]> git.proxmox.com Git - mirror_zfs.git/blob - module/zfs/zvol.c
Don't enter zvol's rangelock for read bio with size 0
[mirror_zfs.git] / module / zfs / zvol.c
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (C) 2008-2010 Lawrence Livermore National Security, LLC.
23 * Produced at Lawrence Livermore National Laboratory (cf, DISCLAIMER).
24 * Rewritten for Linux by Brian Behlendorf <behlendorf1@llnl.gov>.
25 * LLNL-CODE-403049.
26 *
27 * ZFS volume emulation driver.
28 *
29 * Makes a DMU object look like a volume of arbitrary size, up to 2^64 bytes.
30 * Volumes are accessed through the symbolic links named:
31 *
32 * /dev/<pool_name>/<dataset_name>
33 *
34 * Volumes are persistent through reboot and module load. No user command
35 * needs to be run before opening and using a device.
36 *
37 * Copyright 2014 Nexenta Systems, Inc. All rights reserved.
38 * Copyright (c) 2016 Actifio, Inc. All rights reserved.
39 * Copyright (c) 2012, 2018 by Delphix. All rights reserved.
40 */
41
42 /*
43 * Note on locking of zvol state structures.
44 *
45 * These structures are used to maintain internal state used to emulate block
46 * devices on top of zvols. In particular, management of device minor number
47 * operations - create, remove, rename, and set_snapdev - involves access to
48 * these structures. The zvol_state_lock is primarily used to protect the
49 * zvol_state_list. The zv->zv_state_lock is used to protect the contents
50 * of the zvol_state_t structures, as well as to make sure that when the
51 * time comes to remove the structure from the list, it is not in use, and
52 * therefore, it can be taken off zvol_state_list and freed.
53 *
54 * The zv_suspend_lock was introduced to allow for suspending I/O to a zvol,
55 * e.g. for the duration of receive and rollback operations. This lock can be
56 * held for significant periods of time. Given that it is undesirable to hold
57 * mutexes for long periods of time, the following lock ordering applies:
58 * - take zvol_state_lock if necessary, to protect zvol_state_list
59 * - take zv_suspend_lock if necessary, by the code path in question
60 * - take zv_state_lock to protect zvol_state_t
61 *
62 * The minor operations are issued to spa->spa_zvol_taskq queues, that are
63 * single-threaded (to preserve order of minor operations), and are executed
64 * through the zvol_task_cb that dispatches the specific operations. Therefore,
65 * these operations are serialized per pool. Consequently, we can be certain
66 * that for a given zvol, there is only one operation at a time in progress.
67 * That is why one can be sure that first, zvol_state_t for a given zvol is
68 * allocated and placed on zvol_state_list, and then other minor operations
69 * for this zvol are going to proceed in the order of issue.
70 *
71 * It is also worth keeping in mind that once add_disk() is called, the zvol is
72 * announced to the world, and zvol_open()/zvol_release() can be called at any
73 * time. Incidentally, add_disk() itself calls zvol_open()->zvol_first_open()
74 * and zvol_release()->zvol_last_close() directly as well.
75 */
76
77 #include <sys/dataset_kstats.h>
78 #include <sys/dbuf.h>
79 #include <sys/dmu_traverse.h>
80 #include <sys/dsl_dataset.h>
81 #include <sys/dsl_prop.h>
82 #include <sys/dsl_dir.h>
83 #include <sys/zap.h>
84 #include <sys/zfeature.h>
85 #include <sys/zil_impl.h>
86 #include <sys/dmu_tx.h>
87 #include <sys/zio.h>
88 #include <sys/zfs_rlock.h>
89 #include <sys/spa_impl.h>
90 #include <sys/zvol.h>
91
92 #include <linux/blkdev_compat.h>
93 #include <linux/task_io_accounting_ops.h>
94
95 unsigned int zvol_inhibit_dev = 0;
96 unsigned int zvol_major = ZVOL_MAJOR;
97 unsigned int zvol_threads = 32;
98 unsigned int zvol_request_sync = 0;
99 unsigned int zvol_prefetch_bytes = (128 * 1024);
100 unsigned long zvol_max_discard_blocks = 16384;
101 unsigned int zvol_volmode = ZFS_VOLMODE_GEOM;
102
103 static taskq_t *zvol_taskq;
104 static krwlock_t zvol_state_lock;
105 static list_t zvol_state_list;
106
107 #define ZVOL_HT_SIZE 1024
108 static struct hlist_head *zvol_htable;
109 #define ZVOL_HT_HEAD(hash) (&zvol_htable[(hash) & (ZVOL_HT_SIZE-1)])
110
111 static struct ida zvol_ida;
112
113 /*
114 * The in-core state of each volume.
115 */
116 struct zvol_state {
117 char zv_name[MAXNAMELEN]; /* name */
118 uint64_t zv_volsize; /* advertised space */
119 uint64_t zv_volblocksize; /* volume block size */
120 objset_t *zv_objset; /* objset handle */
121 uint32_t zv_flags; /* ZVOL_* flags */
122 uint32_t zv_open_count; /* open counts */
123 uint32_t zv_changed; /* disk changed */
124 zilog_t *zv_zilog; /* ZIL handle */
125 rangelock_t zv_rangelock; /* for range locking */
126 dnode_t *zv_dn; /* dnode hold */
127 dev_t zv_dev; /* device id */
128 struct gendisk *zv_disk; /* generic disk */
129 struct request_queue *zv_queue; /* request queue */
130 dataset_kstats_t zv_kstat; /* zvol kstats */
131 list_node_t zv_next; /* next zvol_state_t linkage */
132 uint64_t zv_hash; /* name hash */
133 struct hlist_node zv_hlink; /* hash link */
134 kmutex_t zv_state_lock; /* protects zvol_state_t */
135 atomic_t zv_suspend_ref; /* refcount for suspend */
136 krwlock_t zv_suspend_lock; /* suspend lock */
137 };
138
139 typedef enum {
140 ZVOL_ASYNC_CREATE_MINORS,
141 ZVOL_ASYNC_REMOVE_MINORS,
142 ZVOL_ASYNC_RENAME_MINORS,
143 ZVOL_ASYNC_SET_SNAPDEV,
144 ZVOL_ASYNC_SET_VOLMODE,
145 ZVOL_ASYNC_MAX
146 } zvol_async_op_t;
147
148 typedef struct {
149 zvol_async_op_t op;
150 char pool[MAXNAMELEN];
151 char name1[MAXNAMELEN];
152 char name2[MAXNAMELEN];
153 zprop_source_t source;
154 uint64_t value;
155 } zvol_task_t;
156
157 #define ZVOL_RDONLY 0x1
158
159 static uint64_t
160 zvol_name_hash(const char *name)
161 {
162 int i;
163 uint64_t crc = -1ULL;
164 uint8_t *p = (uint8_t *)name;
165 ASSERT(zfs_crc64_table[128] == ZFS_CRC64_POLY);
166 for (i = 0; i < MAXNAMELEN - 1 && *p; i++, p++) {
167 crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (*p)) & 0xFF];
168 }
169 return (crc);
170 }
171
172 /*
173 * Find a zvol_state_t given the full major+minor dev_t. If found,
174 * return with zv_state_lock taken, otherwise, return (NULL) without
175 * taking zv_state_lock.
176 */
177 static zvol_state_t *
178 zvol_find_by_dev(dev_t dev)
179 {
180 zvol_state_t *zv;
181
182 rw_enter(&zvol_state_lock, RW_READER);
183 for (zv = list_head(&zvol_state_list); zv != NULL;
184 zv = list_next(&zvol_state_list, zv)) {
185 mutex_enter(&zv->zv_state_lock);
186 if (zv->zv_dev == dev) {
187 rw_exit(&zvol_state_lock);
188 return (zv);
189 }
190 mutex_exit(&zv->zv_state_lock);
191 }
192 rw_exit(&zvol_state_lock);
193
194 return (NULL);
195 }
196
197 /*
198 * Find a zvol_state_t given the name and hash generated by zvol_name_hash.
199 * If found, return with zv_suspend_lock and zv_state_lock taken, otherwise,
200 * return (NULL) without the taking locks. The zv_suspend_lock is always taken
201 * before zv_state_lock. The mode argument indicates the mode (including none)
202 * for zv_suspend_lock to be taken.
203 */
204 static zvol_state_t *
205 zvol_find_by_name_hash(const char *name, uint64_t hash, int mode)
206 {
207 zvol_state_t *zv;
208 struct hlist_node *p = NULL;
209
210 rw_enter(&zvol_state_lock, RW_READER);
211 hlist_for_each(p, ZVOL_HT_HEAD(hash)) {
212 zv = hlist_entry(p, zvol_state_t, zv_hlink);
213 mutex_enter(&zv->zv_state_lock);
214 if (zv->zv_hash == hash &&
215 strncmp(zv->zv_name, name, MAXNAMELEN) == 0) {
216 /*
217 * this is the right zvol, take the locks in the
218 * right order
219 */
220 if (mode != RW_NONE &&
221 !rw_tryenter(&zv->zv_suspend_lock, mode)) {
222 mutex_exit(&zv->zv_state_lock);
223 rw_enter(&zv->zv_suspend_lock, mode);
224 mutex_enter(&zv->zv_state_lock);
225 /*
226 * zvol cannot be renamed as we continue
227 * to hold zvol_state_lock
228 */
229 ASSERT(zv->zv_hash == hash &&
230 strncmp(zv->zv_name, name, MAXNAMELEN)
231 == 0);
232 }
233 rw_exit(&zvol_state_lock);
234 return (zv);
235 }
236 mutex_exit(&zv->zv_state_lock);
237 }
238 rw_exit(&zvol_state_lock);
239
240 return (NULL);
241 }
242
243 /*
244 * Find a zvol_state_t given the name.
245 * If found, return with zv_suspend_lock and zv_state_lock taken, otherwise,
246 * return (NULL) without the taking locks. The zv_suspend_lock is always taken
247 * before zv_state_lock. The mode argument indicates the mode (including none)
248 * for zv_suspend_lock to be taken.
249 */
250 static zvol_state_t *
251 zvol_find_by_name(const char *name, int mode)
252 {
253 return (zvol_find_by_name_hash(name, zvol_name_hash(name), mode));
254 }
255
256
257 /*
258 * Given a path, return TRUE if path is a ZVOL.
259 */
260 boolean_t
261 zvol_is_zvol(const char *device)
262 {
263 struct block_device *bdev;
264 unsigned int major;
265
266 bdev = vdev_lookup_bdev(device);
267 if (IS_ERR(bdev))
268 return (B_FALSE);
269
270 major = MAJOR(bdev->bd_dev);
271 bdput(bdev);
272
273 if (major == zvol_major)
274 return (B_TRUE);
275
276 return (B_FALSE);
277 }
278
279 /*
280 * ZFS_IOC_CREATE callback handles dmu zvol and zap object creation.
281 */
282 void
283 zvol_create_cb(objset_t *os, void *arg, cred_t *cr, dmu_tx_t *tx)
284 {
285 zfs_creat_t *zct = arg;
286 nvlist_t *nvprops = zct->zct_props;
287 int error;
288 uint64_t volblocksize, volsize;
289
290 VERIFY(nvlist_lookup_uint64(nvprops,
291 zfs_prop_to_name(ZFS_PROP_VOLSIZE), &volsize) == 0);
292 if (nvlist_lookup_uint64(nvprops,
293 zfs_prop_to_name(ZFS_PROP_VOLBLOCKSIZE), &volblocksize) != 0)
294 volblocksize = zfs_prop_default_numeric(ZFS_PROP_VOLBLOCKSIZE);
295
296 /*
297 * These properties must be removed from the list so the generic
298 * property setting step won't apply to them.
299 */
300 VERIFY(nvlist_remove_all(nvprops,
301 zfs_prop_to_name(ZFS_PROP_VOLSIZE)) == 0);
302 (void) nvlist_remove_all(nvprops,
303 zfs_prop_to_name(ZFS_PROP_VOLBLOCKSIZE));
304
305 error = dmu_object_claim(os, ZVOL_OBJ, DMU_OT_ZVOL, volblocksize,
306 DMU_OT_NONE, 0, tx);
307 ASSERT(error == 0);
308
309 error = zap_create_claim(os, ZVOL_ZAP_OBJ, DMU_OT_ZVOL_PROP,
310 DMU_OT_NONE, 0, tx);
311 ASSERT(error == 0);
312
313 error = zap_update(os, ZVOL_ZAP_OBJ, "size", 8, 1, &volsize, tx);
314 ASSERT(error == 0);
315 }
316
317 /*
318 * ZFS_IOC_OBJSET_STATS entry point.
319 */
320 int
321 zvol_get_stats(objset_t *os, nvlist_t *nv)
322 {
323 int error;
324 dmu_object_info_t *doi;
325 uint64_t val;
326
327 error = zap_lookup(os, ZVOL_ZAP_OBJ, "size", 8, 1, &val);
328 if (error)
329 return (SET_ERROR(error));
330
331 dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_VOLSIZE, val);
332 doi = kmem_alloc(sizeof (dmu_object_info_t), KM_SLEEP);
333 error = dmu_object_info(os, ZVOL_OBJ, doi);
334
335 if (error == 0) {
336 dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_VOLBLOCKSIZE,
337 doi->doi_data_block_size);
338 }
339
340 kmem_free(doi, sizeof (dmu_object_info_t));
341
342 return (SET_ERROR(error));
343 }
344
345 /*
346 * Sanity check volume size.
