]> git.proxmox.com Git - qemu.git/blob - cpu-exec.c
ehci: Fix NULL ptr deref when unplugging an USB dev with an iso stream active
[qemu.git] / cpu-exec.c
1 /*
2 * emulator main execution loop
3 *
4 * Copyright (c) 2003-2005 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18 */
19 #include "config.h"
20 #include "cpu.h"
21 #include "disas.h"
22 #include "tcg.h"
23 #include "qemu-barrier.h"
24 #include "qtest.h"
25
26 int tb_invalidated_flag;
27
28 //#define CONFIG_DEBUG_EXEC
29
30 bool qemu_cpu_has_work(CPUArchState *env)
31 {
32 return cpu_has_work(env);
33 }
34
35 void cpu_loop_exit(CPUArchState *env)
36 {
37 env->current_tb = NULL;
38 longjmp(env->jmp_env, 1);
39 }
40
41 /* exit the current TB from a signal handler. The host registers are
42 restored in a state compatible with the CPU emulator
43 */
44 #if defined(CONFIG_SOFTMMU)
45 void cpu_resume_from_signal(CPUArchState *env, void *puc)
46 {
47 /* XXX: restore cpu registers saved in host registers */
48
49 env->exception_index = -1;
50 longjmp(env->jmp_env, 1);
51 }
52 #endif
53
54 /* Execute the code without caching the generated code. An interpreter
55 could be used if available. */
56 static void cpu_exec_nocache(CPUArchState *env, int max_cycles,
57 TranslationBlock *orig_tb)
58 {
59 tcg_target_ulong next_tb;
60 TranslationBlock *tb;
61
62 /* Should never happen.
63 We only end up here when an existing TB is too long. */
64 if (max_cycles > CF_COUNT_MASK)
65 max_cycles = CF_COUNT_MASK;
66
67 tb = tb_gen_code(env, orig_tb->pc, orig_tb->cs_base, orig_tb->flags,
68 max_cycles);
69 env->current_tb = tb;
70 /* execute the generated code */
71 next_tb = tcg_qemu_tb_exec(env, tb->tc_ptr);
72 env->current_tb = NULL;
73
74 if ((next_tb & 3) == 2) {
75 /* Restore PC. This may happen if async event occurs before
76 the TB starts executing. */
77 cpu_pc_from_tb(env, tb);
78 }
79 tb_phys_invalidate(tb, -1);
80 tb_free(tb);
81 }
82
83 static TranslationBlock *tb_find_slow(CPUArchState *env,
84 target_ulong pc,
85 target_ulong cs_base,
86 uint64_t flags)
87 {
88 TranslationBlock *tb, **ptb1;
89 unsigned int h;
90 tb_page_addr_t phys_pc, phys_page1;
91 target_ulong virt_page2;
92
93 tb_invalidated_flag = 0;
94
95 /* find translated block using physical mappings */
96 phys_pc = get_page_addr_code(env, pc);
97 phys_page1 = phys_pc & TARGET_PAGE_MASK;
98 h = tb_phys_hash_func(phys_pc);
99 ptb1 = &tb_phys_hash[h];
100 for(;;) {
101 tb = *ptb1;
102 if (!tb)
103 goto not_found;
104 if (tb->pc == pc &&
105 tb->page_addr[0] == phys_page1 &&
106 tb->cs_base == cs_base &&
107 tb->flags == flags) {
108 /* check next page if needed */
109 if (tb->page_addr[1] != -1) {
110 tb_page_addr_t phys_page2;
111
112 virt_page2 = (pc & TARGET_PAGE_MASK) +
113 TARGET_PAGE_SIZE;
114 phys_page2 = get_page_addr_code(env, virt_page2);
115 if (tb->page_addr[1] == phys_page2)
116 goto found;
117 } else {
118 goto found;
119 }
120 }
121 ptb1 = &tb->phys_hash_next;
122 }
123 not_found:
124 /* if no translated code available, then translate it now */
