]> git.proxmox.com Git - mirror_qemu.git/blame - exec.c
build: Work around SIZE_MAX bug in OSX headers
[mirror_qemu.git] / exec.c
CommitLineData
54936004 1/*
5b6dd868 2 * Virtual page mapping
5fafdf24 3 *
54936004
FB
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
8167ee88 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
54936004 18 */
7b31bbc2 19#include "qemu/osdep.h"
da34e65c 20#include "qapi/error.h"
777872e5 21#ifndef _WIN32
d5a8f07c 22#endif
54936004 23
f348b6d1 24#include "qemu/cutils.h"
6180a181 25#include "cpu.h"
63c91552 26#include "exec/exec-all.h"
b67d9a52 27#include "tcg.h"
741da0d3 28#include "hw/qdev-core.h"
4485bd26 29#if !defined(CONFIG_USER_ONLY)
47c8ca53 30#include "hw/boards.h"
33c11879 31#include "hw/xen/xen.h"
4485bd26 32#endif
9c17d615 33#include "sysemu/kvm.h"
2ff3de68 34#include "sysemu/sysemu.h"
1de7afc9
PB
35#include "qemu/timer.h"
36#include "qemu/config-file.h"
75a34036 37#include "qemu/error-report.h"
53a5960a 38#if defined(CONFIG_USER_ONLY)
a9c94277 39#include "qemu.h"
432d268c 40#else /* !CONFIG_USER_ONLY */
741da0d3
PB
41#include "hw/hw.h"
42#include "exec/memory.h"
df43d49c 43#include "exec/ioport.h"
741da0d3
PB
44#include "sysemu/dma.h"
45#include "exec/address-spaces.h"
9c17d615 46#include "sysemu/xen-mapcache.h"
6506e4f9 47#include "trace.h"
53a5960a 48#endif
0d6d3c87 49#include "exec/cpu-all.h"
0dc3f44a 50#include "qemu/rcu_queue.h"
4840f10e 51#include "qemu/main-loop.h"
5b6dd868 52#include "translate-all.h"
7615936e 53#include "sysemu/replay.h"
0cac1b66 54
022c62cb 55#include "exec/memory-internal.h"
220c3ebd 56#include "exec/ram_addr.h"
508127e2 57#include "exec/log.h"
67d95c15 58
9dfeca7c
BR
59#include "migration/vmstate.h"
60
b35ba30f 61#include "qemu/range.h"
794e8f30
MT
62#ifndef _WIN32
63#include "qemu/mmap-alloc.h"
64#endif
b35ba30f 65
db7b5426 66//#define DEBUG_SUBPAGE
1196be37 67
e2eef170 68#if !defined(CONFIG_USER_ONLY)
0dc3f44a
MD
69/* ram_list is read under rcu_read_lock()/rcu_read_unlock(). Writes
70 * are protected by the ramlist lock.
71 */
0d53d9fe 72RAMList ram_list = { .blocks = QLIST_HEAD_INITIALIZER(ram_list.blocks) };
62152b8a
AK
73
74static MemoryRegion *system_memory;
309cb471 75static MemoryRegion *system_io;
62152b8a 76
f6790af6
AK
77AddressSpace address_space_io;
78AddressSpace address_space_memory;
2673a5da 79
0844e007 80MemoryRegion io_mem_rom, io_mem_notdirty;
acc9d80b 81static MemoryRegion io_mem_unassigned;
0e0df1e2 82
7bd4f430
PB
83/* RAM is pre-allocated and passed into qemu_ram_alloc_from_ptr */
84#define RAM_PREALLOC (1 << 0)
85
dbcb8981
PB
86/* RAM is mmap-ed with MAP_SHARED */
87#define RAM_SHARED (1 << 1)
88
62be4e3a
MT
89/* Only a portion of RAM (used_length) is actually used, and migrated.
90 * This used_length size can change across reboots.
91 */
92#define RAM_RESIZEABLE (1 << 2)
93
e2eef170 94#endif
9fa3e853 95
bdc44640 96struct CPUTailQ cpus = QTAILQ_HEAD_INITIALIZER(cpus);
6a00d601
FB
97/* current CPU in the current thread. It is only valid inside
98 cpu_exec() */
f240eb6f 99__thread CPUState *current_cpu;
2e70f6ef 100/* 0 = Do not count executed instructions.
bf20dc07 101 1 = Precise instruction counting.
2e70f6ef 102 2 = Adaptive rate instruction counting. */
5708fc66 103int use_icount;
6a00d601 104
e2eef170 105#if !defined(CONFIG_USER_ONLY)
4346ae3e 106
1db8abb1
PB
107typedef struct PhysPageEntry PhysPageEntry;
108
109struct PhysPageEntry {
9736e55b 110 /* How many bits skip to next level (in units of L2_SIZE). 0 for a leaf. */
8b795765 111 uint32_t skip : 6;
9736e55b 112 /* index into phys_sections (!skip) or phys_map_nodes (skip) */
8b795765 113 uint32_t ptr : 26;
1db8abb1
PB
114};
115
8b795765
MT
116#define PHYS_MAP_NODE_NIL (((uint32_t)~0) >> 6)
117
03f49957 118/* Size of the L2 (and L3, etc) page tables. */
57271d63 119#define ADDR_SPACE_BITS 64
03f49957 120
026736ce 121#define P_L2_BITS 9
03f49957
PB
122#define P_L2_SIZE (1 << P_L2_BITS)
123
124#define P_L2_LEVELS (((ADDR_SPACE_BITS - TARGET_PAGE_BITS - 1) / P_L2_BITS) + 1)
125
126typedef PhysPageEntry Node[P_L2_SIZE];
0475d94f 127
53cb28cb 128typedef struct PhysPageMap {
79e2b9ae
PB
129 struct rcu_head rcu;
130
53cb28cb
MA
131 unsigned sections_nb;
132 unsigned sections_nb_alloc;
133 unsigned nodes_nb;
134 unsigned nodes_nb_alloc;
135 Node *nodes;
136 MemoryRegionSection *sections;
137} PhysPageMap;
138
1db8abb1 139struct AddressSpaceDispatch {
79e2b9ae
PB
140 struct rcu_head rcu;
141
729633c2 142 MemoryRegionSection *mru_section;
1db8abb1
PB
143 /* This is a multi-level map on the physical address space.
144 * The bottom level has pointers to MemoryRegionSections.
145 */
146 PhysPageEntry phys_map;
53cb28cb 147 PhysPageMap map;
acc9d80b 148 AddressSpace *as;
1db8abb1
PB
149};
150
90260c6c
JK
151#define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
152typedef struct subpage_t {
153 MemoryRegion iomem;
acc9d80b 154 AddressSpace *as;
90260c6c
JK
155 hwaddr base;
156 uint16_t sub_section[TARGET_PAGE_SIZE];
157} subpage_t;
158
b41aac4f
LPF
159#define PHYS_SECTION_UNASSIGNED 0
160#define PHYS_SECTION_NOTDIRTY 1
161#define PHYS_SECTION_ROM 2
162#define PHYS_SECTION_WATCH 3
5312bd8b 163
e2eef170 164static void io_mem_init(void);
62152b8a 165static void memory_map_init(void);
09daed84 166static void tcg_commit(MemoryListener *listener);
e2eef170 167
1ec9b909 168static MemoryRegion io_mem_watch;
32857f4d
PM
169
170/**
171 * CPUAddressSpace: all the information a CPU needs about an AddressSpace
172 * @cpu: the CPU whose AddressSpace this is
173 * @as: the AddressSpace itself
174 * @memory_dispatch: its dispatch pointer (cached, RCU protected)
175 * @tcg_as_listener: listener for tracking changes to the AddressSpace
176 */
177struct CPUAddressSpace {
178 CPUState *cpu;
179 AddressSpace *as;
180 struct AddressSpaceDispatch *memory_dispatch;
181 MemoryListener tcg_as_listener;
182};
183
6658ffb8 184#endif
fd6ce8f6 185
6d9a1304 186#if !defined(CONFIG_USER_ONLY)
d6f2ea22 187
53cb28cb 188static void phys_map_node_reserve(PhysPageMap *map, unsigned nodes)
d6f2ea22 189{
101420b8 190 static unsigned alloc_hint = 16;
53cb28cb 191 if (map->nodes_nb + nodes > map->nodes_nb_alloc) {
101420b8 192 map->nodes_nb_alloc = MAX(map->nodes_nb_alloc, alloc_hint);
53cb28cb
MA
193 map->nodes_nb_alloc = MAX(map->nodes_nb_alloc, map->nodes_nb + nodes);
194 map->nodes = g_renew(Node, map->nodes, map->nodes_nb_alloc);
101420b8 195 alloc_hint = map->nodes_nb_alloc;
d6f2ea22 196 }
f7bf5461
AK
197}
198
db94604b 199static uint32_t phys_map_node_alloc(PhysPageMap *map, bool leaf)
f7bf5461
AK
200{
201 unsigned i;
8b795765 202 uint32_t ret;
db94604b
PB
203 PhysPageEntry e;
204 PhysPageEntry *p;
f7bf5461 205
53cb28cb 206 ret = map->nodes_nb++;
db94604b 207 p = map->nodes[ret];
f7bf5461 208 assert(ret != PHYS_MAP_NODE_NIL);
53cb28cb 209 assert(ret != map->nodes_nb_alloc);
db94604b
PB
210
211 e.skip = leaf ? 0 : 1;
212 e.ptr = leaf ? PHYS_SECTION_UNASSIGNED : PHYS_MAP_NODE_NIL;
03f49957 213 for (i = 0; i < P_L2_SIZE; ++i) {
db94604b 214 memcpy(&p[i], &e, sizeof(e));
d6f2ea22 215 }
f7bf5461 216 return ret;
d6f2ea22
AK
217}
218
53cb28cb
MA
219static void phys_page_set_level(PhysPageMap *map, PhysPageEntry *lp,
220 hwaddr *index, hwaddr *nb, uint16_t leaf,
2999097b 221 int level)
f7bf5461
AK
222{
223 PhysPageEntry *p;
03f49957 224 hwaddr step = (hwaddr)1 << (level * P_L2_BITS);
108c49b8 225
9736e55b 226 if (lp->skip && lp->ptr == PHYS_MAP_NODE_NIL) {
db94604b 227 lp->ptr = phys_map_node_alloc(map, level == 0);
92e873b9 228 }
db94604b 229 p = map->nodes[lp->ptr];
03f49957 230 lp = &p[(*index >> (level * P_L2_BITS)) & (P_L2_SIZE - 1)];
f7bf5461 231
03f49957 232 while (*nb && lp < &p[P_L2_SIZE]) {
07f07b31 233 if ((*index & (step - 1)) == 0 && *nb >= step) {
9736e55b 234 lp->skip = 0;
c19e8800 235 lp->ptr = leaf;
07f07b31
AK
236 *index += step;
237 *nb -= step;
2999097b 238 } else {
53cb28cb 239 phys_page_set_level(map, lp, index, nb, leaf, level - 1);
2999097b
AK
240 }
241 ++lp;
f7bf5461
AK
242 }
243}
244
ac1970fb 245static void phys_page_set(AddressSpaceDispatch *d,
a8170e5e 246 hwaddr index, hwaddr nb,
2999097b 247 uint16_t leaf)
f7bf5461 248{
2999097b 249 /* Wildly overreserve - it doesn't matter much. */
53cb28cb 250 phys_map_node_reserve(&d->map, 3 * P_L2_LEVELS);
5cd2c5b6 251
53cb28cb 252 phys_page_set_level(&d->map, &d->phys_map, &index, &nb, leaf, P_L2_LEVELS - 1);
92e873b9
FB
253}
254
b35ba30f
MT
255/* Compact a non leaf page entry. Simply detect that the entry has a single child,
256 * and update our entry so we can skip it and go directly to the destination.
257 */
efee678d 258static void phys_page_compact(PhysPageEntry *lp, Node *nodes)
b35ba30f
MT
259{
260 unsigned valid_ptr = P_L2_SIZE;
261 int valid = 0;
262 PhysPageEntry *p;
263 int i;
264
265 if (lp->ptr == PHYS_MAP_NODE_NIL) {
266 return;
267 }
268
269 p = nodes[lp->ptr];
270 for (i = 0; i < P_L2_SIZE; i++) {
271 if (p[i].ptr == PHYS_MAP_NODE_NIL) {
272 continue;
273 }
274
275 valid_ptr = i;
276 valid++;
277 if (p[i].skip) {
efee678d 278 phys_page_compact(&p[i], nodes);
b35ba30f
MT
279 }
280 }
281
282 /* We can only compress if there's only one child. */
283 if (valid != 1) {
284 return;
285 }
286
287 assert(valid_ptr < P_L2_SIZE);
288
289 /* Don't compress if it won't fit in the # of bits we have. */
290 if (lp->skip + p[valid_ptr].skip >= (1 << 3)) {
291 return;
292 }
293
294 lp->ptr = p[valid_ptr].ptr;
295 if (!p[valid_ptr].skip) {
296 /* If our only child is a leaf, make this a leaf. */
297 /* By design, we should have made this node a leaf to begin with so we
298 * should never reach here.
299 * But since it's so simple to handle this, let's do it just in case we
300 * change this rule.
301 */
302 lp->skip = 0;
303 } else {
304 lp->skip += p[valid_ptr].skip;
305 }
306}
307
308static void phys_page_compact_all(AddressSpaceDispatch *d, int nodes_nb)
309{
b35ba30f 310 if (d->phys_map.skip) {
efee678d 311 phys_page_compact(&d->phys_map, d->map.nodes);
b35ba30f
MT
312 }
313}
314
29cb533d
FZ
315static inline bool section_covers_addr(const MemoryRegionSection *section,
316 hwaddr addr)
317{
318 /* Memory topology clips a memory region to [0, 2^64); size.hi > 0 means
319 * the section must cover the entire address space.
320 */
321 return section->size.hi ||
322 range_covers_byte(section->offset_within_address_space,
323 section->size.lo, addr);
324}
325
97115a8d 326static MemoryRegionSection *phys_page_find(PhysPageEntry lp, hwaddr addr,
9affd6fc 327 Node *nodes, MemoryRegionSection *sections)
92e873b9 328{
31ab2b4a 329 PhysPageEntry *p;
97115a8d 330 hwaddr index = addr >> TARGET_PAGE_BITS;
31ab2b4a 331 int i;
f1f6e3b8 332
9736e55b 333 for (i = P_L2_LEVELS; lp.skip && (i -= lp.skip) >= 0;) {
c19e8800 334 if (lp.ptr == PHYS_MAP_NODE_NIL) {
9affd6fc 335 return &sections[PHYS_SECTION_UNASSIGNED];
31ab2b4a 336 }
9affd6fc 337 p = nodes[lp.ptr];
03f49957 338 lp = p[(index >> (i * P_L2_BITS)) & (P_L2_SIZE - 1)];
5312bd8b 339 }
b35ba30f 340
29cb533d 341 if (section_covers_addr(&sections[lp.ptr], addr)) {
b35ba30f
MT
342 return &sections[lp.ptr];
343 } else {
344 return &sections[PHYS_SECTION_UNASSIGNED];
345 }
f3705d53
AK
346}
347
e5548617
BS
348bool memory_region_is_unassigned(MemoryRegion *mr)
349{
2a8e7499 350 return mr != &io_mem_rom && mr != &io_mem_notdirty && !mr->rom_device
5b6dd868 351 && mr != &io_mem_watch;
fd6ce8f6 352}
149f54b5 353
79e2b9ae 354/* Called from RCU critical section */
c7086b4a 355static MemoryRegionSection *address_space_lookup_region(AddressSpaceDispatch *d,
90260c6c
JK
356 hwaddr addr,
357 bool resolve_subpage)
9f029603 358{
729633c2 359 MemoryRegionSection *section = atomic_read(&d->mru_section);
90260c6c 360 subpage_t *subpage;
729633c2 361 bool update;
90260c6c 362
729633c2
FZ
363 if (section && section != &d->map.sections[PHYS_SECTION_UNASSIGNED] &&
364 section_covers_addr(section, addr)) {
365 update = false;
366 } else {
367 section = phys_page_find(d->phys_map, addr, d->map.nodes,
368 d->map.sections);
369 update = true;
370 }
90260c6c
JK
371 if (resolve_subpage && section->mr->subpage) {
372 subpage = container_of(section->mr, subpage_t, iomem);
53cb28cb 373 section = &d->map.sections[subpage->sub_section[SUBPAGE_IDX(addr)]];
90260c6c 374 }
729633c2
FZ
375 if (update) {
376 atomic_set(&d->mru_section, section);
377 }
90260c6c 378 return section;
9f029603
JK
379}
380
79e2b9ae 381/* Called from RCU critical section */
90260c6c 382static MemoryRegionSection *
c7086b4a 383address_space_translate_internal(AddressSpaceDispatch *d, hwaddr addr, hwaddr *xlat,
90260c6c 384 hwaddr *plen, bool resolve_subpage)
149f54b5
PB
385{
386 MemoryRegionSection *section;
965eb2fc 387 MemoryRegion *mr;
a87f3954 388 Int128 diff;
149f54b5 389
c7086b4a 390 section = address_space_lookup_region(d, addr, resolve_subpage);
149f54b5
PB
391 /* Compute offset within MemoryRegionSection */
392 addr -= section->offset_within_address_space;
393
394 /* Compute offset within MemoryRegion */
395 *xlat = addr + section->offset_within_region;
396
965eb2fc 397 mr = section->mr;
b242e0e0
PB
398
399 /* MMIO registers can be expected to perform full-width accesses based only
400 * on their address, without considering adjacent registers that could
401 * decode to completely different MemoryRegions. When such registers
402 * exist (e.g. I/O ports 0xcf8 and 0xcf9 on most PC chipsets), MMIO
403 * regions overlap wildly. For this reason we cannot clamp the accesses
404 * here.
405 *
406 * If the length is small (as is the case for address_space_ldl/stl),
407 * everything works fine. If the incoming length is large, however,
408 * the caller really has to do the clamping through memory_access_size.
