]> git.proxmox.com Git - qemu.git/blame - exec.c
vfio-pci: Extend reset
[qemu.git] / exec.c
CommitLineData
54936004 1/*
fd6ce8f6 2 * virtual page mapping and translated block handling
5fafdf24 3 *
54936004
FB
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
8167ee88 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
54936004 18 */
67b915a5 19#include "config.h"
d5a8f07c
FB
20#ifdef _WIN32
21#include <windows.h>
22#else
a98d49b1 23#include <sys/types.h>
d5a8f07c
FB
24#include <sys/mman.h>
25#endif
54936004 26
055403b2 27#include "qemu-common.h"
6180a181 28#include "cpu.h"
b67d9a52 29#include "tcg.h"
b3c7724c 30#include "hw/hw.h"
cc9e98cb 31#include "hw/qdev.h"
74576198 32#include "osdep.h"
7ba1e619 33#include "kvm.h"
432d268c 34#include "hw/xen.h"
29e922b6 35#include "qemu-timer.h"
62152b8a
AK
36#include "memory.h"
37#include "exec-memory.h"
53a5960a
PB
38#if defined(CONFIG_USER_ONLY)
39#include <qemu.h>
f01576f1
JL
40#if defined(__FreeBSD__) || defined(__FreeBSD_kernel__)
41#include <sys/param.h>
42#if __FreeBSD_version >= 700104
43#define HAVE_KINFO_GETVMMAP
44#define sigqueue sigqueue_freebsd /* avoid redefinition */
45#include <sys/time.h>
46#include <sys/proc.h>
47#include <machine/profile.h>
48#define _KERNEL
49#include <sys/user.h>
50#undef _KERNEL
51#undef sigqueue
52#include <libutil.h>
53#endif
54#endif
432d268c
JN
55#else /* !CONFIG_USER_ONLY */
56#include "xen-mapcache.h"
6506e4f9 57#include "trace.h"
53a5960a 58#endif
54936004 59
0cac1b66
BS
60#include "cputlb.h"
61
67d95c15
AK
62#define WANT_EXEC_OBSOLETE
63#include "exec-obsolete.h"
64
fd6ce8f6 65//#define DEBUG_TB_INVALIDATE
66e85a21 66//#define DEBUG_FLUSH
67d3b957 67//#define DEBUG_UNASSIGNED
fd6ce8f6
FB
68
69/* make various TB consistency checks */
5fafdf24 70//#define DEBUG_TB_CHECK
fd6ce8f6 71
1196be37 72//#define DEBUG_IOPORT
db7b5426 73//#define DEBUG_SUBPAGE
1196be37 74
99773bd4
PB
75#if !defined(CONFIG_USER_ONLY)
76/* TB consistency checks only implemented for usermode emulation. */
77#undef DEBUG_TB_CHECK
78#endif
79
9fa3e853
FB
80#define SMC_BITMAP_USE_THRESHOLD 10
81
bdaf78e0 82static TranslationBlock *tbs;
24ab68ac 83static int code_gen_max_blocks;
9fa3e853 84TranslationBlock *tb_phys_hash[CODE_GEN_PHYS_HASH_SIZE];
bdaf78e0 85static int nb_tbs;
eb51d102 86/* any access to the tbs or the page table must use this lock */
c227f099 87spinlock_t tb_lock = SPIN_LOCK_UNLOCKED;
fd6ce8f6 88
9b9c37c3 89#if defined(__arm__) || defined(__sparc__)
141ac468
BS
90/* The prologue must be reachable with a direct jump. ARM and Sparc64
91 have limited branch ranges (possibly also PPC) so place it in a
d03d860b
BS
92 section close to code segment. */
93#define code_gen_section \
94 __attribute__((__section__(".gen_code"))) \
95 __attribute__((aligned (32)))
6840981d 96#elif defined(_WIN32) && !defined(_WIN64)
f8e2af11
SW
97#define code_gen_section \
98 __attribute__((aligned (16)))
d03d860b
BS
99#else
100#define code_gen_section \
101 __attribute__((aligned (32)))
102#endif
103
104uint8_t code_gen_prologue[1024] code_gen_section;
bdaf78e0
BS
105static uint8_t *code_gen_buffer;
106static unsigned long code_gen_buffer_size;
26a5f13b 107/* threshold to flush the translated code buffer */
bdaf78e0 108static unsigned long code_gen_buffer_max_size;
24ab68ac 109static uint8_t *code_gen_ptr;
fd6ce8f6 110
e2eef170 111#if !defined(CONFIG_USER_ONLY)
9fa3e853 112int phys_ram_fd;
74576198 113static int in_migration;
94a6b54f 114
85d59fef 115RAMList ram_list = { .blocks = QLIST_HEAD_INITIALIZER(ram_list.blocks) };
62152b8a
AK
116
117static MemoryRegion *system_memory;
309cb471 118static MemoryRegion *system_io;
62152b8a 119
0e0df1e2 120MemoryRegion io_mem_ram, io_mem_rom, io_mem_unassigned, io_mem_notdirty;
de712f94 121static MemoryRegion io_mem_subpage_ram;
0e0df1e2 122
e2eef170 123#endif
9fa3e853 124
9349b4f9 125CPUArchState *first_cpu;
6a00d601
FB
126/* current CPU in the current thread. It is only valid inside
127 cpu_exec() */
9349b4f9 128DEFINE_TLS(CPUArchState *,cpu_single_env);
2e70f6ef 129/* 0 = Do not count executed instructions.
bf20dc07 130 1 = Precise instruction counting.
2e70f6ef
PB
131 2 = Adaptive rate instruction counting. */
132int use_icount = 0;
6a00d601 133
54936004 134typedef struct PageDesc {
92e873b9 135 /* list of TBs intersecting this ram page */
fd6ce8f6 136 TranslationBlock *first_tb;
9fa3e853
FB
137 /* in order to optimize self modifying code, we count the number
138 of lookups we do to a given page to use a bitmap */
139 unsigned int code_write_count;
140 uint8_t *code_bitmap;
141#if defined(CONFIG_USER_ONLY)
142 unsigned long flags;
143#endif
54936004
FB
144} PageDesc;
145
41c1b1c9 146/* In system mode we want L1_MAP to be based on ram offsets,
5cd2c5b6
RH
147 while in user mode we want it to be based on virtual addresses. */
148#if !defined(CONFIG_USER_ONLY)
41c1b1c9
PB
149#if HOST_LONG_BITS < TARGET_PHYS_ADDR_SPACE_BITS
150# define L1_MAP_ADDR_SPACE_BITS HOST_LONG_BITS
151#else
5cd2c5b6 152# define L1_MAP_ADDR_SPACE_BITS TARGET_PHYS_ADDR_SPACE_BITS
41c1b1c9 153#endif
bedb69ea 154#else
5cd2c5b6 155# define L1_MAP_ADDR_SPACE_BITS TARGET_VIRT_ADDR_SPACE_BITS
bedb69ea 156#endif
54936004 157
5cd2c5b6
RH
158/* Size of the L2 (and L3, etc) page tables. */
159#define L2_BITS 10
54936004
FB
160#define L2_SIZE (1 << L2_BITS)
161
3eef53df
AK
162#define P_L2_LEVELS \
163 (((TARGET_PHYS_ADDR_SPACE_BITS - TARGET_PAGE_BITS - 1) / L2_BITS) + 1)
164
5cd2c5b6 165/* The bits remaining after N lower levels of page tables. */
5cd2c5b6
RH
166#define V_L1_BITS_REM \
167 ((L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS) % L2_BITS)
168
5cd2c5b6
RH
169#if V_L1_BITS_REM < 4
170#define V_L1_BITS (V_L1_BITS_REM + L2_BITS)
171#else
172#define V_L1_BITS V_L1_BITS_REM
173#endif
174
5cd2c5b6
RH
175#define V_L1_SIZE ((target_ulong)1 << V_L1_BITS)
176
5cd2c5b6
RH
177#define V_L1_SHIFT (L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS - V_L1_BITS)
178
c6d50674
SW
179uintptr_t qemu_real_host_page_size;
180uintptr_t qemu_host_page_size;
181uintptr_t qemu_host_page_mask;
54936004 182
5cd2c5b6
RH
183/* This is a multi-level map on the virtual address space.
184 The bottom level has pointers to PageDesc. */
185static void *l1_map[V_L1_SIZE];
54936004 186
e2eef170 187#if !defined(CONFIG_USER_ONLY)
4346ae3e
AK
188typedef struct PhysPageEntry PhysPageEntry;
189
5312bd8b
AK
190static MemoryRegionSection *phys_sections;
191static unsigned phys_sections_nb, phys_sections_nb_alloc;
192static uint16_t phys_section_unassigned;
aa102231
AK
193static uint16_t phys_section_notdirty;
194static uint16_t phys_section_rom;
195static uint16_t phys_section_watch;
5312bd8b 196
4346ae3e 197struct PhysPageEntry {
07f07b31
AK
198 uint16_t is_leaf : 1;
199 /* index into phys_sections (is_leaf) or phys_map_nodes (!is_leaf) */
200 uint16_t ptr : 15;
4346ae3e
AK
201};
202
d6f2ea22
AK
203/* Simple allocator for PhysPageEntry nodes */
204static PhysPageEntry (*phys_map_nodes)[L2_SIZE];
205static unsigned phys_map_nodes_nb, phys_map_nodes_nb_alloc;
206
07f07b31 207#define PHYS_MAP_NODE_NIL (((uint16_t)~0) >> 1)
d6f2ea22 208
5cd2c5b6 209/* This is a multi-level map on the physical address space.
06ef3525 210 The bottom level has pointers to MemoryRegionSections. */
07f07b31 211static PhysPageEntry phys_map = { .ptr = PHYS_MAP_NODE_NIL, .is_leaf = 0 };
6d9a1304 212
e2eef170 213static void io_mem_init(void);
62152b8a 214static void memory_map_init(void);
e2eef170 215
1ec9b909 216static MemoryRegion io_mem_watch;
6658ffb8 217#endif
33417e70 218
e3db7226 219/* statistics */
e3db7226
FB
220static int tb_flush_count;
221static int tb_phys_invalidate_count;
222
7cb69cae
FB
223#ifdef _WIN32
224static void map_exec(void *addr, long size)
225{
226 DWORD old_protect;
227 VirtualProtect(addr, size,
228 PAGE_EXECUTE_READWRITE, &old_protect);
229
230}
231#else
232static void map_exec(void *addr, long size)
233{
4369415f 234 unsigned long start, end, page_size;
7cb69cae 235
4369415f 236 page_size = getpagesize();
7cb69cae 237 start = (unsigned long)addr;
4369415f 238 start &= ~(page_size - 1);
7cb69cae
FB
239
240 end = (unsigned long)addr + size;
4369415f
FB
241 end += page_size - 1;
242 end &= ~(page_size - 1);
7cb69cae
FB
243
244 mprotect((void *)start, end - start,
245 PROT_READ | PROT_WRITE | PROT_EXEC);
246}
247#endif
248
b346ff46 249static void page_init(void)
54936004 250{
83fb7adf 251 /* NOTE: we can always suppose that qemu_host_page_size >=
54936004 252 TARGET_PAGE_SIZE */
c2b48b69
AL
253#ifdef _WIN32
254 {
255 SYSTEM_INFO system_info;
256
257 GetSystemInfo(&system_info);
258 qemu_real_host_page_size = system_info.dwPageSize;
259 }
260#else
261 qemu_real_host_page_size = getpagesize();
262#endif
83fb7adf
FB
263 if (qemu_host_page_size == 0)
264 qemu_host_page_size = qemu_real_host_page_size;
265 if (qemu_host_page_size < TARGET_PAGE_SIZE)
266 qemu_host_page_size = TARGET_PAGE_SIZE;
83fb7adf 267 qemu_host_page_mask = ~(qemu_host_page_size - 1);
50a9569b 268
2e9a5713 269#if defined(CONFIG_BSD) && defined(CONFIG_USER_ONLY)
50a9569b 270 {
f01576f1
JL
271#ifdef HAVE_KINFO_GETVMMAP
272 struct kinfo_vmentry *freep;
273 int i, cnt;
274
275 freep = kinfo_getvmmap(getpid(), &cnt);
276 if (freep) {
277 mmap_lock();
278 for (i = 0; i < cnt; i++) {
279 unsigned long startaddr, endaddr;
280
281 startaddr = freep[i].kve_start;
282 endaddr = freep[i].kve_end;
283 if (h2g_valid(startaddr)) {
284 startaddr = h2g(startaddr) & TARGET_PAGE_MASK;
285
286 if (h2g_valid(endaddr)) {
287 endaddr = h2g(endaddr);
fd436907 288 page_set_flags(startaddr, endaddr, PAGE_RESERVED);
f01576f1
JL
289 } else {
290#if TARGET_ABI_BITS <= L1_MAP_ADDR_SPACE_BITS
291 endaddr = ~0ul;
fd436907 292 page_set_flags(startaddr, endaddr, PAGE_RESERVED);
f01576f1
JL
293#endif
294 }
295 }
296 }
297 free(freep);
298 mmap_unlock();
299 }
300#else
50a9569b 301 FILE *f;
50a9569b 302
0776590d 303 last_brk = (unsigned long)sbrk(0);
5cd2c5b6 304
fd436907 305 f = fopen("/compat/linux/proc/self/maps", "r");
50a9569b 306 if (f) {
5cd2c5b6
RH
307 mmap_lock();
308
50a9569b 309 do {
5cd2c5b6
RH
310 unsigned long startaddr, endaddr;
311 int n;
312
313 n = fscanf (f, "%lx-%lx %*[^\n]\n", &startaddr, &endaddr);
314
315 if (n == 2 && h2g_valid(startaddr)) {
316 startaddr = h2g(startaddr) & TARGET_PAGE_MASK;
317
318 if (h2g_valid(endaddr)) {
319 endaddr = h2g(endaddr);
320 } else {
321 endaddr = ~0ul;
322 }
323 page_set_flags(startaddr, endaddr, PAGE_RESERVED);
50a9569b
AZ
324 }
325 } while (!feof(f));
5cd2c5b6 326
50a9569b 327 fclose(f);
5cd2c5b6 328 mmap_unlock();
50a9569b 329 }
f01576f1 330#endif
50a9569b
AZ
331 }
332#endif
54936004
FB
333}
334
41c1b1c9 335static PageDesc *page_find_alloc(tb_page_addr_t index, int alloc)
54936004 336{
41c1b1c9
PB
337 PageDesc *pd;
338 void **lp;
339 int i;
340
5cd2c5b6 341#if defined(CONFIG_USER_ONLY)
7267c094 342 /* We can't use g_malloc because it may recurse into a locked mutex. */
5cd2c5b6
RH
343# define ALLOC(P, SIZE) \
344 do { \
345 P = mmap(NULL, SIZE, PROT_READ | PROT_WRITE, \
346 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0); \
5cd2c5b6
RH
347 } while (0)
348#else
349# define ALLOC(P, SIZE) \
7267c094 350 do { P = g_malloc0(SIZE); } while (0)
17e2377a 351#endif
434929bf 352
5cd2c5b6
RH
353 /* Level 1. Always allocated. */
354 lp = l1_map + ((index >> V_L1_SHIFT) & (V_L1_SIZE - 1));
355
356 /* Level 2..N-1. */
357 for (i = V_L1_SHIFT / L2_BITS - 1; i > 0; i--) {
358 void **p = *lp;
359
360 if (p == NULL) {
361 if (!alloc) {
362 return NULL;
363 }
364 ALLOC(p, sizeof(void *) * L2_SIZE);
365 *lp = p;
17e2377a 366 }
5cd2c5b6
RH
367
368 lp = p + ((index >> (i * L2_BITS)) & (L2_SIZE - 1));
369 }
370
371 pd = *lp;
372 if (pd == NULL) {
373 if (!alloc) {
374 return NULL;
375 }
376 ALLOC(pd, sizeof(PageDesc) * L2_SIZE);
377 *lp = pd;
54936004 378 }
5cd2c5b6
RH
379
380#undef ALLOC
5cd2c5b6
RH
381
382 return pd + (index & (L2_SIZE - 1));
54936004
FB
383}
384
41c1b1c9 385static inline PageDesc *page_find(tb_page_addr_t index)
54936004 386{
5cd2c5b6 387 return page_find_alloc(index, 0);
fd6ce8f6
FB
388}
389
6d9a1304 390#if !defined(CONFIG_USER_ONLY)
d6f2ea22 391
f7bf5461 392static void phys_map_node_reserve(unsigned nodes)
d6f2ea22 393{
f7bf5461 394 if (phys_map_nodes_nb + nodes > phys_map_nodes_nb_alloc) {
d6f2ea22
AK
395 typedef PhysPageEntry Node[L2_SIZE];
396 phys_map_nodes_nb_alloc = MAX(phys_map_nodes_nb_alloc * 2, 16);
f7bf5461
AK
397 phys_map_nodes_nb_alloc = MAX(phys_map_nodes_nb_alloc,
398 phys_map_nodes_nb + nodes);
d6f2ea22
AK
399 phys_map_nodes = g_renew(Node, phys_map_nodes,
400 phys_map_nodes_nb_alloc);
401 }
f7bf5461
AK
402}
403
404static uint16_t phys_map_node_alloc(void)
405{
406 unsigned i;
407 uint16_t ret;
408
409 ret = phys_map_nodes_nb++;
410 assert(ret != PHYS_MAP_NODE_NIL);
411 assert(ret != phys_map_nodes_nb_alloc);
d6f2ea22 412 for (i = 0; i < L2_SIZE; ++i) {
07f07b31 413 phys_map_nodes[ret][i].is_leaf = 0;
c19e8800 414 phys_map_nodes[ret][i].ptr = PHYS_MAP_NODE_NIL;
d6f2ea22 415 }
f7bf5461 416 return ret;
d6f2ea22
AK
417}
418
419static void phys_map_nodes_reset(void)
420{
421 phys_map_nodes_nb = 0;
422}
423
92e873b9 424
2999097b
AK
425static void phys_page_set_level(PhysPageEntry *lp, target_phys_addr_t *index,
426 target_phys_addr_t *nb, uint16_t leaf,
427 int level)
f7bf5461
AK
428{
429 PhysPageEntry *p;
430 int i;
07f07b31 431 target_phys_addr_t step = (target_phys_addr_t)1 << (level * L2_BITS);
108c49b8 432
07f07b31 433 if (!lp->is_leaf && lp->ptr == PHYS_MAP_NODE_NIL) {
c19e8800
AK
434 lp->ptr = phys_map_node_alloc();
435 p = phys_map_nodes[lp->ptr];
f7bf5461
AK
436 if (level == 0) {
437 for (i = 0; i < L2_SIZE; i++) {
07f07b31 438 p[i].is_leaf = 1;
c19e8800 439 p[i].ptr = phys_section_unassigned;
4346ae3e 440 }
67c4d23c 441 }
f7bf5461 442 } else {
c19e8800 443 p = phys_map_nodes[lp->ptr];
92e873b9 444 }
2999097b 445 lp = &p[(*index >> (level * L2_BITS)) & (L2_SIZE - 1)];
f7bf5461 446
2999097b 447 while (*nb && lp < &p[L2_SIZE]) {
07f07b31
AK
448 if ((*index & (step - 1)) == 0 && *nb >= step) {
449 lp->is_leaf = true;
c19e8800 450 lp->ptr = leaf;
07f07b31
AK
451 *index += step;
452 *nb -= step;
2999097b
AK
453 } else {
454 phys_page_set_level(lp, index, nb, leaf, level - 1);
455 }
456 ++lp;
f7bf5461
AK
457 }
458}
459
2999097b
AK
460static void phys_page_set(target_phys_addr_t index, target_phys_addr_t nb,
461 uint16_t leaf)
f7bf5461 462{
2999097b 463 /* Wildly overreserve - it doesn't matter much. */
07f07b31 464 phys_map_node_reserve(3 * P_L2_LEVELS);
5cd2c5b6 465
2999097b 466 phys_page_set_level(&phys_map, &index, &nb, leaf, P_L2_LEVELS - 1);
92e873b9
FB
467}
468
0cac1b66 469MemoryRegionSection *phys_page_find(target_phys_addr_t index)
92e873b9 470{
31ab2b4a
AK
471 PhysPageEntry lp = phys_map;
472 PhysPageEntry *p;
473 int i;
31ab2b4a 474 uint16_t s_index = phys_section_unassigned;
f1f6e3b8 475
07f07b31 476 for (i = P_L2_LEVELS - 1; i >= 0 && !lp.is_leaf; i--) {
c19e8800 477 if (lp.ptr == PHYS_MAP_NODE_NIL) {
31ab2b4a
AK
478 goto not_found;
479 }
c19e8800 480 p = phys_map_nodes[lp.ptr];
31ab2b4a 481 lp = p[(index >> (i * L2_BITS)) & (L2_SIZE - 1)];
5312bd8b 482 }
31ab2b4a 483
c19e8800 484 s_index = lp.ptr;
31ab2b4a 485not_found:
f3705d53
AK
486 return &phys_sections[s_index];
487}
488
e5548617
BS
489bool memory_region_is_unassigned(MemoryRegion *mr)
490{
491 return mr != &io_mem_ram && mr != &io_mem_rom
492 && mr != &io_mem_notdirty && !mr->rom_device
493 && mr != &io_mem_watch;
494}
495
c8a706fe
PB
496#define mmap_lock() do { } while(0)
497#define mmap_unlock() do { } while(0)
9fa3e853 498#endif
fd6ce8f6 499
4369415f
FB
500#define DEFAULT_CODE_GEN_BUFFER_SIZE (32 * 1024 * 1024)
501
502#if defined(CONFIG_USER_ONLY)
ccbb4d44 503/* Currently it is not recommended to allocate big chunks of data in
4369415f
FB
504 user mode. It will change when a dedicated libc will be used */
505#define USE_STATIC_CODE_GEN_BUFFER
506#endif
507
508#ifdef USE_STATIC_CODE_GEN_BUFFER
ebf50fb3
AJ
509static uint8_t static_code_gen_buffer[DEFAULT_CODE_GEN_BUFFER_SIZE]
510 __attribute__((aligned (CODE_GEN_ALIGN)));
4369415f
FB
511#endif
512
8fcd3692 513static void code_gen_alloc(unsigned long tb_size)
26a5f13b 514{
4369415f
FB
515#ifdef USE_STATIC_CODE_GEN_BUFFER
516 code_gen_buffer = static_code_gen_buffer;
517 code_gen_buffer_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
518 map_exec(code_gen_buffer, code_gen_buffer_size);
519#else
26a5f13b
FB
520 code_gen_buffer_size = tb_size;
521 if (code_gen_buffer_size == 0) {
4369415f 522#if defined(CONFIG_USER_ONLY)
4369415f
FB
523 code_gen_buffer_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
524#else
ccbb4d44 525 /* XXX: needs adjustments */
94a6b54f 526 code_gen_buffer_size = (unsigned long)(ram_size / 4);
4369415f 527#endif
26a5f13b
FB
528 }
529 if (code_gen_buffer_size < MIN_CODE_GEN_BUFFER_SIZE)
530 code_gen_buffer_size = MIN_CODE_GEN_BUFFER_SIZE;
531 /* The code gen buffer location may have constraints depending on
532 the host cpu and OS */
533#if defined(__linux__)
534 {
535 int flags;
141ac468
BS
536 void *start = NULL;
537
26a5f13b
