, the pipeline stops whenever
2254 * there's no CPU work; it never burns a thread in cv_wait_io().
2255 *
2256 * There's no locking on io_stage because there's no legitimate way
2257 * for multiple threads to be attempting to process the same I/O.
2258 */
2259 static zio_pipe_stage_t *zio_pipeline[];
2260
2261 /*
2262 * zio_execute() is a wrapper around the static function
2263 * __zio_execute() so that we can force __zio_execute() to be
2264 * inlined. This reduces stack overhead which is important
2265 * because __zio_execute() is called recursively in several zio
2266 * code paths. zio_execute() itself cannot be inlined because
2267 * it is externally visible.
2268 */
2269 void
2270 zio_execute(void *zio)
2271 {
2272 fstrans_cookie_t cookie;
2273
2274 cookie = spl_fstrans_mark();
2275 __zio_execute(zio);
2276 spl_fstrans_unmark(cookie);
2277 }
2278
2279 /*
2280 * Used to determine if in the current context the stack is sized large
2281 * enough to allow zio_execute() to be called recursively. A minimum
2282 * stack size of 16K is required to avoid needing to re-dispatch the zio.
2283 */
2284 static boolean_t
2285 zio_execute_stack_check(zio_t *zio)
2286 {
2287 #if !defined(HAVE_LARGE_STACKS)
2288 dsl_pool_t *dp = spa_get_dsl(zio->io_spa);
2289
2290 /* Executing in txg_sync_thread() context. */
2291 if (dp && curthread == dp->dp_tx.tx_sync_thread)
2292 return (B_TRUE);
2293
2294 /* Pool initialization outside of zio_taskq context. */
2295 if (dp && spa_is_initializing(dp->dp_spa) &&
2296 !zio_taskq_member(zio, ZIO_TASKQ_ISSUE) &&
2297 !zio_taskq_member(zio, ZIO_TASKQ_ISSUE_HIGH))
2298 return (B_TRUE);
2299 #else
2300 (void) zio;
2301 #endif /* HAVE_LARGE_STACKS */
2302
2303 return (B_FALSE);
2304 }
2305
2306 __attribute__((always_inline))
2307 static inline void
2308 __zio_execute(zio_t *zio)
2309 {
2310 ASSERT3U(zio->io_queued_timestamp, >, 0);
2311
2312 while (zio->io_stage < ZIO_STAGE_DONE) {
2313 enum zio_stage pipeline = zio->io_pipeline;
2314 enum zio_stage stage = zio->io_stage;
2315
2316 zio->io_executor = curthread;
2317
2318 ASSERT(!MUTEX_HELD(&zio->io_lock));
2319 ASSERT(ISP2(stage));
2320 ASSERT(zio->io_stall == NULL);
2321
2322 do {
2323 stage <<= 1;
2324 } while ((stage & pipeline) == 0);
2325
2326 ASSERT(stage <= ZIO_STAGE_DONE);
2327
2328 /*
2329 * If we are in interrupt context and this pipeline stage
2330 * will grab a config lock that is held across I/O,
2331 * or may wait for an I/O that needs an interrupt thread
2332 * to complete, issue async to avoid deadlock.
2333 *
2334 * For VDEV_IO_START, we cut in line so that the io will
2335 * be sent to disk promptly.
2336 */
2337 if ((stage & ZIO_BLOCKING_STAGES) && zio->io_vd == NULL &&
2338 zio_taskq_member(zio, ZIO_TASKQ_INTERRUPT)) {
2339 boolean_t cut = (stage == ZIO_STAGE_VDEV_IO_START) ?
2340 zio_requeue_io_start_cut_in_line : B_FALSE;
2341 zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, cut);
2342 return;
2343 }
2344
2345 /*
2346 * If the current context doesn't have large enough stacks
2347 * the zio must be issued asynchronously to prevent overflow.
2348 */
2349 if (zio_execute_stack_check(zio)) {
2350 boolean_t cut = (stage == ZIO_STAGE_VDEV_IO_START) ?
2351 zio_requeue_io_start_cut_in_line : B_FALSE;
2352 zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, cut);
2353 return;
2354 }
2355
2356 zio->io_stage = stage;
2357 zio->io_pipeline_trace |= zio->io_stage;
2358
2359 /*
2360 * The zio pipeline stage returns the next zio to execute
2361 * (typically the same as this one), or NULL if we should
2362 * stop.
2363 */
2364 zio = zio_pipeline[highbit64(stage) - 1](zio);
2365
2366 if (zio == NULL)
2367 return;
2368 }
2369 }
2370
2371
2372 /*
2373 * ==========================================================================
2374 * Initiate I/O, either sync or async
2375 * ==========================================================================
2376 */
2377 int
2378 zio_wait(zio_t *zio)
2379 {
2380 /*
2381 * Some routines, like zio_free_sync(), may return a NULL zio
2382 * to avoid the performance overhead of creating and then destroying
2383 * an unneeded zio. For the callers' simplicity, we accept a NULL
2384 * zio and ignore it.
2385 */
2386 if (zio == NULL)
2387 return (0);
2388
2389 long timeout = MSEC_TO_TICK(zfs_deadman_ziotime_ms);
2390 int error;
2391
2392 ASSERT3S(zio->io_stage, ==, ZIO_STAGE_OPEN);
2393 ASSERT3P(zio->io_executor, ==, NULL);
2394
2395 zio->io_waiter = curthread;
2396 ASSERT0(zio->io_queued_timestamp);
2397 zio->io_queued_timestamp = gethrtime();
2398
2399 if (zio->io_type == ZIO_TYPE_WRITE) {
2400 spa_select_allocator(zio);
2401 }
2402 __zio_execute(zio);
2403
2404 mutex_enter(&zio->io_lock);
2405 while (zio->io_executor != NULL) {
2406 error = cv_timedwait_io(&zio->io_cv, &zio->io_lock,
2407 ddi_get_lbolt() + timeout);
2408
2409 if (zfs_deadman_enabled && error == -1 &&
2410 gethrtime() - zio->io_queued_timestamp >
2411 spa_deadman_ziotime(zio->io_spa)) {
2412 mutex_exit(&zio->io_lock);
2413 timeout = MSEC_TO_TICK(zfs_deadman_checktime_ms);
2414 zio_deadman(zio, FTAG);
2415 mutex_enter(&zio->io_lock);
2416 }
2417 }
2418 mutex_exit(&zio->io_lock);
2419
2420 error = zio->io_error;
2421 zio_destroy(zio);
2422
2423 return (error);
2424 }
2425
2426 void
2427 zio_nowait(zio_t *zio)
2428 {
2429 /*
2430 * See comment in zio_wait().
2431 */
2432 if (zio == NULL)
2433 return;
2434
2435 ASSERT3P(zio->io_executor, ==, NULL);
2436
2437 if (zio->io_child_type == ZIO_CHILD_LOGICAL &&
2438 list_is_empty(&zio->io_parent_list)) {
2439 zio_t *pio;
2440
2441 /*
2442 * This is a logical async I/O with no parent to wait for it.
2443 * We add it to the spa_async_root_zio "Godfather" I/O which
2444 * will ensure they complete prior to unloading the pool.
2445 */
2446 spa_t *spa = zio->io_spa;
2447 pio = spa->spa_async_zio_root[CPU_SEQID_UNSTABLE];
2448
2449 zio_add_child(pio, zio);
2450 }
2451
2452 ASSERT0(zio->io_queued_timestamp);
2453 zio->io_queued_timestamp = gethrtime();
2454 if (zio->io_type == ZIO_TYPE_WRITE) {
2455 spa_select_allocator(zio);
2456 }
2457 __zio_execute(zio);
2458 }
2459
2460 /*
2461 * ==========================================================================
2462 * Reexecute, cancel, or suspend/resume failed I/O
2463 * ==========================================================================
2464 */
2465
2466 static void
2467 zio_reexecute(void *arg)
2468 {
2469 zio_t *pio = arg;
2470 zio_t *cio, *cio_next, *gio;
2471
2472 ASSERT(pio->io_child_type == ZIO_CHILD_LOGICAL);
2473 ASSERT(pio->io_orig_stage == ZIO_STAGE_OPEN);
2474 ASSERT(pio->io_gang_leader == NULL);
2475 ASSERT(pio->io_gang_tree == NULL);
2476
2477 mutex_enter(&pio->io_lock);
2478 pio->io_flags = pio->io_orig_flags;
2479 pio->io_stage = pio->io_orig_stage;
2480 pio->io_pipeline = pio->io_orig_pipeline;
2481 pio->io_reexecute = 0;
2482 pio->io_flags |= ZIO_FLAG_REEXECUTED;
2483 pio->io_pipeline_trace = 0;
2484 pio->io_error = 0;
2485 pio->io_state[ZIO_WAIT_READY] = (pio->io_stage >= ZIO_STAGE_READY) ||
2486 (pio->io_pipeline & ZIO_STAGE_READY) == 0;
2487 pio->io_state[ZIO_WAIT_DONE] = (pio->io_stage >= ZIO_STAGE_DONE);
2488 zio_link_t *zl = NULL;
2489 while ((gio = zio_walk_parents(pio, &zl)) != NULL) {
2490 for (int w = 0; w < ZIO_WAIT_TYPES; w++) {
2491 gio->io_children[pio->io_child_type][w] +=
2492 !pio->io_state[w];
2493 }
2494 }
2495 for (int c = 0; c < ZIO_CHILD_TYPES; c++)
2496 pio->io_child_error[c] = 0;
2497
2498 if (IO_IS_ALLOCATING(pio))
2499 BP_ZERO(pio->io_bp);
2500
2501 /*
2502 * As we reexecute pio's children, new children could be created.
2503 * New children go to the head of pio's io_child_list, however,
2504 * so we will (correctly) not reexecute them. The key is that
2505 * the remainder of pio's io_child_list, from 'cio_next' onward,
2506 * cannot be affected by any side effects of reexecuting 'cio'.
2507 */
2508 zl = NULL;
2509 for (cio = zio_walk_children(pio, &zl); cio != NULL; cio = cio_next) {
2510 cio_next = zio_walk_children(pio, &zl);
2511 mutex_exit(&pio->io_lock);
2512 zio_reexecute(cio);
2513 mutex_enter(&pio->io_lock);
2514 }
2515 mutex_exit(&pio->io_lock);
2516
2517 /*
2518 * Now that all children have been reexecuted, execute the parent.
2519 * We don't reexecute "The Godfather" I/O here as it's the
2520 * responsibility of the caller to wait on it.
2521 */
2522 if (!(pio->io_flags & ZIO_FLAG_GODFATHER)) {
2523 pio->io_queued_timestamp = gethrtime();
2524 __zio_execute(pio);
2525 }
2526 }
2527
2528 void
2529 zio_suspend(spa_t *spa, zio_t *zio, zio_suspend_reason_t reason)
2530 {
2531 if (spa_get_failmode(spa) == ZIO_FAILURE_MODE_PANIC)
2532 fm_panic("Pool '%s' has encountered an uncorrectable I/O "
2533 "failure and the failure mode property for this pool "
2534 "is set to panic.", spa_name(spa));
2535
2536 cmn_err(CE_WARN, "Pool '%s' has encountered an uncorrectable I/O "
2537 "failure and has been suspended.\n", spa_name(spa));
2538
2539 (void) zfs_ereport_post(FM_EREPORT_ZFS_IO_FAILURE, spa, NULL,
2540 NULL, NULL, 0);
2541
2542 mutex_enter(&spa->spa_suspend_lock);
2543
2544 if (spa->spa_suspend_zio_root == NULL)
2545 spa->spa_suspend_zio_root = zio_root(spa, NULL, NULL,
2546 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
2547 ZIO_FLAG_GODFATHER);
2548
2549 spa->spa_suspended = reason;
2550
2551 if (zio != NULL) {
2552 ASSERT(!(zio->io_flags & ZIO_FLAG_GODFATHER));
2553 ASSERT(zio != spa->spa_suspend_zio_root);
2554 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
2555 ASSERT(zio_unique_parent(zio) == NULL);
2556 ASSERT(zio->io_stage == ZIO_STAGE_DONE);
2557 zio_add_child(spa->spa_suspend_zio_root, zio);
2558 }
2559
2560 mutex_exit(&spa->spa_suspend_lock);
2561 }
2562
2563 int
2564 zio_resume(spa_t *spa)
2565 {
2566 zio_t *pio;
2567
2568 /*
2569 * Reexecute all previously suspended i/o.
2570 */
2571 mutex_enter(&spa->spa_suspend_lock);
2572 spa->spa_suspended = ZIO_SUSPEND_NONE;
2573 cv_broadcast(&spa->spa_suspend_cv);
2574 pio = spa->spa_suspend_zio_root;
2575 spa->spa_suspend_zio_root = NULL;
2576 mutex_exit(&spa->spa_suspend_lock);
2577
2578 if (pio == NULL)
2579 return (0);
2580
2581 zio_reexecute(pio);
2582 return (zio_wait(pio));
2583 }
2584
2585 void
2586 zio_resume_wait(spa_t *spa)
2587 {
2588 mutex_enter(&spa->spa_suspend_lock);
2589 while (spa_suspended(spa))
2590 cv_wait(&spa->spa_suspend_cv, &spa->spa_suspend_lock);
2591 mutex_exit(&spa->spa_suspend_lock);
2592 }
2593
2594 /*
2595 * ==========================================================================
2596 * Gang blocks.
2597 *
2598 * A gang block is a collection of small blocks that looks to the DMU
2599 * like one large block. When zio_dva_allocate() cannot find a block
2600 * of the requested size, due to either severe fragmentation or the pool
2601 * being nearly full, it calls zio_write_gang_block() to construct the
2602 * block from smaller fragments.
2603 *
2604 * A gang block consists of a gang header (zio_gbh_phys_t) and up to
2605 * three (SPA_GBH_NBLKPTRS) gang members. The gang header is just like
2606 * an indirect block: it's an array of block pointers. It consumes
2607 * only one sector and hence is allocatable regardless of fragmentation.
2608 * The gang header's bps point to its gang members, which hold the data.
2609 *
2610 * Gang blocks are self-checksumming, using the bp's <vdev, offset, txg>
2611 * as the verifier to ensure uniqueness of the SHA256 checksum.
2612 * Critically, the gang block bp's blk_cksum is the checksum of the data,
2613 * not the gang header. This ensures that data block signatures (needed for
2614 * deduplication) are independent of how the block is physically stored.
2615 *
2616 * Gang blocks can be nested: a gang member may itself be a gang block.
2617 * Thus every gang block is a tree in which root and all interior nodes are
2618 * gang headers, and the leaves are normal blocks that contain user data.
2619 * The root of the gang tree is called the gang leader.
2620 *
2621 * To perform any operation (read, rewrite, free, claim) on a gang block,
2622 * zio_gang_assemble() first assembles the gang tree (minus data leaves)
2623 * in the io_gang_tree field of the original logical i/o by recursively
2624 * reading the gang leader and all gang headers below it. This yields
2625 * an in-core tree containing the contents of every gang header and the
2626 * bps for every constituent of the gang block.
2627 *
2628 * With the gang tree now assembled, zio_gang_issue() just walks the gang tree
2629 * and invokes a callback on each bp. To free a gang block, zio_gang_issue()
2630 * calls zio_free_gang() -- a trivial wrapper around zio_free() -- for each bp.
2631 * zio_claim_gang() provides a similarly trivial wrapper for zio_claim().
2632 * zio_read_gang() is a wrapper around zio_read() that omits reading gang
2633 * headers, since we already have those in io_gang_tree. zio_rewrite_gang()
2634 * performs a zio_rewrite() of the data or, for gang headers, a zio_rewrite()
2635 * of the gang header plus zio_checksum_compute() of the data to update the
2636 * gang header's blk_cksum as described above.
2637 *
2638 * The two-phase assemble/issue model solves the problem of partial failure --
2639 * what if you'd freed part of a gang block but then couldn't read the
2640 * gang header for another part? Assembling the entire gang tree first
2641 * ensures that all the necessary gang header I/O has succeeded before
2642 * starting the actual work of free, claim, or write. Once the gang tree
2643 * is assembled, free and claim are in-memory operations that cannot fail.