409 */
965eb2fc 410 if (memory_region_is_ram(mr)) {
e4a511f8 411 diff = int128_sub(section->size, int128_make64(addr));
965eb2fc
PB
412 *plen = int128_get64(int128_min(diff, int128_make64(*plen)));
413 }
149f54b5
PB
414 return section;
415}
90260c6c 416
41063e1e 417/* Called from RCU critical section */
5c8a00ce
PB
418MemoryRegion *address_space_translate(AddressSpace *as, hwaddr addr,
419 hwaddr *xlat, hwaddr *plen,
420 bool is_write)
90260c6c 421{
30951157
AK
422 IOMMUTLBEntry iotlb;
423 MemoryRegionSection *section;
424 MemoryRegion *mr;
30951157
AK
425
426 for (;;) {
79e2b9ae
PB
427 AddressSpaceDispatch *d = atomic_rcu_read(&as->dispatch);
428 section = address_space_translate_internal(d, addr, &addr, plen, true);
30951157
AK
429 mr = section->mr;
430
431 if (!mr->iommu_ops) {
432 break;
433 }
434
8d7b8cb9 435 iotlb = mr->iommu_ops->translate(mr, addr, is_write);
30951157
AK
436 addr = ((iotlb.translated_addr & ~iotlb.addr_mask)
437 | (addr & iotlb.addr_mask));
23820dbf 438 *plen = MIN(*plen, (addr | iotlb.addr_mask) - addr + 1);
30951157
AK
439 if (!(iotlb.perm & (1 << is_write))) {
440 mr = &io_mem_unassigned;
441 break;
442 }
443
444 as = iotlb.target_as;
445 }
446
fe680d0d 447 if (xen_enabled() && memory_access_is_direct(mr, is_write)) {
a87f3954 448 hwaddr page = ((addr & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE) - addr;
23820dbf 449 *plen = MIN(page, *plen);
a87f3954
PB
450 }
451
30951157
AK
452 *xlat = addr;
453 return mr;
90260c6c
JK
454}
455
79e2b9ae 456/* Called from RCU critical section */
90260c6c 457MemoryRegionSection *
d7898cda 458address_space_translate_for_iotlb(CPUState *cpu, int asidx, hwaddr addr,
9d82b5a7 459 hwaddr *xlat, hwaddr *plen)
90260c6c 460{
30951157 461 MemoryRegionSection *section;
d7898cda
PM
462 AddressSpaceDispatch *d = cpu->cpu_ases[asidx].memory_dispatch;
463
464 section = address_space_translate_internal(d, addr, xlat, plen, false);
30951157
AK
465
466 assert(!section->mr->iommu_ops);
467 return section;
90260c6c 468}
5b6dd868 469#endif
fd6ce8f6 470
b170fce3 471#if !defined(CONFIG_USER_ONLY)
5b6dd868
BS
472
473static int cpu_common_post_load(void *opaque, int version_id)
fd6ce8f6 474{
259186a7 475 CPUState *cpu = opaque;
a513fe19 476
5b6dd868
BS
477 /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
478 version_id is increased. */
259186a7 479 cpu->interrupt_request &= ~0x01;
c01a71c1 480 tlb_flush(cpu, 1);
5b6dd868
BS
481
482 return 0;
a513fe19 483}
7501267e 484
6c3bff0e
PD
485static int cpu_common_pre_load(void *opaque)
486{
487 CPUState *cpu = opaque;
488
adee6424 489 cpu->exception_index = -1;
6c3bff0e
PD
490
491 return 0;
492}
493
494static bool cpu_common_exception_index_needed(void *opaque)
495{
496 CPUState *cpu = opaque;
497
adee6424 498 return tcg_enabled() && cpu->exception_index != -1;
6c3bff0e
PD
499}
500
501static const VMStateDescription vmstate_cpu_common_exception_index = {
502 .name = "cpu_common/exception_index",
503 .version_id = 1,
504 .minimum_version_id = 1,
5cd8cada 505 .needed = cpu_common_exception_index_needed,
6c3bff0e
PD
506 .fields = (VMStateField[]) {
507 VMSTATE_INT32(exception_index, CPUState),
508 VMSTATE_END_OF_LIST()
509 }
510};
511
bac05aa9
AS
512static bool cpu_common_crash_occurred_needed(void *opaque)
513{
514 CPUState *cpu = opaque;
515
516 return cpu->crash_occurred;
517}
518
519static const VMStateDescription vmstate_cpu_common_crash_occurred = {
520 .name = "cpu_common/crash_occurred",
521 .version_id = 1,
522 .minimum_version_id = 1,
523 .needed = cpu_common_crash_occurred_needed,
524 .fields = (VMStateField[]) {
525 VMSTATE_BOOL(crash_occurred, CPUState),
526 VMSTATE_END_OF_LIST()
527 }
528};
529
1a1562f5 530const VMStateDescription vmstate_cpu_common = {
5b6dd868
BS
531 .name = "cpu_common",
532 .version_id = 1,
533 .minimum_version_id = 1,
6c3bff0e 534 .pre_load = cpu_common_pre_load,
5b6dd868 535 .post_load = cpu_common_post_load,
35d08458 536 .fields = (VMStateField[]) {
259186a7
AF
537 VMSTATE_UINT32(halted, CPUState),
538 VMSTATE_UINT32(interrupt_request, CPUState),
5b6dd868 539 VMSTATE_END_OF_LIST()
6c3bff0e 540 },
5cd8cada
JQ
541 .subsections = (const VMStateDescription*[]) {
542 &vmstate_cpu_common_exception_index,
bac05aa9 543 &vmstate_cpu_common_crash_occurred,
5cd8cada 544 NULL
5b6dd868
BS
545 }
546};
1a1562f5 547
5b6dd868 548#endif
ea041c0e 549
38d8f5c8 550CPUState *qemu_get_cpu(int index)
ea041c0e 551{
bdc44640 552 CPUState *cpu;
ea041c0e 553
bdc44640 554 CPU_FOREACH(cpu) {
55e5c285 555 if (cpu->cpu_index == index) {
bdc44640 556 return cpu;
55e5c285 557 }
ea041c0e 558 }
5b6dd868 559
bdc44640 560 return NULL;
ea041c0e
FB
561}
562
09daed84 563#if !defined(CONFIG_USER_ONLY)
56943e8c 564void cpu_address_space_init(CPUState *cpu, AddressSpace *as, int asidx)
09daed84 565{
12ebc9a7
PM
566 CPUAddressSpace *newas;
567
568 /* Target code should have set num_ases before calling us */
569 assert(asidx < cpu->num_ases);
570
56943e8c
PM
571 if (asidx == 0) {
572 /* address space 0 gets the convenience alias */
573 cpu->as = as;
574 }
575
12ebc9a7
PM
576 /* KVM cannot currently support multiple address spaces. */
577 assert(asidx == 0 || !kvm_enabled());
09daed84 578
12ebc9a7
PM
579 if (!cpu->cpu_ases) {
580 cpu->cpu_ases = g_new0(CPUAddressSpace, cpu->num_ases);
09daed84 581 }
32857f4d 582
12ebc9a7
PM
583 newas = &cpu->cpu_ases[asidx];
584 newas->cpu = cpu;
585 newas->as = as;
56943e8c 586 if (tcg_enabled()) {
12ebc9a7
PM
587 newas->tcg_as_listener.commit = tcg_commit;
588 memory_listener_register(&newas->tcg_as_listener, as);
56943e8c 589 }
09daed84 590}
651a5bc0
PM
591
592AddressSpace *cpu_get_address_space(CPUState *cpu, int asidx)
593{
594 /* Return the AddressSpace corresponding to the specified index */
595 return cpu->cpu_ases[asidx].as;
596}
09daed84
EI
597#endif
598
1c59eb39
BR
599void cpu_exec_exit(CPUState *cpu)
600{
9dfeca7c
BR
601 CPUClass *cc = CPU_GET_CLASS(cpu);
602
267f685b 603 cpu_list_remove(cpu);
9dfeca7c
BR
604
605 if (cc->vmsd != NULL) {
606 vmstate_unregister(NULL, cc->vmsd, cpu);
607 }
608 if (qdev_get_vmsd(DEVICE(cpu)) == NULL) {
609 vmstate_unregister(NULL, &vmstate_cpu_common, cpu);
610 }
1c59eb39
BR
611}
612
4bad9e39 613void cpu_exec_init(CPUState *cpu, Error **errp)
ea041c0e 614{
1bc7e522 615 CPUClass *cc ATTRIBUTE_UNUSED = CPU_GET_CLASS(cpu);
a07f953e 616 Error *local_err ATTRIBUTE_UNUSED = NULL;
5b6dd868 617
56943e8c 618 cpu->as = NULL;
12ebc9a7 619 cpu->num_ases = 0;
56943e8c 620
291135b5 621#ifndef CONFIG_USER_ONLY
291135b5 622 cpu->thread_id = qemu_get_thread_id();
6731d864
PC
623
624 /* This is a softmmu CPU object, so create a property for it
625 * so users can wire up its memory. (This can't go in qom/cpu.c
626 * because that file is compiled only once for both user-mode
627 * and system builds.) The default if no link is set up is to use
628 * the system address space.
629 */
630 object_property_add_link(OBJECT(cpu), "memory", TYPE_MEMORY_REGION,
631 (Object **)&cpu->memory,
632 qdev_prop_allow_set_link_before_realize,
633 OBJ_PROP_LINK_UNREF_ON_RELEASE,
634 &error_abort);
635 cpu->memory = system_memory;
636 object_ref(OBJECT(cpu->memory));
291135b5
EH
637#endif
638
267f685b 639 cpu_list_add(cpu);
1bc7e522
IM
640
641#ifndef CONFIG_USER_ONLY
e0d47944 642 if (qdev_get_vmsd(DEVICE(cpu)) == NULL) {
741da0d3 643 vmstate_register(NULL, cpu->cpu_index, &vmstate_cpu_common, cpu);
e0d47944 644 }
b170fce3 645 if (cc->vmsd != NULL) {
741da0d3 646 vmstate_register(NULL, cpu->cpu_index, cc->vmsd, cpu);
b170fce3 647 }
741da0d3 648#endif
ea041c0e
FB
649}
650
94df27fd 651#if defined(CONFIG_USER_ONLY)
00b941e5 652static void breakpoint_invalidate(CPUState *cpu, target_ulong pc)
94df27fd
PB
653{
654 tb_invalidate_phys_page_range(pc, pc + 1, 0);
655}
656#else
00b941e5 657static void breakpoint_invalidate(CPUState *cpu, target_ulong pc)
1e7855a5 658{
5232e4c7
PM
659 MemTxAttrs attrs;
660 hwaddr phys = cpu_get_phys_page_attrs_debug(cpu, pc, &attrs);
661 int asidx = cpu_asidx_from_attrs(cpu, attrs);
e8262a1b 662 if (phys != -1) {
5232e4c7 663 tb_invalidate_phys_addr(cpu->cpu_ases[asidx].as,
29d8ec7b 664 phys | (pc & ~TARGET_PAGE_MASK));
e8262a1b 665 }
1e7855a5 666}
c27004ec 667#endif
d720b93d 668
c527ee8f 669#if defined(CONFIG_USER_ONLY)
75a34036 670void cpu_watchpoint_remove_all(CPUState *cpu, int mask)
c527ee8f
PB
671
672{
673}
674
3ee887e8
PM
675int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, vaddr len,
676 int flags)
677{
678 return -ENOSYS;
679}
680
681void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint)
682{
683}
684
75a34036 685int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len,
c527ee8f
PB
686 int flags, CPUWatchpoint **watchpoint)
687{
688 return -ENOSYS;
689}
690#else
6658ffb8 691/* Add a watchpoint. */
75a34036 692int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len,
a1d1bb31 693 int flags, CPUWatchpoint **watchpoint)
6658ffb8 694{
c0ce998e 695 CPUWatchpoint *wp;
6658ffb8 696
05068c0d 697 /* forbid ranges which are empty or run off the end of the address space */
07e2863d 698 if (len == 0 || (addr + len - 1) < addr) {
75a34036
AF
699 error_report("tried to set invalid watchpoint at %"
700 VADDR_PRIx ", len=%" VADDR_PRIu, addr, len);
b4051334
AL
701 return -EINVAL;
702 }
7267c094 703 wp = g_malloc(sizeof(*wp));
a1d1bb31
AL
704
705 wp->vaddr = addr;
05068c0d 706 wp->len = len;
a1d1bb31
AL
707 wp->flags = flags;
708
2dc9f411 709 /* keep all GDB-injected watchpoints in front */
ff4700b0
AF
710 if (flags & BP_GDB) {
711 QTAILQ_INSERT_HEAD(&cpu->watchpoints, wp, entry);
712 } else {
713 QTAILQ_INSERT_TAIL(&cpu->watchpoints, wp, entry);
714 }
6658ffb8 715
31b030d4 716 tlb_flush_page(cpu, addr);
a1d1bb31
AL
717
718 if (watchpoint)
719 *watchpoint = wp;
720 return 0;
6658ffb8
PB
721}
722
a1d1bb31 723/* Remove a specific watchpoint. */
75a34036 724int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, vaddr len,
a1d1bb31 725 int flags)
6658ffb8 726{
a1d1bb31 727 CPUWatchpoint *wp;
6658ffb8 728
ff4700b0 729 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
05068c0d 730 if (addr == wp->vaddr && len == wp->len
6e140f28 731 && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) {
75a34036 732 cpu_watchpoint_remove_by_ref(cpu, wp);
6658ffb8
PB
733 return 0;
734 }
735 }
a1d1bb31 736 return -ENOENT;
6658ffb8
PB
737}
738
a1d1bb31 739/* Remove a specific watchpoint by reference. */
75a34036 740void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint)
a1d1bb31 741{
ff4700b0 742 QTAILQ_REMOVE(&cpu->watchpoints, watchpoint, entry);
7d03f82f 743
31b030d4 744 tlb_flush_page(cpu, watchpoint->vaddr);
a1d1bb31 745
7267c094 746 g_free(watchpoint);
a1d1bb31
AL
747}
748
749/* Remove all matching watchpoints. */
75a34036 750void cpu_watchpoint_remove_all(CPUState *cpu, int mask)
a1d1bb31 751{
c0ce998e 752 CPUWatchpoint *wp, *next;
a1d1bb31 753
ff4700b0 754 QTAILQ_FOREACH_SAFE(wp, &cpu->watchpoints, entry, next) {
75a34036
AF
755 if (wp->flags & mask) {
756 cpu_watchpoint_remove_by_ref(cpu, wp);
757 }
c0ce998e 758 }
7d03f82f 759}
05068c0d
PM
760
761/* Return true if this watchpoint address matches the specified
762 * access (ie the address range covered by the watchpoint overlaps
763 * partially or completely with the address range covered by the
764 * access).
765 */
766static inline bool cpu_watchpoint_address_matches(CPUWatchpoint *wp,
767 vaddr addr,
768 vaddr len)
769{
770 /* We know the lengths are non-zero, but a little caution is
771 * required to avoid errors in the case where the range ends
772 * exactly at the top of the address space and so addr + len
773 * wraps round to zero.
774 */
775 vaddr wpend = wp->vaddr + wp->len - 1;
776 vaddr addrend = addr + len - 1;
777
778 return !(addr > wpend || wp->vaddr > addrend);
779}
780
c527ee8f 781#endif
7d03f82f 782
a1d1bb31 783/* Add a breakpoint. */
b3310ab3 784int cpu_breakpoint_insert(CPUState *cpu, vaddr pc, int flags,
a1d1bb31 785 CPUBreakpoint **breakpoint)
4c3a88a2 786{
c0ce998e 787 CPUBreakpoint *bp;
3b46e624 788
7267c094 789 bp = g_malloc(sizeof(*bp));
4c3a88a2 790
a1d1bb31
AL
791 bp->pc = pc;
792 bp->flags = flags;
793
2dc9f411 794 /* keep all GDB-injected breakpoints in front */
00b941e5 795 if (flags & BP_GDB) {
f0c3c505 796 QTAILQ_INSERT_HEAD(&cpu->breakpoints, bp, entry);
00b941e5 797 } else {
f0c3c505 798 QTAILQ_INSERT_TAIL(&cpu->breakpoints, bp, entry);
00b941e5 799 }
3b46e624 800
f0c3c505 801 breakpoint_invalidate(cpu, pc);
a1d1bb31 802
00b941e5 803 if (breakpoint) {
a1d1bb31 804 *breakpoint = bp;
00b941e5 805 }
4c3a88a2 806 return 0;
4c3a88a2
FB
807}
808
a1d1bb31 809/* Remove a specific breakpoint. */
b3310ab3 810int cpu_breakpoint_remove(CPUState *cpu, vaddr pc, int flags)
a1d1bb31 811{
a1d1bb31
AL
812 CPUBreakpoint *bp;
813
f0c3c505 814 QTAILQ_FOREACH(bp, &cpu->breakpoints, entry) {
a1d1bb31 815 if (bp->pc == pc && bp->flags == flags) {
b3310ab3 816 cpu_breakpoint_remove_by_ref(cpu, bp);
a1d1bb31
AL
817 return 0;
818 }
7d03f82f 819 }
a1d1bb31 820 return -ENOENT;
7d03f82f
EI
821}
822
a1d1bb31 823/* Remove a specific breakpoint by reference. */
b3310ab3 824void cpu_breakpoint_remove_by_ref(CPUState *cpu, CPUBreakpoint *breakpoint)
4c3a88a2 825{
f0c3c505
AF
826 QTAILQ_REMOVE(&cpu->breakpoints, breakpoint, entry);
827
828 breakpoint_invalidate(cpu, breakpoint->pc);
a1d1bb31 829
7267c094 830 g_free(breakpoint);
a1d1bb31
AL
831}
832
833/* Remove all matching breakpoints. */
b3310ab3 834void cpu_breakpoint_remove_all(CPUState *cpu, int mask)
a1d1bb31 835{
c0ce998e 836 CPUBreakpoint *bp, *next;
a1d1bb31 837
f0c3c505 838 QTAILQ_FOREACH_SAFE(bp, &cpu->breakpoints, entry, next) {
b3310ab3
AF
839 if (bp->flags & mask) {
840 cpu_breakpoint_remove_by_ref(cpu, bp);
841 }
c0ce998e 842 }
4c3a88a2
FB
843}
844
c33a346e
FB
845/* enable or disable single step mode. EXCP_DEBUG is returned by the
846 CPU loop after each instruction */
3825b28f 847void cpu_single_step(CPUState *cpu, int enabled)
c33a346e 848{
ed2803da
AF
849 if (cpu->singlestep_enabled != enabled) {
850 cpu->singlestep_enabled = enabled;
851 if (kvm_enabled()) {
38e478ec 852 kvm_update_guest_debug(cpu, 0);
ed2803da 853 } else {
ccbb4d44 854 /* must flush all the translated code to avoid inconsistencies */
e22a25c9 855 /* XXX: only flush what is necessary */
bbd77c18 856 tb_flush(cpu);
e22a25c9 857 }
c33a346e 858 }
c33a346e
FB
859}
860
a47dddd7 861void cpu_abort(CPUState *cpu, const char *fmt, ...)
7501267e
FB
862{
863 va_list ap;
493ae1f0 864 va_list ap2;
7501267e
FB
865
866 va_start(ap, fmt);
493ae1f0 867 va_copy(ap2, ap);
7501267e
FB
868 fprintf(stderr, "qemu: fatal: ");
869 vfprintf(stderr, fmt, ap);
870 fprintf(stderr, "\n");
878096ee 871 cpu_dump_state(cpu, stderr, fprintf, CPU_DUMP_FPU | CPU_DUMP_CCOP);
013a2942 872 if (qemu_log_separate()) {
93fcfe39
AL
873 qemu_log("qemu: fatal: ");
874 qemu_log_vprintf(fmt, ap2);
875 qemu_log("\n");
a0762859 876 log_cpu_state(cpu, CPU_DUMP_FPU | CPU_DUMP_CCOP);
31b1a7b4 877 qemu_log_flush();
93fcfe39 878 qemu_log_close();
924edcae 879 }
493ae1f0 880 va_end(ap2);
f9373291 881 va_end(ap);
7615936e 882 replay_finish();
fd052bf6
RV
883#if defined(CONFIG_USER_ONLY)
884 {
885 struct sigaction act;
886 sigfillset(&act.sa_mask);
887 act.sa_handler = SIG_DFL;
888 sigaction(SIGABRT, &act, NULL);
889 }
890#endif
7501267e
FB
891 abort();
892}
893
0124311e 894#if !defined(CONFIG_USER_ONLY)
0dc3f44a 895/* Called from RCU critical section */
041603fe
PB
896static RAMBlock *qemu_get_ram_block(ram_addr_t addr)
897{
898 RAMBlock *block;
899
43771539 900 block = atomic_rcu_read(&ram_list.mru_block);
9b8424d5 901 if (block && addr - block->offset < block->max_length) {
68851b98 902 return block;
041603fe 903 }
0dc3f44a 904 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
9b8424d5 905 if (addr - block->offset < block->max_length) {
041603fe
PB
906 goto found;
907 }
908 }
909
910 fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
911 abort();
912
913found:
43771539
PB
914 /* It is safe to write mru_block outside the iothread lock. This
915 * is what happens:
916 *
917 * mru_block = xxx
918 * rcu_read_unlock()
919 * xxx removed from list
920 * rcu_read_lock()
921 * read mru_block
922 * mru_block = NULL;
923 * call_rcu(reclaim_ramblock, xxx);
924 * rcu_read_unlock()
925 *
926 * atomic_rcu_set is not needed here. The block was already published
927 * when it was placed into the list. Here we're just making an extra
928 * copy of the pointer.