FB
538 flags = MAP_PRIVATE | MAP_ANONYMOUS;
539#if defined(__x86_64__)
540 flags |= MAP_32BIT;
541 /* Cannot map more than that */
542 if (code_gen_buffer_size > (800 * 1024 * 1024))
543 code_gen_buffer_size = (800 * 1024 * 1024);
9b9c37c3 544#elif defined(__sparc__) && HOST_LONG_BITS == 64
141ac468 545 // Map the buffer below 2G, so we can use direct calls and branches
d5dd696f 546 start = (void *) 0x40000000UL;
141ac468
BS
547 if (code_gen_buffer_size > (512 * 1024 * 1024))
548 code_gen_buffer_size = (512 * 1024 * 1024);
1cb0661e 549#elif defined(__arm__)
5c84bd90 550 /* Keep the buffer no bigger than 16MB to branch between blocks */
1cb0661e
AZ
551 if (code_gen_buffer_size > 16 * 1024 * 1024)
552 code_gen_buffer_size = 16 * 1024 * 1024;
eba0b893
RH
553#elif defined(__s390x__)
554 /* Map the buffer so that we can use direct calls and branches. */
555 /* We have a +- 4GB range on the branches; leave some slop. */
556 if (code_gen_buffer_size > (3ul * 1024 * 1024 * 1024)) {
557 code_gen_buffer_size = 3ul * 1024 * 1024 * 1024;
558 }
559 start = (void *)0x90000000UL;
26a5f13b 560#endif
141ac468
BS
561 code_gen_buffer = mmap(start, code_gen_buffer_size,
562 PROT_WRITE | PROT_READ | PROT_EXEC,
26a5f13b
FB
563 flags, -1, 0);
564 if (code_gen_buffer == MAP_FAILED) {
565 fprintf(stderr, "Could not allocate dynamic translator buffer\n");
566 exit(1);
567 }
568 }
cbb608a5 569#elif defined(__FreeBSD__) || defined(__FreeBSD_kernel__) \
9f4b09a4
TN
570 || defined(__DragonFly__) || defined(__OpenBSD__) \
571 || defined(__NetBSD__)
06e67a82
AL
572 {
573 int flags;
574 void *addr = NULL;
575 flags = MAP_PRIVATE | MAP_ANONYMOUS;
576#if defined(__x86_64__)
577 /* FreeBSD doesn't have MAP_32BIT, use MAP_FIXED and assume
578 * 0x40000000 is free */
579 flags |= MAP_FIXED;
580 addr = (void *)0x40000000;
581 /* Cannot map more than that */
582 if (code_gen_buffer_size > (800 * 1024 * 1024))
583 code_gen_buffer_size = (800 * 1024 * 1024);
9b9c37c3 584#elif defined(__sparc__) && HOST_LONG_BITS == 64
4cd31ad2 585 // Map the buffer below 2G, so we can use direct calls and branches
d5dd696f 586 addr = (void *) 0x40000000UL;
4cd31ad2
BS
587 if (code_gen_buffer_size > (512 * 1024 * 1024)) {
588 code_gen_buffer_size = (512 * 1024 * 1024);
589 }
06e67a82
AL
590#endif
591 code_gen_buffer = mmap(addr, code_gen_buffer_size,
592 PROT_WRITE | PROT_READ | PROT_EXEC,
593 flags, -1, 0);
594 if (code_gen_buffer == MAP_FAILED) {
595 fprintf(stderr, "Could not allocate dynamic translator buffer\n");
596 exit(1);
597 }
598 }
26a5f13b 599#else
7267c094 600 code_gen_buffer = g_malloc(code_gen_buffer_size);
26a5f13b
FB
601 map_exec(code_gen_buffer, code_gen_buffer_size);
602#endif
4369415f 603#endif /* !USE_STATIC_CODE_GEN_BUFFER */
26a5f13b 604 map_exec(code_gen_prologue, sizeof(code_gen_prologue));
a884da8a
PM
605 code_gen_buffer_max_size = code_gen_buffer_size -
606 (TCG_MAX_OP_SIZE * OPC_BUF_SIZE);
26a5f13b 607 code_gen_max_blocks = code_gen_buffer_size / CODE_GEN_AVG_BLOCK_SIZE;
7267c094 608 tbs = g_malloc(code_gen_max_blocks * sizeof(TranslationBlock));
26a5f13b
FB
609}
610
611/* Must be called before using the QEMU cpus. 'tb_size' is the size
612 (in bytes) allocated to the translation buffer. Zero means default
613 size. */
d5ab9713 614void tcg_exec_init(unsigned long tb_size)
26a5f13b 615{
26a5f13b
FB
616 cpu_gen_init();
617 code_gen_alloc(tb_size);
618 code_gen_ptr = code_gen_buffer;
813da627 619 tcg_register_jit(code_gen_buffer, code_gen_buffer_size);
4369415f 620 page_init();
9002ec79
RH
621#if !defined(CONFIG_USER_ONLY) || !defined(CONFIG_USE_GUEST_BASE)
622 /* There's no guest base to take into account, so go ahead and
623 initialize the prologue now. */
624 tcg_prologue_init(&tcg_ctx);
625#endif
26a5f13b
FB
626}
627
d5ab9713
JK
628bool tcg_enabled(void)
629{
630 return code_gen_buffer != NULL;
631}
632
633void cpu_exec_init_all(void)
634{
635#if !defined(CONFIG_USER_ONLY)
636 memory_map_init();
637 io_mem_init();
638#endif
639}
640
9656f324
PB
641#if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
642
e59fb374 643static int cpu_common_post_load(void *opaque, int version_id)
e7f4eff7 644{
9349b4f9 645 CPUArchState *env = opaque;
9656f324 646
3098dba0
AJ
647 /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
648 version_id is increased. */
649 env->interrupt_request &= ~0x01;
9656f324
PB
650 tlb_flush(env, 1);
651
652 return 0;
653}
e7f4eff7
JQ
654
655static const VMStateDescription vmstate_cpu_common = {
656 .name = "cpu_common",
657 .version_id = 1,
658 .minimum_version_id = 1,
659 .minimum_version_id_old = 1,
e7f4eff7
JQ
660 .post_load = cpu_common_post_load,
661 .fields = (VMStateField []) {
9349b4f9
AF
662 VMSTATE_UINT32(halted, CPUArchState),
663 VMSTATE_UINT32(interrupt_request, CPUArchState),
e7f4eff7
JQ
664 VMSTATE_END_OF_LIST()
665 }
666};
9656f324
PB
667#endif
668
9349b4f9 669CPUArchState *qemu_get_cpu(int cpu)
950f1472 670{
9349b4f9 671 CPUArchState *env = first_cpu;
950f1472
GC
672
673 while (env) {
674 if (env->cpu_index == cpu)
675 break;
676 env = env->next_cpu;
677 }
678
679 return env;
680}
681
9349b4f9 682void cpu_exec_init(CPUArchState *env)
fd6ce8f6 683{
9349b4f9 684 CPUArchState **penv;
6a00d601
FB
685 int cpu_index;
686
c2764719
PB
687#if defined(CONFIG_USER_ONLY)
688 cpu_list_lock();
689#endif
6a00d601
FB
690 env->next_cpu = NULL;
691 penv = &first_cpu;
692 cpu_index = 0;
693 while (*penv != NULL) {
1e9fa730 694 penv = &(*penv)->next_cpu;
6a00d601
FB
695 cpu_index++;
696 }
697 env->cpu_index = cpu_index;
268a362c 698 env->numa_node = 0;
72cf2d4f
BS
699 QTAILQ_INIT(&env->breakpoints);
700 QTAILQ_INIT(&env->watchpoints);
dc7a09cf
JK
701#ifndef CONFIG_USER_ONLY
702 env->thread_id = qemu_get_thread_id();
703#endif
6a00d601 704 *penv = env;
c2764719
PB
705#if defined(CONFIG_USER_ONLY)
706 cpu_list_unlock();
707#endif
b3c7724c 708#if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
0be71e32
AW
709 vmstate_register(NULL, cpu_index, &vmstate_cpu_common, env);
710 register_savevm(NULL, "cpu", cpu_index, CPU_SAVE_VERSION,
b3c7724c
PB
711 cpu_save, cpu_load, env);
712#endif
fd6ce8f6
FB
713}
714
d1a1eb74
TG
715/* Allocate a new translation block. Flush the translation buffer if
716 too many translation blocks or too much generated code. */
717static TranslationBlock *tb_alloc(target_ulong pc)
718{
719 TranslationBlock *tb;
720
721 if (nb_tbs >= code_gen_max_blocks ||
722 (code_gen_ptr - code_gen_buffer) >= code_gen_buffer_max_size)
723 return NULL;
724 tb = &tbs[nb_tbs++];
725 tb->pc = pc;
726 tb->cflags = 0;
727 return tb;
728}
729
730void tb_free(TranslationBlock *tb)
731{
732 /* In practice this is mostly used for single use temporary TB
733 Ignore the hard cases and just back up if this TB happens to
734 be the last one generated. */
735 if (nb_tbs > 0 && tb == &tbs[nb_tbs - 1]) {
736 code_gen_ptr = tb->tc_ptr;
737 nb_tbs--;
738 }
739}
740
9fa3e853
FB
741static inline void invalidate_page_bitmap(PageDesc *p)
742{
743 if (p->code_bitmap) {
7267c094 744 g_free(p->code_bitmap);
9fa3e853
FB
745 p->code_bitmap = NULL;
746 }
747 p->code_write_count = 0;
748}
749
5cd2c5b6
RH
750/* Set to NULL all the 'first_tb' fields in all PageDescs. */
751
752static void page_flush_tb_1 (int level, void **lp)
fd6ce8f6 753{
5cd2c5b6 754 int i;
fd6ce8f6 755
5cd2c5b6
RH
756 if (*lp == NULL) {
757 return;
758 }
759 if (level == 0) {
760 PageDesc *pd = *lp;
7296abac 761 for (i = 0; i < L2_SIZE; ++i) {
5cd2c5b6
RH
762 pd[i].first_tb = NULL;
763 invalidate_page_bitmap(pd + i);
fd6ce8f6 764 }
5cd2c5b6
RH
765 } else {
766 void **pp = *lp;
7296abac 767 for (i = 0; i < L2_SIZE; ++i) {
5cd2c5b6
RH
768 page_flush_tb_1 (level - 1, pp + i);
769 }
770 }
771}
772
773static void page_flush_tb(void)
774{
775 int i;
776 for (i = 0; i < V_L1_SIZE; i++) {
777 page_flush_tb_1(V_L1_SHIFT / L2_BITS - 1, l1_map + i);
fd6ce8f6
FB
778 }
779}
780
781/* flush all the translation blocks */
d4e8164f 782/* XXX: tb_flush is currently not thread safe */
9349b4f9 783void tb_flush(CPUArchState *env1)
fd6ce8f6 784{
9349b4f9 785 CPUArchState *env;
0124311e 786#if defined(DEBUG_FLUSH)
ab3d1727
BS
787 printf("qemu: flush code_size=%ld nb_tbs=%d avg_tb_size=%ld\n",
788 (unsigned long)(code_gen_ptr - code_gen_buffer),
789 nb_tbs, nb_tbs > 0 ?
790 ((unsigned long)(code_gen_ptr - code_gen_buffer)) / nb_tbs : 0);
fd6ce8f6 791#endif
26a5f13b 792 if ((unsigned long)(code_gen_ptr - code_gen_buffer) > code_gen_buffer_size)
a208e54a
PB
793 cpu_abort(env1, "Internal error: code buffer overflow\n");
794
fd6ce8f6 795 nb_tbs = 0;
3b46e624 796
6a00d601
FB
797 for(env = first_cpu; env != NULL; env = env->next_cpu) {
798 memset (env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof (void *));
799 }
9fa3e853 800
8a8a608f 801 memset (tb_phys_hash, 0, CODE_GEN_PHYS_HASH_SIZE * sizeof (void *));
fd6ce8f6 802 page_flush_tb();
9fa3e853 803
fd6ce8f6 804 code_gen_ptr = code_gen_buffer;
d4e8164f
FB
805 /* XXX: flush processor icache at this point if cache flush is
806 expensive */
e3db7226 807 tb_flush_count++;
fd6ce8f6
FB
808}
809
810#ifdef DEBUG_TB_CHECK
811
bc98a7ef 812static void tb_invalidate_check(target_ulong address)
fd6ce8f6
FB
813{
814 TranslationBlock *tb;
815 int i;
816 address &= TARGET_PAGE_MASK;
99773bd4
PB
817 for(i = 0;i < CODE_GEN_PHYS_HASH_SIZE; i++) {
818 for(tb = tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) {
fd6ce8f6
FB
819 if (!(address + TARGET_PAGE_SIZE <= tb->pc ||
820 address >= tb->pc + tb->size)) {
0bf9e31a
BS
821 printf("ERROR invalidate: address=" TARGET_FMT_lx
822 " PC=%08lx size=%04x\n",
99773bd4 823 address, (long)tb->pc, tb->size);
fd6ce8f6
FB
824 }
825 }
826 }
827}
828
829/* verify that all the pages have correct rights for code */
830static void tb_page_check(void)
831{
832 TranslationBlock *tb;
833 int i, flags1, flags2;
3b46e624 834
99773bd4
PB
835 for(i = 0;i < CODE_GEN_PHYS_HASH_SIZE; i++) {
836 for(tb = tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) {
fd6ce8f6
FB
837 flags1 = page_get_flags(tb->pc);
838 flags2 = page_get_flags(tb->pc + tb->size - 1);
839 if ((flags1 & PAGE_WRITE) || (flags2 & PAGE_WRITE)) {
840 printf("ERROR page flags: PC=%08lx size=%04x f1=%x f2=%x\n",
99773bd4 841 (long)tb->pc, tb->size, flags1, flags2);
fd6ce8f6
FB
842 }
843 }
844 }
845}
846
847#endif
848
849/* invalidate one TB */
850static inline void tb_remove(TranslationBlock **ptb, TranslationBlock *tb,
851 int next_offset)
852{
853 TranslationBlock *tb1;
854 for(;;) {
855 tb1 = *ptb;
856 if (tb1 == tb) {
857 *ptb = *(TranslationBlock **)((char *)tb1 + next_offset);
858 break;
859 }
860 ptb = (TranslationBlock **)((char *)tb1 + next_offset);
861 }
862}
863
9fa3e853
FB
864static inline void tb_page_remove(TranslationBlock **ptb, TranslationBlock *tb)
865{
866 TranslationBlock *tb1;
867 unsigned int n1;
868
869 for(;;) {
870 tb1 = *ptb;
8efe0ca8
SW
871 n1 = (uintptr_t)tb1 & 3;
872 tb1 = (TranslationBlock *)((uintptr_t)tb1 & ~3);
9fa3e853
FB
873 if (tb1 == tb) {
874 *ptb = tb1->page_next[n1];
875 break;
876 }
877 ptb = &tb1->page_next[n1];
878 }
879}
880
d4e8164f
FB
881static inline void tb_jmp_remove(TranslationBlock *tb, int n)
882{
883 TranslationBlock *tb1, **ptb;
884 unsigned int n1;
885
886 ptb = &tb->jmp_next[n];
887 tb1 = *ptb;
888 if (tb1) {
889 /* find tb(n) in circular list */
890 for(;;) {
891 tb1 = *ptb;
8efe0ca8
SW
892 n1 = (uintptr_t)tb1 & 3;
893 tb1 = (TranslationBlock *)((uintptr_t)tb1 & ~3);
d4e8164f
FB
894 if (n1 == n && tb1 == tb)
895 break;
896 if (n1 == 2) {
897 ptb = &tb1->jmp_first;
898 } else {
899 ptb = &tb1->jmp_next[n1];
900 }
901 }
902 /* now we can suppress tb(n) from the list */
903 *ptb = tb->jmp_next[n];
904
905 tb->jmp_next[n] = NULL;
906 }
907}
908
909/* reset the jump entry 'n' of a TB so that it is not chained to
910 another TB */
911static inline void tb_reset_jump(TranslationBlock *tb, int n)
912{
8efe0ca8 913 tb_set_jmp_target(tb, n, (uintptr_t)(tb->tc_ptr + tb->tb_next_offset[n]));
d4e8164f
FB
914}
915
41c1b1c9 916void tb_phys_invalidate(TranslationBlock *tb, tb_page_addr_t page_addr)
fd6ce8f6 917{
9349b4f9 918 CPUArchState *env;
8a40a180 919 PageDesc *p;
d4e8164f 920 unsigned int h, n1;
41c1b1c9 921 tb_page_addr_t phys_pc;
8a40a180 922 TranslationBlock *tb1, *tb2;
3b46e624 923
8a40a180
FB
924 /* remove the TB from the hash list */
925 phys_pc = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
926 h = tb_phys_hash_func(phys_pc);
5fafdf24 927 tb_remove(&tb_phys_hash[h], tb,
8a40a180
FB
928 offsetof(TranslationBlock, phys_hash_next));
929
930 /* remove the TB from the page list */
931 if (tb->page_addr[0] != page_addr) {
932 p = page_find(tb->page_addr[0] >> TARGET_PAGE_BITS);
933 tb_page_remove(&p->first_tb, tb);
934 invalidate_page_bitmap(p);
935 }
936 if (tb->page_addr[1] != -1 && tb->page_addr[1] != page_addr) {
937 p = page_find(tb->page_addr[1] >> TARGET_PAGE_BITS);
938 tb_page_remove(&p->first_tb, tb);
939 invalidate_page_bitmap(p);
940 }
941
36bdbe54 942 tb_invalidated_flag = 1;
59817ccb 943
fd6ce8f6 944 /* remove the TB from the hash list */
8a40a180 945 h = tb_jmp_cache_hash_func(tb->pc);
6a00d601
FB
946 for(env = first_cpu; env != NULL; env = env->next_cpu) {
947 if (env->tb_jmp_cache[h] == tb)
948 env->tb_jmp_cache[h] = NULL;
949 }
d4e8164f
FB
950
951 /* suppress this TB from the two jump lists */
952 tb_jmp_remove(tb, 0);
953 tb_jmp_remove(tb, 1);
954
955 /* suppress any remaining jumps to this TB */
956 tb1 = tb->jmp_first;
957 for(;;) {
8efe0ca8 958 n1 = (uintptr_t)tb1 & 3;
d4e8164f
FB
959 if (n1 == 2)
960 break;
8efe0ca8 961 tb1 = (TranslationBlock *)((uintptr_t)tb1 & ~3);
d4e8164f
FB
962 tb2 = tb1->jmp_next[n1];
963 tb_reset_jump(tb1, n1);
964 tb1->jmp_next[n1] = NULL;
965 tb1 = tb2;
966 }
8efe0ca8 967 tb->jmp_first = (TranslationBlock *)((uintptr_t)tb | 2); /* fail safe */
9fa3e853 968
e3db7226 969 tb_phys_invalidate_count++;
9fa3e853
FB
970}
971
972static inline void set_bits(uint8_t *tab, int start, int len)
973{
974 int end, mask, end1;
975
976 end = start + len;
977 tab += start >> 3;
978 mask = 0xff << (start & 7);
979 if ((start & ~7) == (end & ~7)) {
980 if (start < end) {
981 mask &= ~(0xff << (end & 7));
982 *tab |= mask;
983 }
984 } else {
985 *tab++ |= mask;
986 start = (start + 8) & ~7;
987 end1 = end & ~7;
988 while (start < end1) {
989 *tab++ = 0xff;
990 start += 8;
991 }
992 if (start < end) {
993 mask = ~(0xff << (end & 7));
994 *tab |= mask;
995 }
996 }
997}
998
999static void build_page_bitmap(PageDesc *p)
1000{
1001 int n, tb_start, tb_end;
1002 TranslationBlock *tb;
3b46e624 1003
7267c094 1004 p->code_bitmap = g_malloc0(TARGET_PAGE_SIZE / 8);
9fa3e853
FB
1005
1006 tb = p->first_tb;
1007 while (tb != NULL) {
8efe0ca8
SW
1008 n = (uintptr_t)tb & 3;
1009 tb = (TranslationBlock *)((uintptr_t)tb & ~3);
9fa3e853
FB
1010 /* NOTE: this is subtle as a TB may span two physical pages */
1011 if (n == 0) {
1012 /* NOTE: tb_end may be after the end of the page, but
1013 it is not a problem */
1014 tb_start = tb->pc & ~TARGET_PAGE_MASK;
1015 tb_end = tb_start + tb->size;
1016 if (tb_end > TARGET_PAGE_SIZE)
1017 tb_end = TARGET_PAGE_SIZE;
1018 } else {
1019 tb_start = 0;
1020 tb_end = ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
1021 }
1022 set_bits(p->code_bitmap, tb_start, tb_end - tb_start);
1023 tb = tb->page_next[n];
1024 }
1025}
1026
9349b4f9 1027TranslationBlock *tb_gen_code(CPUArchState *env,
2e70f6ef
PB
1028 target_ulong pc, target_ulong cs_base,
1029 int flags, int cflags)
d720b93d
FB
1030{
1031 TranslationBlock *tb;
1032 uint8_t *tc_ptr;
41c1b1c9
PB
1033 tb_page_addr_t phys_pc, phys_page2;
1034 target_ulong virt_page2;
d720b93d
FB
1035 int code_gen_size;
1036
41c1b1c9 1037 phys_pc = get_page_addr_code(env, pc);
c27004ec 1038 tb = tb_alloc(pc);
d720b93d
FB
1039 if (!tb) {
1040 /* flush must be done */
1041 tb_flush(env);
1042 /* cannot fail at this point */
c27004ec 1043 tb = tb_alloc(pc);
2e70f6ef
PB
1044 /* Don't forget to invalidate previous TB info. */
1045 tb_invalidated_flag = 1;
d720b93d
FB
1046 }
1047 tc_ptr = code_gen_ptr;
1048 tb->tc_ptr = tc_ptr;
1049 tb->cs_base = cs_base;
1050 tb->flags = flags;
1051 tb->cflags = cflags;
d07bde88 1052 cpu_gen_code(env, tb, &code_gen_size);
8efe0ca8
SW
1053 code_gen_ptr = (void *)(((uintptr_t)code_gen_ptr + code_gen_size +
1054 CODE_GEN_ALIGN - 1) & ~(CODE_GEN_ALIGN - 1));
3b46e624 1055
d720b93d 1056 /* check next page if needed */
c27004ec 1057 virt_page2 = (pc + tb->size - 1) & TARGET_PAGE_MASK;
d720b93d 1058 phys_page2 = -1;
c27004ec 1059 if ((pc & TARGET_PAGE_MASK) != virt_page2) {
41c1b1c9 1060 phys_page2 = get_page_addr_code(env, virt_page2);
d720b93d 1061 }
41c1b1c9 1062 tb_link_page(tb, phys_pc, phys_page2);
2e70f6ef 1063 return tb;
d720b93d 1064}
3b46e624 1065
77a8f1a5 1066/*
8e0fdce3
JK
1067 * Invalidate all TBs which intersect with the target physical address range
1068 * [start;end[. NOTE: start and end may refer to *different* physical pages.
1069 * 'is_cpu_write_access' should be true if called from a real cpu write
1070 * access: the virtual CPU will exit the current TB if code is modified inside
1071 * this TB.