347 */
348 int
349 zvol_check_volsize(uint64_t volsize, uint64_t blocksize)
350 {
351 if (volsize == 0)
352 return (SET_ERROR(EINVAL));
353
354 if (volsize % blocksize != 0)
355 return (SET_ERROR(EINVAL));
356
357 #ifdef _ILP32
358 if (volsize - 1 > SPEC_MAXOFFSET_T)
359 return (SET_ERROR(EOVERFLOW));
360 #endif
361 return (0);
362 }
363
364 /*
365 * Ensure the zap is flushed then inform the VFS of the capacity change.
366 */
367 static int
368 zvol_update_volsize(uint64_t volsize, objset_t *os)
369 {
370 dmu_tx_t *tx;
371 int error;
372 uint64_t txg;
373
374 tx = dmu_tx_create(os);
375 dmu_tx_hold_zap(tx, ZVOL_ZAP_OBJ, TRUE, NULL);
376 dmu_tx_mark_netfree(tx);
377 error = dmu_tx_assign(tx, TXG_WAIT);
378 if (error) {
379 dmu_tx_abort(tx);
380 return (SET_ERROR(error));
381 }
382 txg = dmu_tx_get_txg(tx);
383
384 error = zap_update(os, ZVOL_ZAP_OBJ, "size", 8, 1,
385 &volsize, tx);
386 dmu_tx_commit(tx);
387
388 txg_wait_synced(dmu_objset_pool(os), txg);
389
390 if (error == 0)
391 error = dmu_free_long_range(os,
392 ZVOL_OBJ, volsize, DMU_OBJECT_END);
393
394 return (error);
395 }
396
397 /*
398 * Set ZFS_PROP_VOLSIZE set entry point. Note that modifying the volume
399 * size will result in a udev "change" event being generated.
400 */
401 int
402 zvol_set_volsize(const char *name, uint64_t volsize)
403 {
404 objset_t *os = NULL;
405 struct gendisk *disk = NULL;
406 uint64_t readonly;
407 int error;
408 boolean_t owned = B_FALSE;
409
410 error = dsl_prop_get_integer(name,
411 zfs_prop_to_name(ZFS_PROP_READONLY), &readonly, NULL);
412 if (error != 0)
413 return (SET_ERROR(error));
414 if (readonly)
415 return (SET_ERROR(EROFS));
416
417 zvol_state_t *zv = zvol_find_by_name(name, RW_READER);
418
419 ASSERT(zv == NULL || (MUTEX_HELD(&zv->zv_state_lock) &&
420 RW_READ_HELD(&zv->zv_suspend_lock)));
421
422 if (zv == NULL || zv->zv_objset == NULL) {
423 if (zv != NULL)
424 rw_exit(&zv->zv_suspend_lock);
425 if ((error = dmu_objset_own(name, DMU_OST_ZVOL, B_FALSE, B_TRUE,
426 FTAG, &os)) != 0) {
427 if (zv != NULL)
428 mutex_exit(&zv->zv_state_lock);
429 return (SET_ERROR(error));
430 }
431 owned = B_TRUE;
432 if (zv != NULL)
433 zv->zv_objset = os;
434 } else {
435 os = zv->zv_objset;
436 }
437
438 dmu_object_info_t *doi = kmem_alloc(sizeof (*doi), KM_SLEEP);
439
440 if ((error = dmu_object_info(os, ZVOL_OBJ, doi)) ||
441 (error = zvol_check_volsize(volsize, doi->doi_data_block_size)))
442 goto out;
443
444 error = zvol_update_volsize(volsize, os);
445 if (error == 0 && zv != NULL) {
446 zv->zv_volsize = volsize;
447 zv->zv_changed = 1;
448 disk = zv->zv_disk;
449 }
450 out:
451 kmem_free(doi, sizeof (dmu_object_info_t));
452
453 if (owned) {
454 dmu_objset_disown(os, B_TRUE, FTAG);
455 if (zv != NULL)
456 zv->zv_objset = NULL;
457 } else {
458 rw_exit(&zv->zv_suspend_lock);
459 }
460
461 if (zv != NULL)
462 mutex_exit(&zv->zv_state_lock);
463
464 if (disk != NULL)
465 revalidate_disk(disk);
466
467 return (SET_ERROR(error));
468 }
469
470 /*
471 * Sanity check volume block size.
472 */
473 int
474 zvol_check_volblocksize(const char *name, uint64_t volblocksize)
475 {
476 /* Record sizes above 128k need the feature to be enabled */
477 if (volblocksize > SPA_OLD_MAXBLOCKSIZE) {
478 spa_t *spa;
479 int error;
480
481 if ((error = spa_open(name, &spa, FTAG)) != 0)
482 return (error);
483
484 if (!spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_BLOCKS)) {
485 spa_close(spa, FTAG);
486 return (SET_ERROR(ENOTSUP));
487 }
488
489 /*
490 * We don't allow setting the property above 1MB,
491 * unless the tunable has been changed.
492 */
493 if (volblocksize > zfs_max_recordsize)
494 return (SET_ERROR(EDOM));
495
496 spa_close(spa, FTAG);
497 }
498
499 if (volblocksize < SPA_MINBLOCKSIZE ||
500 volblocksize > SPA_MAXBLOCKSIZE ||
501 !ISP2(volblocksize))
502 return (SET_ERROR(EDOM));
503
504 return (0);
505 }
506
507 /*
508 * Set ZFS_PROP_VOLBLOCKSIZE set entry point.
509 */
510 int
511 zvol_set_volblocksize(const char *name, uint64_t volblocksize)
512 {
513 zvol_state_t *zv;
514 dmu_tx_t *tx;
515 int error;
516
517 zv = zvol_find_by_name(name, RW_READER);
518
519 if (zv == NULL)
520 return (SET_ERROR(ENXIO));
521
522 ASSERT(MUTEX_HELD(&zv->zv_state_lock));
523 ASSERT(RW_READ_HELD(&zv->zv_suspend_lock));
524
525 if (zv->zv_flags & ZVOL_RDONLY) {
526 mutex_exit(&zv->zv_state_lock);
527 rw_exit(&zv->zv_suspend_lock);
528 return (SET_ERROR(EROFS));
529 }
530
531 tx = dmu_tx_create(zv->zv_objset);
532 dmu_tx_hold_bonus(tx, ZVOL_OBJ);
533 error = dmu_tx_assign(tx, TXG_WAIT);
534 if (error) {
535 dmu_tx_abort(tx);
536 } else {
537 error = dmu_object_set_blocksize(zv->zv_objset, ZVOL_OBJ,
538 volblocksize, 0, tx);
539 if (error == ENOTSUP)
540 error = SET_ERROR(EBUSY);
541 dmu_tx_commit(tx);
542 if (error == 0)
543 zv->zv_volblocksize = volblocksize;
544 }
545
546 mutex_exit(&zv->zv_state_lock);
547 rw_exit(&zv->zv_suspend_lock);
548
549 return (SET_ERROR(error));
550 }
551
552 /*
553 * Replay a TX_TRUNCATE ZIL transaction if asked. TX_TRUNCATE is how we
554 * implement DKIOCFREE/free-long-range.
555 */
556 static int
557 zvol_replay_truncate(void *arg1, void *arg2, boolean_t byteswap)
558 {
559 zvol_state_t *zv = arg1;
560 lr_truncate_t *lr = arg2;
561 uint64_t offset, length;
562
563 if (byteswap)
564 byteswap_uint64_array(lr, sizeof (*lr));
565
566 offset = lr->lr_offset;
567 length = lr->lr_length;
568
569 return (dmu_free_long_range(zv->zv_objset, ZVOL_OBJ, offset, length));
570 }
571
572 /*
573 * Replay a TX_WRITE ZIL transaction that didn't get committed
574 * after a system failure
575 */
576 static int
577 zvol_replay_write(void *arg1, void *arg2, boolean_t byteswap)
578 {
579 zvol_state_t *zv = arg1;
580 lr_write_t *lr = arg2;
581 objset_t *os = zv->zv_objset;
582 char *data = (char *)(lr + 1); /* data follows lr_write_t */
583 uint64_t offset, length;
584 dmu_tx_t *tx;
585 int error;
586
587 if (byteswap)
588 byteswap_uint64_array(lr, sizeof (*lr));
589
590 offset = lr->lr_offset;
591 length = lr->lr_length;
592
593 /* If it's a dmu_sync() block, write the whole block */
594 if (lr->lr_common.lrc_reclen == sizeof (lr_write_t)) {
595 uint64_t blocksize = BP_GET_LSIZE(&lr->lr_blkptr);
596 if (length < blocksize) {
597 offset -= offset % blocksize;
598 length = blocksize;
599 }
600 }
601
602 tx = dmu_tx_create(os);
603 dmu_tx_hold_write(tx, ZVOL_OBJ, offset, length);
604 error = dmu_tx_assign(tx, TXG_WAIT);
605 if (error) {
606 dmu_tx_abort(tx);
607 } else {
608 dmu_write(os, ZVOL_OBJ, offset, length, data, tx);
609 dmu_tx_commit(tx);
610 }
611
612 return (error);
613 }
614
615 static int
616 zvol_replay_err(void *arg1, void *arg2, boolean_t byteswap)
617 {
618 return (SET_ERROR(ENOTSUP));
619 }
620
621 /*
622 * Callback vectors for replaying records.
623 * Only TX_WRITE and TX_TRUNCATE are needed for zvol.
624 */
625 zil_replay_func_t *zvol_replay_vector[TX_MAX_TYPE] = {
626 zvol_replay_err, /* no such transaction type */
627 zvol_replay_err, /* TX_CREATE */
628 zvol_replay_err, /* TX_MKDIR */
629 zvol_replay_err, /* TX_MKXATTR */
630 zvol_replay_err, /* TX_SYMLINK */
631 zvol_replay_err, /* TX_REMOVE */
632 zvol_replay_err, /* TX_RMDIR */
633 zvol_replay_err, /* TX_LINK */
634 zvol_replay_err, /* TX_RENAME */
635 zvol_replay_write, /* TX_WRITE */
636 zvol_replay_truncate, /* TX_TRUNCATE */
637 zvol_replay_err, /* TX_SETATTR */
638 zvol_replay_err, /* TX_ACL */
639 zvol_replay_err, /* TX_CREATE_ATTR */
640 zvol_replay_err, /* TX_CREATE_ACL_ATTR */
641 zvol_replay_err, /* TX_MKDIR_ACL */
642 zvol_replay_err, /* TX_MKDIR_ATTR */
643 zvol_replay_err, /* TX_MKDIR_ACL_ATTR */
644 zvol_replay_err, /* TX_WRITE2 */
645 };
646
647 /*
648 * zvol_log_write() handles synchronous writes using TX_WRITE ZIL transactions.
649 *
650 * We store data in the log buffers if it's small enough.
651 * Otherwise we will later flush the data out via dmu_sync().