2644 *
2645 * In the event that a gang write fails, zio_dva_unallocate() walks the
2646 * gang tree to immediately free (i.e. insert back into the space map)
2647 * everything we've allocated. This ensures that we don't get ENOSPC
2648 * errors during repeated suspend/resume cycles due to a flaky device.
2649 *
2650 * Gang rewrites only happen during sync-to-convergence. If we can't assemble
2651 * the gang tree, we won't modify the block, so we can safely defer the free
2652 * (knowing that the block is still intact). If we *can* assemble the gang
2653 * tree, then even if some of the rewrites fail, zio_dva_unallocate() will free
2654 * each constituent bp and we can allocate a new block on the next sync pass.
2655 *
2656 * In all cases, the gang tree allows complete recovery from partial failure.
2657 * ==========================================================================
2658 */
2659
2660 static void
2661 zio_gang_issue_func_done(zio_t *zio)
2662 {
2663 abd_free(zio->io_abd);
2664 }
2665
2666 static zio_t *
2667 zio_read_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, abd_t *data,
2668 uint64_t offset)
2669 {
2670 if (gn != NULL)
2671 return (pio);
2672
2673 return (zio_read(pio, pio->io_spa, bp, abd_get_offset(data, offset),
2674 BP_GET_PSIZE(bp), zio_gang_issue_func_done,
2675 NULL, pio->io_priority, ZIO_GANG_CHILD_FLAGS(pio),
2676 &pio->io_bookmark));
2677 }
2678
2679 static zio_t *
2680 zio_rewrite_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, abd_t *data,
2681 uint64_t offset)
2682 {
2683 zio_t *zio;
2684
2685 if (gn != NULL) {
2686 abd_t *gbh_abd =
2687 abd_get_from_buf(gn->gn_gbh, SPA_GANGBLOCKSIZE);
2688 zio = zio_rewrite(pio, pio->io_spa, pio->io_txg, bp,
2689 gbh_abd, SPA_GANGBLOCKSIZE, zio_gang_issue_func_done, NULL,
2690 pio->io_priority, ZIO_GANG_CHILD_FLAGS(pio),
2691 &pio->io_bookmark);
2692 /*
2693 * As we rewrite each gang header, the pipeline will compute
2694 * a new gang block header checksum for it; but no one will
2695 * compute a new data checksum, so we do that here. The one
2696 * exception is the gang leader: the pipeline already computed
2697 * its data checksum because that stage precedes gang assembly.
2698 * (Presently, nothing actually uses interior data checksums;
2699 * this is just good hygiene.)
2700 */
2701 if (gn != pio->io_gang_leader->io_gang_tree) {
2702 abd_t *buf = abd_get_offset(data, offset);
2703
2704 zio_checksum_compute(zio, BP_GET_CHECKSUM(bp),
2705 buf, BP_GET_PSIZE(bp));
2706
2707 abd_free(buf);
2708 }
2709 /*
2710 * If we are here to damage data for testing purposes,
2711 * leave the GBH alone so that we can detect the damage.
2712 */
2713 if (pio->io_gang_leader->io_flags & ZIO_FLAG_INDUCE_DAMAGE)
2714 zio->io_pipeline &= ~ZIO_VDEV_IO_STAGES;
2715 } else {
2716 zio = zio_rewrite(pio, pio->io_spa, pio->io_txg, bp,
2717 abd_get_offset(data, offset), BP_GET_PSIZE(bp),
2718 zio_gang_issue_func_done, NULL, pio->io_priority,
2719 ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark);
2720 }
2721
2722 return (zio);
2723 }
2724
2725 static zio_t *
2726 zio_free_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, abd_t *data,
2727 uint64_t offset)
2728 {
2729 (void) gn, (void) data, (void) offset;
2730
2731 zio_t *zio = zio_free_sync(pio, pio->io_spa, pio->io_txg, bp,
2732 ZIO_GANG_CHILD_FLAGS(pio));
2733 if (zio == NULL) {
2734 zio = zio_null(pio, pio->io_spa,
2735 NULL, NULL, NULL, ZIO_GANG_CHILD_FLAGS(pio));
2736 }
2737 return (zio);
2738 }
2739
2740 static zio_t *
2741 zio_claim_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, abd_t *data,
2742 uint64_t offset)
2743 {
2744 (void) gn, (void) data, (void) offset;
2745 return (zio_claim(pio, pio->io_spa, pio->io_txg, bp,
2746 NULL, NULL, ZIO_GANG_CHILD_FLAGS(pio)));
2747 }
2748
2749 static zio_gang_issue_func_t *zio_gang_issue_func[ZIO_TYPES] = {
2750 NULL,
2751 zio_read_gang,
2752 zio_rewrite_gang,
2753 zio_free_gang,
2754 zio_claim_gang,
2755 NULL
2756 };
2757
2758 static void zio_gang_tree_assemble_done(zio_t *zio);
2759
2760 static zio_gang_node_t *
2761 zio_gang_node_alloc(zio_gang_node_t **gnpp)
2762 {
2763 zio_gang_node_t *gn;
2764
2765 ASSERT(*gnpp == NULL);
2766
2767 gn = kmem_zalloc(sizeof (*gn), KM_SLEEP);
2768 gn->gn_gbh = zio_buf_alloc(SPA_GANGBLOCKSIZE);
2769 *gnpp = gn;
2770
2771 return (gn);
2772 }
2773
2774 static void
2775 zio_gang_node_free(zio_gang_node_t **gnpp)
2776 {
2777 zio_gang_node_t *gn = *gnpp;
2778
2779 for (int g = 0; g < SPA_GBH_NBLKPTRS; g++)
2780 ASSERT(gn->gn_child[g] == NULL);
2781
2782 zio_buf_free(gn->gn_gbh, SPA_GANGBLOCKSIZE);
2783 kmem_free(gn, sizeof (*gn));
2784 *gnpp = NULL;
2785 }
2786
2787 static void
2788 zio_gang_tree_free(zio_gang_node_t **gnpp)
2789 {
2790 zio_gang_node_t *gn = *gnpp;
2791
2792 if (gn == NULL)
2793 return;
2794
2795 for (int g = 0; g < SPA_GBH_NBLKPTRS; g++)
2796 zio_gang_tree_free(&gn->gn_child[g]);
2797
2798 zio_gang_node_free(gnpp);
2799 }
2800
2801 static void
2802 zio_gang_tree_assemble(zio_t *gio, blkptr_t *bp, zio_gang_node_t **gnpp)
2803 {
2804 zio_gang_node_t *gn = zio_gang_node_alloc(gnpp);
2805 abd_t *gbh_abd = abd_get_from_buf(gn->gn_gbh, SPA_GANGBLOCKSIZE);
2806
2807 ASSERT(gio->io_gang_leader == gio);
2808 ASSERT(BP_IS_GANG(bp));
2809
2810 zio_nowait(zio_read(gio, gio->io_spa, bp, gbh_abd, SPA_GANGBLOCKSIZE,
2811 zio_gang_tree_assemble_done, gn, gio->io_priority,
2812 ZIO_GANG_CHILD_FLAGS(gio), &gio->io_bookmark));
2813 }
2814
2815 static void
2816 zio_gang_tree_assemble_done(zio_t *zio)
2817 {
2818 zio_t *gio = zio->io_gang_leader;
2819 zio_gang_node_t *gn = zio->io_private;
2820 blkptr_t *bp = zio->io_bp;
2821
2822 ASSERT(gio == zio_unique_parent(zio));
2823 ASSERT(list_is_empty(&zio->io_child_list));
2824
2825 if (zio->io_error)
2826 return;
2827
2828 /* this ABD was created from a linear buf in zio_gang_tree_assemble */
2829 if (BP_SHOULD_BYTESWAP(bp))
2830 byteswap_uint64_array(abd_to_buf(zio->io_abd), zio->io_size);
2831
2832 ASSERT3P(abd_to_buf(zio->io_abd), ==, gn->gn_gbh);
2833 ASSERT(zio->io_size == SPA_GANGBLOCKSIZE);
2834 ASSERT(gn->gn_gbh->zg_tail.zec_magic == ZEC_MAGIC);
2835
2836 abd_free(zio->io_abd);
2837
2838 for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) {
2839 blkptr_t *gbp = &gn->gn_gbh->zg_blkptr[g];
2840 if (!BP_IS_GANG(gbp))
2841 continue;
2842 zio_gang_tree_assemble(gio, gbp, &gn->gn_child[g]);
2843 }
2844 }
2845
2846 static void
2847 zio_gang_tree_issue(zio_t *pio, zio_gang_node_t *gn, blkptr_t *bp, abd_t *data,
2848 uint64_t offset)
2849 {
2850 zio_t *gio = pio->io_gang_leader;
2851 zio_t *zio;
2852
2853 ASSERT(BP_IS_GANG(bp) == !!gn);
2854 ASSERT(BP_GET_CHECKSUM(bp) == BP_GET_CHECKSUM(gio->io_bp));
2855 ASSERT(BP_GET_LSIZE(bp) == BP_GET_PSIZE(bp) || gn == gio->io_gang_tree);
2856
2857 /*
2858 * If you're a gang header, your data is in gn->gn_gbh.
2859 * If you're a gang member, your data is in 'data' and gn == NULL.
2860 */
2861 zio = zio_gang_issue_func[gio->io_type](pio, bp, gn, data, offset);
2862
2863 if (gn != NULL) {
2864 ASSERT(gn->gn_gbh->zg_tail.zec_magic == ZEC_MAGIC);
2865
2866 for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) {
2867 blkptr_t *gbp = &gn->gn_gbh->zg_blkptr[g];
2868 if (BP_IS_HOLE(gbp))
2869 continue;
2870 zio_gang_tree_issue(zio, gn->gn_child[g], gbp, data,
2871 offset);
2872 offset += BP_GET_PSIZE(gbp);
2873 }
2874 }
2875
2876 if (gn == gio->io_gang_tree)
2877 ASSERT3U(gio->io_size, ==, offset);
2878
2879 if (zio != pio)
2880 zio_nowait(zio);
2881 }
2882
2883 static zio_t *
2884 zio_gang_assemble(zio_t *zio)
2885 {
2886 blkptr_t *bp = zio->io_bp;
2887
2888 ASSERT(BP_IS_GANG(bp) && zio->io_gang_leader == NULL);
2889 ASSERT(zio->io_child_type > ZIO_CHILD_GANG);
2890
2891 zio->io_gang_leader = zio;
2892
2893 zio_gang_tree_assemble(zio, bp, &zio->io_gang_tree);
2894
2895 return (zio);
2896 }
2897
2898 static zio_t *
2899 zio_gang_issue(zio_t *zio)
2900 {
2901 blkptr_t *bp = zio->io_bp;
2902
2903 if (zio_wait_for_children(zio, ZIO_CHILD_GANG_BIT, ZIO_WAIT_DONE)) {
2904 return (NULL);
2905 }
2906
2907 ASSERT(BP_IS_GANG(bp) && zio->io_gang_leader == zio);
2908 ASSERT(zio->io_child_type > ZIO_CHILD_GANG);
2909
2910 if (zio->io_child_error[ZIO_CHILD_GANG] == 0)
2911 zio_gang_tree_issue(zio, zio->io_gang_tree, bp, zio->io_abd,
2912 0);
2913 else
2914 zio_gang_tree_free(&zio->io_gang_tree);
2915
2916 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
2917
2918 return (zio);
2919 }
2920
2921 static void
2922 zio_gang_inherit_allocator(zio_t *pio, zio_t *cio)
2923 {
2924 cio->io_allocator = pio->io_allocator;
2925 cio->io_wr_iss_tq = pio->io_wr_iss_tq;
2926 }
2927
2928 static void
2929 zio_write_gang_member_ready(zio_t *zio)
2930 {
2931 zio_t *pio = zio_unique_parent(zio);
2932 dva_t *cdva = zio->io_bp->blk_dva;
2933 dva_t *pdva = pio->io_bp->blk_dva;
2934 uint64_t asize;
2935 zio_t *gio __maybe_unused = zio->io_gang_leader;
2936
2937 if (BP_IS_HOLE(zio->io_bp))
2938 return;
2939
2940 ASSERT(BP_IS_HOLE(&zio->io_bp_orig));
2941
2942 ASSERT(zio->io_child_type == ZIO_CHILD_GANG);
2943 ASSERT3U(zio->io_prop.zp_copies, ==, gio->io_prop.zp_copies);
2944 ASSERT3U(zio->io_prop.zp_copies, <=, BP_GET_NDVAS(zio->io_bp));
2945 ASSERT3U(pio->io_prop.zp_copies, <=, BP_GET_NDVAS(pio->io_bp));
2946 VERIFY3U(BP_GET_NDVAS(zio->io_bp), <=, BP_GET_NDVAS(pio->io_bp));
2947
2948 mutex_enter(&pio->io_lock);
2949 for (int d = 0; d < BP_GET_NDVAS(zio->io_bp); d++) {
2950 ASSERT(DVA_GET_GANG(&pdva[d]));
2951 asize = DVA_GET_ASIZE(&pdva[d]);
2952 asize += DVA_GET_ASIZE(&cdva[d]);
2953 DVA_SET_ASIZE(&pdva[d], asize);
2954 }
2955 mutex_exit(&pio->io_lock);
2956 }
2957
2958 static void
2959 zio_write_gang_done(zio_t *zio)
2960 {
2961 /*
2962 * The io_abd field will be NULL for a zio with no data. The io_flags
2963 * will initially have the ZIO_FLAG_NODATA bit flag set, but we can't
2964 * check for it here as it is cleared in zio_ready.
2965 */
2966 if (zio->io_abd != NULL)
2967 abd_free(zio->io_abd);
2968 }
2969
2970 static zio_t *
2971 zio_write_gang_block(zio_t *pio, metaslab_class_t *mc)
2972 {
2973 spa_t *spa = pio->io_spa;
2974 blkptr_t *bp = pio->io_bp;
2975 zio_t *gio = pio->io_gang_leader;
2976 zio_t *zio;
2977 zio_gang_node_t *gn, **gnpp;
2978 zio_gbh_phys_t *gbh;
2979 abd_t *gbh_abd;
2980 uint64_t txg = pio->io_txg;
2981 uint64_t resid = pio->io_size;
2982 uint64_t lsize;
2983 int copies = gio->io_prop.zp_copies;
2984 zio_prop_t zp;
2985 int error;
2986 boolean_t has_data = !(pio->io_flags & ZIO_FLAG_NODATA);
2987
2988 /*
2989 * If one copy was requested, store 2 copies of the GBH, so that we
2990 * can still traverse all the data (e.g. to free or scrub) even if a
2991 * block is damaged. Note that we can't store 3 copies of the GBH in
2992 * all cases, e.g. with encryption, which uses DVA[2] for the IV+salt.
2993 */
2994 int gbh_copies = copies;
2995 if (gbh_copies == 1) {
2996 gbh_copies = MIN(2, spa_max_replication(spa));
2997 }
2998
2999 ASSERT(ZIO_HAS_ALLOCATOR(pio));
3000 int flags = METASLAB_HINTBP_FAVOR | METASLAB_GANG_HEADER;
3001 if (pio->io_flags & ZIO_FLAG_IO_ALLOCATING) {
3002 ASSERT(pio->io_priority == ZIO_PRIORITY_ASYNC_WRITE);
3003 ASSERT(has_data);
3004
3005 flags |= METASLAB_ASYNC_ALLOC;
3006 VERIFY(zfs_refcount_held(&mc->mc_allocator[pio->io_allocator].
3007 mca_alloc_slots, pio));
3008
3009 /*
3010 * The logical zio has already placed a reservation for
3011 * 'copies' allocation slots but gang blocks may require
3012 * additional copies. These additional copies
3013 * (i.e. gbh_copies - copies) are guaranteed to succeed
3014 * since metaslab_class_throttle_reserve() always allows
3015 * additional reservations for gang blocks.
3016 */
3017 VERIFY(metaslab_class_throttle_reserve(mc, gbh_copies - copies,
3018 pio->io_allocator, pio, flags));
3019 }
3020
3021 error = metaslab_alloc(spa, mc, SPA_GANGBLOCKSIZE,
3022 bp, gbh_copies, txg, pio == gio ? NULL : gio->io_bp, flags,
3023 &pio->io_alloc_list, pio, pio->io_allocator);
3024 if (error) {
3025 if (pio->io_flags & ZIO_FLAG_IO_ALLOCATING) {
3026 ASSERT(pio->io_priority == ZIO_PRIORITY_ASYNC_WRITE);
3027 ASSERT(has_data);
3028
3029 /*
3030 * If we failed to allocate the gang block header then
3031 * we remove any additional allocation reservations that
3032 * we placed here. The original reservation will
3033 * be removed when the logical I/O goes to the ready
3034 * stage.