125 tb = tb_gen_code(env, pc, cs_base, flags, 0);
126
127 found:
128 /* Move the last found TB to the head of the list */
129 if (likely(*ptb1)) {
130 *ptb1 = tb->phys_hash_next;
131 tb->phys_hash_next = tb_phys_hash[h];
132 tb_phys_hash[h] = tb;
133 }
134 /* we add the TB in the virtual pc hash table */
135 env->tb_jmp_cache[tb_jmp_cache_hash_func(pc)] = tb;
136 return tb;
137 }
138
139 static inline TranslationBlock *tb_find_fast(CPUArchState *env)
140 {
141 TranslationBlock *tb;
142 target_ulong cs_base, pc;
143 int flags;
144
145 /* we record a subset of the CPU state. It will
146 always be the same before a given translated block
147 is executed. */
148 cpu_get_tb_cpu_state(env, &pc, &cs_base, &flags);
149 tb = env->tb_jmp_cache[tb_jmp_cache_hash_func(pc)];
150 if (unlikely(!tb || tb->pc != pc || tb->cs_base != cs_base ||
151 tb->flags != flags)) {
152 tb = tb_find_slow(env, pc, cs_base, flags);
153 }
154 return tb;
155 }
156
157 static CPUDebugExcpHandler *debug_excp_handler;
158
159 CPUDebugExcpHandler *cpu_set_debug_excp_handler(CPUDebugExcpHandler *handler)
160 {
161 CPUDebugExcpHandler *old_handler = debug_excp_handler;
162
163 debug_excp_handler = handler;
164 return old_handler;
165 }
166
167 static void cpu_handle_debug_exception(CPUArchState *env)
168 {
169 CPUWatchpoint *wp;
170
171 if (!env->watchpoint_hit) {
172 QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
173 wp->flags &= ~BP_WATCHPOINT_HIT;
174 }
175 }
176 if (debug_excp_handler) {
177 debug_excp_handler(env);
178 }
179 }
180
181 /* main execution loop */
182
183 volatile sig_atomic_t exit_request;
184
185 int cpu_exec(CPUArchState *env)
186 {
187 int ret, interrupt_request;
188 TranslationBlock *tb;
189 uint8_t *tc_ptr;
190 tcg_target_ulong next_tb;
191
192 if (env->halted) {
193 if (!cpu_has_work(env)) {
194 return EXCP_HALTED;
195 }
196
197 env->halted = 0;
198 }
199
200 cpu_single_env = env;
201
202 if (unlikely(exit_request)) {
203 env->exit_request = 1;
204 }
205
206 #if defined(TARGET_I386)
207 /* put eflags in CPU temporary format */
208 CC_SRC = env->eflags & (CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
209 DF = 1 - (2 * ((env->eflags >> 10) & 1));
210 CC_OP = CC_OP_EFLAGS;
211 env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
212 #elif defined(TARGET_SPARC)
213 #elif defined(TARGET_M68K)
214 env->cc_op = CC_OP_FLAGS;
215 env->cc_dest = env->sr & 0xf;
216 env->cc_x = (env->sr >> 4) & 1;
217 #elif defined(TARGET_ALPHA)
218 #elif defined(TARGET_ARM)
219 #elif defined(TARGET_UNICORE32)
220 #elif defined(TARGET_PPC)
221 env->reserve_addr = -1;
222 #elif defined(TARGET_LM32)
223 #elif defined(TARGET_MICROBLAZE)
224 #elif defined(TARGET_MIPS)
225 #elif defined(TARGET_SH4)
226 #elif defined(TARGET_CRIS)
227 #elif defined(TARGET_S390X)
228 #elif defined(TARGET_XTENSA)
229 /* XXXXX */
230 #else
231 #error unsupported target CPU
232 #endif
233 env->exception_index = -1;
234
235 /* prepare setjmp context for exception handling */
236 for(;;) {
237 if (setjmp(env->jmp_env) == 0) {
238 /* if an exception is pending, we execute it here */