929 */
041603fe
PB
930 ram_list.mru_block = block;
931 return block;
932}
933
a2f4d5be 934static void tlb_reset_dirty_range_all(ram_addr_t start, ram_addr_t length)
d24981d3 935{
9a13565d 936 CPUState *cpu;
041603fe 937 ram_addr_t start1;
a2f4d5be
JQ
938 RAMBlock *block;
939 ram_addr_t end;
940
941 end = TARGET_PAGE_ALIGN(start + length);
942 start &= TARGET_PAGE_MASK;
d24981d3 943
0dc3f44a 944 rcu_read_lock();
041603fe
PB
945 block = qemu_get_ram_block(start);
946 assert(block == qemu_get_ram_block(end - 1));
1240be24 947 start1 = (uintptr_t)ramblock_ptr(block, start - block->offset);
9a13565d
PC
948 CPU_FOREACH(cpu) {
949 tlb_reset_dirty(cpu, start1, length);
950 }
0dc3f44a 951 rcu_read_unlock();
d24981d3
JQ
952}
953
5579c7f3 954/* Note: start and end must be within the same ram block. */
03eebc9e
SH
955bool cpu_physical_memory_test_and_clear_dirty(ram_addr_t start,
956 ram_addr_t length,
957 unsigned client)
1ccde1cb 958{
5b82b703 959 DirtyMemoryBlocks *blocks;
03eebc9e 960 unsigned long end, page;
5b82b703 961 bool dirty = false;
03eebc9e
SH
962
963 if (length == 0) {
964 return false;
965 }
f23db169 966
03eebc9e
SH
967 end = TARGET_PAGE_ALIGN(start + length) >> TARGET_PAGE_BITS;
968 page = start >> TARGET_PAGE_BITS;
5b82b703
SH
969
970 rcu_read_lock();
971
972 blocks = atomic_rcu_read(&ram_list.dirty_memory[client]);
973
974 while (page < end) {
975 unsigned long idx = page / DIRTY_MEMORY_BLOCK_SIZE;
976 unsigned long offset = page % DIRTY_MEMORY_BLOCK_SIZE;
977 unsigned long num = MIN(end - page, DIRTY_MEMORY_BLOCK_SIZE - offset);
978
979 dirty |= bitmap_test_and_clear_atomic(blocks->blocks[idx],
980 offset, num);
981 page += num;
982 }
983
984 rcu_read_unlock();
03eebc9e
SH
985
986 if (dirty && tcg_enabled()) {
a2f4d5be 987 tlb_reset_dirty_range_all(start, length);
5579c7f3 988 }
03eebc9e
SH
989
990 return dirty;
1ccde1cb
FB
991}
992
79e2b9ae 993/* Called from RCU critical section */
bb0e627a 994hwaddr memory_region_section_get_iotlb(CPUState *cpu,
149f54b5
PB
995 MemoryRegionSection *section,
996 target_ulong vaddr,
997 hwaddr paddr, hwaddr xlat,
998 int prot,
999 target_ulong *address)
e5548617 1000{
a8170e5e 1001 hwaddr iotlb;
e5548617
BS
1002 CPUWatchpoint *wp;
1003
cc5bea60 1004 if (memory_region_is_ram(section->mr)) {
e5548617 1005 /* Normal RAM. */
e4e69794 1006 iotlb = memory_region_get_ram_addr(section->mr) + xlat;
e5548617 1007 if (!section->readonly) {
b41aac4f 1008 iotlb |= PHYS_SECTION_NOTDIRTY;
e5548617 1009 } else {
b41aac4f 1010 iotlb |= PHYS_SECTION_ROM;
e5548617
BS
1011 }
1012 } else {
0b8e2c10
PM
1013 AddressSpaceDispatch *d;
1014
1015 d = atomic_rcu_read(&section->address_space->dispatch);
1016 iotlb = section - d->map.sections;
149f54b5 1017 iotlb += xlat;
e5548617
BS
1018 }
1019
1020 /* Make accesses to pages with watchpoints go via the
1021 watchpoint trap routines. */
ff4700b0 1022 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
05068c0d 1023 if (cpu_watchpoint_address_matches(wp, vaddr, TARGET_PAGE_SIZE)) {
e5548617
BS
1024 /* Avoid trapping reads of pages with a write breakpoint. */
1025 if ((prot & PAGE_WRITE) || (wp->flags & BP_MEM_READ)) {
b41aac4f 1026 iotlb = PHYS_SECTION_WATCH + paddr;
e5548617
BS
1027 *address |= TLB_MMIO;
1028 break;
1029 }
1030 }
1031 }
1032
1033 return iotlb;
1034}
9fa3e853
FB
1035#endif /* defined(CONFIG_USER_ONLY) */
1036
e2eef170 1037#if !defined(CONFIG_USER_ONLY)
8da3ff18 1038
c227f099 1039static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
5312bd8b 1040 uint16_t section);
acc9d80b 1041static subpage_t *subpage_init(AddressSpace *as, hwaddr base);
54688b1e 1042
a2b257d6
IM
1043static void *(*phys_mem_alloc)(size_t size, uint64_t *align) =
1044 qemu_anon_ram_alloc;
91138037
MA
1045
1046/*
1047 * Set a custom physical guest memory alloator.
1048 * Accelerators with unusual needs may need this. Hopefully, we can
1049 * get rid of it eventually.
1050 */
a2b257d6 1051void phys_mem_set_alloc(void *(*alloc)(size_t, uint64_t *align))
91138037
MA
1052{
1053 phys_mem_alloc = alloc;
1054}
1055
53cb28cb
MA
1056static uint16_t phys_section_add(PhysPageMap *map,
1057 MemoryRegionSection *section)
5312bd8b 1058{
68f3f65b
PB
1059 /* The physical section number is ORed with a page-aligned
1060 * pointer to produce the iotlb entries. Thus it should
1061 * never overflow into the page-aligned value.
1062 */
53cb28cb 1063 assert(map->sections_nb < TARGET_PAGE_SIZE);
68f3f65b 1064
53cb28cb
MA
1065 if (map->sections_nb == map->sections_nb_alloc) {
1066 map->sections_nb_alloc = MAX(map->sections_nb_alloc * 2, 16);
1067 map->sections = g_renew(MemoryRegionSection, map->sections,
1068 map->sections_nb_alloc);
5312bd8b 1069 }
53cb28cb 1070 map->sections[map->sections_nb] = *section;
dfde4e6e 1071 memory_region_ref(section->mr);
53cb28cb 1072 return map->sections_nb++;
5312bd8b
AK
1073}
1074
058bc4b5
PB
1075static void phys_section_destroy(MemoryRegion *mr)
1076{
55b4e80b
DS
1077 bool have_sub_page = mr->subpage;
1078
dfde4e6e
PB
1079 memory_region_unref(mr);
1080
55b4e80b 1081 if (have_sub_page) {
058bc4b5 1082 subpage_t *subpage = container_of(mr, subpage_t, iomem);
b4fefef9 1083 object_unref(OBJECT(&subpage->iomem));
058bc4b5
PB
1084 g_free(subpage);
1085 }
1086}
1087
6092666e 1088static void phys_sections_free(PhysPageMap *map)
5312bd8b 1089{
9affd6fc
PB
1090 while (map->sections_nb > 0) {
1091 MemoryRegionSection *section = &map->sections[--map->sections_nb];
058bc4b5
PB
1092 phys_section_destroy(section->mr);
1093 }
9affd6fc
PB
1094 g_free(map->sections);
1095 g_free(map->nodes);
5312bd8b
AK
1096}
1097
ac1970fb 1098static void register_subpage(AddressSpaceDispatch *d, MemoryRegionSection *section)
0f0cb164
AK
1099{
1100 subpage_t *subpage;
a8170e5e 1101 hwaddr base = section->offset_within_address_space
0f0cb164 1102 & TARGET_PAGE_MASK;
97115a8d 1103 MemoryRegionSection *existing = phys_page_find(d->phys_map, base,
53cb28cb 1104 d->map.nodes, d->map.sections);
0f0cb164
AK
1105 MemoryRegionSection subsection = {
1106 .offset_within_address_space = base,
052e87b0 1107 .size = int128_make64(TARGET_PAGE_SIZE),
0f0cb164 1108 };
a8170e5e 1109 hwaddr start, end;
0f0cb164 1110
f3705d53 1111 assert(existing->mr->subpage || existing->mr == &io_mem_unassigned);
0f0cb164 1112
f3705d53 1113 if (!(existing->mr->subpage)) {
acc9d80b 1114 subpage = subpage_init(d->as, base);
3be91e86 1115 subsection.address_space = d->as;
0f0cb164 1116 subsection.mr = &subpage->iomem;
ac1970fb 1117 phys_page_set(d, base >> TARGET_PAGE_BITS, 1,
53cb28cb 1118 phys_section_add(&d->map, &subsection));
0f0cb164 1119 } else {
f3705d53 1120 subpage = container_of(existing->mr, subpage_t, iomem);
0f0cb164
AK
1121 }
1122 start = section->offset_within_address_space & ~TARGET_PAGE_MASK;
052e87b0 1123 end = start + int128_get64(section->size) - 1;
53cb28cb
MA
1124 subpage_register(subpage, start, end,
1125 phys_section_add(&d->map, section));
0f0cb164
AK
1126}
1127
1128
052e87b0
PB
1129static void register_multipage(AddressSpaceDispatch *d,
1130 MemoryRegionSection *section)
33417e70 1131{
a8170e5e 1132 hwaddr start_addr = section->offset_within_address_space;
53cb28cb 1133 uint16_t section_index = phys_section_add(&d->map, section);
052e87b0
PB
1134 uint64_t num_pages = int128_get64(int128_rshift(section->size,
1135 TARGET_PAGE_BITS));
dd81124b 1136
733d5ef5
PB
1137 assert(num_pages);
1138 phys_page_set(d, start_addr >> TARGET_PAGE_BITS, num_pages, section_index);
33417e70
FB
1139}
1140
ac1970fb 1141static void mem_add(MemoryListener *listener, MemoryRegionSection *section)
0f0cb164 1142{
89ae337a 1143 AddressSpace *as = container_of(listener, AddressSpace, dispatch_listener);
00752703 1144 AddressSpaceDispatch *d = as->next_dispatch;
99b9cc06 1145 MemoryRegionSection now = *section, remain = *section;
052e87b0 1146 Int128 page_size = int128_make64(TARGET_PAGE_SIZE);
0f0cb164 1147
733d5ef5
PB
1148 if (now.offset_within_address_space & ~TARGET_PAGE_MASK) {
1149 uint64_t left = TARGET_PAGE_ALIGN(now.offset_within_address_space)
1150 - now.offset_within_address_space;
1151
052e87b0 1152 now.size = int128_min(int128_make64(left), now.size);
ac1970fb 1153 register_subpage(d, &now);
733d5ef5 1154 } else {
052e87b0 1155 now.size = int128_zero();
733d5ef5 1156 }
052e87b0
PB
1157 while (int128_ne(remain.size, now.size)) {
1158 remain.size = int128_sub(remain.size, now.size);
1159 remain.offset_within_address_space += int128_get64(now.size);
1160 remain.offset_within_region += int128_get64(now.size);
69b67646 1161 now = remain;
052e87b0 1162 if (int128_lt(remain.size, page_size)) {
733d5ef5 1163 register_subpage(d, &now);
88266249 1164 } else if (remain.offset_within_address_space & ~TARGET_PAGE_MASK) {
052e87b0 1165 now.size = page_size;
ac1970fb 1166 register_subpage(d, &now);
69b67646 1167 } else {
052e87b0 1168 now.size = int128_and(now.size, int128_neg(page_size));
ac1970fb 1169 register_multipage(d, &now);
69b67646 1170 }
0f0cb164
AK
1171 }
1172}
1173
62a2744c
SY
1174void qemu_flush_coalesced_mmio_buffer(void)
1175{
1176 if (kvm_enabled())
1177 kvm_flush_coalesced_mmio_buffer();
1178}
1179
b2a8658e
UD
1180void qemu_mutex_lock_ramlist(void)
1181{
1182 qemu_mutex_lock(&ram_list.mutex);
1183}
1184
1185void qemu_mutex_unlock_ramlist(void)
1186{
1187 qemu_mutex_unlock(&ram_list.mutex);
1188}
1189
e1e84ba0 1190#ifdef __linux__
04b16653
AW
1191static void *file_ram_alloc(RAMBlock *block,
1192 ram_addr_t memory,
7f56e740
PB
1193 const char *path,
1194 Error **errp)
c902760f 1195{
fd97fd44 1196 bool unlink_on_error = false;
c902760f 1197 char *filename;
8ca761f6
PF
1198 char *sanitized_name;
1199 char *c;
056b68af 1200 void *area = MAP_FAILED;
5c3ece79 1201 int fd = -1;
e1fb6471 1202 int64_t page_size;
c902760f
MT
1203
1204 if (kvm_enabled() && !kvm_has_sync_mmu()) {
7f56e740
PB
1205 error_setg(errp,
1206 "host lacks kvm mmu notifiers, -mem-path unsupported");
fd97fd44 1207 return NULL;
c902760f
MT
1208 }
1209
fd97fd44
MA
1210 for (;;) {
1211 fd = open(path, O_RDWR);
1212 if (fd >= 0) {
1213 /* @path names an existing file, use it */
1214 break;
8d31d6b6 1215 }
fd97fd44
MA
1216 if (errno == ENOENT) {
1217 /* @path names a file that doesn't exist, create it */
1218 fd = open(path, O_RDWR | O_CREAT | O_EXCL, 0644);
1219 if (fd >= 0) {
1220 unlink_on_error = true;
1221 break;
1222 }
1223 } else if (errno == EISDIR) {
1224 /* @path names a directory, create a file there */
1225 /* Make name safe to use with mkstemp by replacing '/' with '_'. */
1226 sanitized_name = g_strdup(memory_region_name(block->mr));
1227 for (c = sanitized_name; *c != '\0'; c++) {
1228 if (*c == '/') {
1229 *c = '_';
1230 }
1231 }
8ca761f6 1232
fd97fd44
MA
1233 filename = g_strdup_printf("%s/qemu_back_mem.%s.XXXXXX", path,
1234 sanitized_name);
1235 g_free(sanitized_name);
8d31d6b6 1236
fd97fd44
MA
1237 fd = mkstemp(filename);
1238 if (fd >= 0) {
1239 unlink(filename);
1240 g_free(filename);
1241 break;
1242 }
1243 g_free(filename);
8d31d6b6 1244 }
fd97fd44
MA
1245 if (errno != EEXIST && errno != EINTR) {
1246 error_setg_errno(errp, errno,
1247 "can't open backing store %s for guest RAM",
1248 path);
1249 goto error;
1250 }
1251 /*
1252 * Try again on EINTR and EEXIST. The latter happens when
1253 * something else creates the file between our two open().
1254 */
8d31d6b6 1255 }
c902760f 1256
e1fb6471 1257 page_size = qemu_fd_getpagesize(fd);
d2f39add 1258 block->mr->align = MAX(page_size, QEMU_VMALLOC_ALIGN);
fd97fd44 1259
e1fb6471 1260 if (memory < page_size) {
fd97fd44
MA
1261 error_setg(errp, "memory size 0x" RAM_ADDR_FMT " must be equal to "
1262 "or larger than page size 0x%" PRIx64,
e1fb6471 1263 memory, page_size);
f9a49dfa 1264 goto error;
c902760f 1265 }
c902760f 1266
e1fb6471 1267 memory = ROUND_UP(memory, page_size);
c902760f
MT
1268
1269 /*
1270 * ftruncate is not supported by hugetlbfs in older
1271 * hosts, so don't bother bailing out on errors.
1272 * If anything goes wrong with it under other filesystems,
1273 * mmap will fail.
1274 */
7f56e740 1275 if (ftruncate(fd, memory)) {
9742bf26 1276 perror("ftruncate");
7f56e740 1277 }
c902760f 1278
d2f39add
DD
1279 area = qemu_ram_mmap(fd, memory, block->mr->align,
1280 block->flags & RAM_SHARED);
c902760f 1281 if (area == MAP_FAILED) {
7f56e740 1282 error_setg_errno(errp, errno,
fd97fd44 1283 "unable to map backing store for guest RAM");
f9a49dfa 1284 goto error;
c902760f 1285 }
ef36fa14
MT
1286
1287 if (mem_prealloc) {
056b68af
IM
1288 os_mem_prealloc(fd, area, memory, errp);
1289 if (errp && *errp) {
1290 goto error;
1291 }
ef36fa14
MT
1292 }
1293
04b16653 1294 block->fd = fd;
c902760f 1295 return area;
f9a49dfa
MT
1296
1297error:
056b68af
IM
1298 if (area != MAP_FAILED) {
1299 qemu_ram_munmap(area, memory);
1300 }
fd97fd44
MA
1301 if (unlink_on_error) {
1302 unlink(path);
1303 }
5c3ece79
PB
1304 if (fd != -1) {
1305 close(fd);
1306 }
f9a49dfa 1307 return NULL;
c902760f
MT
1308}
1309#endif
1310
0dc3f44a 1311/* Called with the ramlist lock held. */
d17b5288 1312static ram_addr_t find_ram_offset(ram_addr_t size)
04b16653
AW
1313{
1314 RAMBlock *block, *next_block;
3e837b2c 1315 ram_addr_t offset = RAM_ADDR_MAX, mingap = RAM_ADDR_MAX;
04b16653 1316
49cd9ac6
SH
1317 assert(size != 0); /* it would hand out same offset multiple times */
1318
0dc3f44a 1319 if (QLIST_EMPTY_RCU(&ram_list.blocks)) {
04b16653 1320 return 0;
0d53d9fe 1321 }
04b16653 1322
0dc3f44a 1323 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
f15fbc4b 1324 ram_addr_t end, next = RAM_ADDR_MAX;
04b16653 1325
62be4e3a 1326 end = block->offset + block->max_length;
04b16653 1327
0dc3f44a 1328 QLIST_FOREACH_RCU(next_block, &ram_list.blocks, next) {
04b16653
AW
1329 if (next_block->offset >= end) {
1330 next = MIN(next, next_block->offset);
1331 }
1332 }
1333 if (next - end >= size && next - end < mingap) {
3e837b2c 1334 offset = end;
04b16653
AW
1335 mingap = next - end;
1336 }
1337 }
3e837b2c
AW
1338
1339 if (offset == RAM_ADDR_MAX) {
1340 fprintf(stderr, "Failed to find gap of requested size: %" PRIu64 "\n",
1341 (uint64_t)size);
1342 abort();
1343 }
1344
04b16653
AW
1345 return offset;
1346}
1347
652d7ec2 1348ram_addr_t last_ram_offset(void)
d17b5288
AW
1349{
1350 RAMBlock *block;
1351 ram_addr_t last = 0;
1352
0dc3f44a
MD
1353 rcu_read_lock();
1354 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
62be4e3a 1355 last = MAX(last, block->offset + block->max_length);
0d53d9fe 1356 }
0dc3f44a 1357 rcu_read_unlock();
d17b5288
AW
1358 return last;
1359}
1360
ddb97f1d
JB
1361static void qemu_ram_setup_dump(void *addr, ram_addr_t size)
1362{
1363 int ret;
ddb97f1d
JB
1364
1365 /* Use MADV_DONTDUMP, if user doesn't want the guest memory in the core */
47c8ca53 1366 if (!machine_dump_guest_core(current_machine)) {
ddb97f1d
JB
1367 ret = qemu_madvise(addr, size, QEMU_MADV_DONTDUMP);
1368 if (ret) {
1369 perror("qemu_madvise");
1370 fprintf(stderr, "madvise doesn't support MADV_DONTDUMP, "
1371 "but dump_guest_core=off specified\n");
1372 }
1373 }
1374}
1375
422148d3
DDAG
1376const char *qemu_ram_get_idstr(RAMBlock *rb)
1377{
1378 return rb->idstr;
1379}
1380
ae3a7047 1381/* Called with iothread lock held. */
fa53a0e5 1382void qemu_ram_set_idstr(RAMBlock *new_block, const char *name, DeviceState *dev)
20cfe881 1383{
fa53a0e5 1384 RAMBlock *block;
20cfe881 1385
c5705a77
AK
1386 assert(new_block);
1387 assert(!new_block->idstr[0]);
84b89d78 1388
09e5ab63
AL
1389 if (dev) {
1390 char *id = qdev_get_dev_path(dev);
84b89d78
CM
1391 if (id) {
1392 snprintf(new_block->idstr, sizeof(new_block->idstr), "%s/", id);
7267c094 1393 g_free(id);
84b89d78
CM
1394 }
1395 }
1396 pstrcat(new_block->idstr, sizeof(new_block->idstr), name);
1397
ab0a9956 1398 rcu_read_lock();
0dc3f44a 1399 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
fa53a0e5
GA
1400 if (block != new_block &&
1401 !strcmp(block->idstr, new_block->idstr)) {
84b89d78
CM
1402 fprintf(stderr, "RAMBlock \"%s\" already registered, abort!\n",
1403 new_block->idstr);
1404 abort();
1405 }
1406 }
0dc3f44a 1407 rcu_read_unlock();
c5705a77
AK
1408}
1409
ae3a7047 1410/* Called with iothread lock held. */
fa53a0e5 1411void qemu_ram_unset_idstr(RAMBlock *block)
20cfe881 1412{
ae3a7047
MD
1413 /* FIXME: arch_init.c assumes that this is not called throughout
1414 * migration. Ignore the problem since hot-unplug during migration
1415 * does not work anyway.