77a8f1a5
AG
1072 */
1073void tb_invalidate_phys_range(tb_page_addr_t start, tb_page_addr_t end,
1074 int is_cpu_write_access)
1075{
1076 while (start < end) {
1077 tb_invalidate_phys_page_range(start, end, is_cpu_write_access);
1078 start &= TARGET_PAGE_MASK;
1079 start += TARGET_PAGE_SIZE;
1080 }
1081}
1082
8e0fdce3
JK
1083/*
1084 * Invalidate all TBs which intersect with the target physical address range
1085 * [start;end[. NOTE: start and end must refer to the *same* physical page.
1086 * 'is_cpu_write_access' should be true if called from a real cpu write
1087 * access: the virtual CPU will exit the current TB if code is modified inside
1088 * this TB.
1089 */
41c1b1c9 1090void tb_invalidate_phys_page_range(tb_page_addr_t start, tb_page_addr_t end,
d720b93d
FB
1091 int is_cpu_write_access)
1092{
6b917547 1093 TranslationBlock *tb, *tb_next, *saved_tb;
9349b4f9 1094 CPUArchState *env = cpu_single_env;
41c1b1c9 1095 tb_page_addr_t tb_start, tb_end;
6b917547
AL
1096 PageDesc *p;
1097 int n;
1098#ifdef TARGET_HAS_PRECISE_SMC
1099 int current_tb_not_found = is_cpu_write_access;
1100 TranslationBlock *current_tb = NULL;
1101 int current_tb_modified = 0;
1102 target_ulong current_pc = 0;
1103 target_ulong current_cs_base = 0;
1104 int current_flags = 0;
1105#endif /* TARGET_HAS_PRECISE_SMC */
9fa3e853
FB
1106
1107 p = page_find(start >> TARGET_PAGE_BITS);
5fafdf24 1108 if (!p)
9fa3e853 1109 return;
5fafdf24 1110 if (!p->code_bitmap &&
d720b93d
FB
1111 ++p->code_write_count >= SMC_BITMAP_USE_THRESHOLD &&
1112 is_cpu_write_access) {
9fa3e853
FB
1113 /* build code bitmap */
1114 build_page_bitmap(p);
1115 }
1116
1117 /* we remove all the TBs in the range [start, end[ */
1118 /* XXX: see if in some cases it could be faster to invalidate all the code */
1119 tb = p->first_tb;
1120 while (tb != NULL) {
8efe0ca8
SW
1121 n = (uintptr_t)tb & 3;
1122 tb = (TranslationBlock *)((uintptr_t)tb & ~3);
9fa3e853
FB
1123 tb_next = tb->page_next[n];
1124 /* NOTE: this is subtle as a TB may span two physical pages */
1125 if (n == 0) {
1126 /* NOTE: tb_end may be after the end of the page, but
1127 it is not a problem */
1128 tb_start = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
1129 tb_end = tb_start + tb->size;
1130 } else {
1131 tb_start = tb->page_addr[1];
1132 tb_end = tb_start + ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
1133 }
1134 if (!(tb_end <= start || tb_start >= end)) {
d720b93d
FB
1135#ifdef TARGET_HAS_PRECISE_SMC
1136 if (current_tb_not_found) {
1137 current_tb_not_found = 0;
1138 current_tb = NULL;
2e70f6ef 1139 if (env->mem_io_pc) {
d720b93d 1140 /* now we have a real cpu fault */
2e70f6ef 1141 current_tb = tb_find_pc(env->mem_io_pc);
d720b93d
FB
1142 }
1143 }
1144 if (current_tb == tb &&
2e70f6ef 1145 (current_tb->cflags & CF_COUNT_MASK) != 1) {
d720b93d
FB
1146 /* If we are modifying the current TB, we must stop
1147 its execution. We could be more precise by checking
1148 that the modification is after the current PC, but it
1149 would require a specialized function to partially
1150 restore the CPU state */
3b46e624 1151
d720b93d 1152 current_tb_modified = 1;
618ba8e6 1153 cpu_restore_state(current_tb, env, env->mem_io_pc);
6b917547
AL
1154 cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
1155 &current_flags);
d720b93d
FB
1156 }
1157#endif /* TARGET_HAS_PRECISE_SMC */
6f5a9f7e
FB
1158 /* we need to do that to handle the case where a signal
1159 occurs while doing tb_phys_invalidate() */
1160 saved_tb = NULL;
1161 if (env) {
1162 saved_tb = env->current_tb;
1163 env->current_tb = NULL;
1164 }
9fa3e853 1165 tb_phys_invalidate(tb, -1);
6f5a9f7e
FB
1166 if (env) {
1167 env->current_tb = saved_tb;
1168 if (env->interrupt_request && env->current_tb)
1169 cpu_interrupt(env, env->interrupt_request);
1170 }
9fa3e853
FB
1171 }
1172 tb = tb_next;
1173 }
1174#if !defined(CONFIG_USER_ONLY)
1175 /* if no code remaining, no need to continue to use slow writes */
1176 if (!p->first_tb) {
1177 invalidate_page_bitmap(p);
d720b93d 1178 if (is_cpu_write_access) {
2e70f6ef 1179 tlb_unprotect_code_phys(env, start, env->mem_io_vaddr);
d720b93d
FB
1180 }
1181 }
1182#endif
1183#ifdef TARGET_HAS_PRECISE_SMC
1184 if (current_tb_modified) {
1185 /* we generate a block containing just the instruction
1186 modifying the memory. It will ensure that it cannot modify
1187 itself */
ea1c1802 1188 env->current_tb = NULL;
2e70f6ef 1189 tb_gen_code(env, current_pc, current_cs_base, current_flags, 1);
d720b93d 1190 cpu_resume_from_signal(env, NULL);
9fa3e853 1191 }
fd6ce8f6 1192#endif
9fa3e853 1193}
fd6ce8f6 1194
9fa3e853 1195/* len must be <= 8 and start must be a multiple of len */
41c1b1c9 1196static inline void tb_invalidate_phys_page_fast(tb_page_addr_t start, int len)
9fa3e853
FB
1197{
1198 PageDesc *p;
1199 int offset, b;
59817ccb 1200#if 0
a4193c8a 1201 if (1) {
93fcfe39
AL
1202 qemu_log("modifying code at 0x%x size=%d EIP=%x PC=%08x\n",
1203 cpu_single_env->mem_io_vaddr, len,
1204 cpu_single_env->eip,
8efe0ca8
SW
1205 cpu_single_env->eip +
1206 (intptr_t)cpu_single_env->segs[R_CS].base);
59817ccb
FB
1207 }
1208#endif
9fa3e853 1209 p = page_find(start >> TARGET_PAGE_BITS);
5fafdf24 1210 if (!p)
9fa3e853
FB
1211 return;
1212 if (p->code_bitmap) {
1213 offset = start & ~TARGET_PAGE_MASK;
1214 b = p->code_bitmap[offset >> 3] >> (offset & 7);
1215 if (b & ((1 << len) - 1))
1216 goto do_invalidate;
1217 } else {
1218 do_invalidate:
d720b93d 1219 tb_invalidate_phys_page_range(start, start + len, 1);
9fa3e853
FB
1220 }
1221}
1222
9fa3e853 1223#if !defined(CONFIG_SOFTMMU)
41c1b1c9 1224static void tb_invalidate_phys_page(tb_page_addr_t addr,
20503968 1225 uintptr_t pc, void *puc)
9fa3e853 1226{
6b917547 1227 TranslationBlock *tb;
9fa3e853 1228 PageDesc *p;
6b917547 1229 int n;
d720b93d 1230#ifdef TARGET_HAS_PRECISE_SMC
6b917547 1231 TranslationBlock *current_tb = NULL;
9349b4f9 1232 CPUArchState *env = cpu_single_env;
6b917547
AL
1233 int current_tb_modified = 0;
1234 target_ulong current_pc = 0;
1235 target_ulong current_cs_base = 0;
1236 int current_flags = 0;
d720b93d 1237#endif
9fa3e853
FB
1238
1239 addr &= TARGET_PAGE_MASK;
1240 p = page_find(addr >> TARGET_PAGE_BITS);
5fafdf24 1241 if (!p)
9fa3e853
FB
1242 return;
1243 tb = p->first_tb;
d720b93d
FB
1244#ifdef TARGET_HAS_PRECISE_SMC
1245 if (tb && pc != 0) {
1246 current_tb = tb_find_pc(pc);
1247 }
1248#endif
9fa3e853 1249 while (tb != NULL) {
8efe0ca8
SW
1250 n = (uintptr_t)tb & 3;
1251 tb = (TranslationBlock *)((uintptr_t)tb & ~3);
d720b93d
FB
1252#ifdef TARGET_HAS_PRECISE_SMC
1253 if (current_tb == tb &&
2e70f6ef 1254 (current_tb->cflags & CF_COUNT_MASK) != 1) {
d720b93d
FB
1255 /* If we are modifying the current TB, we must stop
1256 its execution. We could be more precise by checking
1257 that the modification is after the current PC, but it
1258 would require a specialized function to partially
1259 restore the CPU state */
3b46e624 1260
d720b93d 1261 current_tb_modified = 1;
618ba8e6 1262 cpu_restore_state(current_tb, env, pc);
6b917547
AL
1263 cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
1264 &current_flags);
d720b93d
FB
1265 }
1266#endif /* TARGET_HAS_PRECISE_SMC */
9fa3e853
FB
1267 tb_phys_invalidate(tb, addr);
1268 tb = tb->page_next[n];
1269 }
fd6ce8f6 1270 p->first_tb = NULL;
d720b93d
FB
1271#ifdef TARGET_HAS_PRECISE_SMC
1272 if (current_tb_modified) {
1273 /* we generate a block containing just the instruction
1274 modifying the memory. It will ensure that it cannot modify
1275 itself */
ea1c1802 1276 env->current_tb = NULL;
2e70f6ef 1277 tb_gen_code(env, current_pc, current_cs_base, current_flags, 1);
d720b93d
FB
1278 cpu_resume_from_signal(env, puc);
1279 }
1280#endif
fd6ce8f6 1281}
9fa3e853 1282#endif
fd6ce8f6
FB
1283
1284/* add the tb in the target page and protect it if necessary */
5fafdf24 1285static inline void tb_alloc_page(TranslationBlock *tb,
41c1b1c9 1286 unsigned int n, tb_page_addr_t page_addr)
fd6ce8f6
FB
1287{
1288 PageDesc *p;
4429ab44
JQ
1289#ifndef CONFIG_USER_ONLY
1290 bool page_already_protected;
1291#endif
9fa3e853
FB
1292
1293 tb->page_addr[n] = page_addr;
5cd2c5b6 1294 p = page_find_alloc(page_addr >> TARGET_PAGE_BITS, 1);
9fa3e853 1295 tb->page_next[n] = p->first_tb;
4429ab44
JQ
1296#ifndef CONFIG_USER_ONLY
1297 page_already_protected = p->first_tb != NULL;
1298#endif
8efe0ca8 1299 p->first_tb = (TranslationBlock *)((uintptr_t)tb | n);
9fa3e853 1300 invalidate_page_bitmap(p);
fd6ce8f6 1301
107db443 1302#if defined(TARGET_HAS_SMC) || 1
d720b93d 1303
9fa3e853 1304#if defined(CONFIG_USER_ONLY)
fd6ce8f6 1305 if (p->flags & PAGE_WRITE) {
53a5960a
PB
1306 target_ulong addr;
1307 PageDesc *p2;
9fa3e853
FB
1308 int prot;
1309
fd6ce8f6
FB
1310 /* force the host page as non writable (writes will have a
1311 page fault + mprotect overhead) */
53a5960a 1312 page_addr &= qemu_host_page_mask;
fd6ce8f6 1313 prot = 0;
53a5960a
PB
1314 for(addr = page_addr; addr < page_addr + qemu_host_page_size;
1315 addr += TARGET_PAGE_SIZE) {
1316
1317 p2 = page_find (addr >> TARGET_PAGE_BITS);
1318 if (!p2)
1319 continue;
1320 prot |= p2->flags;
1321 p2->flags &= ~PAGE_WRITE;
53a5960a 1322 }
5fafdf24 1323 mprotect(g2h(page_addr), qemu_host_page_size,
fd6ce8f6
FB
1324 (prot & PAGE_BITS) & ~PAGE_WRITE);
1325#ifdef DEBUG_TB_INVALIDATE
ab3d1727 1326 printf("protecting code page: 0x" TARGET_FMT_lx "\n",
53a5960a 1327 page_addr);
fd6ce8f6 1328#endif
fd6ce8f6 1329 }
9fa3e853
FB
1330#else
1331 /* if some code is already present, then the pages are already
1332 protected. So we handle the case where only the first TB is
1333 allocated in a physical page */
4429ab44 1334 if (!page_already_protected) {
6a00d601 1335 tlb_protect_code(page_addr);
9fa3e853
FB
1336 }
1337#endif
d720b93d
FB
1338
1339#endif /* TARGET_HAS_SMC */
fd6ce8f6
FB
1340}
1341
9fa3e853
FB
1342/* add a new TB and link it to the physical page tables. phys_page2 is
1343 (-1) to indicate that only one page contains the TB. */
41c1b1c9
PB
1344void tb_link_page(TranslationBlock *tb,
1345 tb_page_addr_t phys_pc, tb_page_addr_t phys_page2)
d4e8164f 1346{
9fa3e853
FB
1347 unsigned int h;
1348 TranslationBlock **ptb;
1349
c8a706fe
PB
1350 /* Grab the mmap lock to stop another thread invalidating this TB
1351 before we are done. */
1352 mmap_lock();
9fa3e853
FB
1353 /* add in the physical hash table */
1354 h = tb_phys_hash_func(phys_pc);
1355 ptb = &tb_phys_hash[h];
1356 tb->phys_hash_next = *ptb;
1357 *ptb = tb;
fd6ce8f6
FB
1358
1359 /* add in the page list */
9fa3e853
FB
1360 tb_alloc_page(tb, 0, phys_pc & TARGET_PAGE_MASK);
1361 if (phys_page2 != -1)
1362 tb_alloc_page(tb, 1, phys_page2);
1363 else
1364 tb->page_addr[1] = -1;
9fa3e853 1365
8efe0ca8 1366 tb->jmp_first = (TranslationBlock *)((uintptr_t)tb | 2);
d4e8164f
FB
1367 tb->jmp_next[0] = NULL;
1368 tb->jmp_next[1] = NULL;
1369
1370 /* init original jump addresses */
1371 if (tb->tb_next_offset[0] != 0xffff)
1372 tb_reset_jump(tb, 0);
1373 if (tb->tb_next_offset[1] != 0xffff)
1374 tb_reset_jump(tb, 1);
8a40a180
FB
1375
1376#ifdef DEBUG_TB_CHECK
1377 tb_page_check();
1378#endif
c8a706fe 1379 mmap_unlock();
fd6ce8f6
FB
1380}
1381
9fa3e853
FB
1382/* find the TB 'tb' such that tb[0].tc_ptr <= tc_ptr <
1383 tb[1].tc_ptr. Return NULL if not found */
6375e09e 1384TranslationBlock *tb_find_pc(uintptr_t tc_ptr)
fd6ce8f6 1385{
9fa3e853 1386 int m_min, m_max, m;
8efe0ca8 1387 uintptr_t v;
9fa3e853 1388 TranslationBlock *tb;
a513fe19
FB
1389
1390 if (nb_tbs <= 0)
1391 return NULL;
8efe0ca8
SW
1392 if (tc_ptr < (uintptr_t)code_gen_buffer ||
1393 tc_ptr >= (uintptr_t)code_gen_ptr) {
a513fe19 1394 return NULL;
8efe0ca8 1395 }
a513fe19
FB
1396 /* binary search (cf Knuth) */
1397 m_min = 0;
1398 m_max = nb_tbs - 1;
1399 while (m_min <= m_max) {
1400 m = (m_min + m_max) >> 1;
1401 tb = &tbs[m];
8efe0ca8 1402 v = (uintptr_t)tb->tc_ptr;
a513fe19
FB
1403 if (v == tc_ptr)
1404 return tb;
1405 else if (tc_ptr < v) {
1406 m_max = m - 1;
1407 } else {
1408 m_min = m + 1;
1409 }
5fafdf24 1410 }
a513fe19
FB
1411 return &tbs[m_max];
1412}
7501267e 1413
ea041c0e
FB
1414static void tb_reset_jump_recursive(TranslationBlock *tb);
1415
1416static inline void tb_reset_jump_recursive2(TranslationBlock *tb, int n)
1417{
1418 TranslationBlock *tb1, *tb_next, **ptb;
1419 unsigned int n1;
1420
1421 tb1 = tb->jmp_next[n];
1422 if (tb1 != NULL) {
1423 /* find head of list */
1424 for(;;) {
8efe0ca8
SW
1425 n1 = (uintptr_t)tb1 & 3;
1426 tb1 = (TranslationBlock *)((uintptr_t)tb1 & ~3);
ea041c0e
FB
1427 if (n1 == 2)
1428 break;
1429 tb1 = tb1->jmp_next[n1];
1430 }
1431 /* we are now sure now that tb jumps to tb1 */
1432 tb_next = tb1;
1433
1434 /* remove tb from the jmp_first list */
1435 ptb = &tb_next->jmp_first;
1436 for(;;) {
1437 tb1 = *ptb;
8efe0ca8
SW
1438 n1 = (uintptr_t)tb1 & 3;
1439 tb1 = (TranslationBlock *)((uintptr_t)tb1 & ~3);
ea041c0e
FB
1440 if (n1 == n && tb1 == tb)
1441 break;
1442 ptb = &tb1->jmp_next[n1];
1443 }
1444 *ptb = tb->jmp_next[n];
1445 tb->jmp_next[n] = NULL;
3b46e624 1446
ea041c0e
FB
1447 /* suppress the jump to next tb in generated code */
1448 tb_reset_jump(tb, n);
1449
0124311e 1450 /* suppress jumps in the tb on which we could have jumped */
ea041c0e
FB
1451 tb_reset_jump_recursive(tb_next);
1452 }
1453}
1454
1455static void tb_reset_jump_recursive(TranslationBlock *tb)
1456{
1457 tb_reset_jump_recursive2(tb, 0);
1458 tb_reset_jump_recursive2(tb, 1);
1459}
1460
1fddef4b 1461#if defined(TARGET_HAS_ICE)
94df27fd 1462#if defined(CONFIG_USER_ONLY)
9349b4f9 1463static void breakpoint_invalidate(CPUArchState *env, target_ulong pc)
94df27fd
PB
1464{
1465 tb_invalidate_phys_page_range(pc, pc + 1, 0);
1466}
1467#else
1e7855a5 1468void tb_invalidate_phys_addr(target_phys_addr_t addr)
d720b93d 1469{
c227f099 1470 ram_addr_t ram_addr;
f3705d53 1471 MemoryRegionSection *section;
d720b93d 1472
06ef3525 1473 section = phys_page_find(addr >> TARGET_PAGE_BITS);
f3705d53
AK
1474 if (!(memory_region_is_ram(section->mr)
1475 || (section->mr->rom_device && section->mr->readable))) {
06ef3525
AK
1476 return;
1477 }
f3705d53 1478 ram_addr = (memory_region_get_ram_addr(section->mr) & TARGET_PAGE_MASK)
cc5bea60 1479 + memory_region_section_addr(section, addr);
706cd4b5 1480 tb_invalidate_phys_page_range(ram_addr, ram_addr + 1, 0);
d720b93d 1481}
1e7855a5
MF
1482
1483static void breakpoint_invalidate(CPUArchState *env, target_ulong pc)
1484{
9d70c4b7
MF
1485 tb_invalidate_phys_addr(cpu_get_phys_page_debug(env, pc) |
1486 (pc & ~TARGET_PAGE_MASK));
1e7855a5 1487}
c27004ec 1488#endif
94df27fd 1489#endif /* TARGET_HAS_ICE */
d720b93d 1490
c527ee8f 1491#if defined(CONFIG_USER_ONLY)
9349b4f9 1492void cpu_watchpoint_remove_all(CPUArchState *env, int mask)
c527ee8f
PB
1493
1494{
1495}
1496
9349b4f9 1497int cpu_watchpoint_insert(CPUArchState *env, target_ulong addr, target_ulong len,
c527ee8f
PB
1498 int flags, CPUWatchpoint **watchpoint)
1499{
1500 return -ENOSYS;
1501}
1502#else
6658ffb8 1503/* Add a watchpoint. */
9349b4f9 1504int cpu_watchpoint_insert(CPUArchState *env, target_ulong addr, target_ulong len,
a1d1bb31 1505 int flags, CPUWatchpoint **watchpoint)
6658ffb8 1506{
b4051334 1507 target_ulong len_mask = ~(len - 1);
c0ce998e 1508 CPUWatchpoint *wp;
6658ffb8 1509
b4051334 1510 /* sanity checks: allow power-of-2 lengths, deny unaligned watchpoints */
0dc23828
MF
1511 if ((len & (len - 1)) || (addr & ~len_mask) ||
1512 len == 0 || len > TARGET_PAGE_SIZE) {
b4051334
AL
1513 fprintf(stderr, "qemu: tried to set invalid watchpoint at "
1514 TARGET_FMT_lx ", len=" TARGET_FMT_lu "\n", addr, len);
1515 return -EINVAL;
1516 }
7267c094 1517 wp = g_malloc(sizeof(*wp));
a1d1bb31
AL
1518
1519 wp->vaddr = addr;
b4051334 1520 wp->len_mask = len_mask;
a1d1bb31
AL
1521 wp->flags = flags;
1522
2dc9f411 1523 /* keep all GDB-injected watchpoints in front */
c0ce998e 1524 if (flags & BP_GDB)
72cf2d4f 1525 QTAILQ_INSERT_HEAD(&env->watchpoints, wp, entry);
c0ce998e 1526 else
72cf2d4f 1527 QTAILQ_INSERT_TAIL(&env->watchpoints, wp, entry);
6658ffb8 1528
6658ffb8 1529 tlb_flush_page(env, addr);
a1d1bb31
AL
1530
1531 if (watchpoint)
1532 *watchpoint = wp;
1533 return 0;
6658ffb8
PB
1534}
1535
a1d1bb31 1536/* Remove a specific watchpoint. */
9349b4f9 1537int cpu_watchpoint_remove(CPUArchState *env, target_ulong addr, target_ulong len,
a1d1bb31 1538 int flags)
6658ffb8 1539{
b4051334 1540 target_ulong len_mask = ~(len - 1);
a1d1bb31 1541 CPUWatchpoint *wp;
6658ffb8 1542
72cf2d4f 1543 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
b4051334 1544 if (addr == wp->vaddr && len_mask == wp->len_mask
6e140f28 1545 && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) {
a1d1bb31 1546 cpu_watchpoint_remove_by_ref(env, wp);
6658ffb8
PB
1547 return 0;
1548 }
1549 }
a1d1bb31 1550 return -ENOENT;
6658ffb8
PB
1551}
1552
a1d1bb31 1553/* Remove a specific watchpoint by reference. */
9349b4f9 1554void cpu_watchpoint_remove_by_ref(CPUArchState *env, CPUWatchpoint *watchpoint)
a1d1bb31 1555{
72cf2d4f 1556 QTAILQ_REMOVE(&env->watchpoints, watchpoint, entry);
7d03f82f 1557
a1d1bb31
AL
1558 tlb_flush_page(env, watchpoint->vaddr);
1559
7267c094 1560 g_free(watchpoint);
a1d1bb31
AL
1561}
1562
1563/* Remove all matching watchpoints. */
9349b4f9 1564void cpu_watchpoint_remove_all(CPUArchState *env, int mask)
a1d1bb31 1565{
c0ce998e 1566 CPUWatchpoint *wp, *next;
a1d1bb31 1567
72cf2d4f 1568 QTAILQ_FOREACH_SAFE(wp, &env->watchpoints, entry, next) {
a1d1bb31
AL
1569 if (wp->flags & mask)
1570 cpu_watchpoint_remove_by_ref(env, wp);
c0ce998e 1571 }
7d03f82f 1572}
c527ee8f 1573#endif
7d03f82f 1574
a1d1bb31 1575/* Add a breakpoint. */
9349b4f9 1576int cpu_breakpoint_insert(CPUArchState *env, target_ulong pc, int flags,
a1d1bb31 1577 CPUBreakpoint **breakpoint)
4c3a88a2 1578{
1fddef4b 1579#if defined(TARGET_HAS_ICE)
c0ce998e 1580 CPUBreakpoint *bp;
3b46e624 1581
7267c094 1582 bp = g_malloc(sizeof(*bp));
4c3a88a2 1583
a1d1bb31
AL
1584 bp->pc = pc;
1585 bp->flags = flags;
1586
2dc9f411 1587 /* keep all GDB-injected breakpoints in front */
c0ce998e 1588 if (flags & BP_GDB)
72cf2d4f 1589 QTAILQ_INSERT_HEAD(&env->breakpoints, bp, entry);
c0ce998e 1590 else
72cf2d4f 1591 QTAILQ_INSERT_TAIL(&env->breakpoints, bp, entry);
3b46e624 1592
d720b93d 1593 breakpoint_invalidate(env, pc);
a1d1bb31
AL
1594
1595 if (breakpoint)
1596 *breakpoint = bp;
4c3a88a2
FB
1597 return 0;
1598#else
a1d1bb31 1599 return -ENOSYS;
4c3a88a2
FB
1600#endif
1601}
1602
a1d1bb31 1603/* Remove a specific breakpoint. */
9349b4f9 1604int cpu_breakpoint_remove(CPUArchState *env, target_ulong pc, int flags)
a1d1bb31 1605{
7d03f82f 1606#if defined(TARGET_HAS_ICE)
a1d1bb31
AL
1607 CPUBreakpoint *bp;
1608
72cf2d4f 1609 QTAILQ_FOREACH(bp, &env->breakpoints, entry) {
a1d1bb31
AL
1610 if (bp->pc == pc && bp->flags == flags) {
1611 cpu_breakpoint_remove_by_ref(env, bp);
1612 return 0;
1613 }
7d03f82f 1614 }
a1d1bb31
AL
1615 return -ENOENT;
1616#else
1617 return -ENOSYS;
7d03f82f
EI
1618#endif
1619}
1620
a1d1bb31 1621/* Remove a specific breakpoint by reference. */
9349b4f9 1622void cpu_breakpoint_remove_by_ref(CPUArchState *env, CPUBreakpoint *breakpoint)
4c3a88a2 1623{
1fddef4b 1624#if defined(TARGET_HAS_ICE)
72cf2d4f 1625 QTAILQ_REMOVE(&env->breakpoints, breakpoint, entry);
d720b93d 1626
a1d1bb31
AL
1627 breakpoint_invalidate(env, breakpoint->pc);
1628
7267c094 1629 g_free(breakpoint);
a1d1bb31
AL
1630#endif
1631}
1632
1633/* Remove all matching breakpoints. */
9349b4f9 1634void cpu_breakpoint_remove_all(CPUArchState *env, int mask)
a1d1bb31
AL
1635{
1636#if defined(TARGET_HAS_ICE)
c0ce998e 1637 CPUBreakpoint *bp, *next;
a1d1bb31 1638
72cf2d4f 1639 QTAILQ_FOREACH_SAFE(bp, &env->breakpoints, entry, next) {
a1d1bb31
AL
1640 if (bp->flags & mask)
1641 cpu_breakpoint_remove_by_ref(env, bp);
c0ce998e 1642 }
4c3a88a2
FB
1643#endif
1644}
1645
c33a346e
FB
1646/* enable or disable single step mode. EXCP_DEBUG is returned by the
1647 CPU loop after each instruction */
9349b4f9 1648void cpu_single_step(CPUArchState *env, int enabled)
c33a346e 1649{
1fddef4b 1650#if defined(TARGET_HAS_ICE)
c33a346e
FB
1651 if (env->singlestep_enabled != enabled) {
1652 env->singlestep_enabled = enabled;
e22a25c9
AL
1653 if (kvm_enabled())
1654 kvm_update_guest_debug(env, 0);
1655 else {
ccbb4d44 1656 /* must flush all the translated code to avoid inconsistencies */
e22a25c9
AL
1657 /* XXX: only flush what is necessary */
1658 tb_flush(env);
1659 }
c33a346e
FB
1660 }
1661#endif
1662}
1663
9349b4f9 1664static void cpu_unlink_tb(CPUArchState *env)
ea041c0e 1665{
3098dba0
AJ
1666 /* FIXME: TB unchaining isn't SMP safe. For now just ignore the
1667 problem and hope the cpu will stop of its own accord. For userspace
1668 emulation this often isn't actually as bad as it sounds. Often
1669 signals are used primarily to interrupt blocking syscalls. */
ea041c0e 1670 TranslationBlock *tb;
c227f099 1671 static spinlock_t interrupt_lock = SPIN_LOCK_UNLOCKED;
59817ccb 1672
cab1b4bd 1673 spin_lock(&interrupt_lock);
3098dba0
AJ
1674 tb = env->current_tb;
1675 /* if the cpu is currently executing code, we must unlink it and
1676 all the potentially executing TB */
f76cfe56 1677 if (tb) {
3098dba0
AJ
1678 env->current_tb = NULL;
1679 tb_reset_jump_recursive(tb);
be214e6c 1680 }
cab1b4bd 1681 spin_unlock(&interrupt_lock);
3098dba0
AJ
1682}
1683
97ffbd8d 1684#ifndef CONFIG_USER_ONLY
3098dba0 1685/* mask must never be zero, except for A20 change call */
9349b4f9 1686static void tcg_handle_interrupt(CPUArchState *env, int mask)
3098dba0
AJ
1687{
1688 int old_mask;
be214e6c 1689
2e70f6ef 1690 old_mask = env->interrupt_request;
68a79315 1691 env->interrupt_request |= mask;
3098dba0 1692
8edac960
AL
1693 /*
1694 * If called from iothread context, wake the target cpu in
1695 * case its halted.