239 if (env->exception_index >= 0) {
240 if (env->exception_index >= EXCP_INTERRUPT) {
241 /* exit request from the cpu execution loop */
242 ret = env->exception_index;
243 if (ret == EXCP_DEBUG) {
244 cpu_handle_debug_exception(env);
245 }
246 break;
247 } else {
248 #if defined(CONFIG_USER_ONLY)
249 /* if user mode only, we simulate a fake exception
250 which will be handled outside the cpu execution
251 loop */
252 #if defined(TARGET_I386)
253 do_interrupt(env);
254 #endif
255 ret = env->exception_index;
256 break;
257 #else
258 do_interrupt(env);
259 env->exception_index = -1;
260 #endif
261 }
262 }
263
264 next_tb = 0; /* force lookup of first TB */
265 for(;;) {
266 interrupt_request = env->interrupt_request;
267 if (unlikely(interrupt_request)) {
268 if (unlikely(env->singlestep_enabled & SSTEP_NOIRQ)) {
269 /* Mask out external interrupts for this step. */
270 interrupt_request &= ~CPU_INTERRUPT_SSTEP_MASK;
271 }
272 if (interrupt_request & CPU_INTERRUPT_DEBUG) {
273 env->interrupt_request &= ~CPU_INTERRUPT_DEBUG;
274 env->exception_index = EXCP_DEBUG;
275 cpu_loop_exit(env);
276 }
277 #if defined(TARGET_ARM) || defined(TARGET_SPARC) || defined(TARGET_MIPS) || \
278 defined(TARGET_PPC) || defined(TARGET_ALPHA) || defined(TARGET_CRIS) || \
279 defined(TARGET_MICROBLAZE) || defined(TARGET_LM32) || defined(TARGET_UNICORE32)
280 if (interrupt_request & CPU_INTERRUPT_HALT) {
281 env->interrupt_request &= ~CPU_INTERRUPT_HALT;
282 env->halted = 1;
283 env->exception_index = EXCP_HLT;
284 cpu_loop_exit(env);
285 }
286 #endif
287 #if defined(TARGET_I386)
288 #if !defined(CONFIG_USER_ONLY)
289 if (interrupt_request & CPU_INTERRUPT_POLL) {
290 env->interrupt_request &= ~CPU_INTERRUPT_POLL;
291 apic_poll_irq(env->apic_state);
292 }
293 #endif
294 if (interrupt_request & CPU_INTERRUPT_INIT) {
295 svm_check_intercept(env, SVM_EXIT_INIT);
296 do_cpu_init(env);
297 env->exception_index = EXCP_HALTED;
298 cpu_loop_exit(env);
299 } else if (interrupt_request & CPU_INTERRUPT_SIPI) {
300 do_cpu_sipi(env);
301 } else if (env->hflags2 & HF2_GIF_MASK) {
302 if ((interrupt_request & CPU_INTERRUPT_SMI) &&
303 !(env->hflags & HF_SMM_MASK)) {
304 svm_check_intercept(env, SVM_EXIT_SMI);
305 env->interrupt_request &= ~CPU_INTERRUPT_SMI;
306 do_smm_enter(env);
307 next_tb = 0;
308 } else if ((interrupt_request & CPU_INTERRUPT_NMI) &&
309 !(env->hflags2 & HF2_NMI_MASK)) {
310 env->interrupt_request &= ~CPU_INTERRUPT_NMI;
311 env->hflags2 |= HF2_NMI_MASK;
312 do_interrupt_x86_hardirq(env, EXCP02_NMI, 1);
313 next_tb = 0;
314 } else if (interrupt_request & CPU_INTERRUPT_MCE) {
315 env->interrupt_request &= ~CPU_INTERRUPT_MCE;
316 do_interrupt_x86_hardirq(env, EXCP12_MCHK, 0);
317 next_tb = 0;
318 } else if ((interrupt_request & CPU_INTERRUPT_HARD) &&
319 (((env->hflags2 & HF2_VINTR_MASK) &&
320 (env->hflags2 & HF2_HIF_MASK)) ||
321 (!(env->hflags2 & HF2_VINTR_MASK) &&
322 (env->eflags & IF_MASK &&
323 !(env->hflags & HF_INHIBIT_IRQ_MASK))))) {
324 int intno;
325 svm_check_intercept(env, SVM_EXIT_INTR);