652 */
653 ssize_t zvol_immediate_write_sz = 32768;
654
655 static void
656 zvol_log_write(zvol_state_t *zv, dmu_tx_t *tx, uint64_t offset,
657 uint64_t size, int sync)
658 {
659 uint32_t blocksize = zv->zv_volblocksize;
660 zilog_t *zilog = zv->zv_zilog;
661 itx_wr_state_t write_state;
662
663 if (zil_replaying(zilog, tx))
664 return;
665
666 if (zilog->zl_logbias == ZFS_LOGBIAS_THROUGHPUT)
667 write_state = WR_INDIRECT;
668 else if (!spa_has_slogs(zilog->zl_spa) &&
669 size >= blocksize && blocksize > zvol_immediate_write_sz)
670 write_state = WR_INDIRECT;
671 else if (sync)
672 write_state = WR_COPIED;
673 else
674 write_state = WR_NEED_COPY;
675
676 while (size) {
677 itx_t *itx;
678 lr_write_t *lr;
679 itx_wr_state_t wr_state = write_state;
680 ssize_t len = size;
681
682 if (wr_state == WR_COPIED && size > ZIL_MAX_COPIED_DATA)
683 wr_state = WR_NEED_COPY;
684 else if (wr_state == WR_INDIRECT)
685 len = MIN(blocksize - P2PHASE(offset, blocksize), size);
686
687 itx = zil_itx_create(TX_WRITE, sizeof (*lr) +
688 (wr_state == WR_COPIED ? len : 0));
689 lr = (lr_write_t *)&itx->itx_lr;
690 if (wr_state == WR_COPIED && dmu_read_by_dnode(zv->zv_dn,
691 offset, len, lr+1, DMU_READ_NO_PREFETCH) != 0) {
692 zil_itx_destroy(itx);
693 itx = zil_itx_create(TX_WRITE, sizeof (*lr));
694 lr = (lr_write_t *)&itx->itx_lr;
695 wr_state = WR_NEED_COPY;
696 }
697
698 itx->itx_wr_state = wr_state;
699 lr->lr_foid = ZVOL_OBJ;
700 lr->lr_offset = offset;
701 lr->lr_length = len;
702 lr->lr_blkoff = 0;
703 BP_ZERO(&lr->lr_blkptr);
704
705 itx->itx_private = zv;
706 itx->itx_sync = sync;
707
708 (void) zil_itx_assign(zilog, itx, tx);
709
710 offset += len;
711 size -= len;
712 }
713 }
714
715 typedef struct zv_request {
716 zvol_state_t *zv;
717 struct bio *bio;
718 locked_range_t *lr;
719 } zv_request_t;
720
721 static void
722 uio_from_bio(uio_t *uio, struct bio *bio)
723 {
724 uio->uio_bvec = &bio->bi_io_vec[BIO_BI_IDX(bio)];
725 uio->uio_skip = BIO_BI_SKIP(bio);
726 uio->uio_resid = BIO_BI_SIZE(bio);
727 uio->uio_iovcnt = bio->bi_vcnt - BIO_BI_IDX(bio);
728 uio->uio_loffset = BIO_BI_SECTOR(bio) << 9;
729 uio->uio_limit = MAXOFFSET_T;
730 uio->uio_segflg = UIO_BVEC;
731 }
732
733 static void
734 zvol_write(void *arg)
735 {
736 int error = 0;
737
738 zv_request_t *zvr = arg;
739 struct bio *bio = zvr->bio;
740 uio_t uio;
741 uio_from_bio(&uio, bio);
742
743 zvol_state_t *zv = zvr->zv;
744 ASSERT(zv && zv->zv_open_count > 0);
745
746 ssize_t start_resid = uio.uio_resid;
747 unsigned long start_jif = jiffies;
748 blk_generic_start_io_acct(zv->zv_queue, WRITE, bio_sectors(bio),
749 &zv->zv_disk->part0);
750
751 boolean_t sync =
752 bio_is_fua(bio) || zv->zv_objset->os_sync == ZFS_SYNC_ALWAYS;
753
754 uint64_t volsize = zv->zv_volsize;
755 while (uio.uio_resid > 0 && uio.uio_loffset < volsize) {
756 uint64_t bytes = MIN(uio.uio_resid, DMU_MAX_ACCESS >> 1);
757 uint64_t off = uio.uio_loffset;
758 dmu_tx_t *tx = dmu_tx_create(zv->zv_objset);
759
760 if (bytes > volsize - off) /* don't write past the end */
761 bytes = volsize - off;
762
763 dmu_tx_hold_write(tx, ZVOL_OBJ, off, bytes);
764
765 /* This will only fail for ENOSPC */
766 error = dmu_tx_assign(tx, TXG_WAIT);
767 if (error) {
768 dmu_tx_abort(tx);
769 break;
770 }
771 error = dmu_write_uio_dnode(zv->zv_dn, &uio, bytes, tx);
772 if (error == 0) {
773 zvol_log_write(zv, tx, off, bytes, sync);
774 }
775 dmu_tx_commit(tx);
776
777 if (error)
778 break;
779 }
780 rangelock_exit(zvr->lr);
781
782 int64_t nwritten = start_resid - uio.uio_resid;
783 dataset_kstats_update_write_kstats(&zv->zv_kstat, nwritten);
784 task_io_account_write(nwritten);
785
786 if (sync)
787 zil_commit(zv->zv_zilog, ZVOL_OBJ);
788
789 rw_exit(&zv->zv_suspend_lock);
790 blk_generic_end_io_acct(zv->zv_queue, WRITE, &zv->zv_disk->part0,
791 start_jif);
792 BIO_END_IO(bio, -error);
793 kmem_free(zvr, sizeof (zv_request_t));
794 }
795
796 /*
797 * Log a DKIOCFREE/free-long-range to the ZIL with TX_TRUNCATE.
798 */
799 static void
800 zvol_log_truncate(zvol_state_t *zv, dmu_tx_t *tx, uint64_t off, uint64_t len,
801 boolean_t sync)
802 {
803 itx_t *itx;
804 lr_truncate_t *lr;
805 zilog_t *zilog = zv->zv_zilog;
806
807 if (zil_replaying(zilog, tx))
808 return;
809
810 itx = zil_itx_create(TX_TRUNCATE, sizeof (*lr));
811 lr = (lr_truncate_t *)&itx->itx_lr;
812 lr->lr_foid = ZVOL_OBJ;
813 lr->lr_offset = off;
814 lr->lr_length = len;
815
816 itx->itx_sync = sync;
817 zil_itx_assign(zilog, itx, tx);
818 }
819
820 static void
821 zvol_discard(void *arg)
822 {
823 zv_request_t *zvr = arg;
824 struct bio *bio = zvr->bio;
825 zvol_state_t *zv = zvr->zv;
826 uint64_t start = BIO_BI_SECTOR(bio) << 9;
827 uint64_t size = BIO_BI_SIZE(bio);
828 uint64_t end = start + size;
829 boolean_t sync;
830 int error = 0;
831 dmu_tx_t *tx;
832 unsigned long start_jif;
833
834 ASSERT(zv && zv->zv_open_count > 0);
835
836 start_jif = jiffies;
837 blk_generic_start_io_acct(zv->zv_queue, WRITE, bio_sectors(bio),
838 &zv->zv_disk->part0);
839
840 sync = bio_is_fua(bio) || zv->zv_objset->os_sync == ZFS_SYNC_ALWAYS;
841
842 if (end > zv->zv_volsize) {
843 error = SET_ERROR(EIO);
844 goto unlock;
845 }
846
847 /*
848 * Align the request to volume block boundaries when a secure erase is
849 * not required. This will prevent dnode_free_range() from zeroing out
850 * the unaligned parts which is slow (read-modify-write) and useless
851 * since we are not freeing any space by doing so.
852 */
853 if (!bio_is_secure_erase(bio)) {
854 start = P2ROUNDUP(start, zv->zv_volblocksize);
855 end = P2ALIGN(end, zv->zv_volblocksize);
856 size = end - start;
857 }
858
859 if (start >= end)
860 goto unlock;
861
862 tx = dmu_tx_create(zv->zv_objset);
863 dmu_tx_mark_netfree(tx);
864 error = dmu_tx_assign(tx, TXG_WAIT);
865 if (error != 0) {
866 dmu_tx_abort(tx);
867 } else {
868 zvol_log_truncate(zv, tx, start, size, B_TRUE);
869 dmu_tx_commit(tx);
870 error = dmu_free_long_range(zv->zv_objset,
871 ZVOL_OBJ, start, size);
872 }
873 unlock:
874 rangelock_exit(zvr->lr);
875
876 if (error == 0 && sync)
877 zil_commit(zv->zv_zilog, ZVOL_OBJ);
878
879 rw_exit(&zv->zv_suspend_lock);
880 blk_generic_end_io_acct(zv->zv_queue, WRITE, &zv->zv_disk->part0,
881 start_jif);
882 BIO_END_IO(bio, -error);
883 kmem_free(zvr, sizeof (zv_request_t));
884 }
885
886 static void
887 zvol_read(void *arg)
888 {
889 int error = 0;
890
891 zv_request_t *zvr = arg;
892 struct bio *bio = zvr->bio;
893 uio_t uio;
894 uio_from_bio(&uio, bio);
895
896 zvol_state_t *zv = zvr->zv;
897 ASSERT(zv && zv->zv_open_count > 0);
898
899 ssize_t start_resid = uio.uio_resid;
900 unsigned long start_jif = jiffies;
901 blk_generic_start_io_acct(zv->zv_queue, READ, bio_sectors(bio),
902 &zv->zv_disk->part0);
903
904 uint64_t volsize = zv->zv_volsize;
905 while (uio.uio_resid > 0 && uio.uio_loffset < volsize) {
906 uint64_t bytes = MIN(uio.uio_resid, DMU_MAX_ACCESS >> 1);
907
908 /* don't read past the end */
909 if (bytes > volsize - uio.uio_loffset)
910 bytes = volsize - uio.uio_loffset;
911
912 error = dmu_read_uio_dnode(zv->zv_dn, &uio, bytes);
913 if (error) {
914 /* convert checksum errors into IO errors */
915 if (error == ECKSUM)
916 error = SET_ERROR(EIO);
917 break;
918 }
919 }
920 rangelock_exit(zvr->lr);
921
922 int64_t nread = start_resid - uio.uio_resid;
923 dataset_kstats_update_read_kstats(&zv->zv_kstat, nread);
924 task_io_account_read(nread);
925
926 rw_exit(&zv->zv_suspend_lock);
927 blk_generic_end_io_acct(zv->zv_queue, READ, &zv->zv_disk->part0,
928 start_jif);
929 BIO_END_IO(bio, -error);
930 kmem_free(zvr, sizeof (zv_request_t));
931 }
932
933 static MAKE_REQUEST_FN_RET
934 zvol_request(struct request_queue *q, struct bio *bio)
935 {
936 zvol_state_t *zv = q->queuedata;
937 fstrans_cookie_t cookie = spl_fstrans_mark();
938 uint64_t offset = BIO_BI_SECTOR(bio) << 9;
939 uint64_t size = BIO_BI_SIZE(bio);
940 int rw = bio_data_dir(bio);
941 zv_request_t *zvr;
942
943 if (bio_has_data(bio) && offset + size > zv->zv_volsize) {
944 printk(KERN_INFO
945 "%s: bad access: offset=%llu, size=%lu\n",
946 zv->zv_disk->disk_name,
947 (long long unsigned)offset,
948 (long unsigned)size);
949
950 BIO_END_IO(bio, -SET_ERROR(EIO));
951 goto out;
952 }
953
954 if (rw == WRITE) {
955 boolean_t need_sync = B_FALSE;
956
957 if (unlikely(zv->zv_flags & ZVOL_RDONLY)) {
958 BIO_END_IO(bio, -SET_ERROR(EROFS));
959 goto out;
960 }
961
962 /*
963 * To be released in the I/O function. See the comment on
964 * rangelock_enter() below.
965 */
966 rw_enter(&zv->zv_suspend_lock, RW_READER);
967
968 /* bio marked as FLUSH need to flush before write */
969 if (bio_is_flush(bio))
970 zil_commit(zv->zv_zilog, ZVOL_OBJ);
971
972 /* Some requests are just for flush and nothing else. */
973 if (size == 0) {
974 rw_exit(&zv->zv_suspend_lock);
975 BIO_END_IO(bio, 0);
976 goto out;
977 }
978
979 zvr = kmem_alloc(sizeof (zv_request_t), KM_SLEEP);
980 zvr->zv = zv;
981 zvr->bio = bio;
982
983 /*
984 * To be released in the I/O function. Since the I/O functions
985 * are asynchronous, we take it here synchronously to make
986 * sure overlapped I/Os are properly ordered.
987 */
988 zvr->lr = rangelock_enter(&zv->zv_rangelock, offset, size,
989 RL_WRITER);
990 /*
991 * Sync writes and discards execute zil_commit() which may need
992 * to take a RL_READER lock on the whole block being modified
993 * via its zillog->zl_get_data(): to avoid circular dependency
994 * issues with taskq threads execute these requests
995 * synchronously here in zvol_request().
996 */
997 need_sync = bio_is_fua(bio) ||
998 zv->zv_objset->os_sync == ZFS_SYNC_ALWAYS;
999 if (bio_is_discard(bio) || bio_is_secure_erase(bio)) {
1000 if (zvol_request_sync || need_sync ||
1001 taskq_dispatch(zvol_taskq, zvol_discard, zvr,
1002 TQ_SLEEP) == TASKQID_INVALID)
1003 zvol_discard(zvr);
1004 } else {
1005 if (zvol_request_sync || need_sync ||
1006 taskq_dispatch(zvol_taskq, zvol_write, zvr,
1007 TQ_SLEEP) == TASKQID_INVALID)
1008 zvol_write(zvr);
1009 }
1010 } else {
1011 /*
1012 * The SCST driver, and possibly others, may issue READ I/Os
1013 * with a length of zero bytes. These empty I/Os contain no
1014 * data and require no additional handling.
1015 */
1016 if (size == 0) {
1017 BIO_END_IO(bio, 0);
1018 goto out;
1019 }
1020
1021 zvr = kmem_alloc(sizeof (zv_request_t), KM_SLEEP);
1022 zvr->zv = zv;
1023 zvr->bio = bio;
1024
1025 rw_enter(&zv->zv_suspend_lock, RW_READER);
1026
1027 zvr->lr = rangelock_enter(&zv->zv_rangelock, offset, size,
1028 RL_READER);
1029 if (zvol_request_sync || taskq_dispatch(zvol_taskq,
1030 zvol_read, zvr, TQ_SLEEP) == TASKQID_INVALID)
1031 zvol_read(zvr);
1032 }
1033
1034 out:
1035 spl_fstrans_unmark(cookie);
1036 #ifdef HAVE_MAKE_REQUEST_FN_RET_INT
1037 return (0);
1038 #elif defined(HAVE_MAKE_REQUEST_FN_RET_QC)
1039 return (BLK_QC_T_NONE);
1040 #endif
1041 }
1042
1043 /* ARGSUSED */
1044 static void
1045 zvol_get_done(zgd_t *zgd, int error)
1046 {
1047 if (zgd->zgd_db)
1048 dmu_buf_rele(zgd->zgd_db, zgd);
1049
1050 rangelock_exit(zgd->zgd_lr);
1051
1052 kmem_free(zgd, sizeof (zgd_t));
1053 }
1054
1055 /*
1056 * Get data to generate a TX_WRITE intent log record.