1696 */
b7680cb6 1697 if (!qemu_cpu_is_self(env)) {
8edac960
AL
1698 qemu_cpu_kick(env);
1699 return;
1700 }
8edac960 1701
2e70f6ef 1702 if (use_icount) {
266910c4 1703 env->icount_decr.u16.high = 0xffff;
2e70f6ef 1704 if (!can_do_io(env)
be214e6c 1705 && (mask & ~old_mask) != 0) {
2e70f6ef
PB
1706 cpu_abort(env, "Raised interrupt while not in I/O function");
1707 }
2e70f6ef 1708 } else {
3098dba0 1709 cpu_unlink_tb(env);
ea041c0e
FB
1710 }
1711}
1712
ec6959d0
JK
1713CPUInterruptHandler cpu_interrupt_handler = tcg_handle_interrupt;
1714
97ffbd8d
JK
1715#else /* CONFIG_USER_ONLY */
1716
9349b4f9 1717void cpu_interrupt(CPUArchState *env, int mask)
97ffbd8d
JK
1718{
1719 env->interrupt_request |= mask;
1720 cpu_unlink_tb(env);
1721}
1722#endif /* CONFIG_USER_ONLY */
1723
9349b4f9 1724void cpu_reset_interrupt(CPUArchState *env, int mask)
b54ad049
FB
1725{
1726 env->interrupt_request &= ~mask;
1727}
1728
9349b4f9 1729void cpu_exit(CPUArchState *env)
3098dba0
AJ
1730{
1731 env->exit_request = 1;
1732 cpu_unlink_tb(env);
1733}
1734
9349b4f9 1735void cpu_abort(CPUArchState *env, const char *fmt, ...)
7501267e
FB
1736{
1737 va_list ap;
493ae1f0 1738 va_list ap2;
7501267e
FB
1739
1740 va_start(ap, fmt);
493ae1f0 1741 va_copy(ap2, ap);
7501267e
FB
1742 fprintf(stderr, "qemu: fatal: ");
1743 vfprintf(stderr, fmt, ap);
1744 fprintf(stderr, "\n");
6fd2a026 1745 cpu_dump_state(env, stderr, fprintf, CPU_DUMP_FPU | CPU_DUMP_CCOP);
93fcfe39
AL
1746 if (qemu_log_enabled()) {
1747 qemu_log("qemu: fatal: ");
1748 qemu_log_vprintf(fmt, ap2);
1749 qemu_log("\n");
6fd2a026 1750 log_cpu_state(env, CPU_DUMP_FPU | CPU_DUMP_CCOP);
31b1a7b4 1751 qemu_log_flush();
93fcfe39 1752 qemu_log_close();
924edcae 1753 }
493ae1f0 1754 va_end(ap2);
f9373291 1755 va_end(ap);
fd052bf6
RV
1756#if defined(CONFIG_USER_ONLY)
1757 {
1758 struct sigaction act;
1759 sigfillset(&act.sa_mask);
1760 act.sa_handler = SIG_DFL;
1761 sigaction(SIGABRT, &act, NULL);
1762 }
1763#endif
7501267e
FB
1764 abort();
1765}
1766
9349b4f9 1767CPUArchState *cpu_copy(CPUArchState *env)
c5be9f08 1768{
9349b4f9
AF
1769 CPUArchState *new_env = cpu_init(env->cpu_model_str);
1770 CPUArchState *next_cpu = new_env->next_cpu;
c5be9f08 1771 int cpu_index = new_env->cpu_index;
5a38f081
AL
1772#if defined(TARGET_HAS_ICE)
1773 CPUBreakpoint *bp;
1774 CPUWatchpoint *wp;
1775#endif
1776
9349b4f9 1777 memcpy(new_env, env, sizeof(CPUArchState));
5a38f081
AL
1778
1779 /* Preserve chaining and index. */
c5be9f08
TS
1780 new_env->next_cpu = next_cpu;
1781 new_env->cpu_index = cpu_index;
5a38f081
AL
1782
1783 /* Clone all break/watchpoints.
1784 Note: Once we support ptrace with hw-debug register access, make sure
1785 BP_CPU break/watchpoints are handled correctly on clone. */
72cf2d4f
BS
1786 QTAILQ_INIT(&env->breakpoints);
1787 QTAILQ_INIT(&env->watchpoints);
5a38f081 1788#if defined(TARGET_HAS_ICE)
72cf2d4f 1789 QTAILQ_FOREACH(bp, &env->breakpoints, entry) {
5a38f081
AL
1790 cpu_breakpoint_insert(new_env, bp->pc, bp->flags, NULL);
1791 }
72cf2d4f 1792 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
5a38f081
AL
1793 cpu_watchpoint_insert(new_env, wp->vaddr, (~wp->len_mask) + 1,
1794 wp->flags, NULL);
1795 }
1796#endif
1797
c5be9f08
TS
1798 return new_env;
1799}
1800
0124311e 1801#if !defined(CONFIG_USER_ONLY)
0cac1b66 1802void tb_flush_jmp_cache(CPUArchState *env, target_ulong addr)
5c751e99
EI
1803{
1804 unsigned int i;
1805
1806 /* Discard jump cache entries for any tb which might potentially
1807 overlap the flushed page. */
1808 i = tb_jmp_cache_hash_page(addr - TARGET_PAGE_SIZE);
1809 memset (&env->tb_jmp_cache[i], 0,
9742bf26 1810 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
5c751e99
EI
1811
1812 i = tb_jmp_cache_hash_page(addr);
1813 memset (&env->tb_jmp_cache[i], 0,
9742bf26 1814 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
5c751e99
EI
1815}
1816
d24981d3
JQ
1817static void tlb_reset_dirty_range_all(ram_addr_t start, ram_addr_t end,
1818 uintptr_t length)
1819{
1820 uintptr_t start1;
1821
1822 /* we modify the TLB cache so that the dirty bit will be set again
1823 when accessing the range */
1824 start1 = (uintptr_t)qemu_safe_ram_ptr(start);
1825 /* Check that we don't span multiple blocks - this breaks the
1826 address comparisons below. */
1827 if ((uintptr_t)qemu_safe_ram_ptr(end - 1) - start1
1828 != (end - 1) - start) {
1829 abort();
1830 }
1831 cpu_tlb_reset_dirty_all(start1, length);
1832
1833}
1834
5579c7f3 1835/* Note: start and end must be within the same ram block. */
c227f099 1836void cpu_physical_memory_reset_dirty(ram_addr_t start, ram_addr_t end,
0a962c02 1837 int dirty_flags)
1ccde1cb 1838{
d24981d3 1839 uintptr_t length;
1ccde1cb
FB
1840
1841 start &= TARGET_PAGE_MASK;
1842 end = TARGET_PAGE_ALIGN(end);
1843
1844 length = end - start;
1845 if (length == 0)
1846 return;
f7c11b53 1847 cpu_physical_memory_mask_dirty_range(start, length, dirty_flags);
f23db169 1848
d24981d3
JQ
1849 if (tcg_enabled()) {
1850 tlb_reset_dirty_range_all(start, end, length);
5579c7f3 1851 }
1ccde1cb
FB
1852}
1853
74576198
AL
1854int cpu_physical_memory_set_dirty_tracking(int enable)
1855{
f6f3fbca 1856 int ret = 0;
74576198 1857 in_migration = enable;
f6f3fbca 1858 return ret;
74576198
AL
1859}
1860
e5548617
BS
1861target_phys_addr_t memory_region_section_get_iotlb(CPUArchState *env,
1862 MemoryRegionSection *section,
1863 target_ulong vaddr,
1864 target_phys_addr_t paddr,
1865 int prot,
1866 target_ulong *address)
1867{
1868 target_phys_addr_t iotlb;
1869 CPUWatchpoint *wp;
1870
cc5bea60 1871 if (memory_region_is_ram(section->mr)) {
e5548617
BS
1872 /* Normal RAM. */
1873 iotlb = (memory_region_get_ram_addr(section->mr) & TARGET_PAGE_MASK)
cc5bea60 1874 + memory_region_section_addr(section, paddr);
e5548617
BS
1875 if (!section->readonly) {
1876 iotlb |= phys_section_notdirty;
1877 } else {
1878 iotlb |= phys_section_rom;
1879 }
1880 } else {
1881 /* IO handlers are currently passed a physical address.
1882 It would be nice to pass an offset from the base address
1883 of that region. This would avoid having to special case RAM,
1884 and avoid full address decoding in every device.
1885 We can't use the high bits of pd for this because
1886 IO_MEM_ROMD uses these as a ram address. */
1887 iotlb = section - phys_sections;
cc5bea60 1888 iotlb += memory_region_section_addr(section, paddr);
e5548617
BS
1889 }
1890
1891 /* Make accesses to pages with watchpoints go via the
1892 watchpoint trap routines. */
1893 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
1894 if (vaddr == (wp->vaddr & TARGET_PAGE_MASK)) {
1895 /* Avoid trapping reads of pages with a write breakpoint. */
1896 if ((prot & PAGE_WRITE) || (wp->flags & BP_MEM_READ)) {
1897 iotlb = phys_section_watch + paddr;
1898 *address |= TLB_MMIO;
1899 break;
1900 }
1901 }
1902 }
1903
1904 return iotlb;
1905}
1906
0124311e 1907#else
edf8e2af
MW
1908/*
1909 * Walks guest process memory "regions" one by one
1910 * and calls callback function 'fn' for each region.
1911 */
5cd2c5b6
RH
1912
1913struct walk_memory_regions_data
1914{
1915 walk_memory_regions_fn fn;
1916 void *priv;
8efe0ca8 1917 uintptr_t start;
5cd2c5b6
RH
1918 int prot;
1919};
1920
1921static int walk_memory_regions_end(struct walk_memory_regions_data *data,
b480d9b7 1922 abi_ulong end, int new_prot)
5cd2c5b6
RH
1923{
1924 if (data->start != -1ul) {
1925 int rc = data->fn(data->priv, data->start, end, data->prot);
1926 if (rc != 0) {
1927 return rc;
1928 }
1929 }
1930
1931 data->start = (new_prot ? end : -1ul);
1932 data->prot = new_prot;
1933
1934 return 0;
1935}
1936
1937static int walk_memory_regions_1(struct walk_memory_regions_data *data,
b480d9b7 1938 abi_ulong base, int level, void **lp)
5cd2c5b6 1939{
b480d9b7 1940 abi_ulong pa;
5cd2c5b6
RH
1941 int i, rc;
1942
1943 if (*lp == NULL) {
1944 return walk_memory_regions_end(data, base, 0);
1945 }
1946
1947 if (level == 0) {
1948 PageDesc *pd = *lp;
7296abac 1949 for (i = 0; i < L2_SIZE; ++i) {
5cd2c5b6
RH
1950 int prot = pd[i].flags;
1951
1952 pa = base | (i << TARGET_PAGE_BITS);
1953 if (prot != data->prot) {
1954 rc = walk_memory_regions_end(data, pa, prot);
1955 if (rc != 0) {
1956 return rc;
9fa3e853 1957 }
9fa3e853 1958 }
5cd2c5b6
RH
1959 }
1960 } else {
1961 void **pp = *lp;
7296abac 1962 for (i = 0; i < L2_SIZE; ++i) {
b480d9b7
PB
1963 pa = base | ((abi_ulong)i <<
1964 (TARGET_PAGE_BITS + L2_BITS * level));
5cd2c5b6
RH
1965 rc = walk_memory_regions_1(data, pa, level - 1, pp + i);
1966 if (rc != 0) {
1967 return rc;
1968 }
1969 }
1970 }
1971
1972 return 0;
1973}
1974
1975int walk_memory_regions(void *priv, walk_memory_regions_fn fn)
1976{
1977 struct walk_memory_regions_data data;
8efe0ca8 1978 uintptr_t i;
5cd2c5b6
RH
1979
1980 data.fn = fn;
1981 data.priv = priv;
1982 data.start = -1ul;
1983 data.prot = 0;
1984
1985 for (i = 0; i < V_L1_SIZE; i++) {
b480d9b7 1986 int rc = walk_memory_regions_1(&data, (abi_ulong)i << V_L1_SHIFT,
5cd2c5b6
RH
1987 V_L1_SHIFT / L2_BITS - 1, l1_map + i);
1988 if (rc != 0) {
1989 return rc;
9fa3e853 1990 }
33417e70 1991 }
5cd2c5b6
RH
1992
1993 return walk_memory_regions_end(&data, 0, 0);
edf8e2af
MW
1994}
1995
b480d9b7
PB
1996static int dump_region(void *priv, abi_ulong start,
1997 abi_ulong end, unsigned long prot)
edf8e2af
MW
1998{
1999 FILE *f = (FILE *)priv;
2000
b480d9b7
PB
2001 (void) fprintf(f, TARGET_ABI_FMT_lx"-"TARGET_ABI_FMT_lx
2002 " "TARGET_ABI_FMT_lx" %c%c%c\n",
edf8e2af
MW
2003 start, end, end - start,
2004 ((prot & PAGE_READ) ? 'r' : '-'),
2005 ((prot & PAGE_WRITE) ? 'w' : '-'),
2006 ((prot & PAGE_EXEC) ? 'x' : '-'));
2007
2008 return (0);
2009}
2010
2011/* dump memory mappings */
2012void page_dump(FILE *f)
2013{
2014 (void) fprintf(f, "%-8s %-8s %-8s %s\n",
2015 "start", "end", "size", "prot");
2016 walk_memory_regions(f, dump_region);
33417e70
FB
2017}
2018
53a5960a 2019int page_get_flags(target_ulong address)
33417e70 2020{
9fa3e853
FB
2021 PageDesc *p;
2022
2023 p = page_find(address >> TARGET_PAGE_BITS);
33417e70 2024 if (!p)
9fa3e853
FB
2025 return 0;
2026 return p->flags;
2027}
2028
376a7909
RH
2029/* Modify the flags of a page and invalidate the code if necessary.