326 env->interrupt_request &= ~(CPU_INTERRUPT_HARD | CPU_INTERRUPT_VIRQ);
327 intno = cpu_get_pic_interrupt(env);
328 qemu_log_mask(CPU_LOG_TB_IN_ASM, "Servicing hardware INT=0x%02x\n", intno);
329 do_interrupt_x86_hardirq(env, intno, 1);
330 /* ensure that no TB jump will be modified as
331 the program flow was changed */
332 next_tb = 0;
333 #if !defined(CONFIG_USER_ONLY)
334 } else if ((interrupt_request & CPU_INTERRUPT_VIRQ) &&
335 (env->eflags & IF_MASK) &&
336 !(env->hflags & HF_INHIBIT_IRQ_MASK)) {
337 int intno;
338 /* FIXME: this should respect TPR */
339 svm_check_intercept(env, SVM_EXIT_VINTR);
340 intno = ldl_phys(env->vm_vmcb + offsetof(struct vmcb, control.int_vector));
341 qemu_log_mask(CPU_LOG_TB_IN_ASM, "Servicing virtual hardware INT=0x%02x\n", intno);
342 do_interrupt_x86_hardirq(env, intno, 1);
343 env->interrupt_request &= ~CPU_INTERRUPT_VIRQ;
344 next_tb = 0;
345 #endif
346 }
347 }
348 #elif defined(TARGET_PPC)
349 if ((interrupt_request & CPU_INTERRUPT_RESET)) {
350 cpu_state_reset(env);
351 }
352 if (interrupt_request & CPU_INTERRUPT_HARD) {
353 ppc_hw_interrupt(env);
354 if (env->pending_interrupts == 0)
355 env->interrupt_request &= ~CPU_INTERRUPT_HARD;
356 next_tb = 0;
357 }
358 #elif defined(TARGET_LM32)
359 if ((interrupt_request & CPU_INTERRUPT_HARD)
360 && (env->ie & IE_IE)) {
361 env->exception_index = EXCP_IRQ;
362 do_interrupt(env);
363 next_tb = 0;
364 }
365 #elif defined(TARGET_MICROBLAZE)
366 if ((interrupt_request & CPU_INTERRUPT_HARD)
367 && (env->sregs[SR_MSR] & MSR_IE)
368 && !(env->sregs[SR_MSR] & (MSR_EIP | MSR_BIP))
369 && !(env->iflags & (D_FLAG | IMM_FLAG))) {
370 env->exception_index = EXCP_IRQ;
371 do_interrupt(env);
372 next_tb = 0;
373 }
374 #elif defined(TARGET_MIPS)
375 if ((interrupt_request & CPU_INTERRUPT_HARD) &&
376 cpu_mips_hw_interrupts_pending(env)) {
377 /* Raise it */
378 env->exception_index = EXCP_EXT_INTERRUPT;
379 env->error_code = 0;
380 do_interrupt(env);
381 next_tb = 0;
382 }
383 #elif defined(TARGET_SPARC)
384 if (interrupt_request & CPU_INTERRUPT_HARD) {
385 if (cpu_interrupts_enabled(env) &&
386 env->interrupt_index > 0) {
387 int pil = env->interrupt_index & 0xf;
388 int type = env->interrupt_index & 0xf0;
389
390 if (((type == TT_EXTINT) &&
391 cpu_pil_allowed(env, pil)) ||
392 type != TT_EXTINT) {
393 env->exception_index = env->interrupt_index;
394 do_interrupt(env);
395 next_tb = 0;
396 }
397 }
398 }
399 #elif defined(TARGET_ARM)
400 if (interrupt_request & CPU_INTERRUPT_FIQ
401 && !(env->uncached_cpsr & CPSR_F)) {
402 env->exception_index = EXCP_FIQ;
403 do_interrupt(env);
404 next_tb = 0;
405 }
406 /* ARMv7-M interrupt return works by loading a magic value
407 into the PC. On real hardware the load causes the
408 return to occur. The qemu implementation performs the
409 jump normally, then does the exception return when the
410 CPU tries to execute code at the magic address.
411 This will cause the magic PC value to be pushed to
412 the stack if an interrupt occurred at the wrong time.