3035 */
3036 metaslab_class_throttle_unreserve(mc,
3037 gbh_copies - copies, pio->io_allocator, pio);
3038 }
3039
3040 pio->io_error = error;
3041 return (pio);
3042 }
3043
3044 if (pio == gio) {
3045 gnpp = &gio->io_gang_tree;
3046 } else {
3047 gnpp = pio->io_private;
3048 ASSERT(pio->io_ready == zio_write_gang_member_ready);
3049 }
3050
3051 gn = zio_gang_node_alloc(gnpp);
3052 gbh = gn->gn_gbh;
3053 memset(gbh, 0, SPA_GANGBLOCKSIZE);
3054 gbh_abd = abd_get_from_buf(gbh, SPA_GANGBLOCKSIZE);
3055
3056 /*
3057 * Create the gang header.
3058 */
3059 zio = zio_rewrite(pio, spa, txg, bp, gbh_abd, SPA_GANGBLOCKSIZE,
3060 zio_write_gang_done, NULL, pio->io_priority,
3061 ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark);
3062
3063 zio_gang_inherit_allocator(pio, zio);
3064
3065 /*
3066 * Create and nowait the gang children.
3067 */
3068 for (int g = 0; resid != 0; resid -= lsize, g++) {
3069 lsize = P2ROUNDUP(resid / (SPA_GBH_NBLKPTRS - g),
3070 SPA_MINBLOCKSIZE);
3071 ASSERT(lsize >= SPA_MINBLOCKSIZE && lsize <= resid);
3072
3073 zp.zp_checksum = gio->io_prop.zp_checksum;
3074 zp.zp_compress = ZIO_COMPRESS_OFF;
3075 zp.zp_complevel = gio->io_prop.zp_complevel;
3076 zp.zp_type = DMU_OT_NONE;
3077 zp.zp_level = 0;
3078 zp.zp_copies = gio->io_prop.zp_copies;
3079 zp.zp_dedup = B_FALSE;
3080 zp.zp_dedup_verify = B_FALSE;
3081 zp.zp_nopwrite = B_FALSE;
3082 zp.zp_encrypt = gio->io_prop.zp_encrypt;
3083 zp.zp_byteorder = gio->io_prop.zp_byteorder;
3084 memset(zp.zp_salt, 0, ZIO_DATA_SALT_LEN);
3085 memset(zp.zp_iv, 0, ZIO_DATA_IV_LEN);
3086 memset(zp.zp_mac, 0, ZIO_DATA_MAC_LEN);
3087
3088 zio_t *cio = zio_write(zio, spa, txg, &gbh->zg_blkptr[g],
3089 has_data ? abd_get_offset(pio->io_abd, pio->io_size -
3090 resid) : NULL, lsize, lsize, &zp,
3091 zio_write_gang_member_ready, NULL,
3092 zio_write_gang_done, &gn->gn_child[g], pio->io_priority,
3093 ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark);
3094
3095 zio_gang_inherit_allocator(zio, cio);
3096
3097 if (pio->io_flags & ZIO_FLAG_IO_ALLOCATING) {
3098 ASSERT(pio->io_priority == ZIO_PRIORITY_ASYNC_WRITE);
3099 ASSERT(has_data);
3100
3101 /*
3102 * Gang children won't throttle but we should
3103 * account for their work, so reserve an allocation
3104 * slot for them here.
3105 */
3106 VERIFY(metaslab_class_throttle_reserve(mc,
3107 zp.zp_copies, cio->io_allocator, cio, flags));
3108 }
3109 zio_nowait(cio);
3110 }
3111
3112 /*
3113 * Set pio's pipeline to just wait for zio to finish.
3114 */
3115 pio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
3116
3117 zio_nowait(zio);
3118
3119 return (pio);
3120 }
3121
3122 /*
3123 * The zio_nop_write stage in the pipeline determines if allocating a
3124 * new bp is necessary. The nopwrite feature can handle writes in
3125 * either syncing or open context (i.e. zil writes) and as a result is
3126 * mutually exclusive with dedup.
3127 *
3128 * By leveraging a cryptographically secure checksum, such as SHA256, we
3129 * can compare the checksums of the new data and the old to determine if
3130 * allocating a new block is required. Note that our requirements for
3131 * cryptographic strength are fairly weak: there can't be any accidental
3132 * hash collisions, but we don't need to be secure against intentional
3133 * (malicious) collisions. To trigger a nopwrite, you have to be able
3134 * to write the file to begin with, and triggering an incorrect (hash
3135 * collision) nopwrite is no worse than simply writing to the file.
3136 * That said, there are no known attacks against the checksum algorithms
3137 * used for nopwrite, assuming that the salt and the checksums
3138 * themselves remain secret.
3139 */
3140 static zio_t *
3141 zio_nop_write(zio_t *zio)
3142 {
3143 blkptr_t *bp = zio->io_bp;
3144 blkptr_t *bp_orig = &zio->io_bp_orig;
3145 zio_prop_t *zp = &zio->io_prop;
3146
3147 ASSERT(BP_IS_HOLE(bp));
3148 ASSERT(BP_GET_LEVEL(bp) == 0);
3149 ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE));
3150 ASSERT(zp->zp_nopwrite);
3151 ASSERT(!zp->zp_dedup);
3152 ASSERT(zio->io_bp_override == NULL);
3153 ASSERT(IO_IS_ALLOCATING(zio));
3154
3155 /*
3156 * Check to see if the original bp and the new bp have matching
3157 * characteristics (i.e. same checksum, compression algorithms, etc).
3158 * If they don't then just continue with the pipeline which will
3159 * allocate a new bp.
3160 */
3161 if (BP_IS_HOLE(bp_orig) ||
3162 !(zio_checksum_table[BP_GET_CHECKSUM(bp)].ci_flags &
3163 ZCHECKSUM_FLAG_NOPWRITE) ||
3164 BP_IS_ENCRYPTED(bp) || BP_IS_ENCRYPTED(bp_orig) ||
3165 BP_GET_CHECKSUM(bp) != BP_GET_CHECKSUM(bp_orig) ||
3166 BP_GET_COMPRESS(bp) != BP_GET_COMPRESS(bp_orig) ||
3167 BP_GET_DEDUP(bp) != BP_GET_DEDUP(bp_orig) ||
3168 zp->zp_copies != BP_GET_NDVAS(bp_orig))
3169 return (zio);
3170
3171 /*
3172 * If the checksums match then reset the pipeline so that we
3173 * avoid allocating a new bp and issuing any I/O.
3174 */
3175 if (ZIO_CHECKSUM_EQUAL(bp->blk_cksum, bp_orig->blk_cksum)) {
3176 ASSERT(zio_checksum_table[zp->zp_checksum].ci_flags &
3177 ZCHECKSUM_FLAG_NOPWRITE);
3178 ASSERT3U(BP_GET_PSIZE(bp), ==, BP_GET_PSIZE(bp_orig));
3179 ASSERT3U(BP_GET_LSIZE(bp), ==, BP_GET_LSIZE(bp_orig));
3180 ASSERT(zp->zp_compress != ZIO_COMPRESS_OFF);
3181 ASSERT3U(bp->blk_prop, ==, bp_orig->blk_prop);
3182
3183 /*
3184 * If we're overwriting a block that is currently on an
3185 * indirect vdev, then ignore the nopwrite request and
3186 * allow a new block to be allocated on a concrete vdev.
3187 */
3188 spa_config_enter(zio->io_spa, SCL_VDEV, FTAG, RW_READER);
3189 for (int d = 0; d < BP_GET_NDVAS(bp_orig); d++) {
3190 vdev_t *tvd = vdev_lookup_top(zio->io_spa,
3191 DVA_GET_VDEV(&bp_orig->blk_dva[d]));
3192 if (tvd->vdev_ops == &vdev_indirect_ops) {
3193 spa_config_exit(zio->io_spa, SCL_VDEV, FTAG);
3194 return (zio);
3195 }
3196 }
3197 spa_config_exit(zio->io_spa, SCL_VDEV, FTAG);
3198
3199 *bp = *bp_orig;
3200 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
3201 zio->io_flags |= ZIO_FLAG_NOPWRITE;
3202 }
3203
3204 return (zio);
3205 }
3206
3207 /*
3208 * ==========================================================================
3209 * Block Reference Table
3210 * ==========================================================================
3211 */
3212 static zio_t *
3213 zio_brt_free(zio_t *zio)
3214 {
3215 blkptr_t *bp;
3216
3217 bp = zio->io_bp;
3218
3219 if (BP_GET_LEVEL(bp) > 0 ||
3220 BP_IS_METADATA(bp) ||
3221 !brt_maybe_exists(zio->io_spa, bp)) {
3222 return (zio);
3223 }
3224
3225 if (!brt_entry_decref(zio->io_spa, bp)) {
3226 /*
3227 * This isn't the last reference, so we cannot free
3228 * the data yet.
3229 */
3230 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
3231 }
3232
3233 return (zio);
3234 }
3235
3236 /*
3237 * ==========================================================================
3238 * Dedup
3239 * ==========================================================================
3240 */
3241 static void
3242 zio_ddt_child_read_done(zio_t *zio)
3243 {
3244 blkptr_t *bp = zio->io_bp;
3245 ddt_entry_t *dde = zio->io_private;
3246 ddt_phys_t *ddp;
3247 zio_t *pio = zio_unique_parent(zio);
3248
3249 mutex_enter(&pio->io_lock);
3250 ddp = ddt_phys_select(dde, bp);
3251 if (zio->io_error == 0)
3252 ddt_phys_clear(ddp); /* this ddp doesn't need repair */
3253
3254 if (zio->io_error == 0 && dde->dde_repair_abd == NULL)
3255 dde->dde_repair_abd = zio->io_abd;
3256 else
3257 abd_free(zio->io_abd);
3258 mutex_exit(&pio->io_lock);
3259 }
3260
3261 static zio_t *
3262 zio_ddt_read_start(zio_t *zio)
3263 {
3264 blkptr_t *bp = zio->io_bp;
3265
3266 ASSERT(BP_GET_DEDUP(bp));
3267 ASSERT(BP_GET_PSIZE(bp) == zio->io_size);
3268 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
3269
3270 if (zio->io_child_error[ZIO_CHILD_DDT]) {
3271 ddt_t *ddt = ddt_select(zio->io_spa, bp);
3272 ddt_entry_t *dde = ddt_repair_start(ddt, bp);
3273 ddt_phys_t *ddp = dde->dde_phys;
3274 ddt_phys_t *ddp_self = ddt_phys_select(dde, bp);
3275 blkptr_t blk;
3276
3277 ASSERT(zio->io_vsd == NULL);
3278 zio->io_vsd = dde;
3279
3280 if (ddp_self == NULL)
3281 return (zio);
3282
3283 for (int p = 0; p < DDT_PHYS_TYPES; p++, ddp++) {
3284 if (ddp->ddp_phys_birth == 0 || ddp == ddp_self)
3285 continue;
3286 ddt_bp_create(ddt->ddt_checksum, &dde->dde_key, ddp,
3287 &blk);
3288 zio_nowait(zio_read(zio, zio->io_spa, &blk,
3289 abd_alloc_for_io(zio->io_size, B_TRUE),
3290 zio->io_size, zio_ddt_child_read_done, dde,
3291 zio->io_priority, ZIO_DDT_CHILD_FLAGS(zio) |
3292 ZIO_FLAG_DONT_PROPAGATE, &zio->io_bookmark));
3293 }
3294 return (zio);
3295 }
3296
3297 zio_nowait(zio_read(zio, zio->io_spa, bp,
3298 zio->io_abd, zio->io_size, NULL, NULL, zio->io_priority,
3299 ZIO_DDT_CHILD_FLAGS(zio), &zio->io_bookmark));
3300
3301 return (zio);
3302 }
3303
3304 static zio_t *
3305 zio_ddt_read_done(zio_t *zio)
3306 {
3307 blkptr_t *bp = zio->io_bp;
3308
3309 if (zio_wait_for_children(zio, ZIO_CHILD_DDT_BIT, ZIO_WAIT_DONE)) {
3310 return (NULL);
3311 }
3312
3313 ASSERT(BP_GET_DEDUP(bp));
3314 ASSERT(BP_GET_PSIZE(bp) == zio->io_size);
3315 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
3316
3317 if (zio->io_child_error[ZIO_CHILD_DDT]) {
3318 ddt_t *ddt = ddt_select(zio->io_spa, bp);
3319 ddt_entry_t *dde = zio->io_vsd;
3320 if (ddt == NULL) {
3321 ASSERT(spa_load_state(zio->io_spa) != SPA_LOAD_NONE);
3322 return (zio);
3323 }
3324 if (dde == NULL) {
3325 zio->io_stage = ZIO_STAGE_DDT_READ_START >> 1;
3326 zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, B_FALSE);
3327 return (NULL);
3328 }
3329 if (dde->dde_repair_abd != NULL) {
3330 abd_copy(zio->io_abd, dde->dde_repair_abd,
3331 zio->io_size);
3332 zio->io_child_error[ZIO_CHILD_DDT] = 0;
3333 }
3334 ddt_repair_done(ddt, dde);
3335 zio->io_vsd = NULL;
3336 }
3337
3338 ASSERT(zio->io_vsd == NULL);
3339
3340 return (zio);
3341 }
3342
3343 static boolean_t
3344 zio_ddt_collision(zio_t *zio, ddt_t *ddt, ddt_entry_t *dde)
3345 {
3346 spa_t *spa = zio->io_spa;
3347 boolean_t do_raw = !!(zio->io_flags & ZIO_FLAG_RAW);
3348
3349 ASSERT(!(zio->io_bp_override && do_raw));
3350
3351 /*
3352 * Note: we compare the original data, not the transformed data,
3353 * because when zio->io_bp is an override bp, we will not have
3354 * pushed the I/O transforms. That's an important optimization
3355 * because otherwise we'd compress/encrypt all dmu_sync() data twice.
3356 * However, we should never get a raw, override zio so in these
3357 * cases we can compare the io_abd directly. This is useful because
3358 * it allows us to do dedup verification even if we don't have access
3359 * to the original data (for instance, if the encryption keys aren't
3360 * loaded).