2030 The flag PAGE_WRITE_ORG is positioned automatically depending
2031 on PAGE_WRITE. The mmap_lock should already be held. */
53a5960a 2032void page_set_flags(target_ulong start, target_ulong end, int flags)
9fa3e853 2033{
376a7909
RH
2034 target_ulong addr, len;
2035
2036 /* This function should never be called with addresses outside the
2037 guest address space. If this assert fires, it probably indicates
2038 a missing call to h2g_valid. */
b480d9b7
PB
2039#if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS
2040 assert(end < ((abi_ulong)1 << L1_MAP_ADDR_SPACE_BITS));
376a7909
RH
2041#endif
2042 assert(start < end);
9fa3e853
FB
2043
2044 start = start & TARGET_PAGE_MASK;
2045 end = TARGET_PAGE_ALIGN(end);
376a7909
RH
2046
2047 if (flags & PAGE_WRITE) {
9fa3e853 2048 flags |= PAGE_WRITE_ORG;
376a7909
RH
2049 }
2050
2051 for (addr = start, len = end - start;
2052 len != 0;
2053 len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
2054 PageDesc *p = page_find_alloc(addr >> TARGET_PAGE_BITS, 1);
2055
2056 /* If the write protection bit is set, then we invalidate
2057 the code inside. */
5fafdf24 2058 if (!(p->flags & PAGE_WRITE) &&
9fa3e853
FB
2059 (flags & PAGE_WRITE) &&
2060 p->first_tb) {
d720b93d 2061 tb_invalidate_phys_page(addr, 0, NULL);
9fa3e853
FB
2062 }
2063 p->flags = flags;
2064 }
33417e70
FB
2065}
2066
3d97b40b
TS
2067int page_check_range(target_ulong start, target_ulong len, int flags)
2068{
2069 PageDesc *p;
2070 target_ulong end;
2071 target_ulong addr;
2072
376a7909
RH
2073 /* This function should never be called with addresses outside the
2074 guest address space. If this assert fires, it probably indicates
2075 a missing call to h2g_valid. */
338e9e6c
BS
2076#if TARGET_ABI_BITS > L1_MAP_ADDR_SPACE_BITS
2077 assert(start < ((abi_ulong)1 << L1_MAP_ADDR_SPACE_BITS));
376a7909
RH
2078#endif
2079
3e0650a9
RH
2080 if (len == 0) {
2081 return 0;
2082 }
376a7909
RH
2083 if (start + len - 1 < start) {
2084 /* We've wrapped around. */
55f280c9 2085 return -1;
376a7909 2086 }
55f280c9 2087
3d97b40b
TS
2088 end = TARGET_PAGE_ALIGN(start+len); /* must do before we loose bits in the next step */
2089 start = start & TARGET_PAGE_MASK;
2090
376a7909
RH
2091 for (addr = start, len = end - start;
2092 len != 0;
2093 len -= TARGET_PAGE_SIZE, addr += TARGET_PAGE_SIZE) {
3d97b40b
TS
2094 p = page_find(addr >> TARGET_PAGE_BITS);
2095 if( !p )
2096 return -1;
2097 if( !(p->flags & PAGE_VALID) )
2098 return -1;
2099
dae3270c 2100 if ((flags & PAGE_READ) && !(p->flags & PAGE_READ))
3d97b40b 2101 return -1;
dae3270c
FB
2102 if (flags & PAGE_WRITE) {
2103 if (!(p->flags & PAGE_WRITE_ORG))
2104 return -1;
2105 /* unprotect the page if it was put read-only because it
2106 contains translated code */
2107 if (!(p->flags & PAGE_WRITE)) {
2108 if (!page_unprotect(addr, 0, NULL))
2109 return -1;
2110 }
2111 return 0;
2112 }
3d97b40b
TS
2113 }
2114 return 0;
2115}
2116
9fa3e853 2117/* called from signal handler: invalidate the code and unprotect the
ccbb4d44 2118 page. Return TRUE if the fault was successfully handled. */
6375e09e 2119int page_unprotect(target_ulong address, uintptr_t pc, void *puc)
9fa3e853 2120{
45d679d6
AJ
2121 unsigned int prot;
2122 PageDesc *p;
53a5960a 2123 target_ulong host_start, host_end, addr;
9fa3e853 2124
c8a706fe
PB
2125 /* Technically this isn't safe inside a signal handler. However we
2126 know this only ever happens in a synchronous SEGV handler, so in
2127 practice it seems to be ok. */
2128 mmap_lock();
2129
45d679d6
AJ
2130 p = page_find(address >> TARGET_PAGE_BITS);
2131 if (!p) {
c8a706fe 2132 mmap_unlock();
9fa3e853 2133 return 0;
c8a706fe 2134 }
45d679d6 2135
9fa3e853
FB
2136 /* if the page was really writable, then we change its
2137 protection back to writable */
45d679d6
AJ
2138 if ((p->flags & PAGE_WRITE_ORG) && !(p->flags & PAGE_WRITE)) {
2139 host_start = address & qemu_host_page_mask;
2140 host_end = host_start + qemu_host_page_size;
2141
2142 prot = 0;
2143 for (addr = host_start ; addr < host_end ; addr += TARGET_PAGE_SIZE) {
2144 p = page_find(addr >> TARGET_PAGE_BITS);
2145 p->flags |= PAGE_WRITE;
2146 prot |= p->flags;
2147
9fa3e853
FB
2148 /* and since the content will be modified, we must invalidate
2149 the corresponding translated code. */
45d679d6 2150 tb_invalidate_phys_page(addr, pc, puc);
9fa3e853 2151#ifdef DEBUG_TB_CHECK
45d679d6 2152 tb_invalidate_check(addr);
9fa3e853 2153#endif
9fa3e853 2154 }
45d679d6
AJ
2155 mprotect((void *)g2h(host_start), qemu_host_page_size,
2156 prot & PAGE_BITS);
2157
2158 mmap_unlock();
2159 return 1;
9fa3e853 2160 }
c8a706fe 2161 mmap_unlock();
9fa3e853
FB
2162 return 0;
2163}
9fa3e853
FB
2164#endif /* defined(CONFIG_USER_ONLY) */
2165
e2eef170 2166#if !defined(CONFIG_USER_ONLY)
8da3ff18 2167
c04b2b78
PB
2168#define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
2169typedef struct subpage_t {
70c68e44 2170 MemoryRegion iomem;
c04b2b78 2171 target_phys_addr_t base;
5312bd8b 2172 uint16_t sub_section[TARGET_PAGE_SIZE];
c04b2b78
PB
2173} subpage_t;
2174
c227f099 2175static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
5312bd8b 2176 uint16_t section);
0f0cb164 2177static subpage_t *subpage_init(target_phys_addr_t base);
5312bd8b 2178static void destroy_page_desc(uint16_t section_index)
54688b1e 2179{
5312bd8b
AK
2180 MemoryRegionSection *section = &phys_sections[section_index];
2181 MemoryRegion *mr = section->mr;
54688b1e
AK
2182
2183 if (mr->subpage) {
2184 subpage_t *subpage = container_of(mr, subpage_t, iomem);
2185 memory_region_destroy(&subpage->iomem);
2186 g_free(subpage);
2187 }
2188}
2189
4346ae3e 2190static void destroy_l2_mapping(PhysPageEntry *lp, unsigned level)
54688b1e
AK
2191{
2192 unsigned i;
d6f2ea22 2193 PhysPageEntry *p;
54688b1e 2194
c19e8800 2195 if (lp->ptr == PHYS_MAP_NODE_NIL) {
54688b1e
AK
2196 return;
2197 }
2198
c19e8800 2199 p = phys_map_nodes[lp->ptr];
4346ae3e 2200 for (i = 0; i < L2_SIZE; ++i) {
07f07b31 2201 if (!p[i].is_leaf) {
54688b1e 2202 destroy_l2_mapping(&p[i], level - 1);
4346ae3e 2203 } else {
c19e8800 2204 destroy_page_desc(p[i].ptr);
54688b1e 2205 }
54688b1e 2206 }
07f07b31 2207 lp->is_leaf = 0;
c19e8800 2208 lp->ptr = PHYS_MAP_NODE_NIL;
54688b1e
AK
2209}
2210
2211static void destroy_all_mappings(void)
2212{
3eef53df 2213 destroy_l2_mapping(&phys_map, P_L2_LEVELS - 1);
d6f2ea22 2214 phys_map_nodes_reset();
54688b1e
AK
2215}
2216
5312bd8b
AK
2217static uint16_t phys_section_add(MemoryRegionSection *section)
2218{
2219 if (phys_sections_nb == phys_sections_nb_alloc) {
2220 phys_sections_nb_alloc = MAX(phys_sections_nb_alloc * 2, 16);
2221 phys_sections = g_renew(MemoryRegionSection, phys_sections,
2222 phys_sections_nb_alloc);
2223 }
2224 phys_sections[phys_sections_nb] = *section;
2225 return phys_sections_nb++;
2226}
2227
2228static void phys_sections_clear(void)
2229{
2230 phys_sections_nb = 0;
2231}
2232
0f0cb164
AK
2233static void register_subpage(MemoryRegionSection *section)
2234{
2235 subpage_t *subpage;
2236 target_phys_addr_t base = section->offset_within_address_space
2237 & TARGET_PAGE_MASK;
f3705d53 2238 MemoryRegionSection *existing = phys_page_find(base >> TARGET_PAGE_BITS);
0f0cb164
AK
2239 MemoryRegionSection subsection = {
2240 .offset_within_address_space = base,
2241 .size = TARGET_PAGE_SIZE,
2242 };
0f0cb164
AK
2243 target_phys_addr_t start, end;
2244
f3705d53 2245 assert(existing->mr->subpage || existing->mr == &io_mem_unassigned);
0f0cb164 2246
f3705d53 2247 if (!(existing->mr->subpage)) {
0f0cb164
AK
2248 subpage = subpage_init(base);
2249 subsection.mr = &subpage->iomem;
2999097b
AK
2250 phys_page_set(base >> TARGET_PAGE_BITS, 1,
2251 phys_section_add(&subsection));
0f0cb164 2252 } else {
f3705d53 2253 subpage = container_of(existing->mr, subpage_t, iomem);
0f0cb164
AK
2254 }
2255 start = section->offset_within_address_space & ~TARGET_PAGE_MASK;
adb2a9b5 2256 end = start + section->size - 1;
0f0cb164
AK
2257 subpage_register(subpage, start, end, phys_section_add(section));
2258}
2259
2260
2261static void register_multipage(MemoryRegionSection *section)
33417e70 2262{
dd81124b
AK
2263 target_phys_addr_t start_addr = section->offset_within_address_space;
2264 ram_addr_t size = section->size;
2999097b 2265 target_phys_addr_t addr;
5312bd8b 2266 uint16_t section_index = phys_section_add(section);
dd81124b 2267
3b8e6a2d 2268 assert(size);
f6f3fbca 2269
3b8e6a2d 2270 addr = start_addr;
2999097b
AK
2271 phys_page_set(addr >> TARGET_PAGE_BITS, size >> TARGET_PAGE_BITS,
2272 section_index);
33417e70
FB
2273}
2274
0f0cb164
AK
2275void cpu_register_physical_memory_log(MemoryRegionSection *section,
2276 bool readonly)
2277{
2278 MemoryRegionSection now = *section, remain = *section;
2279
2280 if ((now.offset_within_address_space & ~TARGET_PAGE_MASK)
2281 || (now.size < TARGET_PAGE_SIZE)) {
2282 now.size = MIN(TARGET_PAGE_ALIGN(now.offset_within_address_space)
2283 - now.offset_within_address_space,
2284 now.size);
2285 register_subpage(&now);
2286 remain.size -= now.size;
2287 remain.offset_within_address_space += now.size;
2288 remain.offset_within_region += now.size;
2289 }
69b67646
TH
2290 while (remain.size >= TARGET_PAGE_SIZE) {
2291 now = remain;
2292 if (remain.offset_within_region & ~TARGET_PAGE_MASK) {
2293 now.size = TARGET_PAGE_SIZE;
2294 register_subpage(&now);
2295 } else {
2296 now.size &= TARGET_PAGE_MASK;
2297 register_multipage(&now);
2298 }
0f0cb164
AK
2299 remain.size -= now.size;
2300 remain.offset_within_address_space += now.size;
2301 remain.offset_within_region += now.size;
2302 }
2303 now = remain;
2304 if (now.size) {
2305 register_subpage(&now);
2306 }
2307}
2308
2309
c227f099 2310void qemu_register_coalesced_mmio(target_phys_addr_t addr, ram_addr_t size)
f65ed4c1
AL
2311{
2312 if (kvm_enabled())
2313 kvm_coalesce_mmio_region(addr, size);
2314}
2315
c227f099 2316void qemu_unregister_coalesced_mmio(target_phys_addr_t addr, ram_addr_t size)
f65ed4c1
AL
2317{
2318 if (kvm_enabled())
2319 kvm_uncoalesce_mmio_region(addr, size);
2320}
2321
62a2744c
SY
2322void qemu_flush_coalesced_mmio_buffer(void)
2323{
2324 if (kvm_enabled())
2325 kvm_flush_coalesced_mmio_buffer();
2326}
2327
c902760f
MT
2328#if defined(__linux__) && !defined(TARGET_S390X)
2329
2330#include <sys/vfs.h>
2331
2332#define HUGETLBFS_MAGIC 0x958458f6
2333
2334static long gethugepagesize(const char *path)
2335{
2336 struct statfs fs;
2337 int ret;
2338
2339 do {
9742bf26 2340 ret = statfs(path, &fs);
c902760f
MT
2341 } while (ret != 0 && errno == EINTR);
2342
2343 if (ret != 0) {
9742bf26
YT
2344 perror(path);
2345 return 0;
c902760f
MT
2346 }
2347
2348 if (fs.f_type != HUGETLBFS_MAGIC)
9742bf26 2349 fprintf(stderr, "Warning: path not on HugeTLBFS: %s\n", path);
c902760f
MT
2350
2351 return fs.f_bsize;
2352}
2353
04b16653
AW
2354static void *file_ram_alloc(RAMBlock *block,
2355 ram_addr_t memory,
2356 const char *path)
c902760f
MT
2357{
2358 char *filename;
2359 void *area;
2360 int fd;
2361#ifdef MAP_POPULATE
2362 int flags;
2363#endif
2364 unsigned long hpagesize;
2365
2366 hpagesize = gethugepagesize(path);
2367 if (!hpagesize) {
9742bf26 2368 return NULL;
c902760f
MT
2369 }
2370
2371 if (memory < hpagesize) {
2372 return NULL;
2373 }
2374
2375 if (kvm_enabled() && !kvm_has_sync_mmu()) {
2376 fprintf(stderr, "host lacks kvm mmu notifiers, -mem-path unsupported\n");
2377 return NULL;
2378 }
2379
2380 if (asprintf(&filename, "%s/qemu_back_mem.XXXXXX", path) == -1) {
9742bf26 2381 return NULL;
c902760f
MT
2382 }
2383
2384 fd = mkstemp(filename);
2385 if (fd < 0) {
9742bf26
YT
2386 perror("unable to create backing store for hugepages");
2387 free(filename);
2388 return NULL;
c902760f
MT
2389 }
2390 unlink(filename);
2391 free(filename);
2392
2393 memory = (memory+hpagesize-1) & ~(hpagesize-1);
2394
2395 /*
2396 * ftruncate is not supported by hugetlbfs in older
2397 * hosts, so don't bother bailing out on errors.
2398 * If anything goes wrong with it under other filesystems,
2399 * mmap will fail.
2400 */
2401 if (ftruncate(fd, memory))
9742bf26 2402 perror("ftruncate");
c902760f
MT
2403
2404#ifdef MAP_POPULATE
2405 /* NB: MAP_POPULATE won't exhaustively alloc all phys pages in the case
2406 * MAP_PRIVATE is requested. For mem_prealloc we mmap as MAP_SHARED
2407 * to sidestep this quirk.
2408 */
2409 flags = mem_prealloc ? MAP_POPULATE | MAP_SHARED : MAP_PRIVATE;
2410 area = mmap(0, memory, PROT_READ | PROT_WRITE, flags, fd, 0);
2411#else
2412 area = mmap(0, memory, PROT_READ | PROT_WRITE, MAP_PRIVATE, fd, 0);
2413#endif
2414 if (area == MAP_FAILED) {
9742bf26
YT
2415 perror("file_ram_alloc: can't mmap RAM pages");
2416 close(fd);
2417 return (NULL);
c902760f 2418 }
04b16653 2419 block->fd = fd;
c902760f
MT
2420 return area;
2421}
2422#endif
2423
d17b5288 2424static ram_addr_t find_ram_offset(ram_addr_t size)
04b16653
AW
2425{
2426 RAMBlock *block, *next_block;
3e837b2c 2427 ram_addr_t offset = RAM_ADDR_MAX, mingap = RAM_ADDR_MAX;
04b16653
AW
2428
2429 if (QLIST_EMPTY(&ram_list.blocks))
2430 return 0;
2431
2432 QLIST_FOREACH(block, &ram_list.blocks, next) {
f15fbc4b 2433 ram_addr_t end, next = RAM_ADDR_MAX;
04b16653
AW
2434
2435 end = block->offset + block->length;
2436
2437 QLIST_FOREACH(next_block, &ram_list.blocks, next) {
2438 if (next_block->offset >= end) {
2439 next = MIN(next, next_block->offset);
2440 }
2441 }
2442 if (next - end >= size && next - end < mingap) {
3e837b2c 2443 offset = end;
04b16653
AW
2444 mingap = next - end;
2445 }
2446 }
3e837b2c
AW
2447
2448 if (offset == RAM_ADDR_MAX) {
2449 fprintf(stderr, "Failed to find gap of requested size: %" PRIu64 "\n",
2450 (uint64_t)size);
2451 abort();
2452 }
2453
04b16653
AW
2454 return offset;
2455}
2456
2457static ram_addr_t last_ram_offset(void)
d17b5288
AW
2458{
2459 RAMBlock *block;
2460 ram_addr_t last = 0;
2461
2462 QLIST_FOREACH(block, &ram_list.blocks, next)
2463 last = MAX(last, block->offset + block->length);
2464
2465 return last;
2466}
2467
ddb97f1d
JB
2468static void qemu_ram_setup_dump(void *addr, ram_addr_t size)
2469{
2470 int ret;
2471 QemuOpts *machine_opts;
2472
2473 /* Use MADV_DONTDUMP, if user doesn't want the guest memory in the core */
2474 machine_opts = qemu_opts_find(qemu_find_opts("machine"), 0);
2475 if (machine_opts &&
2476 !qemu_opt_get_bool(machine_opts, "dump-guest-core", true)) {
2477 ret = qemu_madvise(addr, size, QEMU_MADV_DONTDUMP);
2478 if (ret) {
2479 perror("qemu_madvise");
2480 fprintf(stderr, "madvise doesn't support MADV_DONTDUMP, "
2481 "but dump_guest_core=off specified\n");
2482 }
2483 }
2484}
2485
c5705a77 2486void qemu_ram_set_idstr(ram_addr_t addr, const char *name, DeviceState *dev)
84b89d78
CM
2487{
2488 RAMBlock *new_block, *block;
2489
c5705a77
AK
2490 new_block = NULL;
2491 QLIST_FOREACH(block, &ram_list.blocks, next) {
2492 if (block->offset == addr) {
2493 new_block = block;
2494 break;
2495 }
2496 }
2497 assert(new_block);
2498 assert(!new_block->idstr[0]);
84b89d78 2499
09e5ab63
AL
2500 if (dev) {
2501 char *id = qdev_get_dev_path(dev);
84b89d78
CM
2502 if (id) {
2503 snprintf(new_block->idstr, sizeof(new_block->idstr), "%s/", id);
7267c094 2504 g_free(id);
84b89d78
CM
2505 }
2506 }
2507 pstrcat(new_block->idstr, sizeof(new_block->idstr), name);
2508
2509 QLIST_FOREACH(block, &ram_list.blocks, next) {
c5705a77 2510 if (block != new_block && !strcmp(block->idstr, new_block->idstr)) {
84b89d78
CM
2511 fprintf(stderr, "RAMBlock \"%s\" already registered, abort!\n",
2512 new_block->idstr);
2513 abort();
2514 }
2515 }
c5705a77
AK
2516}
2517
8490fc78
LC
2518static int memory_try_enable_merging(void *addr, size_t len)
2519{
2520 QemuOpts *opts;
2521
2522 opts = qemu_opts_find(qemu_find_opts("machine"), 0);
2523 if (opts && !qemu_opt_get_bool(opts, "mem-merge", true)) {
2524 /* disabled by the user */
2525 return 0;
2526 }
2527
2528 return qemu_madvise(addr, len, QEMU_MADV_MERGEABLE);
2529}
2530
c5705a77
AK
2531ram_addr_t qemu_ram_alloc_from_ptr(ram_addr_t size, void *host,
2532 MemoryRegion *mr)
2533{
2534 RAMBlock *new_block;
2535
2536 size = TARGET_PAGE_ALIGN(size);
2537 new_block = g_malloc0(sizeof(*new_block));
84b89d78 2538
7c637366 2539 new_block->mr = mr;
432d268c 2540 new_block->offset = find_ram_offset(size);
6977dfe6
YT
2541 if (host) {
2542 new_block->host = host;
cd19cfa2 2543 new_block->flags |= RAM_PREALLOC_MASK;
6977dfe6
YT
2544 } else {
2545 if (mem_path) {
c902760f 2546#if defined (__linux__) && !defined(TARGET_S390X)
6977dfe6
YT
2547 new_block->host = file_ram_alloc(new_block, size, mem_path);
2548 if (!new_block->host) {
2549 new_block->host = qemu_vmalloc(size);
8490fc78 2550 memory_try_enable_merging(new_block->host, size);
6977dfe6 2551 }
c902760f 2552#else
6977dfe6
YT
2553 fprintf(stderr, "-mem-path option unsupported\n");
2554 exit(1);
c902760f 2555#endif
6977dfe6 2556 } else {
868bb33f 2557 if (xen_enabled()) {
fce537d4 2558 xen_ram_alloc(new_block->offset, size, mr);
fdec9918
CB
2559 } else if (kvm_enabled()) {
2560 /* some s390/kvm configurations have special constraints */
2561 new_block->host = kvm_vmalloc(size);
432d268c
JN
2562 } else {
2563 new_block->host = qemu_vmalloc(size);
2564 }
8490fc78 2565 memory_try_enable_merging(new_block->host, size);
6977dfe6 2566 }
c902760f 2567 }
94a6b54f
PB
2568 new_block->length = size;
2569
f471a17e 2570 QLIST_INSERT_HEAD(&ram_list.blocks, new_block, next);
94a6b54f 2571
7267c094 2572 ram_list.phys_dirty = g_realloc(ram_list.phys_dirty,
04b16653 2573 last_ram_offset() >> TARGET_PAGE_BITS);
5fda043f
IM
2574 memset(ram_list.phys_dirty + (new_block->offset >> TARGET_PAGE_BITS),
2575 0, size >> TARGET_PAGE_BITS);
1720aeee 2576 cpu_physical_memory_set_dirty_range(new_block->offset, size, 0xff);
94a6b54f 2577
ddb97f1d
JB
2578 qemu_ram_setup_dump(new_block->host, size);
2579
6f0437e8
JK
2580 if (kvm_enabled())
2581 kvm_setup_guest_memory(new_block->host, size);
2582
94a6b54f
PB
2583 return new_block->offset;
2584}
e9a1ab19 2585
c5705a77 2586ram_addr_t qemu_ram_alloc(ram_addr_t size, MemoryRegion *mr)
6977dfe6 2587{
c5705a77 2588 return qemu_ram_alloc_from_ptr(size, NULL, mr);
6977dfe6
YT
2589}
2590
1f2e98b6
AW
2591void qemu_ram_free_from_ptr(ram_addr_t addr)
2592{
2593 RAMBlock *block;
2594
2595 QLIST_FOREACH(block, &ram_list.blocks, next) {
2596 if (addr == block->offset) {
2597 QLIST_REMOVE(block, next);
7267c094 2598 g_free(block);
1f2e98b6
AW
2599 return;
2600 }
2601 }
2602}
2603
c227f099 2604void qemu_ram_free(ram_addr_t addr)
e9a1ab19 2605{
04b16653
AW
2606 RAMBlock *block;
2607
2608 QLIST_FOREACH(block, &ram_list.blocks, next) {
2609 if (addr == block->offset) {
2610 QLIST_REMOVE(block, next);
cd19cfa2
HY
2611 if (block->flags & RAM_PREALLOC_MASK) {
2612 ;
2613 } else if (mem_path) {
04b16653
AW
2614#if defined (__linux__) && !defined(TARGET_S390X)
2615 if (block->fd) {
2616 munmap(block->host, block->length);
2617 close(block->fd);
2618 } else {
2619 qemu_vfree(block->host);
2620 }
fd28aa13
JK
2621#else
2622 abort();
04b16653
AW
2623#endif
2624 } else {
2625#if defined(TARGET_S390X) && defined(CONFIG_KVM)
2626 munmap(block->host, block->length);
2627#else
868bb33f 2628 if (xen_enabled()) {
e41d7c69 2629 xen_invalidate_map_cache_entry(block->host);
432d268c
JN
2630 } else {
2631 qemu_vfree(block->host);
2632 }
04b16653
AW
2633#endif
2634 }
7267c094 2635 g_free(block);
04b16653
AW
2636 return;
2637 }
2638 }
2639
e9a1ab19
FB
2640}
2641
cd19cfa2
HY
2642#ifndef _WIN32
2643void qemu_ram_remap(ram_addr_t addr, ram_addr_t length)
2644{
2645 RAMBlock *block;
2646 ram_addr_t offset;
2647 int flags;
2648 void *area, *vaddr;
2649
2650 QLIST_FOREACH(block, &ram_list.blocks, next) {
2651 offset = addr - block->offset;
2652 if (offset < block->length) {
2653 vaddr = block->host + offset;
2654 if (block->flags & RAM_PREALLOC_MASK) {
2655 ;
2656 } else {
2657 flags = MAP_FIXED;
2658 munmap(vaddr, length);
2659 if (mem_path) {
2660#if defined(__linux__) && !defined(TARGET_S390X)
2661 if (block->fd) {
2662#ifdef MAP_POPULATE
2663 flags |= mem_prealloc ? MAP_POPULATE | MAP_SHARED :
2664 MAP_PRIVATE;
2665#else
2666 flags |= MAP_PRIVATE;
2667#endif
2668 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
2669 flags, block->fd, offset);
2670 } else {
2671 flags |= MAP_PRIVATE | MAP_ANONYMOUS;
2672 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
2673 flags, -1, 0);
2674 }
fd28aa13
JK
2675#else
2676 abort();
cd19cfa2
HY
2677#endif
2678 } else {
2679#if defined(TARGET_S390X) && defined(CONFIG_KVM)
2680 flags |= MAP_SHARED | MAP_ANONYMOUS;
2681 area = mmap(vaddr, length, PROT_EXEC|PROT_READ|PROT_WRITE,
2682 flags, -1, 0);
2683#else
2684 flags |= MAP_PRIVATE | MAP_ANONYMOUS;
2685 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
2686 flags, -1, 0);
2687#endif
2688 }
2689 if (area != vaddr) {
f15fbc4b
AP
2690 fprintf(stderr, "Could not remap addr: "
2691 RAM_ADDR_FMT "@" RAM_ADDR_FMT "\n",
cd19cfa2
HY
2692 length, addr);
2693 exit(1);
2694 }
8490fc78 2695 memory_try_enable_merging(vaddr, length);
ddb97f1d 2696 qemu_ram_setup_dump(vaddr, length);
cd19cfa2
HY
2697 }
2698 return;
2699 }
2700 }
2701}
2702#endif /* !_WIN32 */
2703
dc828ca1 2704/* Return a host pointer to ram allocated with qemu_ram_alloc.