1057 */
1058 static int
1059 zvol_get_data(void *arg, lr_write_t *lr, char *buf, struct lwb *lwb, zio_t *zio)
1060 {
1061 zvol_state_t *zv = arg;
1062 uint64_t offset = lr->lr_offset;
1063 uint64_t size = lr->lr_length;
1064 dmu_buf_t *db;
1065 zgd_t *zgd;
1066 int error;
1067
1068 ASSERT3P(lwb, !=, NULL);
1069 ASSERT3P(zio, !=, NULL);
1070 ASSERT3U(size, !=, 0);
1071
1072 zgd = (zgd_t *)kmem_zalloc(sizeof (zgd_t), KM_SLEEP);
1073 zgd->zgd_lwb = lwb;
1074
1075 /*
1076 * Write records come in two flavors: immediate and indirect.
1077 * For small writes it's cheaper to store the data with the
1078 * log record (immediate); for large writes it's cheaper to
1079 * sync the data and get a pointer to it (indirect) so that
1080 * we don't have to write the data twice.
1081 */
1082 if (buf != NULL) { /* immediate write */
1083 zgd->zgd_lr = rangelock_enter(&zv->zv_rangelock, offset, size,
1084 RL_READER);
1085 error = dmu_read_by_dnode(zv->zv_dn, offset, size, buf,
1086 DMU_READ_NO_PREFETCH);
1087 } else { /* indirect write */
1088 /*
1089 * Have to lock the whole block to ensure when it's written out
1090 * and its checksum is being calculated that no one can change
1091 * the data. Contrarily to zfs_get_data we need not re-check
1092 * blocksize after we get the lock because it cannot be changed.
1093 */
1094 size = zv->zv_volblocksize;
1095 offset = P2ALIGN_TYPED(offset, size, uint64_t);
1096 zgd->zgd_lr = rangelock_enter(&zv->zv_rangelock, offset, size,
1097 RL_READER);
1098 error = dmu_buf_hold_by_dnode(zv->zv_dn, offset, zgd, &db,
1099 DMU_READ_NO_PREFETCH);
1100 if (error == 0) {
1101 blkptr_t *bp = &lr->lr_blkptr;
1102
1103 zgd->zgd_db = db;
1104 zgd->zgd_bp = bp;
1105
1106 ASSERT(db != NULL);
1107 ASSERT(db->db_offset == offset);
1108 ASSERT(db->db_size == size);
1109
1110 error = dmu_sync(zio, lr->lr_common.lrc_txg,
1111 zvol_get_done, zgd);
1112
1113 if (error == 0)
1114 return (0);
1115 }
1116 }
1117
1118 zvol_get_done(zgd, error);
1119
1120 return (SET_ERROR(error));
1121 }
1122
1123 /*
1124 * The zvol_state_t's are inserted into zvol_state_list and zvol_htable.
1125 */
1126 static void
1127 zvol_insert(zvol_state_t *zv)
1128 {
1129 ASSERT(RW_WRITE_HELD(&zvol_state_lock));
1130 ASSERT3U(MINOR(zv->zv_dev) & ZVOL_MINOR_MASK, ==, 0);
1131 list_insert_head(&zvol_state_list, zv);
1132 hlist_add_head(&zv->zv_hlink, ZVOL_HT_HEAD(zv->zv_hash));
1133 }
1134
1135 /*
1136 * Simply remove the zvol from to list of zvols.
1137 */
1138 static void
1139 zvol_remove(zvol_state_t *zv)
1140 {
1141 ASSERT(RW_WRITE_HELD(&zvol_state_lock));
1142 list_remove(&zvol_state_list, zv);
1143 hlist_del(&zv->zv_hlink);
1144 }
1145
1146 /*
1147 * Setup zv after we just own the zv->objset
1148 */
1149 static int
1150 zvol_setup_zv(zvol_state_t *zv)
1151 {
1152 uint64_t volsize;
1153 int error;
1154 uint64_t ro;
1155 objset_t *os = zv->zv_objset;
1156
1157 ASSERT(MUTEX_HELD(&zv->zv_state_lock));
1158 ASSERT(RW_LOCK_HELD(&zv->zv_suspend_lock));
1159
1160 error = dsl_prop_get_integer(zv->zv_name, "readonly", &ro, NULL);
1161 if (error)
1162 return (SET_ERROR(error));
1163
1164 error = zap_lookup(os, ZVOL_ZAP_OBJ, "size", 8, 1, &volsize);
1165 if (error)
1166 return (SET_ERROR(error));
1167
1168 error = dnode_hold(os, ZVOL_OBJ, FTAG, &zv->zv_dn);
1169 if (error)
1170 return (SET_ERROR(error));
1171
1172 set_capacity(zv->zv_disk, volsize >> 9);
1173 zv->zv_volsize = volsize;
1174 zv->zv_zilog = zil_open(os, zvol_get_data);
1175
1176 if (ro || dmu_objset_is_snapshot(os) ||
1177 !spa_writeable(dmu_objset_spa(os))) {
1178 set_disk_ro(zv->zv_disk, 1);
1179 zv->zv_flags |= ZVOL_RDONLY;
1180 } else {
1181 set_disk_ro(zv->zv_disk, 0);
1182 zv->zv_flags &= ~ZVOL_RDONLY;
1183 }
1184 return (0);
1185 }
1186
1187 /*
1188 * Shutdown every zv_objset related stuff except zv_objset itself.
1189 * The is the reverse of zvol_setup_zv.
1190 */
1191 static void
1192 zvol_shutdown_zv(zvol_state_t *zv)
1193 {
1194 ASSERT(MUTEX_HELD(&zv->zv_state_lock) &&
1195 RW_LOCK_HELD(&zv->zv_suspend_lock));
1196
1197 zil_close(zv->zv_zilog);
1198 zv->zv_zilog = NULL;
1199
1200 dnode_rele(zv->zv_dn, FTAG);
1201 zv->zv_dn = NULL;
1202
1203 /*
1204 * Evict cached data. We must write out any dirty data before
1205 * disowning the dataset.
1206 */
1207 if (!(zv->zv_flags & ZVOL_RDONLY))
1208 txg_wait_synced(dmu_objset_pool(zv->zv_objset), 0);
1209 (void) dmu_objset_evict_dbufs(zv->zv_objset);
1210 }
1211
1212 /*
1213 * return the proper tag for rollback and recv
1214 */
1215 void *
1216 zvol_tag(zvol_state_t *zv)
1217 {
1218 ASSERT(RW_WRITE_HELD(&zv->zv_suspend_lock));
1219 return (zv->zv_open_count > 0 ? zv : NULL);
1220 }
1221
1222 /*
1223 * Suspend the zvol for recv and rollback.
1224 */
1225 zvol_state_t *
1226 zvol_suspend(const char *name)
1227 {
1228 zvol_state_t *zv;
1229
1230 zv = zvol_find_by_name(name, RW_WRITER);
1231
1232 if (zv == NULL)
1233 return (NULL);
1234
1235 /* block all I/O, release in zvol_resume. */
1236 ASSERT(MUTEX_HELD(&zv->zv_state_lock));
1237 ASSERT(RW_WRITE_HELD(&zv->zv_suspend_lock));
1238
1239 atomic_inc(&zv->zv_suspend_ref);
1240
1241 if (zv->zv_open_count > 0)
1242 zvol_shutdown_zv(zv);
1243
1244 /*
1245 * do not hold zv_state_lock across suspend/resume to
1246 * avoid locking up zvol lookups
1247 */
1248 mutex_exit(&zv->zv_state_lock);
1249
1250 /* zv_suspend_lock is released in zvol_resume() */
1251 return (zv);
1252 }
1253
1254 int
1255 zvol_resume(zvol_state_t *zv)
1256 {
1257 int error = 0;
1258
1259 ASSERT(RW_WRITE_HELD(&zv->zv_suspend_lock));
1260
1261 mutex_enter(&zv->zv_state_lock);
1262
1263 if (zv->zv_open_count > 0) {
1264 VERIFY0(dmu_objset_hold(zv->zv_name, zv, &zv->zv_objset));
1265 VERIFY3P(zv->zv_objset->os_dsl_dataset->ds_owner, ==, zv);
1266 VERIFY(dsl_dataset_long_held(zv->zv_objset->os_dsl_dataset));
1267 dmu_objset_rele(zv->zv_objset, zv);
1268
1269 error = zvol_setup_zv(zv);
1270 }
1271
1272 mutex_exit(&zv->zv_state_lock);
1273
1274 rw_exit(&zv->zv_suspend_lock);
1275 /*
1276 * We need this because we don't hold zvol_state_lock while releasing
1277 * zv_suspend_lock. zvol_remove_minors_impl thus cannot check
1278 * zv_suspend_lock to determine it is safe to free because rwlock is
1279 * not inherent atomic.
1280 */
1281 atomic_dec(&zv->zv_suspend_ref);
1282
1283 return (SET_ERROR(error));
1284 }
1285
1286 static int
1287 zvol_first_open(zvol_state_t *zv, boolean_t readonly)
1288 {
1289 objset_t *os;
1290 int error, locked = 0;
1291 boolean_t ro;
1292
1293 ASSERT(RW_READ_HELD(&zv->zv_suspend_lock));
1294 ASSERT(MUTEX_HELD(&zv->zv_state_lock));
1295
1296 /*
1297 * In all other cases the spa_namespace_lock is taken before the
1298 * bdev->bd_mutex lock. But in this case the Linux __blkdev_get()
1299 * function calls fops->open() with the bdev->bd_mutex lock held.
1300 * This deadlock can be easily observed with zvols used as vdevs.
1301 *
1302 * To avoid a potential lock inversion deadlock we preemptively
1303 * try to take the spa_namespace_lock(). Normally it will not
1304 * be contended and this is safe because spa_open_common() handles
1305 * the case where the caller already holds the spa_namespace_lock.
1306 *
1307 * When it is contended we risk a lock inversion if we were to
1308 * block waiting for the lock. Luckily, the __blkdev_get()
1309 * function allows us to return -ERESTARTSYS which will result in
1310 * bdev->bd_mutex being dropped, reacquired, and fops->open() being
1311 * called again. This process can be repeated safely until both
1312 * locks are acquired.
1313 */
1314 if (!mutex_owned(&spa_namespace_lock)) {
1315 locked = mutex_tryenter(&spa_namespace_lock);
1316 if (!locked)
1317 return (-SET_ERROR(ERESTARTSYS));
1318 }
1319
1320 ro = (readonly || (strchr(zv->zv_name, '@') != NULL));
1321 error = dmu_objset_own(zv->zv_name, DMU_OST_ZVOL, ro, B_TRUE, zv, &os);
1322 if (error)
1323 goto out_mutex;
1324
1325 zv->zv_objset = os;
1326
1327 error = zvol_setup_zv(zv);
1328
1329 if (error) {
1330 dmu_objset_disown(os, 1, zv);
1331 zv->zv_objset = NULL;
1332 }
1333
1334 out_mutex:
1335 if (locked)
1336 mutex_exit(&spa_namespace_lock);
1337 return (SET_ERROR(-error));
1338 }
1339
1340 static void
1341 zvol_last_close(zvol_state_t *zv)
1342 {
1343 ASSERT(RW_READ_HELD(&zv->zv_suspend_lock));
1344 ASSERT(MUTEX_HELD(&zv->zv_state_lock));
1345
1346 zvol_shutdown_zv(zv);
1347
1348 dmu_objset_disown(zv->zv_objset, 1, zv);
1349 zv->zv_objset = NULL;
1350 }
1351
1352 static int
1353 zvol_open(struct block_device *bdev, fmode_t flag)
1354 {
1355 zvol_state_t *zv;
1356 int error = 0;
1357 boolean_t drop_suspend = B_TRUE;
1358
1359 rw_enter(&zvol_state_lock, RW_READER);
1360 /*
1361 * Obtain a copy of private_data under the zvol_state_lock to make
1362 * sure that either the result of zvol free code path setting
1363 * bdev->bd_disk->private_data to NULL is observed, or zvol_free()
1364 * is not called on this zv because of the positive zv_open_count.