3361 */
3362
3363 for (int p = DDT_PHYS_SINGLE; p <= DDT_PHYS_TRIPLE; p++) {
3364 zio_t *lio = dde->dde_lead_zio[p];
3365
3366 if (lio != NULL && do_raw) {
3367 return (lio->io_size != zio->io_size ||
3368 abd_cmp(zio->io_abd, lio->io_abd) != 0);
3369 } else if (lio != NULL) {
3370 return (lio->io_orig_size != zio->io_orig_size ||
3371 abd_cmp(zio->io_orig_abd, lio->io_orig_abd) != 0);
3372 }
3373 }
3374
3375 for (int p = DDT_PHYS_SINGLE; p <= DDT_PHYS_TRIPLE; p++) {
3376 ddt_phys_t *ddp = &dde->dde_phys[p];
3377
3378 if (ddp->ddp_phys_birth != 0 && do_raw) {
3379 blkptr_t blk = *zio->io_bp;
3380 uint64_t psize;
3381 abd_t *tmpabd;
3382 int error;
3383
3384 ddt_bp_fill(ddp, &blk, ddp->ddp_phys_birth);
3385 psize = BP_GET_PSIZE(&blk);
3386
3387 if (psize != zio->io_size)
3388 return (B_TRUE);
3389
3390 ddt_exit(ddt);
3391
3392 tmpabd = abd_alloc_for_io(psize, B_TRUE);
3393
3394 error = zio_wait(zio_read(NULL, spa, &blk, tmpabd,
3395 psize, NULL, NULL, ZIO_PRIORITY_SYNC_READ,
3396 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
3397 ZIO_FLAG_RAW, &zio->io_bookmark));
3398
3399 if (error == 0) {
3400 if (abd_cmp(tmpabd, zio->io_abd) != 0)
3401 error = SET_ERROR(ENOENT);
3402 }
3403
3404 abd_free(tmpabd);
3405 ddt_enter(ddt);
3406 return (error != 0);
3407 } else if (ddp->ddp_phys_birth != 0) {
3408 arc_buf_t *abuf = NULL;
3409 arc_flags_t aflags = ARC_FLAG_WAIT;
3410 blkptr_t blk = *zio->io_bp;
3411 int error;
3412
3413 ddt_bp_fill(ddp, &blk, ddp->ddp_phys_birth);
3414
3415 if (BP_GET_LSIZE(&blk) != zio->io_orig_size)
3416 return (B_TRUE);
3417
3418 ddt_exit(ddt);
3419
3420 error = arc_read(NULL, spa, &blk,
3421 arc_getbuf_func, &abuf, ZIO_PRIORITY_SYNC_READ,
3422 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE,
3423 &aflags, &zio->io_bookmark);
3424
3425 if (error == 0) {
3426 if (abd_cmp_buf(zio->io_orig_abd, abuf->b_data,
3427 zio->io_orig_size) != 0)
3428 error = SET_ERROR(ENOENT);
3429 arc_buf_destroy(abuf, &abuf);
3430 }
3431
3432 ddt_enter(ddt);
3433 return (error != 0);
3434 }
3435 }
3436
3437 return (B_FALSE);
3438 }
3439
3440 static void
3441 zio_ddt_child_write_ready(zio_t *zio)
3442 {
3443 int p = zio->io_prop.zp_copies;
3444 ddt_t *ddt = ddt_select(zio->io_spa, zio->io_bp);
3445 ddt_entry_t *dde = zio->io_private;
3446 ddt_phys_t *ddp = &dde->dde_phys[p];
3447 zio_t *pio;
3448
3449 if (zio->io_error)
3450 return;
3451
3452 ddt_enter(ddt);
3453
3454 ASSERT(dde->dde_lead_zio[p] == zio);
3455
3456 ddt_phys_fill(ddp, zio->io_bp);
3457
3458 zio_link_t *zl = NULL;
3459 while ((pio = zio_walk_parents(zio, &zl)) != NULL)
3460 ddt_bp_fill(ddp, pio->io_bp, zio->io_txg);
3461
3462 ddt_exit(ddt);
3463 }
3464
3465 static void
3466 zio_ddt_child_write_done(zio_t *zio)
3467 {
3468 int p = zio->io_prop.zp_copies;
3469 ddt_t *ddt = ddt_select(zio->io_spa, zio->io_bp);
3470 ddt_entry_t *dde = zio->io_private;
3471 ddt_phys_t *ddp = &dde->dde_phys[p];
3472
3473 ddt_enter(ddt);
3474
3475 ASSERT(ddp->ddp_refcnt == 0);
3476 ASSERT(dde->dde_lead_zio[p] == zio);
3477 dde->dde_lead_zio[p] = NULL;
3478
3479 if (zio->io_error == 0) {
3480 zio_link_t *zl = NULL;
3481 while (zio_walk_parents(zio, &zl) != NULL)
3482 ddt_phys_addref(ddp);
3483 } else {
3484 ddt_phys_clear(ddp);
3485 }
3486
3487 ddt_exit(ddt);
3488 }
3489
3490 static zio_t *
3491 zio_ddt_write(zio_t *zio)
3492 {
3493 spa_t *spa = zio->io_spa;
3494 blkptr_t *bp = zio->io_bp;
3495 uint64_t txg = zio->io_txg;
3496 zio_prop_t *zp = &zio->io_prop;
3497 int p = zp->zp_copies;
3498 zio_t *cio = NULL;
3499 ddt_t *ddt = ddt_select(spa, bp);
3500 ddt_entry_t *dde;
3501 ddt_phys_t *ddp;
3502
3503 ASSERT(BP_GET_DEDUP(bp));
3504 ASSERT(BP_GET_CHECKSUM(bp) == zp->zp_checksum);
3505 ASSERT(BP_IS_HOLE(bp) || zio->io_bp_override);
3506 ASSERT(!(zio->io_bp_override && (zio->io_flags & ZIO_FLAG_RAW)));
3507
3508 ddt_enter(ddt);
3509 dde = ddt_lookup(ddt, bp, B_TRUE);
3510 ddp = &dde->dde_phys[p];
3511
3512 if (zp->zp_dedup_verify && zio_ddt_collision(zio, ddt, dde)) {
3513 /*
3514 * If we're using a weak checksum, upgrade to a strong checksum
3515 * and try again. If we're already using a strong checksum,
3516 * we can't resolve it, so just convert to an ordinary write.
3517 * (And automatically e-mail a paper to Nature?)
3518 */
3519 if (!(zio_checksum_table[zp->zp_checksum].ci_flags &
3520 ZCHECKSUM_FLAG_DEDUP)) {
3521 zp->zp_checksum = spa_dedup_checksum(spa);
3522 zio_pop_transforms(zio);
3523 zio->io_stage = ZIO_STAGE_OPEN;
3524 BP_ZERO(bp);
3525 } else {
3526 zp->zp_dedup = B_FALSE;
3527 BP_SET_DEDUP(bp, B_FALSE);
3528 }
3529 ASSERT(!BP_GET_DEDUP(bp));
3530 zio->io_pipeline = ZIO_WRITE_PIPELINE;
3531 ddt_exit(ddt);
3532 return (zio);
3533 }
3534
3535 if (ddp->ddp_phys_birth != 0 || dde->dde_lead_zio[p] != NULL) {
3536 if (ddp->ddp_phys_birth != 0)
3537 ddt_bp_fill(ddp, bp, txg);
3538 if (dde->dde_lead_zio[p] != NULL)
3539 zio_add_child(zio, dde->dde_lead_zio[p]);
3540 else
3541 ddt_phys_addref(ddp);
3542 } else if (zio->io_bp_override) {
3543 ASSERT(BP_GET_LOGICAL_BIRTH(bp) == txg);
3544 ASSERT(BP_EQUAL(bp, zio->io_bp_override));
3545 ddt_phys_fill(ddp, bp);
3546 ddt_phys_addref(ddp);
3547 } else {
3548 cio = zio_write(zio, spa, txg, bp, zio->io_orig_abd,
3549 zio->io_orig_size, zio->io_orig_size, zp,
3550 zio_ddt_child_write_ready, NULL,
3551 zio_ddt_child_write_done, dde, zio->io_priority,
3552 ZIO_DDT_CHILD_FLAGS(zio), &zio->io_bookmark);
3553
3554 zio_push_transform(cio, zio->io_abd, zio->io_size, 0, NULL);
3555 dde->dde_lead_zio[p] = cio;
3556 }
3557
3558 ddt_exit(ddt);
3559
3560 zio_nowait(cio);
3561
3562 return (zio);
3563 }
3564
3565 static ddt_entry_t *freedde; /* for debugging */
3566
3567 static zio_t *
3568 zio_ddt_free(zio_t *zio)
3569 {
3570 spa_t *spa = zio->io_spa;
3571 blkptr_t *bp = zio->io_bp;
3572 ddt_t *ddt = ddt_select(spa, bp);
3573 ddt_entry_t *dde;
3574 ddt_phys_t *ddp;
3575
3576 ASSERT(BP_GET_DEDUP(bp));
3577 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
3578
3579 ddt_enter(ddt);
3580 freedde = dde = ddt_lookup(ddt, bp, B_TRUE);
3581 if (dde) {
3582 ddp = ddt_phys_select(dde, bp);
3583 if (ddp)
3584 ddt_phys_decref(ddp);
3585 }
3586 ddt_exit(ddt);
3587
3588 return (zio);
3589 }
3590
3591 /*
3592 * ==========================================================================
3593 * Allocate and free blocks
3594 * ==========================================================================
3595 */
3596
3597 static zio_t *
3598 zio_io_to_allocate(spa_t *spa, int allocator)
3599 {
3600 zio_t *zio;
3601
3602 ASSERT(MUTEX_HELD(&spa->spa_allocs[allocator].spaa_lock));
3603
3604 zio = avl_first(&spa->spa_allocs[allocator].spaa_tree);
3605 if (zio == NULL)
3606 return (NULL);
3607
3608 ASSERT(IO_IS_ALLOCATING(zio));
3609 ASSERT(ZIO_HAS_ALLOCATOR(zio));
3610
3611 /*
3612 * Try to place a reservation for this zio. If we're unable to
3613 * reserve then we throttle.
3614 */
3615 ASSERT3U(zio->io_allocator, ==, allocator);
3616 if (!metaslab_class_throttle_reserve(zio->io_metaslab_class,
3617 zio->io_prop.zp_copies, allocator, zio, 0)) {
3618 return (NULL);
3619 }
3620
3621 avl_remove(&spa->spa_allocs[allocator].spaa_tree, zio);
3622 ASSERT3U(zio->io_stage, <, ZIO_STAGE_DVA_ALLOCATE);
3623
3624 return (zio);
3625 }
3626
3627 static zio_t *
3628 zio_dva_throttle(zio_t *zio)
3629 {
3630 spa_t *spa = zio->io_spa;
3631 zio_t *nio;
3632 metaslab_class_t *mc;
3633
3634 /* locate an appropriate allocation class */
3635 mc = spa_preferred_class(spa, zio->io_size, zio->io_prop.zp_type,
3636 zio->io_prop.zp_level, zio->io_prop.zp_zpl_smallblk);
3637
3638 if (zio->io_priority == ZIO_PRIORITY_SYNC_WRITE ||
3639 !mc->mc_alloc_throttle_enabled ||
3640 zio->io_child_type == ZIO_CHILD_GANG ||
3641 zio->io_flags & ZIO_FLAG_NODATA) {
3642 return (zio);
3643 }
3644
3645 ASSERT(zio->io_type == ZIO_TYPE_WRITE);
3646 ASSERT(ZIO_HAS_ALLOCATOR(zio));
3647 ASSERT(zio->io_child_type > ZIO_CHILD_GANG);
3648 ASSERT3U(zio->io_queued_timestamp, >, 0);
3649 ASSERT(zio->io_stage == ZIO_STAGE_DVA_THROTTLE);
3650
3651 int allocator = zio->io_allocator;
3652 zio->io_metaslab_class = mc;
3653 mutex_enter(&spa->spa_allocs[allocator].spaa_lock);
3654 avl_add(&spa->spa_allocs[allocator].spaa_tree, zio);
3655 nio = zio_io_to_allocate(spa, allocator);
3656 mutex_exit(&spa->spa_allocs[allocator].spaa_lock);
3657 return (nio);
3658 }
3659
3660 static void
3661 zio_allocate_dispatch(spa_t *spa, int allocator)
3662 {
3663 zio_t *zio;
3664
3665 mutex_enter(&spa->spa_allocs[allocator].spaa_lock);
3666 zio = zio_io_to_allocate(spa, allocator);
3667 mutex_exit(&spa->spa_allocs[allocator].spaa_lock);
3668 if (zio == NULL)
3669 return;
3670
3671 ASSERT3U(zio->io_stage, ==, ZIO_STAGE_DVA_THROTTLE);
3672 ASSERT0(zio->io_error);
3673 zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, B_TRUE);
3674 }
3675
3676 static zio_t *
3677 zio_dva_allocate(zio_t *zio)
3678 {
3679 spa_t *spa = zio->io_spa;
3680 metaslab_class_t *mc;
3681 blkptr_t *bp = zio->io_bp;
3682 int error;
3683 int flags = 0;
3684
3685 if (zio->io_gang_leader == NULL) {
3686 ASSERT(zio->io_child_type > ZIO_CHILD_GANG);
3687 zio->io_gang_leader = zio;
3688 }
3689
3690 ASSERT(BP_IS_HOLE(bp));
3691 ASSERT0(BP_GET_NDVAS(bp));
3692 ASSERT3U(zio->io_prop.zp_copies, >, 0);
3693 ASSERT3U(zio->io_prop.zp_copies, <=, spa_max_replication(spa));
3694 ASSERT3U(zio->io_size, ==, BP_GET_PSIZE(bp));
3695
3696 if (zio->io_flags & ZIO_FLAG_NODATA)
3697 flags |= METASLAB_DONT_THROTTLE;
3698 if (zio->io_flags & ZIO_FLAG_GANG_CHILD)
3699 flags |= METASLAB_GANG_CHILD;
3700 if (zio->io_priority == ZIO_PRIORITY_ASYNC_WRITE)
3701 flags |= METASLAB_ASYNC_ALLOC;
3702
3703 /*
3704 * if not already chosen, locate an appropriate allocation class
3705 */
3706 mc = zio->io_metaslab_class;
3707 if (mc == NULL) {
3708 mc = spa_preferred_class(spa, zio->io_size,
3709 zio->io_prop.zp_type, zio->io_prop.zp_level,
3710 zio->io_prop.zp_zpl_smallblk);
3711 zio->io_metaslab_class = mc;
3712 }
3713
3714 /*
3715 * Try allocating the block in the usual metaslab class.
3716 * If that's full, allocate it in the normal class.
3717 * If that's full, allocate as a gang block,
3718 * and if all are full, the allocation fails (which shouldn't happen).
3719 *
3720 * Note that we do not fall back on embedded slog (ZIL) space, to
3721 * preserve unfragmented slog space, which is critical for decent
3722 * sync write performance. If a log allocation fails, we will fall
3723 * back to spa_sync() which is abysmal for performance.
3724 */
3725 ASSERT(ZIO_HAS_ALLOCATOR(zio));
3726 error = metaslab_alloc(spa, mc, zio->io_size, bp,
3727 zio->io_prop.zp_copies, zio->io_txg, NULL, flags,
3728 &zio->io_alloc_list, zio, zio->io_allocator);
3729
3730 /*
3731 * Fallback to normal class when an alloc class is full
3732 */
3733 if (error == ENOSPC && mc != spa_normal_class(spa)) {
3734 /*
3735 * If throttling, transfer reservation over to normal class.
3736 * The io_allocator slot can remain the same even though we
3737 * are switching classes.
3738 */
3739 if (mc->mc_alloc_throttle_enabled &&
3740 (zio->io_flags & ZIO_FLAG_IO_ALLOCATING)) {
3741 metaslab_class_throttle_unreserve(mc,
3742 zio->io_prop.zp_copies, zio->io_allocator, zio);
3743 zio->io_flags &= ~ZIO_FLAG_IO_ALLOCATING;
3744
3745 VERIFY(metaslab_class_throttle_reserve(
3746 spa_normal_class(spa),
3747 zio->io_prop.zp_copies, zio->io_allocator, zio,
3748 flags | METASLAB_MUST_RESERVE));
3749 }
3750 zio->io_metaslab_class = mc = spa_normal_class(spa);
3751 if (zfs_flags & ZFS_DEBUG_METASLAB_ALLOC) {
3752 zfs_dbgmsg("%s: metaslab allocation failure, "
3753 "trying normal class: zio %px, size %llu, error %d",
3754 spa_name(spa), zio, (u_longlong_t)zio->io_size,
3755 error);
3756 }
3757
3758 error = metaslab_alloc(spa, mc, zio->io_size, bp,
3759 zio->io_prop.zp_copies, zio->io_txg, NULL, flags,
3760 &zio->io_alloc_list, zio, zio->io_allocator);
3761 }
3762
3763 if (error == ENOSPC && zio->io_size > SPA_MINBLOCKSIZE) {
3764 if (zfs_flags & ZFS_DEBUG_METASLAB_ALLOC) {
3765 zfs_dbgmsg("%s: metaslab allocation failure, "
3766 "trying ganging: zio %px, size %llu, error %d",
3767 spa_name(spa), zio, (u_longlong_t)zio->io_size,
3768 error);
3769 }
3770 return (zio_write_gang_block(zio, mc));
3771 }
3772 if (error != 0) {
3773 if (error != ENOSPC ||
3774 (zfs_flags & ZFS_DEBUG_METASLAB_ALLOC)) {
3775 zfs_dbgmsg("%s: metaslab allocation failure: zio %px, "
3776 "size %llu, error %d",
3777 spa_name(spa), zio, (u_longlong_t)zio->io_size,
3778 error);
3779 }
3780 zio->io_error = error;
3781 }
3782
3783 return (zio);
3784 }
3785
3786 static zio_t *
3787 zio_dva_free(zio_t *zio)
3788 {
3789 metaslab_free(zio->io_spa, zio->io_bp, zio->io_txg, B_FALSE);
3790
3791 return (zio);
3792 }
3793
3794 static zio_t *
3795 zio_dva_claim(zio_t *zio)
3796 {
3797 int error;
3798
3799 error = metaslab_claim(zio->io_spa, zio->io_bp, zio->io_txg);
3800 if (error)
3801 zio->io_error = error;
3802
3803 return (zio);
3804 }
3805
3806 /*
3807 * Undo an allocation. This is used by zio_done() when an I/O fails
3808 * and we want to give back the block we just allocated.