413 We avoid this by disabling interrupts when
414 pc contains a magic address. */
415 if (interrupt_request & CPU_INTERRUPT_HARD
416 && ((IS_M(env) && env->regs[15] < 0xfffffff0)
417 || !(env->uncached_cpsr & CPSR_I))) {
418 env->exception_index = EXCP_IRQ;
419 do_interrupt(env);
420 next_tb = 0;
421 }
422 #elif defined(TARGET_UNICORE32)
423 if (interrupt_request & CPU_INTERRUPT_HARD
424 && !(env->uncached_asr & ASR_I)) {
425 do_interrupt(env);
426 next_tb = 0;
427 }
428 #elif defined(TARGET_SH4)
429 if (interrupt_request & CPU_INTERRUPT_HARD) {
430 do_interrupt(env);
431 next_tb = 0;
432 }
433 #elif defined(TARGET_ALPHA)
434 {
435 int idx = -1;
436 /* ??? This hard-codes the OSF/1 interrupt levels. */
437 switch (env->pal_mode ? 7 : env->ps & PS_INT_MASK) {
438 case 0 ... 3:
439 if (interrupt_request & CPU_INTERRUPT_HARD) {
440 idx = EXCP_DEV_INTERRUPT;
441 }
442 /* FALLTHRU */
443 case 4:
444 if (interrupt_request & CPU_INTERRUPT_TIMER) {
445 idx = EXCP_CLK_INTERRUPT;
446 }
447 /* FALLTHRU */
448 case 5:
449 if (interrupt_request & CPU_INTERRUPT_SMP) {
450 idx = EXCP_SMP_INTERRUPT;
451 }
452 /* FALLTHRU */
453 case 6:
454 if (interrupt_request & CPU_INTERRUPT_MCHK) {
455 idx = EXCP_MCHK;
456 }
457 }
458 if (idx >= 0) {
459 env->exception_index = idx;
460 env->error_code = 0;
461 do_interrupt(env);
462 next_tb = 0;
463 }
464 }
465 #elif defined(TARGET_CRIS)
466 if (interrupt_request & CPU_INTERRUPT_HARD
467 && (env->pregs[PR_CCS] & I_FLAG)
468 && !env->locked_irq) {
469 env->exception_index = EXCP_IRQ;
470 do_interrupt(env);
471 next_tb = 0;
472 }
473 if (interrupt_request & CPU_INTERRUPT_NMI
474 && (env->pregs[PR_CCS] & M_FLAG)) {
475 env->exception_index = EXCP_NMI;
476 do_interrupt(env);
477 next_tb = 0;
478 }
479 #elif defined(TARGET_M68K)
480 if (interrupt_request & CPU_INTERRUPT_HARD
481 && ((env->sr & SR_I) >> SR_I_SHIFT)
482 < env->pending_level) {
483 /* Real hardware gets the interrupt vector via an
484 IACK cycle at this point. Current emulated
485 hardware doesn't rely on this, so we
486 provide/save the vector when the interrupt is
487 first signalled. */
488 env->exception_index = env->pending_vector;
489 do_interrupt_m68k_hardirq(env);
490 next_tb = 0;
491 }
492 #elif defined(TARGET_S390X) && !defined(CONFIG_USER_ONLY)
493 if ((interrupt_request & CPU_INTERRUPT_HARD) &&
494 (env->psw.mask & PSW_MASK_EXT)) {
495 do_interrupt(env);
496 next_tb = 0;
497 }
498 #elif defined(TARGET_XTENSA)
499 if (interrupt_request & CPU_INTERRUPT_HARD) {
500 env->exception_index = EXC_IRQ;
501 do_interrupt(env);
502 next_tb = 0;
503 }
504 #endif
505 /* Don't use the cached interrupt_request value,
506 do_interrupt may have updated the EXITTB flag. */
507 if (env->interrupt_request & CPU_INTERRUPT_EXITTB) {
508 env->interrupt_request &= ~CPU_INTERRUPT_EXITTB;
509 /* ensure that no TB jump will be modified as
510 the program flow was changed */
511 next_tb = 0;
512 }
513 }
514 if (unlikely(env->exit_request)) {
515 env->exit_request = 0;
516 env->exception_index = EXCP_INTERRUPT;
517 cpu_loop_exit(env);
518 }
519 #if defined(DEBUG_DISAS) || defined(CONFIG_DEBUG_EXEC)
520 if (qemu_loglevel_mask(CPU_LOG_TB_CPU)) {
521 /* restore flags in standard format */
522 #if defined(TARGET_I386)
523 env->eflags = env->eflags | cpu_cc_compute_all(env, CC_OP)
524 | (DF & DF_MASK);
525 log_cpu_state(env, X86_DUMP_CCOP);
526 env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
527 #elif defined(TARGET_M68K)
528 cpu_m68k_flush_flags(env, env->cc_op);
529 env->cc_op = CC_OP_FLAGS;