1365 */
1366 zv = bdev->bd_disk->private_data;
1367 if (zv == NULL) {
1368 rw_exit(&zvol_state_lock);
1369 return (SET_ERROR(-ENXIO));
1370 }
1371
1372 mutex_enter(&zv->zv_state_lock);
1373 /*
1374 * make sure zvol is not suspended during first open
1375 * (hold zv_suspend_lock) and respect proper lock acquisition
1376 * ordering - zv_suspend_lock before zv_state_lock
1377 */
1378 if (zv->zv_open_count == 0) {
1379 if (!rw_tryenter(&zv->zv_suspend_lock, RW_READER)) {
1380 mutex_exit(&zv->zv_state_lock);
1381 rw_enter(&zv->zv_suspend_lock, RW_READER);
1382 mutex_enter(&zv->zv_state_lock);
1383 /* check to see if zv_suspend_lock is needed */
1384 if (zv->zv_open_count != 0) {
1385 rw_exit(&zv->zv_suspend_lock);
1386 drop_suspend = B_FALSE;
1387 }
1388 }
1389 } else {
1390 drop_suspend = B_FALSE;
1391 }
1392 rw_exit(&zvol_state_lock);
1393
1394 ASSERT(MUTEX_HELD(&zv->zv_state_lock));
1395 ASSERT(zv->zv_open_count != 0 || RW_READ_HELD(&zv->zv_suspend_lock));
1396
1397 if (zv->zv_open_count == 0) {
1398 error = zvol_first_open(zv, !(flag & FMODE_WRITE));
1399 if (error)
1400 goto out_mutex;
1401 }
1402
1403 if ((flag & FMODE_WRITE) && (zv->zv_flags & ZVOL_RDONLY)) {
1404 error = -EROFS;
1405 goto out_open_count;
1406 }
1407
1408 zv->zv_open_count++;
1409
1410 mutex_exit(&zv->zv_state_lock);
1411 if (drop_suspend)
1412 rw_exit(&zv->zv_suspend_lock);
1413
1414 check_disk_change(bdev);
1415
1416 return (0);
1417
1418 out_open_count:
1419 if (zv->zv_open_count == 0)
1420 zvol_last_close(zv);
1421
1422 out_mutex:
1423 mutex_exit(&zv->zv_state_lock);
1424 if (drop_suspend)
1425 rw_exit(&zv->zv_suspend_lock);
1426 if (error == -ERESTARTSYS)
1427 schedule();
1428
1429 return (SET_ERROR(error));
1430 }
1431
1432 #ifdef HAVE_BLOCK_DEVICE_OPERATIONS_RELEASE_VOID
1433 static void
1434 #else
1435 static int
1436 #endif
1437 zvol_release(struct gendisk *disk, fmode_t mode)
1438 {
1439 zvol_state_t *zv;
1440 boolean_t drop_suspend = B_TRUE;
1441
1442 rw_enter(&zvol_state_lock, RW_READER);
1443 zv = disk->private_data;
1444
1445 mutex_enter(&zv->zv_state_lock);
1446 ASSERT(zv->zv_open_count > 0);
1447 /*
1448 * make sure zvol is not suspended during last close
1449 * (hold zv_suspend_lock) and respect proper lock acquisition
1450 * ordering - zv_suspend_lock before zv_state_lock
1451 */
1452 if (zv->zv_open_count == 1) {
1453 if (!rw_tryenter(&zv->zv_suspend_lock, RW_READER)) {
1454 mutex_exit(&zv->zv_state_lock);
1455 rw_enter(&zv->zv_suspend_lock, RW_READER);
1456 mutex_enter(&zv->zv_state_lock);
1457 /* check to see if zv_suspend_lock is needed */
1458 if (zv->zv_open_count != 1) {
1459 rw_exit(&zv->zv_suspend_lock);
1460 drop_suspend = B_FALSE;
1461 }
1462 }
1463 } else {
1464 drop_suspend = B_FALSE;
1465 }
1466 rw_exit(&zvol_state_lock);
1467
1468 ASSERT(MUTEX_HELD(&zv->zv_state_lock));
1469 ASSERT(zv->zv_open_count != 1 || RW_READ_HELD(&zv->zv_suspend_lock));
1470
1471 zv->zv_open_count--;
1472 if (zv->zv_open_count == 0)
1473 zvol_last_close(zv);
1474
1475 mutex_exit(&zv->zv_state_lock);
1476
1477 if (drop_suspend)
1478 rw_exit(&zv->zv_suspend_lock);
1479
1480 #ifndef HAVE_BLOCK_DEVICE_OPERATIONS_RELEASE_VOID
1481 return (0);
1482 #endif
1483 }
1484
1485 static int
1486 zvol_ioctl(struct block_device *bdev, fmode_t mode,
1487 unsigned int cmd, unsigned long arg)
1488 {
1489 zvol_state_t *zv = bdev->bd_disk->private_data;
1490 int error = 0;
1491
1492 ASSERT3U(zv->zv_open_count, >, 0);
1493
1494 switch (cmd) {
1495 case BLKFLSBUF:
1496 fsync_bdev(bdev);
1497 invalidate_bdev(bdev);
1498 rw_enter(&zv->zv_suspend_lock, RW_READER);
1499
1500 if (!(zv->zv_flags & ZVOL_RDONLY))
1501 txg_wait_synced(dmu_objset_pool(zv->zv_objset), 0);
1502
1503 rw_exit(&zv->zv_suspend_lock);
1504 break;
1505
1506 case BLKZNAME:
1507 mutex_enter(&zv->zv_state_lock);
1508 error = copy_to_user((void *)arg, zv->zv_name, MAXNAMELEN);
1509 mutex_exit(&zv->zv_state_lock);
1510 break;
1511
1512 default:
1513 error = -ENOTTY;
1514 break;
1515 }
1516
1517 return (SET_ERROR(error));
1518 }
1519
1520 #ifdef CONFIG_COMPAT
1521 static int
1522 zvol_compat_ioctl(struct block_device *bdev, fmode_t mode,
1523 unsigned cmd, unsigned long arg)
1524 {
1525 return (zvol_ioctl(bdev, mode, cmd, arg));
1526 }
1527 #else
1528 #define zvol_compat_ioctl NULL
1529 #endif
1530
1531 /*
1532 * Linux 2.6.38 preferred interface.
1533 */
1534 #ifdef HAVE_BLOCK_DEVICE_OPERATIONS_CHECK_EVENTS
1535 static unsigned int
1536 zvol_check_events(struct gendisk *disk, unsigned int clearing)
1537 {
1538 unsigned int mask = 0;
1539
1540 rw_enter(&zvol_state_lock, RW_READER);
1541
1542 zvol_state_t *zv = disk->private_data;
1543 if (zv != NULL) {
1544 mutex_enter(&zv->zv_state_lock);
1545 mask = zv->zv_changed ? DISK_EVENT_MEDIA_CHANGE : 0;
1546 zv->zv_changed = 0;
1547 mutex_exit(&zv->zv_state_lock);
1548 }
1549
1550 rw_exit(&zvol_state_lock);
1551
1552 return (mask);
1553 }
1554 #else
1555 static int zvol_media_changed(struct gendisk *disk)
1556 {
1557 int changed = 0;
1558
1559 rw_enter(&zvol_state_lock, RW_READER);
1560
1561 zvol_state_t *zv = disk->private_data;
1562 if (zv != NULL) {
1563 mutex_enter(&zv->zv_state_lock);
1564 changed = zv->zv_changed;
1565 zv->zv_changed = 0;
1566 mutex_exit(&zv->zv_state_lock);
1567 }
1568
1569 rw_exit(&zvol_state_lock);
1570
1571 return (changed);
1572 }
1573 #endif
1574
1575 static int zvol_revalidate_disk(struct gendisk *disk)
1576 {
1577 rw_enter(&zvol_state_lock, RW_READER);
1578
1579 zvol_state_t *zv = disk->private_data;
1580 if (zv != NULL) {
1581 mutex_enter(&zv->zv_state_lock);
1582 set_capacity(zv->zv_disk, zv->zv_volsize >> SECTOR_BITS);
1583 mutex_exit(&zv->zv_state_lock);
1584 }
1585
1586 rw_exit(&zvol_state_lock);
1587
1588 return (0);
1589 }
1590
1591 /*
1592 * Provide a simple virtual geometry for legacy compatibility. For devices
1593 * smaller than 1 MiB a small head and sector count is used to allow very
1594 * tiny devices. For devices over 1 Mib a standard head and sector count
1595 * is used to keep the cylinders count reasonable.
1596 */
1597 static int
1598 zvol_getgeo(struct block_device *bdev, struct hd_geometry *geo)
1599 {
1600 zvol_state_t *zv = bdev->bd_disk->private_data;
1601 sector_t sectors;
1602
1603 ASSERT3U(zv->zv_open_count, >, 0);
1604
1605 sectors = get_capacity(zv->zv_disk);
1606
1607 if (sectors > 2048) {
1608 geo->heads = 16;
1609 geo->sectors = 63;
1610 } else {
1611 geo->heads = 2;
1612 geo->sectors = 4;
1613 }
1614
1615 geo->start = 0;
1616 geo->cylinders = sectors / (geo->heads * geo->sectors);
1617
1618 return (0);
1619 }
1620
1621 static struct kobject *
1622 zvol_probe(dev_t dev, int *part, void *arg)
1623 {
1624 zvol_state_t *zv;
1625 struct kobject *kobj;
1626
1627 zv = zvol_find_by_dev(dev);
1628 kobj = zv ? get_disk_and_module(zv->zv_disk) : NULL;
1629 ASSERT(zv == NULL || MUTEX_HELD(&zv->zv_state_lock));
1630 if (zv)
1631 mutex_exit(&zv->zv_state_lock);
1632
1633 return (kobj);
1634 }
1635
1636 static struct block_device_operations zvol_ops = {
1637 .open = zvol_open,
1638 .release = zvol_release,
1639 .ioctl = zvol_ioctl,
1640 .compat_ioctl = zvol_compat_ioctl,
1641 #ifdef HAVE_BLOCK_DEVICE_OPERATIONS_CHECK_EVENTS
1642 .check_events = zvol_check_events,
1643 #else
1644 .media_changed = zvol_media_changed,
1645 #endif
1646 .revalidate_disk = zvol_revalidate_disk,
1647 .getgeo = zvol_getgeo,
1648 .owner = THIS_MODULE,
1649 };
1650
1651 /*
1652 * Allocate memory for a new zvol_state_t and setup the required
1653 * request queue and generic disk structures for the block device.
1654 */
1655 static zvol_state_t *
1656 zvol_alloc(dev_t dev, const char *name)
1657 {
1658 zvol_state_t *zv;
1659 uint64_t volmode;
1660
1661 if (dsl_prop_get_integer(name, "volmode", &volmode, NULL) != 0)
1662 return (NULL);
1663
1664 if (volmode == ZFS_VOLMODE_DEFAULT)
1665 volmode = zvol_volmode;
1666
1667 if (volmode == ZFS_VOLMODE_NONE)
1668 return (NULL);
1669
1670 zv = kmem_zalloc(sizeof (zvol_state_t), KM_SLEEP);
1671
1672 list_link_init(&zv->zv_next);
1673
1674 mutex_init(&zv->zv_state_lock, NULL, MUTEX_DEFAULT, NULL);
1675
1676 zv->zv_queue = blk_alloc_queue(GFP_ATOMIC);
1677 if (zv->zv_queue == NULL)
1678 goto out_kmem;
1679
1680 blk_queue_make_request(zv->zv_queue, zvol_request);
1681 blk_queue_set_write_cache(zv->zv_queue, B_TRUE, B_TRUE);
1682
1683 /* Limit read-ahead to a single page to prevent over-prefetching. */
1684 blk_queue_set_read_ahead(zv->zv_queue, 1);
1685
1686 /* Disable write merging in favor of the ZIO pipeline. */
1687 blk_queue_flag_set(QUEUE_FLAG_NOMERGES, zv->zv_queue);
1688
1689 zv->zv_disk = alloc_disk(ZVOL_MINORS);
1690 if (zv->zv_disk == NULL)
1691 goto out_queue;
1692
1693 zv->zv_queue->queuedata = zv;
1694 zv->zv_dev = dev;
1695 zv->zv_open_count = 0;
1696 strlcpy(zv->zv_name, name, MAXNAMELEN);
1697
1698 rangelock_init(&zv->zv_rangelock, NULL, NULL);
1699 rw_init(&zv->zv_suspend_lock, NULL, RW_DEFAULT, NULL);
1700
1701 zv->zv_disk->major = zvol_major;
1702 #ifdef HAVE_BLOCK_DEVICE_OPERATIONS_CHECK_EVENTS
1703 zv->zv_disk->events = DISK_EVENT_MEDIA_CHANGE;
1704 #endif
1705
1706 if (volmode == ZFS_VOLMODE_DEV) {
1707 /*
1708 * ZFS_VOLMODE_DEV disable partitioning on ZVOL devices: set
1709 * gendisk->minors = 1 as noted in include/linux/genhd.h.
1710 * Also disable extended partition numbers (GENHD_FL_EXT_DEVT)
1711 * and suppresses partition scanning (GENHD_FL_NO_PART_SCAN)
1712 * setting gendisk->flags accordingly.
1713 */
1714 zv->zv_disk->minors = 1;
1715 #if defined(GENHD_FL_EXT_DEVT)
1716 zv->zv_disk->flags &= ~GENHD_FL_EXT_DEVT;
1717 #endif
1718 #if defined(GENHD_FL_NO_PART_SCAN)
1719 zv->zv_disk->flags |= GENHD_FL_NO_PART_SCAN;
1720 #endif
1721 }
1722 zv->zv_disk->first_minor = (dev & MINORMASK);
1723 zv->zv_disk->fops = &zvol_ops;
1724 zv->zv_disk->private_data = zv;
1725 zv->zv_disk->queue = zv->zv_queue;
1726 snprintf(zv->zv_disk->disk_name, DISK_NAME_LEN, "%s%d",
1727 ZVOL_DEV_NAME, (dev & MINORMASK));
1728
1729 return (zv);
1730
1731 out_queue:
1732 blk_cleanup_queue(zv->zv_queue);
1733 out_kmem:
1734 kmem_free(zv, sizeof (zvol_state_t));
1735
1736 return (NULL);
1737 }
1738
1739 /*
1740 * Cleanup then free a zvol_state_t which was created by zvol_alloc().