1416 */
20cfe881
HT
1417 if (block) {
1418 memset(block->idstr, 0, sizeof(block->idstr));
1419 }
1420}
1421
8490fc78
LC
1422static int memory_try_enable_merging(void *addr, size_t len)
1423{
75cc7f01 1424 if (!machine_mem_merge(current_machine)) {
8490fc78
LC
1425 /* disabled by the user */
1426 return 0;
1427 }
1428
1429 return qemu_madvise(addr, len, QEMU_MADV_MERGEABLE);
1430}
1431
62be4e3a
MT
1432/* Only legal before guest might have detected the memory size: e.g. on
1433 * incoming migration, or right after reset.
1434 *
1435 * As memory core doesn't know how is memory accessed, it is up to
1436 * resize callback to update device state and/or add assertions to detect
1437 * misuse, if necessary.
1438 */
fa53a0e5 1439int qemu_ram_resize(RAMBlock *block, ram_addr_t newsize, Error **errp)
62be4e3a 1440{
62be4e3a
MT
1441 assert(block);
1442
4ed023ce 1443 newsize = HOST_PAGE_ALIGN(newsize);
129ddaf3 1444
62be4e3a
MT
1445 if (block->used_length == newsize) {
1446 return 0;
1447 }
1448
1449 if (!(block->flags & RAM_RESIZEABLE)) {
1450 error_setg_errno(errp, EINVAL,
1451 "Length mismatch: %s: 0x" RAM_ADDR_FMT
1452 " in != 0x" RAM_ADDR_FMT, block->idstr,
1453 newsize, block->used_length);
1454 return -EINVAL;
1455 }
1456
1457 if (block->max_length < newsize) {
1458 error_setg_errno(errp, EINVAL,
1459 "Length too large: %s: 0x" RAM_ADDR_FMT
1460 " > 0x" RAM_ADDR_FMT, block->idstr,
1461 newsize, block->max_length);
1462 return -EINVAL;
1463 }
1464
1465 cpu_physical_memory_clear_dirty_range(block->offset, block->used_length);
1466 block->used_length = newsize;
58d2707e
PB
1467 cpu_physical_memory_set_dirty_range(block->offset, block->used_length,
1468 DIRTY_CLIENTS_ALL);
62be4e3a
MT
1469 memory_region_set_size(block->mr, newsize);
1470 if (block->resized) {
1471 block->resized(block->idstr, newsize, block->host);
1472 }
1473 return 0;
1474}
1475
5b82b703
SH
1476/* Called with ram_list.mutex held */
1477static void dirty_memory_extend(ram_addr_t old_ram_size,
1478 ram_addr_t new_ram_size)
1479{
1480 ram_addr_t old_num_blocks = DIV_ROUND_UP(old_ram_size,
1481 DIRTY_MEMORY_BLOCK_SIZE);
1482 ram_addr_t new_num_blocks = DIV_ROUND_UP(new_ram_size,
1483 DIRTY_MEMORY_BLOCK_SIZE);
1484 int i;
1485
1486 /* Only need to extend if block count increased */
1487 if (new_num_blocks <= old_num_blocks) {
1488 return;
1489 }
1490
1491 for (i = 0; i < DIRTY_MEMORY_NUM; i++) {
1492 DirtyMemoryBlocks *old_blocks;
1493 DirtyMemoryBlocks *new_blocks;
1494 int j;
1495
1496 old_blocks = atomic_rcu_read(&ram_list.dirty_memory[i]);
1497 new_blocks = g_malloc(sizeof(*new_blocks) +
1498 sizeof(new_blocks->blocks[0]) * new_num_blocks);
1499
1500 if (old_num_blocks) {
1501 memcpy(new_blocks->blocks, old_blocks->blocks,
1502 old_num_blocks * sizeof(old_blocks->blocks[0]));
1503 }
1504
1505 for (j = old_num_blocks; j < new_num_blocks; j++) {
1506 new_blocks->blocks[j] = bitmap_new(DIRTY_MEMORY_BLOCK_SIZE);
1507 }
1508
1509 atomic_rcu_set(&ram_list.dirty_memory[i], new_blocks);
1510
1511 if (old_blocks) {
1512 g_free_rcu(old_blocks, rcu);
1513 }
1514 }
1515}
1516
528f46af 1517static void ram_block_add(RAMBlock *new_block, Error **errp)
c5705a77 1518{
e1c57ab8 1519 RAMBlock *block;
0d53d9fe 1520 RAMBlock *last_block = NULL;
2152f5ca 1521 ram_addr_t old_ram_size, new_ram_size;
37aa7a0e 1522 Error *err = NULL;
2152f5ca
JQ
1523
1524 old_ram_size = last_ram_offset() >> TARGET_PAGE_BITS;
c5705a77 1525
b2a8658e 1526 qemu_mutex_lock_ramlist();
9b8424d5 1527 new_block->offset = find_ram_offset(new_block->max_length);
e1c57ab8
PB
1528
1529 if (!new_block->host) {
1530 if (xen_enabled()) {
9b8424d5 1531 xen_ram_alloc(new_block->offset, new_block->max_length,
37aa7a0e
MA
1532 new_block->mr, &err);
1533 if (err) {
1534 error_propagate(errp, err);
1535 qemu_mutex_unlock_ramlist();
39c350ee 1536 return;
37aa7a0e 1537 }
e1c57ab8 1538 } else {
9b8424d5 1539 new_block->host = phys_mem_alloc(new_block->max_length,
a2b257d6 1540 &new_block->mr->align);
39228250 1541 if (!new_block->host) {
ef701d7b
HT
1542 error_setg_errno(errp, errno,
1543 "cannot set up guest memory '%s'",
1544 memory_region_name(new_block->mr));
1545 qemu_mutex_unlock_ramlist();
39c350ee 1546 return;
39228250 1547 }
9b8424d5 1548 memory_try_enable_merging(new_block->host, new_block->max_length);
6977dfe6 1549 }
c902760f 1550 }
94a6b54f 1551
dd631697
LZ
1552 new_ram_size = MAX(old_ram_size,
1553 (new_block->offset + new_block->max_length) >> TARGET_PAGE_BITS);
1554 if (new_ram_size > old_ram_size) {
1555 migration_bitmap_extend(old_ram_size, new_ram_size);
5b82b703 1556 dirty_memory_extend(old_ram_size, new_ram_size);
dd631697 1557 }
0d53d9fe
MD
1558 /* Keep the list sorted from biggest to smallest block. Unlike QTAILQ,
1559 * QLIST (which has an RCU-friendly variant) does not have insertion at
1560 * tail, so save the last element in last_block.
1561 */
0dc3f44a 1562 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
0d53d9fe 1563 last_block = block;
9b8424d5 1564 if (block->max_length < new_block->max_length) {
abb26d63
PB
1565 break;
1566 }
1567 }
1568 if (block) {
0dc3f44a 1569 QLIST_INSERT_BEFORE_RCU(block, new_block, next);
0d53d9fe 1570 } else if (last_block) {
0dc3f44a 1571 QLIST_INSERT_AFTER_RCU(last_block, new_block, next);
0d53d9fe 1572 } else { /* list is empty */
0dc3f44a 1573 QLIST_INSERT_HEAD_RCU(&ram_list.blocks, new_block, next);
abb26d63 1574 }
0d6d3c87 1575 ram_list.mru_block = NULL;
94a6b54f 1576
0dc3f44a
MD
1577 /* Write list before version */
1578 smp_wmb();
f798b07f 1579 ram_list.version++;
b2a8658e 1580 qemu_mutex_unlock_ramlist();
f798b07f 1581
9b8424d5 1582 cpu_physical_memory_set_dirty_range(new_block->offset,
58d2707e
PB
1583 new_block->used_length,
1584 DIRTY_CLIENTS_ALL);
94a6b54f 1585
a904c911
PB
1586 if (new_block->host) {
1587 qemu_ram_setup_dump(new_block->host, new_block->max_length);
1588 qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_HUGEPAGE);
c2cd627d 1589 /* MADV_DONTFORK is also needed by KVM in absence of synchronous MMU */
a904c911 1590 qemu_madvise(new_block->host, new_block->max_length, QEMU_MADV_DONTFORK);
e1c57ab8 1591 }
94a6b54f 1592}
e9a1ab19 1593
0b183fc8 1594#ifdef __linux__
528f46af
FZ
1595RAMBlock *qemu_ram_alloc_from_file(ram_addr_t size, MemoryRegion *mr,
1596 bool share, const char *mem_path,
1597 Error **errp)
e1c57ab8
PB
1598{
1599 RAMBlock *new_block;
ef701d7b 1600 Error *local_err = NULL;
e1c57ab8
PB
1601
1602 if (xen_enabled()) {
7f56e740 1603 error_setg(errp, "-mem-path not supported with Xen");
528f46af 1604 return NULL;
e1c57ab8
PB
1605 }
1606
1607 if (phys_mem_alloc != qemu_anon_ram_alloc) {
1608 /*
1609 * file_ram_alloc() needs to allocate just like
1610 * phys_mem_alloc, but we haven't bothered to provide
1611 * a hook there.
1612 */
7f56e740
PB
1613 error_setg(errp,
1614 "-mem-path not supported with this accelerator");
528f46af 1615 return NULL;
e1c57ab8
PB
1616 }
1617
4ed023ce 1618 size = HOST_PAGE_ALIGN(size);
e1c57ab8
PB
1619 new_block = g_malloc0(sizeof(*new_block));
1620 new_block->mr = mr;
9b8424d5
MT
1621 new_block->used_length = size;
1622 new_block->max_length = size;
dbcb8981 1623 new_block->flags = share ? RAM_SHARED : 0;
7f56e740
PB
1624 new_block->host = file_ram_alloc(new_block, size,
1625 mem_path, errp);
1626 if (!new_block->host) {
1627 g_free(new_block);
528f46af 1628 return NULL;
7f56e740
PB
1629 }
1630
528f46af 1631 ram_block_add(new_block, &local_err);
ef701d7b
HT
1632 if (local_err) {
1633 g_free(new_block);
1634 error_propagate(errp, local_err);
528f46af 1635 return NULL;
ef701d7b 1636 }
528f46af 1637 return new_block;
e1c57ab8 1638}
0b183fc8 1639#endif
e1c57ab8 1640
62be4e3a 1641static
528f46af
FZ
1642RAMBlock *qemu_ram_alloc_internal(ram_addr_t size, ram_addr_t max_size,
1643 void (*resized)(const char*,
1644 uint64_t length,
1645 void *host),
1646 void *host, bool resizeable,
1647 MemoryRegion *mr, Error **errp)
e1c57ab8
PB
1648{
1649 RAMBlock *new_block;
ef701d7b 1650 Error *local_err = NULL;
e1c57ab8 1651
4ed023ce
DDAG
1652 size = HOST_PAGE_ALIGN(size);
1653 max_size = HOST_PAGE_ALIGN(max_size);
e1c57ab8
PB
1654 new_block = g_malloc0(sizeof(*new_block));
1655 new_block->mr = mr;
62be4e3a 1656 new_block->resized = resized;
9b8424d5
MT
1657 new_block->used_length = size;
1658 new_block->max_length = max_size;
62be4e3a 1659 assert(max_size >= size);
e1c57ab8
PB
1660 new_block->fd = -1;
1661 new_block->host = host;
1662 if (host) {
7bd4f430 1663 new_block->flags |= RAM_PREALLOC;
e1c57ab8 1664 }
62be4e3a
MT
1665 if (resizeable) {
1666 new_block->flags |= RAM_RESIZEABLE;
1667 }
528f46af 1668 ram_block_add(new_block, &local_err);
ef701d7b
HT
1669 if (local_err) {
1670 g_free(new_block);
1671 error_propagate(errp, local_err);
528f46af 1672 return NULL;
ef701d7b 1673 }
528f46af 1674 return new_block;
e1c57ab8
PB
1675}
1676
528f46af 1677RAMBlock *qemu_ram_alloc_from_ptr(ram_addr_t size, void *host,
62be4e3a
MT
1678 MemoryRegion *mr, Error **errp)
1679{
1680 return qemu_ram_alloc_internal(size, size, NULL, host, false, mr, errp);
1681}
1682
528f46af 1683RAMBlock *qemu_ram_alloc(ram_addr_t size, MemoryRegion *mr, Error **errp)
6977dfe6 1684{
62be4e3a
MT
1685 return qemu_ram_alloc_internal(size, size, NULL, NULL, false, mr, errp);
1686}
1687
528f46af 1688RAMBlock *qemu_ram_alloc_resizeable(ram_addr_t size, ram_addr_t maxsz,
62be4e3a
MT
1689 void (*resized)(const char*,
1690 uint64_t length,
1691 void *host),
1692 MemoryRegion *mr, Error **errp)
1693{
1694 return qemu_ram_alloc_internal(size, maxsz, resized, NULL, true, mr, errp);
6977dfe6
YT
1695}
1696
43771539
PB
1697static void reclaim_ramblock(RAMBlock *block)
1698{
1699 if (block->flags & RAM_PREALLOC) {
1700 ;
1701 } else if (xen_enabled()) {
1702 xen_invalidate_map_cache_entry(block->host);
1703#ifndef _WIN32
1704 } else if (block->fd >= 0) {
2f3a2bb1 1705 qemu_ram_munmap(block->host, block->max_length);
43771539
PB
1706 close(block->fd);
1707#endif
1708 } else {
1709 qemu_anon_ram_free(block->host, block->max_length);
1710 }
1711 g_free(block);
1712}
1713
f1060c55 1714void qemu_ram_free(RAMBlock *block)
e9a1ab19 1715{
85bc2a15
MAL
1716 if (!block) {
1717 return;
1718 }
1719
b2a8658e 1720 qemu_mutex_lock_ramlist();
f1060c55
FZ
1721 QLIST_REMOVE_RCU(block, next);
1722 ram_list.mru_block = NULL;
1723 /* Write list before version */
1724 smp_wmb();
1725 ram_list.version++;
1726 call_rcu(block, reclaim_ramblock, rcu);
b2a8658e 1727 qemu_mutex_unlock_ramlist();
e9a1ab19
FB
1728}
1729
cd19cfa2
HY
1730#ifndef _WIN32
1731void qemu_ram_remap(ram_addr_t addr, ram_addr_t length)
1732{
1733 RAMBlock *block;
1734 ram_addr_t offset;
1735 int flags;
1736 void *area, *vaddr;
1737
0dc3f44a 1738 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
cd19cfa2 1739 offset = addr - block->offset;
9b8424d5 1740 if (offset < block->max_length) {
1240be24 1741 vaddr = ramblock_ptr(block, offset);
7bd4f430 1742 if (block->flags & RAM_PREALLOC) {
cd19cfa2 1743 ;
dfeaf2ab
MA
1744 } else if (xen_enabled()) {
1745 abort();
cd19cfa2
HY
1746 } else {
1747 flags = MAP_FIXED;
3435f395 1748 if (block->fd >= 0) {
dbcb8981
PB
1749 flags |= (block->flags & RAM_SHARED ?
1750 MAP_SHARED : MAP_PRIVATE);
3435f395
MA
1751 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
1752 flags, block->fd, offset);
cd19cfa2 1753 } else {
2eb9fbaa
MA
1754 /*
1755 * Remap needs to match alloc. Accelerators that
1756 * set phys_mem_alloc never remap. If they did,
1757 * we'd need a remap hook here.
1758 */
1759 assert(phys_mem_alloc == qemu_anon_ram_alloc);
1760
cd19cfa2
HY
1761 flags |= MAP_PRIVATE | MAP_ANONYMOUS;
1762 area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
1763 flags, -1, 0);
cd19cfa2
HY
1764 }
1765 if (area != vaddr) {
f15fbc4b
AP
1766 fprintf(stderr, "Could not remap addr: "
1767 RAM_ADDR_FMT "@" RAM_ADDR_FMT "\n",
cd19cfa2
HY
1768 length, addr);
1769 exit(1);
1770 }
8490fc78 1771 memory_try_enable_merging(vaddr, length);
ddb97f1d 1772 qemu_ram_setup_dump(vaddr, length);
cd19cfa2 1773 }
cd19cfa2
HY
1774 }
1775 }
1776}
1777#endif /* !_WIN32 */
1778
1b5ec234 1779/* Return a host pointer to ram allocated with qemu_ram_alloc.
ae3a7047
MD
1780 * This should not be used for general purpose DMA. Use address_space_map
1781 * or address_space_rw instead. For local memory (e.g. video ram) that the
1782 * device owns, use memory_region_get_ram_ptr.
0dc3f44a 1783 *
49b24afc 1784 * Called within RCU critical section.
1b5ec234 1785 */
0878d0e1 1786void *qemu_map_ram_ptr(RAMBlock *ram_block, ram_addr_t addr)
1b5ec234 1787{
3655cb9c
GA
1788 RAMBlock *block = ram_block;
1789
1790 if (block == NULL) {
1791 block = qemu_get_ram_block(addr);
0878d0e1 1792 addr -= block->offset;
3655cb9c 1793 }
ae3a7047
MD
1794
1795 if (xen_enabled() && block->host == NULL) {
0d6d3c87
PB
1796 /* We need to check if the requested address is in the RAM
1797 * because we don't want to map the entire memory in QEMU.
1798 * In that case just map until the end of the page.
1799 */
1800 if (block->offset == 0) {
49b24afc 1801 return xen_map_cache(addr, 0, 0);
0d6d3c87 1802 }
ae3a7047
MD
1803
1804 block->host = xen_map_cache(block->offset, block->max_length, 1);
0d6d3c87 1805 }
0878d0e1 1806 return ramblock_ptr(block, addr);
dc828ca1
PB
1807}
1808
0878d0e1 1809/* Return a host pointer to guest's ram. Similar to qemu_map_ram_ptr
ae3a7047 1810 * but takes a size argument.
0dc3f44a 1811 *
e81bcda5 1812 * Called within RCU critical section.
ae3a7047 1813 */
3655cb9c
GA
1814static void *qemu_ram_ptr_length(RAMBlock *ram_block, ram_addr_t addr,
1815 hwaddr *size)
38bee5dc 1816{
3655cb9c 1817 RAMBlock *block = ram_block;
8ab934f9
SS
1818 if (*size == 0) {
1819 return NULL;
1820 }
e81bcda5 1821
3655cb9c
GA
1822 if (block == NULL) {
1823 block = qemu_get_ram_block(addr);
0878d0e1 1824 addr -= block->offset;
3655cb9c 1825 }
0878d0e1 1826 *size = MIN(*size, block->max_length - addr);
e81bcda5
PB
1827
1828 if (xen_enabled() && block->host == NULL) {
1829 /* We need to check if the requested address is in the RAM
1830 * because we don't want to map the entire memory in QEMU.