3809 * This handles both normal blocks and gang blocks.
3810 */
3811 static void
3812 zio_dva_unallocate(zio_t *zio, zio_gang_node_t *gn, blkptr_t *bp)
3813 {
3814 ASSERT(BP_GET_LOGICAL_BIRTH(bp) == zio->io_txg || BP_IS_HOLE(bp));
3815 ASSERT(zio->io_bp_override == NULL);
3816
3817 if (!BP_IS_HOLE(bp)) {
3818 metaslab_free(zio->io_spa, bp, BP_GET_LOGICAL_BIRTH(bp),
3819 B_TRUE);
3820 }
3821
3822 if (gn != NULL) {
3823 for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) {
3824 zio_dva_unallocate(zio, gn->gn_child[g],
3825 &gn->gn_gbh->zg_blkptr[g]);
3826 }
3827 }
3828 }
3829
3830 /*
3831 * Try to allocate an intent log block. Return 0 on success, errno on failure.
3832 */
3833 int
3834 zio_alloc_zil(spa_t *spa, objset_t *os, uint64_t txg, blkptr_t *new_bp,
3835 uint64_t size, boolean_t *slog)
3836 {
3837 int error = 1;
3838 zio_alloc_list_t io_alloc_list;
3839
3840 ASSERT(txg > spa_syncing_txg(spa));
3841
3842 metaslab_trace_init(&io_alloc_list);
3843
3844 /*
3845 * Block pointer fields are useful to metaslabs for stats and debugging.
3846 * Fill in the obvious ones before calling into metaslab_alloc().
3847 */
3848 BP_SET_TYPE(new_bp, DMU_OT_INTENT_LOG);
3849 BP_SET_PSIZE(new_bp, size);
3850 BP_SET_LEVEL(new_bp, 0);
3851
3852 /*
3853 * When allocating a zil block, we don't have information about
3854 * the final destination of the block except the objset it's part
3855 * of, so we just hash the objset ID to pick the allocator to get
3856 * some parallelism.
3857 */
3858 int flags = METASLAB_ZIL;
3859 int allocator = (uint_t)cityhash4(0, 0, 0,
3860 os->os_dsl_dataset->ds_object) % spa->spa_alloc_count;
3861 error = metaslab_alloc(spa, spa_log_class(spa), size, new_bp, 1,
3862 txg, NULL, flags, &io_alloc_list, NULL, allocator);
3863 *slog = (error == 0);
3864 if (error != 0) {
3865 error = metaslab_alloc(spa, spa_embedded_log_class(spa), size,
3866 new_bp, 1, txg, NULL, flags,
3867 &io_alloc_list, NULL, allocator);
3868 }
3869 if (error != 0) {
3870 error = metaslab_alloc(spa, spa_normal_class(spa), size,
3871 new_bp, 1, txg, NULL, flags,
3872 &io_alloc_list, NULL, allocator);
3873 }
3874 metaslab_trace_fini(&io_alloc_list);
3875
3876 if (error == 0) {
3877 BP_SET_LSIZE(new_bp, size);
3878 BP_SET_PSIZE(new_bp, size);
3879 BP_SET_COMPRESS(new_bp, ZIO_COMPRESS_OFF);
3880 BP_SET_CHECKSUM(new_bp,
3881 spa_version(spa) >= SPA_VERSION_SLIM_ZIL
3882 ? ZIO_CHECKSUM_ZILOG2 : ZIO_CHECKSUM_ZILOG);
3883 BP_SET_TYPE(new_bp, DMU_OT_INTENT_LOG);
3884 BP_SET_LEVEL(new_bp, 0);
3885 BP_SET_DEDUP(new_bp, 0);
3886 BP_SET_BYTEORDER(new_bp, ZFS_HOST_BYTEORDER);
3887
3888 /*
3889 * encrypted blocks will require an IV and salt. We generate
3890 * these now since we will not be rewriting the bp at
3891 * rewrite time.
3892 */
3893 if (os->os_encrypted) {
3894 uint8_t iv[ZIO_DATA_IV_LEN];
3895 uint8_t salt[ZIO_DATA_SALT_LEN];
3896
3897 BP_SET_CRYPT(new_bp, B_TRUE);
3898 VERIFY0(spa_crypt_get_salt(spa,
3899 dmu_objset_id(os), salt));
3900 VERIFY0(zio_crypt_generate_iv(iv));
3901
3902 zio_crypt_encode_params_bp(new_bp, salt, iv);
3903 }
3904 } else {
3905 zfs_dbgmsg("%s: zil block allocation failure: "
3906 "size %llu, error %d", spa_name(spa), (u_longlong_t)size,
3907 error);
3908 }
3909
3910 return (error);
3911 }
3912
3913 /*
3914 * ==========================================================================
3915 * Read and write to physical devices
3916 * ==========================================================================
3917 */
3918
3919 /*
3920 * Issue an I/O to the underlying vdev. Typically the issue pipeline
3921 * stops after this stage and will resume upon I/O completion.
3922 * However, there are instances where the vdev layer may need to
3923 * continue the pipeline when an I/O was not issued. Since the I/O
3924 * that was sent to the vdev layer might be different than the one
3925 * currently active in the pipeline (see vdev_queue_io()), we explicitly
3926 * force the underlying vdev layers to call either zio_execute() or
3927 * zio_interrupt() to ensure that the pipeline continues with the correct I/O.
3928 */
3929 static zio_t *
3930 zio_vdev_io_start(zio_t *zio)
3931 {
3932 vdev_t *vd = zio->io_vd;
3933 uint64_t align;
3934 spa_t *spa = zio->io_spa;
3935
3936 zio->io_delay = 0;
3937
3938 ASSERT(zio->io_error == 0);
3939 ASSERT(zio->io_child_error[ZIO_CHILD_VDEV] == 0);
3940
3941 if (vd == NULL) {
3942 if (!(zio->io_flags & ZIO_FLAG_CONFIG_WRITER))
3943 spa_config_enter(spa, SCL_ZIO, zio, RW_READER);
3944
3945 /*
3946 * The mirror_ops handle multiple DVAs in a single BP.
3947 */
3948 vdev_mirror_ops.vdev_op_io_start(zio);
3949 return (NULL);
3950 }
3951
3952 ASSERT3P(zio->io_logical, !=, zio);
3953 if (zio->io_type == ZIO_TYPE_WRITE) {
3954 ASSERT(spa->spa_trust_config);
3955
3956 /*
3957 * Note: the code can handle other kinds of writes,
3958 * but we don't expect them.
3959 */
3960 if (zio->io_vd->vdev_noalloc) {
3961 ASSERT(zio->io_flags &
3962 (ZIO_FLAG_PHYSICAL | ZIO_FLAG_SELF_HEAL |
3963 ZIO_FLAG_RESILVER | ZIO_FLAG_INDUCE_DAMAGE));
3964 }
3965 }
3966
3967 align = 1ULL << vd->vdev_top->vdev_ashift;
3968
3969 if (!(zio->io_flags & ZIO_FLAG_PHYSICAL) &&
3970 P2PHASE(zio->io_size, align) != 0) {
3971 /* Transform logical writes to be a full physical block size. */
3972 uint64_t asize = P2ROUNDUP(zio->io_size, align);
3973 abd_t *abuf = abd_alloc_sametype(zio->io_abd, asize);
3974 ASSERT(vd == vd->vdev_top);
3975 if (zio->io_type == ZIO_TYPE_WRITE) {
3976 abd_copy(abuf, zio->io_abd, zio->io_size);
3977 abd_zero_off(abuf, zio->io_size, asize - zio->io_size);
3978 }
3979 zio_push_transform(zio, abuf, asize, asize, zio_subblock);
3980 }
3981
3982 /*
3983 * If this is not a physical io, make sure that it is properly aligned
3984 * before proceeding.
3985 */
3986 if (!(zio->io_flags & ZIO_FLAG_PHYSICAL)) {
3987 ASSERT0(P2PHASE(zio->io_offset, align));
3988 ASSERT0(P2PHASE(zio->io_size, align));
3989 } else {
3990 /*
3991 * For physical writes, we allow 512b aligned writes and assume
3992 * the device will perform a read-modify-write as necessary.
3993 */
3994 ASSERT0(P2PHASE(zio->io_offset, SPA_MINBLOCKSIZE));
3995 ASSERT0(P2PHASE(zio->io_size, SPA_MINBLOCKSIZE));
3996 }
3997
3998 VERIFY(zio->io_type != ZIO_TYPE_WRITE || spa_writeable(spa));
3999
4000 /*
4001 * If this is a repair I/O, and there's no self-healing involved --
4002 * that is, we're just resilvering what we expect to resilver --
4003 * then don't do the I/O unless zio's txg is actually in vd's DTL.
4004 * This prevents spurious resilvering.
4005 *
4006 * There are a few ways that we can end up creating these spurious
4007 * resilver i/os:
4008 *
4009 * 1. A resilver i/o will be issued if any DVA in the BP has a
4010 * dirty DTL. The mirror code will issue resilver writes to
4011 * each DVA, including the one(s) that are not on vdevs with dirty
4012 * DTLs.
4013 *
4014 * 2. With nested replication, which happens when we have a
4015 * "replacing" or "spare" vdev that's a child of a mirror or raidz.
4016 * For example, given mirror(replacing(A+B), C), it's likely that
4017 * only A is out of date (it's the new device). In this case, we'll
4018 * read from C, then use the data to resilver A+B -- but we don't
4019 * actually want to resilver B, just A. The top-level mirror has no
4020 * way to know this, so instead we just discard unnecessary repairs
4021 * as we work our way down the vdev tree.
4022 *
4023 * 3. ZTEST also creates mirrors of mirrors, mirrors of raidz, etc.
4024 * The same logic applies to any form of nested replication: ditto
4025 * + mirror, RAID-Z + replacing, etc.
4026 *
4027 * However, indirect vdevs point off to other vdevs which may have
4028 * DTL's, so we never bypass them. The child i/os on concrete vdevs
4029 * will be properly bypassed instead.
4030 *
4031 * Leaf DTL_PARTIAL can be empty when a legitimate write comes from
4032 * a dRAID spare vdev. For example, when a dRAID spare is first
4033 * used, its spare blocks need to be written to but the leaf vdev's
4034 * of such blocks can have empty DTL_PARTIAL.
4035 *
4036 * There seemed no clean way to allow such writes while bypassing
4037 * spurious ones. At this point, just avoid all bypassing for dRAID
4038 * for correctness.
4039 */
4040 if ((zio->io_flags & ZIO_FLAG_IO_REPAIR) &&
4041 !(zio->io_flags & ZIO_FLAG_SELF_HEAL) &&
4042 zio->io_txg != 0 && /* not a delegated i/o */
4043 vd->vdev_ops != &vdev_indirect_ops &&
4044 vd->vdev_top->vdev_ops != &vdev_draid_ops &&
4045 !vdev_dtl_contains(vd, DTL_PARTIAL, zio->io_txg, 1)) {
4046 ASSERT(zio->io_type == ZIO_TYPE_WRITE);
4047 zio_vdev_io_bypass(zio);
4048 return (zio);
4049 }
4050
4051 /*
4052 * Select the next best leaf I/O to process. Distributed spares are
4053 * excluded since they dispatch the I/O directly to a leaf vdev after
4054 * applying the dRAID mapping.
4055 */
4056 if (vd->vdev_ops->vdev_op_leaf &&
4057 vd->vdev_ops != &vdev_draid_spare_ops &&
4058 (zio->io_type == ZIO_TYPE_READ ||
4059 zio->io_type == ZIO_TYPE_WRITE ||
4060 zio->io_type == ZIO_TYPE_TRIM)) {
4061
4062 if ((zio = vdev_queue_io(zio)) == NULL)
4063 return (NULL);
4064
4065 if (!vdev_accessible(vd, zio)) {
4066 zio->io_error = SET_ERROR(ENXIO);
4067 zio_interrupt(zio);
4068 return (NULL);
4069 }
4070 zio->io_delay = gethrtime();
4071 }
4072
4073 vd->vdev_ops->vdev_op_io_start(zio);
4074 return (NULL);
4075 }
4076
4077 static zio_t *
4078 zio_vdev_io_done(zio_t *zio)
4079 {
4080 vdev_t *vd = zio->io_vd;
4081 vdev_ops_t *ops = vd ? vd->vdev_ops : &vdev_mirror_ops;
4082 boolean_t unexpected_error = B_FALSE;
4083
4084 if (zio_wait_for_children(zio, ZIO_CHILD_VDEV_BIT, ZIO_WAIT_DONE)) {
4085 return (NULL);
4086 }
4087
4088 ASSERT(zio->io_type == ZIO_TYPE_READ ||
4089 zio->io_type == ZIO_TYPE_WRITE ||
4090 zio->io_type == ZIO_TYPE_IOCTL ||
4091 zio->io_type == ZIO_TYPE_TRIM);
4092
4093 if (zio->io_delay)
4094 zio->io_delay = gethrtime() - zio->io_delay;
4095
4096 if (vd != NULL && vd->vdev_ops->vdev_op_leaf &&
4097 vd->vdev_ops != &vdev_draid_spare_ops) {
4098 if (zio->io_type != ZIO_TYPE_IOCTL)
4099 vdev_queue_io_done(zio);
4100
4101 if (zio_injection_enabled && zio->io_error == 0)
4102 zio->io_error = zio_handle_device_injections(vd, zio,
4103 EIO, EILSEQ);
4104
4105 if (zio_injection_enabled && zio->io_error == 0)
4106 zio->io_error = zio_handle_label_injection(zio, EIO);
4107
4108 if (zio->io_error && zio->io_type != ZIO_TYPE_TRIM) {
4109 if (!vdev_accessible(vd, zio)) {
4110 zio->io_error = SET_ERROR(ENXIO);
4111 } else {
4112 unexpected_error = B_TRUE;
4113 }
4114 }
4115 }
4116
4117 ops->vdev_op_io_done(zio);
4118
4119 if (unexpected_error && vd->vdev_remove_wanted == B_FALSE)
4120 VERIFY(vdev_probe(vd, zio) == NULL);
4121
4122 return (zio);
4123 }
4124
4125 /*
4126 * This function is used to change the priority of an existing zio that is
4127 * currently in-flight. This is used by the arc to upgrade priority in the
4128 * event that a demand read is made for a block that is currently queued
4129 * as a scrub or async read IO. Otherwise, the high priority read request
4130 * would end up having to wait for the lower priority IO.
4131 */
4132 void
4133 zio_change_priority(zio_t *pio, zio_priority_t priority)
4134 {
4135 zio_t *cio, *cio_next;
4136 zio_link_t *zl = NULL;
4137
4138 ASSERT3U(priority, <, ZIO_PRIORITY_NUM_QUEUEABLE);
4139
4140 if (pio->io_vd != NULL && pio->io_vd->vdev_ops->vdev_op_leaf) {
4141 vdev_queue_change_io_priority(pio, priority);
4142 } else {
4143 pio->io_priority = priority;
4144 }
4145
4146 mutex_enter(&pio->io_lock);
4147 for (cio = zio_walk_children(pio, &zl); cio != NULL; cio = cio_next) {
4148 cio_next = zio_walk_children(pio, &zl);
4149 zio_change_priority(cio, priority);
4150 }
4151 mutex_exit(&pio->io_lock);
4152 }
4153
4154 /*
4155 * For non-raidz ZIOs, we can just copy aside the bad data read from the
4156 * disk, and use that to finish the checksum ereport later.