1741 * At this time, the structure is not opened by anyone, is taken off
1742 * the zvol_state_list, and has its private data set to NULL.
1743 * The zvol_state_lock is dropped.
1744 */
1745 static void
1746 zvol_free(void *arg)
1747 {
1748 zvol_state_t *zv = arg;
1749
1750 ASSERT(!RW_LOCK_HELD(&zv->zv_suspend_lock));
1751 ASSERT(!MUTEX_HELD(&zv->zv_state_lock));
1752 ASSERT(zv->zv_open_count == 0);
1753 ASSERT(zv->zv_disk->private_data == NULL);
1754
1755 rw_destroy(&zv->zv_suspend_lock);
1756 rangelock_fini(&zv->zv_rangelock);
1757
1758 del_gendisk(zv->zv_disk);
1759 blk_cleanup_queue(zv->zv_queue);
1760 put_disk(zv->zv_disk);
1761
1762 ida_simple_remove(&zvol_ida, MINOR(zv->zv_dev) >> ZVOL_MINOR_BITS);
1763
1764 mutex_destroy(&zv->zv_state_lock);
1765 dataset_kstats_destroy(&zv->zv_kstat);
1766
1767 kmem_free(zv, sizeof (zvol_state_t));
1768 }
1769
1770 /*
1771 * Create a block device minor node and setup the linkage between it
1772 * and the specified volume. Once this function returns the block
1773 * device is live and ready for use.
1774 */
1775 static int
1776 zvol_create_minor_impl(const char *name)
1777 {
1778 zvol_state_t *zv;
1779 objset_t *os;
1780 dmu_object_info_t *doi;
1781 uint64_t volsize;
1782 uint64_t len;
1783 unsigned minor = 0;
1784 int error = 0;
1785 int idx;
1786 uint64_t hash = zvol_name_hash(name);
1787
1788 if (zvol_inhibit_dev)
1789 return (0);
1790
1791 idx = ida_simple_get(&zvol_ida, 0, 0, kmem_flags_convert(KM_SLEEP));
1792 if (idx < 0)
1793 return (SET_ERROR(-idx));
1794 minor = idx << ZVOL_MINOR_BITS;
1795
1796 zv = zvol_find_by_name_hash(name, hash, RW_NONE);
1797 if (zv) {
1798 ASSERT(MUTEX_HELD(&zv->zv_state_lock));
1799 mutex_exit(&zv->zv_state_lock);
1800 ida_simple_remove(&zvol_ida, idx);
1801 return (SET_ERROR(EEXIST));
1802 }
1803
1804 doi = kmem_alloc(sizeof (dmu_object_info_t), KM_SLEEP);
1805
1806 error = dmu_objset_own(name, DMU_OST_ZVOL, B_TRUE, B_TRUE, FTAG, &os);
1807 if (error)
1808 goto out_doi;
1809
1810 error = dmu_object_info(os, ZVOL_OBJ, doi);
1811 if (error)
1812 goto out_dmu_objset_disown;
1813
1814 error = zap_lookup(os, ZVOL_ZAP_OBJ, "size", 8, 1, &volsize);
1815 if (error)
1816 goto out_dmu_objset_disown;
1817
1818 zv = zvol_alloc(MKDEV(zvol_major, minor), name);
1819 if (zv == NULL) {
1820 error = SET_ERROR(EAGAIN);
1821 goto out_dmu_objset_disown;
1822 }
1823 zv->zv_hash = hash;
1824
1825 if (dmu_objset_is_snapshot(os))
1826 zv->zv_flags |= ZVOL_RDONLY;
1827
1828 zv->zv_volblocksize = doi->doi_data_block_size;
1829 zv->zv_volsize = volsize;
1830 zv->zv_objset = os;
1831
1832 set_capacity(zv->zv_disk, zv->zv_volsize >> 9);
1833
1834 blk_queue_max_hw_sectors(zv->zv_queue, (DMU_MAX_ACCESS / 4) >> 9);
1835 blk_queue_max_segments(zv->zv_queue, UINT16_MAX);
1836 blk_queue_max_segment_size(zv->zv_queue, UINT_MAX);
1837 blk_queue_physical_block_size(zv->zv_queue, zv->zv_volblocksize);
1838 blk_queue_io_opt(zv->zv_queue, zv->zv_volblocksize);
1839 blk_queue_max_discard_sectors(zv->zv_queue,
1840 (zvol_max_discard_blocks * zv->zv_volblocksize) >> 9);
1841 blk_queue_discard_granularity(zv->zv_queue, zv->zv_volblocksize);
1842 blk_queue_flag_set(QUEUE_FLAG_DISCARD, zv->zv_queue);
1843 #ifdef QUEUE_FLAG_NONROT
1844 blk_queue_flag_set(QUEUE_FLAG_NONROT, zv->zv_queue);
1845 #endif
1846 #ifdef QUEUE_FLAG_ADD_RANDOM
1847 blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, zv->zv_queue);
1848 #endif
1849
1850 if (spa_writeable(dmu_objset_spa(os))) {
1851 if (zil_replay_disable)
1852 zil_destroy(dmu_objset_zil(os), B_FALSE);
1853 else
1854 zil_replay(os, zv, zvol_replay_vector);
1855 }
1856 ASSERT3P(zv->zv_kstat.dk_kstats, ==, NULL);
1857 dataset_kstats_create(&zv->zv_kstat, zv->zv_objset);
1858
1859 /*
1860 * When udev detects the addition of the device it will immediately
1861 * invoke blkid(8) to determine the type of content on the device.
1862 * Prefetching the blocks commonly scanned by blkid(8) will speed
1863 * up this process.
1864 */
1865 len = MIN(MAX(zvol_prefetch_bytes, 0), SPA_MAXBLOCKSIZE);
1866 if (len > 0) {
1867 dmu_prefetch(os, ZVOL_OBJ, 0, 0, len, ZIO_PRIORITY_SYNC_READ);
1868 dmu_prefetch(os, ZVOL_OBJ, 0, volsize - len, len,
1869 ZIO_PRIORITY_SYNC_READ);
1870 }
1871
1872 zv->zv_objset = NULL;
1873 out_dmu_objset_disown:
1874 dmu_objset_disown(os, B_TRUE, FTAG);
1875 out_doi:
1876 kmem_free(doi, sizeof (dmu_object_info_t));
1877
1878 if (error == 0) {
1879 rw_enter(&zvol_state_lock, RW_WRITER);
1880 zvol_insert(zv);
1881 rw_exit(&zvol_state_lock);
1882 add_disk(zv->zv_disk);
1883 } else {
1884 ida_simple_remove(&zvol_ida, idx);
1885 }
1886
1887 return (SET_ERROR(error));
1888 }
1889
1890 /*
1891 * Rename a block device minor mode for the specified volume.
1892 */
1893 static void
1894 zvol_rename_minor(zvol_state_t *zv, const char *newname)
1895 {
1896 int readonly = get_disk_ro(zv->zv_disk);
1897
1898 ASSERT(RW_LOCK_HELD(&zvol_state_lock));
1899 ASSERT(MUTEX_HELD(&zv->zv_state_lock));
1900
1901 strlcpy(zv->zv_name, newname, sizeof (zv->zv_name));
1902
1903 /* move to new hashtable entry */
1904 zv->zv_hash = zvol_name_hash(zv->zv_name);
1905 hlist_del(&zv->zv_hlink);
1906 hlist_add_head(&zv->zv_hlink, ZVOL_HT_HEAD(zv->zv_hash));
1907
1908 /*
1909 * The block device's read-only state is briefly changed causing
1910 * a KOBJ_CHANGE uevent to be issued. This ensures udev detects
1911 * the name change and fixes the symlinks. This does not change
1912 * ZVOL_RDONLY in zv->zv_flags so the actual read-only state never
1913 * changes. This would normally be done using kobject_uevent() but
1914 * that is a GPL-only symbol which is why we need this workaround.
1915 */
1916 set_disk_ro(zv->zv_disk, !readonly);
1917 set_disk_ro(zv->zv_disk, readonly);
1918 }
1919
1920 typedef struct minors_job {
1921 list_t *list;
1922 list_node_t link;
1923 /* input */
1924 char *name;
1925 /* output */
1926 int error;
1927 } minors_job_t;
1928
1929 /*
1930 * Prefetch zvol dnodes for the minors_job
1931 */
1932 static void
1933 zvol_prefetch_minors_impl(void *arg)
1934 {
1935 minors_job_t *job = arg;
1936 char *dsname = job->name;
1937 objset_t *os = NULL;
1938
1939 job->error = dmu_objset_own(dsname, DMU_OST_ZVOL, B_TRUE, B_TRUE,
1940 FTAG, &os);
1941 if (job->error == 0) {
1942 dmu_prefetch(os, ZVOL_OBJ, 0, 0, 0, ZIO_PRIORITY_SYNC_READ);
1943 dmu_objset_disown(os, B_TRUE, FTAG);
1944 }
1945 }
1946
1947 /*
1948 * Mask errors to continue dmu_objset_find() traversal
1949 */
1950 static int
1951 zvol_create_snap_minor_cb(const char *dsname, void *arg)
1952 {
1953 minors_job_t *j = arg;
1954 list_t *minors_list = j->list;
1955 const char *name = j->name;
1956
1957 ASSERT0(MUTEX_HELD(&spa_namespace_lock));
1958
1959 /* skip the designated dataset */
1960 if (name && strcmp(dsname, name) == 0)
1961 return (0);
1962
1963 /* at this point, the dsname should name a snapshot */
1964 if (strchr(dsname, '@') == 0) {
1965 dprintf("zvol_create_snap_minor_cb(): "
1966 "%s is not a shapshot name\n", dsname);
1967 } else {
1968 minors_job_t *job;
1969 char *n = strdup(dsname);
1970 if (n == NULL)
1971 return (0);
1972
1973 job = kmem_alloc(sizeof (minors_job_t), KM_SLEEP);
1974 job->name = n;
1975 job->list = minors_list;
1976 job->error = 0;
1977 list_insert_tail(minors_list, job);
1978 /* don't care if dispatch fails, because job->error is 0 */
1979 taskq_dispatch(system_taskq, zvol_prefetch_minors_impl, job,
1980 TQ_SLEEP);
1981 }
1982
1983 return (0);
1984 }
1985
1986 /*
1987 * Mask errors to continue dmu_objset_find() traversal
1988 */
1989 static int
1990 zvol_create_minors_cb(const char *dsname, void *arg)
1991 {
1992 uint64_t snapdev;
1993 int error;
1994 list_t *minors_list = arg;
1995
1996 ASSERT0(MUTEX_HELD(&spa_namespace_lock));
1997
1998 error = dsl_prop_get_integer(dsname, "snapdev", &snapdev, NULL);
1999 if (error)
2000 return (0);
2001
2002 /*
2003 * Given the name and the 'snapdev' property, create device minor nodes
2004 * with the linkages to zvols/snapshots as needed.
2005 * If the name represents a zvol, create a minor node for the zvol, then
2006 * check if its snapshots are 'visible', and if so, iterate over the
2007 * snapshots and create device minor nodes for those.
2008 */
2009 if (strchr(dsname, '@') == 0) {
2010 minors_job_t *job;
2011 char *n = strdup(dsname);
2012 if (n == NULL)
2013 return (0);
2014
2015 job = kmem_alloc(sizeof (minors_job_t), KM_SLEEP);
2016 job->name = n;
2017 job->list = minors_list;
2018 job->error = 0;
2019 list_insert_tail(minors_list, job);
2020 /* don't care if dispatch fails, because job->error is 0 */
2021 taskq_dispatch(system_taskq, zvol_prefetch_minors_impl, job,
2022 TQ_SLEEP);
2023
2024 if (snapdev == ZFS_SNAPDEV_VISIBLE) {
2025 /*
2026 * traverse snapshots only, do not traverse children,
2027 * and skip the 'dsname'
2028 */
2029 error = dmu_objset_find((char *)dsname,
2030 zvol_create_snap_minor_cb, (void *)job,
2031 DS_FIND_SNAPSHOTS);
2032 }
2033 } else {
2034 dprintf("zvol_create_minors_cb(): %s is not a zvol name\n",
2035 dsname);
2036 }
2037
2038 return (0);
2039 }
2040
2041 /*
2042 * Create minors for the specified dataset, including children and snapshots.
2043 * Pay attention to the 'snapdev' property and iterate over the snapshots
2044 * only if they are 'visible'. This approach allows one to assure that the
2045 * snapshot metadata is read from disk only if it is needed.
2046 *
2047 * The name can represent a dataset to be recursively scanned for zvols and
2048 * their snapshots, or a single zvol snapshot. If the name represents a
2049 * dataset, the scan is performed in two nested stages:
2050 * - scan the dataset for zvols, and
2051 * - for each zvol, create a minor node, then check if the zvol's snapshots
2052 * are 'visible', and only then iterate over the snapshots if needed
2053 *
2054 * If the name represents a snapshot, a check is performed if the snapshot is
2055 * 'visible' (which also verifies that the parent is a zvol), and if so,
2056 * a minor node for that snapshot is created.