1831 * In that case just map the requested area.
1832 */
1833 if (block->offset == 0) {
1834 return xen_map_cache(addr, *size, 1);
38bee5dc
SS
1835 }
1836
e81bcda5 1837 block->host = xen_map_cache(block->offset, block->max_length, 1);
38bee5dc 1838 }
e81bcda5 1839
0878d0e1 1840 return ramblock_ptr(block, addr);
38bee5dc
SS
1841}
1842
422148d3
DDAG
1843/*
1844 * Translates a host ptr back to a RAMBlock, a ram_addr and an offset
1845 * in that RAMBlock.
1846 *
1847 * ptr: Host pointer to look up
1848 * round_offset: If true round the result offset down to a page boundary
1849 * *ram_addr: set to result ram_addr
1850 * *offset: set to result offset within the RAMBlock
1851 *
1852 * Returns: RAMBlock (or NULL if not found)
ae3a7047
MD
1853 *
1854 * By the time this function returns, the returned pointer is not protected
1855 * by RCU anymore. If the caller is not within an RCU critical section and
1856 * does not hold the iothread lock, it must have other means of protecting the
1857 * pointer, such as a reference to the region that includes the incoming
1858 * ram_addr_t.
1859 */
422148d3 1860RAMBlock *qemu_ram_block_from_host(void *ptr, bool round_offset,
422148d3 1861 ram_addr_t *offset)
5579c7f3 1862{
94a6b54f
PB
1863 RAMBlock *block;
1864 uint8_t *host = ptr;
1865
868bb33f 1866 if (xen_enabled()) {
f615f396 1867 ram_addr_t ram_addr;
0dc3f44a 1868 rcu_read_lock();
f615f396
PB
1869 ram_addr = xen_ram_addr_from_mapcache(ptr);
1870 block = qemu_get_ram_block(ram_addr);
422148d3 1871 if (block) {
d6b6aec4 1872 *offset = ram_addr - block->offset;
422148d3 1873 }
0dc3f44a 1874 rcu_read_unlock();
422148d3 1875 return block;
712c2b41
SS
1876 }
1877
0dc3f44a
MD
1878 rcu_read_lock();
1879 block = atomic_rcu_read(&ram_list.mru_block);
9b8424d5 1880 if (block && block->host && host - block->host < block->max_length) {
23887b79
PB
1881 goto found;
1882 }
1883
0dc3f44a 1884 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
432d268c
JN
1885 /* This case append when the block is not mapped. */
1886 if (block->host == NULL) {
1887 continue;
1888 }
9b8424d5 1889 if (host - block->host < block->max_length) {
23887b79 1890 goto found;
f471a17e 1891 }
94a6b54f 1892 }
432d268c 1893
0dc3f44a 1894 rcu_read_unlock();
1b5ec234 1895 return NULL;
23887b79
PB
1896
1897found:
422148d3
DDAG
1898 *offset = (host - block->host);
1899 if (round_offset) {
1900 *offset &= TARGET_PAGE_MASK;
1901 }
0dc3f44a 1902 rcu_read_unlock();
422148d3
DDAG
1903 return block;
1904}
1905
e3dd7493
DDAG
1906/*
1907 * Finds the named RAMBlock
1908 *
1909 * name: The name of RAMBlock to find
1910 *
1911 * Returns: RAMBlock (or NULL if not found)
1912 */
1913RAMBlock *qemu_ram_block_by_name(const char *name)
1914{
1915 RAMBlock *block;
1916
1917 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
1918 if (!strcmp(name, block->idstr)) {
1919 return block;
1920 }
1921 }
1922
1923 return NULL;
1924}
1925
422148d3
DDAG
1926/* Some of the softmmu routines need to translate from a host pointer
1927 (typically a TLB entry) back to a ram offset. */
07bdaa41 1928ram_addr_t qemu_ram_addr_from_host(void *ptr)
422148d3
DDAG
1929{
1930 RAMBlock *block;
f615f396 1931 ram_addr_t offset;
422148d3 1932
f615f396 1933 block = qemu_ram_block_from_host(ptr, false, &offset);
422148d3 1934 if (!block) {
07bdaa41 1935 return RAM_ADDR_INVALID;
422148d3
DDAG
1936 }
1937
07bdaa41 1938 return block->offset + offset;
e890261f 1939}
f471a17e 1940
49b24afc 1941/* Called within RCU critical section. */
a8170e5e 1942static void notdirty_mem_write(void *opaque, hwaddr ram_addr,
0e0df1e2 1943 uint64_t val, unsigned size)
9fa3e853 1944{
52159192 1945 if (!cpu_physical_memory_get_dirty_flag(ram_addr, DIRTY_MEMORY_CODE)) {
0e0df1e2 1946 tb_invalidate_phys_page_fast(ram_addr, size);
3a7d929e 1947 }
0e0df1e2
AK
1948 switch (size) {
1949 case 1:
0878d0e1 1950 stb_p(qemu_map_ram_ptr(NULL, ram_addr), val);
0e0df1e2
AK
1951 break;
1952 case 2:
0878d0e1 1953 stw_p(qemu_map_ram_ptr(NULL, ram_addr), val);
0e0df1e2
AK
1954 break;
1955 case 4:
0878d0e1 1956 stl_p(qemu_map_ram_ptr(NULL, ram_addr), val);
0e0df1e2
AK
1957 break;
1958 default:
1959 abort();
3a7d929e 1960 }
58d2707e
PB
1961 /* Set both VGA and migration bits for simplicity and to remove
1962 * the notdirty callback faster.
1963 */
1964 cpu_physical_memory_set_dirty_range(ram_addr, size,
1965 DIRTY_CLIENTS_NOCODE);
f23db169
FB
1966 /* we remove the notdirty callback only if the code has been
1967 flushed */
a2cd8c85 1968 if (!cpu_physical_memory_is_clean(ram_addr)) {
bcae01e4 1969 tlb_set_dirty(current_cpu, current_cpu->mem_io_vaddr);
4917cf44 1970 }
9fa3e853
FB
1971}
1972
b018ddf6
PB
1973static bool notdirty_mem_accepts(void *opaque, hwaddr addr,
1974 unsigned size, bool is_write)
1975{
1976 return is_write;
1977}
1978
0e0df1e2 1979static const MemoryRegionOps notdirty_mem_ops = {
0e0df1e2 1980 .write = notdirty_mem_write,
b018ddf6 1981 .valid.accepts = notdirty_mem_accepts,
0e0df1e2 1982 .endianness = DEVICE_NATIVE_ENDIAN,
1ccde1cb
FB
1983};
1984
0f459d16 1985/* Generate a debug exception if a watchpoint has been hit. */
66b9b43c 1986static void check_watchpoint(int offset, int len, MemTxAttrs attrs, int flags)
0f459d16 1987{
93afeade 1988 CPUState *cpu = current_cpu;
568496c0 1989 CPUClass *cc = CPU_GET_CLASS(cpu);
93afeade 1990 CPUArchState *env = cpu->env_ptr;
06d55cc1 1991 target_ulong pc, cs_base;
0f459d16 1992 target_ulong vaddr;
a1d1bb31 1993 CPUWatchpoint *wp;
89fee74a 1994 uint32_t cpu_flags;
0f459d16 1995
ff4700b0 1996 if (cpu->watchpoint_hit) {
06d55cc1
AL
1997 /* We re-entered the check after replacing the TB. Now raise
1998 * the debug interrupt so that is will trigger after the
1999 * current instruction. */
93afeade 2000 cpu_interrupt(cpu, CPU_INTERRUPT_DEBUG);
06d55cc1
AL
2001 return;
2002 }
93afeade 2003 vaddr = (cpu->mem_io_vaddr & TARGET_PAGE_MASK) + offset;
ff4700b0 2004 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
05068c0d
PM
2005 if (cpu_watchpoint_address_matches(wp, vaddr, len)
2006 && (wp->flags & flags)) {
08225676
PM
2007 if (flags == BP_MEM_READ) {
2008 wp->flags |= BP_WATCHPOINT_HIT_READ;
2009 } else {
2010 wp->flags |= BP_WATCHPOINT_HIT_WRITE;
2011 }
2012 wp->hitaddr = vaddr;
66b9b43c 2013 wp->hitattrs = attrs;
ff4700b0 2014 if (!cpu->watchpoint_hit) {
568496c0
SF
2015 if (wp->flags & BP_CPU &&
2016 !cc->debug_check_watchpoint(cpu, wp)) {
2017 wp->flags &= ~BP_WATCHPOINT_HIT;
2018 continue;
2019 }
ff4700b0 2020 cpu->watchpoint_hit = wp;
239c51a5 2021 tb_check_watchpoint(cpu);
6e140f28 2022 if (wp->flags & BP_STOP_BEFORE_ACCESS) {
27103424 2023 cpu->exception_index = EXCP_DEBUG;
5638d180 2024 cpu_loop_exit(cpu);
6e140f28
AL
2025 } else {
2026 cpu_get_tb_cpu_state(env, &pc, &cs_base, &cpu_flags);
648f034c 2027 tb_gen_code(cpu, pc, cs_base, cpu_flags, 1);
6886b980 2028 cpu_loop_exit_noexc(cpu);
6e140f28 2029 }
06d55cc1 2030 }
6e140f28
AL
2031 } else {
2032 wp->flags &= ~BP_WATCHPOINT_HIT;
0f459d16
PB
2033 }
2034 }
2035}
2036
6658ffb8
PB
2037/* Watchpoint access routines. Watchpoints are inserted using TLB tricks,
2038 so these check for a hit then pass through to the normal out-of-line
2039 phys routines. */
66b9b43c
PM
2040static MemTxResult watch_mem_read(void *opaque, hwaddr addr, uint64_t *pdata,
2041 unsigned size, MemTxAttrs attrs)
6658ffb8 2042{
66b9b43c
PM
2043 MemTxResult res;
2044 uint64_t data;
79ed0416
PM
2045 int asidx = cpu_asidx_from_attrs(current_cpu, attrs);
2046 AddressSpace *as = current_cpu->cpu_ases[asidx].as;
66b9b43c
PM
2047
2048 check_watchpoint(addr & ~TARGET_PAGE_MASK, size, attrs, BP_MEM_READ);
1ec9b909 2049 switch (size) {
66b9b43c 2050 case 1:
79ed0416 2051 data = address_space_ldub(as, addr, attrs, &res);
66b9b43c
PM
2052 break;
2053 case 2:
79ed0416 2054 data = address_space_lduw(as, addr, attrs, &res);
66b9b43c
PM
2055 break;
2056 case 4:
79ed0416 2057 data = address_space_ldl(as, addr, attrs, &res);
66b9b43c 2058 break;
1ec9b909
AK
2059 default: abort();
2060 }
66b9b43c
PM
2061 *pdata = data;
2062 return res;
6658ffb8
PB
2063}
2064
66b9b43c
PM
2065static MemTxResult watch_mem_write(void *opaque, hwaddr addr,
2066 uint64_t val, unsigned size,
2067 MemTxAttrs attrs)
6658ffb8 2068{
66b9b43c 2069 MemTxResult res;
79ed0416
PM
2070 int asidx = cpu_asidx_from_attrs(current_cpu, attrs);
2071 AddressSpace *as = current_cpu->cpu_ases[asidx].as;
66b9b43c
PM
2072
2073 check_watchpoint(addr & ~TARGET_PAGE_MASK, size, attrs, BP_MEM_WRITE);
1ec9b909 2074 switch (size) {
67364150 2075 case 1:
79ed0416 2076 address_space_stb(as, addr, val, attrs, &res);
67364150
MF
2077 break;
2078 case 2:
79ed0416 2079 address_space_stw(as, addr, val, attrs, &res);
67364150
MF
2080 break;
2081 case 4:
79ed0416 2082 address_space_stl(as, addr, val, attrs, &res);
67364150 2083 break;
1ec9b909
AK
2084 default: abort();
2085 }
66b9b43c 2086 return res;
6658ffb8
PB
2087}
2088
1ec9b909 2089static const MemoryRegionOps watch_mem_ops = {
66b9b43c
PM
2090 .read_with_attrs = watch_mem_read,
2091 .write_with_attrs = watch_mem_write,
1ec9b909 2092 .endianness = DEVICE_NATIVE_ENDIAN,
6658ffb8 2093};
6658ffb8 2094
f25a49e0
PM
2095static MemTxResult subpage_read(void *opaque, hwaddr addr, uint64_t *data,
2096 unsigned len, MemTxAttrs attrs)
db7b5426 2097{
acc9d80b 2098 subpage_t *subpage = opaque;
ff6cff75 2099 uint8_t buf[8];
5c9eb028 2100 MemTxResult res;
791af8c8 2101
db7b5426 2102#if defined(DEBUG_SUBPAGE)
016e9d62 2103 printf("%s: subpage %p len %u addr " TARGET_FMT_plx "\n", __func__,
acc9d80b 2104 subpage, len, addr);
db7b5426 2105#endif
5c9eb028
PM
2106 res = address_space_read(subpage->as, addr + subpage->base,
2107 attrs, buf, len);
2108 if (res) {
2109 return res;
f25a49e0 2110 }
acc9d80b
JK
2111 switch (len) {
2112 case 1:
f25a49e0
PM
2113 *data = ldub_p(buf);
2114 return MEMTX_OK;
acc9d80b 2115 case 2:
f25a49e0
PM
2116 *data = lduw_p(buf);
2117 return MEMTX_OK;
acc9d80b 2118 case 4:
f25a49e0
PM
2119 *data = ldl_p(buf);
2120 return MEMTX_OK;
ff6cff75 2121 case 8:
f25a49e0
PM
2122 *data = ldq_p(buf);
2123 return MEMTX_OK;
acc9d80b
JK
2124 default:
2125 abort();
2126 }
db7b5426
BS
2127}
2128
f25a49e0
PM
2129static MemTxResult subpage_write(void *opaque, hwaddr addr,
2130 uint64_t value, unsigned len, MemTxAttrs attrs)
db7b5426 2131{
acc9d80b 2132 subpage_t *subpage = opaque;
ff6cff75 2133 uint8_t buf[8];
acc9d80b 2134
db7b5426 2135#if defined(DEBUG_SUBPAGE)
016e9d62 2136 printf("%s: subpage %p len %u addr " TARGET_FMT_plx
acc9d80b
JK
2137 " value %"PRIx64"\n",
2138 __func__, subpage, len, addr, value);
db7b5426 2139#endif
acc9d80b
JK
2140 switch (len) {
2141 case 1:
2142 stb_p(buf, value);
2143 break;
2144 case 2:
2145 stw_p(buf, value);
2146 break;
2147 case 4:
2148 stl_p(buf, value);
2149 break;
ff6cff75
PB
2150 case 8:
2151 stq_p(buf, value);
2152 break;
acc9d80b
JK
2153 default:
2154 abort();
2155 }
5c9eb028
PM
2156 return address_space_write(subpage->as, addr + subpage->base,
2157 attrs, buf, len);
db7b5426
BS
2158}
2159
c353e4cc 2160static bool subpage_accepts(void *opaque, hwaddr addr,
016e9d62 2161 unsigned len, bool is_write)
c353e4cc 2162{
acc9d80b 2163 subpage_t *subpage = opaque;
c353e4cc 2164#if defined(DEBUG_SUBPAGE)
016e9d62 2165 printf("%s: subpage %p %c len %u addr " TARGET_FMT_plx "\n",
acc9d80b 2166 __func__, subpage, is_write ? 'w' : 'r', len, addr);
c353e4cc
PB
2167#endif
2168
acc9d80b 2169 return address_space_access_valid(subpage->as, addr + subpage->base,
016e9d62 2170 len, is_write);
c353e4cc
PB
2171}
2172
70c68e44 2173static const MemoryRegionOps subpage_ops = {
f25a49e0
PM
2174 .read_with_attrs = subpage_read,
2175 .write_with_attrs = subpage_write,
ff6cff75
PB
2176 .impl.min_access_size = 1,
2177 .impl.max_access_size = 8,
2178 .valid.min_access_size = 1,
2179 .valid.max_access_size = 8,
c353e4cc 2180 .valid.accepts = subpage_accepts,
70c68e44 2181 .endianness = DEVICE_NATIVE_ENDIAN,
db7b5426
BS
2182};
2183
c227f099 2184static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
5312bd8b 2185 uint16_t section)
db7b5426
BS
2186{
2187 int idx, eidx;
2188
2189 if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
2190 return -1;
2191 idx = SUBPAGE_IDX(start);
2192 eidx = SUBPAGE_IDX(end);
2193#if defined(DEBUG_SUBPAGE)
016e9d62
AK
2194 printf("%s: %p start %08x end %08x idx %08x eidx %08x section %d\n",
2195 __func__, mmio, start, end, idx, eidx, section);
db7b5426 2196#endif
db7b5426 2197 for (; idx <= eidx; idx++) {
5312bd8b 2198 mmio->sub_section[idx] = section;
db7b5426
BS
2199 }
2200
2201 return 0;
2202}
2203
acc9d80b 2204static subpage_t *subpage_init(AddressSpace *as, hwaddr base)
db7b5426 2205{
c227f099 2206 subpage_t *mmio;
db7b5426 2207
7267c094 2208 mmio = g_malloc0(sizeof(subpage_t));
1eec614b 2209
acc9d80b 2210 mmio->as = as;
1eec614b 2211 mmio->base = base;
2c9b15ca 2212 memory_region_init_io(&mmio->iomem, NULL, &subpage_ops, mmio,
b4fefef9 2213 NULL, TARGET_PAGE_SIZE);
b3b00c78 2214 mmio->iomem.subpage = true;
db7b5426 2215#if defined(DEBUG_SUBPAGE)
016e9d62
AK
2216 printf("%s: %p base " TARGET_FMT_plx " len %08x\n", __func__,
2217 mmio, base, TARGET_PAGE_SIZE);
db7b5426 2218#endif
b41aac4f 2219 subpage_register(mmio, 0, TARGET_PAGE_SIZE-1, PHYS_SECTION_UNASSIGNED);
db7b5426
BS
2220
2221 return mmio;
2222}
2223
a656e22f
PC
2224static uint16_t dummy_section(PhysPageMap *map, AddressSpace *as,
2225 MemoryRegion *mr)
5312bd8b 2226{
a656e22f 2227 assert(as);
5312bd8b 2228 MemoryRegionSection section = {
a656e22f 2229 .address_space = as,
5312bd8b
AK
2230 .mr = mr,
2231 .offset_within_address_space = 0,
2232 .offset_within_region = 0,
052e87b0 2233 .size = int128_2_64(),
5312bd8b
AK
2234 };
2235
53cb28cb 2236 return phys_section_add(map, &section);
5312bd8b
AK
2237}
2238
a54c87b6 2239MemoryRegion *iotlb_to_region(CPUState *cpu, hwaddr index, MemTxAttrs attrs)
aa102231 2240{
a54c87b6
PM
2241 int asidx = cpu_asidx_from_attrs(cpu, attrs);
2242 CPUAddressSpace *cpuas = &cpu->cpu_ases[asidx];
32857f4d 2243 AddressSpaceDispatch *d = atomic_rcu_read(&cpuas->memory_dispatch);
79e2b9ae 2244 MemoryRegionSection *sections = d->map.sections;
9d82b5a7
PB
2245
2246 return sections[index & ~TARGET_PAGE_MASK].mr;
aa102231
AK
2247}
2248
e9179ce1
AK
2249static void io_mem_init(void)
2250{
1f6245e5 2251 memory_region_init_io(&io_mem_rom, NULL, &unassigned_mem_ops, NULL, NULL, UINT64_MAX);
2c9b15ca 2252 memory_region_init_io(&io_mem_unassigned, NULL, &unassigned_mem_ops, NULL,
1f6245e5 2253 NULL, UINT64_MAX);
2c9b15ca 2254 memory_region_init_io(&io_mem_notdirty, NULL, &notdirty_mem_ops, NULL,
1f6245e5 2255 NULL, UINT64_MAX);
2c9b15ca 2256 memory_region_init_io(&io_mem_watch, NULL, &watch_mem_ops, NULL,
1f6245e5 2257 NULL, UINT64_MAX);
e9179ce1
AK
2258}
2259
ac1970fb 2260static void mem_begin(MemoryListener *listener)
00752703
PB
2261{
2262 AddressSpace *as = container_of(listener, AddressSpace, dispatch_listener);
53cb28cb
MA
2263 AddressSpaceDispatch *d = g_new0(AddressSpaceDispatch, 1);
2264 uint16_t n;
2265
a656e22f 2266 n = dummy_section(&d->map, as, &io_mem_unassigned);
53cb28cb 2267 assert(n == PHYS_SECTION_UNASSIGNED);
a656e22f 2268 n = dummy_section(&d->map, as, &io_mem_notdirty);
53cb28cb 2269 assert(n == PHYS_SECTION_NOTDIRTY);
a656e22f 2270 n = dummy_section(&d->map, as, &io_mem_rom);
53cb28cb 2271 assert(n == PHYS_SECTION_ROM);
a656e22f 2272 n = dummy_section(&d->map, as, &io_mem_watch);
53cb28cb 2273 assert(n == PHYS_SECTION_WATCH);
00752703 2274
9736e55b 2275 d->phys_map = (PhysPageEntry) { .ptr = PHYS_MAP_NODE_NIL, .skip = 1 };
00752703
PB
2276 d->as = as;
2277 as->next_dispatch = d;
2278}
2279
79e2b9ae
PB
2280static void address_space_dispatch_free(AddressSpaceDispatch *d)
2281{
2282 phys_sections_free(&d->map);
2283 g_free(d);
2284}
2285
00752703 2286static void mem_commit(MemoryListener *listener)
ac1970fb 2287{
89ae337a 2288 AddressSpace *as = container_of(listener, AddressSpace, dispatch_listener);
0475d94f
PB
2289 AddressSpaceDispatch *cur = as->dispatch;
2290 AddressSpaceDispatch *next = as->next_dispatch;
2291
53cb28cb 2292 phys_page_compact_all(next, next->map.nodes_nb);
b35ba30f 2293
79e2b9ae 2294 atomic_rcu_set(&as->dispatch, next);
53cb28cb 2295 if (cur) {
79e2b9ae 2296 call_rcu(cur, address_space_dispatch_free, rcu);
53cb28cb 2297 }
9affd6fc
PB
2298}
2299
1d71148e 2300static void tcg_commit(MemoryListener *listener)
50c1e149 2301{
32857f4d
PM
2302 CPUAddressSpace *cpuas;
2303 AddressSpaceDispatch *d;
117712c3
AK
2304
2305 /* since each CPU stores ram addresses in its TLB cache, we must
2306 reset the modified entries */
32857f4d
PM
2307 cpuas = container_of(listener, CPUAddressSpace, tcg_as_listener);
2308 cpu_reloading_memory_map();
2309 /* The CPU and TLB are protected by the iothread lock.