5579c7f3
PB
2705 With the exception of the softmmu code in this file, this should
2706 only be used for local memory (e.g. video ram) that the device owns,
2707 and knows it isn't going to access beyond the end of the block.
2708
2709 It should not be used for general purpose DMA.
2710 Use cpu_physical_memory_map/cpu_physical_memory_rw instead.
2711 */
c227f099 2712void *qemu_get_ram_ptr(ram_addr_t addr)
dc828ca1 2713{
94a6b54f
PB
2714 RAMBlock *block;
2715
f471a17e
AW
2716 QLIST_FOREACH(block, &ram_list.blocks, next) {
2717 if (addr - block->offset < block->length) {
7d82af38
VP
2718 /* Move this entry to to start of the list. */
2719 if (block != QLIST_FIRST(&ram_list.blocks)) {
2720 QLIST_REMOVE(block, next);
2721 QLIST_INSERT_HEAD(&ram_list.blocks, block, next);
2722 }
868bb33f 2723 if (xen_enabled()) {
432d268c
JN
2724 /* We need to check if the requested address is in the RAM
2725 * because we don't want to map the entire memory in QEMU.
712c2b41 2726 * In that case just map until the end of the page.
432d268c
JN
2727 */
2728 if (block->offset == 0) {
e41d7c69 2729 return xen_map_cache(addr, 0, 0);
432d268c 2730 } else if (block->host == NULL) {
e41d7c69
JK
2731 block->host =
2732 xen_map_cache(block->offset, block->length, 1);
432d268c
JN
2733 }
2734 }
f471a17e
AW
2735 return block->host + (addr - block->offset);
2736 }
94a6b54f 2737 }
f471a17e
AW
2738
2739 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
2740 abort();
2741
2742 return NULL;
dc828ca1
PB
2743}
2744
b2e0a138
MT
2745/* Return a host pointer to ram allocated with qemu_ram_alloc.
2746 * Same as qemu_get_ram_ptr but avoid reordering ramblocks.
2747 */
2748void *qemu_safe_ram_ptr(ram_addr_t addr)
2749{
2750 RAMBlock *block;
2751
2752 QLIST_FOREACH(block, &ram_list.blocks, next) {
2753 if (addr - block->offset < block->length) {
868bb33f 2754 if (xen_enabled()) {
432d268c
JN
2755 /* We need to check if the requested address is in the RAM
2756 * because we don't want to map the entire memory in QEMU.
712c2b41 2757 * In that case just map until the end of the page.
432d268c
JN
2758 */
2759 if (block->offset == 0) {
e41d7c69 2760 return xen_map_cache(addr, 0, 0);
432d268c 2761 } else if (block->host == NULL) {
e41d7c69
JK
2762 block->host =
2763 xen_map_cache(block->offset, block->length, 1);
432d268c
JN
2764 }
2765 }
b2e0a138
MT
2766 return block->host + (addr - block->offset);
2767 }
2768 }
2769
2770 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
2771 abort();
2772
2773 return NULL;
2774}
2775
38bee5dc
SS
2776/* Return a host pointer to guest's ram. Similar to qemu_get_ram_ptr
2777 * but takes a size argument */
8ab934f9 2778void *qemu_ram_ptr_length(ram_addr_t addr, ram_addr_t *size)
38bee5dc 2779{
8ab934f9
SS
2780 if (*size == 0) {
2781 return NULL;
2782 }
868bb33f 2783 if (xen_enabled()) {
e41d7c69 2784 return xen_map_cache(addr, *size, 1);
868bb33f 2785 } else {
38bee5dc
SS
2786 RAMBlock *block;
2787
2788 QLIST_FOREACH(block, &ram_list.blocks, next) {
2789 if (addr - block->offset < block->length) {
2790 if (addr - block->offset + *size > block->length)
2791 *size = block->length - addr + block->offset;
2792 return block->host + (addr - block->offset);
2793 }
2794 }
2795
2796 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
2797 abort();
38bee5dc
SS
2798 }
2799}
2800
050a0ddf
AP
2801void qemu_put_ram_ptr(void *addr)
2802{
2803 trace_qemu_put_ram_ptr(addr);
050a0ddf
AP
2804}
2805
e890261f 2806int qemu_ram_addr_from_host(void *ptr, ram_addr_t *ram_addr)
5579c7f3 2807{
94a6b54f
PB
2808 RAMBlock *block;
2809 uint8_t *host = ptr;
2810
868bb33f 2811 if (xen_enabled()) {
e41d7c69 2812 *ram_addr = xen_ram_addr_from_mapcache(ptr);
712c2b41
SS
2813 return 0;
2814 }
2815
f471a17e 2816 QLIST_FOREACH(block, &ram_list.blocks, next) {
432d268c
JN
2817 /* This case append when the block is not mapped. */
2818 if (block->host == NULL) {
2819 continue;
2820 }
f471a17e 2821 if (host - block->host < block->length) {
e890261f
MT
2822 *ram_addr = block->offset + (host - block->host);
2823 return 0;
f471a17e 2824 }
94a6b54f 2825 }
432d268c 2826
e890261f
MT
2827 return -1;
2828}
f471a17e 2829
e890261f
MT
2830/* Some of the softmmu routines need to translate from a host pointer
2831 (typically a TLB entry) back to a ram offset. */
2832ram_addr_t qemu_ram_addr_from_host_nofail(void *ptr)
2833{
2834 ram_addr_t ram_addr;
f471a17e 2835
e890261f
MT
2836 if (qemu_ram_addr_from_host(ptr, &ram_addr)) {
2837 fprintf(stderr, "Bad ram pointer %p\n", ptr);
2838 abort();
2839 }
2840 return ram_addr;
5579c7f3
PB
2841}
2842
0e0df1e2
AK
2843static uint64_t unassigned_mem_read(void *opaque, target_phys_addr_t addr,
2844 unsigned size)
e18231a3
BS
2845{
2846#ifdef DEBUG_UNASSIGNED
2847 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
2848#endif
5b450407 2849#if defined(TARGET_ALPHA) || defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
0e0df1e2 2850 cpu_unassigned_access(cpu_single_env, addr, 0, 0, 0, size);
e18231a3
BS
2851#endif
2852 return 0;
2853}
2854
0e0df1e2
AK
2855static void unassigned_mem_write(void *opaque, target_phys_addr_t addr,
2856 uint64_t val, unsigned size)
e18231a3
BS
2857{
2858#ifdef DEBUG_UNASSIGNED
0e0df1e2 2859 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%"PRIx64"\n", addr, val);
e18231a3 2860#endif
5b450407 2861#if defined(TARGET_ALPHA) || defined(TARGET_SPARC) || defined(TARGET_MICROBLAZE)
0e0df1e2 2862 cpu_unassigned_access(cpu_single_env, addr, 1, 0, 0, size);
67d3b957 2863#endif
33417e70
FB
2864}
2865
0e0df1e2
AK
2866static const MemoryRegionOps unassigned_mem_ops = {
2867 .read = unassigned_mem_read,
2868 .write = unassigned_mem_write,
2869 .endianness = DEVICE_NATIVE_ENDIAN,
2870};
e18231a3 2871
0e0df1e2
AK
2872static uint64_t error_mem_read(void *opaque, target_phys_addr_t addr,
2873 unsigned size)
e18231a3 2874{
0e0df1e2 2875 abort();
e18231a3
BS
2876}
2877
0e0df1e2
AK
2878static void error_mem_write(void *opaque, target_phys_addr_t addr,
2879 uint64_t value, unsigned size)
e18231a3 2880{
0e0df1e2 2881 abort();
33417e70
FB
2882}
2883
0e0df1e2
AK
2884static const MemoryRegionOps error_mem_ops = {
2885 .read = error_mem_read,
2886 .write = error_mem_write,
2887 .endianness = DEVICE_NATIVE_ENDIAN,
33417e70
FB
2888};
2889
0e0df1e2
AK
2890static const MemoryRegionOps rom_mem_ops = {
2891 .read = error_mem_read,
2892 .write = unassigned_mem_write,
2893 .endianness = DEVICE_NATIVE_ENDIAN,
33417e70
FB
2894};
2895
0e0df1e2
AK
2896static void notdirty_mem_write(void *opaque, target_phys_addr_t ram_addr,
2897 uint64_t val, unsigned size)
9fa3e853 2898{
3a7d929e 2899 int dirty_flags;
f7c11b53 2900 dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
3a7d929e 2901 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
9fa3e853 2902#if !defined(CONFIG_USER_ONLY)
0e0df1e2 2903 tb_invalidate_phys_page_fast(ram_addr, size);
f7c11b53 2904 dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
9fa3e853 2905#endif
3a7d929e 2906 }
0e0df1e2
AK
2907 switch (size) {
2908 case 1:
2909 stb_p(qemu_get_ram_ptr(ram_addr), val);
2910 break;
2911 case 2:
2912 stw_p(qemu_get_ram_ptr(ram_addr), val);
2913 break;
2914 case 4:
2915 stl_p(qemu_get_ram_ptr(ram_addr), val);
2916 break;
2917 default:
2918 abort();
3a7d929e 2919 }
f23db169 2920 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
f7c11b53 2921 cpu_physical_memory_set_dirty_flags(ram_addr, dirty_flags);
f23db169
FB
2922 /* we remove the notdirty callback only if the code has been
2923 flushed */
2924 if (dirty_flags == 0xff)
2e70f6ef 2925 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
9fa3e853
FB
2926}
2927
0e0df1e2
AK
2928static const MemoryRegionOps notdirty_mem_ops = {
2929 .read = error_mem_read,
2930 .write = notdirty_mem_write,
2931 .endianness = DEVICE_NATIVE_ENDIAN,
1ccde1cb
FB
2932};
2933
0f459d16 2934/* Generate a debug exception if a watchpoint has been hit. */
b4051334 2935static void check_watchpoint(int offset, int len_mask, int flags)
0f459d16 2936{
9349b4f9 2937 CPUArchState *env = cpu_single_env;
06d55cc1
AL
2938 target_ulong pc, cs_base;
2939 TranslationBlock *tb;
0f459d16 2940 target_ulong vaddr;
a1d1bb31 2941 CPUWatchpoint *wp;
06d55cc1 2942 int cpu_flags;
0f459d16 2943
06d55cc1
AL
2944 if (env->watchpoint_hit) {
2945 /* We re-entered the check after replacing the TB. Now raise
2946 * the debug interrupt so that is will trigger after the
2947 * current instruction. */
2948 cpu_interrupt(env, CPU_INTERRUPT_DEBUG);
2949 return;
2950 }
2e70f6ef 2951 vaddr = (env->mem_io_vaddr & TARGET_PAGE_MASK) + offset;
72cf2d4f 2952 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
b4051334
AL
2953 if ((vaddr == (wp->vaddr & len_mask) ||
2954 (vaddr & wp->len_mask) == wp->vaddr) && (wp->flags & flags)) {
6e140f28
AL
2955 wp->flags |= BP_WATCHPOINT_HIT;
2956 if (!env->watchpoint_hit) {
2957 env->watchpoint_hit = wp;
2958 tb = tb_find_pc(env->mem_io_pc);
2959 if (!tb) {
2960 cpu_abort(env, "check_watchpoint: could not find TB for "
2961 "pc=%p", (void *)env->mem_io_pc);
2962 }
618ba8e6 2963 cpu_restore_state(tb, env, env->mem_io_pc);
6e140f28
AL
2964 tb_phys_invalidate(tb, -1);
2965 if (wp->flags & BP_STOP_BEFORE_ACCESS) {
2966 env->exception_index = EXCP_DEBUG;
488d6577 2967 cpu_loop_exit(env);
6e140f28
AL
2968 } else {
2969 cpu_get_tb_cpu_state(env, &pc, &cs_base, &cpu_flags);
2970 tb_gen_code(env, pc, cs_base, cpu_flags, 1);
488d6577 2971 cpu_resume_from_signal(env, NULL);
6e140f28 2972 }
06d55cc1 2973 }
6e140f28
AL
2974 } else {
2975 wp->flags &= ~BP_WATCHPOINT_HIT;
0f459d16
PB
2976 }
2977 }
2978}
2979
6658ffb8
PB
2980/* Watchpoint access routines. Watchpoints are inserted using TLB tricks,
2981 so these check for a hit then pass through to the normal out-of-line
2982 phys routines. */
1ec9b909
AK
2983static uint64_t watch_mem_read(void *opaque, target_phys_addr_t addr,
2984 unsigned size)
6658ffb8 2985{
1ec9b909
AK
2986 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~(size - 1), BP_MEM_READ);
2987 switch (size) {
2988 case 1: return ldub_phys(addr);
2989 case 2: return lduw_phys(addr);
2990 case 4: return ldl_phys(addr);
2991 default: abort();
2992 }
6658ffb8
PB
2993}
2994
1ec9b909
AK
2995static void watch_mem_write(void *opaque, target_phys_addr_t addr,
2996 uint64_t val, unsigned size)
6658ffb8 2997{
1ec9b909
AK
2998 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~(size - 1), BP_MEM_WRITE);
2999 switch (size) {
67364150
MF
3000 case 1:
3001 stb_phys(addr, val);
3002 break;
3003 case 2:
3004 stw_phys(addr, val);
3005 break;
3006 case 4:
3007 stl_phys(addr, val);
3008 break;
1ec9b909
AK
3009 default: abort();
3010 }
6658ffb8
PB
3011}
3012
1ec9b909
AK
3013static const MemoryRegionOps watch_mem_ops = {
3014 .read = watch_mem_read,
3015 .write = watch_mem_write,
3016 .endianness = DEVICE_NATIVE_ENDIAN,
6658ffb8 3017};
6658ffb8 3018
70c68e44
AK
3019static uint64_t subpage_read(void *opaque, target_phys_addr_t addr,
3020 unsigned len)
db7b5426 3021{
70c68e44 3022 subpage_t *mmio = opaque;
f6405247 3023 unsigned int idx = SUBPAGE_IDX(addr);
5312bd8b 3024 MemoryRegionSection *section;
db7b5426
BS
3025#if defined(DEBUG_SUBPAGE)
3026 printf("%s: subpage %p len %d addr " TARGET_FMT_plx " idx %d\n", __func__,
3027 mmio, len, addr, idx);
3028#endif
db7b5426 3029
5312bd8b
AK
3030 section = &phys_sections[mmio->sub_section[idx]];
3031 addr += mmio->base;
3032 addr -= section->offset_within_address_space;
3033 addr += section->offset_within_region;
37ec01d4 3034 return io_mem_read(section->mr, addr, len);
db7b5426
BS
3035}
3036
70c68e44
AK
3037static void subpage_write(void *opaque, target_phys_addr_t addr,
3038 uint64_t value, unsigned len)
db7b5426 3039{
70c68e44 3040 subpage_t *mmio = opaque;
f6405247 3041 unsigned int idx = SUBPAGE_IDX(addr);
5312bd8b 3042 MemoryRegionSection *section;
db7b5426 3043#if defined(DEBUG_SUBPAGE)
70c68e44
AK
3044 printf("%s: subpage %p len %d addr " TARGET_FMT_plx
3045 " idx %d value %"PRIx64"\n",
f6405247 3046 __func__, mmio, len, addr, idx, value);
db7b5426 3047#endif
f6405247 3048
5312bd8b
AK
3049 section = &phys_sections[mmio->sub_section[idx]];
3050 addr += mmio->base;
3051 addr -= section->offset_within_address_space;
3052 addr += section->offset_within_region;
37ec01d4 3053 io_mem_write(section->mr, addr, value, len);
db7b5426
BS
3054}
3055
70c68e44
AK
3056static const MemoryRegionOps subpage_ops = {
3057 .read = subpage_read,
3058 .write = subpage_write,
3059 .endianness = DEVICE_NATIVE_ENDIAN,
db7b5426
BS
3060};
3061
de712f94
AK
3062static uint64_t subpage_ram_read(void *opaque, target_phys_addr_t addr,
3063 unsigned size)
56384e8b
AF
3064{
3065 ram_addr_t raddr = addr;
3066 void *ptr = qemu_get_ram_ptr(raddr);
de712f94
AK
3067 switch (size) {
3068 case 1: return ldub_p(ptr);
3069 case 2: return lduw_p(ptr);
3070 case 4: return ldl_p(ptr);
3071 default: abort();
3072 }
56384e8b
AF
3073}
3074
de712f94
AK
3075static void subpage_ram_write(void *opaque, target_phys_addr_t addr,
3076 uint64_t value, unsigned size)
56384e8b
AF
3077{
3078 ram_addr_t raddr = addr;
3079 void *ptr = qemu_get_ram_ptr(raddr);
de712f94
AK
3080 switch (size) {
3081 case 1: return stb_p(ptr, value);
3082 case 2: return stw_p(ptr, value);
3083 case 4: return stl_p(ptr, value);
3084 default: abort();
3085 }
56384e8b
AF
3086}
3087
de712f94
AK
3088static const MemoryRegionOps subpage_ram_ops = {
3089 .read = subpage_ram_read,
3090 .write = subpage_ram_write,
3091 .endianness = DEVICE_NATIVE_ENDIAN,
56384e8b
AF
3092};
3093
c227f099 3094static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
5312bd8b 3095 uint16_t section)
db7b5426
BS
3096{
3097 int idx, eidx;
3098
3099 if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
3100 return -1;
3101 idx = SUBPAGE_IDX(start);
3102 eidx = SUBPAGE_IDX(end);
3103#if defined(DEBUG_SUBPAGE)
0bf9e31a 3104 printf("%s: %p start %08x end %08x idx %08x eidx %08x mem %ld\n", __func__,
db7b5426
BS
3105 mmio, start, end, idx, eidx, memory);
3106#endif
5312bd8b
AK
3107 if (memory_region_is_ram(phys_sections[section].mr)) {
3108 MemoryRegionSection new_section = phys_sections[section];
3109 new_section.mr = &io_mem_subpage_ram;
3110 section = phys_section_add(&new_section);
56384e8b 3111 }
db7b5426 3112 for (; idx <= eidx; idx++) {
5312bd8b 3113 mmio->sub_section[idx] = section;
db7b5426
BS
3114 }
3115
3116 return 0;
3117}
3118
0f0cb164 3119static subpage_t *subpage_init(target_phys_addr_t base)
db7b5426 3120{
c227f099 3121 subpage_t *mmio;
db7b5426 3122
7267c094 3123 mmio = g_malloc0(sizeof(subpage_t));
1eec614b
AL
3124
3125 mmio->base = base;
70c68e44
AK
3126 memory_region_init_io(&mmio->iomem, &subpage_ops, mmio,
3127 "subpage", TARGET_PAGE_SIZE);
b3b00c78 3128 mmio->iomem.subpage = true;
db7b5426 3129#if defined(DEBUG_SUBPAGE)
1eec614b
AL
3130 printf("%s: %p base " TARGET_FMT_plx " len %08x %d\n", __func__,
3131 mmio, base, TARGET_PAGE_SIZE, subpage_memory);
db7b5426 3132#endif
0f0cb164 3133 subpage_register(mmio, 0, TARGET_PAGE_SIZE-1, phys_section_unassigned);
db7b5426
BS
3134
3135 return mmio;
3136}
3137
5312bd8b
AK
3138static uint16_t dummy_section(MemoryRegion *mr)
3139{
3140 MemoryRegionSection section = {
3141 .mr = mr,
3142 .offset_within_address_space = 0,
3143 .offset_within_region = 0,
3144 .size = UINT64_MAX,
3145 };
3146
3147 return phys_section_add(&section);
3148}
3149
37ec01d4 3150MemoryRegion *iotlb_to_region(target_phys_addr_t index)
aa102231 3151{
37ec01d4 3152 return phys_sections[index & ~TARGET_PAGE_MASK].mr;
aa102231
AK
3153}
3154
e9179ce1
AK
3155static void io_mem_init(void)
3156{
0e0df1e2 3157 memory_region_init_io(&io_mem_ram, &error_mem_ops, NULL, "ram", UINT64_MAX);
0e0df1e2
AK
3158 memory_region_init_io(&io_mem_rom, &rom_mem_ops, NULL, "rom", UINT64_MAX);
3159 memory_region_init_io(&io_mem_unassigned, &unassigned_mem_ops, NULL,
3160 "unassigned", UINT64_MAX);
3161 memory_region_init_io(&io_mem_notdirty, &notdirty_mem_ops, NULL,
3162 "notdirty", UINT64_MAX);
de712f94
AK
3163 memory_region_init_io(&io_mem_subpage_ram, &subpage_ram_ops, NULL,
3164 "subpage-ram", UINT64_MAX);
1ec9b909
AK
3165 memory_region_init_io(&io_mem_watch, &watch_mem_ops, NULL,
3166 "watch", UINT64_MAX);
e9179ce1
AK
3167}
3168
50c1e149
AK
3169static void core_begin(MemoryListener *listener)
3170{
54688b1e 3171 destroy_all_mappings();
5312bd8b 3172 phys_sections_clear();
c19e8800 3173 phys_map.ptr = PHYS_MAP_NODE_NIL;
5312bd8b 3174 phys_section_unassigned = dummy_section(&io_mem_unassigned);
aa102231
AK
3175 phys_section_notdirty = dummy_section(&io_mem_notdirty);
3176 phys_section_rom = dummy_section(&io_mem_rom);
3177 phys_section_watch = dummy_section(&io_mem_watch);
50c1e149
AK
3178}
3179
3180static void core_commit(MemoryListener *listener)
3181{
9349b4f9 3182 CPUArchState *env;
117712c3
AK
3183
3184 /* since each CPU stores ram addresses in its TLB cache, we must
3185 reset the modified entries */
3186 /* XXX: slow ! */
3187 for(env = first_cpu; env != NULL; env = env->next_cpu) {
3188 tlb_flush(env, 1);
3189 }
50c1e149
AK
3190}
3191
93632747
AK
3192static void core_region_add(MemoryListener *listener,
3193 MemoryRegionSection *section)
3194{
4855d41a 3195 cpu_register_physical_memory_log(section, section->readonly);
93632747
AK
3196}
3197
3198static void core_region_del(MemoryListener *listener,
3199 MemoryRegionSection *section)
3200{
93632747
AK
3201}
3202
50c1e149
AK
3203static void core_region_nop(MemoryListener *listener,
3204 MemoryRegionSection *section)
3205{