4157 */
4158 static void
4159 zio_vsd_default_cksum_finish(zio_cksum_report_t *zcr,
4160 const abd_t *good_buf)
4161 {
4162 /* no processing needed */
4163 zfs_ereport_finish_checksum(zcr, good_buf, zcr->zcr_cbdata, B_FALSE);
4164 }
4165
4166 void
4167 zio_vsd_default_cksum_report(zio_t *zio, zio_cksum_report_t *zcr)
4168 {
4169 void *abd = abd_alloc_sametype(zio->io_abd, zio->io_size);
4170
4171 abd_copy(abd, zio->io_abd, zio->io_size);
4172
4173 zcr->zcr_cbinfo = zio->io_size;
4174 zcr->zcr_cbdata = abd;
4175 zcr->zcr_finish = zio_vsd_default_cksum_finish;
4176 zcr->zcr_free = zio_abd_free;
4177 }
4178
4179 static zio_t *
4180 zio_vdev_io_assess(zio_t *zio)
4181 {
4182 vdev_t *vd = zio->io_vd;
4183
4184 if (zio_wait_for_children(zio, ZIO_CHILD_VDEV_BIT, ZIO_WAIT_DONE)) {
4185 return (NULL);
4186 }
4187
4188 if (vd == NULL && !(zio->io_flags & ZIO_FLAG_CONFIG_WRITER))
4189 spa_config_exit(zio->io_spa, SCL_ZIO, zio);
4190
4191 if (zio->io_vsd != NULL) {
4192 zio->io_vsd_ops->vsd_free(zio);
4193 zio->io_vsd = NULL;
4194 }
4195
4196 if (zio_injection_enabled && zio->io_error == 0)
4197 zio->io_error = zio_handle_fault_injection(zio, EIO);
4198
4199 /*
4200 * If the I/O failed, determine whether we should attempt to retry it.
4201 *
4202 * On retry, we cut in line in the issue queue, since we don't want
4203 * compression/checksumming/etc. work to prevent our (cheap) IO reissue.
4204 */
4205 if (zio->io_error && vd == NULL &&
4206 !(zio->io_flags & (ZIO_FLAG_DONT_RETRY | ZIO_FLAG_IO_RETRY))) {
4207 ASSERT(!(zio->io_flags & ZIO_FLAG_DONT_QUEUE)); /* not a leaf */
4208 ASSERT(!(zio->io_flags & ZIO_FLAG_IO_BYPASS)); /* not a leaf */
4209 zio->io_error = 0;
4210 zio->io_flags |= ZIO_FLAG_IO_RETRY | ZIO_FLAG_DONT_AGGREGATE;
4211 zio->io_stage = ZIO_STAGE_VDEV_IO_START >> 1;
4212 zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE,
4213 zio_requeue_io_start_cut_in_line);
4214 return (NULL);
4215 }
4216
4217 /*
4218 * If we got an error on a leaf device, convert it to ENXIO
4219 * if the device is not accessible at all.
4220 */
4221 if (zio->io_error && vd != NULL && vd->vdev_ops->vdev_op_leaf &&
4222 !vdev_accessible(vd, zio))
4223 zio->io_error = SET_ERROR(ENXIO);
4224
4225 /*
4226 * If we can't write to an interior vdev (mirror or RAID-Z),
4227 * set vdev_cant_write so that we stop trying to allocate from it.
4228 */
4229 if (zio->io_error == ENXIO && zio->io_type == ZIO_TYPE_WRITE &&
4230 vd != NULL && !vd->vdev_ops->vdev_op_leaf) {
4231 vdev_dbgmsg(vd, "zio_vdev_io_assess(zio=%px) setting "
4232 "cant_write=TRUE due to write failure with ENXIO",
4233 zio);
4234 vd->vdev_cant_write = B_TRUE;
4235 }
4236
4237 /*
4238 * If a cache flush returns ENOTSUP or ENOTTY, we know that no future
4239 * attempts will ever succeed. In this case we set a persistent
4240 * boolean flag so that we don't bother with it in the future.
4241 */
4242 if ((zio->io_error == ENOTSUP || zio->io_error == ENOTTY) &&
4243 zio->io_type == ZIO_TYPE_IOCTL &&
4244 zio->io_cmd == DKIOCFLUSHWRITECACHE && vd != NULL)
4245 vd->vdev_nowritecache = B_TRUE;
4246
4247 if (zio->io_error)
4248 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
4249
4250 return (zio);
4251 }
4252
4253 void
4254 zio_vdev_io_reissue(zio_t *zio)
4255 {
4256 ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_START);
4257 ASSERT(zio->io_error == 0);
4258
4259 zio->io_stage >>= 1;
4260 }
4261
4262 void
4263 zio_vdev_io_redone(zio_t *zio)
4264 {
4265 ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_DONE);
4266
4267 zio->io_stage >>= 1;
4268 }
4269
4270 void
4271 zio_vdev_io_bypass(zio_t *zio)
4272 {
4273 ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_START);
4274 ASSERT(zio->io_error == 0);
4275
4276 zio->io_flags |= ZIO_FLAG_IO_BYPASS;
4277 zio->io_stage = ZIO_STAGE_VDEV_IO_ASSESS >> 1;
4278 }
4279
4280 /*
4281 * ==========================================================================
4282 * Encrypt and store encryption parameters
4283 * ==========================================================================
4284 */
4285
4286
4287 /*
4288 * This function is used for ZIO_STAGE_ENCRYPT. It is responsible for
4289 * managing the storage of encryption parameters and passing them to the
4290 * lower-level encryption functions.
4291 */
4292 static zio_t *
4293 zio_encrypt(zio_t *zio)
4294 {
4295 zio_prop_t *zp = &zio->io_prop;
4296 spa_t *spa = zio->io_spa;
4297 blkptr_t *bp = zio->io_bp;
4298 uint64_t psize = BP_GET_PSIZE(bp);
4299 uint64_t dsobj = zio->io_bookmark.zb_objset;
4300 dmu_object_type_t ot = BP_GET_TYPE(bp);
4301 void *enc_buf = NULL;
4302 abd_t *eabd = NULL;
4303 uint8_t salt[ZIO_DATA_SALT_LEN];
4304 uint8_t iv[ZIO_DATA_IV_LEN];
4305 uint8_t mac[ZIO_DATA_MAC_LEN];
4306 boolean_t no_crypt = B_FALSE;
4307
4308 /* the root zio already encrypted the data */
4309 if (zio->io_child_type == ZIO_CHILD_GANG)
4310 return (zio);
4311
4312 /* only ZIL blocks are re-encrypted on rewrite */
4313 if (!IO_IS_ALLOCATING(zio) && ot != DMU_OT_INTENT_LOG)
4314 return (zio);
4315
4316 if (!(zp->zp_encrypt || BP_IS_ENCRYPTED(bp))) {
4317 BP_SET_CRYPT(bp, B_FALSE);
4318 return (zio);
4319 }
4320
4321 /* if we are doing raw encryption set the provided encryption params */
4322 if (zio->io_flags & ZIO_FLAG_RAW_ENCRYPT) {
4323 ASSERT0(BP_GET_LEVEL(bp));
4324 BP_SET_CRYPT(bp, B_TRUE);
4325 BP_SET_BYTEORDER(bp, zp->zp_byteorder);
4326 if (ot != DMU_OT_OBJSET)
4327 zio_crypt_encode_mac_bp(bp, zp->zp_mac);
4328
4329 /* dnode blocks must be written out in the provided byteorder */
4330 if (zp->zp_byteorder != ZFS_HOST_BYTEORDER &&
4331 ot == DMU_OT_DNODE) {
4332 void *bswap_buf = zio_buf_alloc(psize);
4333 abd_t *babd = abd_get_from_buf(bswap_buf, psize);
4334
4335 ASSERT3U(BP_GET_COMPRESS(bp), ==, ZIO_COMPRESS_OFF);
4336 abd_copy_to_buf(bswap_buf, zio->io_abd, psize);
4337 dmu_ot_byteswap[DMU_OT_BYTESWAP(ot)].ob_func(bswap_buf,
4338 psize);
4339
4340 abd_take_ownership_of_buf(babd, B_TRUE);
4341 zio_push_transform(zio, babd, psize, psize, NULL);
4342 }
4343
4344 if (DMU_OT_IS_ENCRYPTED(ot))
4345 zio_crypt_encode_params_bp(bp, zp->zp_salt, zp->zp_iv);
4346 return (zio);
4347 }
4348
4349 /* indirect blocks only maintain a cksum of the lower level MACs */
4350 if (BP_GET_LEVEL(bp) > 0) {
4351 BP_SET_CRYPT(bp, B_TRUE);
4352 VERIFY0(zio_crypt_do_indirect_mac_checksum_abd(B_TRUE,
4353 zio->io_orig_abd, BP_GET_LSIZE(bp), BP_SHOULD_BYTESWAP(bp),
4354 mac));
4355 zio_crypt_encode_mac_bp(bp, mac);
4356 return (zio);
4357 }
4358
4359 /*
4360 * Objset blocks are a special case since they have 2 256-bit MACs
4361 * embedded within them.
4362 */
4363 if (ot == DMU_OT_OBJSET) {
4364 ASSERT0(DMU_OT_IS_ENCRYPTED(ot));
4365 ASSERT3U(BP_GET_COMPRESS(bp), ==, ZIO_COMPRESS_OFF);
4366 BP_SET_CRYPT(bp, B_TRUE);
4367 VERIFY0(spa_do_crypt_objset_mac_abd(B_TRUE, spa, dsobj,
4368 zio->io_abd, psize, BP_SHOULD_BYTESWAP(bp)));
4369 return (zio);
4370 }
4371
4372 /* unencrypted object types are only authenticated with a MAC */
4373 if (!DMU_OT_IS_ENCRYPTED(ot)) {
4374 BP_SET_CRYPT(bp, B_TRUE);
4375 VERIFY0(spa_do_crypt_mac_abd(B_TRUE, spa, dsobj,
4376 zio->io_abd, psize, mac));
4377 zio_crypt_encode_mac_bp(bp, mac);
4378 return (zio);
4379 }
4380
4381 /*
4382 * Later passes of sync-to-convergence may decide to rewrite data
4383 * in place to avoid more disk reallocations. This presents a problem
4384 * for encryption because this constitutes rewriting the new data with
4385 * the same encryption key and IV. However, this only applies to blocks
4386 * in the MOS (particularly the spacemaps) and we do not encrypt the
4387 * MOS. We assert that the zio is allocating or an intent log write
4388 * to enforce this.
4389 */
4390 ASSERT(IO_IS_ALLOCATING(zio) || ot == DMU_OT_INTENT_LOG);
4391 ASSERT(BP_GET_LEVEL(bp) == 0 || ot == DMU_OT_INTENT_LOG);
4392 ASSERT(spa_feature_is_active(spa, SPA_FEATURE_ENCRYPTION));
4393 ASSERT3U(psize, !=, 0);
4394
4395 enc_buf = zio_buf_alloc(psize);
4396 eabd = abd_get_from_buf(enc_buf, psize);
4397 abd_take_ownership_of_buf(eabd, B_TRUE);
4398
4399 /*
4400 * For an explanation of what encryption parameters are stored
4401 * where, see the block comment in zio_crypt.c.
4402 */
4403 if (ot == DMU_OT_INTENT_LOG) {
4404 zio_crypt_decode_params_bp(bp, salt, iv);
4405 } else {
4406 BP_SET_CRYPT(bp, B_TRUE);
4407 }
4408
4409 /* Perform the encryption. This should not fail */
4410 VERIFY0(spa_do_crypt_abd(B_TRUE, spa, &zio->io_bookmark,
4411 BP_GET_TYPE(bp), BP_GET_DEDUP(bp), BP_SHOULD_BYTESWAP(bp),
4412 salt, iv, mac, psize, zio->io_abd, eabd, &no_crypt));
4413
4414 /* encode encryption metadata into the bp */
4415 if (ot == DMU_OT_INTENT_LOG) {
4416 /*
4417 * ZIL blocks store the MAC in the embedded checksum, so the
4418 * transform must always be applied.
4419 */
4420 zio_crypt_encode_mac_zil(enc_buf, mac);
4421 zio_push_transform(zio, eabd, psize, psize, NULL);
4422 } else {
4423 BP_SET_CRYPT(bp, B_TRUE);
4424 zio_crypt_encode_params_bp(bp, salt, iv);
4425 zio_crypt_encode_mac_bp(bp, mac);
4426
4427 if (no_crypt) {
4428 ASSERT3U(ot, ==, DMU_OT_DNODE);
4429 abd_free(eabd);
4430 } else {
4431 zio_push_transform(zio, eabd, psize, psize, NULL);
4432 }
4433 }
4434
4435 return (zio);
4436 }
4437
4438 /*
4439 * ==========================================================================
4440 * Generate and verify checksums
4441 * ==========================================================================
4442 */
4443 static zio_t *
4444 zio_checksum_generate(zio_t *zio)
4445 {
4446 blkptr_t *bp = zio->io_bp;
4447 enum zio_checksum checksum;
4448
4449 if (bp == NULL) {
4450 /*
4451 * This is zio_write_phys().
4452 * We're either generating a label checksum, or none at all.
4453 */
4454 checksum = zio->io_prop.zp_checksum;
4455
4456 if (checksum == ZIO_CHECKSUM_OFF)
4457 return (zio);
4458
4459 ASSERT(checksum == ZIO_CHECKSUM_LABEL);
4460 } else {
4461 if (BP_IS_GANG(bp) && zio->io_child_type == ZIO_CHILD_GANG) {
4462 ASSERT(!IO_IS_ALLOCATING(zio));
4463 checksum = ZIO_CHECKSUM_GANG_HEADER;
4464 } else {
4465 checksum = BP_GET_CHECKSUM(bp);
4466 }
4467 }
4468
4469 zio_checksum_compute(zio, checksum, zio->io_abd, zio->io_size);
4470
4471 return (zio);
4472 }
4473
4474 static zio_t *
4475 zio_checksum_verify(zio_t *zio)
4476 {
4477 zio_bad_cksum_t info;
4478 blkptr_t *bp = zio->io_bp;
4479 int error;
4480
4481 ASSERT(zio->io_vd != NULL);
4482
4483 if (bp == NULL) {
4484 /*
4485 * This is zio_read_phys().
4486 * We're either verifying a label checksum, or nothing at all.
4487 */
4488 if (zio->io_prop.zp_checksum == ZIO_CHECKSUM_OFF)
4489 return (zio);
4490
4491 ASSERT3U(zio->io_prop.zp_checksum, ==, ZIO_CHECKSUM_LABEL);
4492 }
4493
4494 if ((error = zio_checksum_error(zio, &info)) != 0) {
4495 zio->io_error = error;
4496 if (error == ECKSUM &&
4497 !(zio->io_flags & ZIO_FLAG_SPECULATIVE)) {
4498 mutex_enter(&zio->io_vd->vdev_stat_lock);
4499 zio->io_vd->vdev_stat.vs_checksum_errors++;
4500 mutex_exit(&zio->io_vd->vdev_stat_lock);
4501 (void) zfs_ereport_start_checksum(zio->io_spa,
4502 zio->io_vd, &zio->io_bookmark, zio,
4503 zio->io_offset, zio->io_size, &info);
4504 }
4505 }
4506
4507 return (zio);
4508 }
4509
4510 /*
4511 * Called by RAID-Z to ensure we don't compute the checksum twice.
4512 */
4513 void
4514 zio_checksum_verified(zio_t *zio)
4515 {
4516 zio->io_pipeline &= ~ZIO_STAGE_CHECKSUM_VERIFY;
4517 }
4518
4519 /*
4520 * ==========================================================================
4521 * Error rank. Error are ranked in the order 0, ENXIO, ECKSUM, EIO, other.
4522 * An error of 0 indicates success. ENXIO indicates whole-device failure,
4523 * which may be transient (e.g. unplugged) or permanent. ECKSUM and EIO
4524 * indicate errors that are specific to one I/O, and most likely permanent.
4525 * Any other error is presumed to be worse because we weren't expecting it.