2310 * We reload the dispatch pointer now because cpu_reloading_memory_map()
2311 * may have split the RCU critical section.
2312 */
2313 d = atomic_rcu_read(&cpuas->as->dispatch);
2314 cpuas->memory_dispatch = d;
2315 tlb_flush(cpuas->cpu, 1);
50c1e149
AK
2316}
2317
ac1970fb
AK
2318void address_space_init_dispatch(AddressSpace *as)
2319{
00752703 2320 as->dispatch = NULL;
89ae337a 2321 as->dispatch_listener = (MemoryListener) {
ac1970fb 2322 .begin = mem_begin,
00752703 2323 .commit = mem_commit,
ac1970fb
AK
2324 .region_add = mem_add,
2325 .region_nop = mem_add,
2326 .priority = 0,
2327 };
89ae337a 2328 memory_listener_register(&as->dispatch_listener, as);
ac1970fb
AK
2329}
2330
6e48e8f9
PB
2331void address_space_unregister(AddressSpace *as)
2332{
2333 memory_listener_unregister(&as->dispatch_listener);
2334}
2335
83f3c251
AK
2336void address_space_destroy_dispatch(AddressSpace *as)
2337{
2338 AddressSpaceDispatch *d = as->dispatch;
2339
79e2b9ae
PB
2340 atomic_rcu_set(&as->dispatch, NULL);
2341 if (d) {
2342 call_rcu(d, address_space_dispatch_free, rcu);
2343 }
83f3c251
AK
2344}
2345
62152b8a
AK
2346static void memory_map_init(void)
2347{
7267c094 2348 system_memory = g_malloc(sizeof(*system_memory));
03f49957 2349
57271d63 2350 memory_region_init(system_memory, NULL, "system", UINT64_MAX);
7dca8043 2351 address_space_init(&address_space_memory, system_memory, "memory");
309cb471 2352
7267c094 2353 system_io = g_malloc(sizeof(*system_io));
3bb28b72
JK
2354 memory_region_init_io(system_io, NULL, &unassigned_io_ops, NULL, "io",
2355 65536);
7dca8043 2356 address_space_init(&address_space_io, system_io, "I/O");
62152b8a
AK
2357}
2358
2359MemoryRegion *get_system_memory(void)
2360{
2361 return system_memory;
2362}
2363
309cb471
AK
2364MemoryRegion *get_system_io(void)
2365{
2366 return system_io;
2367}
2368
e2eef170
PB
2369#endif /* !defined(CONFIG_USER_ONLY) */
2370
13eb76e0
FB
2371/* physical memory access (slow version, mainly for debug) */
2372#if defined(CONFIG_USER_ONLY)
f17ec444 2373int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr,
a68fe89c 2374 uint8_t *buf, int len, int is_write)
13eb76e0
FB
2375{
2376 int l, flags;
2377 target_ulong page;
53a5960a 2378 void * p;
13eb76e0
FB
2379
2380 while (len > 0) {
2381 page = addr & TARGET_PAGE_MASK;
2382 l = (page + TARGET_PAGE_SIZE) - addr;
2383 if (l > len)
2384 l = len;
2385 flags = page_get_flags(page);
2386 if (!(flags & PAGE_VALID))
a68fe89c 2387 return -1;
13eb76e0
FB
2388 if (is_write) {
2389 if (!(flags & PAGE_WRITE))
a68fe89c 2390 return -1;
579a97f7 2391 /* XXX: this code should not depend on lock_user */
72fb7daa 2392 if (!(p = lock_user(VERIFY_WRITE, addr, l, 0)))
a68fe89c 2393 return -1;
72fb7daa
AJ
2394 memcpy(p, buf, l);
2395 unlock_user(p, addr, l);
13eb76e0
FB
2396 } else {
2397 if (!(flags & PAGE_READ))
a68fe89c 2398 return -1;
579a97f7 2399 /* XXX: this code should not depend on lock_user */
72fb7daa 2400 if (!(p = lock_user(VERIFY_READ, addr, l, 1)))
a68fe89c 2401 return -1;
72fb7daa 2402 memcpy(buf, p, l);
5b257578 2403 unlock_user(p, addr, 0);
13eb76e0
FB
2404 }
2405 len -= l;
2406 buf += l;
2407 addr += l;
2408 }
a68fe89c 2409 return 0;
13eb76e0 2410}
8df1cd07 2411
13eb76e0 2412#else
51d7a9eb 2413
845b6214 2414static void invalidate_and_set_dirty(MemoryRegion *mr, hwaddr addr,
a8170e5e 2415 hwaddr length)
51d7a9eb 2416{
e87f7778 2417 uint8_t dirty_log_mask = memory_region_get_dirty_log_mask(mr);
0878d0e1
PB
2418 addr += memory_region_get_ram_addr(mr);
2419
e87f7778
PB
2420 /* No early return if dirty_log_mask is or becomes 0, because
2421 * cpu_physical_memory_set_dirty_range will still call
2422 * xen_modified_memory.
2423 */
2424 if (dirty_log_mask) {
2425 dirty_log_mask =
2426 cpu_physical_memory_range_includes_clean(addr, length, dirty_log_mask);
2427 }
2428 if (dirty_log_mask & (1 << DIRTY_MEMORY_CODE)) {
2429 tb_invalidate_phys_range(addr, addr + length);
2430 dirty_log_mask &= ~(1 << DIRTY_MEMORY_CODE);
51d7a9eb 2431 }
e87f7778 2432 cpu_physical_memory_set_dirty_range(addr, length, dirty_log_mask);
51d7a9eb
AP
2433}
2434
23326164 2435static int memory_access_size(MemoryRegion *mr, unsigned l, hwaddr addr)
82f2563f 2436{
e1622f4b 2437 unsigned access_size_max = mr->ops->valid.max_access_size;
23326164
RH
2438
2439 /* Regions are assumed to support 1-4 byte accesses unless
2440 otherwise specified. */
23326164
RH
2441 if (access_size_max == 0) {
2442 access_size_max = 4;
2443 }
2444
2445 /* Bound the maximum access by the alignment of the address. */
2446 if (!mr->ops->impl.unaligned) {
2447 unsigned align_size_max = addr & -addr;
2448 if (align_size_max != 0 && align_size_max < access_size_max) {
2449 access_size_max = align_size_max;
2450 }
82f2563f 2451 }
23326164
RH
2452
2453 /* Don't attempt accesses larger than the maximum. */
2454 if (l > access_size_max) {
2455 l = access_size_max;
82f2563f 2456 }
6554f5c0 2457 l = pow2floor(l);
23326164
RH
2458
2459 return l;
82f2563f
PB
2460}
2461
4840f10e 2462static bool prepare_mmio_access(MemoryRegion *mr)
125b3806 2463{
4840f10e
JK
2464 bool unlocked = !qemu_mutex_iothread_locked();
2465 bool release_lock = false;
2466
2467 if (unlocked && mr->global_locking) {
2468 qemu_mutex_lock_iothread();
2469 unlocked = false;
2470 release_lock = true;
2471 }
125b3806 2472 if (mr->flush_coalesced_mmio) {
4840f10e
JK
2473 if (unlocked) {
2474 qemu_mutex_lock_iothread();
2475 }
125b3806 2476 qemu_flush_coalesced_mmio_buffer();
4840f10e
JK
2477 if (unlocked) {
2478 qemu_mutex_unlock_iothread();
2479 }
125b3806 2480 }
4840f10e
JK
2481
2482 return release_lock;
125b3806
PB
2483}
2484
a203ac70
PB
2485/* Called within RCU critical section. */
2486static MemTxResult address_space_write_continue(AddressSpace *as, hwaddr addr,
2487 MemTxAttrs attrs,
2488 const uint8_t *buf,
2489 int len, hwaddr addr1,
2490 hwaddr l, MemoryRegion *mr)
13eb76e0 2491{
13eb76e0 2492 uint8_t *ptr;
791af8c8 2493 uint64_t val;
3b643495 2494 MemTxResult result = MEMTX_OK;
4840f10e 2495 bool release_lock = false;
3b46e624 2496
a203ac70 2497 for (;;) {
eb7eeb88
PB
2498 if (!memory_access_is_direct(mr, true)) {
2499 release_lock |= prepare_mmio_access(mr);
2500 l = memory_access_size(mr, l, addr1);
2501 /* XXX: could force current_cpu to NULL to avoid
2502 potential bugs */
2503 switch (l) {
2504 case 8:
2505 /* 64 bit write access */
2506 val = ldq_p(buf);
2507 result |= memory_region_dispatch_write(mr, addr1, val, 8,
2508 attrs);
2509 break;
2510 case 4:
2511 /* 32 bit write access */
2512 val = ldl_p(buf);
2513 result |= memory_region_dispatch_write(mr, addr1, val, 4,
2514 attrs);
2515 break;
2516 case 2:
2517 /* 16 bit write access */
2518 val = lduw_p(buf);
2519 result |= memory_region_dispatch_write(mr, addr1, val, 2,
2520 attrs);
2521 break;
2522 case 1:
2523 /* 8 bit write access */
2524 val = ldub_p(buf);
2525 result |= memory_region_dispatch_write(mr, addr1, val, 1,
2526 attrs);
2527 break;
2528 default:
2529 abort();
13eb76e0
FB
2530 }
2531 } else {
eb7eeb88 2532 /* RAM case */
0878d0e1 2533 ptr = qemu_map_ram_ptr(mr->ram_block, addr1);
eb7eeb88
PB
2534 memcpy(ptr, buf, l);
2535 invalidate_and_set_dirty(mr, addr1, l);
13eb76e0 2536 }
4840f10e
JK
2537
2538 if (release_lock) {
2539 qemu_mutex_unlock_iothread();
2540 release_lock = false;
2541 }
2542
13eb76e0
FB
2543 len -= l;
2544 buf += l;
2545 addr += l;
a203ac70
PB
2546
2547 if (!len) {
2548 break;
2549 }
2550
2551 l = len;
2552 mr = address_space_translate(as, addr, &addr1, &l, true);
13eb76e0 2553 }
fd8aaa76 2554
3b643495 2555 return result;
13eb76e0 2556}
8df1cd07 2557
a203ac70
PB
2558MemTxResult address_space_write(AddressSpace *as, hwaddr addr, MemTxAttrs attrs,
2559 const uint8_t *buf, int len)
ac1970fb 2560{
eb7eeb88 2561 hwaddr l;
eb7eeb88
PB
2562 hwaddr addr1;
2563 MemoryRegion *mr;
2564 MemTxResult result = MEMTX_OK;
eb7eeb88 2565
a203ac70
PB
2566 if (len > 0) {
2567 rcu_read_lock();
eb7eeb88 2568 l = len;
a203ac70
PB
2569 mr = address_space_translate(as, addr, &addr1, &l, true);
2570 result = address_space_write_continue(as, addr, attrs, buf, len,
2571 addr1, l, mr);
2572 rcu_read_unlock();
2573 }
2574
2575 return result;
2576}
2577
2578/* Called within RCU critical section. */
2579MemTxResult address_space_read_continue(AddressSpace *as, hwaddr addr,
2580 MemTxAttrs attrs, uint8_t *buf,
2581 int len, hwaddr addr1, hwaddr l,
2582 MemoryRegion *mr)
2583{
2584 uint8_t *ptr;
2585 uint64_t val;
2586 MemTxResult result = MEMTX_OK;
2587 bool release_lock = false;
eb7eeb88 2588
a203ac70 2589 for (;;) {
eb7eeb88
PB
2590 if (!memory_access_is_direct(mr, false)) {
2591 /* I/O case */
2592 release_lock |= prepare_mmio_access(mr);
2593 l = memory_access_size(mr, l, addr1);
2594 switch (l) {
2595 case 8:
2596 /* 64 bit read access */
2597 result |= memory_region_dispatch_read(mr, addr1, &val, 8,
2598 attrs);
2599 stq_p(buf, val);
2600 break;
2601 case 4:
2602 /* 32 bit read access */
2603 result |= memory_region_dispatch_read(mr, addr1, &val, 4,
2604 attrs);
2605 stl_p(buf, val);
2606 break;
2607 case 2:
2608 /* 16 bit read access */
2609 result |= memory_region_dispatch_read(mr, addr1, &val, 2,
2610 attrs);
2611 stw_p(buf, val);
2612 break;
2613 case 1:
2614 /* 8 bit read access */
2615 result |= memory_region_dispatch_read(mr, addr1, &val, 1,
2616 attrs);
2617 stb_p(buf, val);
2618 break;
2619 default:
2620 abort();
2621 }
2622 } else {
2623 /* RAM case */
0878d0e1 2624 ptr = qemu_map_ram_ptr(mr->ram_block, addr1);
eb7eeb88
PB
2625 memcpy(buf, ptr, l);
2626 }
2627
2628 if (release_lock) {
2629 qemu_mutex_unlock_iothread();
2630 release_lock = false;
2631 }
2632
2633 len -= l;
2634 buf += l;
2635 addr += l;
a203ac70
PB
2636
2637 if (!len) {
2638 break;
2639 }
2640
2641 l = len;
2642 mr = address_space_translate(as, addr, &addr1, &l, false);
2643 }
2644
2645 return result;
2646}
2647
3cc8f884
PB
2648MemTxResult address_space_read_full(AddressSpace *as, hwaddr addr,
2649 MemTxAttrs attrs, uint8_t *buf, int len)
a203ac70
PB
2650{
2651 hwaddr l;
2652 hwaddr addr1;
2653 MemoryRegion *mr;
2654 MemTxResult result = MEMTX_OK;
2655
2656 if (len > 0) {
2657 rcu_read_lock();
2658 l = len;
2659 mr = address_space_translate(as, addr, &addr1, &l, false);
2660 result = address_space_read_continue(as, addr, attrs, buf, len,
2661 addr1, l, mr);
2662 rcu_read_unlock();
eb7eeb88 2663 }
eb7eeb88
PB
2664
2665 return result;
ac1970fb
AK
2666}
2667
eb7eeb88
PB
2668MemTxResult address_space_rw(AddressSpace *as, hwaddr addr, MemTxAttrs attrs,
2669 uint8_t *buf, int len, bool is_write)
2670{
2671 if (is_write) {
2672 return address_space_write(as, addr, attrs, (uint8_t *)buf, len);
2673 } else {
2674 return address_space_read(as, addr, attrs, (uint8_t *)buf, len);
2675 }
2676}
ac1970fb 2677
a8170e5e 2678void cpu_physical_memory_rw(hwaddr addr, uint8_t *buf,
ac1970fb
AK
2679 int len, int is_write)
2680{
5c9eb028
PM
2681 address_space_rw(&address_space_memory, addr, MEMTXATTRS_UNSPECIFIED,
2682 buf, len, is_write);
ac1970fb
AK
2683}
2684
582b55a9
AG
2685enum write_rom_type {
2686 WRITE_DATA,
2687 FLUSH_CACHE,
2688};
2689
2a221651 2690static inline void cpu_physical_memory_write_rom_internal(AddressSpace *as,
582b55a9 2691 hwaddr addr, const uint8_t *buf, int len, enum write_rom_type type)
d0ecd2aa 2692{
149f54b5 2693 hwaddr l;
d0ecd2aa 2694 uint8_t *ptr;
149f54b5 2695 hwaddr addr1;
5c8a00ce 2696 MemoryRegion *mr;
3b46e624 2697
41063e1e 2698 rcu_read_lock();
d0ecd2aa 2699 while (len > 0) {
149f54b5 2700 l = len;
2a221651 2701 mr = address_space_translate(as, addr, &addr1, &l, true);
3b46e624 2702
5c8a00ce
PB
2703 if (!(memory_region_is_ram(mr) ||
2704 memory_region_is_romd(mr))) {
b242e0e0 2705 l = memory_access_size(mr, l, addr1);
d0ecd2aa 2706 } else {
d0ecd2aa 2707 /* ROM/RAM case */
0878d0e1 2708 ptr = qemu_map_ram_ptr(mr->ram_block, addr1);
582b55a9
AG
2709 switch (type) {
2710 case WRITE_DATA:
2711 memcpy(ptr, buf, l);
845b6214 2712 invalidate_and_set_dirty(mr, addr1, l);
582b55a9
AG
2713 break;
2714 case FLUSH_CACHE:
2715 flush_icache_range((uintptr_t)ptr, (uintptr_t)ptr + l);
2716 break;
2717 }
d0ecd2aa
FB
2718 }
2719 len -= l;
2720 buf += l;
2721 addr += l;
2722 }
41063e1e 2723 rcu_read_unlock();
d0ecd2aa
FB
2724}
2725
582b55a9 2726/* used for ROM loading : can write in RAM and ROM */
2a221651 2727void cpu_physical_memory_write_rom(AddressSpace *as, hwaddr addr,
582b55a9
AG
2728 const uint8_t *buf, int len)
2729{
2a221651 2730 cpu_physical_memory_write_rom_internal(as, addr, buf, len, WRITE_DATA);
582b55a9
AG
2731}
2732
2733void cpu_flush_icache_range(hwaddr start, int len)
2734{
2735 /*
2736 * This function should do the same thing as an icache flush that was
2737 * triggered from within the guest. For TCG we are always cache coherent,
2738 * so there is no need to flush anything. For KVM / Xen we need to flush
2739 * the host's instruction cache at least.