2057 */
2058 static int
2059 zvol_create_minors_impl(const char *name)
2060 {
2061 int error = 0;
2062 fstrans_cookie_t cookie;
2063 char *atp, *parent;
2064 list_t minors_list;
2065 minors_job_t *job;
2066
2067 if (zvol_inhibit_dev)
2068 return (0);
2069
2070 /*
2071 * This is the list for prefetch jobs. Whenever we found a match
2072 * during dmu_objset_find, we insert a minors_job to the list and do
2073 * taskq_dispatch to parallel prefetch zvol dnodes. Note we don't need
2074 * any lock because all list operation is done on the current thread.
2075 *
2076 * We will use this list to do zvol_create_minor_impl after prefetch
2077 * so we don't have to traverse using dmu_objset_find again.
2078 */
2079 list_create(&minors_list, sizeof (minors_job_t),
2080 offsetof(minors_job_t, link));
2081
2082 parent = kmem_alloc(MAXPATHLEN, KM_SLEEP);
2083 (void) strlcpy(parent, name, MAXPATHLEN);
2084
2085 if ((atp = strrchr(parent, '@')) != NULL) {
2086 uint64_t snapdev;
2087
2088 *atp = '\0';
2089 error = dsl_prop_get_integer(parent, "snapdev",
2090 &snapdev, NULL);
2091
2092 if (error == 0 && snapdev == ZFS_SNAPDEV_VISIBLE)
2093 error = zvol_create_minor_impl(name);
2094 } else {
2095 cookie = spl_fstrans_mark();
2096 error = dmu_objset_find(parent, zvol_create_minors_cb,
2097 &minors_list, DS_FIND_CHILDREN);
2098 spl_fstrans_unmark(cookie);
2099 }
2100
2101 kmem_free(parent, MAXPATHLEN);
2102 taskq_wait_outstanding(system_taskq, 0);
2103
2104 /*
2105 * Prefetch is completed, we can do zvol_create_minor_impl
2106 * sequentially.
2107 */
2108 while ((job = list_head(&minors_list)) != NULL) {
2109 list_remove(&minors_list, job);
2110 if (!job->error)
2111 zvol_create_minor_impl(job->name);
2112 strfree(job->name);
2113 kmem_free(job, sizeof (minors_job_t));
2114 }
2115
2116 list_destroy(&minors_list);
2117
2118 return (SET_ERROR(error));
2119 }
2120
2121 /*
2122 * Remove minors for specified dataset including children and snapshots.
2123 */
2124 static void
2125 zvol_remove_minors_impl(const char *name)
2126 {
2127 zvol_state_t *zv, *zv_next;
2128 int namelen = ((name) ? strlen(name) : 0);
2129 taskqid_t t, tid = TASKQID_INVALID;
2130 list_t free_list;
2131
2132 if (zvol_inhibit_dev)
2133 return;
2134
2135 list_create(&free_list, sizeof (zvol_state_t),
2136 offsetof(zvol_state_t, zv_next));
2137
2138 rw_enter(&zvol_state_lock, RW_WRITER);
2139
2140 for (zv = list_head(&zvol_state_list); zv != NULL; zv = zv_next) {
2141 zv_next = list_next(&zvol_state_list, zv);
2142
2143 mutex_enter(&zv->zv_state_lock);
2144 if (name == NULL || strcmp(zv->zv_name, name) == 0 ||
2145 (strncmp(zv->zv_name, name, namelen) == 0 &&
2146 (zv->zv_name[namelen] == '/' ||
2147 zv->zv_name[namelen] == '@'))) {
2148 /*
2149 * By holding zv_state_lock here, we guarantee that no
2150 * one is currently using this zv
2151 */
2152
2153 /* If in use, leave alone */
2154 if (zv->zv_open_count > 0 ||
2155 atomic_read(&zv->zv_suspend_ref)) {
2156 mutex_exit(&zv->zv_state_lock);
2157 continue;
2158 }
2159
2160 zvol_remove(zv);
2161
2162 /*
2163 * Cleared while holding zvol_state_lock as a writer
2164 * which will prevent zvol_open() from opening it.
2165 */
2166 zv->zv_disk->private_data = NULL;
2167
2168 /* Drop zv_state_lock before zvol_free() */
2169 mutex_exit(&zv->zv_state_lock);
2170
2171 /* Try parallel zv_free, if failed do it in place */
2172 t = taskq_dispatch(system_taskq, zvol_free, zv,
2173 TQ_SLEEP);
2174 if (t == TASKQID_INVALID)
2175 list_insert_head(&free_list, zv);
2176 else
2177 tid = t;
2178 } else {
2179 mutex_exit(&zv->zv_state_lock);
2180 }
2181 }
2182 rw_exit(&zvol_state_lock);
2183
2184 /* Drop zvol_state_lock before calling zvol_free() */
2185 while ((zv = list_head(&free_list)) != NULL) {
2186 list_remove(&free_list, zv);
2187 zvol_free(zv);
2188 }
2189
2190 if (tid != TASKQID_INVALID)
2191 taskq_wait_outstanding(system_taskq, tid);
2192 }
2193
2194 /* Remove minor for this specific volume only */
2195 static void
2196 zvol_remove_minor_impl(const char *name)
2197 {
2198 zvol_state_t *zv = NULL, *zv_next;
2199
2200 if (zvol_inhibit_dev)
2201 return;
2202
2203 rw_enter(&zvol_state_lock, RW_WRITER);
2204
2205 for (zv = list_head(&zvol_state_list); zv != NULL; zv = zv_next) {
2206 zv_next = list_next(&zvol_state_list, zv);
2207
2208 mutex_enter(&zv->zv_state_lock);
2209 if (strcmp(zv->zv_name, name) == 0) {
2210 /*
2211 * By holding zv_state_lock here, we guarantee that no
2212 * one is currently using this zv
2213 */
2214
2215 /* If in use, leave alone */
2216 if (zv->zv_open_count > 0 ||
2217 atomic_read(&zv->zv_suspend_ref)) {
2218 mutex_exit(&zv->zv_state_lock);
2219 continue;
2220 }
2221 zvol_remove(zv);
2222
2223 /*
2224 * Cleared while holding zvol_state_lock as a writer
2225 * which will prevent zvol_open() from opening it.
2226 */
2227 zv->zv_disk->private_data = NULL;
2228
2229 mutex_exit(&zv->zv_state_lock);
2230 break;
2231 } else {
2232 mutex_exit(&zv->zv_state_lock);
2233 }
2234 }
2235
2236 /* Drop zvol_state_lock before calling zvol_free() */
2237 rw_exit(&zvol_state_lock);
2238
2239 if (zv != NULL)
2240 zvol_free(zv);
2241 }
2242
2243 /*
2244 * Rename minors for specified dataset including children and snapshots.
2245 */
2246 static void
2247 zvol_rename_minors_impl(const char *oldname, const char *newname)
2248 {
2249 zvol_state_t *zv, *zv_next;
2250 int oldnamelen, newnamelen;
2251
2252 if (zvol_inhibit_dev)
2253 return;
2254
2255 oldnamelen = strlen(oldname);
2256 newnamelen = strlen(newname);
2257
2258 rw_enter(&zvol_state_lock, RW_READER);
2259
2260 for (zv = list_head(&zvol_state_list); zv != NULL; zv = zv_next) {
2261 zv_next = list_next(&zvol_state_list, zv);
2262
2263 mutex_enter(&zv->zv_state_lock);
2264
2265 /* If in use, leave alone */
2266 if (zv->zv_open_count > 0) {
2267 mutex_exit(&zv->zv_state_lock);
2268 continue;
2269 }
2270
2271 if (strcmp(zv->zv_name, oldname) == 0) {
2272 zvol_rename_minor(zv, newname);
2273 } else if (strncmp(zv->zv_name, oldname, oldnamelen) == 0 &&
2274 (zv->zv_name[oldnamelen] == '/' ||
2275 zv->zv_name[oldnamelen] == '@')) {
2276 char *name = kmem_asprintf("%s%c%s", newname,
2277 zv->zv_name[oldnamelen],
2278 zv->zv_name + oldnamelen + 1);
2279 zvol_rename_minor(zv, name);
2280 strfree(name);
2281 }
2282
2283 mutex_exit(&zv->zv_state_lock);
2284 }
2285
2286 rw_exit(&zvol_state_lock);
2287 }
2288
2289 typedef struct zvol_snapdev_cb_arg {
2290 uint64_t snapdev;
2291 } zvol_snapdev_cb_arg_t;
2292
2293 static int
2294 zvol_set_snapdev_cb(const char *dsname, void *param)
2295 {
2296 zvol_snapdev_cb_arg_t *arg = param;
2297
2298 if (strchr(dsname, '@') == NULL)
2299 return (0);
2300
2301 switch (arg->snapdev) {
2302 case ZFS_SNAPDEV_VISIBLE:
2303 (void) zvol_create_minor_impl(dsname);
2304 break;
2305 case ZFS_SNAPDEV_HIDDEN:
2306 (void) zvol_remove_minor_impl(dsname);
2307 break;
2308 }
2309
2310 return (0);
2311 }
2312
2313 static void
2314 zvol_set_snapdev_impl(char *name, uint64_t snapdev)
2315 {
2316 zvol_snapdev_cb_arg_t arg = {snapdev};
2317 fstrans_cookie_t cookie = spl_fstrans_mark();
2318 /*
2319 * The zvol_set_snapdev_sync() sets snapdev appropriately
2320 * in the dataset hierarchy. Here, we only scan snapshots.
2321 */
2322 dmu_objset_find(name, zvol_set_snapdev_cb, &arg, DS_FIND_SNAPSHOTS);
2323 spl_fstrans_unmark(cookie);
2324 }
2325
2326 typedef struct zvol_volmode_cb_arg {
2327 uint64_t volmode;
2328 } zvol_volmode_cb_arg_t;
2329
2330 static void
2331 zvol_set_volmode_impl(char *name, uint64_t volmode)
2332 {
2333 fstrans_cookie_t cookie = spl_fstrans_mark();
2334
2335 if (strchr(name, '@') != NULL)
2336 return;
2337
2338 /*
2339 * It's unfortunate we need to remove minors before we create new ones:
2340 * this is necessary because our backing gendisk (zvol_state->zv_disk)
2341 * coule be different when we set, for instance, volmode from "geom"
2342 * to "dev" (or vice versa).
2343 * A possible optimization is to modify our consumers so we don't get
2344 * called when "volmode" does not change.
2345 */
2346 switch (volmode) {
2347 case ZFS_VOLMODE_NONE:
2348 (void) zvol_remove_minor_impl(name);
2349 break;
2350 case ZFS_VOLMODE_GEOM:
2351 case ZFS_VOLMODE_DEV:
2352 (void) zvol_remove_minor_impl(name);
2353 (void) zvol_create_minor_impl(name);
2354 break;
2355 case ZFS_VOLMODE_DEFAULT:
2356 (void) zvol_remove_minor_impl(name);
2357 if (zvol_volmode == ZFS_VOLMODE_NONE)
2358 break;
2359 else /* if zvol_volmode is invalid defaults to "geom" */
2360 (void) zvol_create_minor_impl(name);
2361 break;
2362 }
2363
2364 spl_fstrans_unmark(cookie);
2365 }
2366
2367 static zvol_task_t *
2368 zvol_task_alloc(zvol_async_op_t op, const char *name1, const char *name2,
2369 uint64_t value)
2370 {
2371 zvol_task_t *task;
2372 char *delim;
2373
2374 /* Never allow tasks on hidden names. */
2375 if (name1[0] == '$')
2376 return (NULL);
2377
2378 task = kmem_zalloc(sizeof (zvol_task_t), KM_SLEEP);
2379 task->op = op;
2380 task->value = value;
2381 delim = strchr(name1, '/');
2382 strlcpy(task->pool, name1, delim ? (delim - name1 + 1) : MAXNAMELEN);
2383
2384 strlcpy(task->name1, name1, MAXNAMELEN);
2385 if (name2 != NULL)
2386 strlcpy(task->name2, name2, MAXNAMELEN);
2387
2388 return (task);
2389 }
2390
2391 static void
2392 zvol_task_free(zvol_task_t *task)
2393 {
2394 kmem_free(task, sizeof (zvol_task_t));
2395 }
2396
2397 /*
2398 * The worker thread function performed asynchronously.
2399 */
2400 static void
2401 zvol_task_cb(void *param)
2402 {
2403 zvol_task_t *task = (zvol_task_t *)param;
2404
2405 switch (task->op) {
2406 case ZVOL_ASYNC_CREATE_MINORS:
2407 (void) zvol_create_minors_impl(task->name1);
2408 break;
2409 case ZVOL_ASYNC_REMOVE_MINORS:
2410 zvol_remove_minors_impl(task->name1);
2411 break;
2412 case ZVOL_ASYNC_RENAME_MINORS:
2413 zvol_rename_minors_impl(task->name1, task->name2);
2414 break;
2415 case ZVOL_ASYNC_SET_SNAPDEV:
2416 zvol_set_snapdev_impl(task->name1, task->value);
2417 break;
2418 case ZVOL_ASYNC_SET_VOLMODE:
2419 zvol_set_volmode_impl(task->name1, task->value);
2420 break;
2421 default:
2422 VERIFY(0);
2423 break;
2424 }
2425
2426 zvol_task_free(task);
2427 }
2428
2429 typedef struct zvol_set_prop_int_arg {
2430 const char *zsda_name;
2431 uint64_t zsda_value;
2432 zprop_source_t zsda_source;
2433 dmu_tx_t *zsda_tx;
2434 } zvol_set_prop_int_arg_t;
2435
2436 /*
2437 * Sanity check the dataset for safe use by the sync task. No additional
2438 * conditions are imposed.