4526 * ==========================================================================
4527 */
4528 int
4529 zio_worst_error(int e1, int e2)
4530 {
4531 static int zio_error_rank[] = { 0, ENXIO, ECKSUM, EIO };
4532 int r1, r2;
4533
4534 for (r1 = 0; r1 < sizeof (zio_error_rank) / sizeof (int); r1++)
4535 if (e1 == zio_error_rank[r1])
4536 break;
4537
4538 for (r2 = 0; r2 < sizeof (zio_error_rank) / sizeof (int); r2++)
4539 if (e2 == zio_error_rank[r2])
4540 break;
4541
4542 return (r1 > r2 ? e1 : e2);
4543 }
4544
4545 /*
4546 * ==========================================================================
4547 * I/O completion
4548 * ==========================================================================
4549 */
4550 static zio_t *
4551 zio_ready(zio_t *zio)
4552 {
4553 blkptr_t *bp = zio->io_bp;
4554 zio_t *pio, *pio_next;
4555 zio_link_t *zl = NULL;
4556
4557 if (zio_wait_for_children(zio, ZIO_CHILD_LOGICAL_BIT |
4558 ZIO_CHILD_GANG_BIT | ZIO_CHILD_DDT_BIT, ZIO_WAIT_READY)) {
4559 return (NULL);
4560 }
4561
4562 if (zio->io_ready) {
4563 ASSERT(IO_IS_ALLOCATING(zio));
4564 ASSERT(BP_GET_LOGICAL_BIRTH(bp) == zio->io_txg ||
4565 BP_IS_HOLE(bp) || (zio->io_flags & ZIO_FLAG_NOPWRITE));
4566 ASSERT(zio->io_children[ZIO_CHILD_GANG][ZIO_WAIT_READY] == 0);
4567
4568 zio->io_ready(zio);
4569 }
4570
4571 #ifdef ZFS_DEBUG
4572 if (bp != NULL && bp != &zio->io_bp_copy)
4573 zio->io_bp_copy = *bp;
4574 #endif
4575
4576 if (zio->io_error != 0) {
4577 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
4578
4579 if (zio->io_flags & ZIO_FLAG_IO_ALLOCATING) {
4580 ASSERT(IO_IS_ALLOCATING(zio));
4581 ASSERT(zio->io_priority == ZIO_PRIORITY_ASYNC_WRITE);
4582 ASSERT(zio->io_metaslab_class != NULL);
4583 ASSERT(ZIO_HAS_ALLOCATOR(zio));
4584
4585 /*
4586 * We were unable to allocate anything, unreserve and
4587 * issue the next I/O to allocate.
4588 */
4589 metaslab_class_throttle_unreserve(
4590 zio->io_metaslab_class, zio->io_prop.zp_copies,
4591 zio->io_allocator, zio);
4592 zio_allocate_dispatch(zio->io_spa, zio->io_allocator);
4593 }
4594 }
4595
4596 mutex_enter(&zio->io_lock);
4597 zio->io_state[ZIO_WAIT_READY] = 1;
4598 pio = zio_walk_parents(zio, &zl);
4599 mutex_exit(&zio->io_lock);
4600
4601 /*
4602 * As we notify zio's parents, new parents could be added.
4603 * New parents go to the head of zio's io_parent_list, however,
4604 * so we will (correctly) not notify them. The remainder of zio's
4605 * io_parent_list, from 'pio_next' onward, cannot change because
4606 * all parents must wait for us to be done before they can be done.
4607 */
4608 for (; pio != NULL; pio = pio_next) {
4609 pio_next = zio_walk_parents(zio, &zl);
4610 zio_notify_parent(pio, zio, ZIO_WAIT_READY, NULL);
4611 }
4612
4613 if (zio->io_flags & ZIO_FLAG_NODATA) {
4614 if (bp != NULL && BP_IS_GANG(bp)) {
4615 zio->io_flags &= ~ZIO_FLAG_NODATA;
4616 } else {
4617 ASSERT((uintptr_t)zio->io_abd < SPA_MAXBLOCKSIZE);
4618 zio->io_pipeline &= ~ZIO_VDEV_IO_STAGES;
4619 }
4620 }
4621
4622 if (zio_injection_enabled &&
4623 zio->io_spa->spa_syncing_txg == zio->io_txg)
4624 zio_handle_ignored_writes(zio);
4625
4626 return (zio);
4627 }
4628
4629 /*
4630 * Update the allocation throttle accounting.
4631 */
4632 static void
4633 zio_dva_throttle_done(zio_t *zio)
4634 {
4635 zio_t *lio __maybe_unused = zio->io_logical;
4636 zio_t *pio = zio_unique_parent(zio);
4637 vdev_t *vd = zio->io_vd;
4638 int flags = METASLAB_ASYNC_ALLOC;
4639
4640 ASSERT3P(zio->io_bp, !=, NULL);
4641 ASSERT3U(zio->io_type, ==, ZIO_TYPE_WRITE);
4642 ASSERT3U(zio->io_priority, ==, ZIO_PRIORITY_ASYNC_WRITE);
4643 ASSERT3U(zio->io_child_type, ==, ZIO_CHILD_VDEV);
4644 ASSERT(vd != NULL);
4645 ASSERT3P(vd, ==, vd->vdev_top);
4646 ASSERT(zio_injection_enabled || !(zio->io_flags & ZIO_FLAG_IO_RETRY));
4647 ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REPAIR));
4648 ASSERT(zio->io_flags & ZIO_FLAG_IO_ALLOCATING);
4649 ASSERT(!(lio->io_flags & ZIO_FLAG_IO_REWRITE));
4650 ASSERT(!(lio->io_orig_flags & ZIO_FLAG_NODATA));
4651
4652 /*
4653 * Parents of gang children can have two flavors -- ones that
4654 * allocated the gang header (will have ZIO_FLAG_IO_REWRITE set)
4655 * and ones that allocated the constituent blocks. The allocation
4656 * throttle needs to know the allocating parent zio so we must find
4657 * it here.
4658 */
4659 if (pio->io_child_type == ZIO_CHILD_GANG) {
4660 /*
4661 * If our parent is a rewrite gang child then our grandparent
4662 * would have been the one that performed the allocation.
4663 */
4664 if (pio->io_flags & ZIO_FLAG_IO_REWRITE)
4665 pio = zio_unique_parent(pio);
4666 flags |= METASLAB_GANG_CHILD;
4667 }
4668
4669 ASSERT(IO_IS_ALLOCATING(pio));
4670 ASSERT(ZIO_HAS_ALLOCATOR(pio));
4671 ASSERT3P(zio, !=, zio->io_logical);
4672 ASSERT(zio->io_logical != NULL);
4673 ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REPAIR));
4674 ASSERT0(zio->io_flags & ZIO_FLAG_NOPWRITE);
4675 ASSERT(zio->io_metaslab_class != NULL);
4676
4677 mutex_enter(&pio->io_lock);
4678 metaslab_group_alloc_decrement(zio->io_spa, vd->vdev_id, pio, flags,
4679 pio->io_allocator, B_TRUE);
4680 mutex_exit(&pio->io_lock);
4681
4682 metaslab_class_throttle_unreserve(zio->io_metaslab_class, 1,
4683 pio->io_allocator, pio);
4684
4685 /*
4686 * Call into the pipeline to see if there is more work that
4687 * needs to be done. If there is work to be done it will be
4688 * dispatched to another taskq thread.
4689 */
4690 zio_allocate_dispatch(zio->io_spa, pio->io_allocator);
4691 }
4692
4693 static zio_t *
4694 zio_done(zio_t *zio)
4695 {
4696 /*
4697 * Always attempt to keep stack usage minimal here since
4698 * we can be called recursively up to 19 levels deep.
4699 */
4700 const uint64_t psize = zio->io_size;
4701 zio_t *pio, *pio_next;
4702 zio_link_t *zl = NULL;
4703
4704 /*
4705 * If our children haven't all completed,
4706 * wait for them and then repeat this pipeline stage.
4707 */
4708 if (zio_wait_for_children(zio, ZIO_CHILD_ALL_BITS, ZIO_WAIT_DONE)) {
4709 return (NULL);
4710 }
4711
4712 /*
4713 * If the allocation throttle is enabled, then update the accounting.
4714 * We only track child I/Os that are part of an allocating async
4715 * write. We must do this since the allocation is performed
4716 * by the logical I/O but the actual write is done by child I/Os.
4717 */
4718 if (zio->io_flags & ZIO_FLAG_IO_ALLOCATING &&
4719 zio->io_child_type == ZIO_CHILD_VDEV) {
4720 ASSERT(zio->io_metaslab_class != NULL);
4721 ASSERT(zio->io_metaslab_class->mc_alloc_throttle_enabled);
4722 zio_dva_throttle_done(zio);
4723 }
4724
4725 /*
4726 * If the allocation throttle is enabled, verify that
4727 * we have decremented the refcounts for every I/O that was throttled.
4728 */
4729 if (zio->io_flags & ZIO_FLAG_IO_ALLOCATING) {
4730 ASSERT(zio->io_type == ZIO_TYPE_WRITE);
4731 ASSERT(zio->io_priority == ZIO_PRIORITY_ASYNC_WRITE);
4732 ASSERT(zio->io_bp != NULL);
4733 ASSERT(ZIO_HAS_ALLOCATOR(zio));
4734
4735 metaslab_group_alloc_verify(zio->io_spa, zio->io_bp, zio,
4736 zio->io_allocator);
4737 VERIFY(zfs_refcount_not_held(&zio->io_metaslab_class->
4738 mc_allocator[zio->io_allocator].mca_alloc_slots, zio));
4739 }
4740
4741
4742 for (int c = 0; c < ZIO_CHILD_TYPES; c++)
4743 for (int w = 0; w < ZIO_WAIT_TYPES; w++)
4744 ASSERT(zio->io_children[c][w] == 0);
4745
4746 if (zio->io_bp != NULL && !BP_IS_EMBEDDED(zio->io_bp)) {
4747 ASSERT(zio->io_bp->blk_pad[0] == 0);
4748 ASSERT(zio->io_bp->blk_pad[1] == 0);
4749 ASSERT(memcmp(zio->io_bp, &zio->io_bp_copy,
4750 sizeof (blkptr_t)) == 0 ||
4751 (zio->io_bp == zio_unique_parent(zio)->io_bp));
4752 if (zio->io_type == ZIO_TYPE_WRITE && !BP_IS_HOLE(zio->io_bp) &&
4753 zio->io_bp_override == NULL &&
4754 !(zio->io_flags & ZIO_FLAG_IO_REPAIR)) {
4755 ASSERT3U(zio->io_prop.zp_copies, <=,
4756 BP_GET_NDVAS(zio->io_bp));
4757 ASSERT(BP_COUNT_GANG(zio->io_bp) == 0 ||
4758 (BP_COUNT_GANG(zio->io_bp) ==
4759 BP_GET_NDVAS(zio->io_bp)));
4760 }
4761 if (zio->io_flags & ZIO_FLAG_NOPWRITE)
4762 VERIFY(BP_EQUAL(zio->io_bp, &zio->io_bp_orig));
4763 }
4764
4765 /*
4766 * If there were child vdev/gang/ddt errors, they apply to us now.
4767 */
4768 zio_inherit_child_errors(zio, ZIO_CHILD_VDEV);
4769 zio_inherit_child_errors(zio, ZIO_CHILD_GANG);
4770 zio_inherit_child_errors(zio, ZIO_CHILD_DDT);
4771
4772 /*
4773 * If the I/O on the transformed data was successful, generate any
4774 * checksum reports now while we still have the transformed data.
4775 */
4776 if (zio->io_error == 0) {
4777 while (zio->io_cksum_report != NULL) {
4778 zio_cksum_report_t *zcr = zio->io_cksum_report;
4779 uint64_t align = zcr->zcr_align;
4780 uint64_t asize = P2ROUNDUP(psize, align);
4781 abd_t *adata = zio->io_abd;
4782
4783 if (adata != NULL && asize != psize) {
4784 adata = abd_alloc(asize, B_TRUE);
4785 abd_copy(adata, zio->io_abd, psize);
4786 abd_zero_off(adata, psize, asize - psize);
4787 }
4788
4789 zio->io_cksum_report = zcr->zcr_next;
4790 zcr->zcr_next = NULL;
4791 zcr->zcr_finish(zcr, adata);
4792 zfs_ereport_free_checksum(zcr);
4793
4794 if (adata != NULL && asize != psize)
4795 abd_free(adata);
4796 }
4797 }
4798
4799 zio_pop_transforms(zio); /* note: may set zio->io_error */
4800
4801 vdev_stat_update(zio, psize);
4802
4803 /*
4804 * If this I/O is attached to a particular vdev is slow, exceeding
4805 * 30 seconds to complete, post an error described the I/O delay.
4806 * We ignore these errors if the device is currently unavailable.
4807 */
4808 if (zio->io_delay >= MSEC2NSEC(zio_slow_io_ms)) {
4809 if (zio->io_vd != NULL && !vdev_is_dead(zio->io_vd)) {
4810 /*
4811 * We want to only increment our slow IO counters if
4812 * the IO is valid (i.e. not if the drive is removed).
4813 *
4814 * zfs_ereport_post() will also do these checks, but
4815 * it can also ratelimit and have other failures, so we
4816 * need to increment the slow_io counters independent
4817 * of it.
4818 */
4819 if (zfs_ereport_is_valid(FM_EREPORT_ZFS_DELAY,
4820 zio->io_spa, zio->io_vd, zio)) {
4821 mutex_enter(&zio->io_vd->vdev_stat_lock);
4822 zio->io_vd->vdev_stat.vs_slow_ios++;
4823 mutex_exit(&zio->io_vd->vdev_stat_lock);
4824
4825 (void) zfs_ereport_post(FM_EREPORT_ZFS_DELAY,
4826 zio->io_spa, zio->io_vd, &zio->io_bookmark,
4827 zio, 0);
4828 }
4829 }
4830 }
4831
4832 if (zio->io_error) {
4833 /*
4834 * If this I/O is attached to a particular vdev,
4835 * generate an error message describing the I/O failure
4836 * at the block level. We ignore these errors if the
4837 * device is currently unavailable.
4838 */
4839 if (zio->io_error != ECKSUM && zio->io_vd != NULL &&
4840 !vdev_is_dead(zio->io_vd)) {
4841 int ret = zfs_ereport_post(FM_EREPORT_ZFS_IO,
4842 zio->io_spa, zio->io_vd, &zio->io_bookmark, zio, 0);
4843 if (ret != EALREADY) {
4844 mutex_enter(&zio->io_vd->vdev_stat_lock);
4845 if (zio->io_type == ZIO_TYPE_READ)
4846 zio->io_vd->vdev_stat.vs_read_errors++;
4847 else if (zio->io_type == ZIO_TYPE_WRITE)
4848 zio->io_vd->vdev_stat.vs_write_errors++;
4849 mutex_exit(&zio->io_vd->vdev_stat_lock);
4850 }
4851 }
4852
4853 if ((zio->io_error == EIO || !(zio->io_flags &
4854 (ZIO_FLAG_SPECULATIVE | ZIO_FLAG_DONT_PROPAGATE))) &&
4855 zio == zio->io_logical) {
4856 /*
4857 * For logical I/O requests, tell the SPA to log the
4858 * error and generate a logical data ereport.
4859 */
4860 spa_log_error(zio->io_spa, &zio->io_bookmark,
4861 BP_GET_LOGICAL_BIRTH(zio->io_bp));
4862 (void) zfs_ereport_post(FM_EREPORT_ZFS_DATA,
4863 zio->io_spa, NULL, &zio->io_bookmark, zio, 0);
4864 }
4865 }
4866
4867 if (zio->io_error && zio == zio->io_logical) {
4868 /*
4869 * Determine whether zio should be reexecuted. This will
4870 * propagate all the way to the root via zio_notify_parent().
4871 */
4872 ASSERT(zio->io_vd == NULL && zio->io_bp != NULL);
4873 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
4874
4875 if (IO_IS_ALLOCATING(zio) &&
4876 !(zio->io_flags & ZIO_FLAG_CANFAIL)) {
4877 if (zio->io_error != ENOSPC)
4878 zio->io_reexecute |= ZIO_REEXECUTE_NOW;
4879 else
4880 zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND;
4881 }
4882
4883 if ((zio->io_type == ZIO_TYPE_READ ||
4884 zio->io_type == ZIO_TYPE_FREE) &&
4885 !(zio->io_flags & ZIO_FLAG_SCAN_THREAD) &&
4886 zio->io_error == ENXIO &&
4887 spa_load_state(zio->io_spa) == SPA_LOAD_NONE &&
4888 spa_get_failmode(zio->io_spa) != ZIO_FAILURE_MODE_CONTINUE)
4889 zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND;
4890
4891 if (!(zio->io_flags & ZIO_FLAG_CANFAIL) && !zio->io_reexecute)
4892 zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND;
4893
4894 /*
4895 * Here is a possibly good place to attempt to do
4896 * either combinatorial reconstruction or error correction
4897 * based on checksums. It also might be a good place
4898 * to send out preliminary ereports before we suspend
4899 * processing.