2740 */
2741 if (tcg_enabled()) {
2742 return;
2743 }
2744
2a221651
EI
2745 cpu_physical_memory_write_rom_internal(&address_space_memory,
2746 start, NULL, len, FLUSH_CACHE);
582b55a9
AG
2747}
2748
6d16c2f8 2749typedef struct {
d3e71559 2750 MemoryRegion *mr;
6d16c2f8 2751 void *buffer;
a8170e5e
AK
2752 hwaddr addr;
2753 hwaddr len;
c2cba0ff 2754 bool in_use;
6d16c2f8
AL
2755} BounceBuffer;
2756
2757static BounceBuffer bounce;
2758
ba223c29 2759typedef struct MapClient {
e95205e1 2760 QEMUBH *bh;
72cf2d4f 2761 QLIST_ENTRY(MapClient) link;
ba223c29
AL
2762} MapClient;
2763
38e047b5 2764QemuMutex map_client_list_lock;
72cf2d4f
BS
2765static QLIST_HEAD(map_client_list, MapClient) map_client_list
2766 = QLIST_HEAD_INITIALIZER(map_client_list);
ba223c29 2767
e95205e1
FZ
2768static void cpu_unregister_map_client_do(MapClient *client)
2769{
2770 QLIST_REMOVE(client, link);
2771 g_free(client);
2772}
2773
33b6c2ed
FZ
2774static void cpu_notify_map_clients_locked(void)
2775{
2776 MapClient *client;
2777
2778 while (!QLIST_EMPTY(&map_client_list)) {
2779 client = QLIST_FIRST(&map_client_list);
e95205e1
FZ
2780 qemu_bh_schedule(client->bh);
2781 cpu_unregister_map_client_do(client);
33b6c2ed
FZ
2782 }
2783}
2784
e95205e1 2785void cpu_register_map_client(QEMUBH *bh)
ba223c29 2786{
7267c094 2787 MapClient *client = g_malloc(sizeof(*client));
ba223c29 2788
38e047b5 2789 qemu_mutex_lock(&map_client_list_lock);
e95205e1 2790 client->bh = bh;
72cf2d4f 2791 QLIST_INSERT_HEAD(&map_client_list, client, link);
33b6c2ed
FZ
2792 if (!atomic_read(&bounce.in_use)) {
2793 cpu_notify_map_clients_locked();
2794 }
38e047b5 2795 qemu_mutex_unlock(&map_client_list_lock);
ba223c29
AL
2796}
2797
38e047b5 2798void cpu_exec_init_all(void)
ba223c29 2799{
38e047b5 2800 qemu_mutex_init(&ram_list.mutex);
38e047b5 2801 io_mem_init();
680a4783 2802 memory_map_init();
38e047b5 2803 qemu_mutex_init(&map_client_list_lock);
ba223c29
AL
2804}
2805
e95205e1 2806void cpu_unregister_map_client(QEMUBH *bh)
ba223c29
AL
2807{
2808 MapClient *client;
2809
e95205e1
FZ
2810 qemu_mutex_lock(&map_client_list_lock);
2811 QLIST_FOREACH(client, &map_client_list, link) {
2812 if (client->bh == bh) {
2813 cpu_unregister_map_client_do(client);
2814 break;
2815 }
ba223c29 2816 }
e95205e1 2817 qemu_mutex_unlock(&map_client_list_lock);
ba223c29
AL
2818}
2819
2820static void cpu_notify_map_clients(void)
2821{
38e047b5 2822 qemu_mutex_lock(&map_client_list_lock);
33b6c2ed 2823 cpu_notify_map_clients_locked();
38e047b5 2824 qemu_mutex_unlock(&map_client_list_lock);
ba223c29
AL
2825}
2826
51644ab7
PB
2827bool address_space_access_valid(AddressSpace *as, hwaddr addr, int len, bool is_write)
2828{
5c8a00ce 2829 MemoryRegion *mr;
51644ab7
PB
2830 hwaddr l, xlat;
2831
41063e1e 2832 rcu_read_lock();
51644ab7
PB
2833 while (len > 0) {
2834 l = len;
5c8a00ce
PB
2835 mr = address_space_translate(as, addr, &xlat, &l, is_write);
2836 if (!memory_access_is_direct(mr, is_write)) {
2837 l = memory_access_size(mr, l, addr);
2838 if (!memory_region_access_valid(mr, xlat, l, is_write)) {
51644ab7
PB
2839 return false;
2840 }
2841 }
2842
2843 len -= l;
2844 addr += l;
2845 }
41063e1e 2846 rcu_read_unlock();
51644ab7
PB
2847 return true;
2848}
2849
6d16c2f8
AL
2850/* Map a physical memory region into a host virtual address.
2851 * May map a subset of the requested range, given by and returned in *plen.
2852 * May return NULL if resources needed to perform the mapping are exhausted.
2853 * Use only for reads OR writes - not for read-modify-write operations.
ba223c29
AL
2854 * Use cpu_register_map_client() to know when retrying the map operation is
2855 * likely to succeed.
6d16c2f8 2856 */
ac1970fb 2857void *address_space_map(AddressSpace *as,
a8170e5e
AK
2858 hwaddr addr,
2859 hwaddr *plen,
ac1970fb 2860 bool is_write)
6d16c2f8 2861{
a8170e5e 2862 hwaddr len = *plen;
e3127ae0
PB
2863 hwaddr done = 0;
2864 hwaddr l, xlat, base;
2865 MemoryRegion *mr, *this_mr;
e81bcda5 2866 void *ptr;
6d16c2f8 2867
e3127ae0
PB
2868 if (len == 0) {
2869 return NULL;
2870 }
38bee5dc 2871
e3127ae0 2872 l = len;
41063e1e 2873 rcu_read_lock();
e3127ae0 2874 mr = address_space_translate(as, addr, &xlat, &l, is_write);
41063e1e 2875
e3127ae0 2876 if (!memory_access_is_direct(mr, is_write)) {
c2cba0ff 2877 if (atomic_xchg(&bounce.in_use, true)) {
41063e1e 2878 rcu_read_unlock();
e3127ae0 2879 return NULL;
6d16c2f8 2880 }
e85d9db5
KW
2881 /* Avoid unbounded allocations */
2882 l = MIN(l, TARGET_PAGE_SIZE);
2883 bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, l);
e3127ae0
PB
2884 bounce.addr = addr;
2885 bounce.len = l;
d3e71559
PB
2886
2887 memory_region_ref(mr);
2888 bounce.mr = mr;
e3127ae0 2889 if (!is_write) {
5c9eb028
PM
2890 address_space_read(as, addr, MEMTXATTRS_UNSPECIFIED,
2891 bounce.buffer, l);
8ab934f9 2892 }
6d16c2f8 2893
41063e1e 2894 rcu_read_unlock();
e3127ae0
PB
2895 *plen = l;
2896 return bounce.buffer;
2897 }
2898
2899 base = xlat;
e3127ae0
PB
2900
2901 for (;;) {
6d16c2f8
AL
2902 len -= l;
2903 addr += l;
e3127ae0
PB
2904 done += l;
2905 if (len == 0) {
2906 break;
2907 }
2908
2909 l = len;
2910 this_mr = address_space_translate(as, addr, &xlat, &l, is_write);
2911 if (this_mr != mr || xlat != base + done) {
2912 break;
2913 }
6d16c2f8 2914 }
e3127ae0 2915
d3e71559 2916 memory_region_ref(mr);
e3127ae0 2917 *plen = done;
0878d0e1 2918 ptr = qemu_ram_ptr_length(mr->ram_block, base, plen);
e81bcda5
PB
2919 rcu_read_unlock();
2920
2921 return ptr;
6d16c2f8
AL
2922}
2923
ac1970fb 2924/* Unmaps a memory region previously mapped by address_space_map().
6d16c2f8
AL
2925 * Will also mark the memory as dirty if is_write == 1. access_len gives
2926 * the amount of memory that was actually read or written by the caller.
2927 */
a8170e5e
AK
2928void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len,
2929 int is_write, hwaddr access_len)
6d16c2f8
AL
2930{
2931 if (buffer != bounce.buffer) {
d3e71559
PB
2932 MemoryRegion *mr;
2933 ram_addr_t addr1;
2934
07bdaa41 2935 mr = memory_region_from_host(buffer, &addr1);
d3e71559 2936 assert(mr != NULL);
6d16c2f8 2937 if (is_write) {
845b6214 2938 invalidate_and_set_dirty(mr, addr1, access_len);
6d16c2f8 2939 }
868bb33f 2940 if (xen_enabled()) {
e41d7c69 2941 xen_invalidate_map_cache_entry(buffer);
050a0ddf 2942 }
d3e71559 2943 memory_region_unref(mr);
6d16c2f8
AL
2944 return;
2945 }
2946 if (is_write) {
5c9eb028
PM
2947 address_space_write(as, bounce.addr, MEMTXATTRS_UNSPECIFIED,
2948 bounce.buffer, access_len);
6d16c2f8 2949 }
f8a83245 2950 qemu_vfree(bounce.buffer);
6d16c2f8 2951 bounce.buffer = NULL;
d3e71559 2952 memory_region_unref(bounce.mr);
c2cba0ff 2953 atomic_mb_set(&bounce.in_use, false);
ba223c29 2954 cpu_notify_map_clients();
6d16c2f8 2955}
d0ecd2aa 2956
a8170e5e
AK
2957void *cpu_physical_memory_map(hwaddr addr,
2958 hwaddr *plen,
ac1970fb
AK
2959 int is_write)
2960{
2961 return address_space_map(&address_space_memory, addr, plen, is_write);
2962}
2963
a8170e5e
AK
2964void cpu_physical_memory_unmap(void *buffer, hwaddr len,
2965 int is_write, hwaddr access_len)
ac1970fb
AK
2966{
2967 return address_space_unmap(&address_space_memory, buffer, len, is_write, access_len);
2968}
2969
8df1cd07 2970/* warning: addr must be aligned */
50013115
PM
2971static inline uint32_t address_space_ldl_internal(AddressSpace *as, hwaddr addr,
2972 MemTxAttrs attrs,
2973 MemTxResult *result,
2974 enum device_endian endian)
8df1cd07 2975{
8df1cd07 2976 uint8_t *ptr;
791af8c8 2977 uint64_t val;
5c8a00ce 2978 MemoryRegion *mr;
149f54b5
PB
2979 hwaddr l = 4;
2980 hwaddr addr1;
50013115 2981 MemTxResult r;
4840f10e 2982 bool release_lock = false;
8df1cd07 2983
41063e1e 2984 rcu_read_lock();
fdfba1a2 2985 mr = address_space_translate(as, addr, &addr1, &l, false);
5c8a00ce 2986 if (l < 4 || !memory_access_is_direct(mr, false)) {
4840f10e 2987 release_lock |= prepare_mmio_access(mr);
125b3806 2988
8df1cd07 2989 /* I/O case */
50013115 2990 r = memory_region_dispatch_read(mr, addr1, &val, 4, attrs);
1e78bcc1
AG
2991#if defined(TARGET_WORDS_BIGENDIAN)
2992 if (endian == DEVICE_LITTLE_ENDIAN) {
2993 val = bswap32(val);
2994 }
2995#else
2996 if (endian == DEVICE_BIG_ENDIAN) {
2997 val = bswap32(val);
2998 }
2999#endif
8df1cd07
FB
3000 } else {
3001 /* RAM case */
0878d0e1 3002 ptr = qemu_map_ram_ptr(mr->ram_block, addr1);
1e78bcc1
AG
3003 switch (endian) {
3004 case DEVICE_LITTLE_ENDIAN:
3005 val = ldl_le_p(ptr);
3006 break;
3007 case DEVICE_BIG_ENDIAN:
3008 val = ldl_be_p(ptr);
3009 break;
3010 default:
3011 val = ldl_p(ptr);
3012 break;
3013 }
50013115
PM
3014 r = MEMTX_OK;
3015 }
3016 if (result) {
3017 *result = r;
8df1cd07 3018 }
4840f10e
JK
3019 if (release_lock) {
3020 qemu_mutex_unlock_iothread();
3021 }
41063e1e 3022 rcu_read_unlock();
8df1cd07
FB
3023 return val;
3024}
3025
50013115
PM
3026uint32_t address_space_ldl(AddressSpace *as, hwaddr addr,
3027 MemTxAttrs attrs, MemTxResult *result)
3028{
3029 return address_space_ldl_internal(as, addr, attrs, result,
3030 DEVICE_NATIVE_ENDIAN);
3031}
3032
3033uint32_t address_space_ldl_le(AddressSpace *as, hwaddr addr,
3034 MemTxAttrs attrs, MemTxResult *result)
3035{
3036 return address_space_ldl_internal(as, addr, attrs, result,
3037 DEVICE_LITTLE_ENDIAN);
3038}
3039
3040uint32_t address_space_ldl_be(AddressSpace *as, hwaddr addr,
3041 MemTxAttrs attrs, MemTxResult *result)
3042{
3043 return address_space_ldl_internal(as, addr, attrs, result,
3044 DEVICE_BIG_ENDIAN);
3045}
3046
fdfba1a2 3047uint32_t ldl_phys(AddressSpace *as, hwaddr addr)
1e78bcc1 3048{
50013115 3049 return address_space_ldl(as, addr, MEMTXATTRS_UNSPECIFIED, NULL);
1e78bcc1
AG
3050}
3051
fdfba1a2 3052uint32_t ldl_le_phys(AddressSpace *as, hwaddr addr)
1e78bcc1 3053{
50013115 3054 return address_space_ldl_le(as, addr, MEMTXATTRS_UNSPECIFIED, NULL);
1e78bcc1
AG
3055}
3056
fdfba1a2 3057uint32_t ldl_be_phys(AddressSpace *as, hwaddr addr)
1e78bcc1 3058{
50013115 3059 return address_space_ldl_be(as, addr, MEMTXATTRS_UNSPECIFIED, NULL);
1e78bcc1
AG
3060}
3061
84b7b8e7 3062/* warning: addr must be aligned */
50013115
PM
3063static inline uint64_t address_space_ldq_internal(AddressSpace *as, hwaddr addr,
3064 MemTxAttrs attrs,
3065 MemTxResult *result,
3066 enum device_endian endian)
84b7b8e7 3067{
84b7b8e7
FB
3068 uint8_t *ptr;
3069 uint64_t val;
5c8a00ce 3070 MemoryRegion *mr;
149f54b5
PB
3071 hwaddr l = 8;
3072 hwaddr addr1;
50013115 3073 MemTxResult r;
4840f10e 3074 bool release_lock = false;
84b7b8e7 3075
41063e1e 3076 rcu_read_lock();
2c17449b 3077 mr = address_space_translate(as, addr, &addr1, &l,
5c8a00ce
PB
3078 false);
3079 if (l < 8 || !memory_access_is_direct(mr, false)) {
4840f10e 3080 release_lock |= prepare_mmio_access(mr);
125b3806 3081
84b7b8e7 3082 /* I/O case */
50013115 3083 r = memory_region_dispatch_read(mr, addr1, &val, 8, attrs);
968a5627
PB
3084#if defined(TARGET_WORDS_BIGENDIAN)
3085 if (endian == DEVICE_LITTLE_ENDIAN) {
3086 val = bswap64(val);
3087 }
3088#else
3089 if (endian == DEVICE_BIG_ENDIAN) {
3090 val = bswap64(val);
3091 }
84b7b8e7
FB
3092#endif
3093 } else {
3094 /* RAM case */
0878d0e1 3095 ptr = qemu_map_ram_ptr(mr->ram_block, addr1);
1e78bcc1
AG
3096 switch (endian) {
3097 case DEVICE_LITTLE_ENDIAN:
3098 val = ldq_le_p(ptr);
3099 break;
3100 case DEVICE_BIG_ENDIAN:
3101 val = ldq_be_p(ptr);
3102 break;
3103 default:
3104 val = ldq_p(ptr);
3105 break;
3106 }
50013115
PM
3107 r = MEMTX_OK;
3108 }
3109 if (result) {
3110 *result = r;
84b7b8e7 3111 }
4840f10e
JK
3112 if (release_lock) {
3113 qemu_mutex_unlock_iothread();
3114 }
41063e1e 3115 rcu_read_unlock();
84b7b8e7
FB
3116 return val;
3117}
3118
50013115
PM
3119uint64_t address_space_ldq(AddressSpace *as, hwaddr addr,
3120 MemTxAttrs attrs, MemTxResult *result)
3121{
3122 return address_space_ldq_internal(as, addr, attrs, result,
3123 DEVICE_NATIVE_ENDIAN);
3124}
3125
3126uint64_t address_space_ldq_le(AddressSpace *as, hwaddr addr,
3127 MemTxAttrs attrs, MemTxResult *result)
3128{
3129 return address_space_ldq_internal(as, addr, attrs, result,
3130 DEVICE_LITTLE_ENDIAN);
3131}
3132
3133uint64_t address_space_ldq_be(AddressSpace *as, hwaddr addr,
3134 MemTxAttrs attrs, MemTxResult *result)
3135{
3136 return address_space_ldq_internal(as, addr, attrs, result,
3137 DEVICE_BIG_ENDIAN);
3138}
3139
2c17449b 3140uint64_t ldq_phys(AddressSpace *as, hwaddr addr)
1e78bcc1 3141{
50013115 3142 return address_space_ldq(as, addr, MEMTXATTRS_UNSPECIFIED, NULL);
1e78bcc1
AG
3143}
3144
2c17449b 3145uint64_t ldq_le_phys(AddressSpace *as, hwaddr addr)
1e78bcc1 3146{
50013115 3147 return address_space_ldq_le(as, addr, MEMTXATTRS_UNSPECIFIED, NULL);
1e78bcc1
AG
3148}
3149
2c17449b 3150uint64_t ldq_be_phys(AddressSpace *as, hwaddr addr)
1e78bcc1 3151{
50013115 3152 return address_space_ldq_be(as, addr, MEMTXATTRS_UNSPECIFIED, NULL);
1e78bcc1
AG
3153}
3154
aab33094 3155/* XXX: optimize */
50013115
PM
3156uint32_t address_space_ldub(AddressSpace *as, hwaddr addr,
3157 MemTxAttrs attrs, MemTxResult *result)
aab33094
FB
3158{
3159 uint8_t val;
50013115
PM
3160 MemTxResult r;
3161
3162 r = address_space_rw(as, addr, attrs, &val, 1, 0);
3163 if (result) {
3164 *result = r;
3165 }
aab33094
FB
3166 return val;
3167}
3168
50013115
PM
3169uint32_t ldub_phys(AddressSpace *as, hwaddr addr)
3170{
3171 return address_space_ldub(as, addr, MEMTXATTRS_UNSPECIFIED, NULL);
3172}
3173
733f0b02 3174/* warning: addr must be aligned */
50013115
PM
3175static inline uint32_t address_space_lduw_internal(AddressSpace *as,
3176 hwaddr addr,
3177 MemTxAttrs attrs,
3178 MemTxResult *result,
3179 enum device_endian endian)
aab33094 3180{
733f0b02
MT
3181 uint8_t *ptr;
3182 uint64_t val;
5c8a00ce 3183 MemoryRegion *mr;
149f54b5
PB
3184 hwaddr l = 2;
3185 hwaddr addr1;
50013115 3186 MemTxResult r;
4840f10e 3187 bool release_lock = false;
733f0b02 3188
41063e1e 3189 rcu_read_lock();
41701aa4 3190 mr = address_space_translate(as, addr, &addr1, &l,
5c8a00ce
PB
3191 false);
3192 if (l < 2 || !memory_access_is_direct(mr, false)) {
4840f10e 3193 release_lock |= prepare_mmio_access(mr);
125b3806 3194
733f0b02 3195 /* I/O case */
50013115 3196 r = memory_region_dispatch_read(mr, addr1, &val, 2, attrs);
1e78bcc1
AG
3197#if defined(TARGET_WORDS_BIGENDIAN)
3198 if (endian == DEVICE_LITTLE_ENDIAN) {
3199 val = bswap16(val);
3200 }
3201#else