2439 */
2440 static int
2441 zvol_set_snapdev_check(void *arg, dmu_tx_t *tx)
2442 {
2443 zvol_set_prop_int_arg_t *zsda = arg;
2444 dsl_pool_t *dp = dmu_tx_pool(tx);
2445 dsl_dir_t *dd;
2446 int error;
2447
2448 error = dsl_dir_hold(dp, zsda->zsda_name, FTAG, &dd, NULL);
2449 if (error != 0)
2450 return (error);
2451
2452 dsl_dir_rele(dd, FTAG);
2453
2454 return (error);
2455 }
2456
2457 /* ARGSUSED */
2458 static int
2459 zvol_set_snapdev_sync_cb(dsl_pool_t *dp, dsl_dataset_t *ds, void *arg)
2460 {
2461 char dsname[MAXNAMELEN];
2462 zvol_task_t *task;
2463 uint64_t snapdev;
2464
2465 dsl_dataset_name(ds, dsname);
2466 if (dsl_prop_get_int_ds(ds, "snapdev", &snapdev) != 0)
2467 return (0);
2468 task = zvol_task_alloc(ZVOL_ASYNC_SET_SNAPDEV, dsname, NULL, snapdev);
2469 if (task == NULL)
2470 return (0);
2471
2472 (void) taskq_dispatch(dp->dp_spa->spa_zvol_taskq, zvol_task_cb,
2473 task, TQ_SLEEP);
2474 return (0);
2475 }
2476
2477 /*
2478 * Traverse all child datasets and apply snapdev appropriately.
2479 * We call dsl_prop_set_sync_impl() here to set the value only on the toplevel
2480 * dataset and read the effective "snapdev" on every child in the callback
2481 * function: this is because the value is not guaranteed to be the same in the
2482 * whole dataset hierarchy.
2483 */
2484 static void
2485 zvol_set_snapdev_sync(void *arg, dmu_tx_t *tx)
2486 {
2487 zvol_set_prop_int_arg_t *zsda = arg;
2488 dsl_pool_t *dp = dmu_tx_pool(tx);
2489 dsl_dir_t *dd;
2490 dsl_dataset_t *ds;
2491 int error;
2492
2493 VERIFY0(dsl_dir_hold(dp, zsda->zsda_name, FTAG, &dd, NULL));
2494 zsda->zsda_tx = tx;
2495
2496 error = dsl_dataset_hold(dp, zsda->zsda_name, FTAG, &ds);
2497 if (error == 0) {
2498 dsl_prop_set_sync_impl(ds, zfs_prop_to_name(ZFS_PROP_SNAPDEV),
2499 zsda->zsda_source, sizeof (zsda->zsda_value), 1,
2500 &zsda->zsda_value, zsda->zsda_tx);
2501 dsl_dataset_rele(ds, FTAG);
2502 }
2503 dmu_objset_find_dp(dp, dd->dd_object, zvol_set_snapdev_sync_cb,
2504 zsda, DS_FIND_CHILDREN);
2505
2506 dsl_dir_rele(dd, FTAG);
2507 }
2508
2509 int
2510 zvol_set_snapdev(const char *ddname, zprop_source_t source, uint64_t snapdev)
2511 {
2512 zvol_set_prop_int_arg_t zsda;
2513
2514 zsda.zsda_name = ddname;
2515 zsda.zsda_source = source;
2516 zsda.zsda_value = snapdev;
2517
2518 return (dsl_sync_task(ddname, zvol_set_snapdev_check,
2519 zvol_set_snapdev_sync, &zsda, 0, ZFS_SPACE_CHECK_NONE));
2520 }
2521
2522 /*
2523 * Sanity check the dataset for safe use by the sync task. No additional
2524 * conditions are imposed.
2525 */
2526 static int
2527 zvol_set_volmode_check(void *arg, dmu_tx_t *tx)
2528 {
2529 zvol_set_prop_int_arg_t *zsda = arg;
2530 dsl_pool_t *dp = dmu_tx_pool(tx);
2531 dsl_dir_t *dd;
2532 int error;
2533
2534 error = dsl_dir_hold(dp, zsda->zsda_name, FTAG, &dd, NULL);
2535 if (error != 0)
2536 return (error);
2537
2538 dsl_dir_rele(dd, FTAG);
2539
2540 return (error);
2541 }
2542
2543 /* ARGSUSED */
2544 static int
2545 zvol_set_volmode_sync_cb(dsl_pool_t *dp, dsl_dataset_t *ds, void *arg)
2546 {
2547 char dsname[MAXNAMELEN];
2548 zvol_task_t *task;
2549 uint64_t volmode;
2550
2551 dsl_dataset_name(ds, dsname);
2552 if (dsl_prop_get_int_ds(ds, "volmode", &volmode) != 0)
2553 return (0);
2554 task = zvol_task_alloc(ZVOL_ASYNC_SET_VOLMODE, dsname, NULL, volmode);
2555 if (task == NULL)
2556 return (0);
2557
2558 (void) taskq_dispatch(dp->dp_spa->spa_zvol_taskq, zvol_task_cb,
2559 task, TQ_SLEEP);
2560 return (0);
2561 }
2562
2563 /*
2564 * Traverse all child datasets and apply volmode appropriately.
2565 * We call dsl_prop_set_sync_impl() here to set the value only on the toplevel
2566 * dataset and read the effective "volmode" on every child in the callback
2567 * function: this is because the value is not guaranteed to be the same in the
2568 * whole dataset hierarchy.
2569 */
2570 static void
2571 zvol_set_volmode_sync(void *arg, dmu_tx_t *tx)
2572 {
2573 zvol_set_prop_int_arg_t *zsda = arg;
2574 dsl_pool_t *dp = dmu_tx_pool(tx);
2575 dsl_dir_t *dd;
2576 dsl_dataset_t *ds;
2577 int error;
2578
2579 VERIFY0(dsl_dir_hold(dp, zsda->zsda_name, FTAG, &dd, NULL));
2580 zsda->zsda_tx = tx;
2581
2582 error = dsl_dataset_hold(dp, zsda->zsda_name, FTAG, &ds);
2583 if (error == 0) {
2584 dsl_prop_set_sync_impl(ds, zfs_prop_to_name(ZFS_PROP_VOLMODE),
2585 zsda->zsda_source, sizeof (zsda->zsda_value), 1,
2586 &zsda->zsda_value, zsda->zsda_tx);
2587 dsl_dataset_rele(ds, FTAG);
2588 }
2589
2590 dmu_objset_find_dp(dp, dd->dd_object, zvol_set_volmode_sync_cb,
2591 zsda, DS_FIND_CHILDREN);
2592
2593 dsl_dir_rele(dd, FTAG);
2594 }
2595
2596 int
2597 zvol_set_volmode(const char *ddname, zprop_source_t source, uint64_t volmode)
2598 {
2599 zvol_set_prop_int_arg_t zsda;
2600
2601 zsda.zsda_name = ddname;
2602 zsda.zsda_source = source;
2603 zsda.zsda_value = volmode;
2604
2605 return (dsl_sync_task(ddname, zvol_set_volmode_check,
2606 zvol_set_volmode_sync, &zsda, 0, ZFS_SPACE_CHECK_NONE));
2607 }
2608
2609 void
2610 zvol_create_minors(spa_t *spa, const char *name, boolean_t async)
2611 {
2612 zvol_task_t *task;
2613 taskqid_t id;
2614
2615 task = zvol_task_alloc(ZVOL_ASYNC_CREATE_MINORS, name, NULL, ~0ULL);
2616 if (task == NULL)
2617 return;
2618
2619 id = taskq_dispatch(spa->spa_zvol_taskq, zvol_task_cb, task, TQ_SLEEP);
2620 if ((async == B_FALSE) && (id != TASKQID_INVALID))
2621 taskq_wait_id(spa->spa_zvol_taskq, id);
2622 }
2623
2624 void
2625 zvol_remove_minors(spa_t *spa, const char *name, boolean_t async)
2626 {
2627 zvol_task_t *task;
2628 taskqid_t id;
2629
2630 task = zvol_task_alloc(ZVOL_ASYNC_REMOVE_MINORS, name, NULL, ~0ULL);
2631 if (task == NULL)
2632 return;
2633
2634 id = taskq_dispatch(spa->spa_zvol_taskq, zvol_task_cb, task, TQ_SLEEP);
2635 if ((async == B_FALSE) && (id != TASKQID_INVALID))
2636 taskq_wait_id(spa->spa_zvol_taskq, id);
2637 }
2638
2639 void
2640 zvol_rename_minors(spa_t *spa, const char *name1, const char *name2,
2641 boolean_t async)
2642 {
2643 zvol_task_t *task;
2644 taskqid_t id;
2645
2646 task = zvol_task_alloc(ZVOL_ASYNC_RENAME_MINORS, name1, name2, ~0ULL);
2647 if (task == NULL)
2648 return;
2649
2650 id = taskq_dispatch(spa->spa_zvol_taskq, zvol_task_cb, task, TQ_SLEEP);
2651 if ((async == B_FALSE) && (id != TASKQID_INVALID))
2652 taskq_wait_id(spa->spa_zvol_taskq, id);
2653 }
2654
2655 int
2656 zvol_init(void)
2657 {
2658 int threads = MIN(MAX(zvol_threads, 1), 1024);
2659 int i, error;
2660
2661 list_create(&zvol_state_list, sizeof (zvol_state_t),
2662 offsetof(zvol_state_t, zv_next));
2663 rw_init(&zvol_state_lock, NULL, RW_DEFAULT, NULL);
2664 ida_init(&zvol_ida);
2665
2666 zvol_taskq = taskq_create(ZVOL_DRIVER, threads, maxclsyspri,
2667 threads * 2, INT_MAX, TASKQ_PREPOPULATE | TASKQ_DYNAMIC);
2668 if (zvol_taskq == NULL) {
2669 printk(KERN_INFO "ZFS: taskq_create() failed\n");
2670 error = -ENOMEM;
2671 goto out;
2672 }
2673
2674 zvol_htable = kmem_alloc(ZVOL_HT_SIZE * sizeof (struct hlist_head),
2675 KM_SLEEP);
2676 if (!zvol_htable) {
2677 error = -ENOMEM;
2678 goto out_taskq;
2679 }
2680 for (i = 0; i < ZVOL_HT_SIZE; i++)
2681 INIT_HLIST_HEAD(&zvol_htable[i]);
2682
2683 error = register_blkdev(zvol_major, ZVOL_DRIVER);
2684 if (error) {
2685 printk(KERN_INFO "ZFS: register_blkdev() failed %d\n", error);
2686 goto out_free;
2687 }
2688
2689 blk_register_region(MKDEV(zvol_major, 0), 1UL << MINORBITS,
2690 THIS_MODULE, zvol_probe, NULL, NULL);
2691
2692 return (0);
2693
2694 out_free:
2695 kmem_free(zvol_htable, ZVOL_HT_SIZE * sizeof (struct hlist_head));
2696 out_taskq:
2697 taskq_destroy(zvol_taskq);
2698 out:
2699 ida_destroy(&zvol_ida);
2700 rw_destroy(&zvol_state_lock);
2701 list_destroy(&zvol_state_list);
2702
2703 return (SET_ERROR(error));
2704 }
2705
2706 void
2707 zvol_fini(void)
2708 {
2709 zvol_remove_minors_impl(NULL);
2710
2711 blk_unregister_region(MKDEV(zvol_major, 0), 1UL << MINORBITS);
2712 unregister_blkdev(zvol_major, ZVOL_DRIVER);
2713 kmem_free(zvol_htable, ZVOL_HT_SIZE * sizeof (struct hlist_head));
2714
2715 taskq_destroy(zvol_taskq);
2716 list_destroy(&zvol_state_list);
2717 rw_destroy(&zvol_state_lock);
2718
2719 ida_destroy(&zvol_ida);
2720 }
2721
2722 /* BEGIN CSTYLED */
2723 module_param(zvol_inhibit_dev, uint, 0644);
2724 MODULE_PARM_DESC(zvol_inhibit_dev, "Do not create zvol device nodes");
2725
2726 module_param(zvol_major, uint, 0444);
2727 MODULE_PARM_DESC(zvol_major, "Major number for zvol device");
2728
2729 module_param(zvol_threads, uint, 0444);
2730 MODULE_PARM_DESC(zvol_threads, "Max number of threads to handle I/O requests");
2731
2732 module_param(zvol_request_sync, uint, 0644);
2733 MODULE_PARM_DESC(zvol_request_sync, "Synchronously handle bio requests");
2734
2735 module_param(zvol_max_discard_blocks, ulong, 0444);
2736 MODULE_PARM_DESC(zvol_max_discard_blocks, "Max number of blocks to discard");
2737
2738 module_param(zvol_prefetch_bytes, uint, 0644);
2739 MODULE_PARM_DESC(zvol_prefetch_bytes, "Prefetch N bytes at zvol start+end");
2740
2741 module_param(zvol_volmode, uint, 0644);
2742 MODULE_PARM_DESC(zvol_volmode, "Default volmode property value");
2743 /* END CSTYLED */