54688b1e 3206 cpu_register_physical_memory_log(section, section->readonly);
50c1e149
AK
3207}
3208
93632747
AK
3209static void core_log_start(MemoryListener *listener,
3210 MemoryRegionSection *section)
3211{
3212}
3213
3214static void core_log_stop(MemoryListener *listener,
3215 MemoryRegionSection *section)
3216{
3217}
3218
3219static void core_log_sync(MemoryListener *listener,
3220 MemoryRegionSection *section)
3221{
3222}
3223
3224static void core_log_global_start(MemoryListener *listener)
3225{
3226 cpu_physical_memory_set_dirty_tracking(1);
3227}
3228
3229static void core_log_global_stop(MemoryListener *listener)
3230{
3231 cpu_physical_memory_set_dirty_tracking(0);
3232}
3233
3234static void core_eventfd_add(MemoryListener *listener,
3235 MemoryRegionSection *section,
753d5e14 3236 bool match_data, uint64_t data, EventNotifier *e)
93632747
AK
3237{
3238}
3239
3240static void core_eventfd_del(MemoryListener *listener,
3241 MemoryRegionSection *section,
753d5e14 3242 bool match_data, uint64_t data, EventNotifier *e)
93632747
AK
3243{
3244}
3245
50c1e149
AK
3246static void io_begin(MemoryListener *listener)
3247{
3248}
3249
3250static void io_commit(MemoryListener *listener)
3251{
3252}
3253
4855d41a
AK
3254static void io_region_add(MemoryListener *listener,
3255 MemoryRegionSection *section)
3256{
a2d33521
AK
3257 MemoryRegionIORange *mrio = g_new(MemoryRegionIORange, 1);
3258
3259 mrio->mr = section->mr;
3260 mrio->offset = section->offset_within_region;
3261 iorange_init(&mrio->iorange, &memory_region_iorange_ops,
4855d41a 3262 section->offset_within_address_space, section->size);
a2d33521 3263 ioport_register(&mrio->iorange);
4855d41a
AK
3264}
3265
3266static void io_region_del(MemoryListener *listener,
3267 MemoryRegionSection *section)
3268{
3269 isa_unassign_ioport(section->offset_within_address_space, section->size);
3270}
3271
50c1e149
AK
3272static void io_region_nop(MemoryListener *listener,
3273 MemoryRegionSection *section)
3274{
3275}
3276
4855d41a
AK
3277static void io_log_start(MemoryListener *listener,
3278 MemoryRegionSection *section)
3279{
3280}
3281
3282static void io_log_stop(MemoryListener *listener,
3283 MemoryRegionSection *section)
3284{
3285}
3286
3287static void io_log_sync(MemoryListener *listener,
3288 MemoryRegionSection *section)
3289{
3290}
3291
3292static void io_log_global_start(MemoryListener *listener)
3293{
3294}
3295
3296static void io_log_global_stop(MemoryListener *listener)
3297{
3298}
3299
3300static void io_eventfd_add(MemoryListener *listener,
3301 MemoryRegionSection *section,
753d5e14 3302 bool match_data, uint64_t data, EventNotifier *e)
4855d41a
AK
3303{
3304}
3305
3306static void io_eventfd_del(MemoryListener *listener,
3307 MemoryRegionSection *section,
753d5e14 3308 bool match_data, uint64_t data, EventNotifier *e)
4855d41a
AK
3309{
3310}
3311
93632747 3312static MemoryListener core_memory_listener = {
50c1e149
AK
3313 .begin = core_begin,
3314 .commit = core_commit,
93632747
AK
3315 .region_add = core_region_add,
3316 .region_del = core_region_del,
50c1e149 3317 .region_nop = core_region_nop,
93632747
AK
3318 .log_start = core_log_start,
3319 .log_stop = core_log_stop,
3320 .log_sync = core_log_sync,
3321 .log_global_start = core_log_global_start,
3322 .log_global_stop = core_log_global_stop,
3323 .eventfd_add = core_eventfd_add,
3324 .eventfd_del = core_eventfd_del,
3325 .priority = 0,
3326};
3327
4855d41a 3328static MemoryListener io_memory_listener = {
50c1e149
AK
3329 .begin = io_begin,
3330 .commit = io_commit,
4855d41a
AK
3331 .region_add = io_region_add,
3332 .region_del = io_region_del,
50c1e149 3333 .region_nop = io_region_nop,
4855d41a
AK
3334 .log_start = io_log_start,
3335 .log_stop = io_log_stop,
3336 .log_sync = io_log_sync,
3337 .log_global_start = io_log_global_start,
3338 .log_global_stop = io_log_global_stop,
3339 .eventfd_add = io_eventfd_add,
3340 .eventfd_del = io_eventfd_del,
3341 .priority = 0,
3342};
3343
62152b8a
AK
3344static void memory_map_init(void)
3345{
7267c094 3346 system_memory = g_malloc(sizeof(*system_memory));
8417cebf 3347 memory_region_init(system_memory, "system", INT64_MAX);
62152b8a 3348 set_system_memory_map(system_memory);
309cb471 3349
7267c094 3350 system_io = g_malloc(sizeof(*system_io));
309cb471
AK
3351 memory_region_init(system_io, "io", 65536);
3352 set_system_io_map(system_io);
93632747 3353
4855d41a
AK
3354 memory_listener_register(&core_memory_listener, system_memory);
3355 memory_listener_register(&io_memory_listener, system_io);
62152b8a
AK
3356}
3357
3358MemoryRegion *get_system_memory(void)
3359{
3360 return system_memory;
3361}
3362
309cb471
AK
3363MemoryRegion *get_system_io(void)
3364{
3365 return system_io;
3366}
3367
e2eef170
PB
3368#endif /* !defined(CONFIG_USER_ONLY) */
3369
13eb76e0
FB
3370/* physical memory access (slow version, mainly for debug) */
3371#if defined(CONFIG_USER_ONLY)
9349b4f9 3372int cpu_memory_rw_debug(CPUArchState *env, target_ulong addr,
a68fe89c 3373 uint8_t *buf, int len, int is_write)
13eb76e0
FB
3374{
3375 int l, flags;
3376 target_ulong page;
53a5960a 3377 void * p;
13eb76e0
FB
3378
3379 while (len > 0) {
3380 page = addr & TARGET_PAGE_MASK;
3381 l = (page + TARGET_PAGE_SIZE) - addr;
3382 if (l > len)
3383 l = len;
3384 flags = page_get_flags(page);
3385 if (!(flags & PAGE_VALID))
a68fe89c 3386 return -1;
13eb76e0
FB
3387 if (is_write) {
3388 if (!(flags & PAGE_WRITE))
a68fe89c 3389 return -1;
579a97f7 3390 /* XXX: this code should not depend on lock_user */
72fb7daa 3391 if (!(p = lock_user(VERIFY_WRITE, addr, l, 0)))
a68fe89c 3392 return -1;
72fb7daa
AJ
3393 memcpy(p, buf, l);
3394 unlock_user(p, addr, l);
13eb76e0
FB
3395 } else {
3396 if (!(flags & PAGE_READ))
a68fe89c 3397 return -1;
579a97f7 3398 /* XXX: this code should not depend on lock_user */
72fb7daa 3399 if (!(p = lock_user(VERIFY_READ, addr, l, 1)))
a68fe89c 3400 return -1;
72fb7daa 3401 memcpy(buf, p, l);
5b257578 3402 unlock_user(p, addr, 0);
13eb76e0
FB
3403 }
3404 len -= l;
3405 buf += l;
3406 addr += l;
3407 }
a68fe89c 3408 return 0;
13eb76e0 3409}
8df1cd07 3410
13eb76e0 3411#else
51d7a9eb
AP
3412
3413static void invalidate_and_set_dirty(target_phys_addr_t addr,
3414 target_phys_addr_t length)
3415{
3416 if (!cpu_physical_memory_is_dirty(addr)) {
3417 /* invalidate code */
3418 tb_invalidate_phys_page_range(addr, addr + length, 0);
3419 /* set dirty bit */
3420 cpu_physical_memory_set_dirty_flags(addr, (0xff & ~CODE_DIRTY_FLAG));
3421 }
e226939d 3422 xen_modified_memory(addr, length);
51d7a9eb
AP
3423}
3424
c227f099 3425void cpu_physical_memory_rw(target_phys_addr_t addr, uint8_t *buf,
13eb76e0
FB
3426 int len, int is_write)
3427{
37ec01d4 3428 int l;
13eb76e0
FB
3429 uint8_t *ptr;
3430 uint32_t val;
c227f099 3431 target_phys_addr_t page;
f3705d53 3432 MemoryRegionSection *section;
3b46e624 3433
13eb76e0
FB
3434 while (len > 0) {
3435 page = addr & TARGET_PAGE_MASK;
3436 l = (page + TARGET_PAGE_SIZE) - addr;
3437 if (l > len)
3438 l = len;
06ef3525 3439 section = phys_page_find(page >> TARGET_PAGE_BITS);
3b46e624 3440
13eb76e0 3441 if (is_write) {
f3705d53 3442 if (!memory_region_is_ram(section->mr)) {
f1f6e3b8 3443 target_phys_addr_t addr1;
cc5bea60 3444 addr1 = memory_region_section_addr(section, addr);
6a00d601
FB
3445 /* XXX: could force cpu_single_env to NULL to avoid
3446 potential bugs */
6c2934db 3447 if (l >= 4 && ((addr1 & 3) == 0)) {
1c213d19 3448 /* 32 bit write access */
c27004ec 3449 val = ldl_p(buf);
37ec01d4 3450 io_mem_write(section->mr, addr1, val, 4);
13eb76e0 3451 l = 4;
6c2934db 3452 } else if (l >= 2 && ((addr1 & 1) == 0)) {
1c213d19 3453 /* 16 bit write access */
c27004ec 3454 val = lduw_p(buf);
37ec01d4 3455 io_mem_write(section->mr, addr1, val, 2);
13eb76e0
FB
3456 l = 2;
3457 } else {
1c213d19 3458 /* 8 bit write access */
c27004ec 3459 val = ldub_p(buf);
37ec01d4 3460 io_mem_write(section->mr, addr1, val, 1);
13eb76e0
FB
3461 l = 1;
3462 }
f3705d53 3463 } else if (!section->readonly) {
8ca5692d 3464 ram_addr_t addr1;
f3705d53 3465 addr1 = memory_region_get_ram_addr(section->mr)
cc5bea60 3466 + memory_region_section_addr(section, addr);
13eb76e0 3467 /* RAM case */
5579c7f3 3468 ptr = qemu_get_ram_ptr(addr1);
13eb76e0 3469 memcpy(ptr, buf, l);
51d7a9eb 3470 invalidate_and_set_dirty(addr1, l);
050a0ddf 3471 qemu_put_ram_ptr(ptr);
13eb76e0
FB
3472 }
3473 } else {
cc5bea60
BS
3474 if (!(memory_region_is_ram(section->mr) ||
3475 memory_region_is_romd(section->mr))) {
f1f6e3b8 3476 target_phys_addr_t addr1;
13eb76e0 3477 /* I/O case */
cc5bea60 3478 addr1 = memory_region_section_addr(section, addr);
6c2934db 3479 if (l >= 4 && ((addr1 & 3) == 0)) {
13eb76e0 3480 /* 32 bit read access */
37ec01d4 3481 val = io_mem_read(section->mr, addr1, 4);
c27004ec 3482 stl_p(buf, val);
13eb76e0 3483 l = 4;
6c2934db 3484 } else if (l >= 2 && ((addr1 & 1) == 0)) {
13eb76e0 3485 /* 16 bit read access */
37ec01d4 3486 val = io_mem_read(section->mr, addr1, 2);
c27004ec 3487 stw_p(buf, val);
13eb76e0
FB
3488 l = 2;
3489 } else {
1c213d19 3490 /* 8 bit read access */
37ec01d4 3491 val = io_mem_read(section->mr, addr1, 1);
c27004ec 3492 stb_p(buf, val);
13eb76e0
FB
3493 l = 1;
3494 }
3495 } else {
3496 /* RAM case */
0a1b357f 3497 ptr = qemu_get_ram_ptr(section->mr->ram_addr
cc5bea60
BS
3498 + memory_region_section_addr(section,
3499 addr));
f3705d53 3500 memcpy(buf, ptr, l);
050a0ddf 3501 qemu_put_ram_ptr(ptr);
13eb76e0
FB
3502 }
3503 }
3504 len -= l;
3505 buf += l;
3506 addr += l;
3507 }
3508}
8df1cd07 3509
d0ecd2aa 3510/* used for ROM loading : can write in RAM and ROM */
c227f099 3511void cpu_physical_memory_write_rom(target_phys_addr_t addr,
d0ecd2aa
FB
3512 const uint8_t *buf, int len)
3513{
3514 int l;
3515 uint8_t *ptr;
c227f099 3516 target_phys_addr_t page;
f3705d53 3517 MemoryRegionSection *section;
3b46e624 3518
d0ecd2aa
FB
3519 while (len > 0) {
3520 page = addr & TARGET_PAGE_MASK;
3521 l = (page + TARGET_PAGE_SIZE) - addr;
3522 if (l > len)
3523 l = len;
06ef3525 3524 section = phys_page_find(page >> TARGET_PAGE_BITS);
3b46e624 3525
cc5bea60
BS
3526 if (!(memory_region_is_ram(section->mr) ||
3527 memory_region_is_romd(section->mr))) {
d0ecd2aa
FB
3528 /* do nothing */
3529 } else {
3530 unsigned long addr1;
f3705d53 3531 addr1 = memory_region_get_ram_addr(section->mr)
cc5bea60 3532 + memory_region_section_addr(section, addr);
d0ecd2aa 3533 /* ROM/RAM case */
5579c7f3 3534 ptr = qemu_get_ram_ptr(addr1);
d0ecd2aa 3535 memcpy(ptr, buf, l);
51d7a9eb 3536 invalidate_and_set_dirty(addr1, l);
050a0ddf 3537 qemu_put_ram_ptr(ptr);
d0ecd2aa
FB
3538 }
3539 len -= l;
3540 buf += l;
3541 addr += l;
3542 }
3543}
3544
6d16c2f8
AL
3545typedef struct {
3546 void *buffer;
c227f099
AL
3547 target_phys_addr_t addr;
3548 target_phys_addr_t len;
6d16c2f8
AL
3549} BounceBuffer;
3550
3551static BounceBuffer bounce;
3552
ba223c29
AL
3553typedef struct MapClient {
3554 void *opaque;
3555 void (*callback)(void *opaque);
72cf2d4f 3556 QLIST_ENTRY(MapClient) link;
ba223c29
AL
3557} MapClient;
3558
72cf2d4f
BS
3559static QLIST_HEAD(map_client_list, MapClient) map_client_list
3560 = QLIST_HEAD_INITIALIZER(map_client_list);
ba223c29
AL
3561
3562void *cpu_register_map_client(void *opaque, void (*callback)(void *opaque))
3563{
7267c094 3564 MapClient *client = g_malloc(sizeof(*client));
ba223c29
AL
3565
3566 client->opaque = opaque;
3567 client->callback = callback;
72cf2d4f 3568 QLIST_INSERT_HEAD(&map_client_list, client, link);
ba223c29
AL
3569 return client;
3570}
3571
3572void cpu_unregister_map_client(void *_client)
3573{
3574 MapClient *client = (MapClient *)_client;
3575
72cf2d4f 3576 QLIST_REMOVE(client, link);
7267c094 3577 g_free(client);
ba223c29
AL
3578}
3579
3580static void cpu_notify_map_clients(void)
3581{
3582 MapClient *client;
3583
72cf2d4f
BS
3584 while (!QLIST_EMPTY(&map_client_list)) {
3585 client = QLIST_FIRST(&map_client_list);
ba223c29 3586 client->callback(client->opaque);
34d5e948 3587 cpu_unregister_map_client(client);
ba223c29
AL
3588 }
3589}
3590
6d16c2f8
AL
3591/* Map a physical memory region into a host virtual address.
3592 * May map a subset of the requested range, given by and returned in *plen.
3593 * May return NULL if resources needed to perform the mapping are exhausted.
3594 * Use only for reads OR writes - not for read-modify-write operations.
ba223c29
AL
3595 * Use cpu_register_map_client() to know when retrying the map operation is
3596 * likely to succeed.
6d16c2f8 3597 */
c227f099
AL
3598void *cpu_physical_memory_map(target_phys_addr_t addr,
3599 target_phys_addr_t *plen,
6d16c2f8
AL
3600 int is_write)
3601{
c227f099 3602 target_phys_addr_t len = *plen;
38bee5dc 3603 target_phys_addr_t todo = 0;
6d16c2f8 3604 int l;
c227f099 3605 target_phys_addr_t page;
f3705d53 3606 MemoryRegionSection *section;
f15fbc4b 3607 ram_addr_t raddr = RAM_ADDR_MAX;
8ab934f9
SS
3608 ram_addr_t rlen;
3609 void *ret;
6d16c2f8
AL
3610
3611 while (len > 0) {
3612 page = addr & TARGET_PAGE_MASK;
3613 l = (page + TARGET_PAGE_SIZE) - addr;
3614 if (l > len)
3615 l = len;
06ef3525 3616 section = phys_page_find(page >> TARGET_PAGE_BITS);
6d16c2f8 3617
f3705d53 3618 if (!(memory_region_is_ram(section->mr) && !section->readonly)) {
38bee5dc 3619 if (todo || bounce.buffer) {
6d16c2f8
AL
3620 break;
3621 }
3622 bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, TARGET_PAGE_SIZE);
3623 bounce.addr = addr;
3624 bounce.len = l;
3625 if (!is_write) {
54f7b4a3 3626 cpu_physical_memory_read(addr, bounce.buffer, l);
6d16c2f8 3627 }
38bee5dc
SS
3628
3629 *plen = l;
3630 return bounce.buffer;
6d16c2f8 3631 }
8ab934f9 3632 if (!todo) {
f3705d53 3633 raddr = memory_region_get_ram_addr(section->mr)
cc5bea60 3634 + memory_region_section_addr(section, addr);
8ab934f9 3635 }
6d16c2f8
AL
3636
3637 len -= l;
3638 addr += l;
38bee5dc 3639 todo += l;
6d16c2f8 3640 }
8ab934f9
SS
3641 rlen = todo;
3642 ret = qemu_ram_ptr_length(raddr, &rlen);
3643 *plen = rlen;
3644 return ret;
6d16c2f8
AL
3645}
3646
3647/* Unmaps a memory region previously mapped by cpu_physical_memory_map().
3648 * Will also mark the memory as dirty if is_write == 1. access_len gives
3649 * the amount of memory that was actually read or written by the caller.
3650 */
c227f099
AL
3651void cpu_physical_memory_unmap(void *buffer, target_phys_addr_t len,
3652 int is_write, target_phys_addr_t access_len)
6d16c2f8
AL
3653{
3654 if (buffer != bounce.buffer) {
3655 if (is_write) {
e890261f 3656 ram_addr_t addr1 = qemu_ram_addr_from_host_nofail(buffer);
6d16c2f8
AL
3657 while (access_len) {
3658 unsigned l;
3659 l = TARGET_PAGE_SIZE;
3660 if (l > access_len)
3661 l = access_len;
51d7a9eb 3662 invalidate_and_set_dirty(addr1, l);
6d16c2f8
AL
3663 addr1 += l;
3664 access_len -= l;
3665 }
3666 }
868bb33f 3667 if (xen_enabled()) {
e41d7c69 3668 xen_invalidate_map_cache_entry(buffer);
050a0ddf 3669 }
6d16c2f8
AL
3670 return;
3671 }
3672 if (is_write) {
3673 cpu_physical_memory_write(bounce.addr, bounce.buffer, access_len);
3674 }
f8a83245 3675 qemu_vfree(bounce.buffer);
6d16c2f8 3676 bounce.buffer = NULL;
ba223c29 3677 cpu_notify_map_clients();
6d16c2f8 3678}
d0ecd2aa 3679
8df1cd07 3680/* warning: addr must be aligned */
1e78bcc1
AG
3681static inline uint32_t ldl_phys_internal(target_phys_addr_t addr,
3682 enum device_endian endian)
8df1cd07 3683{
8df1cd07
FB
3684 uint8_t *ptr;
3685 uint32_t val;
f3705d53 3686 MemoryRegionSection *section;
8df1cd07 3687
06ef3525 3688 section = phys_page_find(addr >> TARGET_PAGE_BITS);
3b46e624 3689
cc5bea60
BS
3690 if (!(memory_region_is_ram(section->mr) ||
3691 memory_region_is_romd(section->mr))) {
8df1cd07 3692 /* I/O case */
cc5bea60 3693 addr = memory_region_section_addr(section, addr);
37ec01d4 3694 val = io_mem_read(section->mr, addr, 4);
1e78bcc1
AG
3695#if defined(TARGET_WORDS_BIGENDIAN)
3696 if (endian == DEVICE_LITTLE_ENDIAN) {
3697 val = bswap32(val);
3698 }
3699#else
3700 if (endian == DEVICE_BIG_ENDIAN) {
3701 val = bswap32(val);
3702 }
3703#endif
8df1cd07
FB
3704 } else {
3705 /* RAM case */
f3705d53 3706 ptr = qemu_get_ram_ptr((memory_region_get_ram_addr(section->mr)
06ef3525 3707 & TARGET_PAGE_MASK)
cc5bea60 3708 + memory_region_section_addr(section, addr));
1e78bcc1
AG
3709 switch (endian) {
3710 case DEVICE_LITTLE_ENDIAN:
3711 val = ldl_le_p(ptr);
3712 break;
3713 case DEVICE_BIG_ENDIAN:
3714 val = ldl_be_p(ptr);
3715 break;
3716 default:
3717 val = ldl_p(ptr);
3718 break;
3719 }
8df1cd07
FB
3720 }
3721 return val;
3722}
3723
1e78bcc1
AG
3724uint32_t ldl_phys(target_phys_addr_t addr)
3725{
3726 return ldl_phys_internal(addr, DEVICE_NATIVE_ENDIAN);
3727}
3728
3729uint32_t ldl_le_phys(target_phys_addr_t addr)
3730{
3731 return ldl_phys_internal(addr, DEVICE_LITTLE_ENDIAN);
3732}
3733
3734uint32_t ldl_be_phys(target_phys_addr_t addr)
3735{
3736 return ldl_phys_internal(addr, DEVICE_BIG_ENDIAN);
3737}
3738
84b7b8e7 3739/* warning: addr must be aligned */
1e78bcc1
AG
3740static inline uint64_t ldq_phys_internal(target_phys_addr_t addr,
3741 enum device_endian endian)
84b7b8e7 3742{
84b7b8e7
FB
3743 uint8_t *ptr;
3744 uint64_t val;
f3705d53 3745 MemoryRegionSection *section;
84b7b8e7 3746
06ef3525 3747 section = phys_page_find(addr >> TARGET_PAGE_BITS);
3b46e624 3748
cc5bea60
BS
3749 if (!(memory_region_is_ram(section->mr) ||
3750 memory_region_is_romd(section->mr))) {
84b7b8e7 3751 /* I/O case */
cc5bea60 3752 addr = memory_region_section_addr(section, addr);
1e78bcc1
AG
3753
3754 /* XXX This is broken when device endian != cpu endian.