3202 if (endian == DEVICE_BIG_ENDIAN) {
3203 val = bswap16(val);
3204 }
3205#endif
733f0b02
MT
3206 } else {
3207 /* RAM case */
0878d0e1 3208 ptr = qemu_map_ram_ptr(mr->ram_block, addr1);
1e78bcc1
AG
3209 switch (endian) {
3210 case DEVICE_LITTLE_ENDIAN:
3211 val = lduw_le_p(ptr);
3212 break;
3213 case DEVICE_BIG_ENDIAN:
3214 val = lduw_be_p(ptr);
3215 break;
3216 default:
3217 val = lduw_p(ptr);
3218 break;
3219 }
50013115
PM
3220 r = MEMTX_OK;
3221 }
3222 if (result) {
3223 *result = r;
733f0b02 3224 }
4840f10e
JK
3225 if (release_lock) {
3226 qemu_mutex_unlock_iothread();
3227 }
41063e1e 3228 rcu_read_unlock();
733f0b02 3229 return val;
aab33094
FB
3230}
3231
50013115
PM
3232uint32_t address_space_lduw(AddressSpace *as, hwaddr addr,
3233 MemTxAttrs attrs, MemTxResult *result)
3234{
3235 return address_space_lduw_internal(as, addr, attrs, result,
3236 DEVICE_NATIVE_ENDIAN);
3237}
3238
3239uint32_t address_space_lduw_le(AddressSpace *as, hwaddr addr,
3240 MemTxAttrs attrs, MemTxResult *result)
3241{
3242 return address_space_lduw_internal(as, addr, attrs, result,
3243 DEVICE_LITTLE_ENDIAN);
3244}
3245
3246uint32_t address_space_lduw_be(AddressSpace *as, hwaddr addr,
3247 MemTxAttrs attrs, MemTxResult *result)
3248{
3249 return address_space_lduw_internal(as, addr, attrs, result,
3250 DEVICE_BIG_ENDIAN);
3251}
3252
41701aa4 3253uint32_t lduw_phys(AddressSpace *as, hwaddr addr)
1e78bcc1 3254{
50013115 3255 return address_space_lduw(as, addr, MEMTXATTRS_UNSPECIFIED, NULL);
1e78bcc1
AG
3256}
3257
41701aa4 3258uint32_t lduw_le_phys(AddressSpace *as, hwaddr addr)
1e78bcc1 3259{
50013115 3260 return address_space_lduw_le(as, addr, MEMTXATTRS_UNSPECIFIED, NULL);
1e78bcc1
AG
3261}
3262
41701aa4 3263uint32_t lduw_be_phys(AddressSpace *as, hwaddr addr)
1e78bcc1 3264{
50013115 3265 return address_space_lduw_be(as, addr, MEMTXATTRS_UNSPECIFIED, NULL);
1e78bcc1
AG
3266}
3267
8df1cd07
FB
3268/* warning: addr must be aligned. The ram page is not masked as dirty
3269 and the code inside is not invalidated. It is useful if the dirty
3270 bits are used to track modified PTEs */
50013115
PM
3271void address_space_stl_notdirty(AddressSpace *as, hwaddr addr, uint32_t val,
3272 MemTxAttrs attrs, MemTxResult *result)
8df1cd07 3273{
8df1cd07 3274 uint8_t *ptr;
5c8a00ce 3275 MemoryRegion *mr;
149f54b5
PB
3276 hwaddr l = 4;
3277 hwaddr addr1;
50013115 3278 MemTxResult r;
845b6214 3279 uint8_t dirty_log_mask;
4840f10e 3280 bool release_lock = false;
8df1cd07 3281
41063e1e 3282 rcu_read_lock();
2198a121 3283 mr = address_space_translate(as, addr, &addr1, &l,
5c8a00ce
PB
3284 true);
3285 if (l < 4 || !memory_access_is_direct(mr, true)) {
4840f10e 3286 release_lock |= prepare_mmio_access(mr);
125b3806 3287
50013115 3288 r = memory_region_dispatch_write(mr, addr1, val, 4, attrs);
8df1cd07 3289 } else {
0878d0e1 3290 ptr = qemu_map_ram_ptr(mr->ram_block, addr1);
8df1cd07 3291 stl_p(ptr, val);
74576198 3292
845b6214
PB
3293 dirty_log_mask = memory_region_get_dirty_log_mask(mr);
3294 dirty_log_mask &= ~(1 << DIRTY_MEMORY_CODE);
0878d0e1
PB
3295 cpu_physical_memory_set_dirty_range(memory_region_get_ram_addr(mr) + addr,
3296 4, dirty_log_mask);
50013115
PM
3297 r = MEMTX_OK;
3298 }
3299 if (result) {
3300 *result = r;
8df1cd07 3301 }
4840f10e
JK
3302 if (release_lock) {
3303 qemu_mutex_unlock_iothread();
3304 }
41063e1e 3305 rcu_read_unlock();
8df1cd07
FB
3306}
3307
50013115
PM
3308void stl_phys_notdirty(AddressSpace *as, hwaddr addr, uint32_t val)
3309{
3310 address_space_stl_notdirty(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL);
3311}
3312
8df1cd07 3313/* warning: addr must be aligned */
50013115
PM
3314static inline void address_space_stl_internal(AddressSpace *as,
3315 hwaddr addr, uint32_t val,
3316 MemTxAttrs attrs,
3317 MemTxResult *result,
3318 enum device_endian endian)
8df1cd07 3319{
8df1cd07 3320 uint8_t *ptr;
5c8a00ce 3321 MemoryRegion *mr;
149f54b5
PB
3322 hwaddr l = 4;
3323 hwaddr addr1;
50013115 3324 MemTxResult r;
4840f10e 3325 bool release_lock = false;
8df1cd07 3326
41063e1e 3327 rcu_read_lock();
ab1da857 3328 mr = address_space_translate(as, addr, &addr1, &l,
5c8a00ce
PB
3329 true);
3330 if (l < 4 || !memory_access_is_direct(mr, true)) {
4840f10e 3331 release_lock |= prepare_mmio_access(mr);
125b3806 3332
1e78bcc1
AG
3333#if defined(TARGET_WORDS_BIGENDIAN)
3334 if (endian == DEVICE_LITTLE_ENDIAN) {
3335 val = bswap32(val);
3336 }
3337#else
3338 if (endian == DEVICE_BIG_ENDIAN) {
3339 val = bswap32(val);
3340 }
3341#endif
50013115 3342 r = memory_region_dispatch_write(mr, addr1, val, 4, attrs);
8df1cd07 3343 } else {
8df1cd07 3344 /* RAM case */
0878d0e1 3345 ptr = qemu_map_ram_ptr(mr->ram_block, addr1);
1e78bcc1
AG
3346 switch (endian) {
3347 case DEVICE_LITTLE_ENDIAN:
3348 stl_le_p(ptr, val);
3349 break;
3350 case DEVICE_BIG_ENDIAN:
3351 stl_be_p(ptr, val);
3352 break;
3353 default:
3354 stl_p(ptr, val);
3355 break;
3356 }
845b6214 3357 invalidate_and_set_dirty(mr, addr1, 4);
50013115
PM
3358 r = MEMTX_OK;
3359 }
3360 if (result) {
3361 *result = r;
8df1cd07 3362 }
4840f10e
JK
3363 if (release_lock) {
3364 qemu_mutex_unlock_iothread();
3365 }
41063e1e 3366 rcu_read_unlock();
8df1cd07
FB
3367}
3368
50013115
PM
3369void address_space_stl(AddressSpace *as, hwaddr addr, uint32_t val,
3370 MemTxAttrs attrs, MemTxResult *result)
3371{
3372 address_space_stl_internal(as, addr, val, attrs, result,
3373 DEVICE_NATIVE_ENDIAN);
3374}
3375
3376void address_space_stl_le(AddressSpace *as, hwaddr addr, uint32_t val,
3377 MemTxAttrs attrs, MemTxResult *result)
3378{
3379 address_space_stl_internal(as, addr, val, attrs, result,
3380 DEVICE_LITTLE_ENDIAN);
3381}
3382
3383void address_space_stl_be(AddressSpace *as, hwaddr addr, uint32_t val,
3384 MemTxAttrs attrs, MemTxResult *result)
3385{
3386 address_space_stl_internal(as, addr, val, attrs, result,
3387 DEVICE_BIG_ENDIAN);
3388}
3389
ab1da857 3390void stl_phys(AddressSpace *as, hwaddr addr, uint32_t val)
1e78bcc1 3391{
50013115 3392 address_space_stl(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL);
1e78bcc1
AG
3393}
3394
ab1da857 3395void stl_le_phys(AddressSpace *as, hwaddr addr, uint32_t val)
1e78bcc1 3396{
50013115 3397 address_space_stl_le(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL);
1e78bcc1
AG
3398}
3399
ab1da857 3400void stl_be_phys(AddressSpace *as, hwaddr addr, uint32_t val)
1e78bcc1 3401{
50013115 3402 address_space_stl_be(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL);
1e78bcc1
AG
3403}
3404
aab33094 3405/* XXX: optimize */
50013115
PM
3406void address_space_stb(AddressSpace *as, hwaddr addr, uint32_t val,
3407 MemTxAttrs attrs, MemTxResult *result)
aab33094
FB
3408{
3409 uint8_t v = val;
50013115
PM
3410 MemTxResult r;
3411
3412 r = address_space_rw(as, addr, attrs, &v, 1, 1);
3413 if (result) {
3414 *result = r;
3415 }
3416}
3417
3418void stb_phys(AddressSpace *as, hwaddr addr, uint32_t val)
3419{
3420 address_space_stb(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL);
aab33094
FB
3421}
3422
733f0b02 3423/* warning: addr must be aligned */
50013115
PM
3424static inline void address_space_stw_internal(AddressSpace *as,
3425 hwaddr addr, uint32_t val,
3426 MemTxAttrs attrs,
3427 MemTxResult *result,
3428 enum device_endian endian)
aab33094 3429{
733f0b02 3430 uint8_t *ptr;
5c8a00ce 3431 MemoryRegion *mr;
149f54b5
PB
3432 hwaddr l = 2;
3433 hwaddr addr1;
50013115 3434 MemTxResult r;
4840f10e 3435 bool release_lock = false;
733f0b02 3436
41063e1e 3437 rcu_read_lock();
5ce5944d 3438 mr = address_space_translate(as, addr, &addr1, &l, true);
5c8a00ce 3439 if (l < 2 || !memory_access_is_direct(mr, true)) {
4840f10e 3440 release_lock |= prepare_mmio_access(mr);
125b3806 3441
1e78bcc1
AG
3442#if defined(TARGET_WORDS_BIGENDIAN)
3443 if (endian == DEVICE_LITTLE_ENDIAN) {
3444 val = bswap16(val);
3445 }
3446#else
3447 if (endian == DEVICE_BIG_ENDIAN) {
3448 val = bswap16(val);
3449 }
3450#endif
50013115 3451 r = memory_region_dispatch_write(mr, addr1, val, 2, attrs);
733f0b02 3452 } else {
733f0b02 3453 /* RAM case */
0878d0e1 3454 ptr = qemu_map_ram_ptr(mr->ram_block, addr1);
1e78bcc1
AG
3455 switch (endian) {
3456 case DEVICE_LITTLE_ENDIAN:
3457 stw_le_p(ptr, val);
3458 break;
3459 case DEVICE_BIG_ENDIAN:
3460 stw_be_p(ptr, val);
3461 break;
3462 default:
3463 stw_p(ptr, val);
3464 break;
3465 }
845b6214 3466 invalidate_and_set_dirty(mr, addr1, 2);
50013115
PM
3467 r = MEMTX_OK;
3468 }
3469 if (result) {
3470 *result = r;
733f0b02 3471 }
4840f10e
JK
3472 if (release_lock) {
3473 qemu_mutex_unlock_iothread();
3474 }
41063e1e 3475 rcu_read_unlock();
aab33094
FB
3476}
3477
50013115
PM
3478void address_space_stw(AddressSpace *as, hwaddr addr, uint32_t val,
3479 MemTxAttrs attrs, MemTxResult *result)
3480{
3481 address_space_stw_internal(as, addr, val, attrs, result,
3482 DEVICE_NATIVE_ENDIAN);
3483}
3484
3485void address_space_stw_le(AddressSpace *as, hwaddr addr, uint32_t val,
3486 MemTxAttrs attrs, MemTxResult *result)
3487{
3488 address_space_stw_internal(as, addr, val, attrs, result,
3489 DEVICE_LITTLE_ENDIAN);
3490}
3491
3492void address_space_stw_be(AddressSpace *as, hwaddr addr, uint32_t val,
3493 MemTxAttrs attrs, MemTxResult *result)
3494{
3495 address_space_stw_internal(as, addr, val, attrs, result,
3496 DEVICE_BIG_ENDIAN);
3497}
3498
5ce5944d 3499void stw_phys(AddressSpace *as, hwaddr addr, uint32_t val)
1e78bcc1 3500{
50013115 3501 address_space_stw(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL);
1e78bcc1
AG
3502}
3503
5ce5944d 3504void stw_le_phys(AddressSpace *as, hwaddr addr, uint32_t val)
1e78bcc1 3505{
50013115 3506 address_space_stw_le(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL);
1e78bcc1
AG
3507}
3508
5ce5944d 3509void stw_be_phys(AddressSpace *as, hwaddr addr, uint32_t val)
1e78bcc1 3510{
50013115 3511 address_space_stw_be(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL);
1e78bcc1
AG
3512}
3513
aab33094 3514/* XXX: optimize */
50013115
PM
3515void address_space_stq(AddressSpace *as, hwaddr addr, uint64_t val,
3516 MemTxAttrs attrs, MemTxResult *result)
aab33094 3517{
50013115 3518 MemTxResult r;
aab33094 3519 val = tswap64(val);
50013115
PM
3520 r = address_space_rw(as, addr, attrs, (void *) &val, 8, 1);
3521 if (result) {
3522 *result = r;
3523 }
aab33094
FB
3524}
3525
50013115
PM
3526void address_space_stq_le(AddressSpace *as, hwaddr addr, uint64_t val,
3527 MemTxAttrs attrs, MemTxResult *result)
1e78bcc1 3528{
50013115 3529 MemTxResult r;
1e78bcc1 3530 val = cpu_to_le64(val);
50013115
PM
3531 r = address_space_rw(as, addr, attrs, (void *) &val, 8, 1);
3532 if (result) {
3533 *result = r;
3534 }
3535}
3536void address_space_stq_be(AddressSpace *as, hwaddr addr, uint64_t val,
3537 MemTxAttrs attrs, MemTxResult *result)
3538{
3539 MemTxResult r;
3540 val = cpu_to_be64(val);
3541 r = address_space_rw(as, addr, attrs, (void *) &val, 8, 1);
3542 if (result) {
3543 *result = r;
3544 }
3545}
3546
3547void stq_phys(AddressSpace *as, hwaddr addr, uint64_t val)
3548{
3549 address_space_stq(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL);
3550}
3551
3552void stq_le_phys(AddressSpace *as, hwaddr addr, uint64_t val)
3553{
3554 address_space_stq_le(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL);
1e78bcc1
AG
3555}
3556
f606604f 3557void stq_be_phys(AddressSpace *as, hwaddr addr, uint64_t val)
1e78bcc1 3558{
50013115 3559 address_space_stq_be(as, addr, val, MEMTXATTRS_UNSPECIFIED, NULL);
1e78bcc1
AG
3560}
3561
5e2972fd 3562/* virtual memory access for debug (includes writing to ROM) */
f17ec444 3563int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr,
b448f2f3 3564 uint8_t *buf, int len, int is_write)
13eb76e0
FB
3565{
3566 int l;
a8170e5e 3567 hwaddr phys_addr;
9b3c35e0 3568 target_ulong page;
13eb76e0
FB
3569
3570 while (len > 0) {
5232e4c7
PM
3571 int asidx;
3572 MemTxAttrs attrs;
3573
13eb76e0 3574 page = addr & TARGET_PAGE_MASK;
5232e4c7
PM
3575 phys_addr = cpu_get_phys_page_attrs_debug(cpu, page, &attrs);
3576 asidx = cpu_asidx_from_attrs(cpu, attrs);
13eb76e0
FB
3577 /* if no physical page mapped, return an error */
3578 if (phys_addr == -1)
3579 return -1;
3580 l = (page + TARGET_PAGE_SIZE) - addr;
3581 if (l > len)
3582 l = len;
5e2972fd 3583 phys_addr += (addr & ~TARGET_PAGE_MASK);
2e38847b 3584 if (is_write) {
5232e4c7
PM
3585 cpu_physical_memory_write_rom(cpu->cpu_ases[asidx].as,
3586 phys_addr, buf, l);
2e38847b 3587 } else {
5232e4c7
PM
3588 address_space_rw(cpu->cpu_ases[asidx].as, phys_addr,
3589 MEMTXATTRS_UNSPECIFIED,
5c9eb028 3590 buf, l, 0);
2e38847b 3591 }
13eb76e0
FB
3592 len -= l;
3593 buf += l;
3594 addr += l;
3595 }
3596 return 0;
3597}
038629a6
DDAG
3598
3599/*
3600 * Allows code that needs to deal with migration bitmaps etc to still be built
3601 * target independent.
3602 */
3603size_t qemu_target_page_bits(void)
3604{
3605 return TARGET_PAGE_BITS;
3606}
3607
a68fe89c 3608#endif
13eb76e0 3609
8e4a424b
BS
3610/*
3611 * A helper function for the _utterly broken_ virtio device model to find out if
3612 * it's running on a big endian machine. Don't do this at home kids!
3613 */
98ed8ecf
GK
3614bool target_words_bigendian(void);
3615bool target_words_bigendian(void)
8e4a424b
BS
3616{
3617#if defined(TARGET_WORDS_BIGENDIAN)
3618 return true;
3619#else
3620 return false;
3621#endif
3622}
3623
76f35538 3624#ifndef CONFIG_USER_ONLY
a8170e5e 3625bool cpu_physical_memory_is_io(hwaddr phys_addr)
76f35538 3626{
5c8a00ce 3627 MemoryRegion*mr;
149f54b5 3628 hwaddr l = 1;
41063e1e 3629 bool res;
76f35538 3630
41063e1e 3631 rcu_read_lock();
5c8a00ce
PB
3632 mr = address_space_translate(&address_space_memory,
3633 phys_addr, &phys_addr, &l, false);
76f35538 3634
41063e1e
PB
3635 res = !(memory_region_is_ram(mr) || memory_region_is_romd(mr));
3636 rcu_read_unlock();
3637 return res;
76f35538 3638}
bd2fa51f 3639
e3807054 3640int qemu_ram_foreach_block(RAMBlockIterFunc func, void *opaque)
bd2fa51f
MH
3641{
3642 RAMBlock *block;
e3807054 3643 int ret = 0;
bd2fa51f 3644
0dc3f44a
MD
3645 rcu_read_lock();
3646 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) {
e3807054
DDAG
3647 ret = func(block->idstr, block->host, block->offset,
3648 block->used_length, opaque);
3649 if (ret) {
3650 break;
3651 }
bd2fa51f 3652 }
0dc3f44a 3653 rcu_read_unlock();
e3807054 3654 return ret;
bd2fa51f 3655}
ec3f8c99 3656#endif