4900 */
4901 }
4902
4903 /*
4904 * If there were logical child errors, they apply to us now.
4905 * We defer this until now to avoid conflating logical child
4906 * errors with errors that happened to the zio itself when
4907 * updating vdev stats and reporting FMA events above.
4908 */
4909 zio_inherit_child_errors(zio, ZIO_CHILD_LOGICAL);
4910
4911 if ((zio->io_error || zio->io_reexecute) &&
4912 IO_IS_ALLOCATING(zio) && zio->io_gang_leader == zio &&
4913 !(zio->io_flags & (ZIO_FLAG_IO_REWRITE | ZIO_FLAG_NOPWRITE)))
4914 zio_dva_unallocate(zio, zio->io_gang_tree, zio->io_bp);
4915
4916 zio_gang_tree_free(&zio->io_gang_tree);
4917
4918 /*
4919 * Godfather I/Os should never suspend.
4920 */
4921 if ((zio->io_flags & ZIO_FLAG_GODFATHER) &&
4922 (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND))
4923 zio->io_reexecute &= ~ZIO_REEXECUTE_SUSPEND;
4924
4925 if (zio->io_reexecute) {
4926 /*
4927 * This is a logical I/O that wants to reexecute.
4928 *
4929 * Reexecute is top-down. When an i/o fails, if it's not
4930 * the root, it simply notifies its parent and sticks around.
4931 * The parent, seeing that it still has children in zio_done(),
4932 * does the same. This percolates all the way up to the root.
4933 * The root i/o will reexecute or suspend the entire tree.
4934 *
4935 * This approach ensures that zio_reexecute() honors
4936 * all the original i/o dependency relationships, e.g.
4937 * parents not executing until children are ready.
4938 */
4939 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
4940
4941 zio->io_gang_leader = NULL;
4942
4943 mutex_enter(&zio->io_lock);
4944 zio->io_state[ZIO_WAIT_DONE] = 1;
4945 mutex_exit(&zio->io_lock);
4946
4947 /*
4948 * "The Godfather" I/O monitors its children but is
4949 * not a true parent to them. It will track them through
4950 * the pipeline but severs its ties whenever they get into
4951 * trouble (e.g. suspended). This allows "The Godfather"
4952 * I/O to return status without blocking.
4953 */
4954 zl = NULL;
4955 for (pio = zio_walk_parents(zio, &zl); pio != NULL;
4956 pio = pio_next) {
4957 zio_link_t *remove_zl = zl;
4958 pio_next = zio_walk_parents(zio, &zl);
4959
4960 if ((pio->io_flags & ZIO_FLAG_GODFATHER) &&
4961 (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND)) {
4962 zio_remove_child(pio, zio, remove_zl);
4963 /*
4964 * This is a rare code path, so we don't
4965 * bother with "next_to_execute".
4966 */
4967 zio_notify_parent(pio, zio, ZIO_WAIT_DONE,
4968 NULL);
4969 }
4970 }
4971
4972 if ((pio = zio_unique_parent(zio)) != NULL) {
4973 /*
4974 * We're not a root i/o, so there's nothing to do
4975 * but notify our parent. Don't propagate errors
4976 * upward since we haven't permanently failed yet.
4977 */
4978 ASSERT(!(zio->io_flags & ZIO_FLAG_GODFATHER));
4979 zio->io_flags |= ZIO_FLAG_DONT_PROPAGATE;
4980 /*
4981 * This is a rare code path, so we don't bother with
4982 * "next_to_execute".
4983 */
4984 zio_notify_parent(pio, zio, ZIO_WAIT_DONE, NULL);
4985 } else if (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND) {
4986 /*
4987 * We'd fail again if we reexecuted now, so suspend
4988 * until conditions improve (e.g. device comes online).
4989 */
4990 zio_suspend(zio->io_spa, zio, ZIO_SUSPEND_IOERR);
4991 } else {
4992 /*
4993 * Reexecution is potentially a huge amount of work.
4994 * Hand it off to the otherwise-unused claim taskq.
4995 */
4996 ASSERT(taskq_empty_ent(&zio->io_tqent));
4997 spa_taskq_dispatch_ent(zio->io_spa,
4998 ZIO_TYPE_CLAIM, ZIO_TASKQ_ISSUE,
4999 zio_reexecute, zio, 0, &zio->io_tqent, NULL);
5000 }
5001 return (NULL);
5002 }
5003
5004 ASSERT(list_is_empty(&zio->io_child_list));
5005 ASSERT(zio->io_reexecute == 0);
5006 ASSERT(zio->io_error == 0 || (zio->io_flags & ZIO_FLAG_CANFAIL));
5007
5008 /*
5009 * Report any checksum errors, since the I/O is complete.
5010 */
5011 while (zio->io_cksum_report != NULL) {
5012 zio_cksum_report_t *zcr = zio->io_cksum_report;
5013 zio->io_cksum_report = zcr->zcr_next;
5014 zcr->zcr_next = NULL;
5015 zcr->zcr_finish(zcr, NULL);
5016 zfs_ereport_free_checksum(zcr);
5017 }
5018
5019 /*
5020 * It is the responsibility of the done callback to ensure that this
5021 * particular zio is no longer discoverable for adoption, and as
5022 * such, cannot acquire any new parents.
5023 */
5024 if (zio->io_done)
5025 zio->io_done(zio);
5026
5027 mutex_enter(&zio->io_lock);
5028 zio->io_state[ZIO_WAIT_DONE] = 1;
5029 mutex_exit(&zio->io_lock);
5030
5031 /*
5032 * We are done executing this zio. We may want to execute a parent
5033 * next. See the comment in zio_notify_parent().
5034 */
5035 zio_t *next_to_execute = NULL;
5036 zl = NULL;
5037 for (pio = zio_walk_parents(zio, &zl); pio != NULL; pio = pio_next) {
5038 zio_link_t *remove_zl = zl;
5039 pio_next = zio_walk_parents(zio, &zl);
5040 zio_remove_child(pio, zio, remove_zl);
5041 zio_notify_parent(pio, zio, ZIO_WAIT_DONE, &next_to_execute);
5042 }
5043
5044 if (zio->io_waiter != NULL) {
5045 mutex_enter(&zio->io_lock);
5046 zio->io_executor = NULL;
5047 cv_broadcast(&zio->io_cv);
5048 mutex_exit(&zio->io_lock);
5049 } else {
5050 zio_destroy(zio);
5051 }
5052
5053 return (next_to_execute);
5054 }
5055
5056 /*
5057 * ==========================================================================
5058 * I/O pipeline definition
5059 * ==========================================================================
5060 */
5061 static zio_pipe_stage_t *zio_pipeline[] = {
5062 NULL,
5063 zio_read_bp_init,
5064 zio_write_bp_init,
5065 zio_free_bp_init,
5066 zio_issue_async,
5067 zio_write_compress,
5068 zio_encrypt,
5069 zio_checksum_generate,
5070 zio_nop_write,
5071 zio_brt_free,
5072 zio_ddt_read_start,
5073 zio_ddt_read_done,
5074 zio_ddt_write,
5075 zio_ddt_free,
5076 zio_gang_assemble,
5077 zio_gang_issue,
5078 zio_dva_throttle,
5079 zio_dva_allocate,
5080 zio_dva_free,
5081 zio_dva_claim,
5082 zio_ready,
5083 zio_vdev_io_start,
5084 zio_vdev_io_done,
5085 zio_vdev_io_assess,
5086 zio_checksum_verify,
5087 zio_done
5088 };
5089
5090
5091
5092
5093 /*
5094 * Compare two zbookmark_phys_t's to see which we would reach first in a
5095 * pre-order traversal of the object tree.
5096 *
5097 * This is simple in every case aside from the meta-dnode object. For all other
5098 * objects, we traverse them in order (object 1 before object 2, and so on).
5099 * However, all of these objects are traversed while traversing object 0, since
5100 * the data it points to is the list of objects. Thus, we need to convert to a
5101 * canonical representation so we can compare meta-dnode bookmarks to
5102 * non-meta-dnode bookmarks.
5103 *
5104 * We do this by calculating "equivalents" for each field of the zbookmark.
5105 * zbookmarks outside of the meta-dnode use their own object and level, and
5106 * calculate the level 0 equivalent (the first L0 blkid that is contained in the
5107 * blocks this bookmark refers to) by multiplying their blkid by their span
5108 * (the number of L0 blocks contained within one block at their level).
5109 * zbookmarks inside the meta-dnode calculate their object equivalent
5110 * (which is L0equiv * dnodes per data block), use 0 for their L0equiv, and use
5111 * level + 1<<31 (any value larger than a level could ever be) for their level.
5112 * This causes them to always compare before a bookmark in their object
5113 * equivalent, compare appropriately to bookmarks in other objects, and to
5114 * compare appropriately to other bookmarks in the meta-dnode.
5115 */
5116 int
5117 zbookmark_compare(uint16_t dbss1, uint8_t ibs1, uint16_t dbss2, uint8_t ibs2,
5118 const zbookmark_phys_t *zb1, const zbookmark_phys_t *zb2)
5119 {
5120 /*
5121 * These variables represent the "equivalent" values for the zbookmark,
5122 * after converting zbookmarks inside the meta dnode to their
5123 * normal-object equivalents.
5124 */
5125 uint64_t zb1obj, zb2obj;
5126 uint64_t zb1L0, zb2L0;
5127 uint64_t zb1level, zb2level;
5128
5129 if (zb1->zb_object == zb2->zb_object &&
5130 zb1->zb_level == zb2->zb_level &&
5131 zb1->zb_blkid == zb2->zb_blkid)
5132 return (0);
5133
5134 IMPLY(zb1->zb_level > 0, ibs1 >= SPA_MINBLOCKSHIFT);
5135 IMPLY(zb2->zb_level > 0, ibs2 >= SPA_MINBLOCKSHIFT);
5136
5137 /*
5138 * BP_SPANB calculates the span in blocks.
5139 */
5140 zb1L0 = (zb1->zb_blkid) * BP_SPANB(ibs1, zb1->zb_level);
5141 zb2L0 = (zb2->zb_blkid) * BP_SPANB(ibs2, zb2->zb_level);
5142
5143 if (zb1->zb_object == DMU_META_DNODE_OBJECT) {
5144 zb1obj = zb1L0 * (dbss1 << (SPA_MINBLOCKSHIFT - DNODE_SHIFT));
5145 zb1L0 = 0;
5146 zb1level = zb1->zb_level + COMPARE_META_LEVEL;
5147 } else {
5148 zb1obj = zb1->zb_object;
5149 zb1level = zb1->zb_level;
5150 }
5151
5152 if (zb2->zb_object == DMU_META_DNODE_OBJECT) {
5153 zb2obj = zb2L0 * (dbss2 << (SPA_MINBLOCKSHIFT - DNODE_SHIFT));
5154 zb2L0 = 0;
5155 zb2level = zb2->zb_level + COMPARE_META_LEVEL;
5156 } else {
5157 zb2obj = zb2->zb_object;
5158 zb2level = zb2->zb_level;
5159 }
5160
5161 /* Now that we have a canonical representation, do the comparison. */
5162 if (zb1obj != zb2obj)
5163 return (zb1obj < zb2obj ? -1 : 1);
5164 else if (zb1L0 != zb2L0)
5165 return (zb1L0 < zb2L0 ? -1 : 1);
5166 else if (zb1level != zb2level)
5167 return (zb1level > zb2level ? -1 : 1);
5168 /*
5169 * This can (theoretically) happen if the bookmarks have the same object
5170 * and level, but different blkids, if the block sizes are not the same.
5171 * There is presently no way to change the indirect block sizes
5172 */
5173 return (0);
5174 }
5175
5176 /*
5177 * This function checks the following: given that last_block is the place that
5178 * our traversal stopped last time, does that guarantee that we've visited
5179 * every node under subtree_root? Therefore, we can't just use the raw output
5180 * of zbookmark_compare. We have to pass in a modified version of
5181 * subtree_root; by incrementing the block id, and then checking whether
5182 * last_block is before or equal to that, we can tell whether or not having
5183 * visited last_block implies that all of subtree_root's children have been
5184 * visited.
5185 */
5186 boolean_t
5187 zbookmark_subtree_completed(const dnode_phys_t *dnp,
5188 const zbookmark_phys_t *subtree_root, const zbookmark_phys_t *last_block)
5189 {
5190 zbookmark_phys_t mod_zb = *subtree_root;
5191 mod_zb.zb_blkid++;
5192 ASSERT0(last_block->zb_level);
5193
5194 /* The objset_phys_t isn't before anything. */
5195 if (dnp == NULL)
5196 return (B_FALSE);
5197
5198 /*
5199 * We pass in 1ULL << (DNODE_BLOCK_SHIFT - SPA_MINBLOCKSHIFT) for the
5200 * data block size in sectors, because that variable is only used if
5201 * the bookmark refers to a block in the meta-dnode. Since we don't
5202 * know without examining it what object it refers to, and there's no
5203 * harm in passing in this value in other cases, we always pass it in.
5204 *
5205 * We pass in 0 for the indirect block size shift because zb2 must be
5206 * level 0. The indirect block size is only used to calculate the span
5207 * of the bookmark, but since the bookmark must be level 0, the span is
5208 * always 1, so the math works out.
5209 *
5210 * If you make changes to how the zbookmark_compare code works, be sure
5211 * to make sure that this code still works afterwards.
5212 */
5213 return (zbookmark_compare(dnp->dn_datablkszsec, dnp->dn_indblkshift,
5214 1ULL << (DNODE_BLOCK_SHIFT - SPA_MINBLOCKSHIFT), 0, &mod_zb,
5215 last_block) <= 0);
5216 }
5217
5218 /*
5219 * This function is similar to zbookmark_subtree_completed(), but returns true
5220 * if subtree_root is equal or ahead of last_block, i.e. still to be done.
5221 */
5222 boolean_t
5223 zbookmark_subtree_tbd(const dnode_phys_t *dnp,
5224 const zbookmark_phys_t *subtree_root, const zbookmark_phys_t *last_block)
5225 {
5226 ASSERT0(last_block->zb_level);
5227 if (dnp == NULL)
5228 return (B_FALSE);
5229 return (zbookmark_compare(dnp->dn_datablkszsec, dnp->dn_indblkshift,
5230 1ULL << (DNODE_BLOCK_SHIFT - SPA_MINBLOCKSHIFT), 0, subtree_root,
5231 last_block) >= 0);
5232 }
5233
5234 EXPORT_SYMBOL(zio_type_name);
5235 EXPORT_SYMBOL(zio_buf_alloc);
5236 EXPORT_SYMBOL(zio_data_buf_alloc);
5237 EXPORT_SYMBOL(zio_buf_free);
5238 EXPORT_SYMBOL(zio_data_buf_free);
5239
5240 ZFS_MODULE_PARAM(zfs_zio, zio_, slow_io_ms, INT, ZMOD_RW,
5241 "Max I/O completion time (milliseconds) before marking it as slow");
5242
5243 ZFS_MODULE_PARAM(zfs_zio, zio_, requeue_io_start_cut_in_line, INT, ZMOD_RW,
5244 "Prioritize requeued I/O");
5245
5246 ZFS_MODULE_PARAM(zfs, zfs_, sync_pass_deferred_free, UINT, ZMOD_RW,
5247 "Defer frees starting in this pass");
5248
5249 ZFS_MODULE_PARAM(zfs, zfs_, sync_pass_dont_compress, UINT, ZMOD_RW,
5250 "Don't compress starting in this pass");
5251
5252 ZFS_MODULE_PARAM(zfs, zfs_, sync_pass_rewrite, UINT, ZMOD_RW,
5253 "Rewrite new bps starting in this pass");
5254
5255 ZFS_MODULE_PARAM(zfs_zio, zio_, dva_throttle_enabled, INT, ZMOD_RW,
5256 "Throttle block allocations in the ZIO pipeline");
5257
5258 ZFS_MODULE_PARAM(zfs_zio, zio_, deadman_log_all, INT, ZMOD_RW,
5259 "Log all slow ZIOs, not just those with vdevs");