530 env->sr = (env->sr & 0xffe0)
531 | env->cc_dest | (env->cc_x << 4);
532 log_cpu_state(env, 0);
533 #else
534 log_cpu_state(env, 0);
535 #endif
536 }
537 #endif /* DEBUG_DISAS || CONFIG_DEBUG_EXEC */
538 spin_lock(&tb_lock);
539 tb = tb_find_fast(env);
540 /* Note: we do it here to avoid a gcc bug on Mac OS X when
541 doing it in tb_find_slow */
542 if (tb_invalidated_flag) {
543 /* as some TB could have been invalidated because
544 of memory exceptions while generating the code, we
545 must recompute the hash index here */
546 next_tb = 0;
547 tb_invalidated_flag = 0;
548 }
549 #ifdef CONFIG_DEBUG_EXEC
550 qemu_log_mask(CPU_LOG_EXEC, "Trace %p [" TARGET_FMT_lx "] %s\n",
551 tb->tc_ptr, tb->pc,
552 lookup_symbol(tb->pc));
553 #endif
554 /* see if we can patch the calling TB. When the TB
555 spans two pages, we cannot safely do a direct
556 jump. */
557 if (next_tb != 0 && tb->page_addr[1] == -1) {
558 tb_add_jump((TranslationBlock *)(next_tb & ~3), next_tb & 3, tb);
559 }
560 spin_unlock(&tb_lock);
561
562 /* cpu_interrupt might be called while translating the
563 TB, but before it is linked into a potentially
564 infinite loop and becomes env->current_tb. Avoid
565 starting execution if there is a pending interrupt. */
566 env->current_tb = tb;
567 barrier();
568 if (likely(!env->exit_request)) {
569 tc_ptr = tb->tc_ptr;
570 /* execute the generated code */
571 next_tb = tcg_qemu_tb_exec(env, tc_ptr);
572 if ((next_tb & 3) == 2) {
573 /* Instruction counter expired. */
574 int insns_left;
575 tb = (TranslationBlock *)(next_tb & ~3);
576 /* Restore PC. */
577 cpu_pc_from_tb(env, tb);
578 insns_left = env->icount_decr.u32;
579 if (env->icount_extra && insns_left >= 0) {
580 /* Refill decrementer and continue execution. */
581 env->icount_extra += insns_left;
582 if (env->icount_extra > 0xffff) {
583 insns_left = 0xffff;
584 } else {
585 insns_left = env->icount_extra;
586 }
587 env->icount_extra -= insns_left;
588 env->icount_decr.u16.low = insns_left;
589 } else {
590 if (insns_left > 0) {
591 /* Execute remaining instructions. */
592 cpu_exec_nocache(env, insns_left, tb);
593 }
594 env->exception_index = EXCP_INTERRUPT;
595 next_tb = 0;
596 cpu_loop_exit(env);
597 }
598 }
599 }
600 env->current_tb = NULL;
601 /* reset soft MMU for next block (it can currently
602 only be set by a memory fault) */
603 } /* for(;;) */
604 } else {
605 /* Reload env after longjmp - the compiler may have smashed all
606 * local variables as longjmp is marked 'noreturn'. */
607 env = cpu_single_env;
608 }
609 } /* for(;;) */
610
611
612 #if defined(TARGET_I386)
613 /* restore flags in standard format */
614 env->eflags = env->eflags | cpu_cc_compute_all(env, CC_OP)
615 | (DF & DF_MASK);
616 #elif defined(TARGET_ARM)
617 /* XXX: Save/restore host fpu exception state?. */
618 #elif defined(TARGET_UNICORE32)
619 #elif defined(TARGET_SPARC)
620 #elif defined(TARGET_PPC)
621 #elif defined(TARGET_LM32)
622 #elif defined(TARGET_M68K)
623 cpu_m68k_flush_flags(env, env->cc_op);
624 env->cc_op = CC_OP_FLAGS;
625 env->sr = (env->sr & 0xffe0)
626 | env->cc_dest | (env->cc_x << 4);
627 #elif defined(TARGET_MICROBLAZE)
628 #elif defined(TARGET_MIPS)
629 #elif defined(TARGET_SH4)
630 #elif defined(TARGET_ALPHA)
631 #elif defined(TARGET_CRIS)
632 #elif defined(TARGET_S390X)
633 #elif defined(TARGET_XTENSA)
634 /* XXXXX */
635 #else
636 #error unsupported target CPU
637 #endif
638
639 /* fail safe : never use cpu_single_env outside cpu_exec() */
640 cpu_single_env = NULL;
641 return ret;
642 }