3755 Fix and add "endian" variable check */
84b7b8e7 3756#ifdef TARGET_WORDS_BIGENDIAN
37ec01d4
AK
3757 val = io_mem_read(section->mr, addr, 4) << 32;
3758 val |= io_mem_read(section->mr, addr + 4, 4);
84b7b8e7 3759#else
37ec01d4
AK
3760 val = io_mem_read(section->mr, addr, 4);
3761 val |= io_mem_read(section->mr, addr + 4, 4) << 32;
84b7b8e7
FB
3762#endif
3763 } else {
3764 /* RAM case */
f3705d53 3765 ptr = qemu_get_ram_ptr((memory_region_get_ram_addr(section->mr)
06ef3525 3766 & TARGET_PAGE_MASK)
cc5bea60 3767 + memory_region_section_addr(section, addr));
1e78bcc1
AG
3768 switch (endian) {
3769 case DEVICE_LITTLE_ENDIAN:
3770 val = ldq_le_p(ptr);
3771 break;
3772 case DEVICE_BIG_ENDIAN:
3773 val = ldq_be_p(ptr);
3774 break;
3775 default:
3776 val = ldq_p(ptr);
3777 break;
3778 }
84b7b8e7
FB
3779 }
3780 return val;
3781}
3782
1e78bcc1
AG
3783uint64_t ldq_phys(target_phys_addr_t addr)
3784{
3785 return ldq_phys_internal(addr, DEVICE_NATIVE_ENDIAN);
3786}
3787
3788uint64_t ldq_le_phys(target_phys_addr_t addr)
3789{
3790 return ldq_phys_internal(addr, DEVICE_LITTLE_ENDIAN);
3791}
3792
3793uint64_t ldq_be_phys(target_phys_addr_t addr)
3794{
3795 return ldq_phys_internal(addr, DEVICE_BIG_ENDIAN);
3796}
3797
aab33094 3798/* XXX: optimize */
c227f099 3799uint32_t ldub_phys(target_phys_addr_t addr)
aab33094
FB
3800{
3801 uint8_t val;
3802 cpu_physical_memory_read(addr, &val, 1);
3803 return val;
3804}
3805
733f0b02 3806/* warning: addr must be aligned */
1e78bcc1
AG
3807static inline uint32_t lduw_phys_internal(target_phys_addr_t addr,
3808 enum device_endian endian)
aab33094 3809{
733f0b02
MT
3810 uint8_t *ptr;
3811 uint64_t val;
f3705d53 3812 MemoryRegionSection *section;
733f0b02 3813
06ef3525 3814 section = phys_page_find(addr >> TARGET_PAGE_BITS);
733f0b02 3815
cc5bea60
BS
3816 if (!(memory_region_is_ram(section->mr) ||
3817 memory_region_is_romd(section->mr))) {
733f0b02 3818 /* I/O case */
cc5bea60 3819 addr = memory_region_section_addr(section, addr);
37ec01d4 3820 val = io_mem_read(section->mr, addr, 2);
1e78bcc1
AG
3821#if defined(TARGET_WORDS_BIGENDIAN)
3822 if (endian == DEVICE_LITTLE_ENDIAN) {
3823 val = bswap16(val);
3824 }
3825#else
3826 if (endian == DEVICE_BIG_ENDIAN) {
3827 val = bswap16(val);
3828 }
3829#endif
733f0b02
MT
3830 } else {
3831 /* RAM case */
f3705d53 3832 ptr = qemu_get_ram_ptr((memory_region_get_ram_addr(section->mr)
06ef3525 3833 & TARGET_PAGE_MASK)
cc5bea60 3834 + memory_region_section_addr(section, addr));
1e78bcc1
AG
3835 switch (endian) {
3836 case DEVICE_LITTLE_ENDIAN:
3837 val = lduw_le_p(ptr);
3838 break;
3839 case DEVICE_BIG_ENDIAN:
3840 val = lduw_be_p(ptr);
3841 break;
3842 default:
3843 val = lduw_p(ptr);
3844 break;
3845 }
733f0b02
MT
3846 }
3847 return val;
aab33094
FB
3848}
3849
1e78bcc1
AG
3850uint32_t lduw_phys(target_phys_addr_t addr)
3851{
3852 return lduw_phys_internal(addr, DEVICE_NATIVE_ENDIAN);
3853}
3854
3855uint32_t lduw_le_phys(target_phys_addr_t addr)
3856{
3857 return lduw_phys_internal(addr, DEVICE_LITTLE_ENDIAN);
3858}
3859
3860uint32_t lduw_be_phys(target_phys_addr_t addr)
3861{
3862 return lduw_phys_internal(addr, DEVICE_BIG_ENDIAN);
3863}
3864
8df1cd07
FB
3865/* warning: addr must be aligned. The ram page is not masked as dirty
3866 and the code inside is not invalidated. It is useful if the dirty
3867 bits are used to track modified PTEs */
c227f099 3868void stl_phys_notdirty(target_phys_addr_t addr, uint32_t val)
8df1cd07 3869{
8df1cd07 3870 uint8_t *ptr;
f3705d53 3871 MemoryRegionSection *section;
8df1cd07 3872
06ef3525 3873 section = phys_page_find(addr >> TARGET_PAGE_BITS);
3b46e624 3874
f3705d53 3875 if (!memory_region_is_ram(section->mr) || section->readonly) {
cc5bea60 3876 addr = memory_region_section_addr(section, addr);
f3705d53 3877 if (memory_region_is_ram(section->mr)) {
37ec01d4 3878 section = &phys_sections[phys_section_rom];
06ef3525 3879 }
37ec01d4 3880 io_mem_write(section->mr, addr, val, 4);
8df1cd07 3881 } else {
f3705d53 3882 unsigned long addr1 = (memory_region_get_ram_addr(section->mr)
06ef3525 3883 & TARGET_PAGE_MASK)
cc5bea60 3884 + memory_region_section_addr(section, addr);
5579c7f3 3885 ptr = qemu_get_ram_ptr(addr1);
8df1cd07 3886 stl_p(ptr, val);
74576198
AL
3887
3888 if (unlikely(in_migration)) {
3889 if (!cpu_physical_memory_is_dirty(addr1)) {
3890 /* invalidate code */
3891 tb_invalidate_phys_page_range(addr1, addr1 + 4, 0);
3892 /* set dirty bit */
f7c11b53
YT
3893 cpu_physical_memory_set_dirty_flags(
3894 addr1, (0xff & ~CODE_DIRTY_FLAG));
74576198
AL
3895 }
3896 }
8df1cd07
FB
3897 }
3898}
3899
c227f099 3900void stq_phys_notdirty(target_phys_addr_t addr, uint64_t val)
bc98a7ef 3901{
bc98a7ef 3902 uint8_t *ptr;
f3705d53 3903 MemoryRegionSection *section;
bc98a7ef 3904
06ef3525 3905 section = phys_page_find(addr >> TARGET_PAGE_BITS);
3b46e624 3906
f3705d53 3907 if (!memory_region_is_ram(section->mr) || section->readonly) {
cc5bea60 3908 addr = memory_region_section_addr(section, addr);
f3705d53 3909 if (memory_region_is_ram(section->mr)) {
37ec01d4 3910 section = &phys_sections[phys_section_rom];
06ef3525 3911 }
bc98a7ef 3912#ifdef TARGET_WORDS_BIGENDIAN
37ec01d4
AK
3913 io_mem_write(section->mr, addr, val >> 32, 4);
3914 io_mem_write(section->mr, addr + 4, (uint32_t)val, 4);
bc98a7ef 3915#else
37ec01d4
AK
3916 io_mem_write(section->mr, addr, (uint32_t)val, 4);
3917 io_mem_write(section->mr, addr + 4, val >> 32, 4);
bc98a7ef
JM
3918#endif
3919 } else {
f3705d53 3920 ptr = qemu_get_ram_ptr((memory_region_get_ram_addr(section->mr)
06ef3525 3921 & TARGET_PAGE_MASK)
cc5bea60 3922 + memory_region_section_addr(section, addr));
bc98a7ef
JM
3923 stq_p(ptr, val);
3924 }
3925}
3926
8df1cd07 3927/* warning: addr must be aligned */
1e78bcc1
AG
3928static inline void stl_phys_internal(target_phys_addr_t addr, uint32_t val,
3929 enum device_endian endian)
8df1cd07 3930{
8df1cd07 3931 uint8_t *ptr;
f3705d53 3932 MemoryRegionSection *section;
8df1cd07 3933
06ef3525 3934 section = phys_page_find(addr >> TARGET_PAGE_BITS);
3b46e624 3935
f3705d53 3936 if (!memory_region_is_ram(section->mr) || section->readonly) {
cc5bea60 3937 addr = memory_region_section_addr(section, addr);
f3705d53 3938 if (memory_region_is_ram(section->mr)) {
37ec01d4 3939 section = &phys_sections[phys_section_rom];
06ef3525 3940 }
1e78bcc1
AG
3941#if defined(TARGET_WORDS_BIGENDIAN)
3942 if (endian == DEVICE_LITTLE_ENDIAN) {
3943 val = bswap32(val);
3944 }
3945#else
3946 if (endian == DEVICE_BIG_ENDIAN) {
3947 val = bswap32(val);
3948 }
3949#endif
37ec01d4 3950 io_mem_write(section->mr, addr, val, 4);
8df1cd07
FB
3951 } else {
3952 unsigned long addr1;
f3705d53 3953 addr1 = (memory_region_get_ram_addr(section->mr) & TARGET_PAGE_MASK)
cc5bea60 3954 + memory_region_section_addr(section, addr);
8df1cd07 3955 /* RAM case */
5579c7f3 3956 ptr = qemu_get_ram_ptr(addr1);
1e78bcc1
AG
3957 switch (endian) {
3958 case DEVICE_LITTLE_ENDIAN:
3959 stl_le_p(ptr, val);
3960 break;
3961 case DEVICE_BIG_ENDIAN:
3962 stl_be_p(ptr, val);
3963 break;
3964 default:
3965 stl_p(ptr, val);
3966 break;
3967 }
51d7a9eb 3968 invalidate_and_set_dirty(addr1, 4);
8df1cd07
FB
3969 }
3970}
3971
1e78bcc1
AG
3972void stl_phys(target_phys_addr_t addr, uint32_t val)
3973{
3974 stl_phys_internal(addr, val, DEVICE_NATIVE_ENDIAN);
3975}
3976
3977void stl_le_phys(target_phys_addr_t addr, uint32_t val)
3978{
3979 stl_phys_internal(addr, val, DEVICE_LITTLE_ENDIAN);
3980}
3981
3982void stl_be_phys(target_phys_addr_t addr, uint32_t val)
3983{
3984 stl_phys_internal(addr, val, DEVICE_BIG_ENDIAN);
3985}
3986
aab33094 3987/* XXX: optimize */
c227f099 3988void stb_phys(target_phys_addr_t addr, uint32_t val)
aab33094
FB
3989{
3990 uint8_t v = val;
3991 cpu_physical_memory_write(addr, &v, 1);
3992}
3993
733f0b02 3994/* warning: addr must be aligned */
1e78bcc1
AG
3995static inline void stw_phys_internal(target_phys_addr_t addr, uint32_t val,
3996 enum device_endian endian)
aab33094 3997{
733f0b02 3998 uint8_t *ptr;
f3705d53 3999 MemoryRegionSection *section;
733f0b02 4000
06ef3525 4001 section = phys_page_find(addr >> TARGET_PAGE_BITS);
733f0b02 4002
f3705d53 4003 if (!memory_region_is_ram(section->mr) || section->readonly) {
cc5bea60 4004 addr = memory_region_section_addr(section, addr);
f3705d53 4005 if (memory_region_is_ram(section->mr)) {
37ec01d4 4006 section = &phys_sections[phys_section_rom];
06ef3525 4007 }
1e78bcc1
AG
4008#if defined(TARGET_WORDS_BIGENDIAN)
4009 if (endian == DEVICE_LITTLE_ENDIAN) {
4010 val = bswap16(val);
4011 }
4012#else
4013 if (endian == DEVICE_BIG_ENDIAN) {
4014 val = bswap16(val);
4015 }
4016#endif
37ec01d4 4017 io_mem_write(section->mr, addr, val, 2);
733f0b02
MT
4018 } else {
4019 unsigned long addr1;
f3705d53 4020 addr1 = (memory_region_get_ram_addr(section->mr) & TARGET_PAGE_MASK)
cc5bea60 4021 + memory_region_section_addr(section, addr);
733f0b02
MT
4022 /* RAM case */
4023 ptr = qemu_get_ram_ptr(addr1);
1e78bcc1
AG
4024 switch (endian) {
4025 case DEVICE_LITTLE_ENDIAN:
4026 stw_le_p(ptr, val);
4027 break;
4028 case DEVICE_BIG_ENDIAN:
4029 stw_be_p(ptr, val);
4030 break;
4031 default:
4032 stw_p(ptr, val);
4033 break;
4034 }
51d7a9eb 4035 invalidate_and_set_dirty(addr1, 2);
733f0b02 4036 }
aab33094
FB
4037}
4038
1e78bcc1
AG
4039void stw_phys(target_phys_addr_t addr, uint32_t val)
4040{
4041 stw_phys_internal(addr, val, DEVICE_NATIVE_ENDIAN);
4042}
4043
4044void stw_le_phys(target_phys_addr_t addr, uint32_t val)
4045{
4046 stw_phys_internal(addr, val, DEVICE_LITTLE_ENDIAN);
4047}
4048
4049void stw_be_phys(target_phys_addr_t addr, uint32_t val)
4050{
4051 stw_phys_internal(addr, val, DEVICE_BIG_ENDIAN);
4052}
4053
aab33094 4054/* XXX: optimize */
c227f099 4055void stq_phys(target_phys_addr_t addr, uint64_t val)
aab33094
FB
4056{
4057 val = tswap64(val);
71d2b725 4058 cpu_physical_memory_write(addr, &val, 8);
aab33094
FB
4059}
4060
1e78bcc1
AG
4061void stq_le_phys(target_phys_addr_t addr, uint64_t val)
4062{
4063 val = cpu_to_le64(val);
4064 cpu_physical_memory_write(addr, &val, 8);
4065}
4066
4067void stq_be_phys(target_phys_addr_t addr, uint64_t val)
4068{
4069 val = cpu_to_be64(val);
4070 cpu_physical_memory_write(addr, &val, 8);
4071}
4072
5e2972fd 4073/* virtual memory access for debug (includes writing to ROM) */
9349b4f9 4074int cpu_memory_rw_debug(CPUArchState *env, target_ulong addr,
b448f2f3 4075 uint8_t *buf, int len, int is_write)
13eb76e0
FB
4076{
4077 int l;
c227f099 4078 target_phys_addr_t phys_addr;
9b3c35e0 4079 target_ulong page;
13eb76e0
FB
4080
4081 while (len > 0) {
4082 page = addr & TARGET_PAGE_MASK;
4083 phys_addr = cpu_get_phys_page_debug(env, page);
4084 /* if no physical page mapped, return an error */
4085 if (phys_addr == -1)
4086 return -1;
4087 l = (page + TARGET_PAGE_SIZE) - addr;
4088 if (l > len)
4089 l = len;
5e2972fd 4090 phys_addr += (addr & ~TARGET_PAGE_MASK);
5e2972fd
AL
4091 if (is_write)
4092 cpu_physical_memory_write_rom(phys_addr, buf, l);
4093 else
5e2972fd 4094 cpu_physical_memory_rw(phys_addr, buf, l, is_write);
13eb76e0
FB
4095 len -= l;
4096 buf += l;
4097 addr += l;
4098 }
4099 return 0;
4100}
a68fe89c 4101#endif
13eb76e0 4102
2e70f6ef
PB
4103/* in deterministic execution mode, instructions doing device I/Os
4104 must be at the end of the TB */
20503968 4105void cpu_io_recompile(CPUArchState *env, uintptr_t retaddr)
2e70f6ef
PB
4106{
4107 TranslationBlock *tb;
4108 uint32_t n, cflags;
4109 target_ulong pc, cs_base;
4110 uint64_t flags;
4111
20503968 4112 tb = tb_find_pc(retaddr);
2e70f6ef
PB
4113 if (!tb) {
4114 cpu_abort(env, "cpu_io_recompile: could not find TB for pc=%p",
20503968 4115 (void *)retaddr);
2e70f6ef
PB
4116 }
4117 n = env->icount_decr.u16.low + tb->icount;
20503968 4118 cpu_restore_state(tb, env, retaddr);
2e70f6ef 4119 /* Calculate how many instructions had been executed before the fault
bf20dc07 4120 occurred. */
2e70f6ef
PB
4121 n = n - env->icount_decr.u16.low;
4122 /* Generate a new TB ending on the I/O insn. */
4123 n++;
4124 /* On MIPS and SH, delay slot instructions can only be restarted if
4125 they were already the first instruction in the TB. If this is not
bf20dc07 4126 the first instruction in a TB then re-execute the preceding
2e70f6ef
PB
4127 branch. */
4128#if defined(TARGET_MIPS)
4129 if ((env->hflags & MIPS_HFLAG_BMASK) != 0 && n > 1) {
4130 env->active_tc.PC -= 4;
4131 env->icount_decr.u16.low++;
4132 env->hflags &= ~MIPS_HFLAG_BMASK;
4133 }
4134#elif defined(TARGET_SH4)
4135 if ((env->flags & ((DELAY_SLOT | DELAY_SLOT_CONDITIONAL))) != 0
4136 && n > 1) {
4137 env->pc -= 2;
4138 env->icount_decr.u16.low++;
4139 env->flags &= ~(DELAY_SLOT | DELAY_SLOT_CONDITIONAL);
4140 }
4141#endif
4142 /* This should never happen. */
4143 if (n > CF_COUNT_MASK)
4144 cpu_abort(env, "TB too big during recompile");
4145
4146 cflags = n | CF_LAST_IO;
4147 pc = tb->pc;
4148 cs_base = tb->cs_base;
4149 flags = tb->flags;
4150 tb_phys_invalidate(tb, -1);
4151 /* FIXME: In theory this could raise an exception. In practice
4152 we have already translated the block once so it's probably ok. */
4153 tb_gen_code(env, pc, cs_base, flags, cflags);
bf20dc07 4154 /* TODO: If env->pc != tb->pc (i.e. the faulting instruction was not
2e70f6ef
PB
4155 the first in the TB) then we end up generating a whole new TB and
4156 repeating the fault, which is horribly inefficient.
4157 Better would be to execute just this insn uncached, or generate a
4158 second new TB. */
4159 cpu_resume_from_signal(env, NULL);
4160}
4161
b3755a91
PB
4162#if !defined(CONFIG_USER_ONLY)
4163
055403b2 4164void dump_exec_info(FILE *f, fprintf_function cpu_fprintf)
e3db7226
FB
4165{
4166 int i, target_code_size, max_target_code_size;
4167 int direct_jmp_count, direct_jmp2_count, cross_page;
4168 TranslationBlock *tb;
3b46e624 4169
e3db7226
FB
4170 target_code_size = 0;
4171 max_target_code_size = 0;
4172 cross_page = 0;
4173 direct_jmp_count = 0;
4174 direct_jmp2_count = 0;
4175 for(i = 0; i < nb_tbs; i++) {
4176 tb = &tbs[i];
4177 target_code_size += tb->size;
4178 if (tb->size > max_target_code_size)
4179 max_target_code_size = tb->size;
4180 if (tb->page_addr[1] != -1)
4181 cross_page++;
4182 if (tb->tb_next_offset[0] != 0xffff) {
4183 direct_jmp_count++;
4184 if (tb->tb_next_offset[1] != 0xffff) {
4185 direct_jmp2_count++;
4186 }
4187 }
4188 }
4189 /* XXX: avoid using doubles ? */
57fec1fe 4190 cpu_fprintf(f, "Translation buffer state:\n");
055403b2 4191 cpu_fprintf(f, "gen code size %td/%ld\n",
26a5f13b
FB
4192 code_gen_ptr - code_gen_buffer, code_gen_buffer_max_size);
4193 cpu_fprintf(f, "TB count %d/%d\n",
4194 nb_tbs, code_gen_max_blocks);
5fafdf24 4195 cpu_fprintf(f, "TB avg target size %d max=%d bytes\n",
e3db7226
FB
4196 nb_tbs ? target_code_size / nb_tbs : 0,
4197 max_target_code_size);
055403b2 4198 cpu_fprintf(f, "TB avg host size %td bytes (expansion ratio: %0.1f)\n",
e3db7226
FB
4199 nb_tbs ? (code_gen_ptr - code_gen_buffer) / nb_tbs : 0,
4200 target_code_size ? (double) (code_gen_ptr - code_gen_buffer) / target_code_size : 0);
5fafdf24
TS
4201 cpu_fprintf(f, "cross page TB count %d (%d%%)\n",
4202 cross_page,
e3db7226
FB
4203 nb_tbs ? (cross_page * 100) / nb_tbs : 0);
4204 cpu_fprintf(f, "direct jump count %d (%d%%) (2 jumps=%d %d%%)\n",
5fafdf24 4205 direct_jmp_count,
e3db7226
FB
4206 nb_tbs ? (direct_jmp_count * 100) / nb_tbs : 0,
4207 direct_jmp2_count,
4208 nb_tbs ? (direct_jmp2_count * 100) / nb_tbs : 0);
57fec1fe 4209 cpu_fprintf(f, "\nStatistics:\n");
e3db7226
FB
4210 cpu_fprintf(f, "TB flush count %d\n", tb_flush_count);
4211 cpu_fprintf(f, "TB invalidate count %d\n", tb_phys_invalidate_count);
4212 cpu_fprintf(f, "TLB flush count %d\n", tlb_flush_count);
b67d9a52 4213 tcg_dump_info(f, cpu_fprintf);
e3db7226
FB
4214}
4215
82afa586
BH
4216/*
4217 * A helper function for the _utterly broken_ virtio device model to find out if
4218 * it's running on a big endian machine. Don't do this at home kids!
4219 */
4220bool virtio_is_big_endian(void);
4221bool virtio_is_big_endian(void)
4222{
4223#if defined(TARGET_WORDS_BIGENDIAN)
4224 return true;
4225#else
4226 return false;
4227#endif
4228}
4229
61382a50 4230#endif
76f35538
WC
4231
4232#ifndef CONFIG_USER_ONLY
4233bool cpu_physical_memory_is_io(target_phys_addr_t phys_addr)
4234{
4235 MemoryRegionSection *section;
4236
4237 section = phys_page_find(phys_addr >> TARGET_PAGE_BITS);
4238
4239 return !(memory_region_is_ram(section->mr) ||
4240 memory_region_is_romd(section->mr));
4241}
4242#endif